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Introduction. Most of the work done during my stay at the MPIM concerned the structure
of discrete groups acting on RCD(K,N) spaces. The class RCD(K,N) consists of metric
measure spaces having “Ricci curvature ≥ K and dimension ≤ N” in a synthetic sense; a
Riemannian manifold equipped with its usual volume measure is an RCD(K,N) space if
and only if it has both Ricci curvature ≥ K and dimension ≤ N . Roughly speaking, an
RCD(K,N) space is a metric measure space (X, d, µ) satisfying two independent properties:

• The entropy functional Entµ : P2(X)→ R, defined on the space of probability mea-
sures having finite second moment, is more concave than the corresponding entropy
functional in the N -dimensional space form of constant sectional curvature K/(N−1)
(and consequently constant Ricci curvature K).
• The Sobolev space H1,2(X) is a Hilbert space.

For a precise definition see [AGMR15] (which builds upon [CC97, LV09, S06a, S06b, AGS14]).
The main advantage of working in this general and technical setting is that it is closed under
some natural constructions.

• If M is an (N−1)-dimensional Riemannian manifold of Ricci curvature ≥ N−2, then
the cone and the suspension of M are in general not Riemannian manifolds, however,
they are RCD(0, N) and RCD(N − 1, N) spaces respectively (when equipped with
suitable measures).
• If M is an N -dimensional Riemannian manifold of Ricci curvature ≥ K and G ≤

Iso(X) is a compact group of isometries, then M/G is in general not a Riemannian
manifold, but it is an RCD(K,N) space when equipped with an appropriate measure
(the same also holds if G is discrete instead of compact).
• If Mi is a sequence of N -dimensional Riemannian manifolds of Ricci curvature ≥ K,

and the sequence Mi converges in the measured Gromov–Hausdorff sense to a metric
measure space then such space is an RCD(K,N) space but rarely a Riemannian
manifold.

C-abelianicity. The classic Bonnet–Myers theorem states that if a compact Riemannian
manifold has strictly positive Ricci curvature then its fundamental group is finite. This is
just a particular instance of the phenomenon

[positive curvature] ⇒ [small π1].

A deeper instance of this phenomenon is that the fundamental group of a compact RCD(0, N)
space contains an abelian subgroup of finite index. In the setting of Riemannian manifolds
of non-negative sectional curvature it was conjectured by Fukaya–Yamaguchi that this index
can be bounded by a number depending only on the dimension. This conjecture has been
established under a non-collapsing condition on the universal cover [MRW08], and together
with Santos-Rodŕıguez we generalized this result to RCD(0, N) spaces [SZ23].

Definition 1. Let (X, d, µ, p) be a pointed RCD(K,N) space. Its essential dimension is
defined to be the supremum of k ∈ N for which there is x ∈ X and a sequence λi →∞ such
that (λiX, x) converges in the pointed Gromov–Hausdorff sense to (Rk, 0). Its collapsing
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volume is defined as

vol∗K,N(X, p) := inf dpGH((X, p), (Y, q))

where dpGH denotes the pointed Gromov–Hausdorff distance and the infimum is taken among
pointed RCD(K,N) spaces (Y, dY , µY , q) of essential dimension strictly less than the one of
(X, d, µ).

Theorem 2. For each N ≤ 1, D > 0, ν > 0, there is C > 0 such that the following holds.
Assume (X, d, µ) is an RCD(0, N) space of diameter ≤ D and there is p ∈ X̃ in the universal
cover such that vol∗0,N(X̃, p) ≥ ν. Then there is an abelian subgroup Γ ≤ π1(X) of index ≤ C.

Assuming that the fundamental group is finite, we were able to establish a similar result
under an arbitrary lower curvature bound.

Theorem 3. For each K ∈ R, N ≤ 1, D > 0, ν > 0, there is C > 0 such that the following
holds. Assume (X, d, µ) is an RCD(K,N) space of diameter ≤ D and there is p ∈ X̃ in the
universal cover such that vol∗K,N(X̃, p) ≥ ν. If the group π1(X) is finite, then there is an
abelian subgroup Γ ≤ π1(X) of index ≤ C.

