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§1. Introduction.

By a well-known theorem of Matiyasevich [8], [9], a recursively enumerable
set is Diophantine (and therefore there is no algorithm deciding whether a
given Diophantine equation is soluble in Z). Moreover, given a recursively
enumerable set S, one can actually construct a polynomial Pg(¢, %) in Z]t, Z]
such that

S={alaeN, 3b(beZ"& Ps(a,b) =0)}.

The set of the theorems of a formalised mathematical theory, say 7, being
recursively enumerable, is Diophantine (cf. [3, pp. 327-328]); therefore one
can construct a polynomial Fr(t,Z) in Z[t,Z] such that the Diophantine
equation

FT(CI,7 .f) =0

is soluble in Z if and only if a = N () for a formula 2 provable in 7', where
N:F—N

is a suitable numbering of the set § of the well-formed formulae of 7. Let
P be the predicate calculus with a single binary predicate letter (and no
function letters or individual constants). The goal of this work is to write
down explicitly a polynomial Fp(t,Z) as above. By Kalmar’s theorem [7]
(cf. also [12, p. 223]), analysis of provability in any pure predicate calculus
can be reduced to studying provability in P. Moreover, the Godel-Bernays
set theory, to be denoted by &, is finitely axiomatisable in P [5], [12, Ch.4];
therefore, loosely speaking, one may say that the polynomial Fp(t, Z) encodes
the content of pure mathematics (as formalised in &). On denoting by 2 the
conjunction of the proper (non-logical) axioms of & and letting

b=N(2 D> DB)



for some (obviously) false in & formula 98, one obtains a Diophantine equa-
tion

Fp(b, &) = 0, (1)
whose insolubility is equivalent to the consistency of &. Thus to prove that
equation (1) has no solutions in Z, one has to employ an additional axiom,
for instance, the axiom asserting existence of an inaccessible ordinal (cf. [4],
where some combinatorial statements have been constructed, whose prov-
ability depends on that axiom).

In Section 2, we describe the language of P, define a numbering

N:P —N,

and give a Diophantine description of three groups of axioms of P. After
recalling the necessary preliminaries on Diophantine coding and proving a few
technical lemmata, we complete our Diophantine description of the axioms
and the rules of inference of P. Finally, in Section 6, we shall write down a
polynomial Fp(t, ), encoding the predicate of provability in P.

Notation and conventions. As usual, R,Z, and N stand for the field
of real numbers, the ring of rational integers, and the monoid of positive
rational integers respectively. A finite sequence of symbols is denoted by ¥
and L(Z) stands for its length (we write, for instance, ¥ := (yi,...,y,) and
L(Z) = n); let

Txyg:=(ar,...,an,b1,...,by)
stand for the concatenation of the sequences
Z:=(ay,...,a,) and 7 := (by,...,by).
The polynomial

T1+ Ty —2)(x1 + 29— 1
p(xbifz):( ! 2 >2( ! 2 >+5172

defines a bijection
p: N> = N, p: @ p(@) for @ € N?;

moreover,
p(@) > max{ai,ay} for @ € N?

(cf. [2, p. 237]). Given an arithmetical formula 2, let
(Vj<n)A:=Vj((jeN&j<n) = A
For @ € R", d:= (ay,...,a,), let

n
a?:= Za? and |d| := max {|a;| | 1 <j <n}.
i=1



§2. The predicate calculus P.

The predicate calculus P is a first order theory. The alphabet of its language
consists of the set
X :={t; |1 €N}

of individual variables, the binary predicate letter €, the logical connectives:
{=, D} ("negation” and ”implication”), the universal quantifier V, and the
parentheses {(, )}. The set § of the formulae of P is defined inductively. An
expression of the form (z € y), with {z, y} C &, is a(n elementary) formula;
if 2 and 9B are formulae, then = 2, (A D B), and Va 2 are formulae.

Let us define inductively two functions

n:F—N, m:§—N,
and let A(2) == p(n(2L), m(2)).
Definition. Let
n(t; e t;) = p(i,j), m(ti et;) =1
for {i, j} CN. For {21, B} C F and i € N, let
n(= 20) = 3n(A) — 2, m(=A) = mA) + 1,
n(A D B) = 3p(n(A), n(B)), m(A D B) = p(m(A), m(B)) + 1,

and
n(Vt; A) = 3p(i,n(A)) — 1, m(Vt; A) = m(A) + 1.

