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HECKE L-VALUES, DEFINITE SHIMURA SETS AND

MOD ℓ NON-VANISHING

ASHAY A. BURUNGALE, WEI HE, SHINICHI KOBAYASHI AND KAZUTO OTA

Abstract. Let λ be a self-dual Hecke character over an imaginary quadratic field K of infinity
type (1, 0). Let ℓ and p be primes which are coprime to 6NK/Q(cond

rλ). We determine the ℓ-adic
valuation of Hecke L-values L(1, λχ)/ΩK as χ varies over p-power order anticyclotomic characters
over K. As an application, for p inert in K, we prove the vanishing of the µ-invariant of Rubin’s
p-adic L-function, leading to the first results on the µ-invariant of imaginary quadratic fields at
non-split primes.

Our approach and results complement the work of Hida and Finis. The approach is rooted in the
arithmetic of a CM form on a definite Shimura set. The application to Rubin’s p-adic L-function
also relies on the proof of his conjecture. Along the way, we present an automorphic view on Rubin’s
theory.
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1. Introduction

Special values of L-functions mysteriously encode arithmetic. As underlying motives vary in a
family, a basic problem is whether the L-values are generically non-zero. If so, a finer problem:
mod ℓ non-vanishing of algebraic part of the L-values for a fixed prime ℓ. The aim of this paper is
to establish it for central Hecke L-values in self-dual families over imaginary quadratic fields.

The study of mod ℓ non-vanishing of Hecke L-values goes back to the 80’s. The first results are
independently due to Gillard [27] and Schneps [75], who showed the non-vanishing for deformation
of a CM elliptic curve arising from the Coates–Wiles Zp-extension of the CM field K for primes
p split in K. (Throughout the introduction, ℓ and p are prime numbers, not necessarily distinct.)
It is based on Zariski density of torsion points on self-products of the CM elliptic curve modulo
ℓ. A couple of decades later, Hida initiated and extensively studied [35, 36, 37, 38] the case of
anticyclotomic deformation for primes ℓ split in K. In contrast to the prior work it relies on the
arithmetic of GL2-Eisenstein series, studied via geometry of modular curves and mod ℓ analogue
of the André–Oort conjecture (Chai–Oort rigidity principle). A few years later, Finis established
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[25, 26] the mod ℓ non-vanishing of central Hecke L-values in self-dual families arising from the Zp-
anticyclotomic deformation of a self-dual Hecke character1 for split primes p. His notably different
approach relies on the arithmetic of U(1)-theta functions with complex multiplication, being rooted
in Mumford’s theory of theta functions and a variant of the Manin–Mumford conjecture.

The aim of this paper is to treat self-dual cases excluded by methods of Hida and Finis, indicated
by ∗ below (cf. Theorems 1.1 and 1.3).

Mod ℓ non-vanishing of p-anticyclotomic Hecke L-values

(ℓ, p) p split in K p inert in K

ℓ split in K Hida, Finis *

ℓ inert in K Finis *

The results have an application to CM Iwasawa theory: vanishing of the µ-invariant of Rubin’s
p-adic L-function and that of K at inert primes p (cf. Theorem 1.5 and Corollary 1.7). These are
the first results on the µ-invariant of imaginary quadratic fields at non-split primes.

The paper introduces a new approach to mod ℓ non-vanishing of Hecke L-values, primarily
based on the arithmetic of a CM form on a definite Shimura set. It rests on Ratner’s fundamental
ergodicity of unipotent flows (cf. [70]). To link the arithmetic of definite Shimura set with that of
the imaginary quadratic field, a key is an ℓ-integral comparison of quaterionic and CM periods. It
is approached indirectly via local and global tools, the former involving an explicit construction of
ℓ-optimal test vectors for supercuspidal representations. In the ℓ = p split case this gives a different
proof of results of Hida and Finis.

The vanishing of the µ-invariant of Rubin’s p-adic L-function builds on our recent study of Ru-
bin’s supersingular CM Iwasawa theory initiated by the proof of his conjecture (cf. [12, 13, 14, 15]).
While Rubin’s construction of his p-adic L-function relies on elliptic units and his conjecture, we
first construct its automorphic counterpart which lives on the definite Shimura set. An automorphic
perspective on Rubin’s theory is at the heart of the paper.

1.1. Main results.

1.1.1. Setting. LetK be an imaginary quadratic field. Let ηK be the associated quadratic character
over Q and hK the class number. Let λ be a (conjugate) self-dual Hecke character over K of infinity
type (1, 0), that is,

λ∞(z) = z−1 and λ∗ := λ| · |1/2
A×
K

satisfies λ∗|A×
Q
= ηK . (1.1)

For a prime p, let K∞ be the anticyclotomic Zp-extension of K. Put Γ = Gal(K∞/K) and let
Ξp denote the set of finite order characters of Γ. For ν ∈ Ξp, note that λν is also self-dual. Put

Ξ±
λ,p = {ν ∈ Ξp| ϵ(λν) = ±1},

where ϵ(λν) denotes the root number of the Hecke L-function L(s, λν). We normalise the latter so
that s = 1 is the center of the functional equation. If ν ∈ Ξ−

λ,p, note that L(1, λν) = 0.

1This includes the case of a CM elliptic curve.
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In this paper we consider divisibility properties of algebraic part of the central L-values L(1, λν)
for ν ∈ Ξ+

λ,p and p ∤ DK . If p splits in K, then ϵ(λν) = ϵ(λ). On the other hand, for inert

p ∤ 2NK/Q(cond
rλ), Greenberg observed an interesting variation

ϵ(λν) = (−1)tp+1ϵ(λ),

where the associated local character νp is of conductor ptp+1 > 1 (cf. [29]). (If p ∤ hK , then
condrνp = ptp+1 if and only if ord(ν) = ptp .)

Let ℓ be a prime and vℓ the ℓ-adic valuation on Cℓ so that vℓ(ℓ) = 1. Fix embeddings ι∞ : Q ↪→ C
and ιℓ : Q ↪→ Cℓ.

To introduce CM period, consider an elliptic curve E with complex multiplication by OK , defined
over a number field M ⊂ Q, and a non-vanishing invariant differential ω on E. We may extend the
field of definition to C via ι∞, and possibly replacing E by a Galois conjugate, obtain

ΩK ∈ C×,

uniquely determined up to units in K, such that the period lattice of ω on E is given by ΩKOK .
For a given prime ℓ, we normalise the pair (E,ω) so that E has good reduction at the ℓ-adic place
l of M determined via ιℓ, and ω reduces modulo l to a non-vanishing invariant differential on the
reduced curve Ẽ. Fix the pair (E,ω) and the resulting period ΩK .

Hurwitz proved that

L(1, λν)

ΩK
∈ Q.

A basic problem:

How does vℓ

(
L(1, λν)

ΩK

)
vary with ν ∈ Ξ+

λ,p? (Q)

The following local invariants appear in our non-vanishing results. For a prime q, put µℓ(λq) =
minx∈O×

Kq
vℓ(λq(x)− 1) and

µℓ(λ) =
∑

q|NK/Q(cond
rλ) inert in K

µℓ(λq). (1.2)

The latter invariant is closely related to the ℓ-part of the Tamagawa number associated to λ. Its
relevance to the problem (Q) is due to the lower bound

vℓ

(
L(1, λν)

ΩK

)
≥ µℓ(λ), (1.3)

as predicted by the Bloch–Kato conjecture (cf. [25]).

1.1.2. (ℓ, p) non-vanishing. Our first main result is the following.

Theorem 1.1. Let λ be a self-dual Hecke character over an imaginary quadratic field K of infinity
type (1, 0). Let ℓ and p be two different primes which are coprime to 2NK/Q(cond

rλ). If ϵ(λ) = −1,
suppose that ℓ ≥ 5. Then for all but finitely many ν ∈ Ξ+

λ,p we have

vℓ

(
L(1, λν)

ΩK

)
= µℓ(λ).

In view of the Birch and Swinnerton-Dyer formula for rank zero CM abelian varieties [73, 7],
Theorem 1.1 has the following application.
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Corollary 1.2. Let λ be a self-dual Hecke character over an imaginary quadratic field K of infinity
type (1, 0) and Aλ an associated CM abelian variety over K. Let ℓ and p be two different primes
which are coprime to 2NK/Q(cond

rλ). For the Zp-anticyclotomic extension K∞ and a non-negative
integer n, let Kn denote its n-th layer. Suppose that the Tate–Shafarevich group X(Aλ/Kn) is
finite for any n. Then there exists a constant c such that for any n, we have

#X(Aλ/Kn)[ℓ
∞] < c.

1.1.3. In the ℓ = p case our main result:

Theorem 1.3. Let λ be a self-dual Hecke character over an imaginary quadratic field K of infinity
type (1, 0). Let p ∤ 2NK/Q(condrλ) be a prime and µp(λ) be as in (1.2).

(a) Suppose that p splits in K and p the prime of K above p determined via the embedding ιp.
Suppose that ϵ(λ) = +1. Then there exists an integer cλ ≥ 0 such that for any ν ∈ Ξp of
order pt ≫ 1 and the local character νp of conductor ptp+1, we have

vp

(
L(1, λν)

ΩK

)
= µp(λ) +

cλ
pt−1(p− 1)

− tp + 1

2
.

(b) Suppose that p is inert in K. If ϵ(λ) = −1, suppose also that p ≥ 5. Then there exists
an integer cλ ≥ 0 such that for any ν ∈ Ξ+

λ,p of order pt ≫ 1 and the local character νp of

conductor ptp+1, we have

vp

(
L(1, λν)

ΩK

)
= µp(λ)+

cλ
pt−1(p− 1)

− tp + 1

2
+

1

pt−1(p− 1)

(
1− ϵ(λ)

2
+

∑
k≡t−1 mod 2

(pk − pk−1)

)
,

where 1 ≤ k ≤ t− 1.

Theorem 1.3 is a consequence of the existence of certain p-adic L-functions, and determination
of their µ-invariants. Our principal result is that the latter equals µp(λ).

The above asymptotic formulas for p-adic valuation of Hecke L-values have an application to the
variation of Tate–Shafarevich groups analogous to Corollary 1.2 (see Corollary 1.8). The variation
reflects the underlying Iwasawa theory. While the split case illustrates a typical phenomenon at an
ordinary prime, the inert case echoes a peculiar non-ordinary phenomenon. While the shape of the
asymptotic formula in the former case goes back to Katz [51], the latter case recently appeared in
[14]. (In these works an abstract invariant µ ∈ Z≥0, instead of the above µp(λ), appears.)

Remark 1.4. For Theorem 1.3(a), the hypothesis ϵ(λ) = +1 is essential as otherwise L(1, λν) = 0
for any ν ∈ Ξp.

1.1.4. Application to CM Iwasawa theory at inert primes. We describe an application to Rubin’s
supersingular CM Iwasawa theory [72].

Let p ∤ 6hK be a prime inert in the imaginary quadratic field K. Let Φ denote the completion
of K at the prime ideal generated by p. Let H denote the Hilbert class field of K. For λ as above,
suppose that the Hecke character λ◦NH/K is associated to a Q-curve E over H with good reduction
at primes of H above p (cf. [30]). Without loss of generality, we assume that E has CM by OK .
Let T denote the p-adic Tate module of E, which is naturally endowed with an OΦ-action.

Let Ψ∞ be the anticyclotomic Zp-extension of Φ and Ψn the n-th layer. Denote the Iwasawa
cohomology lim←−nH

1(Ψn, T
⊗−1(1)) by H1, where T⊗−1 is the OΦ-dual of T . Since p ∤ hK , we may

identify Ξp with the set of finite order characters of Gal(Ψ∞/Φ). For ν ∈ Ξp factoring through
Gal(Ψm/Φ), the dual exponential map for ν ⊗ T⊗−1(1) defines a map

δν : H1 −→ Ψm(Im ν),
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dependent on a choice of Néron differential. Following Rubin [72], define

H1
± := {h ∈ H1 | δν(h) = 0 for any ν ∈ Ξp of order pt with t odd/even}.

Rubin [72] showed that H1
± is a free Λ-module of rank one for Λ := OΨ[[Gal(Ψ∞/Φ)]].

Fix a generator h± of the Λ-module H1
±. Let ε ∈ {+,−} denote the sign of ϵ(λ) and

Lp(λ) := Lp(λ,ΩK , hε) ∈ Λ (1.4)

the associated Rubin p-adic L-function [72, §10]. Let ν(Lp(λ)) denote its evaluation at an anticy-
clotomic character ν. An interpolation property of the Rubin p-adic L-function is given by

ν(Lp(λ)) =
1

δν−1(hε)
· L(1, λν)

ΩK
(ν ∈ Ξ+

λ,p \ {1}), (1.5)

where the non-vanishing of δν−1(hε) is a consequence of Rubin’s conjecture [12].
The Iwasawa µ-invariant of Rubin’s p-adic L-function is given by the following.

Theorem 1.5. Let λ be a Hecke character over an imaginary quadratic field K of infinity type
(1, 0) such that λ ◦ NH/K is associated to a Q-curve E over H with good reduction at a prime
p ∤ 6hK inert in K. Let Lp(λ) be an associated Rubin p-adic L-function. Then

µ(Lp(λ)) = 0.

The above mod p non-vanishing is based on Theorem 1.3 and the main result of [14].

Remark 1.6. In the setting of Theorem 1.5 the invariant µp(λ) vanishes.

Corollary 1.7. For λ as in Theorem 1.5, let Xε(λ) denote the associated signed anticyclotomic
Selmer group [12] and Xst(λ) the two-variable strict Selmer group. Then

µ(Xε(λ)) = µ(Xst(λ)) = 0.

Proof. The assertion for Xε(λ) just follows from Theorem 1.5 and signed Iwasawa main conjecture
[12, Thm. 6.1]. In particular, the µ-invariant µ(X ac

st (λ)) of the anticyclotomic strict Selmer group
vanishes. Therefore, control theorem implies the same for Xst(λ). □

In combination with [15, Thm. 1.1] we obtain the following.

Corollary 1.8. Let E be a CM elliptic curve over Q, and K the associated CM field. Let p ≥ 5 be a
prime of good supersingular reduction for E, and K∞ the anticyclotomic Zp-extension of K. Then
there exists an integer λE,p ∈ Z≥0 such that for any sufficiently large n ≥ 0 with (−1)n+1 = ϵ(E),
the cokernel of the restriction map

X(E/Kn−1)[p
∞]→X(E/Kn)[p

∞]

is finite, and
lengthZp

(Coker (X(E/Kn−1)[p
∞]→X(E/Kn)[p

∞])) = λE,p.

1.1.5. Relation to prior work. The characteristic zero non-vanishing of Hecke L-values as in Theo-
rem 1.1 goes back to Greenberg [29] and Rohrlich [71].

As for (ℓ, p) non-vanishing in the case ℓ ̸= p, Theorem 1.1 complements the existing results if p
remains inert in K. It is due to Finis [25] if p splits in K. In the ℓ = p case, Theorem 1.3 is a
new result for inert primes p. The split case is again due to Finis [26], of which our method gives
a different proof.

If ℓ and p are both split in K, then the problem has been studied by Hsieh [40, 41], Ohta [60]
and the second-named author [34], based on Hida’s idea [35, 36, 37]. However, in the ℓ ̸= p case,
the non-vanishing is established2 only for infinitely many ν ∈ Ξ+

λ,p (cf. [38]).

2The results were originally announced for all but finitely many ν ∈ Ξ+
λ,p. However, a few years back, an issue was

found in Hida’s strategy [35, 36]. His present fix [38] only allows infinitely many ν ∈ Ξ+
λ,p.
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1.2. Strategy. The mod ℓ non-vanishing (Q) concerns the arithmetic of U(1) over K. Via theta
correspondence, we recast it as a problem on a definite unitary group U(2). Since the associated
Shimura set is finite, the framework turns out to be amenable to various tools, as outlined below.

Some of the following notation differs from the rest of the paper.

1.2.1. Definite Shimura set. Given an imaginary quadratic field K, we have a naturally associated
quaternion algebra B over Q such that

ϵ(Bq) = ηKq(−1)

for any prime q. Note that K embeds into B as a Q-algebra, and we often fix such an embedding.
In our study, B is foundational to the arithmetic of K in the guise of definite Shimura set.

Though the association is natural, the arithmetic seems largely unexplored. As far as we know, the
only other examples are Tian’s work [78, 20, 79] on the congruent number and cube sum problems,
jointly with Cai–Shu and Yuan–Zhang respectively (see also [44]).

1.2.2. Ancillary results. The mod ℓ non-vanishing is based on Theorems 1.9 and 1.10 below, which
concern the arithmetic of the definite Shimura set.

For a self-dual Hecke character λ of infinity type (1, 0), let ϕλ be the associated GL2-theta series
of weight two.

Let πλ be the cuspidal automorphic representation ofB×
A arising from Jacquet–Langlands transfer

of ϕλ to B×. Let ℓ ∤ 2NK/Q(cond
rλ) be a prime. Let

φλ ∈ πλ
be a CM form as in Definition 3.4. It is a test vector in the sense of Gross and Prasad [31], which
is ℓ-primitive and K×

q -invariant for all primes q|NK/Q(condrλ) non-split in K. We emphasise that

φλ is not a newform3.
The period

Ωλ =
8π2(ϕλ, ϕλ)

⟨φλ, φλ⟩
naturally arises while studying Rankin–Selberg L-values L(1/2, πλ,K⊗ν) for ν ∈ Ξp, Here ( , ) and
⟨ , ⟩ are Hermitian pairings on the space of GL2 and B

×-modular forms, and L(s, πλ,K⊗ν) denotes
the Rankin–Selberg L-function associated to the self-dual pair (πλ, ν). We normalise the latter so
that s = 1/2 is the center of the functional equation. In view of explicit Waldspurger formula due
to Cai–Shu–Tian [19] the normalised L-value L(1/2, πλ,K ⊗ ν)/Ωλ is ℓ-integral.

We first prove the following (ℓ, p) non-vanishing.

Theorem 1.9. Let λ be a self-dual Hecke character over K of infinity type (1, 0) and πλ the
associated cuspidal automorphic representation. Let ℓ and p be two different primes which are
coprime to 2NK/Q(cond

rλ). Then for all but finitely many ν ∈ Ξ+
λ,p, we have

vℓ

(
L(1/2, πλ,K ⊗ ν)

Ωλ

)
= 0.

As for the period Ωλ, note that

Ωλ/Ω
2
K ∈ Q×

since the normalised L-values L(1, λ/λc)/Ωλ and L(1, λ/λc)/Ω2
K are algebraic and non-zero, where

λc := λ ◦ c for c ∈ Gal(K/Q) the non-trivial element.

3In this setting the finite part of the discriminant of B divides DK . In turn, at primes dividing DK , newform is
not a test vector under an optimal embedding K ↪→ B.
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Theorem 1.10. Let λ be a self-dual Hecke character over an imaginary quadratic field K of infinity
type (1, 0). Let ℓ ∤ 2NK/Q(condrλ) be a prime. If ϵ(λ) = −1, suppose that ℓ ≥ 5. Then

vℓ

(
Ωλ
Ω2
K

)
= 2µℓ(λ).

The above results yield Theorem 1.1 in light of the factorisation

L(1/2, πλ,K ⊗ ν) = L(1, λν)L(1, λν−1) (1.6)

of L-values, and the lower bound (1.3).

1.2.3. About Theorem 1.9. The non-vanishing is based on explicit Waldspurger formula and an
equidistribution of special points.

Let XU be the definite Shimura set associated to B× and an open subgroup U ⊂ B× correspond-
ing to the test vector φλ. An apt choice of embedding ι : K → B leads to special points

xn(a) ∈ XU

for [a] ∈ Gn := Gal(Hpn/K) and Hm the ring class field of conductor m ∈ Z≥1. By the explicit
Waldspurger formula of Cai–Shu–Tian [19], the mod ℓ non-vanishing of L-values in Theorem 1.9 is
equivalent to ℓ-indivisibility of toric periods

Pφλ
(ν) :=

∑
[a]∈Gn

ν(a)φλ(xn(a)),

where ν factors through Gn. The generality of [19] is essential in our study since the classical
Heegner hypothesis is not satisfied, more precisely DK divides the conductor of πλ and B is ramified
at primes dividing DK .

An idea of Vatsal [81] posits to study the ℓ-indivisibility of toric periods Pφλ
(ν) via equidistri-

bution of images of special points xn(a) in a self-product of the Shimura set XU as n varies. The
equidistribution is a consequence of Ratner’s seminal ergodicity of unipotent flows (cf. [70]). In
turn it suffices to show that φλ mod ℓ is non-Eisenstein on certain components of XU . The prior
non-Eisenstein argument [81] does not apply.

In fact, a new phenomenon happens: there is a partition XU = X+
U ⊔X

−
U where

X+
U := {[h] ∈ XU

∣∣∣ N(h) ∈ Q×
+\Q×

+N(K̂
×)/N(U)},

and for p inert, φλ mod ℓ is non-Eisenstein on exactly one of the subsets X±
U depending on ϵ(λ).

Our non-Eisenstein argument is indirect: φλ mod ℓ is non-zero by definition, and consequently
non-Eisenstein on XU . (See Lemma 5.6 which is specific to the CM setting.) So it is non-Eisenstein
on at least one of the subsets X ε̃

U ∈ {X
+
U , X

−
U }. As the above non-vanishing strategy applies on

X ε̃
U , it follows that ε̃ has the desired parity since L(1/2, πλ,K ⊗ ν) = 0 for ν ∈ Ξ−

λ,p.

1.2.4. About Theorem 1.10. The ℓ-integral period relation in Theorem 1.10 - a comparison of au-
tomorphic and motivic periods - is a basic problem (cf. [33, 69, 68, 47]).

For weight two newforms with square-free conductor the comparison is a consequence of Ribet’s
level raising (cf. [69, 68]). It may also be approached via R=T theorems under the square-free-ness
or a Gorenstein hypothesis (cf. [21, 55, 11]). These methods pertain to Hecke eigenforms. However,
our CM setting4 is neither semistable nor does it involve an eigenform on the definite Shimura set.

4It is also excluded by conjectures of Prasanna [68] and Ichino–Prasanna [47] which concern the arithmetic of
ratios of Petersson norms under Jacquet–Langlands correspondence.
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Our roundabout strategy is based on a tenuous link of the ℓ-adic valuation of Ωλ/Ω
2
K with

mod ℓ non-vanishing as in Theorem 1.9. A key observation: if there exists an auxiliary prime
p ∤ 2ℓNK/Q(condrλ) and a character ν ∈ Ξ+

λ,p such that

vℓ

(
L(1, λν)L(1, λν−1)

Ω2
K

)
= 2µℓ(λ), (1.7)

then Theorem 1.9 implies5 Theorem 1.10!
If ϵ(λ) = +1, then we check the above criterion using Finis’ mod ℓ non-vanishing [25]: for any

prime p ∤ 2ℓNK/Q(condrλ) split in K, the main result of [25] provides the existence of ν as in (1.7).
Now suppose that ϵ(λ) = −1. Proceeding as above, one may seek to choose a prime p ∤

2ℓNK/Q(cond
rλ) inert in K. (If p splits, then L(1, λν) = 0.) However, Finis’ work [25] excludes

inert primes.
The decisive idea is to bootstrap the problem by choosing an auxiliary ν0 ∈ Ξp such that

ϵ(λν0) = +1 and apply the prior non-vanishing strategy to λν0.
We begin by showing a variant of Theorem 1.9, which allows p to divide the conductor (Note

that p|NK/Q(cond
rλν0)), and obtain

vℓ

(
L(1/2, πλν0,K ⊗ ν)

Ω
{p}
λν0

)
= 0 (1.8)

for inert p and all but finitely many ν ∈ Ξ+
λ,p. This non-vanishing involves a different period Ω

{p}
λν0

,

arising from an ℓ-primitive test vector φ
{p}
λν0

which is new at p and the same as φλν0 at other primes.

We emphasise that φλν0 itself does not work in the strategy as K×
p -invariant vectors in πλν0 are

not test vectors for self-dual pairs (πλν0 , ν).

Now, to utilise (1.8), it suffices to determine vℓ(Ω
{p}
λν0
/Ω2

K). Since ℓ ≥ 5 and p is auxiliary in

regards to Theorem 1.10, it maybe assumed that ℓ ∤ p(p2 − 1) and logℓ(p + 1) ≥ 5. Then our
principle result:

vℓ

(
Ω
{p}
λν0

Ω2
K

)
= vℓ

(
Ωλν0
Ω2
K

)
= 2µℓ(λ). (1.9)

In light of (1.9) and (1.8) it follows that

vℓ

(
L(1, λν)

ΩK

)
= µℓ(λ)

for all but finitely many ν ∈ Ξ+
λ,p. Therefore (1.7) holds, concluding the proof of Theorem 1.10.

