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AN APPLICATION OF DYNNIKOV COORDINATES IN D3

FERIHE ATALAN

Abstract. This work presents an application of Dynnikov coordinates
to geometric group theory. In this work, we describe the orbits of re-
ducible mapping classes of the pure mapping class group of a sphere with
four punctures M with respect to the action of generating set {tc, td}
via Dynnikov coordinates. We encode the vertices of the curve complex
C(M), taking as input their Dynnikov coordinates. Using these orbits,
we describe an algorithm for reaching the set ∆ = {vc, vd, ve} ⊂ C(M)
from any vertex in C(M), where the vertices vc, vd and ve are isotopy
classes of simple closed curves c, d, and e such that tctdte = 1. We
present an algorithm that determines the actions of the pseudo-Anosov
maps of M . Finally, we express the Dynnikov coordinates in M in terms
of (p, q)-torus coordinates via a double branched cover over M.

1. Introduction

In geometric group theory, group actions have great importance. We
can approach the group from a geometric perspective by looking at group
actions. A group action can be dismantled into orbits, and conversely, by
examining the orbits, we may also understand the structure of the group.
We recall that if G is a group acting on a set C, the orbit of an element
c ∈ C with respect to this action is the set {g · c| g ∈ G}. In this work, we
determine the orbits of actions tc and td of the pure mapping class group
of a sphere with four punctures M via Dynnikov coordinates, where c and
d are isotopy classes of nontrivial simple closed curves in M with geometric
intersection number i(c, d) = 2 (see Figure 1). In this work, we explore some
applications of these orbits, which are as follows:

In Section 3, we code the vertices of the curve complex C(M), taking as
input their Dynnikov coordinates. Let c, d, and e be simple closed curves
such that i(c, d) = 2 = i(c, e) = i(d, e) (see Figure 5). We define the set
∆ = {vc, vd, ve} ⊂ C(M), where the vertices vc, vd, and ve are the isotopy
classes of simple closed curves c, d, and e, respectively; such that the Dehn
twists tc, td and te satisfy tctdte = 1. Then, we describe an algorithm for
reaching the set ∆ from an arbitrary vertex in C(M). We also present
alternative proofs of some classical results: the group generated by Dehn
twists tc and td is isomorphic to the free group of rank 2 in Section 4, where
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2 FERIHE ATALAN

c and d are isotopy classes of simple closed curves in M with i(c, d) = 2 (see
Figure 1). The other one is that the group generated by the Dehn twists tc,
td and te = (tctd)−1 is isomorphic to the free group of rank 3, in Section 5,
where c, d, and e are isotopy classes of simple closed curves in M with
i(c, d) = 2 = i(c, e) = i(d, e) (see Figure 5). We also give an algorithm to
determine the actions of the pseudo-Anosov maps tdt

−1
c and t−1d tc of M .

This algorithm reveals how the iteration evolves geometrically, in Section 6.
Finally, we state the Dynnikov coordinates in M in terms of (p, q)-torus
coordinates via a double branched cover over M in Section 7.

This note is a ramification of our project in progress joint work with E.
Dalyan, E. Medetoğulları, and Ö. Yurttaş, titled ”Detecting free products
generated by Dehn twists on n− punctured discs,” devoted to a special case
n = 3.

2. Preliminaries

Let M be a sphere with four punctures. Let us take one of the punctures
to lie at infinity, we can consider M as the thrice-punctured disc, where the
punctures are aligned in the horizontal diameter of the disc. A simple closed
curve c on M is called trivial if either it bounds a disc, once punctured disc
or it is parallel to a boundary component. Otherwise, it is called nontrivial.
Let c and d be distinct two isotopy classes of nontrivial simple closed curves
on M such that each of c and d contains two punctures and that c intersects
d precisely at two points and they intersect the diameter of the disc exactly
twice (see Figure 1).

c d

Figure 1. Two curves c and d on M

It is well known that the pure mapping class group PMod(M) of M is
isomorphic to the free group F2 and freely generated by the Dehn twists tc
and td about c and d, respectively. Since PMod(M) is isomorphic to F2,
the elements of PMod(M) different from the identity are either reducible or
pseudo-Anosov. Moreover, conjugates of nonzero powers of tc, td and tctd
are the only reducible elements in PMod(M) (see Lemma 3.4 in [1]). Let us
recall Thurston’s classification of surface homeomorphisms. For a mapping
class f not the identity, it says that one of the following holds:
(1) f is periodic, that is, fn = 1 for some n ≥ 2,
(2) f is reducible, i.e. there is a (closed) one-dimensional submanifold a of
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a surface S such that f(a) = a,
(3) f is pseudo-Anosov if and only if f is neither periodic nor reducible.

Dynnikov introduced a coding for integral laminations on a sphere with
n + 3 punctures in [2]. Let C denote the set of isotopy classes of simple
closed curves in M . Let αi and βi be arcs depicted in Figure 2. Let us take
l in C intersecting each of these arcs minimally.

c d

ββ α

α

1

1

2 2

Figure 2. Two curves c and d on M

For convenience, we will also denote the number of intersections of l with
each of the arcs αi and βi by the same symbols. For any isotopy class
of simple closed curve l in M , the Dynnikov coordinates of l is given by
ρ(l) = (a, b), where ρ : C → Z2 \ {0} is bijective Dynnikov coordinate
function (see [8]) such that

a =
α2 − α1

2
and b =

β1 − β2
2

.