Proposition 1. The map N': § — N s a bijection.
Proof. It is clear that m(F) = N. For [ € N, let
S ={A|AeF mA) =1}

We shall prove, by induction on [, that the map n: §; — N is a bijection.
It then follows that the maps (n,m): § — N? and N (= po (n,m)) are also
bijective. Since

Svi={(tiety) [{i, j} SN},

for [ = 1, the assertion follows from the properties of the map p. Let [ > 1;
we prove that n(g;) = N, the injectivety of n being proved by a similar
argument. Let k£ € N; we have to find a formula 2 in § with n() = k. For

3



k =3k —2, k1 € N, one can find, by the inductive supposition, a (unique)
formula A with n(2A) = ki, m(A) =1—-1, A € F; then n(—-A) = k. If k =
3k1—1, ky € N, let ky = p(i, j) with {i, j} C N; by the inductive supposition,
there is a (unique) formula 20 in §;,_; with n(2) = j. Then m(Vt; A) =1
and n(Vt; A) = k. Finally, for k = 3k, k1 € N, let [ = p(i,7) + 1. By the
inductive supposition, there are (uniquely determined) formulae 2(; and s
such that

A €8i, A €85, n() =7, n(Ae) =7, pld,j) = ks
then m(2 D B) = and n(A D B) = k. Thus n(F;) = N, as claimed.

Notation. For 20 € § and {z, y} C X, let [A]; and A[z|y] stand for the
set of the free variables of 2 and the formula obtained from 2 on replacing
each of the free occurences of the variable x in 2 by y.

Definition. Let 2 € §; the variable y is free for x in 2, if the variable x
does not occur in 2 in the scope of a quantifier Vy.

There are five groups of axioms in P (cf. [12, pp. 69-70]):
Ap:=A{2A> (BOA) | {A B} C T}

Ay ={RD(BD))D((ADB)D(ADQ))|{A B, ¢} CF};
A; ={(=BD-0)D((-BDOA DOB) | {A, B} CF};
Ay:={Vz (A DB)D (A DVrB) |{A B} CF, x € X\ [AU};
As = {Ve A D Afzly] |A € F, {z, y} C X,
the variable y is free for = in 2(}.

The set T of the theorems of P is defined inductively:
(Bo) U_ A C%
(By) If{2A, (ADW)} C %, then B € T ("modus ponens”).
(By) If A €%, then Vo A € T ("generalisation”).
In what follows, we shall construct a polynomial F(t,Z) in Z[t,Z] such
that
N@E) ={alaeN, 3b(beZ"P & F(a,b) = 0)}.

Our first task is to give a Diophantine description of the predicate "2l is an
axiom of P”; in this section, we describe that predicate for the first three
groups of the axioms.



—

Proposition 2. Let g;(u, ¥)
(u = p(a1,22))? + (21 — 3p(as, 3p(wa, x3)))° + (22 — p(s, p(r6, 75) +1) — 1)
with 7 := (z1,...,x6). Then
N(A) ={u|3b(beN° & gi(u,b)=0)}.
Proof. Let
C:=(AD(BDA)), n(A) = z3,n(B) = x4, m(A) = z5,m(B) = w.

Then n(B D A) = 3p(xy,23) and m(B DO A) = p(xe,x5) + 1. Since
n(€) = 3p(n(A),n(B D A)) and m(€) = p(m(A),m(B D A)) + 1, equa-
tion g (u, Z) = 0 asserts that N'(€) = u. This proves the proposition.

—

Proposition 3. Let go(u, ¥)

(u = p(z1,22))" + (21 = 3p(q1 (), @2())* + (22 — p(as(7), 4a()) — 1)*,

where

—

@1 () == 3p(3, 3p(24, 25)), q4(%) := 1 + p(1 + p(xe, 27), 1 + p(x6, 3))
¢2(7) = 3p(p(xs, v4), 3p(w3, v5)), g3(Z) := 1 + p(wg, 1 + p(a7, 25)),
and Z := (z1,...,25). Then
N(Ay) ={u|3b (beN® & go(u,b) = 0)}.
Proof. Let
D= (A (B>5C) D (ADB) O (A ), n(®) =1, m(D) = s
n(RA) = 24, 1(B) = 24, n(C) = 5, M(A) = 26, m(B) = 27, m(B) = x5

An easy calculation shows that, in these notations, go(u,Z) = 0 if and only
if N(®) = u. This proves the proposition.

Proposition 4. Let g3(u, 7) :=
(u = p(r1,22))* + (21 = 3p(01(T), 42(2)))* + (w2 — p(a3(2), qa()) — 1)?,
where
@1 (Z) == 3p(3zs — 2,323 — 2), q2(T) 1= 3p(3p(3z4 — 2, 73), 24),
g3(7) := 1+ p(ws + 1,25 + 1), ¢u(7) := 1+ p(1 + p(ae + 1, 25), 76),
and T := (x1,...,x6). Then

N(As) ={u|30b (b e N° & gs(u,b) = 0)}.