We now outline the period relation (1.9). Its’ second equality just follows from the aforementioned
root number +1 case since ϵ(λν0) = +1. As for the first, the strategy is based on yet another variant
of Theorem 1.9 for a different prime q!

Let q ∤ 2pℓNK/Q(condrλ) be a prime inert in K. We show that

vℓ

(
L(1/2, πλν0,K ⊗ χ)

Ω
{p}
λν0

)
= 0 (1.10)

for all but finitely many χ ∈ Ξ+
λ,q. Since

vℓ

(
L(1/2, πλν0,K ⊗ χ)

Ωλν0

)
= 0

5This relies on a key property of φλ: it is a universal test vector for primes p ∤ NK/Q(cond
rλ) i.e. a test vector for

self-dual pairs (πλ, ν) for any such p and ν ∈ Ξp.
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by Theorem 1.9, the desired period relation (1.9) follows.
Besides equidistribution of special points, the non-vanishing (1.10) rests on a new result on

explicit construction of ℓ-optimal test vectors for supercuspidal representations, which is the content
of the next subsection.

1.2.5. Newforms as ℓ-optimal test vectors for supercuspidal representations. Given an irreducible
admissible representation π of PGL2(Qq) and a separable quadratic extension K/Qq, a natural
question: whether newform is a test vector for HomK×(π,C). This local problem is linked with
global arithmetic in view of Waldspurger and Gross–Zagier formulas (cf. [78, 45]).

Now suppose that q is odd and K/Qq the unramified quadratic extension. Let λ be a character
of K× of exponential conductor m ≥ 2 such that λ|Q×

q
= ηK , where ηK is the quadratic character6

of Q×
q corresponding to K. Let π = πλ be the associated supercuspidal representation of PGL2(Qq)

and

f ∈ πR×

a newform for R the standard Eichler order of discriminant q2m. Note that (π, 1) is a self-dual pair.
We consider K×-toric period of f under a family of optimal embeddings ι : OK,qm ↪→ R, param-

eterized by a trace zero unit θ ∈ K and u ∈ Z×
q such that u2θ2 − 1 ∈ Z×2

q (see §7.1.1). Let ( , ) be
a PGL2(Qq)-invariant non-degenerate Hermitian pairing on π. Define the toric period

γθ,u :=
1

vol(K×/Q×
q )(f, f)

∫
K×/Q×

q

(π(ι(t))f, f)d×t.

Theorem 1.11. Let the setting be as above.

(a) Given θ, there exists u ∈ Z×
q as above such that the newform f is a test vector for the

self-dual pair (π, 1), that is,

γθ,u ̸= 0.

(b) Let ℓ ̸= q be a prime. Suppose that logℓ(q + 1) ≥ 5 if m is odd. Then given θ, there exists
u ∈ Z×

q as above such that

vℓ((q
2 − 1)γθ,u) = 0.

In fact, we obtain an explicit formula for γθ,u in terms of λ (see Theorem 7.1).
The Kirillov model is central to the proof. We first interpret the toric period as a linear com-

bination of epsilon factors of twists of πλ. This relies on harmonic analysis in the framework of
Kirillov model and action of Atkin–Lehner operators on twists of newforms. Then, being in the
supercuspidal case, the epsilon factor of a GL2(Qq)-representation equals that of the associated
character of K×. In turn, we relate the linear of combination of epsilon factors with values of λ via
an explicit epsilon factor formula and analysis of Jacobi sums. This builds on the work of Murase
and Sugano [59] on local primitive theta functions.

The test vector problem has been studied in the literature in special cases. For instance, the
m = 1 case of Theorem 1.11(a) is due to Vastal (cf. [82, Thm. 7.2]). His notably different approach
is based on representation theory of GL2(Fq) and ideas from Deligne–Lusztig theory (cf. [65]). For
m ≥ 2, the test vector problem eluded prior methods. The reader may refer to [82, Ch. 7] for an
overview (see also [83]).

6In this local setting we still use the prior global notation such as K and λ.
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1.2.6. About Theorems 1.3 and 1.5. Suppose that p ∤ 6NK/Q(condrλ) is inert in K. Then p is a
prime of non-ordinary reduction for πλ.

Based on the principle of non-ordinary Iwasawa theory [66, 54], we introduce a plus/minus p-adic
L-function

Lp(πλ) := L −ϵ
p (πλ) ∈ ΛO

for a finite extension O of OΨ with ΛO := O[[Γ]] ≃ O[[T ]] and ϵ the sign of ϵ(λ), such that

ν(Lp(πλ))
.
= pt+1ν(Φϵp) ·

L(1/2, πλ,K ⊗ ν)
Ωλ

.

Here ν ∈ Ξ+
λ,p is of order pt, Φϵp denotes a half cyclotomic polynomial and

.
= an equality up to

p-units independent of ν. The construction of Lp(πλ) relies on an explicit Waldspurger formula on
the definite Shimura set XU and the recipe in [66, 52]. In the case ϵ(λ) = −1 it slightly differs from
loc. cit. (cf. Definition 4.12).

Recall that the work of Pollack [66], the third-named author [52] and Lei [56] concerns Iwasawa
theory of Zp-cyclotomic deformation of an elliptic newform f at supersingular primes p for which
ap(f) = 0. Its relevance to anticyclotomic deformations over an imaginary quadratic field K was
first noticed by Darmon and Iovita [24]. While they assume p to be split inK, the inert case appears
in recent study of the first-named author with Buyukboduk and Lei [4, 5] (see also [10]). The prior
anticyclotomic studies exclude the case that f has CM by K, basically due to complications with
explicit Waldspurger formula, which we analyse via the work of Cai–Shu–Tian [19].

The (ℓ, p) non-vanishing strategy outlined in §1.2.3 also applies to the p-adic L-function Lp(πλ),
leading to

µ(Lp(πλ)) = 0. (1.11)

Then Theorem 1.3(b) just follows from the comparison of periods as in Theorem 1.10.
As for Rubin’s p-adic L-function, in light of p-adic Artin formalism and (1.6) one may expect a

factorisation

Lp(πλ)
Ωλ
Ω2
K

= Lp(λ)L
ι
p (λ), (1.12)

of p-adic L-functions up to an element in Λ×
O, where ι denotes the involution of ΛO arising from in-

version on Γ. These p-adic L-functions live in distant worlds: Lp(πλ) being automorphic and Lp(λ)
an incarnation of a zeta element (elliptic unit). Moreover, local invariants in their interpolation
formulas also differ, primarily due to which the factorisation remains open.

We still prove an identity of µ-invariants

µ(Lp(πλ)) + vp

(
Ωλ
Ω2
K

)
= 2µ(Lp(λ)) (1.13)

mirroring (1.12). It is based on the main result of [14], which determines the p-adic valuation
of generalised Gauss sum δχ(v±) appearing in the interpolation formula (1.5) of Rubin’s p-adic
L-function. The latter employs ramification theory and builds on the proof of Rubin’s conjecture.
Finally, in light of (1.11), (1.13), and Remark 1.6, Theorem 1.10 concludes the proof of Theorem 1.5.

While the latter involves only a given prime p, a salient feature of our method is that it relies on
(ℓ, p) non-vanishing for auxiliary primes ℓ ̸= p.

1.2.7. Further remarks on the work of Hida and Finis. This paper is independent from Hida’s
approach [35, 36, 37, 38, 40, 34]. The latter begins with translation of the non-vanishing problem
(Q) in terms of ℓ-indivisibility of toric periods of a GL2-Eisenstein series, and studies it via Chai’s
theory of Hecke-stable subvarieties of a mod ℓ Shimura variety (cf. [18]). A crucial hypothesis is
that ℓ splits in K so that elliptic curve with CM by OK have ordinary reduction at ℓ. The approach
is flexible and applies to non self-dual Hecke characters λ.

10



Finis’ method [25, 26] connects the non-vanishing (Q) to ℓ-indivisibility of a linear functional on
the space of U(1)-theta functions with complex multiplication, and studies it via a Manin–Mumford
conjecture in the context of Mumford’s theory of theta functions. A key hypothesis is that p splits
in K. In contrast, our definite U(2)-setting first relates the non-anishing to ℓ-indivisibility of toric
periods of a CM form on a Shimura set, and an ℓ-integral comparison of periods. While the former
is independent from Finis’ work, the latter relies on his (ℓ, p) non-vanishing [25] for a particular
prime p = p0 split in K. As a byproduct of our method, the non-vanishing holds for all other
primes p ∤ 2p0NK/Q(cond

rλ), including the missing case of inert primes p!

1.3. Organisation. We begin with the framework of definite Shimura sets in section 2. Then
sections 3 and 4 present explicit Waldspurger formulas and construction of Rankin–Selberg p-adic
L-functions, respectively. These sections treat general self-dual pairs, following which the CM
hypothesis ensues. Section 5 constitutes the technical core of the paper, showing mod ℓ non-
vanishing of Rankin–Selberg L-values in the CM case. Then section 6 establishes the desired mod
ℓ non-vanishing of Hecke L-values. It rests on an explicit construction of ℓ-optimal test vectors for
supercuspidal representations, which is the content of section 7. This last section is purely local
and may be of independent interest.

1.4. Vistas. Our method generalises to self-dual Hecke characters over ℓ-ordinary CM fields. Such
an (ℓ, p) non-vanishing appears to be essential for completion of Eisenstein congruence divisibility
[42] towards the CM main conjecture7 and will be presented in a sequel [9].

For imaginary quadratic fields, we hope to consider the mysterious case of ramified primes ℓ in the
near future. Another natural problem is to generalise main results of this paper to self-dual Hecke
characters of general infinity type. The sought after factorisation (1.12) will also be investigated.
The approach to ℓ-optimal test vectors for supercuspidal representations appears to generalise.

The automorphic view on Rubin’s theory may manifest to self-dual deformations.

1.5. Notation.

1.5.1. Global fields. Let F be a number field. Let OF denote its integer ring, AF the adèles and
AF,f ⊂ AF the finite part. In the text we fix an imaginary quadratic field K. Let ηK denote the
associated quadratic character over Q.

Put A = AQ.

Fix an embedding ι∞ : Q ↪→ C and an isomorphism C ≃ Cq for a prime q. Let ιq : Q ↪→ Cq be
their composition. Let vq : Cq → Q ∪ {∞} be the q-adic valuation so that vq(q) = 1. We regard L

as a subfield of C (resp. Cq) via ι∞ (resp. ιq) and Hom(L,Q) = Hom(L,Cq).
Denote by Ẑ the finite completion of Z. For an abelian group G, put Ĝ = G⊗Z Ẑ.
Write

M =M+M−

for M+ and M− divisible only by the split and non-split primes in K respectively, and further

M− =M−
sfM

−
a

for M−
sf the square-free part of M− so that (M−

sf ,M
−
a ) = 1.

For an algebraic group G over Q and q a prime, denote by Gq the group of its Qq-points.

1.5.2. L-functions.

7Due to Hida’s weakening [38] of the (ℓ, p) non-vanishing results [35, 36], Hsieh’s work on the CM main conjecture
is incomplete at present. In [42] the non-vanishing [40] was crucially used: that it holds for all but finitely many
twists was decisive, which is currently an open problem.
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Local. Let F = Qq or R.
Let σ be an irreducible admissible representation of GL2(F ). Let L(s, σ) and ϵ(s, σ, ψF ) be

the associated L-function and epsilon factor respectively (cf. [48, Thm. 2.18 (iv)]), where ψF is a
non-trivial additive character of F .

Let K be a quadratic extension of F , and σK the base change of σ. Let χ : K× → C× be a
character. Let L(s, σK ⊗ χ) be the Rankin–Selberg L-function as in [49, §20].

For an irreducible admissible representation of GL2(F ) with trivial central character, we will
simply denote ϵ(1/2, σ, ψF ) by ϵ(σ), since it does not depend on the choice of ψF . We adopt similar
convention for representations of GL2(K) with trivial central character.

Global. We consider Rankin–Selberg L-functions over Q.
Let σ be an irreducible cuspidal automorphic representation of GL2(A). Let K be a separable

quadratic extension of Q and χ : A×
K → C× an algebraic Hecke character. For σK the base change

of σ to K, we have the associated Rankin–Selberg L-function defined by

L(s, σK ⊗ χ) =
∏
q≤∞

L(s, σKq ⊗ χq).

The automorphic L-function L(s, σK ⊗ χ) satisfies the functional equation

L(s, σK ⊗ χ) = ϵ(s, σK ⊗ χ)L(1− s, σ̃K ⊗ χ−1),

where ϵ(s, σK ⊗ χ) =
∏
q ϵ(s, σKq ⊗ χq, ψKq). If (σ, χ) is self-dual in the sense that ωσχ|A× = 1,

where ωσ is the central character, then the functional equation becomes

L(s, σK ⊗ χ) = ϵ(s, σK ⊗ χ)L(1− s, σK ⊗ χ).
Let ϵ(σK ⊗ χ) := ϵ(1/2, σK ⊗ χ) denote the associated root number.

For Σ a finite set of finite places of Q, let L(Σ)(s, σK ⊗χ) denote the incomplete L-function with

Euler factors at Σ∪{∞} removed. In this article we simply denote L(∞)(s, πK⊗χ) by L(s, πK⊗χ).
We use the same convention for Hecke L-functions.

Acknowledgements. We thank Matthias Flach, Haruzo Hida, Chris Skinner, Ye Tian and Wei
Zhang for helpful discussions.

We are grateful to Karl Rubin for his inspiring theory and p-adic L-function [72], which sparked
this voyage.

This work was partially supported by the NSF grant DMS 2302064 and the JSPS KAKENHI
grants JP22H00096, JP17K14173, JP21K13774. During the preparation of the preprint, the first
and the third-named authors were in residence at the Max Planck Institute for Mathematics, Bonn,
and acknowledge its support.

2. Definite Shimura sets

The section introduces definite quaternion algebras, associated Shimura sets and modular forms.

2.1. Set-up.

2.1.1. Imaginary quadratic field. Let K be an imaginary quadratic field and −DK < 0 the discrim-
inant. Put δ =

√
−DK .

Write z 7→ z for the complex conjugation on K. Define θ ∈ K by

θ =
D′ + δ

2
, D′ =

{
DK if 2 ∤ DK ,

DK/2 if 2 | DK .

Then OK = Z+ Z · θ and θθ is a local uniformizer of primes that are ramified in K.
Let c ∈ Gal(K/Q) be the non-trivial element. For a Hecke character λ over K, put λc = λ ◦ c.
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2.1.2. Definite quaternion algebra. Let B be a definite quaternion algebra over Q and SB the set
of finite places at which it ramifies. Let DB =

∏
q∈SB

q be the discriminant of B.

Write T and N for the reduced trace and norm of B respectively. Let G = B× be an algebraic
group over Q. Note that Z = Q× is the center of G.

Fix a prime p /∈ SB. Let S be a finite set of places containing SB and ℓ /∈ S be a prime, which
may equal p. Let p be the prime of K above p induced by the embedding ιp : K ↪→ Cp.

Suppose that

• K can be embedded into B,
• −1 ∈ Q×

q is a norm of K×
q for any q /∈ SB.

We often fix an embedding ι : K ↪→ B, and then choose a basis {1, J} of B as a K-algebra such
that

• J2 = β ∈ Q× with β < 0 and Jt = tJ for all t ∈ K,
• β ∈ (Z×

q )
2 for all q ∈ {p, ℓ} ∪ S\SB.

The existence of J may be seen as follows: recall that Bq splits if and only if β ∈ N(K×
q ). Take

k ∈ K× such that −N(k)N(J) ∈ Z×2
q for all q ∈ {p, ℓ}∪S\SB. Then replacing J by Jk the second

property holds.
Let
√
β ∈ Q be a square root of β.

Fix an isomorphism

i =
∏

iq : B̂
(SB) ≃ M̂2(A

(SB)
f ) (2.1)

as follows. For q ∈ {p, ℓ} ∪ S\SB, define iq : Bq ≃M2(Qq) by

iq(θ) =

(
T(θ) −N(θ)
1 0

)
; iq(J) =

√
β ·
(
−1 T(θ)
0 1

)
(
√
β ∈ Z×

q ). (2.2)

For a finite place q /∈ {p, ℓ} ∪ S, choose iq : Bq ≃M2(Qq) such that

iq(OK ⊗ Zq) ⊂M2(Zq). (2.3)

We further choose iq so that iq(J) ∈ iq(K×
q )GL2(Zq) for all q /∈ S.

From now, we often identify Bq with M2(Qq) via iq for finite q /∈ SB, and in turn Gq with
GL2(Qq).

2.2. Modular forms.

2.2.1. Classical modular forms. Let A ⊂ C be a Z-algebra and U ⊂ B̂× an open compact subgroup.
Let M2(U,A) be the space of modular forms of weight 2, trivial central character defined over

A, which consists of functions f : B̂× → A such that

f(zγgu) = f(g) for γ ∈ G(Q), u ∈ U, z ∈ Q̂×.

Via right translation, M2(A) := lim−→U
M2(U,A) is an admissible G(Af )-representation. The space

M2(C) can be identified with automorphic forms on G(A) on which Q̂×G∞ acts trivially.

2.2.2. ℓ-adic modular forms. Let ℓ ∤ S be a prime as in §2.1.
Let A ⊂ Q be a Z(ℓ)-algebra. We regard it as a subalgebra of Qℓ via the fixed embedding

ιℓ : Q → Qℓ. For f ∈ M2(U,A), we refer to f̂ := ιℓ ◦ f ∈ M2(U,Qℓ) as the ℓ-adic avatar of
f ∈M2(U,A), often simply denoted by f .

2.3. Special points. This subsection describes an analogue of CM points in the definite setting,
which arises from the Zp-anticyclotomic extension of K.

Let S+ ⊂ S (resp. S− ⊂ S) be a subset consisting of primes that are split (resp. non-split) in
K. Note that S+ ∩ SB = ∅ since K ↪→ B. For q ∈ S+, choose a prime w of K above q.
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2.3.1. Toric embedding. We identify G(A(SB)
f ) with GL2(A

(SB)
f ) as in (2.1). For g, h ∈ B̂×, put

ιh(g) = h−1gh.

For a finite place q ∤ p, define ςq ∈ G(Qq) by

ςq =1 if q ∤ pS+,

ςq =

(
θ θ
1 1

)
∈ GL2(Kw) = GL2(Qq) if q ∈ S+.

(2.4)

If q ∈ S+ \ {p} and t = (t1, t2) ∈ Kq := K ⊗Q Qq = Kw ⊕Kw, note that

ιςq(t) =

(
t1 0
0 t2

)
. (2.5)

For a non-negative integer n, define ς
(n)
p ∈ G(Qp) as follows. If p splits in K as (p) = pp, then

ς(n)p =

(
θ −1
1 0

)(
pn 0
0 1

)
∈ GL2(Kp) = GL2(Qp). (2.6)

If p is non-split in K, then

ς(n)p =

(
0 1
−1 0

)(
pn 0
0 1

)
. (2.7)

The above local embeddings lead to a family of embeddings ις(n) : K̂ → B̂.

2.3.2. Quaternionic order. We introduce an order in the definite quaternion algebra, with respect
to which special points will be introduced in the next subsection.

Let R ⊂ B be an order such that

• For q /∈ S ∪ {p}, Rq =M2(Zq);
• For q ∈ SB, Rq contains ιςqOKq ;
• For q ∈ S\({p} ∪ SB), Rq ∩ ιςqOKq is a fixed order in ιςqOKq ;
• Rp is the standard Eichler order

M0(p
s)p =

{(
a b
c d

)
∈M2(Zp) | ps|c

}
of discriminant ps for an integer s ≥ 0.

In view of the last property and the choice of ς
(n)
p in (2.6) and (2.7), we have

Rp ∩ ις(n)
p
Kp = ι

ς
(n)
p
OKp,pn

for n ≥ s, where OKp,pn is the order of OKp of conductor pn.
Suppose that

R̂ ∩ ις(n)K̂ = ις(n)ÔK,pnc

for n ≥ s, the latter being order of conductor pnc.

2.3.3. Special points. Define xn,c : A×
K → G(A) by

xn,c(a) := a · ς(n) (ς(n) := ς(n)p

∏
q ̸=p

ςq). (2.8)

This gives a family of special points {xn,c(a)}a∈A×
K
.

For c = 1, we denote xn,c(a) just by xn(a).
14



3. Explicit Waldspurger formula

This section presents explicit Waldspurger formulas in a general context. It is based on the work
of Cai–Shu–Tian [19] to which we refer for an introduction. The main results are anticyclotomic
twist family versions of the formula which involve a fixed test vector (cf. Theorems 3.12 and 3.15).

3.1. Backdrop.

3.1.1. Setting. Let K be an imaginary quadratic field.
Let σ be a unitary irreducible cuspidal automorphic representation of GL2(A) with trivial central

character and conductor N such that

(H1) The archimedean component σ∞ is the discrete series of weight 2;
(H2) ϵ(σK) = +1.

Here ϵ(σK) denotes the root number of the base change σK .
The following example will be of particular interest for the paper.

Example 1. Let λ be a self-dual Hecke character over K of infinity type (1, 0) in the sense of
(1.1). Then the automorphic representation generated by the associated theta series ϕλ satisfies
the hypotheses (H1) and (H2).

Let B be the quaternion algebra over Q such that the Tunnell–Saito condition

ϵ(σK,q) = ϵ(Bq) (3.1)

holds for any place q, where ϵ(σK,q) denotes the local base change root number and ϵ(Bq) is the
Hasse invariant of Bq. It is a definite quaternion algebra.

Lemma 3.1. Suppose that

(H3) ϵ(σq) = −1 for q|(DK , N
−
sf ).

Then we have N−
sf | DB | N−.

Proof. Let q be a prime divisor of N−
sf . It follows from [76, Prop. 3.1.2] that the condition (H3)

is equivalent to σq = χ0 ⊗ St for χ0 quadratic so that χ0 ◦ NKq/Qq
is trivial. Thus the result is a

consequence of [19, Lem. 3.1].
□

Lemma 3.2. Suppose that π has CM by K. Then

DB =
∏

ηKq (−1)=−1

q.

Proof. Suppose that σ is generated by ϕλ as in Example 1. For each q, let ψq be a non-trivial
character of Qq and ψKq = ψq ◦ trKq/Qq

. Then

ϵ(σKq , ψKq) =ϵ(σq, ψq)ϵ(σq ⊗ ηKq , ψq)ηKq(−1)
=ϵ(λ∗q , ψKq)

2(λKq(ψq)
2ηKq(−1))

=ϵ(λ∗q , ψKq)
2

=ηKq(−1).

,

Here λ∗q = λq · | · |1/2Kq
denotes unitarisation of λq, the second equality follows from [48, Thm. 4.7],

and the last from
ϵ(λ∗q , ψKq) =ϵ((λ

∗
q)

−1, ψKq) · (λ∗q)−1(−1)
=ϵ(λ∗,cq , ψKq) · ηKq(−1)
=ϵ(λ∗q , ψKq) · ηKq(−1).
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In view of (3.1) the proof concludes. □

Let G = B× be the algebraic group over Q. Let π = ⊗πq denote the Jacquet–Langlands transfer
of σ to G(A), which exists by Tunnell–Saito theorem [80, 74] and the condition (3.1). It is a unitary
irreducible cuspidal automorphic representation with trivial central character such that

• π∞ is the trivial representation of G∞,
• For q | N−

sf , πq is an unramified one dimensional representation of Gq.
• If q ∤ N , then πq = σq is an unramified principal series π(µq, µ

−1
q ) of Gq = GL2(Qq).

Now let S be the set of prime divisors of N .
Let p ∤ DB be a prime. Let K∞ be the anticyclotomic Zp-extension of K and Γ = Gal(K∞/K).

Let Ξp be the set of characters χ : Γ→ C× of finite order.

Lemma 3.3. For any χ ∈ Ξp with condrχp ≥ pvp(N), we have ϵ(πK ⊗ χ) = +1.

Proof. By the Tunnell–Saito theorem [80, 74], we have

dimCHomA×
K
(π,C) ≤ 1, (3.2)

and the equality is equivalent to the condition (3.1).
Let q be a prime. If q = p, then Bp is split, and so HomK×

p
(πp, χ

−1
p ) ̸= 0 by [19, Lem. 3.1]

since condrχp ≥ pvp(N). Now consider the case q ̸= p. If q is split in K, then Bq is split and so
HomK×

q
(πq, χ

−1
q ) ̸= 0 by Tunnell–Saito. Lastly, if q is non-split in K, then χq is trivial and hence

HomK×
q
(πq, χ

−1
q ) = HomK×

q
(πq,C) ̸= 0 by (3.2).

