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Preliminaries



The McEliece cryptosystem (1978)

Alice

secret
structural

data

t-error decoding
algorithm

error-correcting code C
generator matrix G

e.g. binary Goppa code Bob

message m
noise e←$ {|e| = t}

ciphertext y = mG + ey

m

Eve

???

(1) G looks like a generic generator matrix
(2) decoding a generic linear code is hard

Note:
(1) ad hoc problem, trapdoor similar to those in today’s multivariate cryptography
(2) well-studied problem, NP-hard, believed to be quantum-resistant
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Stability of McEliece cryptanalysis

Asymptotic complexity for rate R , length n→∞ codes: (C + o(1))
n

log n

Blue: information set decoding — improving C would be a major result!

Red: Goppa structure distinguisher/recovery
(unmentioned results only work for extreme regimes or other types or codes, or need additional information)
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Preliminaries — codes

▶ F field → Fn product algebra (componentwise multiplication)

x = (x1, . . . , xn), y = (y1, . . . , yn) → xy = x ∗ y = (x1y1, . . . , xnyn)

▶ a [n, k]-code (or [n, k]F-code) is a k-dimensional linear subspace C ⊆ Fn

▶ generalized Reed-Solomon code: for x, y ∈ Fn, all xi distinct, all yi nonzero,

GRSk(x, y) = ⟨y, yx, . . . , yxk−1⟩F = {yf (x) : f (X ) ∈ F[X ]<k} ⊆ Fn

with generator matrix the generalized Vandermonde matrix

G = Vk(x, y) =


y1 . . . yn
y1x1 . . . ynxn
...

...
y1x

k−1
1 . . . ynx

k−1
n

 ∈ Fk×n
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Preliminaries — more codes

▶ Fq ⊆ Fqm extension of finite fields, e.g. q = 2, m = 12

▶ alternant code: for x, y ∈ (Fqm)
n, all xi distinct, all yi nonzero,

Altt(x, y) = GRSt(x, y)
⊥ ∩ (Fq)

n

= {c ∈ (Fq)
n : c1y1x

j
1 + · · ·+ cnynx

j
n = 0 (0 ≤ j < t)}

▶ this is a [n, (≥)n −mt]q-code

▶ Goppa code:
Gop(x, g) = Altdeg(g)(x, g(x)

−1)

for g(X ) ∈ Fqm [X ] nonvanishing on x, e.g. g irreducible

▶ we have efficient decoding algorithms for all these codes, provided we know
the structural data (x, y) or (x, g) from which they were constructed.

Given a generator matrix G, can we decide if it is that of an alternant/Goppa
code? If so, can we recover (some) corresponding (x, y) or (x, g)?

4 / 34



The square distinguisher
(and slightly beyond)



The square distinguisher — products and powers of codes
▶ Fn endowed with componentwise multiplication → product of codes:

C,C′ ⊆ Fn → CC′ = C ∗ C′ = ⟨cc′ : c ∈ C, c′ ∈ C′⟩F

▶ powers C⟨r⟩ = C∗r defined inductively: C⟨0⟩ = F · 1, C⟨r+1⟩ = C⟨r⟩C

▶ c1, . . . , ck basis of C (rows of generator matrix) → evaluation map

F[X1, . . . ,Xk ] → Fn

Xi 7→ ci

maps subspace of homogeneous forms F[X1, . . . ,Xk ]r onto C⟨r⟩

▶ in particular, the cicj (1 ≤ i ≤ j ≤ k) generate C⟨2⟩, and

dimC⟨2⟩ ≤ min

(
n,

k(k + 1)

2

)
▶ Cascudo-Cramer-Mirandola-Zémor (2015): for random C, this inequality is

an equality with high probability
5 / 34



The square distinguisher — FGOPT11, MP12, MT22

Theorem
For any q,m, n, t, there is an explicit positive constant T = TGop(q,m, n, t) such
that the dual code C of any Goppa code with these parameters satisfies

dimC⟨2⟩ ≤ min

(
n,

k(k + 1)

2
− T

)
.