PMod(M) acts on the set of isotopy classes of simple closed curves C.
The update rules describe in [4] the action of the Artin braid generators
σ1 and σ2 (and their inverses) on Z2 \ {0}. For any isotopy class of simple
closed curve l in M , with ρ(l) = (a, b), let ρ(σi(l)) = (a′, b′) for i = 1, 2. By
Lemma 4 (update rules for Artin generators) in [4], we have the following
equations:

a′ = a+ b−max{0, a, b}, b′ = max{b, 0} − a for σ1
a′ = max{a+max{0, b}, b}, b′ = b− (a+max{0, b}) for σ2

By Lemma 5 (update rules for inverse Artin generators) in [4], we have
also the following equations:

a′ = max{0, a+max{0, b}} − b, b′ = a+max{0, b} for σ−11

a′ = a−max{a+ b, 0, b}, b′ = a+ b−max{0, b} for σ−12

Using these update rules, we can also obtain the Dynnikov matrices with
respect to appropriate regions (see [9]).
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3. Orbits of the actions of tc, td, and tctd via Dynnikov
coordinates

Let c and d be isotopy classes of nontrivial simple closed curves in M with
i(c, d) = 2 (see Figure 1). Using the update rules, ((a, b) 6= (0, 0)), we have
the following

(1) ρ(σ21(l)) = ρ(tc(l)) =



(b− a,−b) if 0 ≤ b ≤ a
(b− a, b− 2a) if 0 < a ≤ b ≤ 2a
(a, b− 2a) if 0 < 2a ≤ b
(b− a,−b) if a ≥ 0, b ≤ 0
(a+ b,−2a− b) if a ≤ 0, b ≤ 0
(a, b− 2a) if a ≤ 0, b ≥ 0

(2) ρ(σ22(l)) = ρ(td(l)) =



(a+ b,−2a− b) if a ≥ 0, b ≥ 0
(b− a,−b) if a ≤ 0, b ≥ 0
(a, b− 2a) if a ≥ 0, b ≤ 0
(b− a,−b) if a ≤ b < 0
(b− a, b− 2a) if 2a ≤ b ≤ a < 0
(a, b− 2a) if b ≤ 2a < 0

We consider the actions of Dehn twists tc and td on C given by Equa-
tion 1 and Equation 2, respectively. The orbit of the curve d is {(−1, 2k −
1), (1, 2k − 1)|k ∈ N}, where (−1, 2k − 1) = ρ(tkc (d)) and (1, 2k − 1) =
ρ(t−kc (d)). The orbit of the curve c is {(1,−(2k−1)), (−1,−(2k−1))|k ∈ N},
where (1,−(2k− 1)) = ρ(tkd(c)) and (−1,−(2k− 1)) = ρ(t−kd (c)). The orbits
of the actions of tc and td on C are as shown in Figure 3.

Also, we have

ρ(tctdtctdtc︸ ︷︷ ︸
k−times

(d)) = (−k, 1),

ρ(tdtctdtctd︸ ︷︷ ︸
k−times

(c)) = (k,−1),

ρ(t−1c t−1d t−1c t−1d t−1c︸ ︷︷ ︸
k−times

(d)) = (k, 1),

ρ(t−1d t−1c t−1d t−1c t−1d︸ ︷︷ ︸
k−times

(c)) = (−k,−1)

for some integer k ≥ 1.

Remark 3.1. The sequence of values generated by the iteration of tc given
by Equation 1 flows the second quadrant (see Figure 3 (a)). Similarly, the
sequence of values generated by the iteration of td given by Equation 2 flows
the fourth quadrant (see Figure 3 (b)).
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Figure 3. (a) Orbits of the action of tc (b) Orbits of the
action of td

(3) ρ(σ21σ
2
2(l)) = ρ(tctd(l)) =



(−3a− 2b, 2a+ b) if a ≥ 0, b ≥ 0
(−2b+ a, b) if a ≤ 0, b ≥ 0
(b− 3a, 2a− b) if a ≥ 0, b ≤ 0
(a− 2b, b) if a ≤ 2b ≤ 0
(a− 2b, 2a− 3b) if 4b ≤ 2a ≤ 3b < 0
(b− a, 2a− 3b) if 3b ≤ 2a < 2b < 0
(b− a,−b) if b ≤ a < 0

...

1

1
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-1

2

2
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Figure 4. The blue (red) lines denote the action of tc (td).
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(4)

ρ((tctd)−1(l)) =



(−3a− b,−2a− b) if a > 0, b ≥ 0
(−3a+ 2b,−2a+ b) if a ≥ 0, b < 0
(a+ 2b, b) if a < 0, b < 0
(a, 4a+ b) if a < 0, b = 0
(a+ 2b, b) if 0 < b ≤

⌈−a−1
2

⌉
, a < −2

(a+ 2b,−2a− 3b) if −a−12 < b ≤
⌊−2a−1

3

⌋
, a < −1

(−a− b,−2a− 3b) if −2a−13 < b ≤ −a− 1, a < −2
(−a− b,−b) if − a− 1 < b < −2a, a < −1
(a, 4a+ b) if − 2a = b, a < 0
(−a− b,−b) if − 2a < b, a ≤ 0

