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CHIRAL ANOMALY VIA VERTEX ALGEBROIDS

PAUL BRESSLER AND VYACHESLAV FUTORNY

1. Introduction

Suppose that q : X → S is a circle bundle equipped with a relative
orientation and E is a complex vector bundle on X. These data give
rise to an O∗-gerbe Det(X/S; E) on S. A construction of Det(X/S; E)
is given in Section 6 of [BKTV], where it is denoted Det(q∗E). Let
C1(X/S; E) denote the image of the class of Det(X/S; E) under the

canonical map H2(S;O∗S)→ H2(S; Ω1
S → Ω2,cl

S ) ∼= H3
dR(S).

In [BKTV] a generalization of C1(X/S; E) to arbitrary relative di-
mension (i.e. to the case when q : X → S is a proper relatively oriented
submersion of relative dimension d = dimX/S not necessarily equal to
one) is constructed so that C1(X/S; E) ∈ Hd+2

dR (S) and shown to satisfy
a Riemann-Roch type formula

(1.0.1) C1(X/S; E) =

∫
X/S

[
ch(E)Td(TX/S)

]
2d+2

,

where TX/S is the complexified relative tangent bundle. It is conjec-
tured in loc. cit. that the class C1(X/S; E) (denoted also by C1(q∗E))
is the image of the class of a naturally defined “determinental d-gerbe”
generalizing Det(X/S; E). The construction of [BKTV] can be loosely
described as transgression of the canonical trace density (a cyclic cocy-
cle) on DX/S,E (the algebra of relative differential operators acting on
E) with (1.0.1) obtained as a consequence of the results of [BNT].

In the present note we “animate”, in the words of A. Beilinson,
(1.0.1) in the case of relative dimension one. In this case the formula
(1.0.1) simplifies to

(1.0.2) C1(X/S; E) =

∫
X/S

ch2(E).

The latter is “animated” as a relationship between certain stacks on S
and X respectively. The one on S, representing C1(X/S; E), is the de
Rham avatar of the determinental gerbe. The one on X representing
ch2(E) is the stack of vertex extensions of the Atiyah algebra of E

P. B. was partially supported by FAPESP, Processo 2010/16891-3.
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treated in [B]. The main ingredient is the construction of the functor∫
X/S

(see Section 5) which associates to vertex algebroid on X a certain

Lie algebroid on S. In fact, throughout the note we work with an
arbitrary transitive Lie algebroid together with an invariant symmetric
pairing on the kernel of the anchor.

P. B. would like to thank FAPESP for support and Instituto de
Matemática e Estatistica of the University of São Paulo and Max
Planck Institute for hospitality.

2. Generalities

2.1. Notation. For a map q : X → S of manifolds and a sheafA → TX
over TX we denote by A/S the sheaf defined by the pull-back square

A/S −−−→ q−1TSy y
A −−−→ q∗TS

where the bottom horizontal map is the composition A → TX
dq−→ q∗TS.

The above construction applied to the structure map A → TX produces
a sheaf over (TX)/S.

In the same situation we denote by q+A, the sheaf on S defined by
the pull-back square

(2.1.1)

q+A −−−→ TSy y
q∗A/S −−−→ q∗q

−1TS

3. Lie algebroids

3.1. Notation. Suppose that k is a sheaf of commutative algebras on
X, R is a commutative k-algebra. By an R-algebroid we mean a sheaf
of R-modules A together with an R-linear map σ : A → DerR/k(R)
called the anchor map, and an operation [ , ] : A ⊗k A → A, which
satisfy

• the operation [ , ] endows A with a structure of a k-Lie algebra;
• the anchor map is a morphism of Lie algebras
• the Leibniz rule [a, rb] = σ(a)(r)b + r[a, b], a, b ∈ A, r ∈ R

holds.

We denote by g(A) the kernel of the anchor map; it is a sheaf of R-Lie
algebras (i.e. a Lie algebra in the category of R-modules).
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We will usually refer to an OX-Lie algebroid as a Lie algebroid on
X.

For a Lie algebroid A on X, locally free of finite rank over OX let
Ω1
A := A∨, Ωi

A :=
∧i Ω1

A. Clearly, Ωi
TX = Ωi

X , the sheaf of differential
forms of degree i.

