

Léo Ducas

CENTRUM WISKUNDE & INFORMATICA, AMSTERDAM LEIDEN UNIVERSITY, MATHEMATICAL INSTITUTE

The Mathematics of Post-Quantum Cryptography, , Bonn, Dec 2024 $\,$

Lattices

- Public Key Encryption with Lattices
- Digital Signatures with Lattices
- Cryptanalysis: Lattice Reduction

Lattices and their Bases

Lattices are (infinite) regular grids of point in (euclidean) space. They can be finitely described thanks to their bases. Example in Dimension 2:

Lattices and their Bases

Lattices are (infinite) regular grids of point in (euclidean) space. They can be finitely described thanks to their bases. Example in Dimension 2:

Using Lattices in Cryptography

Bases allow to 'tile' the space, and perform error correction.

Using Lattices in Cryptography

Bases allow to 'tile' the space, and perform error correction.

As dimension grows > 2, the error tolerance gap between G and B grows exponentially.

Léo Ducas (CWI & Leiden U.) Lattice-based Cryptography

Encryption Procedure

- View the message as a lattice point $m \in L$ (can do with **B**)
- Choose a random small error vector e

(e.g. binary)

Return ciphertext c = m + e

Encryption Procedure

- View the message as a lattice point $m \in L$ (can do with **B**)
- Choose a random small error vector e

(e.g. binary)

Return ciphertext c = m + e

Decryption Procedure

- Tile to recover the center m of the tile (should do with G)
- Return decrypted message m

Encryption Procedure

- View the message as a lattice point $m \in L$ (can do with **B**)
- Choose a random small error vector e

(e.g. binary)

• Return ciphertext c = m + e

Decryption Procedure

Tile to recover the center *m* of the tile

Return decrypted message m

Lattice-based Cryptography

Lattice-based Encryption is as simple as Tetris

It might be hard to get intuition for lattice in dimension > 2...Cryptris:

A serious game to understand how it works, and why it is secure.

Developed with Inria (FR), translated to EN and NL at CWI https://cryptris.nl/

Simple to Implement

- Encryption involve a Matrix-Vector product
- Tiling is a more involved, but Decryption can be simplified
- We can choose *q*-ary lattices, to make all computation mod *q*

Structured Lattices

Use circulant blocks in the matrix to improve compactness

$$\begin{bmatrix} c_0 & c_{n-1} & \cdots & c_2 & c_1 \\ c_1 & c_0 & c_{n-1} & & c_2 \\ \vdots & c_1 & c_0 & \ddots & \vdots \\ c_{n-2} & \ddots & \ddots & c_{n-1} \\ c_{n-1} & c_{n-2} & \cdots & c_1 & c_0 \end{bmatrix}$$

Speed benefits as well thanks to Fast Fourier Transform

Digital Signatures with Lattices And why they are a bit more painful

A Naive Approach

RSA "Hash-then-Sign" Signatures

- Signature : Set sig := RSA-decrypt(Hash(message))
- Encryption : Check RSA-encrypt(sig) = Hash(message)

Could we just do the same with lattices ?

A Naive Approach

RSA "Hash-then-Sign" Signatures

- Signature : Set sig := RSA-decrypt(Hash(message))
- Encryption : Check RSA-encrypt(sig) = Hash(message)

Could we just do the same with lattices ?

A Naive Approach

RSA "Hash-then-Sign" Signatures

- Signature : Set sig := RSA-decrypt(Hash(message))
- Encryption : Check RSA-encrypt(sig) = Hash(message)

Could we just do the same with lattices ?

but ...

It's only secure if you don't use it much...

Léo Ducas (CWI & Leiden U.) Lattice-based Cryptography

The distribution of signatures leaks the secret key !

- Linear algebra mod q (as for Encryption)
- Linear algebra over the real numbers
- Sampling from very specific distribution

Requires Floating Point Arithmetic

Something never done in crypto before !

- Numerical precision issues
- Determinism issues
- Timing side-channel issues

Cryptanalysis: Lattice Reduction

Keduction

Find & (unique canonical) representative 2EX good) of a given class CEX/n.

Reduction

Find & (unique canonical) representative = EX good of a given class c EX/n.

Lattice Reduction

Find 2 good basis $B \in Ga_n(\mathbb{R})$ of a lattice $\mathcal{L} \in \mathcal{G}_{n}(\mathbb{R})$. $\mathcal{G}_{n}(\mathbb{R})$.

Invariants Band B' generate the same lattice iff: $JU \in GU_n(Z)$ st $B' = B \cdot U$. => det(Z):= det(B) is an invariant of Z.

Invariants Band B' generates the same lattice iff: $JU \in GU_n(Z)$ st $B' = B \cdot U$. => det(Z) := det(B) is an invariant of Z. Grom-Schmidt Grthegonalisation $b_{i}^{*} := \pi_{b_{i}\cdots b_{i-1}}^{\perp}(b_{i})$ $=b_{i}-\sum_{j<i}\frac{\langle b_{i},b_{j}^{*}\rangle}{\langle b_{i}^{*},b_{j}^{*}\rangle}\cdot b_{j}^{*}$

Invariants Band B' generates the same lattice iff: $J'U \in GU_n(Z)$ st B'=B.U. => det(L):= det(B) is an invariant of d. Gram-Schmidt Brthegonalisation Invariant $b_i^* := \pi_{(b_i, \dots, b_{i-1})}^{\perp} (b_i)$ $det(\mathscr{L}) = \prod_{i} \|B_{i}^{*}\|$ $= b_i - \sum_{j < i} \frac{\langle b_i, b_j^* \rangle}{\langle b_i^*, b_i^* \rangle} \cdot b_j^*$