Proof. Let
C=(("BO-A)D((—=B DA DB)), n(€) =x;,m(€) = xs;

n(A) = x3,n(B) = x4, m(A) = x5, m(B) = x¢.

Then equation g3(u, Z) = 0 is easily seen to assert that N (€) = u.

To give a Diophantine description of the sets of axioms N (A4) and N (As),
we shall make use of the techniques developed in the works relating to the
tenth Hilbert problem, cf. [10] and references therein.

§3. On Diophantine coding.

In this section, following [2] (see also [10]), we state a few lemmata about
Diophantine coding.

Lemma 1. Let f(t,%) € Z[t, Z] with L(¥) = n and suppose that
S={alaeN,3b(beN"& f(a,b) = 0)}.

Then L .
S={alaeN, 3b((beZ" & g(a,b) =0)},

where
4
gt §) = f(t,2), Z:=(21,.... ), 7= > yi, L<j<n

i=1
Proof. See, for instance, [10, pp. 4-6].
Lemma 2. Let f3(m,n, k; %) :=

(27 — (23 — D)ag — 1)* + (2] — (03 — D)ag — 1)* + (25 — (27 — D5 — 1)*+
(z5 — 2923)” + (w7 — 1 — 1023)° + (27 — T2 — T1124)” + (T6 — 21 — T1224)+
(338—]{5—4(5613—1)5173)2+($3—/{E—LE14+1)2+(£L’17—n—3§18)2+($17—]{3—3319)2+
(21 — z3(w3 — 1) — M) + (215 — 1)* (290 — n* — 1)*)%+
(m + w16 — 205 n +n® 4+ 1) + (23 — (22, — 1) (217 — 1)%03, — 1)?,

where T := (x1,...,1%). Then m = n* if and only if

3 (@€ N* & f3(m,n, k;@) =0).



Proof. See [2, pp. 244-248)].
Lemma 3. Let fy(m,n, k; %) :=
fa(wy,2,n; V) + fy(ws, 24,1, 82 + f3(xg, x5, k; 7))+
(21 + 29 — 13)% + (24 — 23 — 1) + (w627 + 28 — T5)°+
(w5 + 29 — (27 + Dag)* + (z7 — m — (z10 — 1)23)* + (m + 217 — 13)%,

where & = 7O % - % 7 with 7 = (zy,...,211), TV 1= (219,...,731),
F? = (239,...,15), T3 = (252,...,27). Then
n!
T =R

if and only if
3ad(ae N & fy(m,n, k;@) =0).

Proof. See [2, pp. 249-250].
Lemma 4. Let fo(m,n;¥) :=
fa(@3, 1, 203 7)) + fa(wa, 23,1, 7D) + fa(ws, 24, 05 7))+

(1 —2n — 12 + (2 —n — 1)* + (mas + 26 — 24)* + (24 + 27 — (M + 1)a5)?,
where T = 7O % -+ % 7O with 7O .= (21,...,27), TV := (25, ..., 207),
7? = (298, ..., 147), T 1= (14s,...,2118). Then m = n! if and only if

3ad (@ e N & fo(m,n;@) =0).
Proof. See [2, pp. 251-252].
Lemma 5. Let fi(m,n,a,b;T) :=
(21 —a—bm)*+(23—bro—1)*+(bry—a—x325)* + (M+28—23) >+ (19 — 24 —1)*+

(m + 2321; — T627210)> 4 folzr, 1 Z3) + fa(26, b, n; T2) + fi(210, 20, 03 TY),

where
T = Z)_L"(O) koo 3k 21_3’)(4), f(o) = ((L’l, . ,JIH), Z)_L”(l) = (ZL’lg, ce ,Jfgl),
Zi"(2) = (,1'32, e ,3351), f(g) = (113'52, Ceey .23169), f(4) = (,1’170, Ce ,[E240).
Then .
m = ||(a+ k)
k=1

if and only if
3¢ (e N & fi(m,n,a,b;¢) = 0).



Proof. See 2, p. 252].

Proposition 5. Let
o(u, j,w; Z) := (u—p(z1,2))° + (w+ 23(1 4+ jizo) — 21)° + (W + 24 — jzo — 2)?
with Z:= (z1,...,24). There is a function
S: N? - N,

satisfying the following conditions: B

(i) w = S(j,u) if and only if 3b (b € N* & o(u, j,w;b) =0);

(12) Vj,u (S(j,u) < w);

