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Introduction

Schur—Weyl duality philosophy in the Hecke algebra setting

In this monograph we consider a phenomenon which occurs in the study of certain classes and categories of
representations of semisimple Lie algebras, groups of Lie type, and the related quantum groups. This phenomenon
is similar to the classical Schur—Weyl duality. However, the relevant classes of representations are quite different
from the finite-dimensional irreducible representations of the general linear group or, more generally, of complex
semisimple Lie groups which appear in the Schur—Weyl setting.

All examples of the above mentioned type are realizations of the following quite general construction a homo-
logical version of which was suggested in [109] (in fact, in the quantum group case the construction presented below
requires some technical modifications; we shall not discuss them in the introduction). Let A be an associative
algebra over a unital ring k, B C A a subalgebra with a character x : B — k. Denote by k, the corresponding
rank one representation of B. Let @}, = A ®p k,, be the induced representation of A.

Let Hk(A, B, x) = End4(Qy)°"? be the algebra of A-endomorphisms of @, with the opposite multiplication.
One says that the algebra Hk(A, B, x) is obtained from A by a quantum constrained reduction with respect to the
subalgebra B. Hk(A, B, x) is an algebra of Hecke type. Indeed, if A is the group algebra of a Chevalley group over
a finite field, B the group algebra of a Borel subgroup in it, and x is the trivial complex representation of the Borel
subgroup one obtains the Iwahori—Hecke algebra this way (see [56]).

For any representation V' of A the algebra Hk(A, B, x) naturally acts in the space

Vy = Homa(Qy,V) ~ Homp(k,, V)

by compositions of homomorphisms and for any Hk(A, B, x)-module W Q, ®i(a,B,x) W is a left A-module. Let
Hk(A, B, x) — mod be the category of left Hk(A, B, x)-modules and A — mod}, the category of left A-modules
of the form Q, ®uxa,B,y) W, where W € Hk(A, B, x) — mod, with morphisms induced by morphisms of left
Hk(A, B, x)-modules. The point is that in many important examples A — mod}; is a full subcategory in the
category of left A-modules, and the functors Homa(Qy, ) : A —mod}; — Hk(A, B, x) — mod and Qy ®ui(a,B,y) - :
Hk(A, B, x) — mod — A — mod}, yield mutually inverse Schur-Weyl type equivalences of the categories,

A — mod}; ~ Hk(A, B, x) — mod. (1)
In these cases for W € Hk(A, B, x) — mod one has
(Qx ®ni(a,B,x) W)y = Homa(Qy, Qx ®u(a,B,x) W) = Homp(ky, @y @nia, ) W) =W,
and for W, W’ € Hk(A, B, x) — mod by the formula above

Hom A (Qy ®na,Bx) W', Qy @nk(a,B,x) W) ~ Hompy(a, g,y ) (W', Homa (Qy, Qx @uk(a,B,x) W)) ~
= Hompy(a,5) (W, W).

At first sight the category A—mod?}; looks a bit exotic. But it turns out that in many situations it has alternative
descriptions in terms of the algebra A, its subalgebra B and the character x only, and actually such categories and
the related algebras of Hecke type played a very important, if not central, role in representation theory for at least
last sixty years.

An important example of equivalences of type (1) was considered in [72]. In this paper Kostant showed that
algebraic analogues of the principal series representations, called irreducible Whittaker modules, for a complex
semisimple Lie algebra g are in one-to—one correspondence with the one-dimensional representations of the center
Z(U(g)) of the enveloping algebra U(g)



In the situation considered in [72] the algebra Z(U(g)) is isomorphic to Hk(A, B, x) with A =U(g), B=U(n_),
where n_ is a nilradical of g, and y being a non-singular character of U(n_), i.e. it does not vanish on all simple
root vectors in n_. The category A — mod}; in this case can be described as the category of g—modules on which
x — x(z) acts locally nilpotently for any = € n_.

This correspondence was generalized in [89] and in the Appendix to [97] to a more general categorical setting
and the categorical equivalence established in the Appendix to [97] is called the Skryabin equivalence.

Similar equivalences were obtained in [97] in the case of semisimple Lie algebras over fields of prime characteristic
and in [116] in case of quantum groups associated to complex semisimple Lie algebras for generic values of the
deformation parameter. Various approaches to the proofs of the above mentioned statements have been developed
in [42, 120].

An analogous construction appears also in the case of finite groups of Lie type (see [19], Chapter 10) and
of finite Chevalley groups (see [63, 64]). In the latter case the corresponding modules @), are called generalized
Gelfand—-Graev representations.

Note that in general the problem of classification of Hk(A, B, x)-modules is usually very difficult. Sometimes
it is easier to classify irreducible objects in the category A —mod}, and then to translate the result to the category
Hk(A, B, x) — mod (see [76, 77] for the case of algebras Hk(A, B, x) considered in [97]).

A strategy for establishing Schur—Weyl type equivalences in the Hecke algebra setting
for Lie algebras and quantum groups, and its relation to Zhelobenko operators

In all cases considered in [72, 89, 97, 116] the algebras A and B, the characters y and the appropriate categories
A —mod}, and Hk(A, B, x) — mod of representations of A and of Hk(A, B, x) are relatively easy to define. It is
much more difficult to obtain alternative descriptions of the category A — mod}. However, one should note that
the approach to this problem in all papers mentioned above is slightly different: all those papers start with the
description of a category of A-modules in intrinsic terms using the algebra A, its subalgebra B and the character
X- And then one proves that this category is equivalent to the category Hk(A, B, x) — mod, the equivalence being
established using the functors Homa(Qy,-) and Qy ®mia,B,y) - Finally one deduces that this category actually
coincides with A — mod’.

In the Lie algebra case the most simple proofs of statements of this kind were proposed in the Appendix to
[97] in the zero characteristic case and in [120] in the prime characteristic case. But the phenomenon behind these
proofs is already manifest in [72]. Namely, in the case of Lie algebras over fields of zero characteristic one always
has A = U(g) and B = U(m) for some reductive Lie algebra g and a nilpotent Lie subalgebra m C g, and the
above mentioned phenomenon amounts to introducing a second U(m)-module structure on @, by tensoring with
the one-dimensional representation k_, and to demonstrating that for k = C a certain “classical limit” of the
U(m)-module @, ® k_,, is isomorphic to the algebra of regular functions C[C] on a closed algebraic variety C, and
the “classical limit” of the U(m)-action on @, ®k_, is induced by a free action of the complex unipotent algebraic
group M corresponding to the Lie algebra m on C. The “classical limits” here are understood in the sense of taking
associate graded objects with respect to suitable filtrations.

The action
MxC—C
has a global cross-section ¥ C C, called a Slodowy slice, so that the action map
Mx¥—C (2)
is an isomorphism of varieties, and
C[C] = C[X] ® C[M]. (3)

The space Wy = C[X] =~ C[C]™ can be regarded as a “classical limit” of Hk(A, B, x) which is called a W-algebra
in this case. We can also write C[C] ~ Wy[M], where W[M] is the algebra of regular functions on M with values
in Wy. In fact Wy carries the natural structure of a Poisson algebra. It is called a Poisson W-algebra.

Let A —mod}, be the category of left A-modules V' for which the U(m)-action on V ® k_, is locally nilpotent.
In the Appendix to [97] it is shown that if one equips V € A — mod}; with a second U(m)-module structure by
tensoring with k_,, then, as a U(m)-module, V ® k_, is isomorphic to homy (U (m), Vy ),

V @ k_, >~ homy(U(m), V) ~ V, [M], (4)

where homy stands for the space of homomorphisms vanishing on some power of the augmentation ideal of U(m),
Vy = Homy(m)(ky, V) is called the space of Whittaker vectors in V', and, as above, the latter isomorphism holds



if k = C. In the Appendix to [97] it is shown that isomorphisms (4) directly imply an equivalence between the
category of left A-modules V' for which the U(m)-action on V' ® k_,, is locally nilpotent and the corresponding
category A — mod}; introduced before formula (1).

Isomorphisms of type (2) occur in the quantum group setting as well (see [113, 114, 116]), and the same idea
is applied in [116] to establish similar categorical equivalences in the quantum group case for generic values of the
deformation parameter.

In [115, 119] it was observed that an isomorphism of type (2) gives rise to a natural projection operator
II: C[¥] — C[C]™ ~ C[X] = Wy. Namely, according to (2) any x € C can be uniquely represented in the form

z=mn(z)oo(z),n(z) e M,o(x) € L. (5)
If for f € C[C] we define I1f € C[C] by
(If)(z) = f(n~ (2) o) = f(o(x)) (6)

then IIf is an M—invariant function, and any M —invariant regular function on C can be obtained this way. Moreover,
by the definition IT1? = II, i.e. II is a projection onto C[C]™.

In the quantum group setting considered in [113, 114, 116] the “classical limiting” variety C is always a closed
subvariety in a complex semisimple algebraic Lie group G, ¥ is an analogue of a Slodowy slice for G introduced in
[113, 118], and M is a unipotent subgroup of G, where the “classical limit” simply corresponds now to the ¢ =1
specialization of the deformation parameter g. The peculiarity of the quantum group case is that every element
of M can be uniquely represented as an ordered product of elements of some one—parameter subgroups M; C G,
it =1,...,c corresponding to roots, i.e. M = Mj ... M,.. If we denote by t¢; the parameter in M; and by X;(¢;) the
element of M; corresponding to the value ¢; € C of the parameter then factorizing n(z) in (5) as follows

n(@) = X1 (t1(2)) ... Xelte(2) (7)

one can express the operator Il as a composition of operators II;,

(IL f)(z) = f(Xi(=ti(z)) 0 2), (8)
If =1L ...ILf. 9)

t;(x) here can be regarded as regular functions on C C G.

The first miracle of the quantum group case is that there are explicit formulas for the functions ¢;(x) in (7)
expressing them in terms of matrix elements of finite-dimensional irreducible representations of G. These formulas
were obtained in [119].

The main objective of this book is to obtain quantum group counterparts of these formulas. This provides
a description of quantum group analogues of W-algebras, called q-W-algebras, as images of operators IIZ which
are quantum analogues of II, or more precisely, of operators II. introduced by formula (3.5.21). This description
implies that q-W—algebras belong to the class of the so-called Mickelsson algebras (see e.g. [133, 136, 137, 138, 140]
and [141], Ch. 4).

Magically, the classical formulas for ¢;(x) and formulas (8) can be directly extrapolated to the quantum case,
so the operator II¢ is given in a factorized form similar to (9). Note that no operators similar to II¢ can be defined
in the Lie algebra setting discussed above.

Using the quantum group analogues Bjj, of the functions ¢;(x) one can also construct natural bases in modules
V from the corresponding category A — mod}; and establish isomorphisms similar to (4) in the case when the
deformation parameter is not a root of unity. Recall that in the Lie algebra case with k = C for any V € A —mod}
the Skryabin equivalence provides an isomorphism V' >~ Q, ®uy(a,B,y) V- If we denote by VQ the “classical limit”,
i.e. the ¢ = 1 specialization, of V, then recalling that the “classical limit” of @, is C[C] and the “classical limit” of
Hk(A, B, x) is C[X] we infer from (3) that the “classical limit” of Qy ®nra,By) Vx =V is

C[C] ®cpy) Vy ~ (C[X] ® C[M]) &¢zy Vy ~ C[M] @ V.

These isomorphisms together with (5) and (7) give a hint how to construct natural bases in modules from the
category V € A —mod}; in the quantum group case. Namely, if V' is such a module it is natural to expect that if
one picks up a linear basis v,, p € N in the space of Whittaker vectors V, then the elements of V' given by properly
defined ordered monomials in Bjj;, applied to v,, p € N form a linear basis in V. We show that this is indeed the
case. These bases are key ingredients for an alternative proof of the Skryabin equivalence for quantum groups.



Operators conceptually similar to IIZ appeared in the literature a long time ago as the projection operators onto
subspaces of singular vectors in some modules over a complex finite-dimensional semisimple Lie algebra g the action
of a nilradical n_ C g on which is locally nilpotent. The first example of such operators, called extremal projection
operators, for g = sly was explicitly constructed in [78]. In papers [3, 4, 5] the results of [78] were generalized to
the case of arbitrary complex semisimple Lie algebras, and explicit formulas for extremal projection operators were
obtained. A summary of these results can be found in [128]. Later, using a certain completion of an extension
of the universal enveloping algebra of g, Zhelobenko observed in [133] that the existence of extremal projection
operators is an almost trivial fact. In [133] he also introduced a family of operators which are analogues to our
operators P;. These operators are called now Zhelobenko operators. Properties of extremal projection operators
and of the Zhelobenko operators have been extensively studied in [133]-[140], and the results obtained in these
papers were summarized in book [141].

In our terminology the situation considered in these works corresponds to the case when A = U(g), B =U(n_)
and x is the trivial character of U(n_). As observed in [115], in this case C = b_, the Borel subalgebra b_ C g
containing n_, and the action of the unipotent group N_ corresponding to n_ on C is induced by the adjoint action
of a Lie group G with the Lie algebra g on g. This action is not free but is gives rise to a birational equivalence

N_xbh—b_,

where ) = b_/n_ is a Cartan subalgebra. In [115] it is shown that using this birational equivalence one can still
define operators similar to II; and IT acting on a certain localization of the algebra of regular functions C[b_] and
these operators are “classical limits” of the Zhelobenko and of the extremal projection operators, respectively.

Kac—Weisfeiler and De Concini—-Kac—Procesi conjectures

Remarkably, as observed in [120], the arguments from the Appendix to [97] are applicable to obtain alternative
descriptions of the corresponding categories A —mod}, from [97] for Lie algebras over fields of prime characteristic.