3.1. The curve complex C(M) via Dynnikov Coordinates. The curve
complex C(S) on a surface S is the abstract simplicial complex whose
vertices are the isotopy classes of nontrivial simple closed curves, and a
set of vertices {v0, v1, . . . , vk} is defined to be a k-simplex if and only if
v0, v1, . . . , vk can be represented by pairwise disjoint curves. Since there is
no disjoint nontrivial isotopy classes of simple closed curves in M , C(M)
is discrete. Since the Dynnikov coordinate function ρ : C → Z2 \ {0} is
bijective(see [8]) and also, the nontrivial isotopy classes of oriented simple
closed curves in M are in bijective correspondence with the set of primitive
elements of Z2 \ {0}, we can encoding the vertices of C(M) by the Dyn-
nikov coordinates of the nontrivial isotopy classes of simple closed curves
in M . Let us recall that an element (m,n) of Z2 is primitive if and only if
(m,n) = (0,±1), (m,n) = (±1, 0), or gcd(m,n) = 1 (see [3]).

Let vc, vd and ve be the isotopy classes of the curves c, d, and e, respec-
tively; depicted in Figure 5. Let us code vc, vd and ve by the Dynnikov
coordinates (0, 1), (0,−1) and (−1, 0) of c, d and e, respectively. Similarly,
we can code any vertex of C(M) by the set of primitive elements of Z2 \ {0}
via the Dynnikov coordinates. We define a set ∆ consisting of the vertices
vc, vd,and ve.

Let v be any vertex in C(M) with the Dynnikov coordinate (x, y) such
that gcd(x, y) = 1. We want to find the minimum distance between a vertex
v and the set ∆. From arbitrary vertex v, to reach the vertex vc or vd or ve
in ∆, we will use Dehn twists tc and td, and their inverses.

Given a vertex v ∈ C(M) with Dynnikov coordinates ρ(v) = (x, y) ∈
Z2 \ {0} the following algorithm finds a mapping class φ such that φ(v) is
reached the set ∆.

Reaching the set ∆ Algorithm

Let (x, y) ∈ Z2 \ {0} be the Dynnikov coordinates of v in C(M) such
that gcd(x, y) = 1. We will write (x′, y′) ∈ Z2 \ {0} to denote the Dynnikov
coordinates of ψ(v), where ψ is is a generator of PMod(M).
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Algorithm. Given v ∈ C(M) let ρ(v) = (x, y) ∈ Z2 \ {0}, such that
gcd(x, y) = 1.

Step 1: If y > 0, apply forward 2|x| units along |x|th level of orbits of the
action of tc, let (x′, y′) = ρ(v′), where v′ = tc(v), if x > 0 and apply backward
2|x| units along |x|th level of orbits of the action of tc, let (x′, y′) = ρ(v′),
where v′ = t−1c (v) if x < 0. If x′ = 0, input the pair (x′, y′) to Step 3. If
x′ 6= 0 and y′ > 0, then input the pair (x′, y′) to Step 1. If y′ = 0 and x′ > 0,
then input the pair (x′, y′) to Step 4. If y′ = 0 and x′ < 0, then input the
pair (x′, y′) to Step 5.

Otherwise input the pair (x′, y′) to Step 2.

Step 2: If y < 0, apply backward 2|x| units along |x|th level of orbits
of the action of td, let (x′, y′) = ρ(v′), where v′ = t−1d (v) if x > 0 and

apply forward 2|x| units along |x|th level of orbits of the action of td, let
(x′, y′) = ρ(v′) where v′ = td(v) if x < 0. If x′ = 0 input the pair (x′, y′) to
Step 3. If x′ 6= 0 and y′ < 0, then input the pair (x′, y′) to Step 2. If y′ = 0
and x′ > 0, then input the pair (x′, y′) to Step 4. If y′ = 0 and x′ < 0, then
input the pair (x′, y′) to Step 5.

Otherwise input the pair (x′, y′) to Step 1.

Step 3: Since x = 0, vc is reached if b > 0, and vd is reached if b <
0. Write the generators used in Step 1 and Step 2 in order to express the
mapping class ψ reaching vc or vd.

Step 4: If y = 0 and x > 0, apply forward 2|x| units along |x|th level
of orbits of the action of tc, let (x′, y′) = ρ(v′), where v′ = tc(v) or apply
backward 2|x| units along |x|th level of orbits of the action of td, let (x′, y′) =
ρ(v′), where v′ = t−1d (v). Then input (x′, y′) to Step 5.

Step 5: Since y = 0 and x < 0, ve is reached. Write the generators used
in Step 1, Step 2, and Step 4 in order to express the mapping class ψ reaching
ve.