(113) if {ar | 1 <k <n} CN for some n in N, then there is a number u
in N such that a, = S(k,u) for 1 <k <n.
Proof. See 2, p. 237].
Proposition 6. Let P(uy,us; 4, 2) € ZLluy,us; ¥, 2], with L(Z) =1, and sup-
pose there is a polynomial R(uq,us; ) in Zluy, us; Y] such that

|P(n, j; @, b)| < R(n, T; )

fora e N'W {n j1CN, j<n, beN, |g\ <T and

R(cy,co;@) > maz{cy, co}

for {c1,c2} CN, @€ NEW . Write, for brevity,

-

Hi(Z,b) := folbs, by @) + f1(bs,n, 1, bg; 83 + (bg — bybs — 1)%+

l
(by — bsbr)? + (3D — & = B)2 + > fulbeai”, by, o, 1;7),
=1
where

—

bi=(bi,...,bs), B:=(Br,...,0) with B; =by+1for 1 <i<l,

F=aW s @ with @ = (@), 2P,
L(@W) = L(#Y) = L(Z) = 1, L@?) = 118,

)
L(#®) = L(Z®)) = 240 for 1 <i <1,

and '
L(F) = > L(@%) =244l + 358.

1<i<5+1



Then
(Vj <n)3c(eN & P(n jaj 0)<:>
37,6 (be N & & € N*® & (P(n,by;a@,70) — by)*+
(R(n, bs; @) — by)? + Hy(Z,b) = ))fom c NE@),
Proof. See [2, pp. 253-256].

§4. A few technical lemmata.

Lemma 6. The variable t; does not occur as a free variable in a formula ¢
if and only if there is a sequence of formulae {1, ..., on} such that @, = ¢
and, for every j in the interval 1 < j < n, one of the following conditions
holds true:

(i) @y = (< t)) and i & {k, 1},

(17) goj = Vt; ¥ for some 9 in §,

(i17) @j = (pr, D 1) with 1 < k,l <n,

(iv) gaj = with 1 < k < n,

(v) @; =Vt, ¢p withv e N, 1 <k < n.
Proof. Let m(p) = 1 and suppose that ¢; is not a free variable of ¢. Then
¢ = (ty € t;) with i & {k,l} and we may taken = 1, p; = ¢. Ilf m(¢) = 1 and
there is a sequence {1, ..., ¢,} as above, then ¢,, must satisfy condition (7)
(since m(p,) = m(p) = 1) and therefore ¢; is not a free variable of ¢ (= ¢,).
Let m(¢) =1, I > 1 and suppose the assertion be true for any formula ¢’
with m(y’) < 1. If ¢, satisfies condition (i7), then ¢; is not a free variable of
© (= pn). If p, satisfies one of the conditions (iii), (iv), (v), then ¢; is not a
free variable of either ¢y or ¢;, by the inductive supposition, and therefore t;
is not a free variable of . Suppose that ¢; is not a free variable of ¢. Since
m(¢p) > 1, the formula ¢ must contain one of the logical connectives =, D, V.
If p € {= 4, Vt, ¥} and v # i, then ¢; is not a free variable of ¢, therefore, by
the inductive supposition, there is a sequence of formulae {1, ..., ¢,} with

, =1 and we may let n = pu+1, ¢, = . If ¢ := (Y1 D 1), then ¢; is not a

free variable of either 1)1, or of )5, and, by the inductive supposition, there are
two sequences of formulae {¢1,...,¢,} and {¢},..., ¢} with ¢, := ¢ and
¢, = 1)9; in this case, the sequence of formulae {p1,..., ¢, ©1, ..., ¢, ¢}
satisfies the conditions of the lemma.

Lemma 7. Let {r1,m} C N and {p,v} C §. Then the variable t,, is free
for t., in @ and ¢ = @[t |t.,] if and only if there are three sequences

{Spla"'?SOTL}a {?/117---,@%}, {dla"'adn}



such that

{onv %} gg&dj < {172}f071 SJS<n, on=¢, Yy =1,

and, for every j in the interval 1 < j < n, one of the following conditions
holds true:

1) ;= (try € tr,) withry & {rs, 4}, d; =2, ¢Y; = @;;

2) @j = (tyy € tr,) with i € {rs, 14}, dj =1, ¥ = g;t,, [tr,];

3) Qi = TPk, dj = dj, ¢j = with 1 < k < j,

4) w; = (SOk D QO[), ’gbj = (’(/Jk D) ’I/Jl), dj = (dk — 1)(dl — 1) +1 with

1<k l<y;

5) ;1= Vt,, o with rs & {r1,r2}, V¥; =Vt o, dj =di, 1 <k <j;

6) pj =Vt o with 1 <k <j, o;:=;, d;j =2;

7) pj =V, op with Ty # 19, V) =, d; =di, =2, 1 <k <j.

Moreover,
dj :{ 1 Zf tr, € [Spj]f
2 Zf tn ¢ [on]f
for1 <j <n.