Moreover, experimental evidence shows that for most parameter sets, this
inequality is an equality with overwhelming probability.
(+ similar result for non-Goppa alternant codes, with another explicit TAlt)

Compare with the expected dimC⟨2⟩ = min
(
n, k(k+1)

2

)
for (the dual of) a

random code. Moreover, in all cases, dimC⟨2⟩ is efficiently computable.

→ This provides a distinguisher in the regime n > k(k+1)
2
− T , i.e. when the

square of the dual of the alternant/Goppa code does not fill the whole space.
In turn, this condition implies that this dual has small rate, or equivalently, that
the primal code has high rate: typically 0.96 for n of cryptographic size.
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The square distinguisher — some ideas behind
▶ fundamental example: C = GRSk(x, y), c1 = y, c2 = yx, . . . , ck = yxk−1

→ cicj = y2xi+j−2 → C⟨2⟩ = GRS2k−1(x, y2)

→ dimC⟨2⟩ = min(n, 2k − 1) can be much smaller than min(n, k(k+1)
2

)
▶ this comes from quadratic relations between codewords:

cicj − ci ′cj ′ = 0 whenever i + j = i ′ + j ′

▶ for any C, such relations live in I2(C) = ker(F[X1, . . . ,Xk ]2 −→ C⟨2⟩), so

dimC⟨2⟩ =
k(k + 1)

2
− dim I2(C)

▶ recall Altt(x, y) = GRSt(x, y)⊥ ∩ (Fq)
n; set C = Altt(x, y)⊥; then generically

CFqm
= GRSt(x, y)⊕ GRSt(x

q, yq)⊕ · · · ⊕ GRSt(x
qm−1

, yq
m−1

)

▶ thus I2(CFqm
) contains the quadratic relations of all these GRS (and possibly

some more), which contributes to make dimFqm
(CFqm

)⟨2⟩ small
▶ compatibility with extension of scalars: dimFq C

⟨2⟩ = dimFqm
(CFqm

)⟨2⟩

Remark: I2(C) and C⟨2⟩ are equivalent regarding dimension, so we can work with
whichever is more convenient for computations, proofs, etc. 7 / 34



Improvements upon and around the square distinguisher
▶ Bardet-Mora-Tillich (2023) combine ideas from the square distinguisher,

shortening/filtration arguments, and a careful Gröbner basis modeling, to
get structural recovery attacks in some specific regimes.

▶ Other approach? In the alternant/Goppa case, even if C⟨2⟩ fills the space,
I2(C) is not a random space of quadratic relations: after extension of scalars,
it contains uncommonly short relations such as cicj − ci ′cj ′ . Moreover, these
short relations involve the structural basis: uncovering them could possibly
lead to an attack. To exploit this, one needs:

1. a good notion of length/weight/rank for quadratic relations

2. then solve a nonlinear problem akin to MinWeight/MinRank.

I thought a little bit, but failed at 1. and got discouraged by 2.

▶ But Couvreur-Mora-Tillich (2024) also had this idea, and they succeeded
→ extension of the distinguisher, with a trade-off between complexity and
attainable rate. (Plus another attack in another specific regime.)

▶ This might be the most promising approach, and there is ongoing work
further in this direction. Yet...
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Figure 1: a distinguisher for [7, 4] GRS codes

Aim of this talk: make you understand this, and generalize.
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[7,4] GRS codes
For any [7, 4]-code C with C⟨2⟩ = F7, we have

dim I2(C) =
k(k + 1)

2
− n = 3.

If C is a [7, 4] GRS code, with basis c1, c2, c3, c4 = y, yx, yx2, yx3, we have

c1c3 = c22, c1c4 = c2c3, c2c4 = c23

linearly independent quadratic relations, i.e.

I2(C) = ⟨Q1,Q2,Q3⟩ where Q1 = X1X3−X 2
2 , Q2 = X1X4−X2X3, Q3 = X2X4−X 2

3 .

These Q1,Q2,Q3 are linearly independent over F, i.e. they satisfy no scalar linear
relation. But they satisfy linear relations with degree 1 coefficients, a.k.a.
syzygies of total degree 3. There are two of them:

X1Q3 − X2Q2 + X3Q1 = X2Q3 − X3Q2 + X4Q1 = 0.

