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FRIEZES FROM SURFACES AND FAREY TRIANGULATION

ANNA FELIKSON, PAVEL TUMARKIN

Abstract. We provide a classification of positive integral friezes on marked bordered
surfaces. The classification is similar to the Conway–Coxeter’s one: positive integral
friezes are in one-to-one correspondence with ideal triangulations supplied with a collec-
tion of rescaling constants assigned to punctures. For every triangulation the set of the
collections of constants is finite and is completely determined by the valencies of vertices
in the triangulation. In particular, it follows that the number of non-equivalent friezes
on bordered surfaces is finite, and all friezes on unpunctured surfaces are unitary.
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1. Introduction

Friezes were introduced by Coxeter [Cox71] as tables of integers of finite width satisfying
the “diamond rule”. More precisely, a frieze of width n consists of n+ 2 rows of positive
integers, where the first and the last rows consist of ones, even rows are shifted with
respect to the odd ones, and for every “diamond” of the form

b
a d

c

the unimodular relation ad− bc = 1 holds, see an example for n = 4 below:

· · · 1 1 1 1 1 1 1 1 · · ·
· · · 1 3 2 2 1 4 2 1 · · ·

· · · 1 2 5 3 1 3 7 1 · · ·
· · · 1 3 7 1 2 5 3 1 · · ·

· · · 2 1 4 2 1 3 2 2 · · ·
· · · 1 1 1 1 1 1 1 1 · · ·

1
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In [CC73], Conway and Coxeter gave a complete classification of friezes in terms of
triangulations of polygons: they showed that friezes of width n are in one-to-one corre-
spondence with triangulations of (n + 3)-gons (modulo natural symmetries). This result
can be reformulated in terms of Penner’s λ-lengths as follows (we recall the necessary
definitions in Section 2). Given a triangulation T of an (n+3)-gon, consider all triangles
of T as ideal triangles in the hyperbolic plane H2, with the horocycles chosen at vertices
so that λ-lengths of all edges of T (including the sides of the polygon) are equal to 1.
Then the entries in the k-th non-trivial row of the corresponding frieze are the λ-lengths
of diagonals connecting i-th and (i+ k+1)-th vertices of the polygon. The diamond rule
is then equivalent to the Ptolemy relation.

Connections of friezes to cluster algebras were first revealed in [Pr05] and [CC06]. In
these terms, Conway–Coxeter friezes can be considered as associated to cluster algebras
of type An. In particular, this gives rise to a natural generalization of the notion of frieze
obtained by evaluation of cluster variables in a cluster algebra, see e.g. [ARS10, MG12,
FP16]. As a consequence, friezes appear to be closely connected to various domains of
mathematics, including combinatorics, representation theory, integrable systems, geome-
try, see [MG15] for an extensive survey.

The cluster algebras approach together with the results of [FST08] provide a combina-
torial construction of friezes associated to marked surfaces: in this model the entries of
a frieze are assigned to arcs on a surface connecting marked points. Such frieze is called
unitary if there exists a triangulation of the surface with vertices in marked points such
that all arcs of the triangulation are assigned with 1 (note that due to Laurent Phenom-
enon [FZ02], every triangulation gives rise to a unique unitary frieze). Conway–Coxeter’s
results assure that all friezes on a disc are unitary, which leads to a natural question:

Are all friezes on a given surface unitary?

An example of a non-unitary frieze from a once punctured disc (corresponding to cluster
algebra of type D4) was constructed by Thomas, see [BM09]. This example was incor-
porated into a series of examples by Fontaine and Plamondon [FP16] (see Example 3.1
below), who classified all friezes of type Dn. However, no examples of non-unitary friezes
on unpunctured surfaces are known. Moreover, it was shown in [GS20] that all friezes
on an annulus are unitary, and in [CFGT22] that all friezes on a pair of pants are also
unitary.

In the present paper, we provide a complete classification of friezes constructed from
marked bordered surfaces in the style of Conway–Coxeter. More precisely, we prove that,
similarly to the case of punctured disc, every non-unitary frieze can be obtained from
a unitary frieze by multiplying the labels of all arcs incident to a given puncture by a
constant. The main result can be formulated as follows.

Main Theorem (Theorems 3.11, 4.4, Remark 4.5). A frieze from a marked bordered
surface S is uniquely defined by an ideal triangulation T of S and a collection of positive
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integers {ki} at all punctures {Pi}, such that ki divides the valence of Pi in T . Every such
data defines a frieze.

In particular, we get the following immediate corollary (where equivalence is defined
up to the action of the mapping class group, see Section 2).

Corollary 4.7. All friezes on unpunctured surfaces are unitary. There is a bijective
correspondence between equivalence classes of friezes and combinatorial types of ideal
triangulations.