Proof. Let m(y) = 1, then ¢ := (¢, € t,,) with {r3, 74} C N, so that the
variable t,, is free for ¢,, in ¢. Let ¢ := ¢[t,, |t,,], n =1, and

g 1 if ry € {rs,ra}
71 2 ifm & {rs,r4};

the assertion of the lemma is now obvious. Let now m(y) = [, [ > 1
and suppose the assertion be true for any formula ¢' with m(¢’) < [. If
;= Vt,, ¢ with ¢’ € §, then ¢, & [¢]; and the assertion is obvious; if
;= Vi, ¢ with ¢/ € §, then t,, is free for ¢, in ¢ if and only if ¢,, & [¢']¢
(and therefore ¢,, & [¢]s) and the assertion is again obvious. Finally, if

P e {_' 90/7 Vtrr, ()0,7 90/ D) 90//}7 with {90,7 ()0”} - 87 3 ¢ {T17T2}7

then one can deduce the assertion from the inductive supposition arguing as
in the proof of Lemma 6.

Notation. Let
ho(J; %) == (jo— ji + 1)+ (Js — ji +22)* with 5 := (j1, jo, Ja), 7 := (21, 72).
It is clear that
FT (e N & ho(7,7) =0) < max{js, js} < ji.

The following lemma is a Diophantine reformulation of Lemma 6.

10



Lemma 8. Let C;:={A | A € F, t; ¢ [As}. Then
N(C) = {v | Bali,v)},

where By(i,v) =
Jw,n {w,n} CN& (V51 <n) 3y € N* & (Quln, j1;4,v,w; ) = 0)))

with
3
Q4(n, j1; 1, v, w; Y) := Za(w,jy, Ty, Z(”)) + o(w,n,v; 2(4))—1—
v=1
3 5
ho(j; Ty, 935) + Z(% - p(f)«“4+2u, 335+2u))2 + H ql/(ia 9?);
v=1

@1 (i, ) := (w7 —1)° 4+ (26 —p(212, 213) ) >+ (212 — 1) —214) >+ (213 — 1) * —215)?,

q2(1, %) = (x6 — 3p(i, x16) + 1)2 + (7 — 217 — 1)2,
g3(i, %) := (z6 — 3p(ws, 710))* + (27 — p(w9, 711) — 1)?,

Q4(i, f) = (.TG — 31’8 + 2)2 + (1177 — X9 — 1)2,

q5(1, 7) = (w6 — 3p(z12, 78) + 1)? + (27 — 19 — 1)*;
. ,[E17), g:: (j27j3) * f* Z,

7= (o o), Ti= (an, -
7= 20 sk ox 2@ and 20 = 02 for 1 < v < 4, so that
L(y) = 35.
Proof. In view of Proposition 2, the formula
3
=0))

Jw, Z(w e N&Ze N & (Z o(w, ju, xy; Z) + o (w, n, v; ZY)
v=1
asserts that there is a sequence of natural numbers {ay,...,ay}, satisfying

the following conditions:

an} CN; a;, =, for1 <v <3, a, =0,

{al, ..
while the formula 3 Z(ho(J; 24, 25) = 0) asserts that max{j,, js} < ji. Let
,n} be a sequence of formulae in § with N (¢, ) = a, for

{9017 e
1<v<n If
3
Z(xu — p($4+2u, $5+2u))2 =0,
v=1

11



then n(p;,) = T4y2, and m(yp;,) = @549, for 1 < v < 3. It follows now
that ¢1(¢,7) = 0 if and only if m(¢;,) = 1, ¢, = (t12 € t13) and ¢ ¢
{12,13}; ¢2(4,Z) = 0 if and only if ¢;, := Vt;¢ for some ¢ in §; ¢3(i,7) =0
if and only if ¢;, = (v;, D @;,) With 1 < ja, j3 < j1; q4(¢,Z) = 0 if and only
if pj, == —pj, with 1 < jo < ji; ¢5(i,7) = 0 if and only if p;, := Vt,p;, with
v eN, 1< jy<ji. Thus, in view of Lemma 6, the formula B, (i, v) asserts
that the variable ¢; does not occur as a free variable in the formula N ~1(v).

Corollary 1. Let

Ay(u) :=Fi,v ({i,v} SN & By(i,v) & IG5 € N* & (ha(u;d,v; ) = 0))),

where

ha(u;i, v ) = (u—p(gr(i, §), as(9)))? + (v — p(y3, ya))?,

q7(i, ) = 3p(3p(i, 3p(y1, y3)) — 1, 3p(y1, 3p(i, ys) — 1)),

4s() == p(p(y2, ya) +2,p(y2, ya + 1)) + 1; ¥ := (Y1, .., ya)-
Then
N(Ay) = {u | As(u)}.
Proof. Let
C:=Vt; (ADDB) D (A DV B)

and let

n(2A) = y1, m(A) = y2, n(B) = y3, m(B) = yu.
An easy calculation shows then that

N(@ = p(qr(4,9), gs(7)) and N(%) = p(Y3, Ya)-

The assertion follows now from Lemma 8.
The following lemma is a Diophantine reformulation of Lemma 7.