Proof: det

 X1 X2 X3
X1 X2 X3
X2 X3 X4

 = det

 X2 X3 X4
X1 X2 X3
X2 X3 X4

 = 0.

This characterizes [7, 4] GRS codes: generic triples of quadratic forms do not
admit such syzygies. 10 / 34



The degree 3 syzygy distinguisher
▶ S = F[X1, . . . ,Xk ] graded by total degree, Ir (C) = ker(Sr −→ C⟨r⟩)
▶ syzygies as above lie in the kernel of the “Macaulay matrix”

φ3 : I2(C)⊗ S1 −→ I3(C) ⊆ S3

▶ assume C⟨2⟩ = Fn, so dim I2(C) =
(
k+1
2

)
− n and dim I3(C) =

(
k+2
3

)
− n

▶ we have a certain number of contingent syzygies, forced by dimension:

dim(kerφ3) ≥ (k dim I2(C)− dim I3(C))
+ = (k − 1)

(
k(k+1)

3
− n
)+

▶ random code: we make the heuristic that this is an equality w.h.p.
▶ algebraic code: get a certain number T̃ = T̃Alt or T̃Gop of structural syzygies,

function of q,m, n, t, proven or just guessed/inferred from experiments

▶ this gives a distinguisher when T̃ > (k − 1)
(

k(k+1)
3
− n
)+

i.e. when

n >
k(k + 1)

3
− T̃

k − 1
11 / 34



Side-by-side

Square distinguisher:
ev : S2 −→ C⟨2⟩ ⊆ Fn

▶
(

k(k+1)
2
− n
)+

contingent quadratic relations (from dimension)

▶ T structural quadratic relations (from alternant/Goppa structure)
▶ distinguishability threshold:

n >
k(k + 1)

2
− T

Degree 3 syzygy distinguisher:

φ3 : I2(C)⊗ S1 −→ I3(C) ⊆ S3

▶ (k − 1)
(

k(k+1)
3
− n
)+

contingent syzygies (from dimension)

▶ T̃ structural syzygies (from alternant/Goppa structure)
▶ distinguishability threshold:

n >
k(k + 1)

3
− T̃

k − 1
12 / 34



Numerical data on the degree 3 distinguisher
Benchmarking distinguishers:
▶ choose type of code, q,m; set n = qm → find the largest distinguishable t
▶ choose type of code, q,m, t → find the shortest distinguishable n

typem,t Alt8,3 Alt9,4 Gop6,3 Gop7,3 Gop8,4 Gop9,6 Gop10,7
k = mt 24 36 18 21 32 54 70

T̃ 16 261 886 1003 4000 26738 54084
ndeg 3 dist. 200 437 62 104 223 486 873
nsquare dist. − − 63 106 225 487 876

Table 1: shortest deg 3 syzygy-distinguishable n, for q = 2

Remarks:
▶ for alternant codes, transition to nondistinguishability is abrupt
▶ for Goppa codes, transition more progressive, both for degree 3 distinguisher

and for square distinguisher → can catch slightly shorter n with good proba
▶ CMT24 does much better for Gop6,3: nCMT24 = 59

13 / 34



Higher modules of syzygies



Geometric view on codes
▶ G ∈ Fk×n generator matrix of C ↔ its rows c1, . . . ck form a basis of C
▶ for any polynomial f (X) = f (X1, . . . ,Xk) ∈ S we have

ev(f ) = f (c1, . . . , ck) = (f (p1), . . . , f (pn))

where p1, . . .pn are the columns of G
▶ C ∼ C′ linearly isometric ↔ C′ = aCσ for some a ∈ (Fn)×, σ ∈ Sn

▶ lin. isometry class of C ↔ eq. class of multiset {p1, . . . ,pn} ⊆ Pk−1(F)
mod. projective automorphisms

▶ the homogeneous coordinate ring of C (or of {p1, . . . ,pn}) is

C⟨.⟩ =
⊕
r≥0

C⟨r⟩

▶ under ev, C⟨.⟩ is a graded S-module — actually it is a graded quotient of S :

0 −→ I (C) −→ S −→ C⟨.⟩ −→ 0

where I (C) =
⊕

r≥2 Ir (C) is the homogeneous ideal of C (or of {p1, . . . ,pn})
14 / 34



General definition of syzygies

▶ S = F[X1, . . . ,Xk ] graded by total degree

▶ M0 finitely generated graded S-module

▶ G = {g1, . . . , gN} a minimal system of homogeneous generators of M0

▶ F0 free S-module on G: its elements are formal sums
∑

i fi [gi ], fi ∈ S

▶ M1 = ker(F0 ↠ M0) is the first module of syzygies of M0∑
i
fi [gi ] ∈ M1 ⇐⇒

∑
i
figi = 0 in M0.