The Main Theorem also assures that every triangulation gives rise to a finite number
of friezes. Since the number of combinatorial types of triangulations is finite, we get the
following result.

Corollary 4.8. The number of equivalence classes of friezes on a given bordered surface
is finite.

Our proofs are based on the decorated hyperbolic structure defined by a frieze on a
surface [Pen87]. We show that the integrality condition guarantees that the uniformization
of the surface is compatible with the action of (a certain subgroup of) SL2(Z), so Farey
triangulation on H2 induces a triangulation on the surface, and thus gives rise to a unitary
frieze (where the values are λ-lengths measured with respect to Ford circles), which can
be transformed to the original frieze by choosing different horocycles at punctures.

For closed punctured surfaces the Main Theorem does not hold. More precisely, in
Section 5 we present several examples showing that the scaling constants may not divide
the valence of a puncture (Example 5.3), may not be integer (Example 5.4), and more-
over scaling of two distinct unitary friezes may lead to the same frieze (Example 5.5).
Nevertheless, the following theorem can still be applied to friezes on closed surfaces.

Theorem 3.11. Given an ideal triangulation T of a marked surface S and a collection
of positive integers {ki} at all punctures {Pi}, such that ki divides the valence of Pi in T ,
one can define a frieze on S by scaling the corresponding unitary frieze.

If a surface has a triangulation with at least one puncture of non-prime valence, the
procedure given in Theorem 3.11 gives rise to a non-unitary frieze.

Corollary 3.12. Let S be a punctured marked surface different from once punctured
digon or triangle, and from twice punctured monogon. Then there exists a non-unitary
frieze on S.

Also, under some additional assumptions one can guarantee that a frieze on a closed
surface is unitary.

Proposition 5.1. Let F be a frieze on S, and let T be a triangulation of S such that
for any triangle in T the values of F on the sides of every triangle are mutually coprime.
Then F is unitary.
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The paper is organized as follows. In Section 2 we remind all essential details about
tagged triangulations, λ-lengths and decorated hyperbolic structures, Farey triangula-
tion, and friezes on surfaces. Section 3 is devoted to construction of non-unitary friezes
on punctured surfaces (Theorem 3.11). In Section 4, we classify friezes on surfaces with
boundary by proving that every frieze can be obtained from a unitary one by rescal-
ing (Theorem 4.4). Finally, in Section 5 we discuss partial results and counterexamples
concerning friezes on closed punctured surfaces.

Acknowledgements. The work was inspired by a question (answered in the Appen-
dix) asked by Alain Valette at the conference “Journées de géometrie hyperbolique” in
Fribourg. We are grateful to Alain Valette for the question and to Naomi Bredon and
Ruth Kellerhals for organizing the conference. The paper was written at the Max Planck
Institute for Mathematics in Bonn, we thank the Institute for the financial support and
excellent research environment.

2. Tagged triangulations, λ-lengths and friezes

In this section we recall necessary results about hyperbolic surfaces and their triangu-
lations.

2.1. Tagged triangulations. We briefly recall the construction of tagged triangulations
of marked surfaces from [FST08] (see also [FT18, Section 5]).

Let S be a surface with marked points and (possibly empty) boundary, such that every
boundary component contains at least one marked point. The marked points in the
interior of S are called punctures. We exclude a closed sphere with at most 3 punctures,
an unpunctured disc with at most 3 marked points, and once punctured monogon.

An arc is a simple curve with endpoints in marked points defined up to isotopy. An arc
is called a loop if its endpoints coincide. An ideal triangulation of S is a maximal collection
of mutually non-intersecting arcs. An ideal triangulation subdivides S into triangles. A
triangle whose two edges coincide is called a self-folded triangle.
A tagged triangulation is obtained from an ideal triangulation as follows. Let P be a

puncture incident to two coinciding edges of a self-folded triangle (i.e. P is located inside
a monogon), and let Q be the other vertex of that triangle. The loop at Q bounding the
self-folded triangle is substituted with a copy of the arc PQ tagged notched at P , the two
obtained arcs form a conjugate pair at P , see Fig. 2.1. This procedure has to be done for
every self-folded triangle. Further, choose any collection of punctures (without conjugate
pairs at them) and declare all arcs incident to this punctures to be tagged notched at
these punctures. All the other ends of arcs are tagged plain.
In other words, tagged triangulations consist of tagged arcs, where every tagged arc is

tagged notched or plain at every vertex. All tags at a boundary marked point are plain.
All tags at a puncture coincide, unless there is a conjugate pair at it.