It follows that dimCHomA×
K
(π, χ−1) = 1, concluding the proof.

□

3.2. Test vectors. For a self-dual pair (π, χ), the Waldspurger formula [84] links the Rankin–
Selberg L-value L(12 , πK ⊗ χ) with K

×-toric period of a test vector on G.
Recall that, following Gross and Prasad [31], a form in π is called a test vector if its image under

a basis of HomK×
A
(π, χ−1) is non-zero with respect to a suitable embedding AK ↪→ BA. Let p ∤ DB

be a prime. This subsection describes a choice of the test vector which is uniform for any χ ∈ Ξp
with conductor at least pvp(N).

In the rest of this section we suppose that the hypotheses (H1)-(H3) hold.

3.2.1. Test vector. Fix a prime p ∤ DB. For M0(q
n)q =

{(
a b
c d

)
∈M2(Zq) | qn|c

}
the Eichler of

discriminant qn, let U0(q
n)q =M0(q

n)q ∩GL2(Zq).

Definition 3.4. For a place q, define a non-zero vector φq ∈ πq as follows.

(a) For q | N−
sf , φq is a basis of the one dimensional representation πq of Gq.

(b) For q | N−
a , φq is invariant under the action of K×

q if q ̸= p and φp is fixed by U0(p
vp(N))p.

(c) For q ∤ N−, φq is fixed by U0(q
vq(N))q.

(d) For q =∞, φq is a non-zero element of the trivial representation π∞.

Remark 3.5. The above choice of φq is as in [19, §3].

Definition 3.6. Let R ⊂ B be an order of discriminant N satisfying the following.

(a) For q|N−
sf , Rq ⊂ Bq is maximal.

(b) For q|N−
a , Rq ⊂ Bq so that Rq ∩ ιςqKq = ιςqOKq if q ̸= p, and Rp is the Eichler order

M0(p
vp(N))p if q = p.

(c) For q|N+, Rq ⊂ Bq is the Eichler order M0(q
vq(N))q.

(d) For q ∤ N , Rq =M2(Zq).
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Lemma 3.7.

(i) For any q, an order Rq ⊂ Bq with discriminant qvq(N) as in Definition 3.6 exists and is
unique up to K×

q -conjugation. Moreover, if q|N− and q ∤ p, then it is unique.
(ii) If q ∤ p, then Rq ∩ ιςqKq = ιςqOKq and if q = p,

Rp ∩ ις(n)
p
OKp = ι

ς
(n)
p
OKp,pn

for n ≥ vp(N).

Proof. For the existence and uniqueness of Rq, see [19, Lem. 3.3] and [19, Lem. 3.4] respectively.
The second part just follows from the definition of ςq and the choice of Rq. □

Note that R satisfies the properties in §2.3.2 for S consisting of prime factors of N .

Lemma 3.8.

(i) For any q, there exists φq ∈ πq as in Definition 3.4. Moreover, it is unique up to scalars.

(ii) For any q, we have φq ∈ (πq)
R×

q .

Proof.

(i) It suffices to consider the cases (b) and (c). For (c) or (b) with q = p, the assertion is a
simple consequence of the newform theory. As for the remaining case, in view of (3.1) it
follows from the Tunnell–Saito theorem [80, 74].

(ii) This is a special case of [19, Prop. 3.8].

□

Remark 3.9. Note that φq is a newform besides the case (b).

Definition 3.10 (Test vector). Define φ ∈ π by

φ = ⊗qφq
for φq as in Definition 3.4.

Note that for any prime p ∤ N− the test vector φ does not depend on p. On the other hand, if

p|N−
a , the test vector is new at p, and we use the notation φ{p} to emphasise the dependence.
The following preliminary will be used in our later arguments.

Lemma 3.11. Suppose that vq(N) > vq(DK) for any prime q|DK . Then N(R×
r ) = N(O×

Kr
) for

any prime r.

Proof. Let r ∤ pDK be a prime. Then we have OKr ⊂ Rr. Since N : O×
Kr
→ Z×

r is surjective for

r ∤ DK , it follows that N(R×
r ) = N(O×

Kr
).

For r = p, note that Bp split and Rp = M0(p
vp(N))p is an Eichler order, and so N(R×

p )→ Z×
p is

surjective.
Now consider the remaining case, namely r is ramified in K. Note that Rr is of the form

OKr +ϖ
n−1OBr , where ϖ ∈ Kr is a uniformiser, n = vr(N) and OBr the maximal order of Br. We

have

OBr = OKr +ϖvr(DB)−vr(DK)OKr(1 + J),

where N(J) ∈ Z×
r and for r = 2, further choose

J2 ≡ 1 (mod DKr/r)

to not lie in the norm of K×
r . In this case, vr(N) > vr(DKr), thus Rr = OKr +ϖn−vr(DKr )OKrJ .

17



For a ∈ OKr and b ∈ ϖOKr , we have

N(a+ bJ) =(a+ bJ)(a+ Jb)

=N(a) + N(b)N(J)

≡N(a) (mod DKr).

It follows that N(R×
r ) = N(O×

Kr
). □

3.2.2. p-stabilization. Let R ⊂ B be an order as in §2.3.2 that is maximal outside N .
We first suppose that p ∤ N . Note that G is split at p and πp is an unramified principal series

π(µp, µ
−1
p ). Put

αp := µp(p)|p|−1/2
p , βp := µ−1

p (p)|p|−1/2
p , ap = αp + βp. (3.3)

The p-stabilization f † := f †αp of f ∈M2(R,C)[π] with respect to αp is defined by

f † = f − 1

αp
· π(
(
1 0
0 p

)
)f. (3.4)

Since the Up-operator is given by

Uph(g) =
∑

x∈Z/pZ

h(g

(
p x
0 1

)
),

note that f † is an Up-eigenform with eigenvalue αp.

If p|N and p ∤ DB, then we simply put f † = f .
In either case we have

f †(xn,c(γau)) =f
†(xn,c(af ))

(γ ∈ K×, a = (a∞, af ) ∈ C× × K̂, u ∈ Ô×
K,pnc).

(3.5)

3.2.3. Normalised test vectors. The following normalisation of test vectors will appear throughout
the paper.

Let ℓ ∤ N be a prime as in §2.1. Let Q(π) be the Hecke field of π, and Oπ,ℓ ⊂ Cℓ the completion
of the ring of integers with respect to the prime l|ℓ determined via the embedding ιℓ.

Let φ ∈ M2(R̂
×,Q(π)) be an ℓ-optimally normalised test vector, i.e. φ is a test vector as in

Definition 3.10 such that

φ ∈M2(R̂
×, Oπ,ℓ)

and

φ ≡/ 0 (mod l).

The above normalisation is crucial in ℓ-integrality of certain Rankin–Selberg L-values as well as
construction of ℓ-adic L-functions.

3.3. Explicit Waldspurger formulas. The aim of this subsection is to explicitly link Rankin–
Selberg L-values with toric periods of the test vector introduced in Section 3.2 or its variants.

18



3.3.1. Setting. We begin with generalities regarding Waldspurger formula, and then specialise to
the prior setting.

Let B be a quaternion algebra over Q. Let π be an irreducible cuspidal automorphic represen-
tation of B×

A and σ its base change to GL2(A). Let K be an quadratic field with an embedding
K ↪→ B and χ a Hecke character over K such that

χ|A×ωπ = 1

for ωπ the central character of π. Suppose that

HomK×
A
(π, χ−1) ̸= 0.

Then the Waldspurger formula [84, 85] connects the toric periods

Pχ(f) =

∫
K×A×\A×

K

χ(t)f(t)dt, f ∈ π

with the Rankin–Selberg L-value L(1/2, πK ⊗ χ).
Now let the setting, and in particular B and π, be as in §3.1.1. Let χ ∈ Ξp be a finite order

anticyclotomic Hecke character. Let R ⊂ B be an order as in Definition 3.6, and pick a test vector
φ as in Definition 3.10.

Let X
R̂× be the Shimura set B×\B̂×/R̂×, whose elements may be chosen as a set of representa-

tives in B̂× = G(Af ). For φ ∈ πR̂
×
, define the inner product of φ by

⟨φ,φ⟩ :=
∑

[gi]∈XR̂×

1

wi
· φ(gi)2, wi := [B× ∩ giR̂×g−1

i : Z×]. (3.6)

For ϕ the newform of level Γ0(N) associated to π, the Petersson norm is defined by

(ϕ, ϕ) =

∫
Γ0(N)\H

|ϕ(z)|2dxdy
y2

,

with z = x+ iy.

For χ ∈ Ξp of conductor ps so that s ≥ vp(N), we have R̂ ∩ ις(s)ÔK = ις(s)ÔK,ps . For n =

max{1, s}, the toric period Pχ(π(ς
(n))φ†) with respect to embedding ι is essentially given by

P (ς(n), φ†, χ) :=
∑

[a]∈Gn

χ(a)φ†(xn(a)),

where Gn = K×\K̂×/Ô×
K,pn (cf. [19, Lem. 2.3]).

The following p-adic multiplier will also appear in Waldspurger formulas:

ep(π, χ) =


1 if χp is ramified;

(1− α−1
p χ(p))(1− α−1

p χ(p)) if χp is unramified, p = pp is split;

1− α−2
p if χp is unramified, p = p is inert.

3.3.2. Explicit Waldspurger formula I. The main result of this subsection is the following Wald-
spurger formula.

Theorem 3.12. Let (π, χ) be a self-dual pair as in §3.3.1 with π of conductor N and χ ∈ Ξp. Let

φ be an associated test vector as in Definition 3.10, and φ† its αp-stabilization if p ∤ N , and else
19



put φ† = φ. Suppose that the p-local character associated to χ is of conductor ps with s ≥ vp(N),
and put n = max{1, s}. Then we have

p−s · P (ς(n), φ†, χ)2 =
⟨φ,φ⟩

8π2(ϕ, ϕ)

√
|DK | · L(psNr)(

1

2
, πK ⊗ χ)

· ϵ(π)
ϵ(πp)

2#ΣDχS+\{p}(N
+)

{
1, vp(N) ≥ 1 or s ≥ 1,

ep(π, χ)
2α2

p, vp(N) = 0, s = 0.

Here Nr is the factor of N−
a precisely divisible by the ramified primes and ΣD the set of prime

divisors of (DK , N) coprime to p, S+ = {q | q|N+}, N+ = N+N+ with w|N+ for q = ww, and
χT =

∏
q∈T χq.

The above result is a consequence of a general explicit Waldspurger formula [19, Thm. 1.8] as we
now describe. In loc. cit. absolute value square of toric period appears, and the following analysis
relates it to square of the toric period.

Lemma 3.13. For χ ∈ Ξp of conductor ps with s ≥ vp(N) and n = max{1, s}, we have

P (Jς(n)τ, φ†, χ) = P (ς(n), φ†, χ)
ϵ(π)

ϵ(πp)
.

Proof. Let S be a set of primes as in §2.1.2 given by prime factors of N .
If q /∈ S, note that J ∈ K×

q GL2(Zq) and ςq = 1, and so the Hecke action of J at q does not

change the toric period. For q ∈ S+\{p},

ς−1
q Jςqτφq = wπqφq = ϵ(πq)φq,

where wπq =

(
1

qvq(N)

)
∈ GL2(Qq) is the Atkin–Lehner operator (cf. [76, Thm. 3.2.2]). If q|N−

and q ∤ p, we have χq = 1 and HomK×
q
(πq,C) ̸= 0. Let Pq be a basis. Then J acts on Pq by

ϵ(πq)ϵ(Bq) [67, Thm. 4]. Thus

Pq(Jςqφq) = ϵ(πq)ϵ(Bq)Pq(ςqφq).

Now consider the case q = p. Then ς
(n),−1
p Jς

(n)
p stabilises φ†.

Therefore

P (Jς(n)τ, φ†, χ) =
∏

q∈S,q ̸=p
ϵ(πq)ϵ(Bq)P (ς

(n), φ†, χ),

and the result then follows from the fact that
∏
q|S,q ̸=p ϵ(πq)ϵ(Bq) =

ϵ(π)
ϵ(πp)

. □

Proof of Theorem 3.12. The following is based on [19, Thm. 1.8].

Taking f in ibid. to be ς(s)φ, we have∣∣∣∣∣ P (ς(s), φ, χ)ps[O×
K,ps : Z×]

∣∣∣∣∣
2

= 2#ΣD
⟨φ,φ⟩

H,R̂×

8π2(ϕ, ϕ)U0(N)

√
|DK | · L(psNa)(

1

2
, πK ⊗ χ), (3.7)

where ⟨ , ⟩
H,R̂× is Hermitian invariant pairing of level R̂×. Indeed, this follows from [19, Thm. 1.8]

since

⟨φ1, φ2⟩H,R̂× = ⟨φ1, φ2⟩,

P 0
χ(ς

(s)φ) = P (ς(s), φ, χ),

C∞ = 4π3, 2π⟨ϕ0, ϕ0⟩U0(N) = (ϕ, ϕ)U0(N), and νps = [O×
K,ps : Z

×] in our setting, the notation being

as in [19].
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Put

τ =

(
N+

1

)
∈

∏
q|N+,q∤p

GL2(Qq) ⊂ GL2(Af ).

Then in view of the S-version of Waldspurger formula [19, Thm. 1.9] we have

P (ς(s), φ, χ)P (ς(s)τ, φ, χ−1)

ps[O×
K,ps : Z×]2

=
⟨φ,φ⟩

H,R̂×

8π2(ϕ, ϕ)U0(N)
·
√
|DK |χS+\{p}(N

+)2#ΣD · L(psNa)(
1

2
, πK ⊗ χ).

We now analyse the left hand side. Since π = π, by multiplicity one of φ (cf. Lemma 3.8), note
that φ = Cφ for a non-zero constant C ∈ C.

Case I. Suppose that vp(N) ≥ 1.

Then by definition, φ† = φ. So we have

P (ς(s), φ, χ)P (ς(s)τ, φ, χ−1)

⟨φ,φ⟩
H,R̂×

=
P (ς(s), φ, χ)P (ς(s)τ, φ, χ−1)

⟨φ,φ⟩R

=
P (ς(s), φ, χ)P (Jς(s)τ, φ, χ)

⟨φ,φ⟩R

=
ϵ(π)

ϵ(πp)

P (ς(s), φ, χ)P (ς(s), φ, χ)

⟨φ,φ⟩R
(Lemma 3.13)

=
ϵ(π)

ϵ(πp)

P (ς(s), φ, χ)2

⟨φ,φ⟩R
.

Here the first equality follows from the multiplicity one of φ (cf. Lemma 3.8), and the second from
automorphy of φ and the fact t = J−1tJ .

Therefore, noting that [O×
K,pn : Z×] = 1 for n ≥ 1, the result is a consequence of (3.7).

Case II. Suppose that vp(N) = 0.
Then we similarly have

P (ς(n), φ†, χ)P (ς(n)τ, φ†
βp
, χ−1)

⟨φ,φ⟩
H,R̂×

=
ϵ(π)

ϵ(πp)

P (ς(n), φ†, χ)2

⟨φ,φ⟩R
, (3.8)

where the only difference in this case is that φ†
βp

= Cφ† (recall that φ† := φ†
αp). In the following

we consider these toric periods.
Henceforth, without loss of generality, we suppose that L(1/2, πK ⊗χ) ̸= 0. By the Waldspurger

formula and multiplicity one of HomA×
K
(π, χ−1), we then have

P (ς(n), φ†, χ)P (ς(n)τ, φ†
βp
, χ−1)

[Gn : Gs]2
= P (ς(s), φ, χ)P (ς(s)τ, φ, χ−1)

·
∫
K×

p /Q×
p

(ις(n)(t)φ
†
p, φ

†
βp,p

)χp(t)

(φp, φp)
d×t ·

(∫
K×

p /Q×
p

(ις(s)(t)φp, φp)χp(t)

(φp, φp)
d×t

)−1

,

(3.9)

where the local invariant pairings are Hermitian. Here

P (ς(s), φ, χ) =
∑

[a]∈Gs

χ(a)φ(xs(a))

with Gs = K×\K̂×/Ô×
K,ps .
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By [21, Prop. 3.12],∫
K×

p /Q×
p

(ις(s)(t)φp, φp)

(φp, φp)
χp(t)d

×t =

{
|DK |1/2p cp, s = 0,

|DK |1/2p cpL(1, ηKp)
2p−s, s > 0,

where

cp =
L(2, 1Qp)L(1/2, πKp ⊗ χp)
L(1, ηKp)L(1, πp, ad)

.

Recall that for normalised spherical Whittaker functional Wπp so that Wπp(1) = 1, we have

(Wπp ,Wπp) =
L(1, π, ad)L(1, 1Qp)

L(2, 1Qp)

for ( , ) the standard Hermitian pairing on the Whittaker model (cf. [19, Prop. 3.11]). In combi-
nation with [21, Prop. 3.10], which is an explicit toric period formula for stabilized newforms with
respect to the Hermitian pairing, we have∫

K×
p /Q×

p

(ις(n)(t)φ
†
αp,p, φ

†
βp,p

)χ(t)d×t

(φp, φp)
= |DK |1/2p cp · L(1, ηKp)

2 ·

{
ep(π, χ)

2α2
pp

−2 if s = 0,

p−s if s > 0.

Note that

[G1 : G0]L(1, ηKp)p
−1 =

1

[O×
K : O×

K,p]
.

Therefore, in view of the previous paragraph and (3.7), (3.8), (3.9), the proof concludes.
□

3.3.3. Explicit Waldspurger formula II. In this subsection we consider a choice of test vector for
self-dual pairs (π, χ) which differs from §3.2.1. Specifically, newform is a test vector at certain
primes q so that πq is supercuspidal and χq = 1, as shown in section 7. This choice will be a key
to subsequent applications.

Setting. We consider self-dual pairs (π, χ) for χ ∈ Ξp as in §3.3.1. Let q ̸= p be a prime such that

• q is an odd prime inert in K,
• Bq split and πq = πλ is the CM lifting of a character λ of K×

q with conductor qm for m ≥ 2
such that λ|Q×

q
= ηKq .

Definition 3.14. A test vector φ̃ = ⊗vφ̃v for (π, χ) is chosen to be the following:

• If a prime r ∤ q, then φ̃r = φr is as in §3.2.1.
• If r = q, let Rq be the Eichler order M0(q

2m)q of discriminant q2m under the identification

iq as in §2.1.2. Let φ̃q ∈ π
R×

q
q be a newform.

That φ̃q is a test vector for the pair (πq, 1) is the main result of section 7, which is a new
contribution to explicit construction of test vectors.

For a prime r ̸= q, let ς
(n)
r be as in §2.3. If r = q, we choose ςq so that

Rq ∩ ιςqKq = ιςqOKq ,qm .

Let θ ∈ K be a unit so that θ = −θ, where · denotes the action of non-trivial element in Gal(K/Qq).
Let u ∈ Z×

q be such that u2θ2 − 1 ∈ Z×2
q . Choose ςq such that

ιςq(θ) =

(
q−m

1

)(
1 −u

1

)(
1

θ2

)(
1 u

1

)(
qm

1

)
.

For s ≥ vp(N), we have

R̂ ∩ ις(s)ÔK = ις(s)ÔK,psqm .
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Define CM points xn,qm(a) as in §2.3.
For n = max{1, s}, consider

P (ς(n), φ̃†, χ) :=
∑

[a]∈Gn,q

φ̃†(xn,qm(a))χ(a),

where Gn,q = K×\K̂×/Ô×
K,pnqm .

Result.

Theorem 3.15. Let (π, χ) be as in §3.3.1 with χ ∈ Ξp. Suppose that the p-local character associated
to χ is of conductor ps with s ≥ vp(N), and put n = max{1, s}. Then we have

p−s · P (ς(n), φ̃†, χ)2 =
⟨φ,φ⟩

8π2(ϕ, ϕ)

√
|DK | · L(psNr)(

1

2
, πK ⊗ χ)

· ϵ(π)
ϵ(πp)

2#ΣDχS+\{p}(N
+) · [Gn,q : Gn]

2γq

{
1, vp(N) ≥ 1 or s ≥ 1

ep(π, χ)
2α2

p, vp(N) = 0, s = 0,
,

,

where Nr is the factor of N−
a precisely divisible by the ramified primes, ΣD the set of prime divisors

of (DK , N) coprime to p, S+ = {q | q|N+}, N+ = N+N+ with w|N+ for q = ww, χT =
∏
t∈T χt,

and γq := γθ,u is as in Theorem 7.1. Moreover, the following holds.

(a) Given λ and θ, there exists an u such that γθ,u ̸= 0.
(b) Let ℓ ∤ q be a prime. Suppose that logℓ(q + 1) ≥ 5 if m is odd. Then given θ, exists u such

that

vℓ((q
2 − 1)γθ,u) = 0.

Proof. The assertion is a consequence of Theorem 3.12, S-version of explicit Waldspurger formula
[19, Thm. 1.9], local toric period formula for newform at q as in Theorem 7.1, and Corollary 7.2. □

4. p-adic L-functions

We introduce p-adic L-functions interpolating Rankin–Selberg L-values. The main results are
their constructions for general self-dual pairs (cf. Theorems 4.4 and 4.9). In the supersingular CM
inert, we also compare the associated Iwasawa invariants with that of Rubin’s p-adic L-function
(cf. Proposition 4.18).

4.1. Theta elements.

4.1.1. Definition. Let the setting be as in §3.1.1.
Let n ≥ 0 be an integer. Recall that

Gn = K×\K̂×/Ô×
K,pn

is the associated Picard group of OK,pn . We identify Gn with the Galois group of the ring class
field of conductor pn over K via geometrically normalised reciprocity law. Denote by

[·]n : K̂× → Gn, a 7→ [a]n

the natural projection map.
Let φ ∈ π be the ℓ-optimally normalised test vector as in §3.2.3. For p ∤ N , recall that φ† is the

stabilization of φ with respect to a root αp of the Hecke polynomial at p as in (3.3). We occasionally
adopt the convention that αp = 1 if p|N .
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Definition 4.1. The n-th theta element

Θn(π) ∈ Oπ,ℓ[α−1
p ][Gn]

is defined as

Θn(π) :=


α−n
p ·

∑
a∈Gn

φ†(xn(a)) · [a]n, p ∤ N,∑
a∈Gn

φ(xn(a)) · [a]n, p|N.

We have the following compatibility.

Lemma 4.2. Suppose that p ∤ N , let πn+1,n : Gn+1 → Gn be the natural quotient map. For n ≥ 1,
we have

πn+1,n(Θn+1(π)) = Θn(π).

Proof. The assertion follows from

αpφ
†(xn(a)) = Upφ

†(xn(a)) =
∑

[u]n+1∈kerGn+1→Gn

φ†(xn+1(ua)).

□

4.1.2. Interpolation. Let ϕ ∈ S2(Γ0(N)) be the normalised elliptic newform corresponding to σ.
Define a period Ωπ by

Ωπ :=
8π2(ϕ, ϕ)

⟨φ,φ⟩
, (4.1)

where φ ∈ π denotes the ℓ-optimally normalised test vector as before.
Let χ ∈ Ξp be with conductor ps. For n ≥ max{s, 1}, note that

χ(Θn(π)) =


α−n
p ·

∑
a∈Gn

φ†(xn(a)) · χ(a), p ∤ N,∑
a∈Gn

φ(xn(a)) · χ(a), p|N.

Proposition 4.3. Let (π, χ) be as in §3.1.1. Suppose that χ ∈ Ξp is of conductor p
s with s ≥ vp(N).

Then for n ≥ max{s, 1}, we have

χ(Θn(π)
2) =

√
|DK | ·

L(psNr)(12 , πK ⊗ χ)
Ωπ

· psχS+\{p}(N
+)

ϵ(π)

ϵ(πp)
2#ΣD


1, vp(N) ≥ 1

α−2s
p , s ≥ 1

ep(π, χ)
2, vp(N) = 0, s = 0.

Proof. This is a simple consequence of Theorem 3.12 . □

4.2. p-adic L-functions: ordinary case. Theta elements readily lead to an integral p-adic L-
function in the ordinary case.

In this subsection we suppose that ℓ = p ∤ 2N . Fix embeddings ι∞ : Q ↪→ C and ιp : Q ↪→ Cp.
Let G∞ := lim←−nGn. Let Γ ≃ Zp be the maximal Zp-free quotient group of G∞ and ∆ the torsion

subgroup of G∞. Fix a non-canonical isomorphism

G∞ ≃ ∆× Γ.