The composition OX
d−→ Ω1

X
σ∨
−→ Ω1

A extends uniquely to a square-
zero derivation of dergree one of the graded algebra Ω•A; it will be
denoted by dA or just d.

3.2. Direct image. Suppose that A is a Lie algebroid on X and
q : X → S is a map of manifolds the sheaf A/S has a canonical struc-
ture of a q−1OS-Lie algebroid with the structure map A/S → q−1TS as
the anchor of A/S. The bracket is given by

[(a1, ξ1), (a2, ξ2)] = ([a1, a2], [ξ1, ξ2]),

where ai ∈ A, ξi ∈ TS, i = 1, 2, and dq(σ(ai)) = ξi.
The sheaf q+A defined by (2.1.1) has a canonical structure of a Lie

algebroid on S with the structure map q+A → TS as the anchor of A/S.
Note that g(q+A) = q∗g(A/S).

Suppose in addition that

• A is transitive so that there is a short exact sequence

0→ g(A)→ A→ TX → 0,

• the map q : X → S is a submersion so that there is a short
exact sequence

0→ TX/S → TX
dq−→ q∗TS → 0.

In this situation the q−1OS-Lie algebroid A/S is transitive, i.e. the map

A/S → q−1TS is surjective (because the composition A → TX
dq−→ q∗TS

is). The projection A/S → A restricts to an isomorphism g(A/S) →
ker(A → q∗TS). Since the composition ker(A → q∗TS) → TX

dq−→ q∗TS
is equal to zero it follows that the composition ker(A → q∗TS)→ A→
TX factors through TX/S = ker(TX

dq−→ q∗TS). Since the diagram

ker(A → q∗TS) −−−→ Ay y
TX/S −−−→ TX

is cartesian it follows that the sequence

0→ g(A)→ ker(A → q∗TS)→ TX/S → 0
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is exact. Thus, there is a short exact sequence

0→ g(A)→ g(A/S)→ TX/S → 0.

The Lie agebroid structure on A restricts to one on g(A/S) with the
anchor given by the composition g(A/S)→ TX/S → TX .

If the Kodaira-Spencer map TS → R1q∗g(A/S), i.e. the composition
TS → q∗q

−1TS → R1q∗g(A/S), is equal to zero, then q+A is transitive
and there is an exact sequence

0→ q∗g(A)→ q∗g(A/S)→ q∗TX/S → R1q∗g(A).

Vanishing of Riq∗g(A), i ≥ 1, holds in the C∞ setting and in the
algebraic (analytic) setting if the map q is affine (Stein), and A is a
vector bundle as will be the case in examples of interest. In this case
the sequence

0→ q∗g(A)→ g(q+A)→ q∗TX/S → 0

is exact.

3.3. O-extensions of Lie algebroids. Suppose that B is a transitive
Lie algebroid on S and let g = g(B) denote the kernel of the anchor map
so that g is a sheaf of OS-Lie algebras and there is an exact sequence

0→ g→ B → TS → 0

An OS-extension of B is a triple (B̃, c, σ) which consists of a Lie

algebroid B̃, a central section c ∈ Γ(S; B̃) and an isomorphism of Lie

algebroids σ : B̃/OS · c ∼= B. These data give rise to the associated
short exact sequence

(3.3.1) 0→ OS
c·−→ B̃ σ−→ B → 0

The OS-extensions of B form a Picard stack under the operation of
Baer sum of extensions which we denote OSEXT (B).

Since c is central, it follows from the Leibniz rule that

• the (adjoint) action of B̃ on OS · c ∼= OS factors through TS
and the latter action coincides with the Lie derivative action of
vector fields on functions;

• OS · c is central in the OS-Lie algebra g(B̃);

• hence, the (adjoint) action of B̃ on g(B̃) factors through B and

preserves the inclusion OS · c ↪→ g(B̃), and
• the induced action of B on g coincides with the adjoint action.



CHIRAL ANOMALY VIA VERTEX ALGEBROIDS 5

3.4. Central extensions. Suppose that B is a Lie algebroid on S.
A B-Lie algebra is a Lie algebra in B-modules, i.e. an OS-Lie algebra

equipped with a structure of a B-module with respect to which the
bracket is a morphism of B-modules.