F0 and M1 define M0 by generators and relations. But M1 not free in general...

▶ Iterate: Fi free S-module on a min. syst. of homog. gen. of Mi

▶ Mi+1 = ker(Fi ↠ Mi) is the (i + 1)-th module of syzygies of M0.

We will apply this to M0 = C⟨.⟩ → M1 = I (C), M2 =”usual” syzygies, ...
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Minimal resolution and Betti numbers
▶ The minimal resolution of M0 is

· · · −→ Fi −→ Fi−1 −→ · · · −→ F1 −→ F0

▶ Hilbert’s syzygy theorem: this terminates, more precisely Fi = 0 for i > k
▶ Betti numbers: βi ,j =number of degree j generators of Fi

→ new invariants for codes
▶ the square distinguisher actually is a β1,2-distinguisher (β1,2 = dim(I2(C)))
▶ the degree 3 syzygy distinguisher actually is a β2,3-distinguisher
▶ Betti diagram:

0 1 2 . . . k
...

...
...

...
...

j β0,j β1,j+1 β2,j+2 . . . βk,j+k

j + 1 β0,j+1 β1,j+2 β2,j+3 . . . βk,j+k+1
...

...
...

...
...

minimality: im(Fi+1) ⊆ (X1, . . . ,Xk)Fi → if Fi generated in deg ≥ D, then
Fi+1 generated in deg ≥ D + 1
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Examples of Betti diagrams

0 1 2 3
0 1 − − −
1 − 3 − −
2 − 1 6 3

Figure 2: the [7, 4]2 Hamming code

0 1 2 3 4 5
0 1 − − − − −
1 − 10 16 − − −
2 − 1 5 26 20 5

Figure 3: the [12, 6]3 Golay code

0 1 2 3 4 5 6 7 8 9 10 11
0 1 − − − − − − − − − − −
1 − 55 320 891 1408 1210 320 55 − − − −
2 − 1 11 55 220 650 1672 1870 1221 485 110 11

Figure 4: the [23, 12]2 Golay code
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Basic properties of Betti diagrams of codes

▶ Auslander-Buchsbaum: M0 = C⟨.⟩ has depth 1 → columns range from 0 to
k − 1 (instead of k)

▶ C⟨.⟩ is a quotient of S → 0-th column = (1,−,−, . . . )⊤

▶ I≤1(C) = 0 → 0-th row = (1,−,−, . . . )

Definition (Mumford, 1966)
Castelnuovo-Mumford regularity of C⟨.⟩ is max{j : ∃i , βi ,i+j ̸= 0}.

Definition (Ran15)
Castelnuovo-Mumford regularity of projective code C is min{j : C⟨j⟩ = Fn}.

Theorem
These two definitions coincide.

→ If C⟨2⟩ = Fn, Betti diagram only has rows 0, 1, 2 (and I (C) gen. in deg 2, 3).
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Effective computation
Only interested in first row of Betti diagram (linear strand of resolution)

▶ βr−1,r = dim(Mr−1,r ), where Mr−1,r lowest degree part of Mr−1

▶ by definition Mr−1,r = ker(φr ) where

φr : Mr−2,r−1 ⊗ S1 −→ Mr−2,r

▶ but also Mr−1,r = ker(ψr ) where

ψr : Mr−2,r−1 ⊗ S1 −→ Mr−3,r−2 ⊗ S2

given by Mr−2,r−1 ⊗ S1 ⊆ (Mr−3,r−2 ⊗ S1)⊗ S1 → Mr−3,r−2 ⊗ S2

→ iteratively construct and take kernel of blockwise Macaulay matrix in

F kβr−2,r−1 × (k+1
2 )βr−3,r−2

▶ looks “Gröbner-ish” but no use of Gröbner basis algorithm
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Algebraic codes: structural syzygies



The Eagon-Northcott complex

Let R be a ring, and for f ≥ g let Φ ∈ R f×g define a linear map

F = R f −→ G = Rg .