If n ≥ 1, then
Gn ≃ ∆× Γn, Γ ↠ Γn := Gn/∆.
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Let 1∆ : ∆→ Q×
be the trivial branch character. Put

O = Oπ,p[αp], Λ = O[[Γ]]

for Oπ,p the completion of integer ring of the Hecke field at the prime above p determined via the
embedding ιp.

Put

Θn(π, 1) = 1∆(Θn(π)) ∈ O[α−1
p ][Γn]

and

Θ∞(π) = {Θn(π)}n ∈ O[α−1
p ][[G∞]]; Θ∞(π, 1) = {Θn(π, 1)}n = 1∆(Θ∞(π)) ∈ O[α−1

p ][[Γ]].

The latter are well-defined by Lemma 4.2. In some applications we extend O to contain OKp for p
the prime of K above p determined via the embedding ιp.

If the Hecke eigenvalue αp as in (3.3) satisfies

vp(αp) = 0, (ord)

where αp is viewed as an element in Cp via ιp, then

Θ∞(π, 1) ∈ Λ.

If the condition (ord) holds, define the p-adic L-function

Lp(π) = Θ∞(π, 1)2 ∈ Λ.

To describe an interpolation property of the theta elements, put

C(π,K) =
ϵ(π)

ϵ(πp)
2#ΣD

√
|DK |. (4.2)

Theorem 4.4. Let χ ∈ Ξp be of conductor ps. We have

χ(Θ∞(π, 1)2) =
L(psNr)(12 , πK ⊗ χ)

Ωπ
· ep(π, χ)2psα−2s

p · χS+(N+)C(π,K).

In particular, under the condition (ord), the same interpolation formula holds for the p-adic L-
function Lp(π) ∈ Λ.

The result just follows from Theorem 3.12.

4.3. p-adic L-functions: supersingular case. The section describes a construction of integral
plus/minus p-adic L-functions in the supersingular case. It builds on an idea of Pollack [66].

4.3.1. Setting. Recall that p is an odd prime split or inert in K.
Suppose that ap as in (3.3) satisfies

ap = 0. (ss)

One then has αp = −βp.
For • ∈ {αp, βp}, recall that φ†

• denotes the p-stabilization of p-optimally normalised test vector
φ with respect to • as in §4.1.1. Let Θ•(π) be the theta element

Θ•(π) = {Θn(φ
†
•, 1)}n

associated to the pair (π, 1).

Lemma 4.5. For • ∈ {αp, βp}, the theta element Θ•(π) is a (1/2)-admissible distribution on Γ.

Proof. Recall that φ is p-integral as in §3.2.3 and • is a square-root of −p. Hence the assertion just
follows from the definition of Θ•(π). □
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Fix an isomorphism

Λ = O[[Γ]] ≃ O[[T ]], γ 7→ 1 + T

for γ a topological generator of Γ. For a p-th power root of unity ζ ∈ Q×
p , let

ψζ : Γ→ Q×
p , γ 7→ ζ

be a character, and ψζ : Λ → O[ζ] also denote the associated homomorphism. Let Ξ+
p ⊂ Ξp and

Ξ−
p ⊂ Ξp be subsets of characters corresponding to ζ of order pt with t even and odd respectively.

Definition 4.6. Let

log+p (1 + T ) =
1

p

∞∏
n=1

Φp2n(1 + T )

p
, log−p (1 + T ) =

1

p

∞∏
n=1

Φp2n−1(1 + T )

p

be the half p-adic logarithms of Pollack [66], where Φpm(X) denotes the pm-th cyclotomic polynomial.

4.3.2. Plus/minus p-adic L-functions.

Proposition 4.7. Let π be as in §3.1.1. Suppose that the condition (ss) holds. Then there exist

Θ±(π) ∈ Λ

such that

Θ±αp(π) = log+p (1 + T ) ·Θ−(π)± αp log−p (1 + T ) ·Θ+(π).

Proof. In the following we proceed as in the proof of [66, Thm. 5.6] and [52, §8] (see also [24, §2]
and [4, §3]).

Consider theta elements {Θ̃n(π)}n≥0 given by

Θ̃n(π) =
∑
a∈Gn

φ(xn(a)) · [a]n ∈ O[Gn].

If n ≥ 2, we have

πnn−1(Θ̃n(π)) = −ξn−1Θ̃n−2(π)

for πnn−1 : O[Gn]→ O[Gn−1] the projection map and ξn−1 :=
∑

σ∈Gn−1/Gn−2
σ.

Consequently, Θ̃n(π) is divisible by the half cyclotomic polynomial ωϵn as defined in [52, p. 10]
for ϵ the parity of (−1)n−1. (These are denoted by G−ϵ

n in [66, p. 544].) For a fixed parity ϵ of n,
factoring out these extra zeros yields a p-integral norm compatible sequence

{Θ̃ϵ
n(π) ∈ O[∆][[T ]]/(ωϵn)}.

Let Θn(π) ∈ O[[T ]]/(ωϵn) denote the image of {Θ̃ϵ
n(π)} under the projection Gn ↠ Γn.

Define

Θϵ(π) = limΘϵ
n(π) ∈ O[[T ]] ≃ Λ.

In view of the construction the proof concludes. □

Remark 4.8. While the sign labelling of Θ±(π) is opposite to [66], it is compatible with [52].

Define

L±p (π) = Θ±(π)2.

An interpolation property:

Theorem 4.9. Let π be as in §3.1.1. Suppose that the condition (ss) holds.
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(a) For χ = ψζ ∈ Ξ+
p of order pt > 1 and conductor ps, we have

χ(L+p (π)) =
L(psNr)(12 , πK ⊗ χ)

−Ωπ
· pt+1

t−1∏
odd m = 1

Φpm(ζ)
−2 · χS+(N+)C(π,K)

for C(π,K) as in (4.2).
Moreover, if p is inert in K, then

1(Θ+(π)) = 0.

(b) For χ = ψζ ∈ Ξ−
p of order pt and conductor ps, we have

χ(L−p (π)) =
L(psNr)(12 , πK ⊗ χ)

Ωπ
· pt+1

t−1∏
even m = 2

Φpm(ζ)
−2 · χS+(N+)C(π,K).

Proof. (a) For χ = ψζ ∈ Ξ+
p of order pt > 1, note that

ψζ(Θαp(π)) = αp · ϕζ(log−p (1 + T ))ϕζ(Θ
+(π))

= αp ·
1

p

t−1∏
odd m = 1

Φpm(ζ)

p
· ϕζ(Θ+(π))

by [66, Lem. 4.7]. Hence,

ψζ(Θαp(π)
2) =

−1
pt+1

·
t−1∏

odd m = 1

Φpm(ζ)
2 · ϕζ(Θ+(π)2).

Now the assertion just follows from Theorem 4.4.
As for ψ1, if p is inert in K, we have

1(Θ+(π)) =−
∑
a∈G1

φ(x1(a))

=−
∑
a∈G0

Tpφ(x0(a))

=0.

Here the first equality follows from definitions of Θ(π), φ†
±αp

(cf. §3.2.2) and Θ+(π) (cf. Propo-

sition 4.7), the second from: if p is inert in K, then we have an identity∑
u∈O×

Kp
/O×

Kp,p

auς(1) ≡ aς(0)Tp (mod GL2(Zp))

of Hecke operators for a ∈ K̂× (see §2.3 for the definition of xn(a)), and the third just
follows from (ss).

(b) One may proceed as in part (a).
□

Remark 4.10.

(i) The evaluation 1(L−p (π)) basically equals L(12 , πK). Indeed, we have

1(Θ−(π)) = [G1 : G0]
∑
a∈G0

φ(x0(a))

whose square equals algebraic part of the central L-value L(12 , πK) up to explicit factors by
(3.7).
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(ii) The vanishing of 1(Θ+(π)) in Theorem 4.9(a) is intertwined with direct sum decomposition
of local Iwasawa cohomology groups in Rubin’s conjecture (cf. [12, 13]). This phenomenon
does not occur in the cyclotomic setting [52].

Corollary 4.11. Let π be as in §3.1.1. Suppose that the condition (ss) holds.

(a) For ψζ ∈ Ξ+
p of order pt ≫ 1, we have

vp

(
L(Nr)(12 , πK ⊗ χ)

Ωπ

)
= µ+ +

2(pt−1 − pt−2 + · · ·+ p− 1) + λ+

pt−1(p− 1)
− (t+ 1).

for µ+ and λ+ the Iwasawa invariants of L+p (π).
(b) For ψζ ∈ Ξ−

p of order pt ≫ 1, we have

vp

(
L(Nr)(12 , πK ⊗ χ)

Ωπ

)
= µ− +

2(pt−1 − pt−2 + · · ·+ p2 − p) + λ−

pt−1(p− 1)
− (t+ 1).

for µ− and λ− the Iwasawa invariants of L−p (π).

Primitive p-adic L-functions. In view of Theorem 4.9 we are led to the following.

Definition 4.12. For ◦ ∈ {+,−}, define

L ◦
p (π) =

{
(Θ

+(π)
T )2 if p is inert and ◦ = +;

L◦p(π) else.

We expect L ◦
p (π) to appear in signed Iwasawa main conjectures (cf. [24, 12, 4, 5]).

Remark 4.13. For p inert in K, an interesting problem: to formulate a conjecture predicting the
value of L +

p (π) at the trivial character (cf. [58]). In the CM case, it encodes p-adic logarithm of
rational points on the associated CM abelian variety (cf. [13]).

4.4. CM case. This section considers p-adic L-functions associated to a Hecke character over an
imaginary quadratic field, and links among them.

4.4.1. Rubin’s p-adic L-function. The following is a resume of results of [72, 12, 14].
Let K be an imaginary quadratic field with p inert and H the Hilbert class field of K. Assume

that

p ∤ 6hK . (4.3)

Let Φ denote the localisation of K at the prime ideal above p.
Let K∞ be the anticyclotomic Zp-extension of K and Kn the n-th layer. In view of (4.3) we

often regard the set Ξp of anticyclotomic p-power order characters of Φ as that of K.
Let λ be a self-dual Hecke character of K of infinity type (1, 0). Let E be a Q-curve in the sense

of Gross [30] such that the Hecke character λ ◦NH/K is associated to E, and E has good reduction
at each prime of H above p. Let p be the prime of H above p compatible with the embedding
ιp. Fix a Weierstrass model of E over H ∩ OHp which is smooth at p. By considering a Galois
conjugate of E over H, we may assume the existence of a complex period ΩK ∈ C× such that

L = OKΩK ,

where L is the period lattice associated to the model.
Rubin’s p-adic L-function also involves the following local setting.
Let OΦ be the integer ring of Φ. Let F be a Lubin-Tate formal group over OΦ for the uniformizing

parameter π := −p. For n ≥ 0, write Φn = Φ(F [πn+1]), the extension of Φ in Cp generated by the
πn+1-torsion points of F . Put Φ∞ = ∪n≥0Φn and T = TπF .
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Let Θ∞ ⊂ Φ∞ be the Z2
p-extension of Φ, Ψ∞ the anticyclotomic Zp-extension and Ψn the n-th

layer. Put Γ = Gal(Ψ∞/Φ) ∼= Zp, ΛOΦ
= OΦ[[Γ]] and fix a topological generator γ of Γ. Let Un be

the group of principal units in Φn, that is, the group of elements in O×
Φn

congruent to one modulo
the maximal ideal.

Put

T⊗−1 = HomOΦ
(T,OΦ), V ∗

∞ =

(
lim←−
n

Un ⊗Zp T
⊗−1

)∆

⊗OΦ[[Gal(Φ∞/Φ)]] ΛOΦ
,

where ∆ := Gal(Φ∞/Θ∞) and the superscript ∆ refers to ∆-invariants. For a finite character χ of
Gal(Ψ∞/Φ), let δχ be the associated Coates–Wiles logarithmic derivative on V ∗

∞.
Let Ξp be the set of finite characters of Γ and put

Ξ+
p = {χ ∈ Ξp | order χ is an even power of p},

Ξ−
p = {χ ∈ Ξp | order χ is an odd power of p}.

Define
V ∗,±
∞ := {v ∈ V ∗

∞ | δχ(v) = 0 for every χ ∈ Ξ∓
p }. (4.4)

Rubin showed that V ∗,±
∞ is a free ΛOΦ

-module of rank one (cf. [72, Prop. 8.1]).
An insight of Rubin is the following existence of a p-adic L-function (cf. [72, §10], [12, §6]).

Theorem 4.14. Let ε ∈ {+,−} be the sign of the functional equation of the Hecke L-function
L(λ, s). Let vε be a generator of the Λ-module V ∗,ε

∞ . Then there exists

Lp(λ,Ω, vε) =: Lp(λ) ∈ Λ

such that

χ(Lp(λ)) =
1

δχ(vε)
· L(1, λχ)

ΩK

for χ ∈ Ξ−ε
p \ {1}.

Here the non-vanishing of δχ(vε) is a consequence of Rubin’s conjecture (cf. [72, Lem. 10.1]).
The main result of [14] is the following.

Theorem 4.15. Let χ be a finite character of Gal(Ψn/Φ) of order pt > 1, and put ε = (−1)t−1.
Let vε be a generator of V ∗,ε

∞ . Then we have

vp(δχ(vε)) = −
t+ 1

2
+

1

pt−1(p− 1)

1− ε
2

+
∑

(−1)k=ε

(pk − pk−1)


where 1 ≤ k ≤ t− 1 such that (−1)k = ε.

4.4.2. A link with Rankin–Selberg p-adic L-function. Let the setting be as before. In particular, πλ
denotes the irreducible cuspidal automorphic representation associated to λ.

We have a factorisation

L(1/2, πλ,K ⊗ χ) = L(1, λχ)L(1, λχ−1)

of L-values. In light of p-adic Artin formalism, one may expect a factorisation

Lp(πλ) = Lp(λ)Lp(λ)
ι (4.5)

up to an element in Λ×. Here
Lp(πλ) := L −ε

p (πλ) (4.6)

for ε the sign of ϵ(λ), and ι denotes the involution of Λ arising from γ 7→ γ−1. A difficulty in
realising the factorisation is that interpolation formula for the Rubin p-adic L-function involves the
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local invariant δχ(vε) and the CM period ΩK , whereas that for Lp(πλ) involves a half cyclotomic
polynomial and the automorphic period Ωλ := Ωπλ .

We prove a comparison of Iwasawa invariants predicted by (4.5). We begin with the following
preliminary.

Lemma 4.16. For χ of order pt ≫ 1 so that (−1)t−1 = ε, we have

vp(δχ(vε)) = −
t+ 1

2
+

1

pt−1(p− 1)

1− ε
2

+
∑

(−1)k=ε

(pk − pk−1)

+
λ(Lp(πλ))− 2λ(Lp(λ))

2pt−1(p− 1)

+
1

2

(
µ(Lp(πλ)) + vp(

Ωλ
Ω2
K

)− 2µ(Lp(λ))

)
.

Here 1 ≤ k ≤ t − 1 such that (−1)k = ε, µ(·) and λ(·) are associated Iwasawa invariants, and
Lp(πλ) := L −ε

p (πλ).

Proof. The following is based on comparison p-adic valuation of L-values interpolated8 by the p-
adic L-functions Lp(πλ) and Lp(λ). We consider the case ϵ(λ) = −1, and leave the other case to
the interested reader.

In view of Corollary 4.11 and Definition 4.12, for ψζ ∈ Ξ+
p of order χ = pt ≫ 1, we have

vp

(
L(12 , πλ,K ⊗ χ)

Ωλ

)
= µ(Lp(πλ)) +

2(pt−1 − pt−2 + · · ·+ p− 1) + λ(Lp(πλ)) + 2

pt−1(p− 1)
− (t+ 1).

On the other hand, by Theorem 4.14,

vp

(
L(1, λχ)L(1, λχ−1)

Ω2
K

)
= 2µ(Lp(λ)) +

2λ(Lp(λ))

pt−1(p− 1)
+ 2vp(δχ(v−)).

By comparing the above two, the proof concludes. □

Remark 4.17. The left hand side of Corollary 4.16 is a local invariant, and Rubin asked for deter-
mination of its p-adic valuation in [72].

Towards the factorisation (4.5) our main result is the following.

Proposition 4.18. Let λ be a self-dual Hecke character over an imaginary quadratic field K
of infinity type (1, 0) and πλ the associated cuspidal automorphic representation. For a prime
p ∤ 6hKcondrλ inert in K, let Lp(λ) and Lp(πλ) be the associated Rubin and Rankin–Selberg
p-adic L-functions. Then we have

µ(Lp(πλ)) + vp

(
Ωλ
Ω2
K

)
= 2µ(Lp(λ)), λ(Lp(πλ)) = 2λ(Lp(λ)).

Proof. In view of Corollary 4.16 and Theorem 4.15 it follows that

λ(Lp(πλ))− 2λ(Lp(λ))

pt−1(p− 1)
= 2µ(Lp(λ))− µ(Lp(πλ))− vp(

Ωλ
Ω2
K

).

Since the numerator is a constant, it vanishes. □

5. Non-vanishing of Rankin–Selberg L-values modulo ℓ: CM case

The section presents mod ℓ non-vanishing of Rankin–Selberg L-values in the CM case. The main
results are (ℓ, p) non-vanishing Theorems 5.9, 5.10, 5.11 and 5.14 for ℓ ̸= p, and Theorems 5.15 and
5.17 which concern µ-invariants.

8Note that the interpolated L-values are generically non-zero (cf. §5).
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5.1. Key tools.

5.1.1. Equidistribution of special points. We describe a special case of the main result of [22], which
is based on Ratner’s ergodicity of unipotent flows.

Let the setting be as in §2.1, where we fix a definite quaternion algebra B over Q, an odd prime
p with Bp split and an embedding ι : K → B of an imaginary quadratic field.

We have the ring class group G∞ := lim←−nGn of conductor p∞. Let ∆alg be the subgroup of G∞
generated by the image of

K×
ram :=

∏
q|DK

K×
q .

Note that ∆alg is a (2, · · · , 2)-subgroup of ∆. Let D0 be a set of representatives of ∆alg in K×
ram,

and D1 that of ∆/∆alg in K̂×. Then D := D1D0 is a set of representatives of ∆ in K̂×.

Write K
×
for the closure of K× in K̂× and B

×
that of B× in B̂×. Put

CM := K
×\B̂×, X := B

×\B̂×, Z := Q×
+\Q̂×.

The group B̂× acts on these spaces via right multiplication on the first two spaces and via multi-

plication by the norm on the third space. Similarly, there is a left action of the group K̂× on these
spaces. Let Red : CM → X be the natural quotient map and c : X → Z the one induced by the

reduced norm N : B× → Q×. For g ∈ B̂×, let [g] denote the image of g in CM. Let U be an open

compact subgroup of B̂×. Put

X(D1, U) =
∏
τ∈D1

X/U and Z(D1, U) =
∏
τ∈D1

Z/N(U).

Define

RedD1 : CM −→ X(D1, U), x 7→ (Red(τ · x)U)τ∈D1

and

cD1 : X(D1, U) −→ Z(D1, U), (xτ )τ∈D1 7→ (N(xτ ))τ∈D1 .

The following key result is a special case of [22, Cor. 2.10].

Theorem 5.1. Let H be a B×
p -orbit in CM and H the image of H in CM/U . Then for all but

finitely many x ∈ H, we have

RedD1(Ô
×
K · x) = c−1

D1
(Ô×

K · x),
where x = cD1 ◦ RedD1(x).

5.1.2. Non-Eisenstein functions: generalities. Let A be a commutative Z-algebra.
Let U be an open compact subgroup of B̂×. Recall that M2(U,A) is the set of functions h :

B×Q̂×\B̂× → A such that h is right invariant by U . Let

M2(A) := lim−→
U⊂B̂×

M2(U,A)

be the space of smooth A-valued functions on B×Q̂×\B̂×. Let ρ : B̂× → Aut(M2(A)) denote the

right translation of B̂×.

Definition 5.2. Let B1 = {g ∈ B× | N(g) = 1} be the algebraic group over Q. Let

M2(A)Eis := {h ∈M2(A) | ρ(g1)h = h for all g1 ∈ B1(Af )}
and

S2(A) :=M2(A)/M2(A)Eis.
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Denote by S2(U,A) the image of M2(U,A) in S2(A).
A function h ∈M2(A) is called Eisenstein if h ∈M2(A)Eis. Equivalently, h is Eisenstein if and

only if h(g) = h1(N(g)) for a smooth function h1 : Q×
+\Q̂× → A.

The following properties of non-Eisenstein functions will be used in our non-vanishing arguments.

Lemma 5.3. Let q be a finite place such that Bq is split and Uq = U0(q
k)q for some k. For

β1, · · · , βs ∈ A, define R ∈ End(M2(A)) by

R = 1 +

s∑
i=1

βi · ρ(
(
q−i

1

)
).

Then R : S2(U,A)→ S2(A) is injective (cf. [21, Lem. 5.5]).

In the following lemma, let U = R̂× for an order R of B and q a prime such that Bq is a split
quaternion algebra. Let Kq ⊂ Bq be a quadratic subalgebra. Let A be the ring of integers of a
finite extension of Qℓ and ϖ a uniformizer of A.

Lemma 5.4. Let π be a cuspidal automorphic representation and pick a non-zero f ∈M2(U,A)[π].
For a prime q, suppose that Kq is a field and Bq splits. Moreover, for fq the newform, suppose that

γ :=

∫
K×

q /Q×
q Vq

(π(t)fq, fq)q
(fq, fq)q

d×t

is an ℓ-adic unit, where ( , )q is a non-degenerate GL2(Qq)-invariant bilinear pairing on πq and
Vq = K×

q ∩ Uq.
Assume that ℓ ∤ q(q2 − 1). Then if f (mod ϖ) is non-zero, so is

F :=
∑

t∈K×
q /Q×

q Vq

π(t)f (mod ϖ).

Proof. Let R′
q ⊂ Rq be a suborder such that R×

q stabilizes F . Put

F ′ =
∑

g∈R×
q /R

′×
q

π(g)F ∈ πR̂×
.

If F ′ is non-zero modulo ϖ, then so is F . In the following, we consider F ′.
Note that F ′ ∈ Cf and so F ′ = κf for a constant κ. Let ⟨ , ⟩ be a B×

A -invariant bilinear pairing
on π. We have

κ =
⟨F ′, f⟩
⟨f, f⟩

=#R×
q /R

′×
q ·
⟨F, f⟩
⟨f, f⟩

=#R×
q /R

′×
q · γ.

Here the last equality follows from the uniqueness of B×
A -invariant bilinear pairing on π up to scalars

(cf. [48, Lem. 2.6]). Note that #GL2(Zq)/(1 + qnM2(Zq)) is an ℓ-adic unit since ℓ ∤ q(q2 − 1) and
in turn so is #R×

q /R
′×
q . Since γ is an ℓ-adic unit and f ≡/ 0 (mod ϖ), the proof concludes. □

5.1.3. Non-Eisenstein functions: CM case. This endoscopic case exhibits peculiar features, which
the subsection describes.

We begin with the setting. Let K ⊂ B be an imaginary quadratic field. Let U be an open

compact subgroup of B̂× and XU := B×\B̂×/U the associated Shimura set.

If U is of the form R̂× for an order R of B with N(U) ⊂ Q×
+N(K̂

×), then we may write

XU = X+
U ⊔X

−
U ,
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where

X+
U := {[h] ∈ XU

∣∣∣ N(h) ∈ Q×
+\Q×

+N(K̂
×)/N(U)}.

Let A be the ring of integers of some finite extension of Qℓ and ϖ a uniformizer of A. For
f ∈M2(U,A), let f

ϵ denote its restriction to Xϵ
U for ϵ ∈ {±}.

Henceforth, we suppose that U is of the form R̂× such that

N(U) ⊂ Q×
+N(K̂

×). (5.1)

Then restricting to Xϵ
U , we define spaces of non-Eisenstein forms S2(U,A)

ϵ and S2(A)
ϵ.

Definition 5.5. We say f ∈M2(U,A) has CM by K if

Tqf = aqf

for all but finitely many primes q and aq the Hecke eigenvalue of the theta series associated to a
self-dual Hecke character λ over K of infinity type (1, 0).

Lemma 5.6. Suppose that

• ℓ ∤ 2DK ,
• f ∈M2(U,A) has CM by K,
• f ϵ (mod ϖ) is non-zero.

Then f ϵ (mod ϖ) is non-Eisenstein.

Proof. Pick a prime q so that

◦ ℓ ∤ q + 1,
◦ q is inert in K,
◦ f is Tq-eigen.

In view of the first two hypotheses, such a q exists. Note that the Tq-eigenvalue is 0 since f has
CM by K.

Now assume that f ϵ (mod ϖ) is Eisenstein.