Lemma 9. Let
e =
[7] 01 = N ()12 = N(W), 0 € F, @ = plbn ltr], by s free forty, in g},

where 7 := (r1,7r2) and U := (v1,vs). Then
C(7) = {7 | v € N* & B;(7,7)},
where B5(v,7) :=Jw,n (WeN>&neN&
(Vi1 < n) 357 € N? & (Qs(n, j1; 0,7, @ §) = 0))

12



with
Q5(n7j1;177 FJ 117,?7) = Z O-(wlv.]llux?)(l )4vs % z + Z U)Z,TL Vi, 2 24))+
1<4,v<3 ie{1,2}

6 9 7

ho(fi 13, w1a) + (15 — plwin, 2))® + Y (w1 — 1) (2 — 2)° + [ [ (7. ),

=1 =7 i=1

where

¢y (7, %) = (12— 1)*+ (27— 1)+ (242 —1)*+ (211 —p(r3, 1))+ (241 —p (73, 72) )2,

3(F, @) == (z11 — 3wa1 + 2)* + (112 — w22 — 1)° + (w7 — w5)°+
(241 — 3x51 + 2)° + (242 — 52 — 1)%,
(7, %) = (27 — (x5 — 1) (29 — 1) — 1)* + (211 — 3p(201, 731))*+
(12 — (w22, 232) — 1)* + (241 — 3p(ws1, 2e1))? + (242 — 3p(252, Tg2) — 1)7,
qs(7, &) := (w11 — 3p(rs, x21) + 1)* + (212 — 222 — 1) + (w7 — 25)*+
(w41 — 3p(rs, x51) + 1)° + (242 — x50 — 1) + ((r3 — 1) (3 — 12)” — 210)7,
q6(7, @) = (w11 = 3p(r1, w21) + 1)% + (212 — w22 — 1)* + (w7 = 2)* + (24 — 1),
¢7(F, @) == (z11 — 3p(ra, x21) + 1)° + (212 — w2 — 1)* + (27 — 2)°+
(5 — 2)* + (x4 — 21)* + ((ro — 71)? — 710)*%;
@ = (w1, wa, w3), J = (j1, 2, J3), 2 = ZY) zé Y) x Zgy) forl <wv <3,
A .= 2(14)*5(2 , wzthL( ) =4for1 <i<3,1<v<4, 2= AR OF
= (rg,ry) * (1, ..., 214) * (To1, Tz, . . ., Te1, Te2), Y = (Jo,J3) * T * Z,

so that L(y) = 72.
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Proof. In view of Proposition 2, the formula
aw,z(weN?’ &ZeN" &
( Z o (Wi, Ju, T3(i-1) +,,, )+ Z o(wi,n, v, 2Y) = 0))

1<i,v<3 ie{1,2}

asserts that there are three sequences

{o1, .- yonks {1, 0}, {di,...,dn}
such that
N(gj,) =2y, N(¥j,) = 2yy3, dj, = xq6 for 1 <v <3,
N(pn) =v1, N(¢n) = vz
and the formula
3 213, 21a({213, 214} € N & (ho(J; 213, 714) = 0))

asserts that max{j,, j3} < 71. Under the assumption

6

Z(ﬂfz — plzi, ri2))? =0,

i=1

the formula
3 Z(7 € N* & ¢i(7, %) = 0)

is equivalent to the condition i), 1 <7 <7, in Lemma 7. On the other hand,

equation

D (= 1)z -2 =0

i=7
asserts that d; € {1,2}, for every j in the interval 1 < j < n. Lemma 9
follows now from Lemma 7.

Corollary 2. Let

As(u) := 30,7 ({U,7} C N? & B5(v,7) & 3 5(5 € N* & (hs(u; v, 7,5) = 0))),

where

hs (u; 0,7, 8) := (u—p(qo(7, 8), q10(5)))* +(v1 —=p(s11, 512))* + (V2 = (501, 522) ),
9 (7, 5) = 3p(3p(r1, s11) — 1, 521), quo(5) :=p(s12 + 1, 522),

and §:= (S11, S12, S21, S22). Then

N(As) = {u | As(w)}-

14



Proof. Let € := (Vt,, © D D]t,,|t,,]) and let
N (D) =v1 = p(s11, 512), N (Dt [tr,]) = va = p(s21, 522).-

An easy calculation shows then that N'(€) = p(qo (7, 5), q10(5)). The assertion
follows now from Lemma 9.