Example 1. For any Lie algebroid B the kernel of the anchor map g(B)
is a B-Lie algebra.

A central extension of a B-Lie algebra g by OS is a triple (g̃, c, σ),
which consists of

(1) a B-Lie algebra g̃,
(2) a B-invariant central section c ∈ Γ(S; g̃) (i.e. Bc = 0), which

implies that OS · c is a B-submodule of g̃,
(3) and an isomorphism of B-Lie algebras σ : g̃/OS · c→ g.

Suppose that B̃ is an OS-extension of B. Passing to the kernels of
the respective anchor maps one obtains the central extension of OS-Lie
algebras

0→ OS → g(B̃)→ g→ 0

The (adjoint) action of B̃ on g(B̃) factors through B and preserves the

inclusion OS ·c ↪→ g(B̃); the induced action of B on g (respectively, OS)
coincides with the adjoint action (respectively, the anchor). In other

words, g(B̃) is a central extension of g by OS in B-Lie algebras.
Let cEXT B(g,OS) denote the Picard stack of central extension as

above. “Restriction to the kernel of the anchor” is a morphism of
Picard stacks

(3.4.1) OSEXT (B)→ cEXT B(g,OS) : B̃ 7→ g(B̃).

For g̃ ∈ cEXT B(g,OS)(S) we denote by OSEXT (B)g̃ the corresponding
“fiber” over g̃ and by OSEXT (B)0 the fiber over the trivial (split) ex-
tension.

Note that OSEXT (B)0 is a Picard substack of OSEXT (B) and, if
OSEXT (B)g̃ is locally non-empty, it is a (2-)torsor under OSEXT (A)0.

3.5. Classification of OS-extensions. Suppose that B is locally free
of finite rank over OS, i.e. a vector bundle. Then, there is a canonical
equivalence of Picard stacks

(3.5.1) OSEXT (B)
∼=−→ (Ω1

B → Ω2,cl
B )− tors.

Recall that a (Ω1
B → Ω2,cl

B )-torsor is a pair (P , c) which consists of a

Ω1
B-torsor P and a map c : P → Ω2,cl

B which satisfies c(p+α) = c(p)+dα.

The functor (3.5.1) associates to B̃ the Ω1
B-torsor of (locally defined)
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splittings of σ : B̃ → B. For a splitting ∇ as above, c(∇) is defined by
the equation c(∇)(b1, b2) · c = [∇(b1),∇(b2)]−∇([b1, b2]).

3.6. Picard-Lie algebroids. An important particular case of the above
story arises when B = TS, i.e. g is trivial. The OS-extensions of TS are
also known as Picard-Lie algebroids and we denote the stack of such
by PLAS so that the equivalence 3.5.1 becomes

PLAS
∼=−→ (Ω1

S → Ω2,cl
S )− tors.

For general B there is a canonical equivalence

OSEXT (B)0 → PLAS

given by B̃ 7→ B̃/g, where g is embedded into B̃ using the splitting
g→ g̃.

The action of PLAS on OSEXT (B)g̃ is given by the pairing

(·) + (·) : PLAS ×OSEXT (B)g̃ → OSEXT (B)g̃

For T̃ ∈ PLAS and Ã ∈ OSEXT (A)g̃ the algebroid T̃ + Ã is defined by
the push-out square

OS ×OS −−−→ T̃ ×TS Ã

+

y y
OS −−−→ T̃ + Ã

For Ãi ∈ OSEXT (B)g̃, i = 1, 2, let Ã2 − Ã1 denote the quotient of

Ã2 ×A Ã1 by the diagonally embedded copy of g̃. Then, Ã2 − Ã1 has
a natural structure of a Picard-Lie algebroid, and there is a canonical

isomorphism (Ã2 − Ã1) + Ã1
∼= Ã2 in OSEXT (B)g̃.

4. Vertex algebroids

Vertex algebroids were introduced in the work of V. Gorbunov, F. Ma-
likov and V. Schechtman ([GMS]). In this section we will recall the
results of [B] and simultaneously adapt them to the case of regular al-
gebroids. Regular algebroids generalize transitive algegroids and were
considered in [CSX].