By the hypothesis, f ϵ(z) ≡/ 0 (mod ϖ) for some z ∈ Xϵ
U . Then we consider Tqf

(
z

(
1

q−1

))
.

Note that

0 ≡ Tqf(z
(
1

q−1

)
) ≡ (q + 1)f ϵ(z) ≡/ 0 (mod ϖ),

where the congruence Tqf(z

(
1

q−1

)
) ≡ (q + 1)f ϵ(z) (mod ϖ) just follows from Tq =

∑q+1
i=1 uq

for uq ∈ GL2(Q) with N(uq) = q, and f ϵ (mod ϖ) being Eisenstein. A contradiction. □

Lemma 5.7. Suppose that N(U) ⊂ Q×
+N(K̂

×). Let q be a prime unramified in K such that

Uq = U0(q
k)q for some k. For a commutative Z-algebra A, let β1, · · · , βs ∈ A and R ∈ End(M2(A))

ϵ

be the endomorphism defined9 by

R = 1 +
s∑
i=1

βi · ρ(
(
q−2i

1

)
).

Then R : S2(U,A)ϵ → S2(A)ϵ is injective. Moreover, if q splits in K, then the same holds when 2i
in the definition of R is replaced with i.

9Since q ∤ DK , it is well defined.
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Proof. Let f ϵ ∈ S2(U,A)ϵ be so that Rf ϵ ∈M2(A)
ϵ
Eis. In the following we show f ϵ ∈M2(U,A)

ϵ
Eis.

(See also the proof of [21, Lem. 5.5].)
Note that N(Zq) ⊂ Stab(f ϵ) for N(Zq) the subgroup of upper triangular matrices. Put

u =

(
q−1

1

)
and

P (u) =

s∑
i=1

βi · ρ(u2i−2).

Then P ∈ End(M2(A)
ϵ). By the assumption, we have (1− ρ(u2)P (u))f ϵ ∈M2(A)

ϵ
Eis, and so

(1− ρ(u2n)P (u)n)f ϵ ∈M2(A)
ϵ
Eis

for any n ≥ 1.

Note that (1−ρ(u2n)P (u)n)f ϵ and ρ(u2n)P (u)nf ϵ are fixed by

(
1 x

1

)
for x ∈ Qq with q

2nx ∈ Zq

since u−2n

(
1 x

1

)
u2n =

(
1 q2nx

1

)
. Thus f ϵ is fixed by

(
1 x

1

)
for all x ∈ Qq. By smoothness,

the same holds for

(
1
y 1

)
for some y ∈ Q×

q . Therefore, f ϵ is fixed by w0 =

(
y−1

−y

)
, and in

turn by (
1
x 1

)
= w0

(
1 −y2x

1

)
w−1
0 .

Hence SL2(Qq) fixes f ϵ and f ϵ(tg) = f ϵ(g) for all t ∈ B1(Qq). By strong approximation, B1 is

dense in B1(A(q)
f ), thus f ϵ(tg) = f ϵ(g) for all t ∈ B1(A(q)

f ). It follows that f ϵ(tg) = f ϵ(g) for all

t ∈ B1(Af ) and hence f ϵ(gt) = f ϵ(g) for all t ∈ B1(A), concluding the proof. □

5.1.4. An independence of CM values. The following consequence of equidistribution of special
points will be a key to our non-vanishing results.

Let xn(a) be a family of special points for a ∈ K̂× as in §2.3.3.

Proposition 5.8. Let A be the ring of integers of a finite extension of Qℓ and ϖ a uniformizer.
Let (βτ )τ∈D1 be a sequence in A such that βτ1 ∈ A× for some τ1. Let f ∈M2(U,A) be a CM form
of level U as in (5.1). Assume that f is non-zero modulo ϖ.

(a) Suppose that p is inert in K. Then there exists an integer n0 such that for every n > n0 of
a fixed parity, we have∑

τ∈D1

βτ · f(xn(aτ)) ≡/ 0 (mod ϖ) for some a ∈ K̂×.

(b) Suppose that p splits in K, and that f is non-zero on X+
U . Then there exists an integer n0

such that for every n > n0, we have∑
τ∈D1

βτ · f(xn(aτ)) ≡/ 0 (mod ϖ) for some a ∈ K̂×.

Proof. Consider a special point

P0 := [ς(0)] ∈ CM

for ς(0) as in §2.3. Note that N(ς(0)) ∈ Q×
+\Q×

+N(K̂
×). Let H = P0 ·B×

p be the B×
p -orbit of P0. For

integers n ≥ 1, put

Pn := P0

(
pn

1

)
∈ H. (5.2)
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Note that the images of (Pn)n=1,2,··· are distinct in XU . Hence, by Theorem 5.1, there exists n0
such that

RedD1(Ô
×
KPn) = c−1

D1
(Ô×

KPn) for every n > n0. (5.3)

Since f (mod ϖ) is non-Eisenstein by Lemma 5.6, there exist y, z ∈ XU such that

f(y) ≡/ f(z) (mod ϖ)

and c(y) = c(z).

(a) Let n ≥ 1 be an integer. Note that c(Red(Pn)) = c(Red(Pn+2)) (mod N(K̂×)N(U)), and

c(y) = c(z) ̸= c(Red(Pn)) (mod N(K̂×)N(U)) =⇒ c(y) = c(z) = c(Red(Pn+1)) (mod N(K̂×)N(U))

since p in inert in K. It follows that

c(y) = c(z) = c(Pn) (mod N(K̂×)N(U)) for n of a fixed parity.

In the following we consider n > n0 of that parity.

Replacing D1 by a′D1 for a′ ∈ K̂×, we may assume that

c(y) = c(z) = c(Pn) (mod N(U)).

Pick (wτ )τ∈D1 ∈ c−1
D1

(Pn). In view of (5.3) there exist a1, a2 ∈ Ô×
K such that

RedD1(a1Pn) = (y, wτ2 , wτ3 , · · · ), RedD1(a2Pn) = (z, wτ2 , wτ3 , · · · ).
Hence∑

τ∈D1

βτ · f(xn(a1τ))−
∑
τ∈D1

βτ · f(xn(a2τ))≡βτ1(f(y)− f(z)) ≡/ 0 (mod ϖ),

and the assertion follows.
(b) Since p splits in K, we have c(Red(Pn)) = c(Red(Pn+1)) (mod N(K̂×)N(U)).

In view of the assumption we may suppose that

c(y) = c(z) = c(Red(Pn)) (mod N(U))

and f(y) ≡/ f(z) (mod ϖ). Then the assertion follows just as in the proof of part (a).

□

5.2. Setting. We introduce set-up for the rest of the section.
Let λ be a self-dual Hecke character over K of infinity type (1, 0) and ϕ ∈ S2(Γ0(N)) the

associated theta series with N = DKNK/Q(cond
rλ). Let B the quaternion algebra over Q so that

DB =
∏

ηKq (−1)=−1

q

(cf. Lemma 3.2). Let πλ be the cuspidal automorphic representation of B×
A associated to ϕλ with

conductor N .
Let ℓ ∤ 2N and p ∤ 2DB be primes. Let φ,φ{p} ∈ πλ be the ℓ-optimally normalised test vectors

in the cases when p ∤ N−, p|N− respectively as in §3.2.3. We have the associated periodsΩλ = 8π2(ϕ,ϕ)
⟨φ,φ⟩ , p ∤ N−,

Ω
{p}
λ = 8π2(ϕ,ϕ)

⟨φ{p},φ{p}⟩ , p|N−.

The first period does not depends on the choice of p.
In the following subsections we study ℓ-indivisibility of the L-value Lalg(1/2, πλ,K⊗χ) via study-

ing ℓ-divisibility of toric periods.

5.3. (ℓ, p) non-vanishing. This subsection concerns the case ℓ ̸= p.
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5.3.1. Inert case. Let p be an odd prime inert in K.
As before, let K∞ be the anticyclotomic Zp-extension of K, Γ = Gal(K∞/K), and Ξp the set of

finite order characters of Γ. For ν ∈ Ξp, the pairs (πλ, ν) are self-dual with root number +1.
Put

Ξ±
λ,p = {ν ∈ Ξp| ϵ(λν) = ±1},

where ϵ(λν) denotes the global root number. One may consider non-vanishing of central L-values
Lalg(1/2, πλ,K ⊗ χ) modulo ℓ for ν ∈ Ξ+

λ,p, where ℓ is a fixed prime.

Case I. p ∤ 2NK/Q(condrλ)

For ν ∈ Ξp, we have

ϵ(λν) = (−1)tϵ(λ), (5.4)

where the associated local character νp is of conductor pt > 1 (cf. [59, Prop. 3.7]).
Our main result is the following.

Theorem 5.9. Let λ be a self-dual Hecke character over K of infinity type (1, 0) and πλ the
associated cuspidal automorphic representation. Let p ∤ 2NK/Q(condrλ) be a prime inert in K. Let

ℓ ∤ 2pNK/Q(condrλ) be a prime. Then for all but finitely many ν ∈ Ξ+
λ,p, we have

vℓ

(
L(1/2, πλ,K ⊗ ν)

Ωλ

)
= 0.

Proof. Choose a finite extension O of Zℓ in Cℓ so that O contains Oπλ,ℓ and αp and let ϖ be a
uniformizer of O.

Let Fℓ be the ℓ-adic avatar of the p-stabilization φ† of φ with respect to αp. For R the order in

the definition of φ, let U = R̂×, we have φ ∈M2(U,O). Put

U ′ = R̂×,(p)U0(p)p,

where R is the order in the definition of φ. Then Fℓ (mod ϖ) ∈M2(U
′,kℓ) for kℓ := O/ϖO.

For each integer n ≥ 0, put

Θn :=
∑

[a]n∈Gn

Fℓ(xn(a)) · [a]n ∈ O[Gn].

In view of explicit Waldspurger formula (cf. Theorem 3.12 ), it suffices to show that

vℓ(ν(Θn)) ̸= 0

for all but finitely many ν ∈ Ξ+
λ,p.

Recall that Gn = (D1 × D0) · Γn. Note that elements in D0 are represented by product of
uniformizers of Kq for q|DK , it follows from the definition of φ that∑

d∈D0

π(ι(d))Fℓ = |D0| · Fℓ. (5.5)

Let ps be the order of the Sylow p-subgroup of k×
ℓ . Let ν : Γn → µp∞ be a character of conductor

pn with n > 2s. Put
Cn = {γ ∈ Γn | ν(γ) ∈ k×

ℓ }.
Note that Cn = Ker(Gn → Gn−s). Let kℓ(ν) be the field generated by the values of ν over kℓ.
Since kℓ contains µp, dν := [kℓ(ν) : kℓ] is a p-power, and for a p-power root of unity ζ ∈ kℓ(ν), we
have

Trkℓ(ν)/kℓ
(ζ) =

{
0 · · · ζ ̸∈ kℓ,

dν · · · ζ ∈ kℓ.
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It follows from the above that for each a ∈ K̂×,

Trkℓ(ν)/kℓ
(ν(a−1) · ν(Θn) (mod ϖ))≡|D0|dν ·

∑
τ∈D1

∑
y∈Z/psZ

Fℓ(xn(aτ)

(
1 y

ps

0 1

)
ζyν (mod ϖ)

(5.6)
for a primitive ps-th root of unity ζν .

Define F̃ℓ ∈M2(kℓ(ν)) by

F̃ℓ(g) :=
∑

y∈Z/psZ

ζyνρ(

(
1 y

ps

0 1

)
)Fℓ(g) (mod ϖ). (5.7)

Then F̃ℓ ∈M2(Ũ
′,kℓ(ν)) for Ũ

′ = {g ∈ U ′ | gp ≡
(
1 ∗
0 1

)
(mod p2s)}.

By (5.6), we have

Trkℓ(ν)/kℓ
(ν(a−1) · ν(Θn) (mod ϖ)) = |D0|dν ·

∑
τ∈D1

F̃ℓ(xn(aτ)). (5.8)

We next show that F̃ℓ is non-Eisenstein.
Note that (5.1) holds by Lemma 3.11. Under our assumptions, Fℓ (mod ϖ) is non-Eisenstein by

Lemmas 5.3 and 5.6. A simple calculation shows that∑
a∈(Z/psZ)×

ρ

(
a

1

)
F̃ℓ≡ps · (1− p−1αp · ρ

((
p−1

1

))
Fℓ (mod ϖ).

Therefore F̃ℓ is non-Eisenstein by Lemma 5.3.
In view of (5.8) and Proposition 5.8, it thus follows that

vℓ(ν(Θn)) ̸= 0

for all but finitely many ν ∈ Ξε0λ,p, where ε0 denotes the sign of (−1)nϵ(λ) for n the parity arising

from Proposition 5.8 (cf. (5.4)).
If ε0 ̸= +, then L(1, λν) ̸= 0 for all but finitely many ν ∈ Ξ−

λ,p. But the latter L-value vanish

since ϵ(λν) = −1 for any ν ∈ Ξ−
λ,p. Thus we have ε0 = + and the parity n in Proposition 5.8

satisfies (−1)nϵ(λ) = +1. Moreover, F̃
sgn(ϵ(λ))
ℓ is non-Eisenstein. □

Case II. p|NK/Q(condrλ)

Let pm be the conductor of λp withm > 0. By [59, Prop. 3.7], for ν ∈ Ξp with condrνp = pn > pm,
we have

ϵ(λν) = (−1)n−mϵ(λ).
Our main result is the following.

Theorem 5.10. Let λ be a self-dual Hecke character over K of infinity type (1, 0) and πλ the
associated cuspidal automorphic representation. Let p | NK/Q(condrλ) be an odd prime inert in K.

Let ℓ ∤ 2pNK/Q(condrλ) be a prime. Then for all but finitely many ν ∈ Ξ+
λ,p, we have

vℓ

(
L(1/2, πλ,K ⊗ ν)

Ω
{p}
λ

)
= 0.
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Proof. The proof is essentially the same as in the Case I, except we consider Fℓ the ℓ-adic avatar
of the test vector φ{p}.

Let ν : Γn → µp∞ be a character of conductor pn with n > max{2s, 2m}.
Define F̃ℓ as in the proof of Theorem 5.9. Then F̃ℓ ∈M2(Ũ

′,kℓ(ν)) for

Ũ ′ = {g ∈ U ′ | gp ≡
(
1 ∗
0 1

)
(mod pmax{2m,2s})}.

It suffices to show that F̃ℓ is non-Eisenstein.
Note that Fℓ (mod ϖ) is non-Eisenstein by Lemma 5.6 and (5.5). We have∑

a∈(Z/psZ)×
ρ

(
a

1

)
F̃ℓ≡psFℓ − ps−1ρ

((
p−1

1

))
UpFℓ (mod ϖ)

≡psFℓ (mod ϖ)

since the Up-eigenvalue of a newform is 0 whenever p2 divides the conductor of πλ. Therefore F̃ℓ is
non-Eisenstein.

□

Variant.

Let p and ℓ as before. Fix an odd prime p0 ̸= pℓ inert in K such that p20|condrλ.
Take φ̃ to be the ℓ-optimally normalised test vector as in §3.3.3 with p0 = q therein. Recall that

φ̃ is new at ∗ and p0, where

∗ =

{
p, p|N−,

∅, p ∤ N−.

For p ∤ N−, note that φ̃ does not depend on p. We denote φ̃ by

{
φ{p0}, p ∤ N−

φ{p,p0}, p | N− to emphasise

the dependence. Define periodsΩ
{p0}
λ = 8π2(ϕ,ϕ)

⟨φ{p0},φ{p0}⟩ , p ∤ N−,

Ω
{p,p0}
λ = 8π2(ϕ,ϕ)

⟨φ{p,p0},φ{p,p0}⟩ , p ∤ N−.

The following result will be used in section 6 to connect the mod ℓ non-vanishing of Hecke
L-values with an ℓ-integral comparison of periods (cf. Theorem 6.4).

Theorem 5.11. Let λ be a self-dual Hecke character over K of infinity type (1, 0) and πλ the associ-
ated cuspidal automorphic representation. Let p be an odd prime inert in K. Let ℓ ∤ 2pNK/Q(condrλ)
be a prime. Let p0 ∤ pℓ be an odd prime inert in K such that p20|condrλ, ℓ ∤ p0(p20 − 1), and
logℓ(p0 + 1) ≥ 5 if λp0 has odd exponential conductor. Then for all but finitely many ν ∈ Ξ+

λ,p, we

have 
vℓ

(
L(1/2,πλ,K⊗ν)

Ω
{p0}
λ

)
= 0, p ∤ N−,

vℓ

(
L(1/2,πλ,K⊗ν)

Ω
{p,p0}
λ

)
= 0, p | N−.

Proof. Let Fℓ be defined as in Cases I and II by replacing φ therein with φ̃. Put pm0 = condrλp0
and

F ′
ℓ =

∑
k∈O×

Kp0
/O×

Kp0 ,pm0

πλ(ιςp0 (k))Fℓ,
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where ιςp0 is the local embedding Kp0 ↪→ Bp0 arising from θ and u as in the second bullet point of
Theorem 3.15.

For integers n ≥ 0, put

Θn :=
∑

[a]n∈Gn

F ′
ℓ(xn,pm0 (a)) · [a]n ∈ O[Gn],

where we use the modified ς(n) in subsection 3.3.3 to define CM points. In view of Theorem 3.15

the proof of the ℓ-indivisibility of ν(Θn) is essentially the same as that of Theorems 5.9 and 5.14:

it suffices to show that the similarly defined F̃ ′
ℓ is non-Eisenstein, which is again a consequence of

Lemma 5.4. □

5.3.2. Restriction of test vector to components of Shimura set. We describe some consequences of
the proof of Theorem 5.9 which will be used in the split case.

Let φ ∈M2(U,Q) be the test vector as in §3.2 associated to λ.

Proposition 5.12. If ϵ(λ) = ±1, then φ± ̸= 0 and φ∓ = 0.

Proof. In the following we choose an auxiliary prime ℓ ∤ 2NK/Q(condrλ) and normalise φ to be
ℓ-optimal.

As seen in the proof of Theorem 5.9, for p ∤ 2ℓNK/Q(condrλ) inert in K, we have∑
a∈(Z/psZ)×

ρ

(
a

1

)
F̃ℓ ≡ps · (1− p−1αp · ρ(

(
p−1

1

)
)Fℓ (mod ϖ).

and

Fℓ = φ− 1

αp
ρ

(
p−1

1

)
φ.

Therefore,

p−s
∑

a∈(Z/psZ)×
ρ

(
a

1

)
F̃ℓ≡φ+

1

p
ρ

(
p−2

1

)
φ (mod ϖ). (5.9)

Put ϵ for the sign of ϵ(λ). As seen in the proof of Theorem 5.9, F̃−ϵ
ℓ is Eisenstein but F̃ ϵℓ is

non-Eisenstein. Moreover,
∑

a∈(Z/psZ)× ρ

(
a

1

)
F̃ℓ is non-Eisenstein. Therefore the proof shows

that
∑

a∈(Z/psZ)× ρ

(
a

1

)
F̃−ϵ
ℓ is Eisenstein, and in turn

∑
a∈(Z/psZ)× ρ

(
a

1

)
F̃ ϵℓ non-Eisenstein.

In view of (5.9) and the preceding paragraph, it follows that φϵ (mod ϖ) is non-Eisenstein and

φ−ϵ +
1

p
ρ

(
p−2

1

)
φ−ϵ ≡ 0 (mod ϖ)

by Lemma 5.6. Therefore φ−ϵ (mod ϖ) is Eisenstein by Lemma 5.7 and so

φ−ϵ ≡ 0 (mod ϖ)

by Lemma 5.6 again. If φ−ϵ ̸= 0, then for ℓ sufficiently large φ−ϵ ≡/ 0 (mod ϖ), so contradiction10.
□

We now describe an application to the split case. Let p ∤ 2NK/Q(condrλ) be a prime split in K.

As in the inert case (5.7), define F̃ℓ.

10Alternatively, one may apply the same argument modulo powers of ℓ.
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Corollary 5.13. Let ℓ ∤ 2NK/Q(condrλ) be a prime. If ϵ(λ) = ±1, then F̃±
ℓ is non-Eisenstein and

F̃∓
ℓ = 0.

Proof. In light of Proposition 5.12, φ± (mod ϖ) is non-Eisenstein and φ∓ = 0. To see the same

claim for F̃±
ℓ , just note that they are related as in the proof of Theorem 5.9, and then Lemma 5.7

applies.
□

5.3.3. Split case. Let λ be a self-dual Hecke character over K of infinity type (1, 0) and πλ the
associated cuspidal automorphic representation.

Let p ∤ 2NK/Q(condrλ) be a prime split in K. For ν ∈ Ξ of order pn > 1, we have

ϵ(λν) = ϵ(λ).

So the pair (πλ, ν) is self-dual with root number +1. One may consider non-vanishing of central
L-values Lalg(1/2, πλ,K ⊗ ν) modulo ℓ whenever ϵ(λ) = +1.

Our main result is the following.

Theorem 5.14. Let λ be a self-dual Hecke character over K of infinity type (1, 0) and πλ the
associated cuspidal automorphic representation. Let p be an odd prime split in K. Let ℓ be a
prime. Suppose that

(i) ℓ ∤ 2pNK/Q(condrλ),
(ii) ϵ(λ) = +1.

Then for all but finitely many ν ∈ Ξp, we have

vℓ

(
L(1/2, πλ,K ⊗ ν)

Ωλ

)
= 0.

Proof. First consider p ∤ 2NK/Q(condrλ). The argument is similar to the proof of Theorem 5.9,
whose notation will appear below.

Let Fℓ := φ† be the ℓ-adic avatar of the p-stabilization. For each integer n ≥ 0, put

Θn :=
∑

[a]n∈Gn

Fℓ(xn(a)) · [a]n ∈ O[Gn].

It suffices to show that vℓ(ν(Θn)) = 0 for all but finitely many ν ∈ Ξp.
Recall that

Trkℓ(ν)/kℓ
(ν(a−1) · ν(Θn) (mod ϖ))≡|D0|dν ·

∑
τ∈D1

F̃ℓ(xn(aτ)). (5.10)

Under the assumption ϵ(λ) = +1, F̃+
ℓ is non-Eisenstein by Corollary 5.13. Therefore, in light of

(5.10) and Proposition 5.8, we conclude that

ν(Θn) ̸= 0

for all but finitely many ν ∈ Ξp.
Now consider the case p|NK/Q(condrλ). Then Fℓ is the ℓ adic avatar of φ. We have∑

a∈(Z/psZ)×
ρ

(
a

1

)
F̃ℓ≡psFℓ − ps−1ρ

((
p−1

1

))
UpFℓ (mod ϖ)

and Fℓ is Up-eigen with eigenvalue ±1 if p ∥ NK/Q(condrλ) and 0 else. By Lemma 5.7 and Propo-

sition 5.12, F̃+
ℓ is non-Eisenstein.

□
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5.4. The vanishing of µ-invariants. We consider the µ-invariant of Rankin–Selberg p-adic L-
functions in the CM case.

5.4.1. Split case.

Theorem 5.15. Let λ be a self-dual Hecke character over K of infinity type (1, 0) and πλ the
associated cuspidal automorphic representation. Suppose that ϵ(λ) = +1.

Let p ∤ 2NK/Q(condrλ) be a prime split in K and Lp(πλ) the associated p-adic L-function. Then

µ(Lp(πλ)) = 0.

Proof. Let the notation be as in §4.2. The following is a variant of the strategy used for (ℓ, p)-non-
vanishing in §5.3.

Let Fp be the p-adic avatar of the p-stabilization of the p-primitive test vector φ with respect to
αp. Note that

Θn(πλ, 1) (mod ϖ)≡|D0|α−n
p

∑
[u]n∈Γn

∑
τ∈D1

Fp(xn(uτ))

 · [u]n (mod ϖ).

For the vanishing of the µ-invariant of the theta element Θ∞(πλ), it suffices to show that for

n≫ 0, there exists a ∈ K̂× such that∑
τ∈D1

Fp(xn(aτ)) ≡/ 0 (mod ϖ).

In turn, it suffices to verify the hypotheses of Proposition 5.8(b) for F+
p , which may be seen as

follows. By Proposition 5.12, φ+ (mod ϖ) is non-Eisenstein, and consequently so is F+
ℓ (mod ϖ)

by Lemma 5.7.
□

Remark 5.16. If λ has root number −1, then Lp(πλ) = 0.

5.4.2. Inert case.

Theorem 5.17. Let λ be a self-dual Hecke character over K of infinity type (1, 0) and πλ the
associated cuspidal automorphic representation.

Let p ∤ 2NK/Q(condrλ) be a prime inert in K. Then

µ(Lp(πλ)) = 0.