Along the same line, formulas for the quantum group analogues Bj, of the functions ¢;(x) and for the operator
IT¢ can be specialized to the case when ¢ is a primitive odd m-th root of unity € subject to a few other conditions
depending on the Cartan matrix of the corresponding semisimple Lie algebra g. This provides technical tools for
the proof of a root of unity version of the Skryabin equivalence for quantum groups. Similarly to the case of generic
g one can construct bases in modules V from the corresponding category A — mod};. In case when ¢ is a root
of unity all such irreducible modules are finite-dimensional, and if one picks up a linear basis v,, p=1,...,n in
the space of Whittaker vectors V), then the elements of V' given by applied to v,, p = 1,...,n properly defined
ordered monomials in ¢ variables B;;, powers of which are truncated at the degree m form a linear basis in V. In
particular, the dimension of V is divisible by m¢. It turns out that any finite-dimensional module over the standard
quantum group U, (g), where ¢ is a primitive odd m-th root of unity subject to the extra conditions mentioned in
the beginning of this paragraph, belongs to one of the categories A — mod}; with appropriate A, B and x, so its
dimension is divisible by b = m®. Moreover, the number b is equal to the number from the De Concini-Kac—Procesi
conjecture on dimensions of irreducible modules over quantum groups at roots of unity suggested in [25]. Thus
our result confirms this conjecture. Due to its importance we are going to discuss the De Concini-Kac—Procesi
conjecture in more detail.

It is very well known that the number of simple modules for a finite-dimensional algebra is finite. However,
often it is very difficult to classify such representations. In some important particular examples even dimensions of
simple modules over finite-dimensional algebras are not known.

One of the important examples of that kind is representation theory of semisimple Lie algebras over algebraically
closed fields of prime characteristic. Let g’ be the Lie algebra of a semisimple algebraic group G’ over an algebraically
closed field k of characteristic p > 0. Let  — z[P! be the p-th power map of g’ into itself. The structure of the
enveloping algebra of g is quite different from the zero characteristic case. Namely, the elements z? — zlP), z € ¢/
are central. For any linear form 6 on ¢, let Uy be the quotient of the enveloping algebra of g’ by the ideal generated
by the central elements z? — z[P) — O(z)? with « € g’. Then Uy is a finite-dimensional algebra. Kac and Weisfeiler
proved that any simple g’-module can be regarded as a module over Uy for a unique 6 as above (this explains why

all simple g’-modules are finite-dimensional). The Kac-Weisfeiler conjecture formulated in [61] and proved in [98]
dim Oy

says that if the G’—coadjoint orbit of # has dimension dim Oy and p is good for the root system of G’ then p— =
divides the dimension of every finite-dimensional Ug—module.

One can identify 6 with an element of g’ via the Killing form and reduce the proof of the Kac—Weisfeiler
conjecture to the case of nilpotent §. In that case Premet defines in [98] a subalgebra Up(my) C Uy generated




dim Oy

by a Lie subalgebra my C g’ such that Uy(my) has dimension p— 2z  and every finite-dimensional Up—module is
Up(mg)—free. Verification of the latter fact uses the theory of support varieties (see [39, 40, 41, 99]). Namely,
according to the theory of support varieties, in order to prove that a Up—module is Uy(mg)—free one should check
that it is free over every subalgebra Uy(z) generated in Uy(my) by a single element = € my.

There is a more elementary and straightforward proof of the Kac—Weisfeiler conjecture given in [96]. The
simplest proof of this conjecture follows from the results of [120] on a prime characteristic version of the Skryabin
equivalence which we already discussed above. A proof of the conjecture for p > h, where h is the Coxeter number
of the corresponding root system, using localization of D—modules was presented in [7].

Another important example of finite-dimensional algebras is related to the theory of quantum groups at roots
of unity. Let g be a complex finite-dimensional semisimple Lie algebra. A remarkable property of the standard
Drinfeld-Jimbo quantum group U.(g) associated to g, where ¢ is a primitive m-th root of unity, is that its center
contains a large commutative subalgebra. In this book we consider the simply connected version of U.(g) and
the case when m is odd. In this case the large commutative subalgebra is isomorphic to the algebra Zg of
regular functions on (a finite covering of a big cell in) the connected, simply connected complex algebraic group
corresponding to g.

Consider finite-dimensional representations of U.(g), on which Zg acts according to non-trivial characters 7,
given by evaluation of regular functions at various points g € G. Note that all irreducible representations of U, (g)
are of that kind, and every such representation is a representation of the algebra U, = U.(g)/U:(g)Ker 1, for some
ng. In [25] De Concini, Kac and Procesi showed that if g; and g are two conjugate elements of G then the algebras
Uy,, and U, are isomorphic. Moreover in [25] De Concini, Kac and Procesi formulated the following conjecture.

De Concini—Kac—Procesi conjecture. The dimension of any finite-dimensional representation of the algebra
Uy, is divisible by b = mzdim O, where Oy is the conjugacy class of g.

This conjecture is the quantum group counterpart of the Kac-Weisfeiler conjecture for semisimple Lie algebras
over fields of prime characteristic.

As it is shown in [24] it suffices to verify the De Concini-Kac—Procesi conjecture in case of exceptional elements
g € G (an element g € G is called exceptional if the centralizer in G of its semisimple part has a finite center). How-
ever, the De Concini-Kac—Procesi conjecture is related to the geometry of the group G which is more complicated
than the geometry of the linear space g’ in case of the Kac—Weisfeiler conjecture.

The De Concini-Kac—Procesi conjecture is known to be true for the conjugacy classes of regular elements (see
[26]), for the subregular unipotent conjugacy classes in type A, when m is a power of a prime number (see [14]),
for all conjugacy classes in A,, when m is a prime number (see [16]), for the conjugacy classes O, of g € SL,, when
the conjugacy class of the unipotent part of g is spherical (see [15]), and for spherical conjugacy classes (see [13]).
In [73] a proof of the De Concini-Kac—Procesi conjecture using localization of quantum D-modules was outlined
in case of unipotent conjugacy classes. In contract to many papers quoted above the strategy of the proof of the
De Concini-Kac—Procesi conjecture developed in this book does not use the reduction to the case of exceptional
elements, and all conjugacy classes are treated uniformly.

Namely, following Premet’s philosophy we use certain subalgebras U, (m_) C U, introduced in [117]. These
subalgebras have non-trivial characters x : Uy, (m_) — C. In terms of the previously introduced notation, we
show that for A = U, , B = U, (m_) and an appropriate x the category A — mod}; can be identified with the
category of finite-dimensional representations of U, and equivalence (1) holds if Hk(A, B, x) —mod is the category
of finite-dimensional representations of the corresponding algebra Hk(A, B, x).

As observed in [117] every finite-dimensional U, ,~module is also equipped with an action of the algebra U,, (m_)
corresponding to the trivial character n; of Zg given by the evaluation at the identity element of G. In the setting
of quantum groups at roots of unity this action is a counterpart of the second U(m)-module structure on objects
V of the category A — mod}; which appeared in (4) in the case of Lie algebras over fields of zero characteristic.

Since the De Concini—Kac—Procesi conjecture is related to the structure of the set of conjugacy classes in G it is
natural to look at transversal slices to the set of conjugacy classes. It turns out that the definition of the subalgebras
Uy, (m_) is related to the existence of some special transversal slices ¥, to conjugacy classes in G. These slices
¥, associated to (conjugacy classes of) elements s in the Weyl group of g were introduced by the author in [113].
The slices ¥ play the role of Slodowy slices in algebraic group theory. In the particular case of elliptic Weyl group
elements these slices were also introduced later by He and Lusztig in paper [52] within a different framework.

A remarkable property of a slice ¥y observed in [117] is that if g is conjugate to an element in X, then the
dimension of the corresponding subalgebra U, (m_) C U,, is equal to mazcodim 2. - The dimension of the algebra

Up, (m_) is also equal to macodim X: f g e 3 (in fact g may belong to a larger variety) then the corresponding



subalgebras U, (m_) and Uy, (m_) can be explicitly described in terms of quantum group analogues of root vectors.
Note that one can also define analogues U (m_) of subalgebras U, (m_) in the standard Drinfeld-Jimbo quantum
group Up(g) over the ring of formal power series C[[R]] (see [114]).

In [114], Theorem 5.2 it is shown that for every conjugacy class O in G one can find a transversal slice 3 such
that O intersects ¥y and dim O = codim X,. Using this result we showed in [117] that for every element g € G

dim O

one can find a a subalgebra U, (m_) in U, of dimension ms 9 with a non—trivial character y. The dimension

of the corresponding algebra U,, (m_) is also equal to madim Oy

Following the strategy outlined in the beginning of this section we show that if m satisfies a certain condition
then every finite-dimensional U, ~module is free over Uy, (m_). Thus the dimension of every such module is divisible
by mzdim Oy Thig establishes the De Concini-Kac—Procesi conjecture.

Note that in the case of restricted representations of a small quantum group similar results were obtained in
[34]. The situation in [34] is rather similar to the case of the trivial character n = n; in our setting.

We also show that the rank of every finite-dimensional U, —module V over U,, (m_) is equal to the dimension
of the space Vj and that U,, is the algebra of matrices of size mz4™ s over the corresponding q-W-algebra
Hk(A, B, x) = Hk(U,,,Uy,(m_),x) which has dimension mdm s In case of Lie algebras over fields of prime
characteristic similar results were obtained in [97].

Note that the support variety technique used in [98] to prove the Kac—Weisfeiler conjecture can not be transferred
to the case of quantum groups straightforwardly. The notion of the support variety is still available in case of
quantum groups (see [34, 47, 93]). But in practical applications it is much less efficient since in the case of quantum
groups there is no any underlying linear space.

The structure of the book

In conclusion we would like to make a few remarks on the structure of the book. It consists of six chapters. In
this introduction we have given a very superficial and incomplete review of the content of the book which rather
aims to provide the reader with a general guide outlining the main ideas and the strategy of the main proofs. More
technical comments are given in the beginning of each chapter.

In Chapters 1 and 2 we summarize results from [113, 114, 116, 118, 119] on the algebraic group analogues X
of the Slodowy slices and the related results on quantum groups and on the subalgebras U (m_) C Up(g). Chapter
1 also contains some results on combinatorics of Weyl groups and on root systems required for the definition of
the slices X5, and Chapter 2 contains some advanced results on quantum groups required later for the study of
q-W-algebras.

In Chapter 3, following [114, 116], we recall the definition of q-W-algebras and the description of their classical
Poisson counterparts given in [119] in terms of the Zhelobenko type operators IL;; and II. The main purpose of
this chapter is to bring this description to a form suitable for quantization. Formulas (3.5.9), (3.5.19) and (3.5.21)
obtained in this chapter for II;; and II. have direct quantum analogues (4.2.27), (4.6.1) and (4.7.3) obtained in
Chapter 4 for P;, and IIZ. The main result of Chapter 4 (Theorem 4.7.2) is the description of the g-W-algebra as
the image of the operator IIZ.

In Chapter 5 we prove a version of the Skryabin equivalence of type (1) for equivariant modules over quantum
groups established in [116]. The new proof of this equivalence in Theorem 5.2.1 is based on Corollary 4.6.8 which
allows to construct some nice bases in modules from the category A —mod}; (see the discussion in the introduction
above). Theorem 5.2.1 also gives precise values of ¢ of the deformation parameter ¢ for which the categorical
equivalence holds while in [116] it was established for generic € only.

Finally in Chapter 6 we apply the results of Chapter 4 to the study of representations of quantum groups at
roots of unity and prove the De Concini—-Kac—Procesi conjecture. The strategy of this proof has already been
discussed above.

Citations in the main text are reduced to a minimum. References to proofs which are omitted in the body of
the text and some historic remarks are given in the bibliographic comments after each chapter.
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Chapter 1

Algebraic group analogues of Slodowy
slices

The g-W-algebras are non-commutative deformations of algebras of regular functions on certain algebraic varieties
in algebraic groups transversal to conjugacy classes. In this book these varieties play a role similar to that of the
Slodowy slices in the theory of W-algebras and of generalized Gelfand-Geraev representations of semisimple Lie
algebras. In this chapter we define these varieties and study their properties. We also develop the relevant Weyl
group combinatorics.

1.1 Notation

Fix the notation used throughout the book.

In this book we denote by N the set of non-negative integer numbers, N = {0,1,...}.

Let Gk be a connected finite-dimensional semisimple algebraic group over an algebraically closed field k. Denote
by gk the Lie algebra of Gi. Let Hx C Gk be a maximal torus in Gy, hx C gk the corresponding Cartan subalgebra.

If the characteristic exponent of k is p, i.e. p = chark if chark > 0 and p = 1 if chark = 0, we also write
Gx = Gp, Hxy = H, and if k = C we write G¢c = G, Hc = H, gc = ¢, bc = bh. Note that G is also a connected
finite-dimensional complex semisimple Lie group.

Let A = A(g, h) be the set of roots of the pair (g, h), @ the corresponding root lattice, and P the weight lattice.
Let I' = {ay| i =1,...,1}, I =rank(g) be a system of simple roots, Ay = {S1,...,8p} the set of positive roots,
@+ = NA,, P, the set of the corresponding integral dominant weights, w1, ...,w; the fundamental weights. Let
also Hy,..., H; be the set of simple root generators of h.

Denote by a;; the corresponding Cartan matrix, and let dy,...,d;, d; € {1,2,3},i=1,...,1 be coprime positive
integers such that the matrix b;; = d;a;; is symmetric. There exists a unique canonical non-degenerate invariant
symmetric bilinear form (-,-) on g such that (H;, H;) = d;laij. It induces an isomorphism of vector spaces fh ~ h*
under which «; € h* corresponds to d; H; € . We denote by h" the element of f that corresponds to h € h* under
this isomorphism. For a root a € A the element oV € § is called the corresponding coroot. The induced bilinear
form on h* is given by (o, a;) = byj.