4.1. Notation and terminology. A Lie algebroid A on a manifold
X is called regular if the image of the anchor map A → TX is a sub-
bundle of TX . In other words, im(A → TX) is locally free and so is
coker(A → TX). Note that the image of the anchor map is involutive,
i.e. closed under the Lie bracket.
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Throughout this section we work with a fixed involutive distribution
(i.e. a sub-bundle of TX) F . Thus, F is a Lie algebroid with the anchor
given by the inclusion map.

The example we will be interested in later is F = TX/S, where X → S
is a submersion. In this situation it is traditional to write Ωi

X/S in place

of Ωi
F .

A Lie algebroid A on X is called F-transitive if im(A → TX) = F .
If A is a transitive Lie algebroid on X, then AF := A ×TX F is an
F -transitive Lie algebroid in a canonical way.

4.2. Courant algebroids. We refer the reader to [B] for definitions,
notations and details.

A Courant algebroid Q is called F-transitive if the associated Lie
algebroid Q is F -transitive and the canonical map Ω1

X → Q factors
through Ω1

F . An F -transitive algebroid is F-exact if the anchor map
Q → TX is an isomorphism onto F .

For an F -transitive Courant algebroid Q the sequence

0→ Ω1
F → Q→ Q→ 0

is exact. In particular, an F -exact Courant algebroid is an extension
of F by Ω1

F with additional structure.
Suppose that Q is a transitive Courant algebroid on X. Then, the

sheaf QF defined by the push-out square

Ω1
X −−−→ Q×TX Fy y

Ω1
F −−−→ QF

has a canonical structure of an F -transitive Courant algebroid. Clearly,
QF = QF . If Q is exact, then QF is F -exact.

Replacing ”Courant“ by ”vertex“ in the above we obtain analogous
notions for vertex algebroids.

Let ECAF denote the Picard stack of F -exact Courant algebroids.
The constructions and results of [B], 3.8 yield a canonical equivalence

of Picard stacks ECAF ∼= (Ω2
F → Ω3,cl

F )− tors.

4.3. Vertex extensions. Suppose that A is an F -transitive Lie alge-
broid. Let g := g(A). Suppose that 〈 , 〉 is an A-invariant symmetric
pairing on g = g(A). These data determine the vertex algebroid (with
the trivial anchor map) ĝ; it is defined by the pull-back diagram of
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g-modules
ĝ −−−→ gy y〈 , 〉
A∨ −−−→ g∨

In particular, there is an exact sequence

0→ Ω1
F → ĝ→ g→ 0,

see [B], 3.2 for details.
Let VEXT F(A)〈 , 〉 denote the stack of vertex extensions of A which

induce the given pairing 〈 , 〉 on g. For any such extension Â there is

a canonical isomorphism g(Â) ∼= ĝ and all of the above objects fit into
the commutative diagram

0 0y y
Ω1
F Ω1

Fy y
0 −−−→ ĝ −−−→ Â −−−→ F −−−→ 0y y ∥∥∥
0 −−−→ g −−−→ A −−−→ F −−−→ 0y y

0 0

with exact rows and columns.
The stack VEXT F(A)〈 , 〉 is locally non-empty if and only if

(P) locally on X the algebroid A admits a connection along F with
exact Pontryagin form in Ω•F .

The condition (P) is certainly implied by the Poincaré Lemma, which
holds in the C∞ and in the analytic setting; it also holds for Atiyah
algebras as these admit flat connections locally on X. If A satisfies
the condition (P), then VEXT F(A)〈 , 〉 is a (2-)torsor under ECAF .
The same applies to the stack CEXT F(A)〈 , 〉 of Courant extensions.
In what follows we will implicitly assume that the algebroid under
consideration satisfies (P).

The same applies to Courant extensions
Torsors under ECAF are classified by H2(X; Ω2

F → Ω3,cl
F ). The class

of VEXT F(A)〈 , 〉 (respectively, CEXT F(A)〈 , 〉) is equal to ch2(F) −
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1

2
Π(A, 〈 , 〉), (respectively, −1

2
Π(A, 〈 , 〉)), where Π(A, 〈 , 〉) denotes

the (first) Pontryagin class of the pair (A, 〈 , 〉).