Proof. Let the notation be as in the proof of Proposition 4.7.
Recall that

Θ̃n(πλ) = ωϵnΘ̃
ϵ
n(πλ), Θ

ϵ
∞(πλ) = lim Θ̃ϵ

n(πλ).

for ϵ the parity of n. Note that µ(ω±
n ) = 0.

In view of Definition 4.12 and (4.6), it suffices to show the vanishing of the µ-invariant of Θ−ε
∞ (πλ).

By the above discussion, this is equivalent to

µ(Θ̃n(πλ)) = 0

for n≫ 0 of the same parity as −ε. The latter p-indivisibility follows by the same argument as in
the proof of Theorem 5.9. □
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6. Non-vanishing of Hecke L-values modulo ℓ

This section establishes our main results on the non-vanishing of Hecke L-values building on
the Rankin–Selberg results in section 5. The bridge among the two arises from comparison of
quaternionic and CM periods, which constitutes the core of the section.

The main results are Corollary 6.8 on the (ℓ, p) non-vanishing of Hecke L-values and Theorem
6.10 concerning µ-invariant. Along the way we prove the comparison of periods (cf. Theorems 6.4
and 6.7).

6.1. Backdrop.

6.1.1. Setting. Let λ be a self-dual Hecke character over an imaginary quadratic field K of infinity
type (1, 0). Let ϕλ ∈ S2(Γ0(N)) be the associated weight 2 theta series associated for

N = DKNK/Q(cond
rλ).

Note that DK |NK/Q(condrλ) by the self-duality.
Let B be the definite quaternion algebra over Q such that

ϵ(Bq) = ηKq(−1)

for any q (cf. Lemma 3.2). Let πλ be the cuspidal irreducible automorphic representation of B×
A

associated to ϕλ.

Let ℓ ∤ 2N be a prime. Let φλ ∈ πR̂
×

λ be the toric vector as in Definition 3.4, which is ℓ-primitive
and K×

q -invariant for all q|NK/Q(condrλ) non-split in K.
Note that for any finite order Hecke character χ over K, we have a factorisation

L(1/2, πλ,K ⊗ χ) = L(1, λχ)L(1, λχ−1). (6.1)

In the context of Ranin–Selberg L-values the period

Ωλ =
8π2(ϕλ, ϕλ)

⟨φλ, φλ⟩
arises naturally. On the other hand, we have a CM period ΩK associated to Hecke L-values over
K, which is well defined up to ℓ-adic units (cf. §1). In light of the factorisation (6.1) of L-values
a basic problem is to compare the periods Ωλ and ΩK .

For a prime p, recall Γ = Gal(K∞/K) is the Galois group of the anticyclotomic Zp-extension of
K, Ξp the set of finite order characters of Γ and

Ξ+
λ,p = {ν ∈ Ξp| ϵ(λν) = +1}.

6.1.2. The subsection describe a lower bound for ℓ-adic valuation of Hecke L-values and of periods
in terms of certain local invariants.

For q|NK/Q(condrλ) such that q is non-split in K, put µℓ(λq) = infx∈O×
Kq
vℓ(λq(x)− 1).

Lemma 6.1. Let λ be a self-dual Hecke character over an imaginary quadratic field K of infinity
type (1, 0). Let ℓ ∤ 2NK/Q(condrλ) be a prime. Then

vℓ

(
L(1, λ)

ΩK

)
≥

∑
q|NK/Q(condrλ) inert

µℓ(λq).

Proof. This is due to Finis [25, Propositions 3.6 and 3.7]. (For ℓ prime to 2q, note that µℓ(λq) = 0
if Kq is ramified.) □

Remark 6.2. Let q be an inert prime.

• If conductor of λq is q and (ℓ, p+ 1) = 1, then vℓ(λq) = 0.
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• If conductor of λq is at least q2, then µℓ(λq) = 0.
• Consider anticyclotomic p-power order twist λν with p inert and ν ∈ Ξp. If q ̸= p is inert
and divides NK/Q(cond

rλ), then νq is trivial, and so µℓ(λqνq) = µℓ(λq). If p = q, then
µℓ(λpνp) = 0 for νp so that condrνp > max{p, condrλp}.

Lemma 6.3. Let λ be a self-dual Hecke character over an imaginary quadratic field K of infinity
type (1, 0). Let ℓ ∤ 2NK/Q(condrλ) be a prime. Then

vℓ

(
Ωλ
Ω2
K

)
≥ 2

∑
q|NK/Q(cond

rλ) inert

µℓ(λq).

Proof. Let p ∤ 2ℓNK/Q(condrλ) be a prime inert11 in K.

By Theorem 5.9, for all but finitely many ν ∈ Ξ+
λ,p, we have

vℓ

(
L(1, λν)L(1, λν−1)

Ωλ

)
= 0

Then for such a ν,

vℓ

(
L(1, λν)L(1, λν−1)

Ω2
K

)
= vℓ

(
Ωλ
Ω2
K

)
.

Therefore Lemma 6.1 concludes the proof. □

6.2. Comparison of periods and (ℓ, p) non-vanishing. This subsection establishes the com-
parison and (ℓ, p) non-vanishing of Hecke L-values almost simultaneously.

We begin with an outline of the strategy. In light of the (ℓ, p) non-vanishing result for Rankin–
Selberg L-values established in §5 and the ℓ-divisibility lower bound for the Hecke L-values in §6.1.2,
the sought after non-vanishing of Hecke L-values and the comparison of periods are equivalent. Since
the non-vanishing of Hecke L-value in the p split case is known due to Finis [25] and the comparison
of periods essentially does not depend on the prime p, the non-vanishing in the p inert case follows
if ϵ(λ) = +1. To approach the case ϵ(λ) = −1 and p inert, we find another link between the non-
vanishing and comparison of periods via an anticyclotomic twist, leading to a connection between
the root number +1 and −1 cases! It turns out that the variant non-vanishing - Theorem 5.11 - is
the key to such a connection (see the proof of Theorem 6.5).

6.2.1. The case ϵ(λ) = +1.

Theorem 6.4. Let λ be a self-dual Hecke character over an imaginary quadratic field K of infinity
type (1, 0) with ϵ(λ) = +1. Let ℓ ∤ 2NK/Q(condrλ) be a prime.

(i) We have

vℓ

(
Ωλ
Ω2
K

)
= 2

∑
q|NK/Q(cond

rλ) inert

µℓ(λq).

(ii) Let p ∤ 2ℓNK/Q(condrλ) be a prime. Then for all but finitely many ν ∈ Ξ+
λ,p, we have

vℓ

(
L(1, λν)

ΩK

)
=

∑
q|NK/Q(cond

rλ) inert

µℓ(λq).

11If ϵ(λ) = +1, one may use split p in the proof.
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Proof. We first show that without any assumption on ϵ(λ), the first assertion and the second
assertion for a fixed prime p ∤ 2ℓNK/Q(condrλ) are equivalent.

By Theorems 5.9 and 5.14, for all but finitely many ν ∈ Ξ+
λ,p, we have

vℓ

(
L(1, λν)L(1, λν−1)

Ω2
K

)
− 2

∑
q|NK/Q(cond

rλ) inert

µℓ(λq) = vℓ

(
Ωλ
Ω2
K

)
− 2

∑
q|NK/Q(cond

rλ) inert

µℓ(λq).

(6.2)
Note that νq is trivial character for q|NK/Q(condrλ) inert. So in view of Lemma 6.1 and the third
part of Remark 6.2, we have

vℓ

(
L(1, λν)

ΩK

)
, vℓ

(
L(1, λν−1)

ΩK

)
≥

∑
q|NK/Q(cond

rλ) inert

µℓ(λq)

for all ν ∈ Ξ+
λ,p such that condrνp ≥ p2. Therefore the two assertions are equivalent.

Under the condition ϵ(λ) = +1, the second assertion for a prime p ∤ 2ℓNK/Q(condrλ) split in K
is a result of Finis [25, Thm. 1.1]. The proof concludes.

□

6.2.2. An intermediate case. To connect the root number +1 and −1 cases, we consider anticyclo-
tomic twist at an auxiliary inert prime as described below.

For λ̃ a self-dual Hecke character over K with infinitely type (1, 0) and r|NK/Q(condrλ̃) an odd

inert prime, let φ
{r}
λ̃

be the ℓ-primitive test vector defined in §3.2.1 which is of U0((cond
rλ̃)2)r level

at r. Recall that Cφ
λ̃
and Cφ{r}

λ̃
differ at most at r, where the former is K×

r -invariant and the

latter a newform at r. Put

Ω
{r}
λ̃

=
8π2(ϕ

λ̃
, ϕ

λ̃
)

⟨φ{r}
λ̃
, φ

{r}
λ̃
⟩
.

We present the following variant of Theorem 6.4.

Theorem 6.5. Let λ be a self-dual Hecke character over K with infinitely type (1, 0). Let ℓ ∤
2NK/Q(cond

rλ) be a prime. Let r be an odd inert prime so that ℓ ∤ r(r2 − 1) and logℓ(r + 1) ≥ 5.

(i) For any anticyclotomic χ ∈ Ξr, we have

vℓ

Ω
{r}
λχ

Ω2
K

 = vℓ

(
Ωλχ
Ω2
K

)
= 2

∑
q|NK/Q(cond

rλ) inert

q∤r

µℓ(λq), if condrλrχr ≥ r2,

vℓ

(
Ωλχ
Ω2
K

)
= 2

∑
q|NK/Q(cond

rλ) inert

q∤r

µℓ(λq), if λrχr is unramified.

(ii) For all but finitely many anticyclotomic ν ∈ Ξ+
λ,r, we have

vℓ

(
L(1, λν)

ΩK

)
=

∑
q|NK/Q(cond

rλ) inert

q∤r

µℓ(λq).

Proof. We first show that the assertion (i) for a given χ is equivalent to the assertion (ii). The case
r ∤ NK/Q(condrλχ) is treated in the proof of Theorem 6.4 (without the assumption ℓ ∤ (r2 − 1) and
logℓ(r + 1) ≥ 5).

In the following we show the equivalence for λχ ramified at r if ℓ ∤ r(r2− 1) and logℓ(r+1) ≥ 5.
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By Theorem 5.10 for the Zr-anticyclotomic twist family of λ for test vector φ
{r}
λχ , for all but

finitely many ν ∈ Ξ+
λχ,r, we have

vℓ

Ω
{r}
λχ

Ω2
K

 = vℓ

(
L(1, λχν)L(1, λχν−1)

Ω2
K

)
. (6.3)

Let p′ ∤ 2ℓrNK/Q(condrλ) be an odd prime inert in K. Applying the non-vanishing results for

Zp′-anticyclotomic twist of λ for the test vector φλχ as in Theorem 5.9 and φ
{r}
λχ as in Theorem

5.11, under the pertinent hypotheses on ℓ and r, we have

vℓ

(
L(1, λχν)L(1, λχν−1)

Ωλχ

)
= 0 = vℓ

L(1, λχν)L(1, λχν−1)

Ω
{r}
λχ


for all but finitely many ν ∈ Ξ+

λχ,p′ . It follows that

vℓ

(
Ωλχ
Ω2
K

)
= vℓ

Ω
{r}
λχ

Ω2
K

 . (6.4)

In light of (6.3) and (6.4), the analysis in the proof Theorem 6.4 leads to the desired equivalence.
Since r is inert, we may choose χ with condrχrλr ≥ r2 so that ϵ(λχ) = +1. Applying Theorem

6.4, the part (i) holds for such a χ, concluding the proof. □

Remark 6.6. The result allows r to divide the conductor of λ. Moreover, the first part allows λ to
vary in its Zr-anticyclotomic twist family and the second holds without the root number condition
(cf. Theorem 6.4).

6.2.3. The case ϵ(λ) = −1.

Theorem 6.7. Let λ be a self-dual Hecke character over an imaginary quadratic field K of infinity
type (1, 0) with ϵ(λ) = −1. Let ℓ ∤ 6NK/Q(condrλ) be a prime.

(i) We have

vℓ

(
Ωλ
Ω2
K

)
= 2

∑
q|NK/Q(cond

rλ) inert

µℓ(λq).

(ii) For p ∤ 2ℓNK/Q(condrλ) be a prime. Then for all but finitely many ν ∈ Ξ+
λ,p, we have

vℓ

(
L(1, λν)

ΩK

)
=

∑
q|NK/Q(cond

rλ) inert

µℓ(λq).

Proof. The equivalence between the first and the second parts has been shown in the proof of
Theorem 6.4. Now it is enough to establish the second part for a particular prime r.

Let r ∤ 2ℓNK/Q(condrλ) be a prime12 inert in K such that ℓ ∤ r(r2 − 1) and logℓ(r + 1) ≥ 5. By
Theorem 6.5(i) for χ = 1, the assertion follows.

□

12It exists since ℓ > 3.
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6.2.4. We summarise consequences for Hecke L-values.

Corollary 6.8. Theorem 1.1 holds.

Proof. For p split in K, the result is due to Finis (cf. [25, Thm. 1.1]). The inert case is the content
of Theorems 6.4 and 6.7. □

Corollary 6.9. Theorem 1.3 holds.

Proof. If p splits in K, then the result follows from the interpolation formula for the p-adic L-
function Lp(πλ) (cf. Theorem 4.4), the vanishing of its µ-invariant (cf. Theorem 5.15) and the
comparison of periods (cf. Theorems 6.4 and 6.7).

Likewise, the inert case follows from Theorems 4.9 and 5.17, and the period comparison. □

6.3. Rubin’s p-adic L-function.

Theorem 6.10. Let λ be a Hecke character over an imaginary quadratic field K of infinity type
(1, 0) such that λ ◦ NH/K is associated to a Q-curve E over H with good reduction at a prime
p ∤ 6hK inert in K. Let Lp(λ) be an associated Rubin p-adic L-function. Then

µ(Lp(λ)) = 0.

Proof. By Proposition 4.18 and Theorem 5.17,

µ(Lp(λ)) =
∑

q|NK/Q(cond
rλ) inert

µp(λq).

As explained below, the right hand side vanishes.
We have ∑

q|NK/Q(cond
rλ) inert

µp(λ̂q) =
∑

q|NK/Q(cond
rλ) inert

µp(λq)

for λ̂ the p-adic avatar of λ and µp(λ̂q) := infx∈O×
Kq
vp(λ̂q(x) − 1). Since H/K is unramified,

for each q|NK/Q(condrλ) inert in K and q a prime of H above q, the norm map O×
Hq
→ O×

Kq
is

surjective13. Thus µp(λ̂q) = µp((λ̂ ◦NH/K)q), where the latter is similarly defined.

Note that λ̂ ◦ NH/K factors through Gal(H(E[p∞])/H) ⊂ AutOKp
(E[p∞]) = O×

Kp
. Write

Gal(H(E[p∞])/H) as Z2
p ×∆, for which p ∤ #∆. Hence, we have

(λ̂ ◦NH/K)|O×
Hq
⊂ (λ̂ ◦NH/K)|∆

with order coprime to p. It follows that µp((λ̂ ◦NH/K)q) = 0. □

7. Newforms as test vectors for supercuspidal representations

In this section we show that newform is a test vector for certain self-dual pairs (π, 1) with π
supercuspidal, and calculate the associated toric period. For a given prime ℓ, it is also shown that
the latter is an ℓ-adic unit under some conditions. The main result is Theorem 7.1.

The explicit study of such toric periods is a key to arithmetic applications, such as Theo-
rems 1.1, 1.3 and 1.5 (see also [78, 44, 45, 43]).

The setting and notation of this section are independent from the rest.

7.1. Main result.

13In fact the norm map is identity as q splits completely in H.
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7.1.1. Setting. Let q be an odd prime and K/Qq an unramified quadratic extension. Let ηK be the
associated quadratic character of Q×

q .

Let λ be a character of K× of exponential conductor m ≥ 2 such that λ|Q×
q
= ηK . Let π = πλ be

the associated representation of PGL2(Qq), which has exponential conductor n = 2m. Note that
(π, 1) is a self-dual pair. Moreover, the Tunnell–Saito condition is satisfied as seen in the proof of
Lemma 3.2. The primary goal of this section is to consider K×-toric period of newforms in π with
respect to the following embedding K ↪→M2(Qq).

Put

M0(q
2m) =

{(
a b
c d

)
∈M2(Zq) | q2m|c

}
and U0(q

2m) =M0(q
2m) ∩GL2(Zq).

The following family of embeddings ι : K ↪→M2(Qq) satisfy ιK ∩M0(q
2m) = ιOK,qm for OK,qm :=

Zq + qmOK .

Let θ ∈ K be a unit so that θ = −θ, where · denotes the action of non-trivial element in
Gal(K/Qq). Pick u ∈ Z×

q such that14

u2θ2 − 1 ∈ Z×2
q .

Define an embedding ι : K ↪→M2(Qq) by

θ 7→
(
q−m

1

)(
1 −u

1

)(
1

θ2

)(
1 u

1

)(
qm

1

)
=

(
−uθ2 1−u2θ2

qm

qmθ2 uθ2

)
.

Let
f ∈ πU0(q2m)

be a newform in π. Denote by ( , ) a PGL2(Qq)-invariant non-degenerate Hermitian pairing on π.
The primary object of this section is the toric period

γθ,u :=
1

vol(K×/Q×
q )(f, f)

∫
K×/Q×

q

(π(ι(t))f, f)d×t.

7.1.2. Results.

Theorem 7.1. Let the setting be as in §7.1.1 and f ∈ π a newform. Then

γθ,u =

{
1

(1−q−2)qm

(
2 + λ(θ)(λ−1(a0 + θu) + λ−1(−a0 + θu))

)
, m even,

1
(1−q−2)qm+1

(
2q + λ(θ)(λ−1(a0 + θu)η(k)

√
q∗ + λ−1(−a0 + θu)η(−k)

√
q∗)
)
, m odd.

Here a0 ∈ (Z/qmZ)× is a solution of 1 + (a2 − θ2u2) ≡ 0 (mod qm), and k ∈ F×
q is given by

λ−1

(
1 + qm−1 1

2a0(a0 + θu)

)
= e2πik/q.

Moreover, q∗ = (−1)(q−1)/2q and η is the non-trivial quadratic character of F×
q .

To discuss non-vanishing of the toric period, consider the decomposition

O×
K = µK(1 + qOK)

with µK ⊂ O×
K the torsion subgroup and let pr : O×

K → 1 + qOK be the projection map.

Corollary 7.2. Let the setting be as in §7.1.1.

14It suffices to solve u2θ2 − 1 ≡ x2 (mod q) for u, x ∈ F×
q . Consider the surjective map F×

q2
→ F×

q , x + uθ 7→

x2 − u2θ2. Then x2 − u2θ2 = −1 (mod q) has q + 1 solutions x + uθ with u, x ∈ Fq, and at most

{
4, q > 3,

2, q = 3

solutions with x or u = 0 in Fq.
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(i) The newform f is a test vector for the pair (π, 1), i.e.

γθ,u ̸= 0,

except in the case that m is even, λ|µK quadratic, a0 + uθ ∈ µK · pr(ker(λ)), and λ(θ(a0 +
uθ)) = −1. Furthermore, given λ and θ, there exists u such that γθ,u ̸= 0.

(ii) Let ℓ ∤ q be a prime. Suppose that logℓ(q + 1) ≥ 5 if m is odd. Then given θ, there exists u
such that

vℓ((q
2 − 1)γθ,u) = 0.

Proof.

(i) If m is odd, this is evident since λ has finite order.
Suppose that m is even, and that the above toric period vanishes. Then λ(a0+uθ) = ±1.

This implies that pr(a0 + uθ) ∈ ker(λ), otherwise, since λ|(1+qOK)/(1+qZq) is primitive with

(1 + qOK)/(1 + qZq) ≃ Z/qm−1Z, λ(pr(a0 + uθ)) would be a non-trivial q-th power root of
unity.

The furthermore part follows from the fact that: As u varies, λ(pr(a0 + θu)) can be any
qm−1-th root of unity, m ≥ 2. (Note that here a0 is determined by u and θ.)

Indeed, suppose that a2 − θ2u2 = −1 with a, u ∈ Z×
q . Then for any norm 1 element α

in O1
K ∩ (1 + qOK), a′ + θu′ := (a+ θu)α also satisfies the equation a′2 − θ2u′2 = −1 with

a′, u′ ∈ Z×
q . On the other hand, the norm map 1 + qOK → 1 + qZq restricted to 1 + qZq is

surjective, and then so is O1
K ∩ (1 + qOK)→ (1 + qOK)/(1 + qZq). Since the map

(a+ θu)O1
K ∩ (1 + qOK)→ (1 + qOK)/(1 + qZq)

is surjective and λ|1+qOK
is a primitive character on (1 + qOK)/(1 + qZq) ≃ Z/qm−1Z, the

fact follows.
(ii) Take u and θ such that λ(pr(a0 + uθ)) ̸= 1. Such an u exists by the analysis in (i).

If m is even, we rely on the following:

Fact 7.3. Let ζ be a primitive k-th root of unity with k ̸= 2. Then NQ(ζ)+/Q(±2 + ζ + ζ)
divides either any odd prime factor of k or divides 2 if k is a power of 2.

Proof. Note that

xφ(k)
∏

s∈(Z/kZ)×
(x+ x−1 + ζs + ζ

s
) =

∏
s∈(Z/kZ)×

(x2 + 1 + xζs + xζ
s
) = Φk(−x)2,

where φ is the Euler function and Φk the k-th cyclotomic polynomial. Therefore,

NQ(ζ)+/Q(±2 + ζ + ζ)2 = Φk(∓1)2(±1)φ(k).

Recall that Φk(x)|x
k−1
xd−1

for any proper divisor d|k. Thus if r|k is an odd prime, we have

Φk(±1) |
(±1)k − 1

(±1)k/r − 1
| r.

If k = 2s with s ≥ 2, then Φk(±1)| (±1)k−1

(±1)k/2−1
| 2. □

The casem even follows from Fact 7.3: we apply it for k being the order of λ(θ)λ(a0+uθ).
Note that q|k, and the result follows.

Now consider the case m odd. Put

ζ =

{
λ(a0 + θu), η(−1) = +1,

iλ(a0 + θu), η(−1) = −1.
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Then 1 ̸= ζ4(q+1) is a qs-th root of unity for some s > 0. Suppose that logℓ(q + 1) ≥ 5.
Then ℓ has order at least 5 in (Z/qZ)× and in turn so does Frobℓ ∈ Gal(Fℓ(ζ)/Fℓ).

Suppose that ±2√q + ζ + ζ = 0 in Fℓ(ζ).
This is a contradiction since [Fℓ(ζ) : Fℓ] ≥ 5. It follows that ±2√q + (ζ + ζ) is an ℓ-adic

unit and then so is (q2 − 1)γθ,u since they differ by a power of ±√q.
□

Remark 7.4. An elementary argument shows the existence of an embeddingK ↪→M2(Qq) such that
the toric period associated to (π, 1) is non-zero. In contrast, the above result gives the existence
with respect to which the toric period is an ℓ-adic unit for a given prime ℓ. The latter is crucial for
our application.

7.1.3. Strategy. The Kirillov model is integral to our method.
We first obtain an expression for the matrix coefficients of the newform under toric action in

terms of a linear combination of twist epsilon factors, without assuming supercuspidality (cf. The-
orem 7.9). This relies on the action of Atkin–Lehner operator on twists of the newform (cf. Propo-
sition 7.8). In our supercuspidal case, the epsilon factor of a GL2(Qq)-representation equals that
of the associated character of K× (cf. Lemma 7.24). We explicitly calculate the latter using an
approach of Murase and Sugano [59]. This transforms the toric period into a twisted sum of a
Jacobi sum and values of λ (cf. Lemma 7.25). The former turns out to be elementary (cf. Lemma
7.28), leading to an expression for the toric period in terms of values of λ (cf. Proposition 7.29).

We begin with preliminaries on the Kirillov model in §7.2. Then §7.3 presents the connection
with epsilon factors, and §7.4 of the latter with values of λ. The proof of Theorem 7.1 concludes
in §7.4.4.

Remark 7.5.

(i) Our approach perhaps applies to self-dual pairs (π, χ) over K with condrχ ≤ condrπ.
(ii) For m even, one may also resort to the compact induction model (cf. [45, 43]).

7.2. Preliminaries on Kirillov model.

7.2.1. The model. Let π be an irreducible admissible representation of PGL2(Qq). Let ψ be a
non-trivial character of Qq.

Recall that Kirillov model K(π, ψ) of π with respect to ψ is a model of π in the space of locally
constant functions such that upon restriction to the upper triangle subgroup B(Qq) the action is
given by

π

(
a b

d

)
f(x) = ψ(bx/d)f(ax/d), a, d, x ∈ Q×

q , b ∈ Qq.