Example 1. Let us take the vertex v in C(M) with the Dynnikov co-
ordinate (x, y) = (10, 3). Then, since y = 3 > 0 and x = 10 > 0, by
Step 1, we apply forward 20 units along 10th level of orbits of the action of
tc, we have ρ(v′) = ρ(tc(v)) = (−7,−3). Since x < 0, y < 0, by Step 2,
we apply forward 2|x| = 2| − 7| = 14 units along 7th level of orbits of
the action of td, we get ρ(v′′) = ρ(td(v′)) = (4, 3). Since y = 3 > 0 and
x = 4 > 0, by Step 1, we apply forward 8 units along 4th level of orbits
of the action of tc, we have ρ(v′′′) = ρ(tc(v

′′)) = (−1,−3). Since x < 0,
y < 0, by Step 2, we apply forward 2 units along 1st level of orbits of the
action of td, we get ρ(v(4)) = ρ(td(v′′′)) = (−1,−1). Again, we apply for-
ward 2 units along 1st level of orbits of the action of td, we conclude that
ρ(v(5)) = ρ(td(v(4))) = (0, 1), as desired. Hence, we obtain that
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(10, 3)
tc→ (−7,−3)

td→ (4, 3)
tc→ (−1,−3)

td→ (−1,−1)
td→ (0, 1)

Example 2. Let us take the vertex v in C(M) with the Dynnikov co-
ordinate (x, y) = (3, 10). Then, since y = 3 > 0 and x = 10 > 0, by
Step 1, we apply forward 6 units along 3th level of orbits of the action of
tc, we have ρ(v′) = ρ(tc(v)) = (3, 4). Since y = 4 > 0 and x = 3 > 0, by
Step 1, we apply forward 6 units along 3th level of orbits of the action of
tc, we have ρ(v′′) = ρ(tc(v

′)) = (1,−2). Since x = 1 > 0, y = −2 < 0,
apply backward 2 units along 1st level of orbits of the action of td, we have
ρ(v′′′) = ρ(t−1d (v′′)) = (1, 0). By Step 4, y = 0 and x = 1 > 0, we can
apply forward 2 units along 1st level of orbits of the action of tc, we get
ρ(v(4)) = ρ(tc(v

′′′)) = (−1, 0), as desired. Hence, we have

(3, 10)
tc→ (3, 4)

tc→ (1,−2)
t−1
d→ (1, 0)

tc→ (−1, 0)

4. An alternative proof for the free group F2 generated by
two Dehn twists

In this subsection, we give alternative proof for the classical result: Let c
and d be isotopy classes of simple closed curves in M with i(c, d) = 2. Then,
the group generated by Dehn twists tc and td is isomorphic to the free group
of rank 2. This theorem, which plays a crucial role in understanding the
relationships between Dehn twists, was proved by Ishida [5] and Hamidi-
Tehrani [6]. For non-orientable surfaces, Stukow provided the proof in [7].

Proof. Let G be a group generated by Dehn twists tc and td. Let C be the
set of isotopy classes of simple closed curves in M . Let (al, bl) denote the
Dynnikov coordinates of l ∈ C. We will use the following the ping pong
lemma:

Lemma 4.1. (Ping pong lemma). Let G be a group which acts on a set X.
Let g1, . . . , gk be elements of G. Suppose that there are nonempty, disjoint
subsets X1, . . . , Xk of X with the property that, for each i and each j 6= i,
we have gpi (Xj) ⊂ Xi for every integer p 6= 0. Then the group generated by
the gm is a free group of rank k.

Let us define sets C1 and C2:

C1 = {l ∈ C|bl > 0} and C2 = {l ∈ C|bl < 0}.

Since the Dynnikov coordinates of the curves c and d in the Figure 1 are (0, 1)
and (0,−1), respectively, that is, since bc = 1 > 0 and bd = −1 < 0, c ∈ C1

and d ∈ C2. So, the sets C1 and C2 are nonempty and disjoint. By applying
the ping pong lemma, the proof reduces to verifying that tpc(C2) ⊂ C1 and
tpd(C1) ⊂ C2 for p 6= 0. Because of symmetry, it is enough to verify the
former inclusion.
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If l ∈ C2 then bl < 0. Let tpc(l) = l′, p 6= 0. We must show that tpc(l) ∈ C1,
p 6= 0. We must show that b′l is positive. Since the update rules for t−1c can
be derived by symmetry, we may assume that p > 0. By Equation 1, in the
case bl < 0, we have two cases:

Case 1. For al ≤ 0, ρ(tc(l)) = (al + bl,−(2al + bl)).

Case 2. For al ≥ 0, ρ(tc(l)) = (−al + bl,−bl).

If we investigate the sign of the components of ρ(tc(l)) in both cases:
In the Case 1, since al ≤ 0 and bl < 0, we have al+bl < 0 and −(2al+bl) > 0.

In the Case 2, since al ≥ 0 and bl < 0, we have −al + bl < 0 and −bl > 0.
So, in both cases, we obtain that the a−coordinate is negative and the

b−coordinate is positive. Then, by Eqation 1,

Case 1. For al ≤ 0, ρ(t2c(l)) = (al + bl,−(4al + 3bl)).

Case 2. For al ≥ 0, ρ(t2c(l)) = (−al + bl, 2al − 3bl).

The sign of the components of ρ(tc(l)) in both cases: In the Case 1, since
al ≤ 0 and bl < 0, we have al + bl < 0 and −(4al + 3bl) > 0.

In the Case 2, since al ≥ 0 and bl < 0, we have −al+bl < 0 and 2al−3bl >
0.