4.4. Special case: rank one distributions. Suppose that F is a
rank one distribution on X. Then, Ωi

F = 0 for i ≥ 2.

Lemma 2. Every F-exact Courant algebroid admits a unique flat con-
nection along F .

Corollary 3. Suppose that F is a rank one distribution on X, A is
an F-transitive Lie algebroid and 〈 , 〉 is an A-invariant symmetric
pairing on g(A). Then, the category VEXT F(A)〈 , 〉(X) is equivalent
to the category with one object and no non-trivial morphisms, ditto for
CEXT F(A)〈 , 〉(X)

5. Fiber integration for vertex algebroids

In this section q : X → S is a proper submersion of C∞-manifolds
of relative dimension one equipped with a relative orientation. In this
setting we will associate to a vertex algebroid V on X a Lie algebroid∫
X/S
V on S.

We refer the reader to [B] terminology and notation.

Remark 4. The construction described below applies equally well to
Courant algebroids (with significantly simpler verifications of proper-
ties). Thus, we will use the Courant version of the results of this section
without further discussion.

5.1. The underlying sheaf on S. Suppose that V is a vertex alge-
broid on X with anchor π : V → TX and derivation ∂ : OX → Q. Recall
that the latter factors as OX → Ω1

X → Q.
The sheaf

∫
X/S
V is defined by the push-out square

q∗Ω
1
X −−−→ q+V∫

X/S

y y
OS −−−→

∫
X/S
V

We are going to equip
∫
X/S
V with a structure of a Lie algebroid on S.

5.2. The OS-module structure. A (locally defined) section of q+V
is a pair (v, ξ), v ∈ V , ξ ∈ TS, such that dq(π(v)) = q∗(ξ). For f ∈ OS
let

f ∗ (v, ξ) := (q∗(f) ∗ v, fξ).
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This formula defines a pairing

(5.2.1) OS ⊗C q+V → q+V .

Lemma 5. The pairing (5.2.1) descends to a pairing

(5.2.2) OS ⊗C

∫
X/S

V →
∫
X/S

V .

Proof. A section of
∫
X/S
V is represented by a pair (f, (v, ξ)), f ∈ OS,

(v, ξ) ∈ q+V . Two pairs are considered equivalent if their (component-
wise) difference is a sum of sections of the form (

∫
X/S

α, (−α, 0)), where

α denotes the image of α ∈ q∗Ω1
X in V . The calculation

f ∗ (

∫
X/S

α, (−α, 0)) = (

∫
X/S

q∗(f)α, (−q∗(f) ∗ α, 0))

= (

∫
X/S

q∗(f)α, (−q∗(f)α, 0))

shows that the action of OS preserves the kernel of the projection
OS ⊕ q+V →

∫
X/S
V , hence descends to a pairing (5.2.2). �

Note that the pairing (5.2.1) is not associative.

Proposition 6. The induced paring (5.2.2) is associative, i.e. it de-
fines a structure of an OS-module on

∫
X/S
V.

Proof. for f, g ∈ OS, (v, ξ) ∈ q+V the associator is given by

f ∗ (g ∗ (v, ξ))− (fg) ∗ (v, ξ) = (q∗(f) ∗ (q∗(g) ∗ v)− q∗(fg) ∗ v, 0)

= (π(v)(q∗(f)) ∗ ∂(q∗(g)) + π(v)(q∗(g)) ∗ ∂(q∗(f)), 0)

= (q∗(dq(π(v)(f)) ∗ ∂(q∗(g)) + q∗(dq(π(v)(g)) ∗ ∂(q∗(f)), 0).

The above calculation shows that the associator factors though the

composition Ω1
S

(dq)t−−→ q∗Ω
1
X → q+V . Since the composition Ω1

S

(dq)t−−→

q∗Ω
1
X

∫
X/S−−−→ OS is equal to zero, it follows that the induced pairing

OS ⊗C
∫
X/S
V →

∫
X/S
V is associative. �

In what follows we will regard
∫
X/S
V as an OS-module with respect

to the above structure. It is clear that the map OS →
∫
X/S
V is OS-

linear.
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5.3. The Lie bracket. Let

(5.3.1) [·, ·] : q+V ⊗C q+V → q+V

denote the pairing defined by

[(v1, ξ1), (v2, ξ2)] = ([v1, v2], [ξ1, ξ2]).