The Eagon-Northcott complex of Φ is

0→ (Symf−g G )∨ ⊗
f∧
F → · · · → G∨ ⊗

g+1∧
F →

g∧
F

∧g Φ−→
g∧
G ≃ R .

It has length f − g + 1, and its r -th term is free of rank
(
g+r−2
r−1

)(
f

g+r−1

)
.

Under mild hypotheses (e.g. 1-genericity), it is exact: it defines a resolution of
the quotient of R defined by the ideal Ig (Φ) of maximal minors of Φ.

20 / 34



The Eagon-Northcott complex for g = 2

When g = 2 and Φ =

(
x1 x2 . . . xf
x ′1 x ′2 . . . x ′f

)
we can make everything explicit:

▶ I2(Φ) is generated by the qi ,j = xix
′
j − xjx

′
i so there are

(
f
2

)
of them

▶ relations between the qij are generated by the
▶ rijk = xiqjk − xjqik + xkqij
▶ r ′ijk = x ′i qjk − x ′jqik + x ′kqij

so there are 2
(
f
3

)
of them

▶ relations between the rijk and r ′ijk are generated by the
▶ sijkl = xi rjkl − xj rikl + xk rijl − xl rijk
▶ s ′ijkl = xi r

′
jkl − xj r

′
ikl + xk r

′
ijl − xl r

′
ijk + x ′i rjkl − x ′j rikl + x ′k rijl − x ′l rijk

▶ s ′′ijkl = x ′i r
′
jkl − x ′j r

′
ikl + xk r

′
ijl − xl r

′
ijk

so there are 3
(
f
4

)
of them

▶ etc.

We observe that these are “short” relations.
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The Eagon-Northcott complex for alternant codes
Let C = Altt(x, y)⊥, so

CFqm
= GRSt(x, y)⊕ GRSt(x

q, yq)⊕ · · · ⊕ GRSt(x
qm−1

, yq
m−1

).

Let e = ⌊logq(t − 1)⌋.
Then I2(CFqm

) contains I2(Φ) where

Φ=

(
X

(0)
1 X

(0)
2 . . . X

(0)
t−qe X

(1)
1 X

(1)
2 . . . X

(1)

t−qe−1 . . . X
(e)
1 X

(e)
2 . . . X

(e)
t−1

X
(0)
qe+1 X

(0)
qe+2 . . . X

(0)
t X

(1)

qe−1+1 X
(1)

qe−1+2 . . . X
(1)
t . . . X

(e)
2 X

(e)
3 . . . X

(e)
t

)
.

Proof:
X (e−u)
a X

(e−v)
qv+b − X

(e−u)
qu+a X

(e−v)
b ∈ I2(Φ)

evaluates to

(yxa)q
e−u

(yxq
v+b)q

e−v − (yxq
u+a)q

e−u

(yxb)q
e−v

= 0

(or: the second row of Φ evaluates to xq
e
times its first row).

22 / 34



Shortening

Shortened subcode of C at S: take all codewords that vanish over S, then
discard these coordinates.

Proposition
Assume

I2(C) ⊇ I2(Φ)

where Φ is a 2× f matrix of linear forms. Let Cs be a s-shortened subcode of C.
Then

I2(Cs) ⊇ I2(Φs)

where Φs is a 2× (f − s) matrix whose columns are linear combinations of those
of Φ, and Φs is 1-generic if Φ is.

23 / 34



Lower bound on structural syzygies

Theorem
For C ∈ Alt⊥q,m,n,t set e = ⌊logq(t − 1)⌋ and f = (e + 1)t − qe+1−1

q−1
. Then

βr−1,r (Cs) ≥ (r − 1)

(
f − s

r

)
> 0

for r ≤ f − s.