The proofs of both theorems above are similar to the corresponding ones for smooth man-
ifolds with sectional curvature lower bounds. However, in order to establish Theorem 3 we
required a diameter bound on the universal cover X̃. This generalizes a result of Kapovitch–
Wilking [KW11] with an entirely different proof based on the description of approximate
groups by Breuillard–Green–Tao [BGT12].

Theorem 4. For each K ∈ R, N ≤ 1, D > 0, there is D̃ > 0 such that if an RCD(K,N)
space of diameter ≤ D has finite fundamental group, then its universal cover has diameter
≤ D̃.

Anderson finiteness. A key tool to prove Theorems 2 and 3 is the principle that if a
sequence of N -dimensional Riemannian manifolds of Ricci curvature ≥ K doesn’t collapse,
then their isometry groups do not admit non-trivial small subgroups. Santos-Rodŕıguez and
I generalized this result to RCD(K,N) spaces of arbitrary rectifiable dimension. This was
later refined in [Z23] as the ensuing result.

Theorem 5. For each K ∈ R, N ≤ 1, ν > 0, there is ε > 0 such that the following holds.
Let (X, d, µ, p) be a pointed RCD(K,N) space and Γ ≤ Iso(X) a discrete group of measure
preserving isometries such that the quotient space satisfies vol∗K,N(X/Γ, [p]) ≥ ν. Then

{g ∈ Γ| dp(g, IdX) ≤ ε} = {IdX}.

In the above theorem, dp denotes a natural metric in the group of isometries that induces
the compact-open topology. As a consequence of this result, we deduce an extension to
RCD(K,N) spaces of a finiteness result by Anderson [A90].

Theorem 6. For each K ∈ R, N ≤ 1, D > 0, ν > 0, the class of RCD(K,N) spaces of di-
ameter ≤ D and collapsing volume ≥ ν contains finitely isomorphism classes of fundamental
groups.
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Margulis Lemma. Together with Qin Deng, Jaime Santos-Rodŕıguez, and Xinrui Zhao,
we fully described the fundamental groups of small RCD(K,N) spaces [DSZZ23].

Theorem 7. For each RCD(K,N) space (X, d, µ) of diameter ≤ ε(K,N), there is a subgroup
Γ ≤ π1(X) of index [π1(X),Γ] ≤ C(K,N) with Γ = 〈u1, . . . , uN〉 and [ui, uj] ∈ 〈uj+1, . . . , uN〉
for each i, j.

This result was originally proven for smooth Riemannian manifolds by Kapovitch–Wilking
and for most of our proof, we just follow their steps. However, the original proof makes heavy
use of the fact that if one controls the derivative of a diffeomorphism f : M →M at a point
p ∈ M , then one gets for free control on the local behavior of f in a neighborhood of p.
In the non-smooth setting, this elementary fact of calculus is missing, so in order to prove
Theorem 7, we establish a highly technical replacement of smoothness for gradient flows of
harmonic functions [DSZZ23, Theorem 1.2], building on top of previous work of Deng.

It was also proven in [KW11] that in the setting of Theorem 7, if X is a smooth Riemannian
manifold, and 〈ui, . . . , uN〉/〈ui+1, . . . , uN〉 = Z for all i, then X is homeomorphic to an
infranilmanifold. Together with Xingu Zhu, we generalized this result to RCD(K,N) spaces
as well [ZZ24], this time with a completely different proof, building upon the results of
my PhD thesis, which were inspired on a short basis construction by Breuillard–Green–Tao
[BGT12].

Papers

Papers written entirely during my stay: [DSZZ23, SZ23, Z22, Z23, ZZ24]

Papers significantly edited during my stay: [Z24b, Z24a].

Lectures

Hauptseminar Differentialgeometrie Topic: Curves and surfaces in R3. After this
course, two Bachelor students wrote their theses under my direction [Ki24, Ko24].

Mathematicians from Bonn

Jaime Santos-Rodŕıguez: Postdoctoral researcher at MPIM. [DSZZ23, SZ23].
Xingyu Zhu: Postdoctoral researcher at University of Bonn. [ZZ24].
Cameron Rudd: Postdoctoral researcher at MPIM.
Andrew Ng: PhD student at University of Bonn.
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