Tagged triangulations undergo flips: for every arc γ of a tagged triangulation T there
exists a unique tagged arc γ′ such that T ′ = (T \ γ) ∪ γ′ is also a triangulation.
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PP

QQ

Figure 2.1. Self-folded triangle in an ideal triangulation (left); conjugate
pair at P in a tagged triangulation (right)

2.2. Decorated hyperbolic surfaces. Given two points A,B ∈ ∂H2 on the boundary
of the hyperbolic plane with horocycles hA and hB centered at A and B respectively,
Penner [Pen87] defined λ-length λAB as exp(d/2), where d is the signed distance between
the horocycles hA and hB. Here d < 0 if the horocycles intersect in two points (in which
case d is the negative of the distance between AB ∩ hA and AB ∩ hB).

In the upper halfplane model of H2, horocycles are Euclidean circles tangent to the
real line (or horizontal lines for horocycles at ∞). An easy computation shows that the
λ-lengths depend on the choice of horocycles as follows: dividing the Euclidean diameter
of a horocycle by k2 multiplies the corresponding λ-length by k.

As it was shown in [Pen87], λ-lengths in H2 satisfy Ptolemy relation. Namely, given an
ideal quadrilateral ABCD with a horocycle at every vertex, one has

(2.1) λACλBD = λABλCD + λADλBC .

Given a set M of marked points on S, a decorated hyperbolic structure on (S,M) is
a complete hyperbolic metric on S \M together with a chosen horocycle at every point
of M . Penner [Pen87] shows that given an ideal triangulation T of a marked surface
(S,M) with positive numbers assigned to each arc of T , there exists a unique decorated
hyperbolic structure on (S,M) such that the assigned numbers are precisely λ-lengths of
the corresponding arcs of T .

More precisely, given a triangle with positive numbers assigned to its sides, there is a
unique triple of horocycles at vertices of an ideal triangle in H2 such that the assigned
numbers are precisely λ-lengths of the sides. Results of [Pen87] (and the Uniformization
Theorem) imply that, given an ideal triangulation T with arcs labeled by positive numbers,
S can be represented as a quotient of a triangulated domain Ω in the hyperbolic plane
H2 by a certain discrete group Γ of isometries of H2, such that the following hold:

- Ω is an infinite polygon bounded by preimages of boundary arcs of S;
- collection of horocycles at preimages of every puncture is Γ-invariant;
- the λ-lengths of the arcs of the triangulation of Ω are precisely the labels of their
images in S.

In the sequel, we will write S instead of (S,M) assuming there is no ambiguity.
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2.3. λ-lengths of tagged arcs. In this section we recall from [FT18] the hyperbolic
geometry related to tagged triangulations.

Let S be a marked surface with decorated hyperbolic structure, let P be a puncture
and h be the corresponding horocycle. One can uniquely define a conjugate horocycle h̄
at P (i.e. if the length of h as a (non-geodesic) curve in the hyperbolic metric is l(h),
then l(h̄) = 1/l(h)). The λ-length of any arc tagged notched at P is then defined as
follows: take the same arc tagged plain at P , and compute the λ-length with respect to
the horocycle h̄ at P .

The λ-lengths of homotopic arcs γ and γ̄ from Q to P tagged differently at P are related
as follows:

(2.2) λγλγ̄ = λl,

where l is the loop at Q going around P by following γ as in Fig. 2.2, left.
If an arc γ in a tagged triangulation is not a part of a conjugate pair, and neither are all

adjacent arcs, then the λ-lengths of γ and the resulting arc γ′ are related by the Ptolemy
relation. In general, the relation between γ and γ′ needs to be adjusted, see [FT18,
Section 8]. In particular, flipping an internal arc of a once punctured digon results in the
following digonal relation (see Fig. 2.2, right) for θ′ = γ̄:

(2.3) λθλθ′ = λα + λβ.

We will follow [FT18] by calling various relations on λ-lengths of tagged arcs by (gener-
alized) Ptolemy relations.

l

h
h̄

PP
P

α β α β

γ

θ

γ γ̄ θ′=γ̄

Figure 2.2. λ-lengths of tagged arcs. Left: conjugate horocycle; right:
flip of an arc in a punctured digon

2.4. Farey triangulation and Ford circles. Recall that the Farey graph on H2 (in
the upper halfplane model) has vertices in all rational points of R (and ∞ = 1

0
), with

two vertices p
q
and u

v
being joined by an edge (represented by a hyperbolic geodesic) if

|pv − qu| = 1 (we assume all fractions to be reduced). A Ford circle at a point p
q
is a

horocycle centered at p
q
of Euclidean diameter 1

q2
(or a horizontal Euclidean line Im z = 1

as a horocycle at ∞). Farey graph provides a triangulation of H2 with every triangle being
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an ideal triangle, with λ-lengths of all edges with respect to Ford circles being equal to 1.
The set of Ford circles is invariant with respect to the action of PSL2(Z) ⊂ Isom(H2).

The λ-lengths between arbitrary two vertices of the Farey graph with respect to Ford
circles are expressed as follows: if the reduced fractions for the two points are p

q
and u

v
,

then

(2.4) λ p
q
,u
v
= |pv − qu|.