Let W be the Weyl group of the root system A. W is the subgroup of GL(h) generated by the fundamental
reflections s1,..., s,

Sl(h) =h-— Oéi(h)Hi, h e h.

The action of W preserves the bilinear form (-, -) on b.

For any root a € A we also denote by s, the corresponding reflection.

For every element w € W one can introduce the set A, = {a € Ay : w(a) € —A4}, and the number of the
elements in the set A,, is equal to the length I(w) of the element w with respect to the system I' of simple roots in
Ay. We also write A_ = —Ay.

Let hr be the real form of h, the real linear span of simple coroots in h. The set of roots A is a subset of the
dual space bg.

For any w € W we denote by h™ the fixed point space of w in b, h* = {z € hlwz = z}, and by hf{ the fixed
point space of w in b, b = {x € hrlwz = z} = Hh* N hr.

13
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One can define A as the root system of the pair (G, H), A = A(G, H), and if, for some algebraically closed
field k, G and Gy have the same root system then one can also define A as the root system of the pair (Gx, Hx),
A = A(Gy, Hy).

Similarly, one can define W as the root system of the pair (G, H), W = W (G, H), and if, for some algebraically
closed field k, G and Gk have the same root system then one can also define W as the Weyl group of the pair
(Gx, Hx), W = W(Gx, Hy).

For an arbitrary algebraically closed field k, we denote by w a representative of w € W = W(Gx, Hy) in the
normalizer of Hy in Gk with respect to the conjugation action. If k = C we simply denote this representative by
w. It can also be regarded as a representative of w in the normalizer Ng(h) of h in G with respect to the adjoint
action. For w € W, g € G we write w(g) = wgw ™.

Let B be the Borel subgroup of G corresponding to Ay and B_ the opposite Borel subgroup of G, N1 their
unipotent radicals, respectively.

We denote by by and ny the Lie subalgebras of g corresponding to B4 and N, respectively.

We identify g and its dual by means of the canonical bilinear form (-, -). Then the coadjoint action of G on g* is
naturally identified with the adjoint one. Using the canonical bilinear form we shall also identify n * ~n_, b * ~
b_, h~b*.

Let g be the root subspace corresponding to a root 8 € A, gg = {z € g|[h,z] = B(h)x for every h € h}. gg C g
is a one-dimensional subspace. It is well known that for o # — 3 the root subspaces g, and gg are orthogonal with
respect to the canonical invariant bilinear form (-,-). Moreover g, and g_, are non—degenerately paired by this
form.

Let X, € g be a non—zero root vector corresponding to a root & € A. Root vectors X, € g, satisfy the following
relations:

[(Xo, X_o] = (Xo, X_o)a”.

1.2 Systems of positive roots associated to Weyl group elements

Algebraic group analogues of the Slodowy slices are associated to (conjugacy classes) in the Weyl group. In this
section we recall the relevant combinatorics of the Weyl group and of root systems. We start by defining systems
of positive roots associated to Weyl group elements which play the key role in the definition of the algebraic group
analogues of the Slodowy slices.

Let s be an element of the Weyl group W and denote by b’ the orthogonal complement in §, with respect to the
canonical bilinear form on g, to the subspace h* = {h € h|sh = h} fixed by the natural action of s on b, b’ = (h*)=,
so that bt = h*. Let h”* be the image of b’ in h* under the identification h* ~ b induced by the canonical bilinear
form on g. Thus h™* embeds into h thanks to the direct vector space decomposition b = h* + b’. By Theorem C in
[18] s can be represented as a product of two involutions,

s =s's? (1.2.1)
where s' =5, ...5,,, 8 =84, ...5,, the roots in each of the sets v1,...,7, and V41, ..., are positive and
mutually orthogonal, and the roots 1, ...,y form a linear basis of h"*.

The Weyl group elements naturally act on hr as orthogonal transformations with respect to the scalar product
induced by the symmetric bilinear form of g, and one can define the real forms b5 = b* N b, b = b’ N hr.

Let fi1,..., fi be the vectors of unit length in the directions of ~1, ...y, and fl, e ﬁ/ the basis of hi dual to
fi,..., fr. Let O be the I’ x I’ symmetric matrix with real entries O;; = (fi, f;). I — O is also a symmetric real
matrix, and hence it is diagonalizable and has real eigenvalues.

The following proposition gives a recipe for constructing a spectral decomposition for the action of the orthogonal
transformation s on hg.

Proposition 1.2.1. Let A be a (real) eigenvalue of the symmetric matriz I — O, and u € RY a corresponding

non—zero real eigenvector with components u;, 1 =1,...,1'. Let a,,b, € hr be defined by
n R U
Ay = Zuz‘fu by = z wi fi- (1.2.2)
i=1 i=n+1

(i) If X is an eigenvalue of I — O then —\ is also an eigenvalue of I — O, and A = £1 are not eigenvalues of

I-0.
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(i1) If X # 0 then the angle 6 between a,, and b, satisfies cos® = A, the plane hy C br spanned by a, and by, is
invariant with respect to the involutions s', i = 1,2, s' acts on by as the reflection in the line spanned by b,, and
52 acts on by as the reflection in the line spanned by a,. If X > 0 the orthogonal transformation s = s's? acts on
b as a rotation through the angle 26.

(11t) If X # p are two positive eigenvalues of I — O then the planes hy and b, are mutually orthogonal.

(iv) Let X # 0 be an eigenvalue of I — O of multiplicity greater than 1, and u* € R, k=1,..., mult A a basis
of the eigenspace corresponding to A. If the basis u® is orthonormal with respect to the standard scalar product on
RY then the corresponding planes h’)f defined with the help of uF, k =1,...,mult A are mutually orthogonal.

(v) If X\ = 0 is an eigenvalue of I — O, then there is a basis u* € Rl/, k=1,..., mult O of the eigenspace
corresponding to 0 orthonormal with respect to the standard scalar product on R and such that the corresponding
non—zero elements a,r, byr are all mutually orthogonal. Moreover, s'a,c = —yk, S2Qyk = Qyuk, S Dye = byr,
82byr = —byr for non—zero elements ayr, byx. In particular, for non—zero elements a,r, byx we have Sa,x = —ayx,
sbyr = —byr, and non—zero elements a,x, b+ is a basis of the subspace of hg on which s acts by multiplication by
—1.

Proof. Firstly, we study some general properties of eigenvalues and eigenvectors of the matrix O. By definition the
matrix O can be written in a block form,
s A
0= ( AT I >, (1.2.3)

where A is an n x (I’ —n) matrix, AT is the transpose to A, I,, and Is_,, are the unit matrices of sizes n and I’ — n.
O~ is also symmetric and has a similar block form,

1 B C T _nT
0 _<CT ,B=B',D=D", (1.2.4)
with the entries Oigl = (ﬁ, ]?J)

/ . . _ ~ P~ .
For any vector u € R" we introduce its R” and R" =™ components % and % in a similar way,

uw= < % ) (1.2.5)

We shall consider both @ and u as elements of RV using natural embeddings R", RI—" ¢ R associated to decom-
position (1.2.5).
If uw is a non—zero eigenvector of I — O corresponding to an eigenvalue A then the equation (I — O)u = Au gives

—Au=\u, —ATu=\u. (1.2.6)

(7)

is a non—zero eigenvector of I — O corresponding to the eigenvalue —\ This proves the first claim in (i).

A =1 is not an eigenvalue of I — O since the matrix O is invertible. Therefore A = —1 is also not an eigenvalue
of I — O by the first part of part (i) which is already proved. This justifies (i).

Since O~'O = I one has

From these equations we deduce that

BA4+C=0,C" +DA" =0. (1.2.7)

Multiplying the first and the second equations in (1.2.6) from the left by B and D, respectively, and using (1.2.7)
we obtain that _ _
Cu = \Bw, C'% = \Du. (1.2.8)

Now if u! and u? are two non-zero eigenvectors of I — O corresponding to an eigenvalue A then by (1.2.4) we
have

(ayr,ay2) = Z u}u?(ﬁ,f}) = Z u%u?Bij =u' - Bu?, (1.2.9)

ij=1 ij=1

where - stands for the standard scalar product in R,
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Similarly,
~1 ~2 ~2
(by1,by2) =D -1 ,(ay:,be2) =1u"-Cu (1.2.10)

From (1.2.8), (1.2.9) and the first identity in (1.2.10) we also obtain that if A # 0 then

~ _ 1_ ~2 1 _+., =2 ~1 2
(ay1,a,2) =u' - Bu? = Xul -Cu = XCTul ‘U =Du -u = (by1,by2). (1.2.11)
Similarly, for any real eigenvalue A we have
~2 ~1
(Ayr, by2) =u'-Cu = Mayt, ay2), (byi,a,2) =1 -CTu? = AMayr, ay2). (1.2.12)

Therefore if A # 0, taking into account (1.2.11), we obtain for u! = u? = u

(A ) \/(bu,bu)\/(auvau)

which justifies the first claim in (ii). Note that (b,,by) = (ay,ay) # 0 for otherwise a,, = b, = 0, and hence u = 0
which contradicts the choice of u.

Let again u be a non—zero eigenvector of I — O corresponding to an eigenvalue A\. For ¢ = 1,...,n by the
definition of the matrices B and C we have

(fi, Aaw — by) = M(Bu); — (C); = 0,

where at the last step we used the first identity in (1.2.8). From the last identity we deduce that Aa, — b, is a
linear combination of f,11,..., fir, and hence

52(Aay — by) = —(Aay — by).
However, by the definition of a,,, s%a, = a,. Therefore
52by, = 2Xay — by. (1.2.13)

Let A # 0. Then recalling that by (1.2.11) (ay,ay) = (by, by) we conclude that Aa, = cos(6)a,, is the orthogonal
projection of b, onto the line spanned by a, and that s%b,, is obtained from b, by the reflection in the line spanned
by a, as shown at Figure 1.

Fig. 1

Similarly, s'b, = b, s'a, is obtained from a,, by the reflection in the line spanned by b,.
Thus the plane by C hgr spanned by a, and b, is invariant with respect to the involutions s?, i = 1,2, s' acts
on hy as the reflection in the line spanned by b,, and s acts on by as the reflection in the line spanned by a,.
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1s2 acts on by as a rotation

Since the angle between a, and b, is 6, for A > 0 the orthogonal transformation s = s
through the angle 20 which completes the proof of (ii).

From the general theory of orthogonal transformations it follows that if A # p are two positive eigenvalues of
I — O, X\ p# 1 then the planes hy and b, are mutually orthogonal which confirms part (iii).

Now if u! and u? are two non—zero eigenvectors of I — O corresponding to an eigenvalue A # 0 then by part (i)

A # +1, and (1.2.9), (1.2.11), (1.2.12) and the identity O~'u? = 15u? yield

(ayr 4+ by, a2 +by2) = 2(ay1,a,2)(A+ 1) = ul 07 h? = %ul ~u?
Thus if A # 0 and u'? are mutually orthogonal, a,1, a,> are also mutually orthogonal, and from (1.2.11) and
(1.2.12) we obtain that b, and bz, a,1 and by2, a,2 and b, are mutually orthogonal. Therefore the planes
spanned by a1, b, and by a,z2,b,2 are mutually orthogonal. Part (iv) immediately follows from this property.
It remains to prove part (v). If A = 0 is an eigenvalue of T — O then @ and u are the components of an eigenvector
u of I — O with eigenvalue 0 if and only if At = 0 and AT@ = 0. Therefore using the usual orthogonalization
procedure one can construct a basis u* € Rl/7 k=1,..., mult O of the eigenspace corresponding to 0 orthonormal

’ . ~k
with respect to the standard scalar product on R" and such that the components #* and . &k =1,..., mult 0 are
all mutually orthogonal.
By (1.2.13) s2b,x = —b,x. Also by the definition of a,x $2a,s = a,x. Similarly, s'a,x = —a,x and s'byx = byk.

Now using the definition of eigenvectors in the form Ou* = u* and (1.2.8) with u = u* we deduce that for the
~k  ~k
basis u* the following relations hold: Bu* =u*, Du =u .

From these relations we obtain for k # [ by (1.2.9)

(auk,auz) Zﬂk-Bﬂl :ﬂk-ﬂl =0

and by (1.2.10)
~l o~k

~k
(buk,buz):Dﬂ U =u -u =

By (1.2.12) we always have
(auk,bul) = /\(auk,aul) =0.

This completes the proof of part (v).

O
Using the previous proposition we can decompose hg into a direct orthogonal sum of s—invariant subspaces,

K

i=0
where each of the subspaces h; C bgr, i = 1,..., K is invariant with respect to both involutions s’, i = 1,2 in the
decomposition s = s's?, and there are the following three possibilities for each b;: b; is two—dimensional (h; = h’f\
for an eigenvalue 0 < A < 1 of the matrix I — O, and k = 1,...,mult \) and the Weyl group element s acts on
it as rotation with angle 6;, 0 < 6; < w or bh; = h’f\, A=0,k=1,...,mult A has dimension 1 and s acts on it by

multiplication by —1 or h; coincides with the linear subspace of hg fixed by the action of s. Note that since s has
finite order, we have 0; = 2:;:?"7 ns,m; € {1,2,...}.

Since the number of roots in the root system A is finite one can always choose elements h; € h;, 1 =0,..., K,
such that h;(a) # 0 for any root € A which is not orthogonal to the s—invariant subspace h; with respect to the
natural pairing between hr and bg.

Now we consider certain s—invariant subsets of roots A;, i = 0,..., K, defined as follows

A;={aeA:hj(a)=0,j>i, hi(a)#0}, (1.2.15)

where we formally assume that hx1 = 0. Note that for some indexes i the subsets A; are empty, and that the
definition of these subsets depends on the order of the terms in direct sum (1.2.14).