Proof: minimal resolution of Cs contains the Eagon-Northcott complex of Φs .

Remarks:

▶ f is close to k , so we will be able to shorten a lot

▶ can slightly improve for Goppa codes
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Random codes: contingent syzygies



Linear algebra reminder
In a finite exact sequence of F-vector spaces we have

∑
i(−1)i dim(Vi) = 0.

If φ : U −→ V is a linear map between F-vector spaces, we define:

▶ its index:

ind(φ) = dim(U)− dim(V )

= dim ker(φ)− dim coker(φ)

▶ its (rank) defect:

def(φ) = min(dim(U), dim(V ))− rk(φ)

= min(dim ker(φ), dim coker(φ))

thus

dim ker(φ) = ind(φ)+ + def(φ), dim coker(φ) = ind(φ)− + def(φ)

where for each real x we write x+ = max(x , 0) and x− = (−x)+, so x = x+− x−.
25 / 34



More on regularity 2 codes

Definition
The Hilbert series of C is HC(z) =

∑
r≥0 z

r dimC⟨r⟩.

Theorem
Set Bj =

∑
i(−1)iβi ,j and B(z) =

∑
j Bjz

j . Then B(z) = (1− z)kHC(z).

Recall φr : Mr−2,r−1 ⊗ S1 −→ Mr−2,r

▶ βr−1,r = dim ker(φr )

▶ βr−2,r = dim coker(φr ).

If C has regularity 2 then

▶ HC(z) = 1 + kz + n(z2 + z3 + z4 + · · · )
▶ Br = (−1)r (βr−2,r − βr−1,r ) = (−1)r−1 ind(φr )

▶ so

ind(φr ) =

(
k(k + 1)

r
− n

)(
k − 1

r − 2

)
.
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The minimal resolution conjecture (caution!)

It follows

βr−1,r ≥ ind(φr )
+ =

(
k(k + 1)

r
− n

)+(
k − 1

r − 2

)
.

Now:

▶ random linear maps tend to have small defect

▶ defect is 0 with probability exponentially close to 1 when index grows

▶ if C is random, we expect φr to behave like a random linear map

→ βr−1,r =
(

k(k+1)
r
− n
)+ (

k−1
r−2

)
with high probability.

Backed by the Minimal resolution conjecture (Lorenzini 1993): claims it is so for
generic codes

▶ Bad: counterexamples were found (see e.g. Eisenbud-Popescu)

▶ Good: only for very specific parameters → conjecture still “true enough” for
our use
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The minimal resolution conjecture (caution!)

It follows

βr−1,r ≥ ind(φr )
+ =

(
k(k + 1)

r
− n

)+(
k − 1

r − 2

)
.

Now:

▶ random linear maps tend to have small defect

▶ defect is 0 with probability exponentially close to 1 when index grows

▶ if C is random, we expect φr to behave like a random linear map, do we??

→ βr−1,r =
(

k(k+1)
r
− n
)+ (

k−1
r−2

)
with high probability.

Backed by the Minimal resolution conjecture (Lorenzini 1993): claims it is so for
generic codes → over an infinite field

▶ Bad: counterexamples were found (see e.g. Eisenbud-Popescu)

▶ Good: only for very specific parameters → conjecture still “true enough” for
our use
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Syzygies and distance properties: the small defect heuristic

Experimental fact
For C a [n, k , d , d⊥]-code, we have

1. βr−1,r (C) > 0, hence def(φr ) > 0, for k(k+1)
n
≤ r ≤ k + 1− d

2. βr−2,r (C) > 0, hence def(φr ) > 0, for d⊥ ≤ r ≤ k(k+1)
n

.

Conversely for random C, and r out of these intervals, def(φr ) = 0 w.h.p.

Thus:

1. if d > k + 1− k(k+1)
n

we expect βr−1,r = 0 for r > k(k+1)
n

2. if d⊥ > k(k+1)
n

we expect βr−1,r =
(

k(k+1)
r
− n
) (

k−1
r−2

)
for r < k(k+1)

n
.