2.5. Friezes constructed from surfaces. Recall from previous sections that given a
marked surface S and a triangulation T , an assignment of λ-lengths to all arcs of T defines
uniquely a decorated hyperbolic structure on S and thus λ-lengths of all tagged arcs.
Given a marked surface S, a positive frieze on S is an assignment of λ-lengths to all

arcs of some triangulation T , or, equivalently, a decorated hyperbolic structure (and thus
a map F : {γ} → R defined on the set of tagged arcs, where F (γ) is the λ-length of γ).

We note that usually friezes are defined as ring homomorphisms of the cluster algebra
A(S) to R, where a frieze is positive if the range of the map is in R+. Due to results
of [Pen87, FST08, FT18] our definition is equivalent to the usual one. Here, the cluster
variables are represented by tagged arcs, and the exchange relations for cluster variables
are transformed into Ptolemy relations on the corresponding λ-lengths.
A positive frieze F is integral if F (γ) ∈ Z+ for every tagged arc γ on S. From now on,

we will consider positive integral friezes only, so we call them friezes for short.
A frieze is unitary if there exists a triangulation T of S such that F (γ) = 1 for every

γ ∈ T (note that such triangulation, if exists, is unique). Equivalently, all λ-lengths of
arcs of T are equal to 1, i.e. the two horocycles at the endpoints of any arc of T are
tangent.

For example, it follows from [CC73] that all friezes on an unpunctured disc (i.e. a
polygon) are unitary.

3. Non-unitary friezes on punctured surfaces

In this section, we provide a construction of non-unitary friezes on punctured surfaces.
We start with an example from [FP16].

Example 3.1. In [FP16], Fontaine and Plamondon construct a series of non-unitary
friezes on a once punctured disc Dn with n boundary marked points as follows. Take
any triangulation T of Dn, define F (γ) = 1 for all arcs not incident to the puncture, and
F (γ) = k for all arcs incident to the puncture, where k divides the valence of the puncture
in T . It is also shown in [FP16] that all non-unitary friezes on Dn can be constructed in
this way.

Remark 3.2. Let us make the following observation which will be the key for our further
considerations. The non-unitary friezes described in Example 3.1 can be obtained from
unitary friezes by changing the horocycle at the puncture (more precisely, the Euclidean
size of the horocycle in the upper halfplane model of H2 is divided by k2).
Note that the condition on the divisibility is implied by the equality λγλγ′ = λl, where

γ and γ′ form a conjugate pair, and l is the loop following γ as in Fig. 2.2, left: the value
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of λl in an ideal triangulation with all λ-lengths equal to 1 is equal to the number of
arcs incident to the puncture (and it stays intact under change of the horocycle at the
puncture).

The remaining part of the section is devoted to applying the observations made in
Remark 3.2 to all punctured surfaces.

Definition 3.3. Let S be a marked decorated hyperbolic surface, denote by {Pi} the
marked points on S. Let γ be an arc on S. Define an integer εi(γ) as follows:

- if γ is tagged plain at Pi, then εi(γ) is the number of ends of γ at Pi;
- if γ is tagged notched at Pi, then εi(γ) is the negative of the number of ends of γ
at Pi.

Definition 3.4. Given a triangulation T of S and a puncture Pi, the valence val T (Pi) of
Pi in T is defined as follows:

- if Pi is not an end of any arc of T included in a conjugate pair, then val T (Pi) =∑
γ∈T εi(γ);

- let k be the number of conjugate pairs in T incident to Pi, then val T (Pi) =∑
γ∈T εi(γ) + k.

Remark 3.5. The contribution of conjugate pairs to the valencies is defined in this way
for the valence to coincide with the number of ends of arcs in the corresponding ideal
triangulation.

Definition 3.6. Given a unitary frieze F on S, a triangulation of S is unitary if F (γ) = 1
for every arc γ of T .

Remark 3.7. Let T be a unitary triangulation of S. Take any triangle and lift it to H2

to a triangle with vertices 0, 1,∞ with Ford circles as horocycles. Gluing the adjacent
triangles of T , we obtain adjacent triangles of the Farey triangulation. Therefore, S can
be thought as a quotient of a domain Ω ⊂ H2 by a discrete group Γ ⊂ Isom(H2), such
that preimages of every marked point of S are rational numbers, and the preimages of the
horocycles in the corresponding decorated hyperbolic structure are precisely Ford circles.

Lemma 3.8. Let S be a marked decorated hyperbolic surface, and suppose there is a
unitary triangulation T of S. Let P be a puncture, and let PQ be an arc of T (P and
Q are distinct). Then the λ-length of the loop at Q going along the arc PQ around P is
equal to the absolute value of the valence of P .