Now consider the nonempty s—invariant subsets of roots A;,, K = 0,..., M. For convenience we assume that
indexes 7y, are labeled in such a way that i; < 44 if and only if j < k.
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Observe also that the root system A is the disjoint union of the subsets A;, ,

M
A=A, (1.2.16)
k=0
Now assume that
[Py ()| > | Z hi;(a)], for any a € Ay, k=0,...,M, I <k. (1.2.17)

I<j<k

Condition (1.2.17) can be always fulfilled by suitable rescalings of the elements h;, .
Consider the element

M
h=> hi, € b. (1.2.18)
k=0
From definition (1.2.15) of the sets A; we obtain that for o € A;,

h(a) = Z hi;(a) = hg, (o) + Z hi, () (1.2.19)

i<k j<k

Now condition (1.2.17), the previous identity and the inequality |« +y| > ||z| — |y|| imply that for a € A;, we have

A(e)] = [[hiy (@) = Y hi; ()] > 0.

i<k
Since A is the disjoint union of the subsets A;,, A = in:o A;,, the last inequality ensures that h belongs to a
Weyl chamber of the root system A. )
Denote by A% the subset of positive roots with respect to the Weyl chamber containing h,
A% = {a € Ala(h) > 0}. (1.2.20)

From condition (1.2.17) and formula (1.2.19) we also obtain that a root a € A;, is positive if and only if

hi, (@) > 0. (1.2.21)
We denote by (A;, )+ the set of positive roots contained in A;,, (A;, )+ = A% NA,,.
We also define other s-invariant subsets of roots A;,, k =0,..., M,
A= A (1.2.22)
URSE

According to this definition we have a chain of strict inclusions

Ay, DA, D...DA (1.2.23)

10

such that Zz’M = A, Zio = Aio, and Zik \Z = Alk
The following lemma shows that the subsets of roots A;, C A are root systems of some standard Levi subalgebras
in g.

Tk—1

Lemma 1.2.2. Let I'* be the set of simple roots in A% . Then I'® NA;, is a set of simple roots in A;, .

Proof. Indeed, let o € A;, N A%, a= 22:1 n;o;, where n; € {0,1,2,...} and I = {aq,...,q}. Assume that o
does not belong to the linear span of roots from I'*NA;, and ¢ > ), is maximal possible such that for some oy € A
one has ng > 0. Then by (1.2.15) and (1.2.21) h(a) = 22:1 nihi(ai) = >, ca, nili(a;) > 0, and by the choice
of t hy(a) =0 for r > t. Therefore o € A, and hence a ¢ A;,. Thus we arrive at a contradiction.

O
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1.3 Algebraic group analogues of Slodowy slices

In this section we define analogues of the Slodowy slices for algebraic groups. As this construction is important
for semisimple algebraic groups over arbitrary algebraically closed fields, especially for the study of the Lusztig
partition in Sections 1.4 and 1.5, we work over an arbitrary algebraically closed field k in this and in the next two
sections. Applications to quantum groups only require k = C.

Let s € W = W (G, Hy) be a Weyl group element, A% a system of positive roots associated to (the conjugacy
class of) s in the previous section, I'* the set of simple roots in A% . We shall assume in this section that in sum
(1.2.14) b is the linear subspace b5 = h* Nhr of hr fixed by the action of s pointwise. If h is trivial it will be still
convenient to keep the same notation with ho = 0 and include it into sum (1.2.14).

According to this convention we always have that Ag = {a € A : sa = a} is the set of roots fixed by the action
of s elementwise, and Ay may be empty. In this case it will be also convenient to add the empty set Ag to union
(1.2.16), so that we shall always have ig = 0 in (1.2.16) and A;, = A,.

Denote by P the parabolic subgroup of Gk containing the Borel subgroup By _ corresponding to —A? and
associated to the subset —I'j of the set of simple roots in —I'*, where I'§ = I'* N Ay. Let Nx and Ly the unipotent
radical and the Levi factor of Py, respectively, and Ny the opposite unipotent radical.

Note that we have a natural inclusion Px D Ny, and by Lemma 1.2.2 Ay is the root system of the reductive
algebraic group Ly, while, by the definition of Py, its unipotent radical Ny is generated by the one-parameter
subgroups corresponding to the roots from the set (=A%) \ Ao.

As in Section 1.1, denote a representative for the Weyl group element s in Gy by §. Let Zy be the connected
subgroup of G generated by the semisimple part of the standard Levi subgroup Ly and by the identity component
HY of centralizer of § in Hy.

Let Nxs = {v € Ni|évé~! € Ny }. Observe that Ny,s C Ny is the algebraic subgroup generated by the one—
parameter subgroups corresponding to the roots from the set —AgZ, where A = {a € A} : sa € =A%}, and the
cardinality of the set —A? is equal to I(s), where [(s) is the length of the Weyl group element s € W with respect
to the system of simple roots in A% (see e.g. [17], §2.2, 8.4). Therefore dim Ny, = I(s).

Denote by py, N, Bk, [k, and 3x the Lie subalgebras of gy corresponding to Py, Ny, Ny, Li, and Zy, respectively.
Note that the Lie subalgebra corresponding to Hy is the fixed point subspace b for the action of s on by.

As in Section 1.1, when k = C we drop the subscript k in the symbols above, so that Pc = P, pc = p, Nc,s = Ng,
etc. Recall that in this case, according to our convention, we also write $ = s.

In the proofs below we shall frequently use the following lemma which is a direct consequence of Proposition
8.1.1, Corollary 8.1.2 and Lemma 8.2.2 in [124].

Lemma 1.3.1. Let U, ¥; C A, i=1,...,m be additively closed subsets of roots such that

is a disjoint union and ¥ does not contain opposite roots. For any additively closed subset = C A which does not
contain opposite roots, denote by N= C Gy the algebraic subgroup generated by the one—parameter subgroups of Gx
corresponding to the roots from Z. Then multiplication in Gy yields an isomorphism of varieties

N\pﬁN‘yl...Nq}mﬁN\yl X...XNq;m.

Part (i) of the following Lemma is Corollary in Section 7.4 of [55], part (ii) is Lemma 2.3.3 and 1.6.10(4) in
[124], and part (iii) is Theorem 5.3.2(iii) in [124].

Lemma 1.3.2. (i) Let G, and Gi be algebraic subgroups in an algebraic group Ayx over an algebraically closed
field k, and G mormalizes Gi. Then GLG} is an algebraic subgroup of Ay and multiplication in Ay defines an
isomorphism of varieties, Gi. x Gz — GLGi = GLGL.

(i1) Let Ay be an algebraic group over an algebraically closed field k. Then any orbit O for a regular algebraic
group action of Ayx on a variety V over k is open in its closure. Thus O has the natural structure of an algebraic
variety.

(iii) Let ¢ : X — Y be an equivariant morphism of homogeneous spaces for an algebraic group Ay over an
algebraically closed field k. Then ¢ is an isomorphism if and only if it is bijective and induces a bijection of the
tangent spaces at the points x € X andy €Y.

To formulate our main statement in this section we need the following lemma.
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Lemma 1.3.3. Let Ny ZysNyx C Gg be the image in Gk of Nx X Zyx X Ny under the map
Ny X Zy x Nx — Gy, (n,z,n') = nzén’ (1.3.1)

induced by the group multiplication in Gyx. Then

(i) ZxNx is an algebraic subgroup of Gx and multiplication defines an isomorphism of varieties, Zy X Ny —
Zka = Nka,'

(11) NxZy 5Ny is an algebraic subvariety of Gy, and the map

Nyx X Zy X Nk75 — NkaSNk,S = NkaSNk, (n, z,n’) — nzsn' (1.3.2)

induced by the group multiplication in Gy is an isomorphism of algebraic varieties;
(iii) Moreover,
Ny ZysNy = Ny Zyx$Ny,s = Ni$Zx Ny, s. (1.3.3)

Proof. The proof of part (i) follows from Lemma 1.3.2 (i) with Ax = Gk, GL = Zx and G = Nk.

(ii) The proof is parallel to that of Lemma 8.3.6 in [124] where a similar statement is justified in the case of
Bruhat cells.

Using the isomorphism of part (i) and definition (1.3.1) one can describe the set Ny Zx$Ng as the orbit of the
element § in Gy for the following regular action of Ny Zy X Ny on G:

(NxZx x Nx) x Gx — Gy, ((nz,n), g) — nzgn’fl.

Now the first claim in part (ii) follows from Lemma 1.3.2 (ii) with Ax = NxZx X Nk, V = Gi, O = N Zk$Nx.

To establish isomorphism (1.3.2) we introduce the algebraic subgroup Ny ; = N N $7'Ny$ C Ni. Applying
Lemma 1.3.1 for ¥; = —Aj and ¥y = —(A3 \ (A U Ap)), so that Ny, = N5 and Ny, = Ny, one has an
isomorphism of varieties

Nk = Nllc,st7S ~ N{(’S X Nk737 (134)

induced by the group multiplication in Gk. Hence
NiZy 5Nk = N Zie$Ny, (Ni,s = NicZic$ Ny s, (1.3.5)

as Zx normalizes Ny. This implies that morphism of varieties (1.3.2) is bijective. So in fact one can view Ny Zy$Ny
as the orbit of the element § in G for the following regular action of the algebraic group NxZyx x N s on Gy:

(NkZx X Nis) x Gx = G, ((nz,n'), g) — nzgn' ",
and the action map gives rise to a bijective equivariant morphism
NiZie X Nic.s = NicZic$Nic s, (nz,n') > nzsn/ ™! (1.3.6)

of NxZy x Ny s and NyZxsNy s viewed as homogeneous spaces for Ny Zyx X Ny s.

One verifies straightforwardly that this morphism induces an isomorphism of the tangent spaces at the points
(1,1) and $. Therefore by Lemma 1.3.2 (iii) with X = NxZx X Ny 5, Y = Ny Zx$Ny s, Ax = N Zx X Ny s morphism
(1.3.6) is an isomorphism of varieties. Composing it with the algebraic group isomorphism NyZyx ~ Ny X Zj
established in part (i) and with the map taking inverse on Ny s we deduce that (1.3.2) is an isomorphism of
varieties.

(iii) The first identity in (1.3.3) was established in part (ii), the second one follows from the fact that s fixes
the root system Ag of Z, and hence §Zy s~ = Z. O

Now we can state the main proposition in this section in which we define transversal slices to conjugacy classes
in algebraic groups.

Proposition 1.3.4. (i) Zy Ny s is an algebraic subgroup in Gx, with the variety structure inherited from Zy x Ny s
via the bijection Zy Ny s ~ Zy X Ny s induced by the multiplication map in Gx. $Zx Ny, s = Zx$Ng, s with the variety
structure induced from Zy Ny s is a closed subvariety of NxZx$Ny and of Gk, and the conjugation map

Nk x éZka,s — Ny Zi$Nx, (n,g) — ngnil, (137)

is an isomorphism of varieties;
(11) The variety Lk s = §Zx Ny s = Zx$Ny s 15 a transversal slice to the set of conjugacy classes in Gy;
(iii) Assume that k = C and that Gx = G is simply-connected. Then NsZN is a closed subvariety of G.
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Proof. (i) Note first that Zy Nk s is an algebraic subgroup in Gy. Indeed, by the definition s fixes the root system
Ag of Zx, so $Zx$~ ' = Zx, and also Z normalizes Ny and Ny. Hence for any ns € Ny s and any z € Zy one
has znsz~! € Ny and $zngz7 1671 = (5257 1) (5nss71)(82571) 71 € Ny as 2571 € Zy and én.é~! € Ny by the
definition of Ny . We deduce that Zy normalizes Ny s in Gx. Thus by Lemma 1.3.2 (i) with Ay = Gy, Gi. = Zk
and G2 = Ny,s, ZxNx,s is an algebraic subgroup in Gy, with the variety structure inherited from Zy x Ny s via
the bijection Zx Nk s ~ Zx X Nk induced by the multiplication map in Gy.

82k Ny,s ~ Zyx N s is a closed subvariety of G as the left multiplication by $ in G is a morphism of varieties.

52k Ny, s >~ Zx 5Ny s is a closed subvariety of Ny Zyx$Ny due to the closed embedding

Zyx X Nk75 — Ny X Zx X ]\/vkﬁ7 (z,n) — (l,z,n)

and isomorphism of varieties (1.3.2).

We show that map (1.3.7) is an isomorphism of varieties. By the definition this map is a morphism of varieties.
We shall define the inverse map and show that it is also a morphism of varieties.

Observe that map (1.3.7) is bijective if and only if for any given ks € Nk 5, u € Nx and z € Zx the equation

uzéks = nz'sngn~" (1.3.8)

has a unique solution n € Nx,ns € Nk s, 2’ € Zx. In this case the solution defines the inverse map to morphism
of varieties (1.3.7). We shall construct this map explicitly. From this construction it will be clear that the inverse
map is also a morphism of varieties.
First observe that any element uzsk, is uniquely conjugated by ks € Ny s to vz$ € Nk Zk$,v = ksu, and hence
we can assume that ks, = 1 in (1.3.8),
vzs =nz'sngn (1.3.9)

Using isomorphism (1.3.2) we deduce that the corresponding map
Nka.éNk,s — Nk,s X Nkaé,UZSkS — (k‘s, ksuzs) (1310)

is an isomorphism of varieties.

Now we show that for any given v € Ny and z € Zy equation (1.3.9) has a unique solution n € Ny, ns € Ny 4,2’ €
Zyx which is expressed in terms of vz € Ny Zyx using only a composition of morphisms of algebraic varieties: the
isomorphism of varieties Ny Zy, ~ Ny X Zy, algebraic factorization of elements of Ny as products of elements from
one—parameter subgroups, Chevalley commutation relations between one—parameter subgroups of G, conjugation
by elements of Zy and by the element s € G. This implies that the corresponding map Ny Zxs — Nx X §Zx Nk g,
vzé — (n, 2 $ng) is an injective morphism of varieties, and hence the composition of this map with isomorphism
(1.3.10) is the inverse to (1.3.7) morphism of varieties.