§5. Elimination of universal quantifiers.

It follows from Proposition 6 that formulae 2(4(u) and 5(u) define Diophan-
tine predicates. In this section, we shall explicitly write down polynomials
94(u, %) and g5(u, ¥) such that

{u| A, (w)} ={u|3b(beN®&g,(u,b) =0)}
for v =4,5.
Lemma 10. Let
Ry(21, 221, v, w) = 8w? + 4v* + 100z} + 101°(i'° + 239).

Then

Q4(n>j1; ia U, W; 37) S R4(TL, Ta ia U7w) fO?”jl S n, ‘Zﬂ S T7
ge N357 {/L7 U7w7 n?.]l} g N’
Proof. Under the conditions

jl S n, |g| S T7 ?je N357 {7;7U7w7n7j1} g N’

it follows that

3
ho(j; Ty, w5) < 1672 + 4n?, Z(% — p(Tas00, T510,))? < 50T,

v=1

o(w, ju, x,, 2) < 20% + 60T for v = 2,3, o(w, ji, 21, 7V) < 2w* 4+ 72702,

and o(w, n, v, 7) < 2w? 4 4v? + 70T*n%. Moreover, under the same condi-
tions, we have

q(i, ) < 16i* + 60T, qo(i, 7) < 4i* + 270T*, q3(i, Z) < 1257,

qa(i,7) < 45772, and ¢5(i, %) < 1307*. The assertion of the lemma follows
from these estimates and the definition of the polynomial Q4(n, ji; i, v, w;¥)
in Lemma 8.

15



Lemma 11. Let
Rs(21, 29 0,7, W) 1= 8% 4+ 402 +2-10%2} +3-10%25* +-5-10' 7% + 5. 10'7r5%).
Then
Qs(n, j1; U, 7,0; ) < Rs(n, T; 0,7, ) for j1 <n, |§] <T,
7e N2 {n,j;} CN,{7,7} CN* @ e N
Proof. Under the conditions
J1<n, |y <T,7€N? {n,ji} CN, {77} CN* & € N°,

it follows that ho(J; 13, 214) < 16T + 4n?,

M-

(2 — plwa, Ti2)) +Z —2)? < 100T%,

i=1

o (Wi, Ju, T3(i-1) 40 5;(”)) < 2* + 1807° for v = 2, 3,

(]

1<i<

3
Z o (Wi, j1, T3i—2, 2 ﬁf )) < 2”4 108T® + 108n*,

1<i<3

and
> o(wi,n, v, 2Y) < 207 + 402 + 70T + 700",
1€{1,2}

Moreover, under the same conditions, we have ¢ (7, £) < 2007 + 200r%,
03(7, ) < A0T* + 20 + 21y, ¢y (F.T) < 201" + 81} + 8r,
g3(7, &) < 10072, (7, ) < 2507, g5(, %) < 500T" + 507 + 5013,

4o (7. F) < 1507 + 207, q7(7, &) < 1507 + 4rf + dry.

The assertion of the lemma follows from these estimates and the definition
of the polynomial Q5(n, ji1; ¥, 7, &; ¥) in Lemma 9.

Notation. Let
P4(n7j1; i7 v, W, Zj) = 28@4(,”’]'1; 7:7 v, W, g)?
Ril(zb 22, 2.7 v, 'LU) = 28R4(zl> 223 i? v, UJ),
PS(na jl; 177 7?7 Uja 37) = 214@5(”7 jl; 177 7?7 Uja 37)7
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RIS(Zla 295U, T, zﬁ) = 21435(21722;?7; T, 16)

Since 2p(x,y) € Z|x,y], it follows that
P4(n7j1; i7 v, W; Zj) S Z[n7]17 7:7 v, W; g]

and
PS(nmjl; U? F? Uj? ?7) € Z[n7j17 U? F? Uj? ?ﬂ
Therefore one concludes as follows.
Proposition 7. Let gy(u, 2V) :=
h4(u7 i? v, g) +H35(f7 g)+(P4(’I’L, bl7 i7 U, w; f(l)) _b2)2+(Rﬁl(n7 b37 i7 v, w) _b4)27
where 20 = Fxbx §x (i,v,w,n), L(ZV) = 8913; then

N(A) ={u|3b (b e N & gy(u,b) = 0)}.

n), L(Z?) = 17945; then

Il
8
*
=l
*
<y
*
=
*
ny
*
g
*
~—~

N(As) ={u| 3b (b e N"™* & g5(u,b) = 0)}.

Proof. In view of the estimates obtained in Lemmata 10 and 11, the asser-
tion follows from Corollary 1, Corollary 2, and Proposition 6.

§6. The main theorem.