Lemma 7. The pairing (5.3.1) defines a Leibniz bracket on q+V whose
symmetrization is given by

(5.3.2) [(v1, ξ1), (v2, ξ2)] + [(v2, ξ2), (v1, ξ1)] = (∂(〈v1, v2〉), 0).

Proof. Direct calculation left to the reader. �

Let

(5.3.3) [·, ·] : (OS ⊕ q+V)⊗C (OS ⊕ q+V)→ OS ⊕ q+V

denote the pairing defined by

[(f1, (v1, ξ1)), (f2, (v2, ξ2))] = (ξ1(f2)− ξ2(f1), [(v1, ξ1), (v2, ξ2)])

= (ξ1(f2)− ξ2(f1), ([v1, v2], [ξ1, ξ2])),

where fi ∈ OS, (vi, ξi) ∈ q+V , i = 1, 2.

Proposition 8. The pairing (5.3.3) descends to an operation

(5.3.4) [·, ·] :
∫
X/S

V ⊗C

∫
X/S

V →
∫
X/S

V

which is skew symmetric and satisfies the Jacobi identity.

Proof. For α ∈ q∗Ω1
X , f ∈ OS, (v, ξ) ∈ q+V

[(f, (v, ξ)), (

∫
X/S

α, (−α, 0))] =

(ξ(

∫
X/S

α), ([v,−α], 0)) = (ξ(

∫
X/S

α), (−Lπ(v)α, 0))

and

[(

∫
X/S

α, (−α, 0)), (f, (v, ξ))]

= (0, (∂〈v,−α〉, 0))− [(f, (v, ξ)), (

∫
X/S

α, (−α, 0))]

= (0, (−dιπ(v)α, 0))− [(f, (v, ξ)), (

∫
X/S

α, (−α, 0))].
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Therefore, the bracket defined by (5.3.3) descends to the operation

[·, ·] :
∫
X/S

V ⊗C

∫
X/S

V →
∫
X/S

V .

It is skew symmetric because of (5.3.2) and satisfies the Jacobi identity
because the bracket on q+V does. �

5.4. The Lie algebroid structure.

Lemma 9. The composition

OS ⊕ q+V → q+V → TS
factors through

∫
X/S
V. The induced map

(5.4.1) π :

∫
X/S

V → TS

is an OS-linear map of Lie algebras with respect to the Lie bracket
(5.3.4) on

∫
X/S
V and satisfies the Leibniz identity .

Proof. The Leibniz identity for
∫
X/S
V follows from the Leibniz identity

for V . �

Proposition 6, Proposition 8 and Lemma 9 imply the following the-
orem.

Theorem 10. The pairings (5.2.2) and (5.3.4) and the map (5.4.1)
endow the sheaf

∫
X/S
V with a structure of a Lie algebroid on S.

5.5. The central section. It follows immediately from the definition
of the bracket on

∫
X/S
V that the image of 1 ∈ Γ(S;OS) under the map

OS →
∫
X/S
V is central with respect to the bracket. We will denote

this section by c. Let
∫
X/S
V =

∫
X/S
V/OS · c.

5.6. The associated Lie algebroid. Recall, that V := V/OX ∗ ∂OX
is a Lie algebroid in a canonical manner.

The projection V → V induces the map q+V → q+V which factors

through
∫
X/S
V . The induced map∫

X/S

V → q+V

is easily seen to be an isomorphism.
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5.7. TX/S-transitive algebroids. Note that, if A is a Lie algebroid
on X whose anchor map factors though TX/S, then the anchor map of
q+A is trivial, i.e. it is a sheaf of OS-Lie algebras and q+A = q∗A.

If V is a TX/S-transitive vertex algebroid on X then the map Ω1
X → V

factors through Ω1
X/S. So does the integration map, giving rise to the

map
∫
X/S

: q∗Ω
1
X/S → OS. Therefore, for V as above the construction

of
∫
X/S
V can be carried out entirely in terms of Ω1

X/S.