The space of Schwartz functions is a finite codimensional subspace of K(π, ψ), and it equals K(π, ψ)
if and only if π is supercuspidal (cf. [48, §2]).

7.2.2. Newforms and twists. Denote by qn the conductor of π. Recall that the space of newforms
in π is the subspace fixed by U0(q

n).
In the following we choose ψ to be unramified and identify π with its Kirillov model K(π, ψ),

and assume that n ≥ 2.
We have the following explicit description of newforms (cf. [76, p. 23]).

Lemma 7.6. Suppose that n ≥ 2. Then the space of newform is C · 1Z×
q
.

Corollary 7.7. Suppose that n ≥ 2. For k ≥ 1, we have∑
a∈Z/qkZ

π

(
1 a

qk

1

)
f = 0.
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In particular, the action of Uq =
∑

a∈Z/qZ

(
q a

1

)
on newforms is with eigenvalue 0.

Proof. Note that the unipotent action does not change the support of a newform. For x ∈ Z×
q , we

have ∑
a∈Z/qkZ

π

(
1 a

qk

1

)
f(x) =

∑
a∈Z/qkZ

ψ

(
ax

qk

)
f(x)

=
∑

a∈Z/qkZ

ψ

(
a

qk

)
f(x).

Here the last equality follows by taking f = 1Z×
q
, which also implies that

∑
a∈Z/qkZ π

(
1 a

qk

1

)
f(x) =

0 since the sum of the qk-th root of unity is zero.
□

In the following, we consider action of the Atkin-Lehner operator wπ =

(
1

qn

)
on vectors of

the form χ1Z×
q
for χ a character of Z×

q .

For f ∈ π, and χ a character of Z×
q , write

f̂(χ, t) =
∑
n∈Z

f̂n(χ)t
n,

where f̂n(χ) =
∫
Z×
q
χ(x)f(qnx)dx. The action of w :=

(
1

−1

)
on f is given by

π̂(w)f(χ, t) = C(χ, t)f̂(χ−1, t−1)

for

C(χ, qs−1/2) =
L(1− s, π ⊗ χ)ϵ(s, π ⊗ χ−1, ψ)

L(s, π ⊗ χ−1)
.

Here χ is viewed as a character of Q×
q by χ(q) = 1, L(s, π ⊗ χ−1) and ϵ(s, π ⊗ χ−1, ψ) are the L-

and epsilon-factors associated to π ⊗ χ−1 respectively. (cf. [48] lines above Corollary 2.19.)

Proposition 7.8. Let χ be a character of Q×
q as above and fχ = χ1Z×

q
∈ π. Suppose that condr(π⊗

χ) = condr(π) = qn, n ≥ 2. Then we have

π(w)fχ = ϵ(1/2, π ⊗ χ−1, ψ)χ−1(qn·)1q−nZ×
q
.

In particular, π(wπ)fχ = π

((
1
−qn

)
w

)
f = ϵ(1/2, π ⊗ χ−1, ψ)χ(−1)fχ−1.

Proof. To determine π(w)fχ, it suffices to consider π̂(w)fχ(ν, t) for all characters ν of Z×
q .

Since condr(π ⊗ χ) = condr(π ⊗ χ−1) ≥ q2, the associated local L-factor is just 1. Note that

C(χ, qs−1/2) = ϵ(s, π⊗χ−1, ψ) = ϵ(1/2, π⊗χ−1, ψ)q−n(s−1/2), where we utilise the hypothesis that
condr(π ⊗ χ−1) = condr(π) = qn.

It follows that

π̂(w)fχ(ν, t) = ϵ(1/2, π ⊗ χ−1, ψ)t−n

{
1, ν = χ,

0, otherwise.

Therefore

π̂(w)fχ,m(ν) =

{
ϵ(1/2, π ⊗ χ−1, ψ), m = −n, ν = χ,

0, otherwise.
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The proof concludes. □

Since π has trivial central character, we denote ϵ(1/2, π, ψ) simply by ϵ(π) ∈ {±1}.

7.3. Toric periods and epsilon factors. Let the setting be as in §7.1.1, except that we allow π
to be any unitary irreducible admissible representation of PGL2(Qq) with exponential conductor
n = 2m, m ≥ 2.

This subsection links the toric period γθ.u with twists of epsilon factors.

7.3.1. Main result.

Theorem 7.9. Let f ∈ π be a newform. We have∑
x∈O×

K/O
×
K,qm

(π(ι(x))f, f) =
q − qη(−1)ϵ(π)ϵ(π ⊗ η)

q − 1
(f, f)

+ q⌊
m
2
⌋

∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2

φ(qm)2
χ−1(u2θ2)ϵ(1/2, π ⊗ χ, ψ)(f, f)

+


2q(m−1)/2

∑
v∈1−qm−1(Z/qZ)×2

∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2

φ(qm)2
χ−1(u2θ2v)ϵ(1/2, π ⊗ χ, ψ)(f, f), m odd,

0, m even.

Here v is viewed as an element in Z/qmZ, η the non-trivial quadratic character15 of Z×
q , and

G(η, ψ) =
∑

a∈F×
q
ψ
(
a
q

)
η(a), G(χ, ψ) =

∑
a∈(Z/qmZ)× ψ

(
a
qm

)
χ(a) are the Gauss sum.

The result is a simple consequence of the following proposition, whose formulation relies on the
fact that O×

K/O
×
K,qm is represented by

{a+ θ | a ∈ Z/qmZ} ⊔ {1 + bθ | b ∈ qZ/qmZ}.
Here we view an element of Z/qkZ as an element in Zq by choosing a lift, a convention often
followed.

Proposition 7.10. We have the following.

(i) ∑
{a∈Z/qmZ | q∤a}

(π(ι(a+ θ))f, f) = 0.

(ii) For 1 ≤ t ≤ m,∑
a∈qt(Z/qm−tZ)×

(π(ι(a+ θ))f, f)

=



0, m− 2t > 1,

2q(m−1)/2
∑

v∈1−qm−1(Z/qZ)×2

∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2

φ(qm)2
χ−1(u2θ2v)ϵ(1/2, π ⊗ χ, ψ)(f, f), m = 2t+ 1,

φ(qm−t)
∑

χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2

φ(qm)2
χ−1(u2θ2)ϵ(1/2, π ⊗ χ, ψ)(f, f), m− 2t ≤ 0.

15viewed as character of Q×
q via η(q) = 1
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Here we regard 1− qm−1(Z/qZ)×2 ⊂ (Z/qmZ)×.
(iii) For 1 ≤ s ≤ m,

∑
{b∈qZ/qmZ | qs∥b}

(π(ι(1 + bθ))f, f) =


0, if m− s > 1,
1−qη(−1)ϵ(π)ϵ(π⊗η)

q−1 , if m− s = 1,

f, if m− s = 0.

Our approach is based on the Kirillov model, which leads to an explicit formula for matrix
coefficients of a newform under the action of ι(K×) in terms of twist epsilon factors. Proposition
7.10 is a consequence of Propositions 7.12, 7.13, 7.16, 7.17 and 7.20 below.

Throughout this subsection, identify π with it’s Kirillov model with respect to an unramified
character ψ of Qq (cf. §7.2). Then we may choose f to be 1Z×

q
in the Kirillov model since n ≥ 2

(cf. Lemma 7.6).
By Bruhat decomposition

GL2(Qq) = B(Qq)

(
q−m

qm

)
N(Qq) ⊔B(Qq),

where B is the subgroup of upper triangle matrices and N ⊂ B the unipotent subgroup. In view of
the Bruhat decomposition and explicit action of B(Qq) on the Kirillov model, it suffices to consider

matrix coefficients of wqm =

(
q−m

qm

)
on the twist newforms χZ×

q in π. An analysis of the latter

gives rise to twist epsilon factors (cf. Proposition 7.8).
As for the explicit matrix coefficients, we separate the analysis into three cases, which correspond

to the sub cases of Proposition 7.10. We first consider matrix coefficients under the action of ι(a+θ)
with a ∈ Z/qmZ.

7.3.2. Case I: a+ θ with q ∤ a. We begin with a preliminary.

Lemma 7.11. If a− uθ2 is a unit, then

(π(ι(a+ θ))f, f) =

(
π

(
1 1

qm

1

)(
q−m

qm

)(
1 −(a+θ2u)(a−uθ2)

qm(a2−θ2)
1

)
f, f

)
.

Proof. Consider the Bruhat decomposition

ι(a+ θ) =

(
a−uθ2
θ2

1

)(
1 1

qm

1

)(
q−m

qm

)(
1 −(a+θ2u)(a−uθ2)

qm(a2−θ2)
1

)(
θ2

−(a2−θ2)
a−uθ2

)
.

Since a − uθ2 is a unit, note that

(
a−uθ2
θ2

1

)
and

(
θ2

−(a2−θ2)
a−uθ2

)
are in B(Zq). As f is B(Zq)-

invariant, the lemma follows.
□

We separate the analysis into the following sub cases.

The case q|a+ uθ2

Proposition 7.12. Let 1 ≤ r ≤ m, and Cr = {a ∈ Z/qmZ | qr ∥ a+ uθ2}. Then

∑
a∈Cr

π

(
1 −(a+θ2u)(a−uθ2)

qm(a2−θ2)
1

)
f =


0, if m− r > 1,

−f, if m− r = 1,

f, if m− r = 0.
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In particular, ∑
{a∈Z/qmZ | q|a+uθ2}

(π(ι(a+ θ))f, f) = 0.

Proof. For a ∈ Z/qmZ, put r = vq(a+ uθ2) with 0 ≤ r ≤ m. Write a+ uθ2 = qrv.
Note that the unipotent group action does not change the support of newform f = 1Z×

q
. We

have ∑
a∈Cr

π

(
1 −(a+θ2u)(a−uθ2)

qm(a2−θ2)
1

)
f(x) =

∑
v∈(Z/qm−rZ)×

ψ

(
−xv(a− uθ2)
qm−r(a2 − θ2)

)
f(x), x ∈ Z×

q .

As a runs over Cr, v = (a+ uθ2)/qr runs over (Z/qm−rZ)×. For a fixed x ∈ Z×
q , consider

δ : (Z/qm−rZ)× → (Z/qm−rZ)×, v 7→ −v(a− uθ
2)

(a2 − θ2)
=

−v(qrv − 2uθ2)

qrv(qrv − 2uθ2) + u2θ4 − θ2
.

Note that δ is an isomorphism since a− uθ2 and a2 − θ2 are units.
Thus ∑

a∈Cr

π

(
1 −(a+θ2u)(a−uθ2)

qm(a2−θ2)
1

)
f(x) =

 ∑
v∈(Z/qm−rZ)×

ψ

(
δ(v)x

qm−r

) f(x) (w = δ(v))

=

 ∑
w∈(Z/qm−rZ)×

ψ

(
w

qm−r

) f(x).

.

Since ψ is an unramified character of Qq, ψ(
w

qm−r ) runs over all q
m−r-th primitive roots of unity,

concluding the proof. ‘In particular’ part follows from Lemma 7.11. □

The case q|a− uθ2

Proposition 7.13. We have ∑
{a∈Z/qmZ | q|a−uθ2}

(π(ι(a+ θ))f, f) = 0.

Proof. Note that (a+ θ)−1 = −1
a2−θ2 (−a+ θ). So we have∑

{a∈Z/qmZ | q|a−uθ2}

(π(ι(a+ θ))f, f) =
∑

{a∈Z/qmZ | q|a−uθ2}

(f, π(ι(a+ θ)−1)f)

=
∑

{a∈Z/qmZ | q|a+uθ2}

(f, π(ι(a+ θ))f).

The latter vanishes by Proposition 7.12. □

The case q ∤ a(a2 − u2θ4)

For this remaining case, the main result is Proposition 7.16 below.
In view of Lemma 7.11 we consider the map

κ : {a ∈ Z/qmZ
∣∣∣ a ≡/±uθ2 (mod q)} → (Z/qmZ)×, a 7→ −(a+ θ2u)(a− uθ2)

a2 − θ2
=

(uθ2)2 − θ2

a2 − θ2
−1.

For c ∈ {1, · · · , q − 1} not congruent to ±uθ2 modulo q, its restriction to

Sc = {a ∈ Z/qmZ
∣∣∣ a ≡ c (mod q)}
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is given by the following.

Fact 7.14. κ(Sc) is a fiber of the natural projection map (Z/qmZ)× → (Z/qZ)×.

Proof. Note that κ(a) = κ(a′) if and only if a2 ≡ a′2 (mod qm), thus κ|Sc is injective. Moreover, the
image κ(Sc) is constant modulo q. Therefore κ(Sc) is the fiber of the projection map (Z/qmZ)× →
(Z/qZ)× by comparing the cardinality. □

The following fact will also be useful.

Fact 7.15. Let k ≥ 1 be an integer and ζ a qk-th primitive root of unity, and s ≤ k an integer.
Then for a ∈ Z/qkZ, ∑

b∈Z/qk−sZ

ζa+q
sb = ζa

∑
b∈Z/qk−sZ

(ζq
s
)b =

{
0, k > s,

ζa, k = s.

Proposition 7.16. For each c ∈ {1, · · · , q − 1} not congruent to ±uθ2 modulo q, we have∑
a∈Sc

(π(ι(a+ θ))f, f) = 0

Proof. In view of Lemma 7.11, it suffices to consider∑
a∈Sc

π

(
1 −(a+θ2u)(a−uθ2)

qm(a2−θ2)
1

)
f(x) =

∑
a∈Sc

π

(
1 κ(a)

qm

1

)
f(x)

=
∑
a∈Sc

ψ

(
κ(a)x

qm

)
f(x),

where x ∈ Z×
q . The latter vanishes16 by Fact 7.15 since κ(Sc) is a fiber of the projection map

(Z/qmZ)× → (Z/qZ)× in view of Fact 7.14.
Hence, the assertion follows from Lemma 7.11. □

7.3.3. Case II: a+ θ with q | a.

Proposition 7.17. For 1 ≤ t ≤ m, we have∑
a∈qt(Z/qm−tZ)×

(π(ι(a+ θ))f, f)

=



0, m− 2t > 1,

2q(m−1)/2
∑

v∈1−qm−1(Z/qZ)×2

∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2

φ(qm)2
χ−1(u2θ2v)ϵ(1/2, π ⊗ χ, ψ)(f, f), m = 2t+ 1,

φ(qm−t)
∑

χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2

φ(qm)2
χ−1(u2θ2)ϵ(1/2, π ⊗ χ, ψ)(f, f), m− 2t ≤ 0.

Here we regard 1− qm−1(Z/qZ)×2 ⊂ (Z/qmZ)×.

We begin with some preliminaries.
First, note that Lemma 7.11 still applies. Put t = vq(a) ∈ {1, · · · ,m} and consider the map

κt : q
t(Z/qm−tZ)× → (Z/qmZ)×, a 7→ (uθ2)2 − θ2

a2 − θ2
− 1, (7.1)

16by taking m = k, s = 1 and ζ = ψ(x/qm)
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where we regard qt(Z/qm−tZ)× ⊂ (Z/qmZ).

Fact 7.18.

(i) For t ∈ {1, · · · ,m} with m ≤ 2t, we have κt = −θ2u2.
(ii) For t ∈ {1, · · · ,m} with m ≥ 2t+ 1 and r ∈ {1, · · · , q − 1}, put

St,r = qtr(1 + qZq)/(1 + qm−tZq).

(a) If m− 2t = 1, then κt|St,r = (uθ2)2−θ2
q2tr2−θ2 − 1.

(b) If m > 2t+ 1, then

κt(St,r) = {y ∈ (Z/qmZ)× | y ≡ (uθ2)2 − θ2

q2tr2 − θ2
− 1 (mod q2t+1)},

which is a fiber of the projection map (Z/qmZ)× → (Z/q2t+1Z)×. Furthermore, the
function κt|St,r is exactly qt to 1.

Proof. The assertions in parts (i) and (a) are apparent. The following considers (b).
Note that κt can be written as a composite

κt : q
t(Z/qm−tZ)× j−→(Z/qm+tZ)× → (Z/qmZ)×,

where the first map j is a 7→ (uθ2)2−θ2
a2−θ2 − 1 and the second natural quotient. It is enough to show

that j restricted to St,r is injective and its image is{
y ∈ (Z/qm+tZ)× | y ≡ (uθ2)2 − θ2

q2tr2 − θ2
− 1 (mod q2t+1)

}
,

which is a fiber of the projective map (Z/qm+tZ)× → (Z/q2t+1Z)×.
Now we prove the claim. The image of j modulo q2t+1 is the constant (uθ2)2−θ2

q2tr2−θ2 − 1. Note that if

a, a′ ∈ St,r have the same image then a2 = a′2 (mod qm+t) and so a = a′ ∈ St,r. Hence j restricted
to St,r is injective, and the claim follows by comparing the cardinality.

□

Lemma 7.19. For 1 ≤ t ≤ m, we have

∑
a∈qt(Z/qm−tZ)×

π

(
1 −(a+θ2u)(a−uθ2)

qm(a2−θ2)
1

)
f =



0, m− 2t > 1,

2q(m−1)/2
∑

v∈1−qm−1(Z/qZ)×2

π

(
1 −u2θ2v

qm

1

)
f, m− 2t = 1,

φ(qm−t)π

(
1 −u2θ2

qm

1

)
f, m− 2t ≤ 0.

Proof. Fix t ≥ 1. As before, we may take f = 1Z×
q
.

For x ∈ Z×
q and κt as in (7.1),∑

a∈qt(Z/qm−tZ)×
π

(
1 −(a+θ2u)(a−uθ2)

qm(a2−θ2)
1

)
f(x) =

∑
a∈qt(Z/qm−tZ)×

ψ

(
κt(a)x

qm

)
f(x).

In view of Fact 7.18 the following holds.

(i) If m− 2t ≤ 0, the image of

qt(Z/qm−tZ)× → (Z/qmZ)×, a 7→ −(a+ θ2u)(a− uθ2)
(a2 − θ2)

is the constant −θ2u2, and the third case follows.
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(ii) If m− 2t = 1, then κ on each St,r is the constant17

(uθ2)2 − θ2

qm−1r2 − θ2
− 1 ≡ −θ2u2

(
1− qm−1 r

2(u2θ2 − 1)

θ4u2

)
(mod qm),

where St,r is as in Fact 7.18.

As r varies in {1, · · · q − 1}, note that r2(u2θ2−1)
θ4u2

varies over (Z/qZ)×2. Thus,

∑
a∈qt(Z/qm−tZ)×

π

(
1 −(a+θ2u)(a−uθ2)

qm(a2−θ2)
1

)
f =

q−1∑
r=1

∑
a∈St,r

π

(
1 −(a+θ2u)(a−uθ2)

qm(a2−θ2)
1

)
f

=

q−1∑
r=1

#St,r · π

(
1

−θ2u2(1−qm−1 r2(u2θ2−1)

θ4u2
)

qm

1

)
f

= q(m−1)/2 ·
∑

w∈(Z/qZ)×
π

(
1 −θ2u2(1−qm−1w2)

qm

1

)
f

= 2q(m−1)/2 ·
∑

v∈1−qm−1(Z/qZ)×2

π

(
1 −θ2u2v

qm

1

)
f.

(iii) Suppose that m− 2t > 1. Then the map κt on each St,r is q
t to 1 and the image κt(St,r) is

a fiber of the projection (Z/qmZ)× → (Z/q2t+1Z)× by Fact 7.18. Thus it follows from Fact
7.15 that ∑

a∈St,r

ψ

(
κt(a)x

qm

)
f(x) = 0

for each r, concluding the proof of first case.

□

Proof of Proposition 7.17. In light of Lemmas 7.11 and 7.19, it suffices to show: for v ∈ (Z/qmZ)×,(
π

(
1 1

qm

1

)(
q−m

qm

)(
1 −θ2u2v

qm

1

)
f, f

)
=

∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2

φ(qm)2
χ−1(u2θ2v)ϵ(1/2, π ⊗ χ, ψ)(f, f).

We have

π

(
1 −θ2u2v

qm

1

)
f =ψ

(
−θ2u2v·
qm

)
1Zq×

(·)

=
∑

χ∈ ̂(Z/qmZ)×

G(χ−1, ψ)

φ(qm)
χ(−u2θ2v)fχ

=
∑

χ∈ ̂(Z/qmZ)×
primitive

G(χ−1, ψ)

φ(qm)
χ(−u2θ2v)fχ.

17To see this congruence, note that 1
qm−1r2−θ2

≡ − (θ2+qm−1r2)

θ4
(mod qm), where m ≥ 2 and qm−1r2 − θ2 ∈ Z×

q ,

and so
(uθ2)2 − θ2

qm−1r2 − θ2
− 1 ≡ −θ2u2

(
1− qm−1r2

(
1

θ2
− 1

u2θ4

))
(mod qm).
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Here the second equality just amounts to Fourier expansion18, and the last equality follows from
the fact that the Gauss sum

G(χ−1, ψ) :=
∑

u∈(Z/qmZ)×
χ−1(u)ψ(u/qm)

is non-zero only for primitive χ ∈ ̂(Z/qmZ)×. Similarly,

π

(
1 −1

qm

1

)
f =

∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ−1, ψ)

φ(qm)
χ(−1)fχ.

Now we have(
π

(
1 1

qm

1

)(
q−m

qm

)(
1 −θ2u2v

qm

1

)
f, f

)

=

(
π(wqm)π

(
1 −θ2u2v

qm

1

)
f, π

(
1 −1

qm

1

)
f

)

=

π(wqm) ∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ−1, ψ)

φ(qm)
χ(−u2θ2v)fχ,

∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ−1, ψ)

φ(qm)
χ(−1)fχ


=

∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2

φ(qm)2
χ−1(u2θ2v)ϵ(1/2, π ⊗ χ, ψ)(f, f).

Here the last equality just follows from Proposition 7.8, and the facts that G(χ−1, ψ)χ−1(−1) =

G(χ, ψ) and ( , ) is a Hermitian pairing on π. □

7.3.4. Case III: 1 + bθ. This subsection considers ι(1 + bθ) for b ∈ qZ/qmZ.
The main result:

Proposition 7.20. For 1 ≤ s ≤ m, we have

∑
{b∈qZ/qmZ | qs∥b}

(π(ι(1 + bθ))f, f) =


0, if m− s > 1,
1−qη(−1)ϵ(π)ϵ(π⊗η)

q−1 , if m− s = 1,

f, if m− s = 0.

We begin with some preliminaries.

Lemma 7.21. Let b ∈ qZ/qmZ. Write b = qsw with 1 ≤ s ≤ m and w in (Z/qm−sZ)×. Then

(π(ι(1 + bθ))f, f) = ϵ(π)

(
π

(
1 1

qm−s

1

)(
q−m

qm

)(
1 θ2w2(1−u2θ2)

qm−s(1−b2θ2)
1

)
f, f

)
.

18For functions f, h on a finite abelian group G, let ( , )G be the natural Hermitian pairing on G given by

(f, h)G =
∑

g∈G f(g)h(g). Then we have

f =
∑
χ∈Ĝ

(f, χ)G
(χ, χ)G

χ.
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Proof. Consider the Bruhat decomposition

ι(1+bθ)wqm =

(
w(1−u2θ2)
(1+bθ2u)

1

)(
1 1

qm−s

1

)(
q−m

qm

)(
1 θ2w2(1−u2θ2)

qm−s(1−b2θ2)
1

)(
1 + bθ2u

1−b2θ2
w(1−u2θ2)

)
.

Note that f is fixed by B(Zq) and π(wqm)f = ϵ(π)f , concluding the proof. □

In view of Lemma 7.21 we are led to the following.

Lemma 7.22. For 1 ≤ s ≤ m, we have

∑
{b∈qZ/qmZ | qs∥b}

π

(
1 θ2w2(1−u2θ2)

qm−s(1−b2θ2)
1

)
f =


0, if m− s > 1,

−f − η(−1)G(η, ψ)fη, if m− s = 1,

f, if m− s = 0.

Here w = b/qs with w ∈ (Z/qm−s)×, η is the non-trivial quadratic character of Z×
q , and fη = η1Zq×

in the Kirillov model of π.

Proof. For qs ∥ b, write b = qsw with w ∈ (Z/qm−sZ)×.
We have

π

(
1 θ2w2(1−u2θ2)

qm−s(1−b2θ2)
1

)
f(x) = ψ

(
w2

qm−s(1− q2sw2θ2)
· xθ2(1− u2θ2)

)
f(x).

Since θ2(1− u2θ2) ∈ Z×
q , the third case follows.