Proof. Represent S as a quotient of a domain in the hyperbolic plane H2, such that PQ is
lifted to the line from P̃ = ∞ to Q̃ = 0 with Ford circles as horocycles. Since T is unitary,
the arcs incident to P are lifted to the lines connecting ∞ with consecutive integers, also
with Ford circles as horocycles at the endpoints. Then the λ-length of the loop is precisely
the λ-length between Q̃ = 0 and the next lift of Q, i.e. m, where m is the valence of P .

□

Remark 3.9. Note that while flipping the arcs of a unitary triangulation incident to P ,
the sum of λ-lengths of “third sides” of the triangles incident to P (in the corresponding
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ideal triangulations) remains intact, and thus it is equal to the valence of P in the unitary
triangulation.

Remark 3.10. Assume that all arcs in a unitary triangulation T are tagged plain (except
for conjugate pairs). It follows from Lemma 3.8 and (2.2) that the λ-length of the arc PQ
notched at P is equal to the valence of P (denote it by m). Furthermore, to compute the
λ-length of an arc incident to P with changed tag at P one needs to use the conjugate
horocycle at P instead of the original one. This implies that the λ-length of every arc
tagged notched at P is divisible by m (and λ-lengths of loops at P are divisible by
m2). Moreover, by the same reason, if an arc in S tagged plain on both ends connects
two punctures P and Q, then the same arc tagged notched on both sides has λ-length
divisible by the product of valencies of P and Q in T .

Theorem 3.11. Let F̂ be a unitary frieze on a surface S, and let T be the corresponding
unitary triangulation (we assume that all arcs of T except for conjugate pairs are tagged
plain). Let {Pi} be all marked points of S, denote mi = val T (Pi) (with mi = 1 if Pi ∈ ∂S),
and let {ki} be divisors of {mi}. Then there exists a frieze F on S such that for any arc

γ on S one has F (γ) = k
εi(γ)
i k

εj(γ)
j F̂ (γ), where εi(γ) is as in Definition 3.3.

Proof. Define frieze F by changing the horocycle at Pi by dividing the Euclidean size of
Ford circles by k2

i , so all λ-lengths of arcs of T change as required. We are left to show
that λ-lengths of all other arcs remain integer.

Consider any arc γ in S with endpoints in Pi and Pj, its λ-length is not affected by
changes of all horocycles except for the ones at Pi and Pj.

After change of the horocycle at Pi only, the λ-lengths of all arcs tagged plain at Pi are
multiplied by ki (or k

2
i for loops), and the λ-lengths of all notched arcs at Pi are divided

by ki (or k
2
i for loops). Similarly, the same holds for the change of the horocycle at Pj.

Now, all λ-lengths remain integer according to Remark 3.10.
□

Corollary 3.12. Let S be a punctured marked surface different from once punctured
digon or triangle, and from twice punctured monogon. Then there exists a non-unitary
frieze on S.

Proof. Indeed, according to Theorem 3.11, it is sufficient to find a triangulation with one
puncture having a non-prime valence. It is easy to see that all punctured surfaces except
for the ones mentioned admit such triangulations.

□

4. Friezes on bordered surfaces

In this section, we classify friezes on surfaces with non-empty boundary.

Lemma 4.1. Let F be a frieze on a surface S, let P be a marked point, let k ∈ Z, and
let AB be an arc such that gcd(λAB, k) = 1 (A and B may coincide, A,B ̸= P ). Suppose
that for every arc γ tagged plain (resp., notched) at P with the other endpoint at A or B
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the value F (γ) is divisible by k. Then for every arc η tagged plain (resp., notched) at P
the value F (η) is divisible by k (and by k2 for loops at P ).

Proof. Take an arbitrary arc PQ on S tagged plain (resp. notched) at P , consider a
quadrilateral with opposite sides PQ and AB (it can be constructed as follows: take any
arc with endpoints B,Q, and then the fourth arc PA follows PQ, QB and BA, where PA
is tagged at P in the same way as PQ). If λAP and λBP are divisible by k, then by Ptolemy
relation (2.1) λPQλAB is also divisible by k, which implies the lemma as gcd(λAB, k) = 1.
If Q = P , then all diagonals and two opposite sides of the quadrilateral are divisible by
k, so λPQλAB is divisible by k2.

□

Remark 4.2. Lemma 4.1 may be applied to friezes on any surfaces, including closed ones.

Lemma 4.3. Let T be a unitary triangulation of a bordered surface S with marked points
{Pi} of valencies {mi}, and assume that all arcs in T are tagged plain (except for conjugate
pairs). Let {ki} be a collection of positive integers (with ki = 1 for all boundary marked
points), and suppose that there is a positive integral frieze F on S defined by F (γ) =

k
εi(γ)
i k

εj(γ)
j λγ. Then ki divides mi.