Suppose thatA is a TX/S-transitive Lie algebroid on X and 〈 , 〉 is an

A-invariant symmetric pairing on g(A). Let Â〈 , 〉 denote the unique
vertex extension of A furnished by Corollary 3. The exact sequence

0→ Ω1
X/S → Â〈 , 〉 → A→ 0

gives rise to the exact sequence of OS-Lie algebras

(5.7.1) 0→ OS
·c−→
∫
X/S

Â〈 , 〉 → q+A → 0.

We refer to the above canonically defined central extension as the Kač-
Moody-Virasoro extension and to its restriction to q∗g(A) as the Kač-
Moody extension. The Virasoro extension corresponds to the case A =
TX/S. This terminology is justified by the example q : S1 → pt.

6. Fiber integration for vertex extensions

We now specialize the construction of 5 of to the case of transitive
vertex algebroids.

6.1. The fiber integration functors. Suppose that V is a transitive
vertex algebroid on X, so that the sequence

0→ Ω1
X → V → V → 0

is exact. It then follows that
∫
X/S
V is a transitive Lie algebroid on S

and the sequence

0→ OS
·c−→
∫
X/S

V → q+V → 0

is exact, i.e.
∫
X/S
V is an OS-extension of q+V .

Suppose that A is a transitive Lie algebroid on X. Since the con-
struction of Section 5 is obviously functorial and local on S it defines
a morphisms of stacks on S

(6.1.1)

∫
X/S

: q∗VEXT X(A)→ OSEXT (q+A).
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In a completely analogous fashion the fiber integration functor gives
rise to the morphism of stacks

(6.1.2)

∫
X/S

: q∗CEXT X(A)→ OSEXT (q+A).

6.2. Special case: ECA. We are going to modify slightly the defini-
tion of the functor

∫
X/S

in the case of exact Courant algebroids.

Suppose that Q is an exact Courant algebroid on X. Then, the
TX/S-exact Courant algebroid QTX/S

admits a unique connection, i.e.
a unique OX-linear lagrangian splitting. The canonical connection on
QTX/S

is flat, i.e. it is a morphism of Leibniz algebras. It gives rise

to the canonical splitting of the OS-extension
∫
X/S
Q of q+TX over

q∗TX/S = g(q+TX), i.e. a canonical isomorphism of g(
∫
X/S
Q) with the

trivial central extension.

Lemma 11. The canonical splitting of g(
∫
X/S
Q) is a morphism of

q+TX-modules.

Proof. Let ∇ : TX/S → QTX/S
denote the unique flat connection. Let

∇̃ : TX/S → Q×TX TX/S denote an isotropic lift of ∇.

For a ∈ Q/S, ξ ∈ TX/S let [ad(a), ∇̃](ξ) = [a, ∇̃(ξ)]−∇̃([a, ξ]), where
a denotes the image of a in (TX)/S. The latter formula defines a map

[ad(a), ∇̃] : TX/S → Ω1
X which easily seen to be OX-linear.

Let∇ denote the splitting of g(
∫
X/S
Q) induced by∇, i.e. the canon-

ical splitting. Then, for b ∈ q+TX , ξ ∈ TX/S and a lift b̃ ∈ q+Q of b

[ad(b),∇](ξ) =
∫
X/S

[ad(̃b), ∇̃](ξ), where ad denotes the action of q+TX
induced by the adjoint action of

∫
X/S
Q.

An easy calculation using the isotropy of ∇̃ shows that the map

(ξ, η) 7→ ιη[ad(a), ∇̃](ξ) is skew-symmetric. Therefore, the composi-

tion TX/S
[ad(a),∇̃]−−−−−→ Ω1

X → Ω1
X/S is equal to zero for reasons of rank, i.e.

[ad(a), ∇̃] takes values in the kernel of the integration map
∫
X/S

: q∗Ω
1
X →

OS. �

Corollary 12. The functor

(6.2.1)

∫
X/S

: q∗ECAX → OSEXT (q+TX)

takes values in OSEXT (q+TX)0.
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As explained in 3.6, OSEXT (q+TX)0 is canonically equivalent to PLAS.
Using this equivalence, we will regard (6.2.1) as a morphism

(6.2.2)

∫
X/S

: q∗ECAX → PLAS

Lemma 13. The morphism (6.2.2) is a morphism of Picard stacks.