Proposition 8. Let

G1(; @) == (u1 — p(x1,22))* + (us — p(w3, 24))°+

(us — p(xs,76))* + (w5 — 3p(x3, 1)) + (36 — (T4, T2) — 1),

where U := (uy, ug, u3), T := (x1,...,26). A formula Ay follows from formu-
lae Ay and A3 by the rule (By) if and only if

-

3b (be N & Gy(ii;b) = 0)
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with w; == N (A;) for 1 <i<3. Let
Go(i0; 7, @) == (uy — p(ws, x3 + 1))° + (ug — p(x1, 22))* + (w3 — 3p(r, 21) — 1)?,

where @ = (uy,uz), T := (21,29, 23). A formula Ay follows from a formula

Ao by the rule (By) if and only if
3b,r (be N> &reN & Gy(i;r,b) = 0)
with u; := N (24;) fori=1,2.

Proof. The assertion follows from the definition of the inference rules (B;)
and (B,) since the formula

-

35 (b e N® & Gy(ii; b) = 0)
asserts that 203 := A5 O A, and the formula
3b,r (be N* & reN& Gyli;r,b) = 0)

asserts that 20, := V¢, 2.
The following lemma is a Diophantine reformulation of the definition of
the set ¥ of the theorems of P.

Lemma 12. Let

3

Qn, ji; v, u; @) =Y o(u, fi, 23 29) + o (u,n,v; 79)+
=1

5

=1
where
7= (i gesga)s = (21, 25), W= (jo, ja) % T Z5, 2= ZV s 70,
?7(5) =y = (?Jb e 7?/17945)7 ?7(6) = ?7(3) = g(l) = (yl> e 7?/6),
g@) = (y17 .. '7y8)7 g(4) = (ylv‘ .- 7319013)7 Zjﬁ) = (ylv‘ .- 7y4)7

L(Z9) =4 for 1 <i < 4, so that L(G) = 17968. Then
N(E)={v|Fu,n {u,n} CN& Av;u,n))},

where

W(v;u,n) = (V51 < n) ID(Q(n, ji;v,u; W) =0).

18



Proof. The formula 3 u,n ({u,n} € N & A(v;u,n)) can be easily seen to
assert that v € V().

Lemma 13. Let
R(21, 29,0, u) := 8u® + 4v* + 10%2] + 10'%322%2,
Then
Q(n, j1;v,u; @) < R(n, T;v,u) for j1 <n, |0 < T,% € N, 1 := 17968,
with {v,u,n, 51} C N.
Proof. Under the conditions
ji<n, |@ <T, weN, {v,un,j}CN,

it follows that
3
Z o(u, ju, x; 20 + o (u, n, v; 7)) + ho(f; T4, 75) < Su? +4v* +10*n* +10*T®
i=1
and

G1($1, Lo, X3, 37(6))G2($1, T2; ?](7))91 ($1, Q(l)

< 2.10%278,

+2)

)92($lay )93@17?](3))

Moreover, one can show that
ga(z1, M) < 1077 and g5 (1, ¢V) < 1097,

The assertion of the lemma follows from these estimates and the definition
of the polynomial Q(n, ji; v, u; ).

Notation. Let

P(”’?jl; v, U; ru_j) = 282Q(n7j1; v, U, w) and R,(Zla 22,0, U) = 282R(217 22,0, ’LL)

Theorem 1. In notations of Proposition 6, let
F(U7 Z) = (P<n7 b17 U, U, f(l)) - b2)2 + (R,(n7 b37 v, U) - b4)2 + Hl(fu g)

with | := 17968 and Z := (u,n) x &, so that L(Z) = 2441 + 360 = 4384552.
Then o ) )
N@E)={alaeN, 3b(beZ" & F(a,b) = 0)}.

Proof. As in Section 5, one can show that P(n, ji;v,u; W) € Z[n, j1; v, u; 0.
Therefore, in view of Lemma 13, the assertion follows from Proposition 6 and
Lemma 12.
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§7. Concluding remarks.

In accordance with Lemma 1, let f(v,t) := F(v, Z), where 2 := (21, ..., zn),
zpi= Y tfor 1< j <m, £i=(tin, ..t oty - toa), 1= 4384308,
Then o .

N©E)={a|aeN, 3b((bcZ" & f(a,b) =0)}. (2)

The universal polynomial f(v, f), constructed in this paper, is rather com-
plicated, compared to the ”combinatorially” universal polynomials of Yu.V.
Matiyasevich and J.P. Jones, [6], [10, p. 70]; a somewhat more simple univer-
sal polynomial will be found in the forthcoming work [1]. It is an interesting
unsolved problem to construct substantially more simple polynomials, satis-
fying condition (2).

Acknowledgement. We are indebted to Professor Yu.V. Matiyasevich for
a private communication [11], relating to this work.
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