Proof. Since kj = 1 for boundary marked points, for F being a frieze it is necessary that
every arc notched at Pi with other endpoint at the boundary has λ-length divisible by ki
(see Remark 3.10). By Lemma 4.1, this implies that every arc tagged notched at Pi has
λ-length divisible by ki (as F (AB) = 1 for every boundary arc AB). Now, take any arc of
T with endpoint Pi. As it was observed in Remark 3.10, the λ-length of the corresponding
arc tagged notched at Pi is a divisor of mi, so ki should also divide mi.

□

Theorem 4.4. Let S be a marked surface with boundary and marked points {Pi}, and let

F be a frieze on S. Then there exists a unitary frieze F̂ on S (with a unitary triangulation
T ) and a collection of positive integers {ki} (where ki = 1 for Pi ∈ ∂S), such that ki divides

val T (Pi), and F (γ) = k
εi(γ)
i k

εj(γ)
j F̂ (γ) for every arc γ in S.

Proof. Let F be a frieze on S. Recall from Section 2 that S can be represented as a
quotient of a domain Ω ⊂ H2 by a certain discrete group. The domain Ω is an infinite
polygon bounded by lifts of boundary arcs of S, and Ω is defined uniquely up to isometry
of H2.

Choose one boundary segment P0P∞ of S (the two marked points may coincide), and
lift the segment to H2 to the line from P̃0 = 0 to P̃∞ = ∞. Since λP0P∞ = 1, the
corresponding horocycles are tangent, place the common point of two horocycles at i (i.e.
the horocycles at P̃0 to P̃∞ are Ford circles). This choice then defines a lift of any arc
P0Pi or P∞Pi uniquely. By lifting every triangle P0P∞Pi in S, we obtain all preimages of
marked points.

Consider any triangle P0P∞Pi on S. It follows from (2.4) that P̃i = ±F (P0Pi)/F (P∞Pi).
Further, the horocycle at P̃i is a Ford circle (of Euclidean diameter 1

F (P∞Pi)2
) if F (P0Pi)
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and F (P∞Pi) are coprime, and it is a circle of diameter 1
(kiF (P∞Pi))2

otherwise, where

ki = gcd(F (P0Pi), F (P∞Pi)). The number ki is well-defined: by Lemma 4.1, it does not
depend on an arc with endpoints P0 and Pi.
In particular, all P̃i are rational, i.e. they are vertices of the Farey graph. Moreover,

if Pi ∈ ∂S then the horocycle at Pi is a Ford circle by Lemma 4.1. Further, given a
puncture Pi, the horocycle at every preimage P̃i has Euclidean diameter k2

i times less
that the corresponding Ford circle. The latter implies that images of Ford circles at all
preimages of Pi are mapped to the same horocycle.
Now, the Farey graph provides a triangulation of Ω with all edges of λ-length 1 (with

respect to Ford circles). This triangulation induces a triangulation T of S, all arcs of
T have λ-length 1 with respect to the images of the Ford circles (note that T is indeed
a triangulation: λ-lengths of all geodesic arcs are integers as they come from the Farey
graph, so any geodesic of λ-length 1 is non-self-intersecting, and any two are compatible
– this can be seen by applying skein relations and using integrality of all λ-lengths as
in [FP16]). We define F̂ (γ) = λγ with respect to the images of the Ford circles. For every

arc γ in S with endpoints Pi and Pj we then have F (γ) = k
εi(γ)
i k

εj(γ)
j F̂ (γ) as required.

Finally, every ki is a divisor of the val T (Pi) as shown in Lemma 4.3, which completes the
proof.

□

Remark 4.5. It is easy to see from the proof that the unitary triangulation T in Theo-
rem 4.4 is unique up to change of taggings of punctures: by sending a boundary arc to the
line from 0 to ∞ with Ford circles, all arcs of any unitary triangulation are lifted to arcs
of the Farey graph, and the image of the Farey graph on S is uniquely defined. Change
of tagging of a unitary triangulation T at Pi corresponds to taking ki = val T (Pi).

Definition 4.6. Friezes on S are equivalent if there exists an element of the mapping
class group of S taking one frieze to the other.

We get some immediate corollaries of Theorem 4.4.

Corollary 4.7. All friezes on unpunctured surfaces are unitary. There is a bijective
correspondence between equivalence classes of friezes and combinatorial types of ideal
triangulations.

Corollary 4.8. The number of equivalence classes of friezes on a given bordered surface
is finite.

5. Friezes on closed surfaces

In this section, we present partial results concerning classification of friezes on closed
surfaces, as well as examples showing some results of the previous section do not apply.

Proposition 5.1. Let F be a frieze on S, and let T be a triangulation of S such that for
any triangle in T the values of F on the sides of the triangle are mutually coprime. Then
F is unitary.
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Proof. We want to represent S as a quotient of a domain Ω ⊂ H2 with preimages of all
punctures of S being rational points, such that for any γ ∈ T and any its lift γ̃ in Ω one
has F (γ) = λγ̃ with respect to the Ford circles. Then the same argument as in the proof
of Theorem 4.4 shows that F is unitary.