So, in both cases, we obtain that the a−coordinate is negative and the
b−coordinate is positive again. Then, if we continue this process to find the
image of tpc(l), by Equation 1,

Case 1. For al ≤ 0, ρ(tpc(l)) = (al + bl,−(2pal + (2p− 1)bl)), p ≥ 2. Since
al ≤ 0 and p ≥ 2, we have −(2pal + (2p− 1)bl) > 0.

Case 2. For al ≥ 0, ρ(tpc(l)) = (−al + bl, 2(p − 1)al − (2p − 1)bl), p ≥ 2.
Similarly, we can see 2(p− 1)al − (2p− 1)bl) > 0.

Hence, for p ≥ 2, we always conclude that the b−coordinate is positive
for any al. Therefore, since b′l > 0, tpc(l) is in C1, as desired.

This completes the proof. �

5. An alternative proof for the free group F3 generated by
three Dehn twists

Using the lantern relation, there is a unique simple closed curve e on M
separating M into two pairs of pants and intersecting both c and d twice
such that tc, td and te satisfy tctdte = 1 (see Figure 5). Then, we have
te = (tctd)−1. In this section, we provide an alternative proof that the group
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generated by the Dehn twists tc, td and (tctd)−1 is isomorphic to the free
group of rank 3.

c d

e

Figure 5

Proof. Let G be a group generated by Dehn twists tc, td and (tctd)−1. Let
C be the set of isotopy classes of simple closed curves in M .

Let us define sets C1, C2 and C3:

C1 = {l ∈ C|al ≤ 0, bl > 0, 2bl + al > −1}, C2 = {l ∈ C|al ≥ 0, bl < 0}

and C3 = {l ∈ C|al < 0, bl ≤ 0, 2al < bl}, where (al, bl) denotes the
Dynnikov coordinates of l ∈ C. Since the Dynnikov coordinates of the curves
c, d, and e in the Figure 5 are (0, 1), (0,−1), and (−1, 0), respectively. In
other words, since ac = 0, bc = 1 > 0, and 2bc + ac = 2 > −1, c ∈ C1 and
since ad = 0, bd = −1 < 0, d ∈ C2. We have also e ∈ C3, as ae = −1, be = 0,
and 2ae = −2 < 0. So, the sets Ci are nonempty and disjoint for all
i = 1, 2, 3.

By the ping pong lemma, the proof reduces to verifying that tpc(C2) ⊂
C1, t

p
d(C1) ⊂ C2, t

p
c(C3) ⊂ C1, t

p
d(C3) ⊂ C2, ((tctd)−1)p(C1) ⊂ C3, and

((tctd)−1)p(C2) ⊂ C3, for p 6= 0. For brevity, let us denote (tctd)−1 by g.

gp(C1) ⊂ C3:
If l ∈ C1, then al ≤ 0, bl > 0, and 2bl + al > −1. Then, we must

show that gp(l) ∈ C3, p 6= 0. Let gp(l) = l′, p 6= 0. In other words, we
need to show that al′ < 0, bl′ ≤ 0 and 2al′ < bl′ . Since the update rules
for g−1 can be derived by symmetry, we may assume that p > 0. In the
case al ≤ 0, bl > 0 and 2bl+al > −1, we will consider the following five cases:

Case 1. For −2al < bl, al ≤ 0. By Equation 4, we have ρ(g(l)) =
(−al − bl,−bl). We obtain that −al − bl < 0 and −bl < 0 since −2al < bl
and al ≤ 0. Then, by Equation 4, we find ρ(g2(l)) = (−al−3bl,−bl). In this
case, since −al− 3bl < 5al ≤ −5, we have −al− 3bl < 0 and −bl < 0. Then,
similarly, we find the p-th iterate of g,

ρ(gp(l)) = (−al − (2p− 1)bl,−bl),

p ≥ 2. By similar argument in the above, we have

−al − (2p− 1)bl < (4p− 3)al ≤ 3− 4p,
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for p ≥ 2. Hence, we obtain that −al − (2p− 1)bl < 0, −bl < 0 and

−bl − 2(−al − (2p− 1)bl) =

2al + (4p− 3)bl > −bl + (4p− 3)bl =

4(p− 1)b > 0,

since 2al > −bl. So, gp(l) is in C3.

Case 2. For −2al = bl, al < 0, by Equation 4, we have ρ(g(l)) = (al, 2al).
Since al < 0, neither component is positive. Then, we will apply a similar
process, we obtain that ρ(gp(l)) = ((4p − 3)al, 2al), for al < 0, p ≥ 2.
Therefore, (4p− 3)al < 0, 2al < 0 and

2al − 2(4p− 3)al = −2(4p− 4)a = (4p− 4)b > 0

since −2a = b. It follows that gp(l) is in C3.

Case 3. For −al − 1 < bl < −2al, al < −1, by Equation 4, ρ(g(l)) =
(−al − bl,−bl). Since −al − 1 < bl < −2al, al < −1, we have −al − bl < 0
and −bl < 0. In this case, to find gp(l), again applying a similar process,

ρ(gp(l)) = (−al − (2p− 1)bl,−bl),

p ≥ 2. Since

(4p− 3)al < −al − (2p− 1)bl < 1 + (al + 1)(2p− 2),

for p ≥ 2, a ≤ −2. Hence, we obtain that −al − (2p− 1)bl < 0, −bl < 0 and

−bl − 2(−al − (2p− 1)bl) =

2al + (4p− 3)b > 2al + (4p− 3)(−a− 1) ≥ 4p− 7 ≥ 1,

since −al − 1 < bl < −2al, al ≤ −2, p ≥ 2. So, gp(l) is in C3.