Invariants Bound B' generates the same lattice iff: $JU \in GU_n(Z)$ st $B'=B \cdot U$. => det(Z):= det(B) is an invariant of a. Gram-Schmidt Brthegonalisation $b_i^* := (\pi_{b_i \cdots b_{i-1}})(b_i)$ Invariant $det(\mathscr{L}) = \prod \|B_i^*\|$ $= b_i - \sum_{j < i} \frac{\langle b_i, b_j^* \rangle}{\langle b_i^*, b_j^* \rangle} \cdot b_j^*$

NCIS

"Good basis <=> Fundamental Bralleliped P(B*) is "close" to a hypercube $\langle = \rangle \| b_{a}^{*} \| \approx \| b_{b}^{*} \| \approx \dots \approx \| b_{n}^{*} \|.$

LLL Reduction

Definition A basis B of L is LLL-reduced if (TT; (b;), TT; (b;+1)) is Logrange-reduced for all i<n.

LLL Reduction

Definition Abasis B of Lis LLL-reduced if (TT; (b;), TT; (b;+1)) is Lagrange-reduced for all i<n. "the profile never falls by Ilbill steeper than log 14/3 \implies $\forall icn, \|b_i^*\| \leq \|4_3 \cdot \|b_{i+1}^*\|$

LLL Reduction

Definition Abasis B of Lis LLL-reduced if (TT; (b;), TT; (b;+1)) is Logrange-reduced for all i<n. log Ilbill "the profile never falls" \implies $\forall i \leq 1, \|b_i^*\| \leq \|4_3 \cdot \|b_{i+1}^*\|$ $\|b_{n}\| \leq \sqrt{\frac{4}{3}} \cdot \det(\mathcal{L})^{n}$ Chain & collect

LLL Algorithm While $\exists i \; s.t. \; (\pi_i(b_i), \pi_i(b_{i+1})) \; is not degrange-reduced$ alsgrange-reduce it ...

Correctness : Trivial

Principal Ideal Lattice Reduction

Short generator recovery

Given $h \in R$, find a small generator g of the ideal (h).

Note that $g \in (h)$ is a generator iff $g = u \cdot h$ for some <u>unit</u> $u \in \mathbb{R}^{\times}$. We need to explore the (multiplicative) unit group R^{\times} .

Short generator recovery

Given $h \in R$, find a small generator g of the ideal (h).

Note that $g \in (h)$ is a generator iff $g = u \cdot h$ for some <u>unit</u> $u \in \mathbb{R}^{\times}$. We need to explore the (multiplicative) unit group R^{\times} .

Translation an to additive problem

Take logarithms:

$$\mathsf{Log}: g \mapsto (\mathsf{log} | \sigma_1(g) |, \ldots, \mathsf{log} | \sigma_n(g) |) \in \mathbb{R}^n$$

where the σ_i 's are the canonical embeddings $\mathbb{K} \to \mathbb{C}$.

The Unit Group and the log-unit lattice

Let R^{\times} denotes the multiplicative group of units of R. Let

 $\Lambda = \operatorname{Log} R^{\times}.$

Theorem (Dirichlet unit Theorem)

 $\Lambda \subset \mathbb{R}^n$ is a lattice (of a given rank).

The Unit Group and the log-unit lattice

Let R^{\times} denotes the multiplicative group of units of R. Let

 $\Lambda = \operatorname{Log} R^{\times}.$

Theorem (Dirichlet unit Theorem)

 $\Lambda \subset \mathbb{R}^n$ is a lattice (of a given rank).

Reduction to a Close Vector Problem

Elements g is a generator of (h) if and only if

 $\log g \in \log h + \Lambda$.

Moreover the map Log preserves some geometric information: g is the "smallest" generator iff Log g is the "smallest" in Log $h + \Lambda$.

7 / 21

Example: Embedding $\mathbb{Z}[\sqrt{2}] \hookrightarrow \mathbb{R}^2$

- x-axis: σ₁(a + b√2) = a + b√2
 y-axis: σ₂(a + b√2) = a b√2
- component-wise additions and multiplications

Example: Embedding $\mathbb{Z}[\sqrt{2}] \hookrightarrow \mathbb{R}^2$

- x-axis: σ₁(a + b√2) = a + b√2
 y-axis: σ₂(a + b√2) = a b√2
- component-wise additions and multiplications

"Orthogonal" elements Units (algebraic norm 1) "Isonorms" curves

Example: Logarithmic Embedding Log $\mathbb{Z}[\sqrt{2}]$

 $(\{\bullet\},+)$ is a sub-monoid of \mathbb{R}^2

Cramer, **D.**, Peikert, Regev (Leiden, CWI,NY

Recovering Short Generators

EUROCRYPT, May 2016

Example: Logarithmic Embedding Log $\mathbb{Z}[\sqrt{2}]$

Cramer, **D.**, Peikert, Regev (Leiden, CWI,NY

Recovering Short Generators

EUROCRYPT, May 2016

9 / 21

Example: Logarithmic Embedding Log $\mathbb{Z}[\sqrt{2}]$

Cramer, **D.**, Peikert, Regev (Leiden, CWI,NY

Recovering Short Generators

EUROCRYPT, May 2016

Reduction modulo $\Lambda = \text{Log } \mathbb{Z}[\sqrt{2}]^{\times}$

The reduction $mod\Lambda$ for various fundamental domains.