In order to construct the unique solution to equation equation (1.3.9) we shall use two inductive constructions.

The first induction is over certain $—invariant reductive subgroups in Gy that we are going to define. Using
inclusions (1.2.23) of s—invariant sets of roots and Lemma 1.2.2 we can define the corresponding standard Levi
subgroups Gy with root systems A;,, k = 0,..., M. Note that according to the convention introduced in the
beginning of this section we always have A;, = Ay, so that Gy = Li. In the case when A is empty this reduces
to Go = Hk.

We shall use induction over the reductive subgroups which appear in the chain of strict inclusions

Gk=Gy DOGp_1D...0Gy) =Ly (1.3.11)

corresponding to inclusions (1.2.23).

Note that by Lemma 1.2.2 Gj_; is also the Levi factor of the parabolic subgroup Px—1 C Gy containing the
Borel subgroup Bg _ NGy C Gy, and associated to the set of simple roots —I'* N A Let Ny_1 be the unipotent
radical of P,_;. We also denote by Nj_; the unipotent radical of the opposite parabolic subgroup. -

By these definitions the group multiplication in Gk yields the following isomorphisms of subvarieties Gy, C Gy,

Th—1"

ék = Pk—lﬁk—l = Nk_le_lﬁk_l ~ Pk—l X Nk—l ~ Nk—l X Gk—l X W}{)—17 (1.3.12)

Note that by the definition Nj_; is generated by the one—parameter subgroups corresponding to the roots from
the set —A;, N A%, and by (1.2.16) one can represent —A% \ A as the following disjoint union

M
—A\ Ao = ] (-4, NnAY). (1.3.13)
k=0,i37#0
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Since Ny is generated by the one-parameter subgroups corresponding to the roots from the set —A% \ Ag, Lemma
1.3.1 and decomposition (1.3.13) imply that the group multiplication in Gy gives rise to the following isomorphisms
of algebraic varieties

Nk:NMleM72...N0:NM71XNM72X...XNO, (1314)

Nk:NoNl...N]\/[,1 ’:NO X N1 X ... X ]\/v]\/[,17
and similar isomorphisms
Wk = NN[71NM72 . .No ~ NM,1 X NM,Q X ... X No, (1315)

Nk:N()Nl...NM_l zﬁoxﬁlx...xNM_l.

Note that, since the subsets of roots A;, are s-invariant, the subgroups G} are invariant with respect to the
action of § on Gk by conjugations.
Applying isomorphisms (1.3.12), (1.3.14) and (1.3.15) successively we also obtain the following isomorphisms of

subvarieties ék C Gk,
ék = NkaNk ~ Nk X Gk Xﬁk, .Z\ﬂc = NMleM72...Nk- ":NM,1 X NM,Q X ... X Nk, (1316)

—k — — — — — —
N Z:NMle]V[,Q...Nkl’NMflXNM,QX...XN]C.

Note that N*G}, is a parabolic subgroup in Gy, N is its unipotent radical, and N the opposite unipotent
radical.

Induction 1.

The first induction we are going to use in order to prove that equation (1.3.9) has a unique solution is over the
reductive subgroups Gy, starting with k& = 0. At the same time we shall also show that the solution is given by a
map NxZx$ — Ny X §Zx Ny, s which is a morphism of varieties.

First we rewrite equation (1.3.9) in a slightly different form,

1

vzénsTt = n2'éngsT L (1.3.17)

To establish the base of induction we first observe that both the Lh.s. and the r.h.s. of equation (1.3.17) belong
to the subvariety G c Gy.
Observe that the Gy = Lx—component of equation (1.3.17) with respect to decomposition (1.3.16) for k = 0 is

reduced to
z=2z. (1.3.18)

Indeed, using (1.3.4) we can write
$Nk$™' = §Ny (§7 '8N o' C NN (1.3.19)

If n = mmy is the decomposition of n corresponding to the decomposition Ny = Nll(7st,s then recalling that Zy
normalizes both Ny and Ny we deduce that the decompositions of the r.h.s. and of the Lh.s. of equation (1.3.17)
corresponding to the decomposition 50 = Ny Ly Ny take the form

LoD 2(smes™) = n2/ (sngs7 1),

(vzéms™
where vzsms—127t n € Ny and émgs—1, éneé~t € Ny, 2,2’ € Zy C Ly. This implies (1.3.18) and establishes the
base of induction.

Note also that the map Ny Zyx$ — Zx, vz$ — z is a morphism of varieties.
Now let
N="Ng...NM_2NM—1,V =Up_1...-0100, Ng = Ngq -+ Mg pf—2Ms M1 (1.3.20)

be the decompositions of the elements n,v,n, corresponding to decompositions (1.3.14) and assume that n; and
ns; have already been uniquely defined for j < k — 1 and are given by injective maps Ny Zxé — N; and NxZys —
N;N N, j < k—1, which are morphisms of varieties. We shall show that using equation (1.3.17) one can find ng_1
and nsy_; in a unique way using some injective morphisms of varieties Ny Zx$ — Ni—1 and NxZxs — Ni_1 N Nk s.
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Observe that both the Lh.s. and the r.h.s. of equation (1.3.17) belong to the subvariety G © @ and that the
Gr—component of equation (1.3.17) with respect to decomposition (1.3.16) is reduced to

vk_l(v)k_lzé(n)k_lnk_lé_l = (n)k_lnk_lzé(ns)k_lnsk,lé_l, (1.3.21)

where (ng)g—1 = Nsg.--Nsp—o € Gr—1, (N)k—1 = ng...Ng—2 € Gr_1, (V)g—1 = Vg—2...v9 € Gi_1 and (n)g_1,
(ng)k—1, (W)g—1, Vk—1, z are already known. This follows, similarly to the case k = 0, from decompositions (1.3.20),
X —k— . . .
the facts that that Gj_; normalizes both N*~1 and N 1, and that the subgroups Gy are invariant with respect
to the action of $ on Gk by conjugations.
The same properties imply that after multiplying by (n),:_l1 from the left, equation (1.3.21) takes the form

W2osNE 18" = Np_1268Ns,_15 ", (1.3.22)

with some known w = (n)l;_llvk,l(n)k,l € Np_1, 20 = (n);_ll(v)k,lzé(n)k,lé_l, 2h = 28(ng)k_18"", 20,25 €
Gj—1, and the compatibility of the equation of type (1.3.21) with k replaced by k& — 1 implies that zo = z|).
Therefore (1.3.22) takes the form

1

w2505 = Nzpsngs ! (1.3.23)

where we renamed the unknowns 7 = ny_1,ns = ng,_; to simplify the notation.
Let n = mmg be the decomposition of the element n corresponding to the factorization

Ni—1 = (Nk—1 N Ny )(Ng—1 N Nics)

which follows from isomorphism of varieties (1.3.4). In terms of this factorization equation (1.3.23) can be rewritten
as follows
wzosms Lemes Tt = fzgsngs !, (1.3.24)

and the Nj_;—component of the last equation with respect to factorization (1.3.12) is

smsé_l = s'ﬁss_1
From this relation we obtain that
Mg = Mg, (1.3.25)
and hence (1.3.24) yields
wzosms gt = n. (1.3.26)

Now we show that the last equation defines 7 in a unique way.

First observe that n € Ny_;1, and Ng_; is generated by one—parameter subgroups corresponding to the roots
from the set (A;,)— = —(Ay, )+, where (A;, )4 = Ay, NAT.

By the definition of the set Af each s—orbit in the s—invariant set A;, contains a unique element from Af N
A;,. This observation implies that the set (A;,)_ is the disjoint union of the subsets A} = {a € —(Ay,)4 :

s, ..., 5P Do e (A ), s Pac (Ay)s ), p=1,...,Dp+ 1,

Dp+1
(A,)-= |J ar. (1.3.27)
p=1

Here Dy, is chosen in such a way that Aka’“"’l C —ASNA,;,, and
APk = A'i"’ U A”Z»Dkk (disjoint union), (1.3.28)

where A’ka’“ = Afz’c N —A$ and A”Z’“ = Aﬁ’“ \A'Z’“. The set Ai’““ may be empty.

In the case when h;, is a plane, the orthogonal projections of the roots from the subsets Afk onto h;, are
contained in the interior of the sectors labeled Afk at Figure 2. All those sectors belong to the lower half plane and
have the same central angles equal to 0;, , except for the last sector labeled by Ai #*1 which can possibly have a
smaller angle.
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Al

1k

A2

ik
A3
Fig. 2
The vector h;, is directed upwards at the picture, and the orthogonal projections of elements from —(A;, )+ onto
b, are contained in the lower half plane. The element s € W acts on the plane bh;, by clockwise rotation by the
angle 6;, .
Now consider the unipotent subgroups Ny |, p=1,...,Dr+1, Nj_;, Nj/_; generated by the one-dimensional
subgroups corresponding to the roots from the sets Afk, A’ i’ﬂ A" ka * respectively.
By Lemma 1.3.1 applied to disjoint unions (1.3.27), (1.3.28) and (4A;,)- N (=A%) = A'kak U Afi’ijl we have
isomorphisms of varieties

_ 1 2 Dp+1 1 2 Dy +1 Dy, " / _ / Dp+1
Nio1=NL N2 .. NP~ NP ) N2 < x NPRPE NDE = NP NJ_ Nj—1 0 Nies = Nj_ NPRFL

(1.3.29)
Let
n=n'... APt Py =@’ m=na'. . AP w = wle? . wPET m, = Pt (1.3.30)
be the corresponding decomposition of elements 7, m, w and mg, respectively.
Induction 2.
We claim that the components 7, p = 1,..., D} + 1 can be uniquely calculated by induction starting with n'.

Indeed, substituting decompositions (1.3.30) into (1.3.26) we obtain

Lw? . wPrtt

whw 1 pDi—1prg=1,-1 1 pDetl

208 ... n'sT Tz =N ..

Now comparing the N} _;—components of the last equation, with respect to the first factorization in (1.3.29), and

using the fact that sN?_ s~ C N,fi'll, p=1,...,D—1,8N/ | §7' C N,?ffl, and that zp normalizes the subgroups
NP ,p=1,...,D+1, N';_1, NJ/_,, we obtain

Al =w', P = (wP .. wP T esnt AP sy, p=2,. .., Dy, (1.3.31)

AP = (P ypsnt LA TR s by, (1.3.32)

where 71" is defined from the factorization n”* = 7', and the subscript (...), stands for the N¥_ —component
with respect to the first factorization in (1.3.29). From formulas (1.3.31), (1.3.32) one can recursively find the
components 7P starting from 7! = w!, and finally one can find 7, using (1.3.25).

Note that by the construction and by the induction hypothesis the maps NyZxs$ — Ni_1, vz§ — ng_1 =n =
nl.. Pt and NiZk$ — Ni—1 N Nis, 028 — ngp_q = fis = mg = 0’/nP*T1 are injective morphisms of varieties.

This establishes the induction step.
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Finally, using isomorphisms of varieties (1.3.14) and Lemma 1.3.3 we conclude that the map NyZis — Ny X
$Zx Ny 5, 28— (N, 26N5), N =TN0g ... RM—2NM—1, s = Ngg - .- Nsrr_2Ms1, 1S an injective morphism of varieties.
Thus its composition with isomorphism of varieties (1.3.10) is the injective morphism inverse to morphism (1.3.7).
This establishes isomorphism (1.3.7) and completes the proof of part (i).

(ii) Next we have to show that the variety $Zx Ny s C Gy is a transversal slice to the set of conjugacy classes in
Gk, i.e. that the differential of the conjugation map

Y Gk X 5Zka,s — Gk (1333)

is surjective.

Note that the set of smooth points of map (1.3.33) is stable under the Gy—action by left translations on the first
factor of Gk X $Zx Ny s. Therefore it suffices to show that the differential of map (1.3.33) is surjective at points
(1,szns), ng € Ny s, 2 € Zx.

In terms of the left trivialization of the tangent bundle TGk and the induced trivialization of T'($§Zx Nk s) the
differential of map (1.3.33) at points (1, $zn,) takes the form

dY(1,52m,) * (@, (N, w)) = —(Id — Ad(szns) Da +n 4+ w, (1.3.34)
z € gk ~ T1(Gy), (n,w) € nks + 3k =~ Tszn, (§Zx Nk s),

where ny ; C gk is the Lie algebra of Ny .
In order to show that the image of map (1.3.34) coincides with Tj.,, Gx ~ gk we shall need a direct sum
decomposition of the Lie algebra gy as a vector space,

gk = i + 3 + Tk + by, (1.3.35)

where b is a complementary s-invariant subspace to bj, in b.

We shall use isomorphism (1.3.7), a : Nx X $§ZxNy,s — Nk$ZkNx s = Ni$ZxNg. By the definition o is
the restriction of the map « to the subvariety Nx X §ZxNk s C Gk x $ZxNk,s. Observe that in terms of the
left trivialization of the tangent bundle TGy the differential of the map « at points (1, $zn,) € N X §Zx N s,
ng € Ny s, 2 € Zx is given by

dag san,) @ (2, (n,w)) — —(Id — Ad(ézns)_l)x +n+w, (1.3.36)
renx~ Tl(Nk), (77,, w) € Ni,s + 3k = ngns (SZka7s).