Case 4. For −2al−13 < b ≤ −al − 1, al < −2, by Equation 4, ρ(g(l)) =

(−al− bl,−2al− 3bl). We have −al− bl > 0, −2al− 3bl < 0, since −2al−13 <

b ≤ −al − 1, al ≤ −3. Now, by Equation 4, it follows that ρ(g2(l)) =
(−al−3bl,−bl). We have −al−3bl < 0, −bl < 0. In this case, by Equation 4,
we again conclude that the first and the second components are negative.
So, continuing this process, we get

ρ(gp(l)) = (−al − (2p− 1)bl,−bl)

for p ≥ 3. Then, −al − (2p− 1)bl < 0, −bl < 0, and

−bl − 2(−al − (2p− 1)bl) =

2a+ (4p− 3)b > 2al + (4p− 3)
(−2al − 1)

3
=

(8p− 12)(−al) + (3− 4p)

3
≥ 9 > 0,
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since −2al−13 < b ≤ −al − 1, al ≤ −3, p ≥ 3. Hence, gp(l) is in C3.

Case 5. For −al−12 < bl ≤
⌊−2al−1

3

⌋
, al < −1, by Equation 4, we have

ρ(g(l)) = (al + 2bl,−2al − 3bl). So, we see that al + 2bl ≥ 0 and −2al −
3bl > 0, for −al−12 < bl ≤

⌊−2al−1
3

⌋
, al ≤ −2. Then, using Equation 4, we

get ρ(g2(l)) = (−(al + 3bl),−bl). It can be seen that both components are
negative. By a similar process, to find the p-th iteration of g, we get

ρ(gp(l)) = (−(al + (2p− 1)bl),−bl),

for p ≥ 3. Since −al−12 < bl ≤
⌊−2al−1

3

⌋
, al ≤ −2, and p ≥ 3, we have

−(al + (2p− 1)bl) < 0, −bl < 0 and

−bl + 2(al + (2p− 1)bl) =

2al + (4p− 3)b > 2al + (4p− 3)(
−al − 1

2
) =

(7− 4p)a+ (3− 4p)

2
≥ 1

2
> 0.

Hence, gp(l) is in C3.

gp(C2) ⊂ C3:
If l ∈ C2 then al ≥ 0, bl < 0. Then, we must show that gp(l) ∈ C3, p 6= 0.

In this case, we will use by Equation 4, we have ρ(g(l)) = (−3al+2bl,−2al+
bl). Since both of the components are negative, similarly as above, to get
the p-th iteration g, using Equation 4, we get

ρ(gp(l)) = ((1− 4p)al + 2pbl,−2al + bl),

for p ≥ 2. Since al ≥ 0, bl < 0, and p ≥ 2, we conclude that both of the
components are negative and

(−2al + bl)− 2((1− 4p)al + 2pbl) = (8p− 4)a+ (1− 4p)b > 0.

So, gp(l) is in C3.

tpc(C3) ⊂ C1:
If l ∈ C3 then al < 0, bl ≤ 0, 2al < bl. In this case, by using Equation 1,

we have ρ(tc(l)) = (al + bl,−2al − bl). The first component is negative, the
second component is positive. Then,

ρ(t2c(l)) = (al + bl,−2(al + bl)− (2al + bl)).

Again, we obtain that the first component is negative, the second component
is positive. Then, similarly, the p-th iteration of tc,

ρ(tpc(l)) = (al + bl,−2(p− 1)(al + bl)− (2al + bl)),

p ≥ 2. We can easily see that the first component is negative, the second
component is positive. Also,

2[−2(p− 1)(al + bl)− (2al + bl)] + (al + bl) = (1− 4p)al + (3− 4p)bl.
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since p ≥ 2, we obtain that (1− 4p)al + (3− 4p)bl > 0 > −1. Hence, tpc(l) is
in C1.

tpc(C2) ⊂ C1:
If l ∈ C2 then al ≥ 0, bl < 0. By using Equation 1, we have ρ(tc(l)) =

(−al + bl,−bl). The first component is negative, the second component is
positive. By a similar process in above, we get

ρ(tpc(l)) = (−al + bl,−2(p− 1)(−al + bl)− bl),
p ≥ 2. It can be seen that the first component is negative, the second
component is positive. Moreover,

2[−2(p− 1)(−al + bl)− bl] + (−al + bl) = (4p− 5)al + (3− 4p)bl > 0 > −1,

since p ≥ 2. Hence, tpc(l) is in C1.

tpd(C3) ⊂ C2:
If l ∈ C3 then al < 0, bl ≤ 0, 2al < bl. In this case, there are two subcases:

Subcase (i): a < b. By using Equation 2, we have ρ(td(l)) = (−al +
bl,−bl). Since both of the components are positive as a < b. In this case,
again applying td, we get ρ(t2d(l)) = (−al, 2al − bl) by Equation 2. Now, we
have the first component −al > 0, the second component 2al−bl < 0. Then,
similarly, p-th iteration of td, we get ρ(tpd(l)) = (−al, 2(p− 1)al − bl), p ≥ 3.
The first component is positive, but the second one is negative as a < b.
Thus, tpd(l) is in C2.