Remark: these conditions hold for random codes of low enough rate.
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More Betti diagrams

0 1 2 3 4 5 6 7 8 9 10 11
0 1 − − − − − − − − − − −
1 − 55 319 880 1353 990 − − − − − −
2 − − − − − 330 1617 1870 1221 485 110 11

Figure 5: an idealized [23, 12]-code according to the minimal resolution conjecture

0 1 2 3 4 5 6 7 8 9 10 11
0 1 − − − − − − − − − − −
1 − 55 319 884 1397 1224 490 121 18 1 − −
2 − − 4 44 234 820 1738 1888 1222 485 110 11

Figure 6: a (pseudo)random [23, 12]2-code (d = 3, d⊥ = 4)

Critical values for r : d⊥, k(k+1)
n

, k + 1− d
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The distinguisher



Principle

Fix an r :

▶ if distance condition in the small defect heuristic is met, random codes have(
k(k+1)

r
− n
)+ (

k−1
r−2

)
contingent syzygies

▶ dual alternant/Goppa codes have β∗
r−1,r structural syzygies (e.g. from

Eagon-Northcott complex)

→ distinguishability threshold n ≥
⌈

k(k+1)
r
− β∗

r−1,r−1

(k−1
r−2)

⌉
.

Also works for shortened subcodes → smaller n, k ,R → helps with complexity
and with distance condition.

We will restrict to r > k(k+1)
n

→ compute βr−1,r and check whether = 0 or > 0.
Asymmetry in the heuristic:

▶ part 1 needed for the distinguisher to work

▶ part 2 used only for complexity estimate
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Practical and non-practical results

▶ contains the square distinguisher as a special case = the β1,2-distinguisher

▶ outperforms CMT24 in all experiments, both in terms of
▶ distinguishable parameters
▶ efficiency

▶ largest practically manageable parameters, with a naive, non-optimized
Magma implementation: q,m, n, t = 2, 10, 1024, 10 → k = mt = 100
then for 40-shortened subcodes we consistently find
▶ β3,4 = 30 in the Goppa case
▶ β3,4 = 0 in the random case

▶ Classic McEliece 348864: q,m, n, t = 2, 12, 3488, 64 → k = mt = 768
▶ 377-shortened dual Goppa codes have β49,50 > 0
▶ expect β49,50 = 0 for shortened random codes (distance condition is ok)
▶ but complexity estimate ≈ 2528

How far could we go with a more optimized implementation, sparse linear
algebra, etc.?
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Asymptotics

Fix a dual rate R , take n→∞, and m = ⌈logq(n)⌉, k ≈ Rn, t = k
m
.

Let C be a dual alternant/Goppa code with these parameters.
Recall: for s-shortened subcodes of C,

βr−1,r (Cs) > 0

for all r ≤ f − s, where f = (e + 1)t − qe+1−1
q−1

, e = ⌊logq(t − 1)⌋.

Lemma
This f is very close to k, namely

k − f ∼ R
logq logq(n)

logq(n)
n.

We can distinguish at βr−1,r , after shortening s := f − r times, as long as

r > (k−f+r)(k−f+r+1)
n−f+r

.
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Asymptotics

Theorem
Such codes can be distinguished at βr−1,r , after shortening f − r times, where

r ∼ R2

1− R

(
logq logq(n)

logq(n)

)2

n.

Complexity is at most

q

(
ω R2

1−R
+o(1)

)
(logq logq(n))

3

(logq(n))
2 n

which is subexponential in n
log(n)

.

Remarks:

▶ better than ISD algorithms, exponential in n
log(n)

▶ asymptotic gain (log log(n))3

log(n)
→ 0 but very slowly
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Conclusion

▶ Is McEliece broken? — No.

▶ Will it be broken soon? — I don’t know, and I wouldn’t bet in any direction.

▶ Is our understanding of its security stable? — No: these last 3 years saw
considerable progress from the algebraic approach (not limited to this work),
and this is likely to continue.

TODO:

▶ Improve implementation, theoretically and practically.

▶ Provide missing proofs, especially regarding links between Betti numbers and
distance properties.

▶ This is not a black-box distinguisher, it provides a lot of structural
information → use it (joint with other techniques) for structural recovery?

▶ Betti numbers are new code invariants. Find other applications, e.g. to the
monomial/linear equivalence problem?
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