First, consider a triangle PQR in T with F (PQ) = r, F (PR) = q, and F (QR) = a.
We may assume that R̃ = ∞ = 1

0
∈ ∂H2. Since all a, q, r are mutually coprime, there

exist integers x, y coprime with a and q respectively such that |ya−xq| = r. This implies
that we can take Q̃ = x

a
and P̃ = y

q
with Ford circles as horocycles, see Fig. 5.1.

q a b

r

c

q

a

b

r c

P

R

Q

A

R̃ = 1
0

P̃ = y
q Q̃ = x

a Ã = z
b

Figure 5.1. To the proof of Prop. 5.1: adjacent triangles in triangulation
T (left) and their preimage in the universal cover (right)

Now, consider an adjacent triangle AQR in T with F (AQ) = c, and F (AR) = b. We
claim that z defined by za− xb = c is integer and coprime with b, this would imply that
we can take Ã = z

b
with Ford circle as the horocycle.

Note that we have y = xq−r
a

∈ Z. Observe that by Ptolemy relation the λ-length of the
arc PA is equal to

λPA =
br + qc

a
=

qc+ qxb

a
− qxb− br

a
= qz − by ∈ Z,

which implies that qz ∈ Z. Since q and a are coprime, we see that z ∈ Z. Further, z is
coprime with b as otherwise c is not coprime with b.

The procedure above shows that if a triangle in T is lifted to a triangle in H2 with ra-
tional coordinates and Ford circles as horocycles, then (in the assumptions of the Proposi-
tion) every adjacent triangle is also lifted in this way. Therefore, every preimage of every
puncture under the quotient map from H2 to S is rational, and all horocycles are images
of Ford circles as required.

□

The following lemma is needed to construct several examples of non-unitary friezes on
a four times punctured torus.

Lemma 5.2. Let S be a four times punctured torus, consider a unitary triangulation T
of S as shown in Fig. 5.2 (we assume all arcs in T to be tagged plain). Then the λ-length
of any loop tagged plain at P2 is divisible by 4.
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Proof. For any given loop at P2 there exists a finite covering S̃ of S such that the lift of
the loop has two distinct endpoints. Let γ be a loop at P2, and let γ̃ be the lift of γ on

S̃ connecting points P̃
(1)
2 and P̃

(2)
2 . We need to show that λγ̃ is divisible by 4.

Denote by T̃ the lift of T to S̃, and assume that γ̃ intersects the interior of m triangles
of T̃ . The proof is by induction on m. The minimal possible value of m is 4, and for
m = 4, 5, 6 the direct calculation shows that the λ-lengths are equal to 4, 8, 12 respectively
(see Fig. 5.2), so we assume in the sequel that m > 6.

Denote by ∆1, . . . ,∆m the triangles intersected by γ̃, with P̃
(1)
2 ∈ ∆1, and consider the

maximal k < m such that a lift of P2 is a vertex of ∆k (it is easy to see that such k > 1

does exist), denote by P̃
(3)
2 that lift of P2. Choose any arc of T̃ with one endpoint at P̃

(3)
2

not intersecting γ̃, denote by Ã the other endpoint of this arc.

Consider now the quadrilateral P̃
(1)
2 P̃

(2)
2 P̃

(3)
2 Ã (or P̃

(1)
2 P̃

(2)
2 ÃP̃

(3)
2 depending on the po-

sition of Ã, see Fig. 5.2) with one side γ̃. By the induction assumption, λ
P̃

(1)
2 P̃

(3)
2

and

λ
P̃

(2)
2 P̃

(3)
2

are divisible by 4. By Ptolemy relation, λ
P̃

(1)
2 P̃

(2)
2
λ
P̃

(3)
2 Ã

is also divisible by 4, but

λ
P̃

(3)
2 Ã

= 1 which proves the lemma.

□

P1

P2 P3

P4

4

8
12

A
P̃

(3)
2

P̃
(2)
2

P̃
(1)
2

γ̃

Figure 5.2. Triangulation of a torus with four punctures (left); to the
proof of Lemma 5.2 (right)

Lemma 5.2 gives rise to the following several examples of friezes.