Under the standard equivalences ECAX ∼= (Ω2
X → Ω3,cl

X ) − tors and

PLAS ∼= (Ω1
S → Ω2,cl

S ) − tors it corresponds to the morphism of com-
plexes ∫

X/S

: q∗(Ω
2
X → Ω3,cl

X )→ (Ω1
S → Ω2,cl

S )

given by integration of differential forms along the fibers of q.

6.3. Fiber integration and linear algebra. The morphisms (6.1.1)
(respectively, (6.1.2)) and (6.2.2) are compatible with the respective
actions of ECAX on VEXT X(A) (respectively, VEXT X(A)) and of
PLAS on OSEXT (q+A) in the sense that the diagram

(6.3.1)

q∗ECAX × q∗VEXT X(A)
+−−−→ q∗VEXT X(A)∫

X/S ×
∫
X/S

y y∫
X/S

PLAS ×OSEXT (q+A)
+−−−→ OSEXT (q+A)

commutes up to a natural transformation with suitable properties.

6.4. Fiber integration for the torsor of vertex extensions. Sup-
pose thatA is a transitive Lie algebroid onX and 〈 , 〉 is anA-invariant
symmetric pairing on g(A). Let g = g(q+A) = q∗g(A/S).

Proposition 14. The composition

q∗VEXT X(A)〈 , 〉

∫
X/S−−−→ OSEXT (q+A)

(3.4.1)−−−→ cEXT q+A(g,OS)

is essentially constant.

Proof. For Â ∈ VEXT X(A)〈 , 〉(X), ÂTX/S
is a vertex extension of

g(A/S) = A ×TX TX/S, a TX/S-transitive algebroid with the induced
pairing on g(A) equal to 〈 , 〉. According to Corollary 3 any two such
are uniquely isomorphic. The commutativity of (6.3.1) implies that for

Q ∈ ECAX(X) the induced isomorphism g(
∫
X/S
Â) =

∫
X/S
ÂTX/S

∼=∫
X/S

(Q+Â)TX/S
= g(

∫
X/S

(Q+Â)) is an isomorphism of q+A-modules.

Therefore, all Â ∈ VEXT X(A)〈 , 〉(X) give rise to the “same” K.-M.-V.
extension g̃ of g in q+A-Lie algebras. �
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Proposition 15. The morphism (6.1.1) restricts to the morphism

(6.4.1)

∫
X/S

: q∗VEXT X(A)〈 , 〉 → OSEXT (q+A)g̃

compatible with respective actions of q∗ECAX and PLAS, and (6.2.2).

Equivalently, the PLAS-torsor OSEXT (q+A)g̃ is obtained from the
q∗ECAX-torsor q∗VEXT X(A)〈 , 〉 by “change of the structure group”
along the map (6.2.2).

6.5. Characteristic classes. For (A, 〈 , 〉) let C1(X/S; (A, 〈 , 〉)) de-
note the characteristic class of the PLAS-torsorOSEXT (q+A)g̃ inH2(S; Ω1

S →
Ω2,cl
S ) ∼= H3

dR(S).

Theorem 16. C1(X/S; (A, 〈 , 〉)) = −1

2

∫
X/S

Π(A, 〈 , 〉) .

Proof. It follows from the preceding discussion that C1(X/S; (A, 〈 , 〉))
is the image of the class of the ECAX-torsor VEXT X(A)〈 , 〉 inH2(X; Ω2

X →
Ω3,cl
X ) ∼= H4

dR(S) under the map∫
X/S

: H4
dR(X)→ H3

dR(S).

The characteristic class of VEXT X(A)〈 , 〉 is equal to ch2(TX)−1

2
Π(A, 〈 , 〉)

([B]).
The exact sequence

0→ TX/S → TX → q∗TS → 0

and the additivity of the Chern character show that

ch2(TX) = ch2(TX/S) + q∗ ch2(TS).

Since TX/S is a complexification of a real line bundle it follows that
ch2(TX/S) = 0, and

∫
X/S

q∗ ch2(TS) = 0 (by the projection formula).

Hence, we arrive at the desired formula. �
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