Recall that the conjugation map o : Nk X §Zx Nk s — Nk8Zx Ny s is an isomorphism of varieties, and hence
its differential is a vector space isomorphism of the corresponding tangent spaces at all points. Using the left
trivialization of the tangent bundle TGy the tangent space Ti,n, (Nk$Zk Nk s) can be identified with ny s + 3k +
Ad(3zne) Mg, Tyon, - (Nk$ZicNi,s) ~ i s+3k+Ad(32n,) " ny. Therefore using (1.3.36) and the fact that day 4.,,,)
is a vector space isomorphism we deduce that

(Id — Ad($zns) " Hng + ks + 3k = Ad(szns) Ty + Nk,s + 3k (1.3.37)

Now observe that by the definition the vector subspace (Id — Ad($zn,) !)nk C gk is contained in the image
of dai s.n,), and by (1.3.37) the vector subspace Ad(3zns) " In, C gy is also contained in the image of da san,)-
Since ng = (Id — Ad($zns) ™ )ny + Ad($2ns) 'nk, we deduce that ny is contained in the image of day s.y,), and
hence in the image of dvy(1 s.n,),

ng C Im dry(l,s'zns)' (1338)

Next observe that similarly to (1.3.7) one can show that the conjugation map
Nk X Nk,s—l Zké — NkaéNk = Nk,s—l ZkéNk, Nk75—1 = {TL S Nk : éflné S Nk} (1339)

is an isomorphism of varieties.

Interchanging the roles of Ny and Ny in (1.3.39) we immediately obtain that the conjugation map @ : Ny x
Nk’sleké — Nk’s—l Zy$Ny, where Nk’sq = §Nk s$71, is an isomorphism of varieties. Observe also that by the
definition the map @ is the restriction of  to the subvariety Ny x Nk7871 s = Ni % 3ZkNx,s C Gx X $Zx Ny, s.

Using the differential of the map @ we immediately infer, similarly to inclusion (1.3.38), that

ﬁk C Im d'y(l,ézns)' (1340)
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Now observe that hx normalizes ny, and Zy is a subgroup of Ly the adjoint action of which has the property
that for any 2’ € by, [ € Ly one has (Ad(l)z')y; = a', where for any element y € gx we denote by (y)y, the
hi—component of y with respect to decomposition (1.3.35). Therefore we have for any z’ € b}

((Id — Ad(s2n,)"2'),, = (Id — Ads™ )2’ (1.3.41)

bl

Since by the definition of b} the operator Ad$~! has no fixed points in it, from formula (1.3.41) it follows that
the operator by, — by, @’ — (Id—Ads™')a’ is invertible, so that b} is contained in the image of (Id — Ad(szn,)™ 1),
and hence, by formula (1.3.34), in the image of dv(1 ;.,,). Recalling also inclusions (1.3.38) and (1.3.40) and taking
into account the obvious inclusion 3 C Im d(1 ;2n,) and decomposition (1.3.35) we deduce that the image of the
map dvy(1,s2n,) coincides with gi >~ Tj.,, Gk. Therefore the differential of the map  is surjective at all points. This
completes the proof of part (ii).

(iii) Finally we show that NsZ N is a closed subvariety in G provided that G is simply—connected.

Recall that by Lemma 1.3.3 (ii) NsZN ~ NsZNs, ~ NZsN; ~ N X Z x Ny is a subvariety of G, and observe
that multiplication by s~! from the right induces an isomorphiam of varieties, NZsN, ~ NZsN,s~!. By the
definition of Ny, NZsN,s~! is also a subset of NZN.

Lemma 1.3.5. (i) NZN and NZN are subvarieties of G with the variety structure induced from N x Z x N using
the bijective maps

N x ZxN — NZN,(n,z n) > nzn, (1.3.42)
N x Zx N — NZN,(n, z,n) — nzn,

induced by the multiplication in G.
(ii) The varieties NZN and NZN are closed in G.

Proof. (i) We prove the statement for NZN. The other case is treated in a similar way.
By Lemma 1.3.2 (i) with Ax = G, Gi. = Z and G = N, NZ C G is an algebraic subgroup with the variety
structure induced from N x Z by the multiplication map N x Z — NZ in G.
One can describe the set NZN as the orbit of the element 1 in G for the following regular action of NZ x N
on G:
(NZ x N) x G — G, ((nz,n),g) — nzgn'. (1.3.43)

Thus NZN has the natural structure of an algebraic variety by part (ii) of Lemma 1.3.2 with Ay = NZ x N,
V =Gy, O=NZN.

By definition (1.3.43) with g = 1 gives rise to a bijective NZ x N-equivariant morphism of NZ x N and NZN
viewed as homogeneous spaces for NZ x N,

NZ x N — NZN,(nz,na) = nzn~*. (1.3.44)

One verifies straightforwardly that this morphism induces an isomorphism of the tangent spaces at the points
(1,1) and 1. Therefore by Lemma 1.3.2 (iii) with X = NZ x N, Y = NZN, Ay = NZ x N morphism (1.3.44) is
an isomorphism of varieties. Composing it with the algebraic group isomorphism NZ ~ N x Z and with the map
taking the inverse in N we deduce that the first map in (1.3.42) is an isomorphism of varieties.

(ii) We shall prove the statement for NZN. The other case is treated in a similar way. We shall consider the
case when Ay is not empty. The other case can be considered in a similar way.

Recall that by the definition hg and ho are annihilators of each other with respect to the restriction of the
bilinear form on g to hr. As before, let b and h§ be the images of hi and b, respectively, under the isomorphism
br ~ b induced by the bilinear form on g.

Introduce the element

M
ho =Y hi, € bg. (1.3.45)
k=1

By the definition of A} for any x € b one has ho(xz) = 0 and a root a € A\ Ag belongs to A% if and only if
h,o(Ol) > Oa

A%\ Ag = {a € Alhg(a) > 0}, ho(x) =0, x € b;. (1.3.46)
Let h{ € b be the image in hr of the element hg € hi. Since hg € hf we actually have hf € hf.
Let a1,...,ap be the simple roots in I'* which do not belong to Ag, wi,...,w, the corresponding fundamental

weights. b is a linear subspace in the real linear span II of wy,...,w, as II is the annihilator of the subspace of
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hx spanned by the roots from Ay which is contained in hg. The subset II; of II which consists of x satisfying the
condition (z,a) > 0, @ € A%\ Ay is open in IT and by definition A € II; Nhj. Therefore the intersection II. NhE
is not empty and open in hg.

The roots 71, ...,7 form a linear basis of h'. They also span a Z-sublattice Q" in the Z-lattice generated by
w1, ... ,Wp as every root is a linear combination of fundamental weights with integer coefficients and ~4, ...,y form
a linear basis of by C II. Linear combinations of elements of Q" with rational coefficients are dense in bg', and, in
particular, in the open set IT; N b, Since the subset I, of II consists of z satisfying the condition (z,a) > 0,
a € A%\ Ay, there is a linear basis of by which consists of linear combinations of wy, ..., w, with positive rational
coefficients. Multiplying the elements of this basis by appropriate positive integer numbers we obtain a linear basis
Q;,i=1,...,0" of b which consists of integral dominant weights of the form Q; = Z?Zl 9iiWj, Gij € 2, gi5 > 0.

Recall that by the definition h* = h’+ is the orthogonal compliment to b’ in b with respect to the restriction of
the symmetric bilinear form on g to . h* is the complexification of by, and hence we deduce that an element = € f
belongs to h* = b'* if and only if Q;(z) =0,i=1,...,I',

reh’ =t = Q)=0,i=1,...,0. (1.3.47)

Let B} be the Borel subgroup of G corresponding to the system A? of positive roots, B® the opposite Borel
subgroup , N, their unipotent radicals, respectively.

Next observe that since G is simply—connected, for each integral dominant weight A with respect to the system
A% of positive roots there exists an irreducible finite-dimensional representation of G with highest weight A.

Let Vg,, ¢ = 1,...,I' be the irreducible finite-dimensional representation of G with highest weight €; with
respect to the system A? of positive roots. Denote by vg, a nonzero highest weight vector in Vg, and by (-,-)
the contravariant form on Vo, normalized in such a way that (vg,,ve,) = 1. The matrix element g — (vq,, gvg,),
g € G can be regarded as a regular function on G whose restriction to the big dense cell N®* HN7 is given by the
character ; of H,

(va,,n_hnyvg,) = (va,, hvg,) = Qi(h),n_ € N*,h € Hyn, € Ni. (1.3.48)

Each fundamental weight w; can be regarded as a regular function g ~ (v, gv,;) on G defined similarly to
the regular function g — (vq,,gva,) with Vg, replaced by the irreducible finite-dimensional representation V,,,
with highest weight w;. By the definition of ; the function (vq,, gvg,) can be expressed as a product of functions

(Uw]- bl g'ij )7

p
(ve,, gve,) H (Vw5 gV0; )77, g € G. (1.3.49)

Consider the closed subvariety in G defined by the equations (vq,,gva,) = 1,4 =1,...,l', g € G. According
to the Bruhat decomposition every element g € G belongs to g € B>wB$ for some w € W. In this case g
can be written in the form g = n_whny for some ny € N3, h € H. Now by (1.3.48) and (1.3.49) we have
(va,, gva,) = Qi(h)(va,, wua,) = Qi(h) [T)_; (vw,, woy, )9 . As different weight spaces of V,,, are orthogonal with

Jj=1
respect to the contravariant form, the right hand side of the last identity is not zero for all 7 = 1,...,1’ if and only
if w fixes all weights w;, i = 1,...,p, i.e. if and only if w belongs to the Weyl group of the root subsystem Aj.
Since Ay is the root system of the Levi factor L, and (v,,,v.,) = 1, one has (vq,,wvq,) # 0, ¢ = 1,...,1" if and

only if g € NLN, and in that case (vq,, gvg,) = Qi(h), where g = n_whn, for some ny € Ni, h € H, and w is an
element of the Weyl group of the root subsystem Ag.

As we already proved in (1.3.47), an element x € h belongs to h*® if and only if Q;(x) =0,i=1,...,I’. Therefore
the conditions (vg,, gva,) = Qi(h) = 1,4 = 1,...,1" are equivalent to the fact that h belongs to a subgroup HY
of H with Lie algebra h*. Hence the equations (vg,,gvg,) = 1,4 = 1,...,I’ hold if and only if g € NZ'N, where
Z' C L is a subgroup of L with the same Lie algebra as Z. Thus NZ'N is a closed subvariety of G. Its connected
component containing the identity element of G is obviously NZN. Thus NZN is a closed subvariety of G.

O

Now recall that NZsN, ~ NZsN,s~! is a subset of NZN as by the definition of N,, sNys~! C N. In fact
sN,s~1 is the algebraic subgroup in N generated by the one-parameter subgroups corresponding to the roots
from the set {& € A% : s7'a € —A%}. So by isomorphisms (1.3.2) and (1.3.42), and by Lemma 1.3.5 (i),
NZsN,s~! ~ NZsN, is a closed subvariety of NZN due to the closed embedding

N xZxsNys ' NxZxN.
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Also Lemma 1.3.5 (ii) immediately implies that the closed subvariety NZsN,s~! € NZN is also closed in G,
and hence the variety NsZN = NZsN, ~ NZsN,s ‘s ~ NZsNys~! is closed in G.
O

The subvarieties Xy s C Gk are analogues of the Slodowy slices in algebraic group theory.

Remark 1.3.6. In fact, in the construction of the inverse map to morphism (1.3.7) suggested in the proof of
the previous proposition we only used relations in Gy arising from the corresponding Chevalley group over Z.
Therefore isomorphisms similar to (1.3.7) hold in the case when Gy is replaced with the Chevalley group (or even
group scheme) over an arbitrary ring.

1.4 The Lusztig partition

In this section, as before, Gk is a connected finite-dimensional semisimple algebraic group over an algebraically
closed field k. At the same time we shall also consider connected finite—dimensional semisimple algebraic groups
G, of the same type as Gy, i.e. with the same root system, over algebraically closed fields for all characteristic
exponents p.

In the next section we shall show that for every conjugacy class O in Gk one can find a subvariety X, x C Gk
such that O intersects X x and dim O = codim X k. It turns out that there is a remarkable partition of the group
Gy introduced in [83] the strata of which are unions of conjugacy classes of the same dimension. For each stratum
of this partition there is a Weyl group element s such that all conjugacy classes O from that stratum intersect
Yk, and dim O = codim X, x. This, in particular, determines the dimensions of the conjugacy classes in each
stratum. In this section, which is rather descriptive, we recall the definition of this partition called the Lusztig
partition. The main property of this partition gives an affirmative answer to an old question about intersection of
the conjugacy classes in Gy with Bruhat cells. The exposition in this section mainly follows paper [83] to which we
refer the reader for technical details.

Note that all objects introduced in this section, except for the map ¢, and the Lusztig partition itself, only
depend on the Weyl group of Gk or of G, on the characteristic of k and on p. The fundamental reason behind
this phenomenon is that in the definitions of these objects only representation theory of the Weyl group and the
sets of unipotent conjugacy classes in G or in G, are used. These sets only depend on the characteristic of k, on
p and on the Weyl group. The reader may always assume that Gk and all G}, have the same root datum.

For any Weyl group W let W be the set of isomorphism classes of irreducible representations of W over Q. For
any E € W let bg be the smallest nonnegative integer such that E appears with non—zero multiplicity in the bg-th
symmetric power of the reflection representation of W. If this multiplicity is equal to 1 then one says that E is
good. If W' C W are two Weyl groups, and E € W' is good then there is a unique £ € W such that E appears in
the decomposition of the induced representation IndW,E by = bp, and Eis good. The representation F is called

j-induced from FE, E = W E.

Let g € G, and g = gsg, its decomposition as a product of the semisimple part g, and the unipotent part g,,.
Let C = Zg,(gs)° be the identity component of the centralizer of g5 in G),. C' is a reductive subgroup of G, of the
same rank as G,. Let H, be a maximal torus of C. H,, is also a maximal torus in G, and hence one has a natural
imbedding

W' = Nc(Hp)/Hy — Ng,(Hp)/Hp =W,

where N¢(H)), Ng,(H,) stand for the normalizers of H, in C' and in G, respectively, W' is the Weyl group of C'
and W is the Weyl group of G,.