Subcase (ii): 2a < b ≤ a. By using Equation 2, we have ρ(td(l)) =
(−al + bl,−2al + bl). Since b − a ≤ 0 and 0 < b − 2a, the first component
is not positive but the second one is positive. Now, by using Equation 2, we
get ρ(t2d(l)) = (−al, 2al− bl). We have −al > 0 and 2al− bl < 0. Then, if we
apply similar process to get tpd(l), then we get ρ(tpd(l)) = (−al, 2(p−1)al−bl),
p ≥ 3. Since the first component is positive and the second component is
negative as 2a < b. Therefore, tpd(l) is in C2.

By using argument of the proof in Section 4, it can be easily seen that
tpd(C1) ⊂ C2.

This finishes the proof. �

6. The action of pseudo-Anosov map tdt
−1
c and t−1d tc

In this section, we will present an algorithm that determines the actions
of tdt

−1
c and t−1d tc of M making use of orbits of the actions tc and td. This

algorithm will demonstrate how the iteration changes geometrically.
Let (a, b) ∈ Z2 \{0} be the Dynnikov coordinates of a simple closed curve

l in M . We will write (a′, b′) ∈ Z2 \ {0} to denote the Dynnikov coordinates
of ψ(l), where ψ is a generator of PMod(M).
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Main Algorithm for tdt
−1
c . If b ≥ 0 apply Algorithm 1 otherwise apply

Algorithm 2.

Algorithm 1. Given (a, b) ∈ Z2 \{0} the Dynnikov coordinates of a simple
closed curve l in M .

Step 1: Apply backward 2|a| units along |a|th level of orbits of the action
of tc, and input the new coordinates (a′, b′) to Step 2.

Step 2: If b′ > 0, apply forward 2(|a′|+ |b′|) units along (|a′|+ |b′|)th level
of orbits of the action of td, and input the new coordinates (a′′, b′′) to Step 4.
Otherwise, input (a′, b′) to Step 3.

Step 3: If b′ ≤ 0, apply forward 2|a′| units along |a′|th level of orbits of
the action of td, and input the new coordinates (a′′, b′′) to Step 4. Otherwise,
input (a′, b′) to Step 2.

Step 4: Since (a′′, b′′) is the Dynnikov coordinates of td(l′), where l′ =
t−1c (l), and (a′, b′) is the Dynnikov coordinates of t−1c (l), (a′′, b′′) is the Dyn-
nikov coordinates of tdt

−1
c (l).

(-3,5)

Backward 6 units along 3rd level of the orbits of the
action t and forward 4 units along 2nd level of the
orbits of the action t 

c
d

(1,1) (1,1)

aa

bb

1-2

2

-3

c

d

3

1

41

(4,-5)

Backward 2 units along 1st level of the orbits
of the action of t and forward 8 units along
4th level of the orbits of the action of t

Figure 6

The following algorithm works for case b < 0.

Algorithm 2. Given (a, b) ∈ Z2 \{0} the Dynnikov coordinates of a simple
closed curve l in M .

Step 1: Apply backward 2(|a|+ |b|) units along (|a|+ |b|)th level of orbits
of the action of tc, and input the new coordinates (a′, b′) to Step 2.

Step 2: If b′ > 0, apply forward 2(|a′|+ |b′|) units along (|a′|+ |b′|)th level
of orbits of the action of td, and input the new coordinates (a′′, b′′) to Step 4.
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Otherwise, input (a′, b′) to Step 3.

Step 3: If b′ ≤ 0, apply forward 2|a′| units along |a′|th level of orbits of
the action of td, and input the new coordinates (a′′, b′′) to Step 4. Otherwise,
input (a′, b′) to Step 2.

Step 4: Since (a′′, b′′) is the Dynnikov coordinates of td(l′), where l′ =
t−1c (l), and (a′, b′) is the Dynnikov coordinates of t−1c (l), (a′′, b′′) is the Dyn-
nikov coordinates of tdt

−1
c (l).

Main Algorithm for t−1d tc. If b ≥ 0 apply Algorithm 1 otherwise apply
Algorithm 2.

Algorithm 1. Given (a, b) ∈ Z2 \{0} the Dynnikov coordinates of a simple
closed curve l in M .

Step 1: Apply forward 2|a| units along |a|th level of orbits of the action
of tc, and input the new coordinates (a′, b′) to Step 2.

Step 2: If b′ > 0, apply backward 2(|a′| + |b′|) units along (|a′| + |b′|)th
level of orbits of the action of td, and input the new coordinates (a′′, b′′) to
Step 4. Otherwise, input (a′, b′) to Step 3.

Step 3: If b′ ≤ 0, apply backward 2|a′| units along |a′|th level of orbits of
the action of td, and input the new coordinates (a′′, b′′) to Step 4. Otherwise,
input (a′, b′) to Step 2.

Step 4: Since (a′′, b′′) is the Dynnikov coordinates of t−1d (l′), where l′ =
tc(l), and (a′, b′) is the Dynnikov coordinates of tc(l), (a′′, b′′) is the Dyn-
nikov coordinates of t−1d tc(l).