Example 5.3. Let S be a four times punctured torus, and consider a unitary triangulation
T of S as in Lemma 5.2 (see Fig. 5.2). Observe that val T (P1) = val T (P3) = 8 and
val T (P2) = val T (P4) = 4. Define k1 = k3 = k4 = 2 and k2 = 8, i.e. k2 does not divide
val T (P2). We claim that the expression

F (γ) = k
εi(γ)
i k

εj(γ)
j λγ

defines nevertheless a frieze on S (as usual, we assume that all arcs of T are tagged plain).
Indeed, by Theorem 3.11, taking k′

1 = k′
3 = k′

4 = 1 and k′
2 = 4 would provide a frieze

(denote it by F ′), and taking k′′
1 = k′′

3 = k′′
4 = 4 and k′′

2 = 4 would also provide a frieze
(denote it by F ′′). If ε2(γ) ≥ −1 and the other end of γ is tagged plain, then F (γ) is an
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integer multiple of F ′(γ) and thus is integer itself. Similarly, if ε2(γ) ≥ −1 and the other
end is tagged notched, then F (γ) is an integer multiple of F ′′(γ) and thus is integer.
Finally, if ε2(γ) = −2 (i.e. γ is a loop tagged notched at P2), then F (γ) = λγ/64.

Denote by γ′ the arc isotopic to γ tagged plain at P2. Since val T (P2) = 4,

λγ = (val T (P2))
|ε2(γ)|λγ′ = 16λγ′ .

By Lemma 5.2, λγ′ is divisible by 4, and thus λγ is divisible by 64, so F (γ) ∈ Z as required.

Example 5.3 shows that for closed surfaces the scaling constants ki may not divide the
valence of Pi. The next example shows that ki may not be integer.

Example 5.4. Again, let S be a four times punctured torus with a unitary triangulation
T of S as in Lemma 5.2. Define k1 = k3 = k4 = 2 and k2 = 1

2
, i.e. k2 /∈ Z. Then the

expression

F (γ) = k
εi(γ)
i k

εj(γ)
j λγ

still defines a frieze on S.
The proof is similar to the one in Example 5.3. In this case we should take k′

1 = k′
2 =

k′
3 = k′

4 = 1 for F ′, and k′′
1 = k′′

3 = k′′
4 = 4, k′′

2 = 1 for F ′′, and compare F to them for
ε2(γ) ≤ 1. The values of F on the loops tagged plain at P2 are integer by Lemma 5.2.

The next example shows that the counterpart of Remark 4.5 does not hold for closed
surfaces: the same frieze can appear as a rescaling of two distinct unitary friezes.

Example 5.5. Consider the frieze defined in Example 5.4. Applying a sequence of flips
and applying Prolemy relation, we obtain triangulation T ′ shown in Fig. 5.3. In this
triangulation, F (γ) = 1 for all arcs of T ′ not incident to P4, F (γ) = 2 for all arcs of T ′

incident to P4, and val T ′(P4) = 4. Therefore, F can be obtained from a unitary frieze F̂ ′

with unitary triangulation T ′ as F (γ) = k̂
εi(γ)
i k̂

εj(γ)
j F̂ ′(γ), where k̂1 = k̂2 = k̂3 = 1 and

k̂4 = 2.

Appendix A. Unimodular matrices in Conway–Coxeter friezes

The appendix is devoted to a geometric answer to the question of Alain Valette.

Proposition A.1. For every matrix M =

(
a b
c d

)
∈ SL2(Z) with positive entries there

exists a Conway–Coxeter frieze containing M as a diamond
b

a d
c

.

Proof. Consider the quadrilateral ABCD ⊂ H2 with rational vertices, where A = 0
1
,

B = 1
0
, C = a

b
and D = c

d
. Since M ∈ SL2(Z), the expressions for C and D are

reduced, and a
b
> c

d
. Computing the λ-lengths with respect to Ford circles by using the

equality (2.4), it is easy to see that the diagonals of ABCD have λ-lengths a, d, and the
λ-lengths of sides are 1, b, 1, c (listed in a cyclic order), see Fig. A.1.
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2

2

2

11

11

44

44

11
4

44

4
44

1

1

1

1

44

44

11
4

2 2

4
2 2

1 1

1

1 1

1
22

22
1

1

11

1

1

Figure 5.3. To Examples 5.4 and 5.5. The scaling constants {ki} (left),
and obtaining the same frieze from a different unitary triangulation (right)

Now consider the part of the Farey graph spanned by A,B,C,D and all vertices of all
triangles of the Farey triangulation intersected by the lines AD and BC. The convex hull
of all these points is a polygon P with sides being edges of the Farey graph, so λ-lengths of
all sides of P are equal to 1 (note that AB and CD are sides of P). Therefore, the Farey
triangulation restricted to P defines a Conway–Coxeter frieze containing the diamond
with entries a, b, c, d.

□

A

B C

D

1 1

b

c

a d

Ã = 0
1

B̃ = 1
0

C̃ = a
bD̃ = c

d

1

1

b

c

a
d

1

Ã = 0
1

B̃ = 1
0

C̃ = a
bD̃ = c

d

1 b

c

a
d

1

P

Figure A.1. Embedding the polygon ABCD into an ideal polygon with
sides contained in the Farey graph
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