Let E be the irreducible representation of W' associated with the help of the Springer correspondence to the
conjugacy class of g,, and the trivial local System on it. Then E is good, and let E be the j j-induced representation
of W. This gives a well-defined map ¢¢g, : G, — W. The fibers of this map are called the strata of G),. By
definition the map ¢¢, is constant on each conjugacy class in G,. Therefore the strata are unions of conjugacy
classes.

Moreover, by 2.4 in [83] we have the following formula for the dimension of the centralizer Zg, (g) of any element
g € Gy in Gyt

dim Zg,(9) = rank G}, + 2by, (g), (1.4.1)
where rank G, is the rank of Gy,.

It turns out that the image R(W) of ¢¢, only depends on W and not on p or the underlying root datum of G,.
It can be described as follows. Let A'(G)) be the unipotent variety of G, and N'(G,) the set of unipotent conjugacy
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classes in G,,. Let X?(W) be the set of irreducible representations of W associated by the Springer correspondence
to unipotent classes in N(G)) and the trivial local systems on them. We shall identify X?(W) and N (G)). Let
fp i N(Gp) = XP(W) be the corresponding bijective map.

Proposition 1.4.1. ([83], Sections 1 and 2) We have
RW) = X (W) Up prime X" (W).

If G, is of type A, (n > 1) or Eg then R(W) = X1 (W).

If G, is of type B, (n>2), Cy, (n>3), D, (n>4), Fy or E7 then R(W) = X2(W).
If G, is of type Go then R(W) = X3(W).

If G, is of type Eg then R(W) = X2(W)UX3(W), and X*(W)NX3(W) = X1 (W).

The description of the set R(W) given in Proposition 1.4.1 and the bijections N (G,) — XP(W) yield certain
maps between sets AV (G,) which preserve dimensions of conjugacy classes by (1.4.1). For instance, one always has
an inclusion X'(W) C X" (W) for any r > 2. The corresponding inclusion N'(G1) C N(G,) coincides with the
Spaltenstein map 75" : N'(G1) — N(G,) which is a bijection for good p (see [122], Théoréme IIL5.2).

Now we introduce an alternative description of the strata in terms of intersections of conjugacy classes with
Bruhat cells. Fix a system of positive roots in A. Note that A can be regarded as the root system of the pair
(Gp, Hp), A = A(G,, Hp). Let B, be the Borel subgroup in G, associated to the corresponding system of negative
roots, H, C B, the maximal torus, and [ the corresponding length function on W. Denote by W the set of
conjugacy classes in W. For each w € W = Ng,(H,)/H, one can pick up a representative w € G,. If p is the
characteristic exponent of k, we write B, = Bk, N(G,) = N(Gx), etc.

Let C be a conjugacy class in W. Pick up a representative w € C of minimal possible length with respect to [.
By Theorem 0.4 in [86] there is a unique conjugacy class O € A (G1) of minimal possible dimension which intersects
the Bruhat cell BywB; and does not depend on the choice of the minimal possible length representative w in C.
We denote this class by ®(C).

As shown in Section 1.1 in [86], one can always find a representative w € C of minimal possible length with
respect to [ which is elliptic in a parabolic Weyl subgroup W’ C W, i.e. w acts without fixed points in the reflection
representation of W’. Indeed, by Theorem 3.2.12 in [44] there is a parabolic subgroup W’ C W such that C N W’
is an elliptic conjugacy class in W’ i.e. every element in it is elliptic in W’. By Lemma 3.1.14 in [44] if w € CN W’
is of minimal possible length in its conjugacy class in W’ with respect to the restriction of [ to W’ then it is also
of minimal possible length in C with respect to [.

Let P, C G, be the parabolic subgroup which contains B, and corresponds to W', and M, the semi-simple part
of the Levi factor of P, so that W' is the Weyl group of M,. Let @fl (C) be the unipotent class in G, containing the

class WI];VI{CI);VI{ (C). This class only depends on the conjugacy class C, and hence one has a map <I>§1 W — N(G)p)
which is in fact surjective by 4.5(a) in [86].

Let C € W, and m¢ the dimension of the fixed point space for the action of any w € C in the reflection
representation. Then by Theorem 0.2 in [85] for any v € N(G) there is a unique Co € (®5*)7(y) such that the
function me : (®5") 7 () — N reaches its minimum at Cy. We denote Co by ¥S (y). Thus one obtains an injective
map ¥§ : N(Gp) — W.

Now using identifications f, : N(G,) — XP(W) one can define the union N (W) of the sets N'(G1) and of
N (G,) over all prime r as the union X*(W) U, prime X" (W) = R(W). Thus we have a bijection

F:N(W) = N(G1) Up prime N(Gr) = XH(W) Uy prime X7 (W) = R(W). (1.4.2)

Using maps ®* one can also define a surjective map ®% : W — N (W) as described in Section 4.1 in [83]. As
it is observed in Section 4.1 of [83] (see also 0.4 in [85]), if ®%1(C) € M(G1) for all » > 1 then ®%(C) is independent
of 7, and one puts @V (C) = ®%1(C) for any r > 1, and if ®51(C) ¢ N(G;) for some r > 1 then r is unique, and
one defines ®"(C) = ®%1(C). By Proposition 1.4.1 and formula (1.4.2) ®" introduced this way is well defined.

By the definition there is a right-sided injective inverse " to ®"V such that if v € A'(G1) then ¥W () = 01 (),
and if v ¢ N(G1), and v € N(G,.) then UW () = &1 ().

Denote by C(W) the image of N(W) in W under the map UV, C(W) = UW (A (W)). We shall identify C(W),
N (W) and R(W).

Now the strata of the Lusztig partition can be described geometrically as follows. Let C € C'(W). Pick up a
representative w € C of minimal possible length with respect to [. Denote by G,, the set of conjugacy classes in Gy,
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and by G the set of all conjugacy classes in G, which intersect the Bruhat cell BywB,,. This definition does not
depend on the choice of the minimal possible length representative w. Let

de = min dim ~.
vEGe

Then the stratum Ge = ¢5i (F(®"(C))) can be described as follows (see Theorem 5.2, [83]),

Ge = U 5. (1.4.3)

vE€G,, dimy=dc

Thus we have a disjoint union

G= |J Ge
ceCc(w)

Note that by the definition of the stratum, for good p, if C € Im(\l’fl) then G¢ contains a unique unipotent class,
and if C ¢ Im(¥E") then G does not contain unipotent classes.
The maps introduced above are summarized in the following diagram

X w) - NGy
i Lo (1.4.4)
Ge X5 rw) £ mFw) w,

Bk

where ¢ is an inclusion, bijections f; and F' are induced by the Springer correspondence with the trivial local data,
and the inclusion 7€ is induced by the Spaltenstein map.

For exceptional groups the maps f; and F can be described explicitly using tables in [123], the maps ®" and
UW can be described using the tables in Section 2 in [85], and the maps + and 7%t can be described explicitly
using the tables of unipotent classes in [75], Chapter 22 or [123] (note that the labeling for unipotent classes in
bad characteristics in [75] differs from that in [123]). The dimensions of the conjugacy classes in the strata in Gk
can be obtained using dimension tables of centralizers of unipotent elements in case when a stratum contains a
unipotent class (see [19, 75]), the tables for dimensions of the centralizers of unipotent elements in bad characteristic
when a stratum does not contain a unipotent class (see [75]) or formula (1.4.1) and the tables of the values of the
b-invariant by for representations of Weyl groups (see [19, 44]). Note that formula (1.4.1) implies that if O is any
conjugacy class in G¢, O € G¢ then

dim O = dim ®"(C). (1.4.5)

In case of classical groups all those maps and dimensions are described in terms of partitions (see [19, 45, 75,
84, 85, 86, 122]). In case of classical matrix groups the strata can also be described explicitly (see [83]). We recall
this description below. By (1.4.5) the dimensions of the conjugacy classes in every stratum of Gk are equal to the
dimension of the corresponding conjugacy class in ﬂ (W). The dimensions of centralizers of unipotent elements in
arbitrary characteristic can be found in [54, 75].

IfA= (A1 > X >...>)\,) is a partition we denote by \* = (A] > A5 > ... > A\¥)) the corresponding dual
partition. It is defined by the property that A\] = m and A} — A7, ; = [;()\), where [;(\) is the number of times i
appears in the partition \. We also denote by 7(\) the length of A, 7(A) = m. If a partition p is obtained from A
by adding a number of zeroes, we shall identify A and pu.

An

Gy is of type SL(V) where V is a vector space of dimension n + 1 > 1 over an algebraically closed field k of
characteristic exponent p > 1. W is the group of permutations of n+ 1 elements. All sets in (1.4.4), except for Gy,
are identified with the set of partitions of n + 1, and under this identification all the maps, except for ¢¢, , are the
identity maps.

To describe ¢, for Gx = SL(V) we choose a sufficiently large m € N. Let g € Gx. For any z € k* let V,, be
the generalized x—eigenspace of g : V' — V and let AT > A5 > ... > A% be the sequence in N whose terms are the
sizes of the Jordan blocks of z71g : V,, = V. Then ¢¢, (g) is the partition A\(g)1 > A(g)2 > ... > A(g)m given by

M9)j = Dper AT+
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If ¢ is any element in the stratum G corresponding to a partition A = (A > A2 > ... > A\p), Ay > 1, then
dim Zg, (9) =n+2) (i — 1A (1.4.6)

The element of W which corresponds to A is the Coxeter class in the Weyl subgroup of the type
A)\lfl +A)\2,1+...+A)\m,1. (147)

The summands in diagram (1.4.7) are called blocks. Blocks of type A are called trivial.

Cn
Gy is of type Sp(V) where V is a symplectic space of dimension 2n, n > 2 over an algebraically closed field k of
characteristic exponent p. W is the group of permutations of the set E = {e1,...,&,, —¢€1,..., —E,} which also

commute with the involution &; — —e;. Each element s € W can be expressed as a product of disjoint cycles of
the form

€k — L€k, —> LEgy —> ... —> kg, — ke,

This cycle is of length r; it is called positive if s"(eg,) = €k, and negative if s"(e,) = —eg,. The lengths of the
cycles together with their signs give a set of positive or negative integers called the signed cycle-type of s. To each
positive cycle of s of length r there corresponds a pair of orbits X, —X, X # —X, |X| = r, for the action of the
group (s) generated by s on the set E = {e1,...,e,,—€1,...,—€n}, and to each negative cycle of s of length r
there corresponds a negative orbit X, X = —X, |X| = 2r, for the action of (s) on E. We call orbits of the former
type positive and orbits of the latter type negative. A positive cycle of length 1 is called trivial. It corresponds to
a pair of fixed points for the action of (s) on E.
Elements of W are parametrized by pairs of partitions (A, u) satisfying the following conditions.

e The parts of A are even (for any w € C € W they are the numbers of elements in the negative orbits X,
X = —X, in E for the action of the group (w) generated by w);

e 1 consists of pairs of equal parts (they are the numbers of elements in the positive (w)—orbits X in F; these
orbits appear in pairs X, —X, X # —X);

° Z)‘i+zuj = 2n.

We denote this set of pairs of partitions by A} .
An element of W which corresponds to a pair (A, pu), A= (A < < ...<Ap)and p= (g =ps < ... <
lok—1 = pok) is the Coxeter class in the Weyl subgroup of the type

C%l +C&72 +...+C% + AL+ A+ AL (1.4.8)

If the characteristic exponent of k is not equal to 2, elements of N (Gy) are parametrized by partitions A of 2n
for which [;(\) is even for odd j. We denote this set of partitions by 72,. In case of Gx = Sp(V') the parts of A are
just the sizes of the Jordan blocks in V' of the unipotent elements from the conjugacy class corresponding to A.

In this case N(W) = N(G2), and G5 is of type Sp(V') where V is a symplectic space of dimension 2n over an
algebraically closed field of characteristic 2. Elements of N (G2) are parametrized by pairs (A, ), where A = (A <
A <. <A\y) € Tony and € 1 {1, A2, ..., A b — {0, 1, w} is a function such that

w if k£ is odd;
1 if k= 0;

e(k) = 1 if k> 0 is even, I;(\) is odd,; (1.4.9)
Oor1l if k> 0is even, [x(\) is even.

We denote the set of such pairs (), g) by T2,.
Elements of W are parametrized by pairs of partitions («, 8) written in non-decreasing order, ay < s < ... <
Qr(a)s b1 < pPs <... < Br(ﬁ), and such that > «; + > 8; = n. By adding zeroes we can assume that the length

T(a) of « is related to the length of 5 by 7(«) = 7(8) + 1. The set of such pairs is denoted by X, ;.
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The maps f1, F' can be described as follows. Let A = (A1 < A2 < ... < Aoyut1) € Ton, and assume that Ay = 0.

If f1(N) = ((c],¢5, ... chpiq), (ch,cly, .. ch,,)) then the parts ¢ are defined by induction starting from ¢} = 0,
¢ =23 if A; is even and ¢}_, is already defined;
¢ = ’\1'2“ if A; = A\i+1 is odd and ¢}_, is already defined;
¢ =21 if \; = Ai4q is odd and ¢ is already defined.
The image of f) consists of all pairs ((c},c53,...,Chy 1), (Ch, €. v, Chy,)) € X1 such that ¢ < ¢ + 1 for all
7.
If F(\e) = ((c1,¢3y ... Camy1), (Ca,Cay ..., Cam)) then the parts ¢; are defined by induction starting from ¢; = 0,
= % if \; is even, £(A;) = 1 and ¢;_1 is already defined;
= ’\";1 if A\; = A\;11 is odd and ¢;_; is already defined;
ciy1 = 2= if \; = Ay is odd and ¢; is already defined;
¢ = 2if2 if \j = \jr1 is even, e(\;) = (A1) = 0 and ¢;—; is already defined;
Cir1 = ’\"2_2 if \j = A1 is even, e(\;) = (A1) = 0 and ¢; is already defined.