The following algorithm works for case b < 0.

Algorithm 2. Given (a, b) ∈ Z2 \{0} the Dynnikov coordinates of a simple
closed curve l in M .

Step 1: Apply forward 2(|a|+ |b|) units along (|a|+ |b|)th level of orbits
of the action of tc, and input the new coordinates (a′, b′) to Step 2.

Step 2: If b′ > 0, apply backward 2(|a′| + |b′|) units along (|a′| + |b′|)th
level of orbits of the action of td, and input the new coordinates (a′′, b′′) to
Step 4. Otherwise, input (a′, b′) to Step 3.

Step 3: If b′ ≤ 0, apply backward 2|a′| units along |a′|th level of orbits of
the action of td, and input the new coordinates (a′′, b′′) to Step 4. Otherwise,
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input (a′, b′) to Step 2.

Step 4: Since (a′′, b′′) is the Dynnikov coordinates of t−1d (l′), where l′ =
tc(l), and (a′, b′) is the Dynnikov coordinates of tc(l), (a′′, b′′) is the Dyn-
nikov coordinates of t−1d tc(l).

c

d

aa

bb

1

2

c

d

3 4

(-1,-1)

(3,-5)

Backward 4units along 2nd level of the
orbits of the action of t and forward 6 units
along 3rd level of the orbits of the action
of t

-2

2

(4,-6)

Backward 4 units along 2nd level of the
orbits the action of t and forward 8 units
along 4th level of the orbits of the action
t

Figure 7

Now, we will give the sequences of the Dynnikov coordinates of values of
(tdt

−1
c )10(c) and (tdt

−1
c )10(d), where c (ρ(c) = (0, 1)) and d (ρ(d) = (0,−1))

are as in Figure 1.

(0, 1)
tdt
−1
c→ (1,−1)

tdt
−1
c→ (5,−7)

tdt
−1
c→ (29,−41)

tdt
−1
c→ (169,−239)

tdt
−1
c→

(985,−1393)
tdt
−1
c→ (5741,−8119)

tdt
−1
c→ (33461,−47321)

tdt
−1
c→ (195025,−275807)

tdt
−1
c→

(1136689,−1607521)
tdt
−1
c→ (6625109,−9369319)

tdt
−1
c→ (38613965,−54608393)

a

b

(1,-1)

(5,-7)

(29,-41)

1

Figure 8

(0,−1)
tdt
−1
c→ (2,−3)

tdt
−1
c→ (12,−17)

tdt
−1
c→ (70,−99)

tdt
−1
c→ (408,−577)

tdt
−1
c→

(2378,−3363)
tdt
−1
c→ (13860,−19601)

tdt
−1
c→ (80782,−114243)

tdt
−1
c→ (470832,−665857)

tdt
−1
c→

(2744210,−3880899)
tdt
−1
c→ (15994428,−22619537)

tdt
−1
c→ (93222358,−131836323)
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a

b

-1

(2,-3)

(12,-17)

Figure 9

a

b

(5,-7)

(29,-41)

-1

(2,-3)

1

Figure 10

Remark 6.1. 1) If the pairs in the sequence of values generated by the it-
eration of tdt

−1
c , starting from the point (0, 1), are combined with the pairs

in the sequence of values generated by the iteration of tdt
−1
c , starting from

the point (0,−1), respectively; we obtain a sequence of isosceles triangles
(see Figure 10. The areas of these triangles are 1, 1, 9, 49, 289, and so on.

2) The pairs in the sequence of values generated by the iteration of tdt
−1
c ,

starting from the point (0, 1) satisfy the equation 2a2 − b2 = 1, except for
the pair (0, 1). These are the NSW numbers (named after Newman, Shanks,
and Williams) integers m that solve the Diophantine equation 2n2 = m2+1.
As the starting points change, it is observed that the pairs in the value
sequence of values generated by the iteration of tdt

−1
c satisfy the equation

2a2 − b2 = Det(A), where A =

[
2a b
b a

]
.
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7. the Dynnikov coordinates in M in terms of (p, q)-torus
coordinates via a double branched cover

We consider a double branched cover over a sphere M with four marked
points by a torus T with one boundary component p : T → M(the marked
points are the branch points). The deck transformation is a hyperbolic
involution τ switching the two sheets. τ induces a bijection between the set
of homotopy classes of nontrivial simple closed curves in T and the set of
homotopy classes of nontrivial simple closed curves in M (see Proposition 2.6
in [3]). Let γ and δ be two nontrivial simple closed curves in T intersecting
each other in one point. Let us encode γ and δ with (1, 0)-torus coordinate
and (0, 1)-torus coordinate, respectively. Up to homotopy, we can assume
that γ and δ project to c and d in M via τ , as in Figure 1. We recall that the
Dynnikov coordinates of c and d in M are (0, 1) and (0,−1), respectively. If
we consider the torus with one hole as a square with opposite sides identified,
as shown in the Figure 11, we can determine the Dynnikov coordinates in M
of a curve whose torus coordinates are given in T using the formula below:

β

β

α

α

1

1

2 2

β

β

1

2

Figure 11

a =
α2 − α1

2
=
|p− q| − |p+ q|

2
,

b =
β1 − β2

2
=

2|p| − 2|q|
2

= |p| − |q|.
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