Suppose that m− s = 1. For x ∈ Z×
q , put k = θ2w2(u2θ2−1)

1−b2θ2 . We have∑
{b∈qZ/qmZ | qm−1∥b}

π

(
1 θ2w2(1−u2θ2)

qm−s(1−b2θ2)
1

)
f(x) =2

∑
k∈F×

q \F×2
q

ψ

(
−xk
q

)
f(x)

=
∑
k∈F×

q

ψ

(
−xk
q

)
(1− η(k))f(x)

=− f − η(−1)G(η, ψ)fη.

Here the first equality relies on u2θ2 − 1 ∈ Z×2
q , θ2 ∈ Z×

q \Z×2
q and 1 − b2θ2 ≡ 1 (mod qm) under

the assumption qm−1 ∥ b and m ≥ 2.
Now suppose that m− s ≥ 2. Consider the map

δ : (Z/qm−sZ)× → (Z/qm−sZ)×, w 7→ w2

1− q2sw2θ2
.

Note that the map δ is 2 to 1 and its image is a disjoint union of fiber of the natural projection
map (Z/qm−sZ)× → (Z/qZ)×. To see this claim, note that δ(w) = δ(w′) if and only if w2 = w′2 in
(Z/qm−sZ)×. On the other hand, the image of the projection map

(Z/qm−sZ)× → (Z/qZ)×, w 7→ w2

1− q2sw2θ2

is F×2
q . Comparing the cardinality, the claim follows.

If m − s > 1, then the first case follows form the preceding paragraph and Fact 7.15: for each
fiber S of the projection map, we have∑

w∈δ−1(S)

ψ

(
w2

qm−s(1− q2sw2θ2)
· xθ2(1− u2θ2)

)
=2
∑
v∈S

ψ

(
v

qm−s · xθ
2(1− u2θ2)

)
,

which vanishes by Fact 7.15.
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□

Proof of Proposition 7.20.

While the first case is just a consequence of Lemmas 7.21 and 7.22, the third follows from Lemmas
7.21, and 7.22 and the fact that

π

(
q−m

qm

)
f = ϵ(π)f.

Now we consider the second case. In view of Lemmas 7.21 and 7.22 it suffices to show that(
π

(
1 q−1

1

)(
q−m

qm

)
(−f − η(−1)G(η, ψ)fη), f

)
=

ϵ(π)− qη(−1)ϵ(π ⊗ η)
q − 1

(f, f) . (7.2)

By Proposition 7.8,

π

(
q−m

qm

)
fη = ϵ(π ⊗ η)η(−1)fη,

since η = η−1, and so(
π

(
1 q−1

1

)(
q−m

qm

)
(−f − η(−1)G(η, ψ)fη), f

)
=

(
π

(
1 q−1

1

)
(−ϵ(π)f −G(η, ψ)ϵ(π ⊗ η)fη), f

)
.

Note that

π

((
1 q−1

1

)
fη(x), f

)
=

 1

q − 1

∑
u∈(Z/qZ)×

π

(
u uq−1

1

)
fη(x), f

 =
G(η, ψ)

q − 1
(f, f)

and that (
π

(
1 q−1

1

)
f, f

)
=

1

q − 1

∑
u∈F×

q

(
π

(
u

1

)(
1 1

q

1

)(
u−1

1

)
f, f

)

=
1

q − 1

∑
u∈F×

q

(
π

(
1 u

q

1

)
f, f

)

=− 1

q − 1
(f, f).

Here the last equality follows from the defining action of unipotent elements, and the fact that
summation of the q-th primitive root of unity is −1.

Therefore, we have(
π

(
1 q−1

1

)(
q−m

qm

)
(−f − η(−1)G(η, ψ)fη), f

)
=

(
π

(
1 q−1

1

)
(−ϵ(π)f −G(η, ψ)ϵ(π ⊗ η)fη), f

)
=
ϵ(π)− qη(−1)ϵ(π ⊗ η)

q − 1
(f, f) .

Here the last equality uses G(η, ψ)2 = qη(−1) for η quadratic, concluding the proof of (7.2).
□

7.4. Explicit toric period formula. Let the setting be as in §7.1.1. This subsection concludes
the proof of Theorem 7.1 for toric period of newform. It is a consequence of Theorem 7.9 in
combination with Lemma 7.23 and Proposition 7.29 below, the latter being an explicit formula for
twisted epsilon factors appearing in Theorem 7.1. It crucially relies on π = πλ being supercuspidal.
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7.4.1. Epsilon factors.

Lemma 7.23. For η the non-trivial quadratic character of Z×
q , we have

ϵ(π ⊗ η) = −η(−1)ϵ(π).

Proof. Recall that π = πλ. Since K and ψ are unramified and q odd,

ϵ(π) = ϵ(1/2, π, ψ) = λK(ψ)ϵ(1/2, λ, ψK) = (−1)mλ(θ)

for λK(ψ) =

∫
Z×q

ηK(u)ψ(u)du

|
∫
Z×q

ηK(u)ψ(u)du| = 1. Here the second equality follows from [48, Thm. 4.7], and the

last from [59, Prop. 3.7].
In particular, comparing the root number of ϵ(π) with ϵ(π ⊗ η), we have

ϵ(π ⊗ η) = η(NK/Qq
(θ))ϵ(π) = −η(−1)ϵ(π).

□

Lemma 7.24. For any χ ∈ ̂(Z/qmZ)×, the character λχK also has conductor qm and

ϵ(1/2, π ⊗ χ, ψ) = (−1)mλ(θ)G((λχK)−1, ψK)

G(λ−1, ψK)
.

Here χK = χ ◦ NK/Q, G(λ′, ψK) :=
∑

O×
K/O

×
K,qm

λ′(x)ψK

(
x
qm

)
with ψK = trK/Qq

ψ and λ′ a char-

acter with conductor qm.

Proof. Note that χK has conductor qm and that λ|1+qm−1OK
does not factor through norm, and so

λχK has conductor qm. In particular, G((λχK)−1, ψK) is well defined and non-zero.
We have π ⊗ χ = πλ ⊗ χ = πλχK

(cf. [48, Thm. 4.7]). As in the proof of Lemma 7.23,

ϵ(1/2, πλχK
, ψ)

ϵ(1/2, π, ψ)
=
ϵ(1/2, λχK , ψK)

ϵ(1/2, λ, ψK)
.

In view of the definition of epsilon factor in terms of Gauss sum (cf. [59, p. 281]) we have

ϵ(1/2, π ⊗ χ, ψ) = ϵ(1/2, π, ψ)
G((λχK)−1, ψK)

G(λ−1, ψK)
.

Therefore [59, Prop. 3.7] concludes the proof. □

7.4.2. Analysis of twist Gauss sum. In this subsection we obtain explicit formulas for the twist
Gauss sums appearing in Proposition 7.10.

Lemma 7.25. For χ ∈ ̂(Z/qmZ)× primitive and v ∈ (Z/qmZ)×, we have

G(χ, ψ)2χ−1(u2θ2v)
G((λχK)−1, ψK)

G(λ−1, ψK)
= χ(−4v)J(χ, χ)

∑
a∈Z/qmZ

(λχK)−1(a+ θu)

and
J(χ, χ) =

∑
x∈(Z/qmZ)×

χ(x)χ(1− x).

Proof. Simply denote θu by θ′. Note that θ′ = −θ′, and so

χ−1(u2θ2v)
G((λχK)−1, ψK)

G(λ−1, ψK)
= χ(−4v)

G
(
(λχK)−1, ψK

( ·
2θ′

))
G
(
λ−1, ψK

( ·
2θ′

)) . (7.3)

In the following we analyse the Gauss sum in the numerator based on the fact that

O×
K = Z×

q ⊕ Zqθ′ ⊔ qZq ⊕ Z×
q θ

′
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and trK/Qq

(
a+bθ′

qm2θ′

)
= b

qm .

To begin G((λχK)−1, ψK( ·
2θ′ )) = I + J , where

I =
∑

a∈(Z/qmZ)×

∑
b∈Z/qmZ

(λχK)−1(a+ bθ′)ψ

(
b

qm

)

J =
∑

a∈qZ/qmZ

∑
b∈(Z/qmZ)×

(λχK)−1(a+ bθ′)ψ

(
b

qm

)
.

Note that

I =
∑

b∈Z/qmZ

(λχK)−1(1 + bθ′)

 ∑
a∈(Z/qmZ)×

χ−2(a)ψ

(
ba

qm

)
=

∑
b∈(Z/qmZ)×

(λχK)−1(1 + bθ′)

 ∑
a∈(Z/qmZ)×

χ−2(a)ψ

(
ba

qm

) .

The last equality follows from:
∑

a∈(Z/qmZ)× χ
−2(a)ψ

(
ba
qm

)
is non-zero only for b ∈ (Z/qmZ)× since

χ−2 is still a primitive character modulo qm. Thus

I =G(χ−2, ψ)
∑

b∈(Z/qmZ)×
(λχK)−1(1 + bθ′)χK(b)

=G(χ−2, ψ)
∑

b∈(Z/qmZ)×
(λχK)−1(b−1 + θ′)

=G(χ−2, ψ)
∑

b∈(Z/qmZ)×
(λχK)−1(b+ θ′).

Similarly, we have

J =G(χ−2, ψ)
∑

a∈qZ/qmZ

(λχK)−1(a+ θ′).

Hence

I + J = G(χ−2, ψ)
∑

a∈Z/qmZ

(λχK)−1(a+ θ′). (7.4)

Note that

G(χ, ψ)2G(χ−2, ψ) = qmJ(χ, χ) (7.5)

since G(χ, ψ)2 = G(χ2, ψ)J(χ, χ) and G(χ2, ψ)G(χ−2, ψ) = qm as χ, χ2 are primitive modulo qm.
Now we have

G(χ, ψ)2χ−1(u2θ2v)
G((λχK)−1, ψK)

G(λ−1, ψK)
=G(χ, ψ)2χ(−4v)

G
(
(λχK)−1, ψK

( ·
2θ′

))
G
(
λ−1, ψK

( ·
2θ′

))
=

χ(−4v)
G(λ−1, ψK( ·

2θ′ ))
G(χ, ψ)2G(χ−2, ψ)

∑
a∈Z/qmZ

(λχK)−1(a+ θ′)

=

χ(−4v)J(χ, χ) ∑
a∈Z/qmZ

(λχK)−1(a+ θ′)

 .

Here the first equality follows from (7.3), the second from (7.4) and the third from (7.5).
As seen in the proof of [59, Prop. 3.7] G

(
λ−1, ψK

( ·
2θ′

))
= qm, and so the proof concludes. □
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In view of Theorem 7.9 and Lemma 7.25 it is natural to consider the following function on Zq:

Fv(a) =
∑

χ∈ ̂(Z/qmZ)×
primitive

χ(−4v)J(χ, χ)χ−1(a2 − θ′2) (7.6)

for v ∈ (Z/qmZ)×. Note that Fv depends on θ′ = θu.
To explicitly describe Fv, we recall the following.

Fact 7.26. Let m ≥ 2 be an integer. For a ∈ (Z/qmZ)×,

∑
χ∈ ̂(Z/qmZ)×
primitive

χ(a) =


(q − 1)2qm−2, a ≡ 1 (mod qm),

−(q − 1)qm−2, a ≡ 1 (mod qm−1), a ≡/ 1 (mod qm),

0, a ≡/ 1 (mod qm−1).

Fact 7.27. Consider a quadratic equation

X2 + 2bX + c = 0 (7.7)

with a, b ∈ Z/qkZ for an odd prime q and k ≥ 1.

• If b2 − c is not a square in Z/qkZ, then (7.7) has no solution in Z/qkZ.
• If b2 − c = v2 is a square with v ∈ (Z/qkZ)×, then (7.7) has exactly 2 solutions.
• If b2−c = v2 is a square with q|v, let t = ordq(b

2−c) ∈ {1, · · · k}. Then (7.7) has a solution
if and only if t is even. In such a case put t = 2r with r ≥ 1.

– If 1 ≤ r and r ≥ k/2, then (7.7) has q⌊k/2⌋ solutions.
– If 1 ≤ r < k/2, then (7.7) has 2qr solutions.

Lemma 7.28. Let m ≥ 2 be an integer, v ∈ (Z/qmZ)× with v ≡ 1 (mod qm−1) and Fv a function19

on Zq as in (7.6). Let a0 ∈ Z×
q be a solution of 1 + (a2 − θ2u2) = 0.

(i) If m is even and v = 1, then

Fv =q
3m
2

−2(q − 1)2

1a0(1+qmZq) + 1−a0(1+qmZq) −
1

q − 1

∑
d∈{a0(1+qm−1u) | 1≤u≤q−1}

(1d(1+qmZq) + 1−d(1+qmZq))

 .

(ii) If m is odd, then

Fv = q
3(m−1)

2 (q − 1)
∑

d∈{a0(1+qm−1u) | u=0,··· ,q−1}
qm∤(v2+v(a2−θ2u2))

(1d(1+qmZq) + 1−d(1+qmZq)).

Proof. Simply denote θu by θ′. Fix a ∈ Zq.
Note that

Fv(a) =
∑

x∈(Z/qmZ)×

 ∑
χ∈ ̂(Z/qmZ)×
primitive

χ(v(4x2 − 4x)(a2 − θ′2)−1)

 .

Thus in view of Fact 7.26 a necessary condition for Fv(a) ̸= 0 is that the equation

v(4x2 − 4x) ≡ (a2 − θ′2) (mod qm−1) (7.8)

has a solution x ∈ (Z/qmZ)× (note that x− 1 ∈ (Z/qmZ)× since a2 − θ′2 is a q-adic unit).

19In view of Theorem 7.9 and Lemma 7.25 the congruence condition suffices for our application.
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Let A be the number of solutions x of

v(4x2 − 4x) ≡ (a2 − θ′2) (mod qm−1) (7.9)

in (Z/qmZ)× and B that of

v(4x2 − 4x) ≡ (a2 − θ′2) (mod qm) (7.10)

in (Z/qmZ)×. By Fact 7.26,

Fv(a) = B(q − 1)2qm−2 − (A−B)(q − 1)qm−2.

Note that the discriminant of (7.8) in Z/qm−1Z is

16(v2 + v(a2 − θ′2)) ≡ 16(1 + (a2 − θ′2)) (mod qm−1),

since m ≥ 2 and v ≡ 1 (mod qm−1). In particular, Fv(a) ̸= 0 implies that

1 + (a2 − θ′2) (mod q) ∈ F2
q .

(i) Suppose that 1+(a2−θ′2) (mod q) ∈ F×2
q . Then the discriminant of (7.8) is a square and a

unit in Z/qm−1Z. Hence (7.9) has 2 solutions in (Z/qm−1Z)× by Fact 7.27 and 2q solutions
in (Z/qmZ)× and exactly two of such x satisfy (7.10) by Fact 7.27 again. So Fv(a) = 0.

(ii) Suppose that 1 + (a2 − θ′2) ≡ 0 (mod q). Then a is a unit.
– Moreover, suppose that v2 + v(a2 − θ′2) ≡ 0 (mod qm), and so 1 + (a2 − θ′2) ≡ 0

(mod qm−1). Then (7.9) has q⌊(m−1)/2⌋ solutions in (Z/qm−1Z)× by Fact 7.27 and

hence q · q⌊(m−1)/2⌋ solutions in (Z/qmZ)×. On the other hand, (7.10) has q⌊m/2⌋

solutions in (Z/qmZ)× by Fact 7.27. So

Fv(a) =

{
qm/2(q − 1)2qm−2, if m is even

0, if m is odd.

– Suppose that 1 + (a2 − θ′2) ≡ 0 (mod qm−1) but v2 + v(a2 − θ′2) ≡/ 0 (mod qm). Then

(7.9) has q⌊(m−1)/2⌋ solutions in (Z/qm−1Z)× and q · q⌊(m−1)/2⌋ solutions in (Z/qmZ)×.
Note that (7.10) has a solution only if m is odd20, and in this case, it has 2q(m−1)/2

solutions. So

Fv(a) =

{
−q · q⌊(m−1)/2⌋(q − 1)qm−2, if m is even

q⌊(m−1)/2⌋(q − 1)qm−2(2(q − 1)− (q − 2)), if m is odd.

(iii) Suppose that 1+(a2− θ′2) ≡/ 0 (mod qm−1), and put t = vq(1+(a2− θ′2)) = vq(v
2+ v(a2−

θ′2)) ∈ {1, · · · ,m− 2}.
– If t is odd, then (7.9) has no solution, and hence Fv(a) = 0.
– If t is even with t = 2r, then (7.9) has 2qr solution in (Z/qm−1Z) and hence has 2qr+1

solutions in (Z/qmZ) by Fact 7.27.
Note that (7.10) has 2qr solutions in (Z/qmZ) by Fact 7.27. Thus Fv(a) = 0.

□

20Only then the discriminant has even q-adic valuation.
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7.4.3. Explicit formulas for sum of twist epsilon factors.

Proposition 7.29. In our setting the following holds.

(i) ∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2χ−1(u2θ2)ϵ(1/2, π ⊗ χ, ψ)

=

{
q

3m
2

−1(q − 1)λ(θ)
(
λ−1(a0 + θu)) + λ−1(−a0 + θu)

)
, if m is even,

q
3(m−1)

2 (q − 1)λ(θ)(λ−1(a0 + θu) + λ−1(−a0 + θu)), if m is odd.

(ii) If m is odd,∑
v∈1−qm−1(Z/qZ)×2

∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2χ−1(u2θ2v)ϵ(1/2, π ⊗ χ, ψ)

=q
3(m−1)

2 (q − 1)λ(θ)(λ−1(a0 + θu)

 ∑
t∈F×2

q

ζtq

+ λ−1(−a0 + θu)

 ∑
t∈F×2

q

ζ−tq )

 .

Proof. Simply denote θu by θ′. We first consider the case (i) for m even.
Note that∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2χ−1(u2θ2)ϵ(1/2, π ⊗ χ, ψ)

=(−1)mλ(θ)

 ∑
χ∈ ̂(Z/qmZ)×
primitive

χ(−4)J(χ, χ)
∑

a∈Z/qmZ

(λχK)−1(a+ θ′)


=(−1)mλ(θ)q

3m
2

−2(q − 1)2(
λ−1(a0 + θ′) + λ−1(−a0 + θ′)− 1

q − 1

(
q−1∑
v=1

λ−1(a0(1 + qm−1v) + θ′) + λ−1(−a0(1 + qm−1v) + θ′)

))
=(−1)mλ(θ)q

3m
2

−1(q − 1)
(
λ−1(a0 + θ′) + λ−1(−a0 + θ′)

)
.

Here the first equality follows from Lemmas 7.24, and 7.25, the second from Lemma 7.28, and the
last from:

q−1∑
v=1

λ−1(a0(1 + qm−1v) + θ′) + λ−1(−a0(1 + qm−1v) + θ′)

=

q−1∑
v=1

(
λ−1(a0 + θ′)λ−1

(
1 +

qm−1v

a0 + θ′

)
+ λ−1(−a0 + θ′)λ−1

(
1 +

qm−1v

−a0 + θ′

))
=− λ−1(a0 + θ′)− λ−1(−a0 + θ′).

(7.11)
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Now consider the case (i) for m odd. Just as above, by Lemmas 7.24, 7.25 and 7.28, we have

∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2χ−1(u2θ2)ϵ(1/2, π ⊗ χ, ψ)

=(−1)mλ(θ)q
3(m−1)

2 (q − 1)

q−1∑
v=1

λ−1(a0(1 + qm−1v) + θ′) + λ−1(−a0(1 + qm−1v) + θ′))

=− (−1)mλ(θ)q
3(m−1)

2 (q − 1)(λ−1(a0 + θ′) + λ−1(−a0 + θ′)).

Finally, we consider the case (ii) for m odd. Again by Lemmas 7.24, 7.25 and 7.28, and an
analysis similar to (7.11), we have

∑
v∈1−qm−1(Z/qZ)×2

∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2χ−1(u2θ2v)ϵ(1/2, π ⊗ χ, ψ)

=(−1)mλ(θ)
∑

v∈1−qm−1(Z/qZ)×2

 ∑
χ∈ ̂(Z/qmZ)×
primitive

χ(−4v)J(χ, χ)
∑

a∈Z/qmZ

(λχK)−1(a+ θ′)



=(−1)mλ(θ)q
3(m−1)

2 (q − 1)

 ∑
v∈1−qm−1(Z/qZ)×2

∑
a∈a0(1+qm−1(Z/qZ))
qm∤(v2+v(a2−θ′2))

(λ−1(a+ θ′) + λ−1(−a+ θ′))


=(−1)mλ(θ)q

3(m−1)
2 (q − 1)

 ∑
v∈1−qm−1(Z/qZ)×2

−(λ−1(bv + θ′) + λ−1(−bv + θ′))


where bv ∈ Z×

q satisfies (v2 + v(b2v − θ′2)) ≡ 0 (mod qm) so that bv ≡ a0 (mod qm−1).

Write v = 1− qm−1t2, and then

b2v ≡θ′2 − v ≡ a20

(
1 + qm−1 t

2

2a20

)2

(mod qm).

Thus we can take bv = a0

(
1 + qm−1 t2

2a20

)
and in turn

λ−1

(
a0

(
1 + qm−1 t

2

2a20

)
+ θ′

)
= λ−1(a0 + θ′)λ−1

(
1 + qm−1 t2

2a0(a0 + θ′)

)

and

λ−1

(
−a0

(
1 + qm−1 t

2

2a20

)
+ θ′

)
= λ−1(−a0 + θ′)λ−1

(
1 + qm−1 −t2

2a0(−a0 + θ′)

)
.
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Let ζq be the q-th primitive root of unity given by λ−1
(
1 + qm−1 1

2a0(a0+θ′)

)
. Then we have

(−1)mλ(θ)q
3(m−1)

2 (q − 1)

 ∑
v∈1−qm−1(Z/qZ)×2

−(λ−1(bv + θ′) + λ−1(−bv + θ′))


=(−1)m+1λ(θ)q

3(m−1)
2 (q − 1)

λ−1(a0 + θ′)

 ∑
t∈F×2

q

ζtq

+ λ−1(−a0 + θ′)

 ∑
t∈F×2

q

ζ−tq

 .

□

7.4.4. Proof of Theorem 7.1. The following is a combination of prior results.
By Lemma 7.23, we have

q − qη(−1)ϵ(π)ϵ(π ⊗ η)
q − 1

=
2q

q − 1
(f, f).

By Proposition 7.29 for m even,

q⌊
m
2
⌋

∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2

φ(qm)2
χ−1(u2θ2)ϵ(1/2, π⊗χ, ψ)(f, f) = q

q − 1
λ(θ)

(
λ−1(a0 + θu) + λ−1(−a0 + θu)

)
,

and for m odd,

q⌊
m
2
⌋

∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2

φ(qm)2
χ−1(u2θ2)ϵ(1/2, π ⊗ χ, ψ)(f, f)

+2q(m−1)/2
∑

v∈1−qm−1(Z/qZ)×2

∑
χ∈ ̂(Z/qmZ)×
primitive

G(χ, ψ)2

φ(qm)2
χ−1(u2θ2v)ϵ(1/2, π ⊗ χ, ψ)(f, f)

=
q⌊

m
2
⌋q

3(m−1)
2 (q − 1)

φ(qm)2
λ(θ)(λ−1(a0 + θu) + λ−1(−a0 + θu))(f, f)

+
2q(m−1)/2q

3(m−1)
2 (q − 1)

φ(qm)2
λ(θ)

λ−1(a0 + θu)

 ∑
t∈F×2

q

ζtq

+ λ−1(−a0 + θu)

 ∑
t∈F×2

q

ζ−tq


=

1

q − 1
λ(θ)

λ−1(a0 + θu)

∑
t∈Fq

ζt
2

q

+ λ−1(−a0 + θu)

∑
t∈Fq

ζ−t
2

q

 ,

where ζq is the q-th primitive root of unity λ−1
(
1 + qm−1 1

2a0(a0+θu)

)
.

So Theorem 7.1 is a consequence of Theorem 7.9, the above equalities and the observation: For
η the non-trivial quadratic character of F×

q , ζq = ζk, where ζ = e2πi/q, k ∈ F×
q , we have

∑
t∈Fq

ζt
2

q =1 +

∑
t∈F×

q

η(t)ζkt +
∑
t∈F×

q

ζkt

 = 1 +

η(k) ∑
t∈F×

q

η(t)ζt +
∑
t∈F×

q

ζt

 =η(k)
√
q∗.
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[63] B. Perrin-Riou, Théorie d’Iwasawa des représentations p-adiques sur un corps local, With an appendix by Jean-

Marc Fontaine. Invent. Math. 115 (1994), no. 1, 81–161.
[64] B. Perrin-Riou, Fonctions L p-adiques des représentations p-adiques, Astérisque No. 229 (1995), 198 pp.
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