The image R(W) of F' consists of all pairs ((c1,c¢s, ..., Com+1), (€2,¢4, ..., Cam)) € Xp,1 such that ¢; < ¢;41 + 2
for all 3.
The map ®" is defined by ®" (\, 1) = (v,¢), where the set of parts of v is just the union of the sets of parts
of A and p, and
1 if k € 2N is a part of A;
e(k) =4 0 if k € 2N is not a part of A;
w if k is odd.

The map ¥" associates to each pair (v,e) a unique point (), ) in the preimage (®")~!(v,¢) such that the
number of parts of y is minimal possible. This point is defined by the conditions

() = 0 if k is odd or k is even, I (v) > 2 is even and (k) = 0;
MY Ik(v)  otherwise,

e (1) = lg(v) if kisodd or k is even, li(v) > 2 is even and (k) = 0;
=00 otherwise.

The map 7! is given by 7%1(\) = (), &’), where

“w={7 ihi o (1.4.10)
The map 7! is injective and its image consists of pairs (\,&’) € T3,, where ¢’ satisfies conditions (1.4.10).

To describe ¢¢, for Gx = Sp(V') we choose a sufficiently large m € N. Let g € Gi. For any x € k* let V, be
the generalized z—eigenspace of g : V — V. For any x € k* such that 22 # 1 let A\¥ >\ > ... > AZma1 be the
sequence in N whose terms are the sizes of the Jordan blocks of 2 1g : V, — V.

For any z € k* with 2% = 1 let A > A\§ > ... > X5 ., be the sequence in N, where (\f > A\ > ... >

Sma1), (A5 > A > ... > A3,)) is the pair of partitions such that the corresponding irreducible representation of
the Weyl group of type Bgin v, /2 is the Springer representation attached to the unipotent element x7 g € Sp(Vy)
and to the trivial local data.

Let A(g) be the partition A(g)1 > A(g)2 > ... > A(g)2m+1 given by A(g); = >, A}, where x runs over
a set of representatives for the orbits of the involution a — a~! of k*. Now ¢¢, (g) is the pair of partitions
(Mg 2 Mg)s = - = Ag)2m+1), (A(9)2 2 Ag)a = ... = A(g)2m))-

If g is any element in the stratum G, . corresponding to a pair (A, e) € T2, A= (A1 > X >...>)\,) then

1
dim Zg, (9) =n+ Z(z -+ §|{z i A; is odd}| + {7 : A; is even and e()\;) = 0}]. (1.4.11)
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B,

Gy is of type SO(V) where V is a vector space of dimension 2n + 1, n > 2 over an algebraically closed field k of
characteristic exponent p. If p # 2 then V is equipped with a non—degenerate symmetric bilinear form. If p = 2
then V is equipped with a bilinear form (-, -) and a non—zero quadratic form @ such that

(m,y) = Q(JI+ y) - Q(l‘) - Q(y>7 z,y € Va,

and the restriction of @ to the null space V+ = {x € V5 : (z,y) =0V y € V} of (-,-) has zero kernel.

W is the same as in case of C,,. Therefore we can use the description of the set W in terms of pairs of partitions
introduced in the case of C,,.

An element of W which corresponds to a pair (A, u), A= (A > X2 > ... > A\p)and p = (g = po > ... >
Hokp—1 = Mok) is the class represented by the sum of the blocks in the followmg diagram (we use the notation of
[18], Section 7 for the conjugacy classes in W)

Aﬂl_l + AHS_l + “ee + A,u2k'71_1 +
+DAI;A2 (a%il) + D,\342r>\4 (a%lfl) 4. 4+ D, atrg, s (axm_l 71) + BATm (m is odd), (1.4.12)
3

2

A#l—l + A,us—l +...+ Aﬂ’zk—l—l +
+Dxi 42, (agil) + Dag4xy (agil) + ...+ Dxpit3m (a%il) (m is even),
2 2 2 2 -

2
where it is assumed that Dy (ag) = Dy.

If the characteristic of k is not equal to 2, the elements of N (Gy) are parametrized by partitions A of 2n+1 for
which () is even for even j. We denote this set of partitions by Qg,41. In case of Gx = SO(V) the parts of A
are just the sizes of the Jordan blocks in V' of the unipotent elements from the conjugacy class corresponding to A.

In this case N(W) = N(G2), and G5 is of type SO(V). In fact Go is isomorphic to a group of type Sp(V'),
dim V' = 2n (see e.g. Section 8.1 in [122]), and hence N(G3) =~ T2,.

We also have W =~ Xn,1, and the map F' is the same as in case of C),.

The map f1 can be described as follows. Let A = (A < Ao < ... < Agpmy1) € Qonyr. If

fl()‘) = ((Cllacga <. '7cl2m+1)7 (01276217 cee 7Cl2m))

then the parts ¢} are defined by induction starting from ¢,

¢, = 71 +i—-1-2 [Tl] if A\; is odd and ¢;_; is already defined;
¢, = % if \; = A\i41 is even and ¢}_; is already defined; (1.4.13)
Ciy1 = % if A\; = A\j41 is even and ¢ is already defined.

The image of fi consists of all pairs ((c},c5,...,¢h,41),(ch, ¢, ..., Ch,)) € Xp 1 such that ¢ < ¢, for all odd

i and ¢; < ¢, + 2 for all even i.

The image R(W) of F' consists of all pairs ((c1,c¢s, ..., Com+1), (€2,¢4, ..., Cam)) € Xp,1 such that ¢; < ¢;41 + 2
for all 4.

The maps ®" and ¥V are the same as in case of C,,.

The map 7€ is given by 791 (\) = (v,&'), A= (A1 < A2 < ... < Agpy1) € Qony1, where

Ai —1 if \; and 7 are odd and A\;_1 < A;;

v; = A+ 1 if A is odd, ¢ is even and A\; < A\j11;
Ai otherwise,
and
w if k is odd;
s’(kz) = 0 if k is even, there exists even \; = k with even 7 such that A\;_1 < A;;

1 otherwise.

The map 71 is injective and its image consists of pairs (v,€) € T2, such that (k) # 0 if v} is odd and for each
even ¢ such that v} is even we have v;_; = v}, i.e. i—1 does not appear in the partition v. Here v > v5 > ... > v},
is the partition dual to v.

To describe ¢, for Gx = SO(V) we choose a sufficiently large m € N. Let g € Gk. For any = € k* let V,, be
the generalized z—eigenspace of g : V — V. For any = € k* such that 22 # 1 let A¥ > \§ > ... > A5y be the
sequence in N whose terms are the sizes of the Jordan blocks of z71g : V, — V.
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For any x € k* with 2% = 1 let A\{ > \§ > ... > Xj, ., be the sequence in N, where (A > \§ > ... >
Sma1), (A5 > A > ... > A3,)) is the pair of partitions such that the corresponding irreducible representation

of the Weyl group of type B(dim v,—1)/2 (if # # =1 or p = 2) or Dgim v, /2 (if z = —1 or p # 2) is the Springer
representation attached to the unipotent element x~'g € SO(V,) and to the trivial local data.

Let A(g) be the partition A(g)1 > Ag)2 > ... > A(g)2m+1 given by A(g); = >, A7, where x runs over
a set of representatives for the orbits of the involution a — a~! of k*. Now ¢¢, (g) is the pair of partitions
(M) 2 Ag)s = - = AMg)am+1), (AMg)2 = Ag)a = - = A(g)2m))-

If g is any element in the stratum G/, .y corresponding to a pair (A,¢) € T2, A= (A1 > X2 > ... > \,) then
the dimension of the centralizer of g in Gy is given by formula (1.4.11),

< 1
dim Zg, (9) =n+ Z(z -+ §|{z : A; is odd}| + {7 : \; is even and e()\;) = 0}]. (1.4.14)
i=1

D,

Gy is of type SO(V) where V is a vector space of dimension 2n, n > 3 over an algebraically closed field k of
characteristic exponent p. If p # 2 V is equipped with a non-degenerate symmetric bilinear form. If p = 2 V is
equipped with a non—degenerate bilinear form (-, -) and a non-zero quadratic form @ such that

(xay) = Q(x+y) - Q(l‘) - Q(y)7 z,y € Va.

We remind that in this case SO(V) is the connected component containing the identity of the group of linear
automorphisms of V' preserving the quadratic, and hence the bilinear, form.

W is the group of even permutations of the set E = {e1,...,&,,—¢1,...,—&,} which also commute with the
involution ¢; — —&;. W can be regarded as a subgroup in the Weyl group W' of type C,.

Let W be the set of W/ —conjugacy classes in W. Elements of W are parametrized by pairs of partitions (A, i)
satisfying the following conditions.

e The parts of A are even (for any w € C € ﬁ they are the numbers of elements in the negative orbits X,
X = —X, in E for the action of the group (w) generated by w);

e The number of parts of A is even;

e 1 consists of pairs of equal parts (they are the numbers of elements in the positive (w)—orbits X in F; these
orbits appear in pairs X, —X, X # —X);

o > Ni+> u=2n.

We denote this set of pairs of partitions by A3,,.

To each pair (—, i), where all parts of p are even, there correspond two conjugacy classes in W. To all other
elements of A9, there corresponds a unique conjugacy class in W.

An element of E which corresponds to a pair (A, u), A= (A1 > A > ... > Ap)and p= (g = p2 > ... >
lok—1 = Haok) is the class represented by the sum of the blocks in the following diagram (we use the notation of
[18], Section 7)

Aul—l —+ AM3—1 + ...+ AM2k71_1 =+ D# (a%_l) + D% (a%_l) + ...+ Dxm_;+xm (a%il). (1.4.15)
Consider now the case p # 2. Let G} be the extension of G by the Dynkin graph automorphism of order 2.
Then G, is of type O(V'). Denote by N (Gx) the set of unipotent classes of G} Note that they are all contained
in Gk. The elements of E(Gk) are parametrized by partitions A of 2n for which I;()) is even for even j. Note that
the number of parts of such partitions is even. We denote this set of partitions by Qa,. In case when Gx = SO(V)
the parts of \ are just the sizes of the Jordan blocks in V' of the unipotent elements from the conjugacy class
corresponding to A. If A has only even parts then A corresponds to two unipotent classes in Gk of the same
dimension. In all other cases there is a unique unipotent class in G which corresponds to A.
One has N (W) = N(G3), and G5 is of type SO(Va).
Let G be the extension of G5 by the Dynkin graph automorphism of order 2. Then GY is of type O(V'). Denote
by N (G>) the set of unipotent classes of G} contained in Gs. Since the bilinear form (-,-) is also alternating in
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characteristic 2 there is a natural injective homomorphism from O(V) to Sp(V), dim V = 2n, and N'(Gs) ~ T2,
where T2, is the set of elements (), ¢) € T2, such that A has an even number of parts (see 1.2.6 in [122]).

Let W be the set of orbits of irreducible characters of W under the action of W’. Elements of W are parametrized
by unordered pairs of partitions («, 3) written in non—decreasing order, a; < ag < ... < Cr(a); b1 < B <...<
B-(8), and such that Y~ a; + ) f; = n. By adding zeroes we can assume that the length of « is equal to the length
of 3. The set of such pairs is denoted by Y, o.

Instead of the maps in (1.4.4) we shall describe the following maps

xw) Lo M)
. b LEe (1.4.16)
Ge 25 RW) £ N(G) ,

S

where fl and F are induced by the restrictions of the maps f; and F for G, G} to N(Gl) N(Gg), respectively,
fl(W) and ﬁ(W) are their images, 5Gk, UW ®W and 7% are also induced by the corresponding maps for G}, G,
and W',
The map ]?1 is defined by the same algorithm as in the case of B, (see (1.4.13)). The image of ]?1 consists of all
pairs ((c},¢3,. .., Chpyn)s (€, €y v vy Chyy)) € Yo o such that ¢f < ¢j; for all odd i and ¢; < ¢}, + 2 for all even i.
If (\¢e) € 7'21, A= <A< ... < dom) and F(A,e) = ((c1,¢35- - -, Cam—1), (C2,Cas . . ., Co)) then the parts ¢;
are defined by induction starting from cq,

ci=¥+2(i—1 -

) [%] if \; is even, ()\;) =1 and ¢;_; is already defined;
(i—1)—
4

4
4 ['_ ] if \; = Ai31 is odd and ¢;_; is already defined;

C; =
Ciy1 = A3 4 9j [%] if \; = Aj31 is odd and ¢; is already defined;
= )‘7 + 2(i—1)—4 [12 ] if \j = A\j1 is even, e(\;) = 0 and ¢;—; is already defined;
civ1 =% +2(i— 1) —4[5E] if A = Aiqq is even, e(\;) = 0 and ¢; is already defined.
The image ﬁ(W) of F consists of all pairs ((¢1,¢3,- .., Cam+1); (€2, €4, ..., Cam)) € Yy 0 such that ¢; < ¢;4q for

all odd 7 and ¢; < ¢;41 + 4 for all even 1.
The maps ®" and " are defined by the same formulas as in case of C,,.
The map 7€ is given by 71 (\) = (1,&'), A= (A1 < A2 < ... < Agyn) € Qap, where

A — 1 if A\; is odd, 7 is even and \;_1 < Aj;

vi=4 M +1 if A\; and 7 are odd, and A\; < Aj41;
Ai otherwise,
and
w if k is odd;
g'(k) =< 0 if k is even, there exists even \; = k with odd i such that \;_1 < \;;

1 otherwise.

The map 7" is injective and its image consists of pairs (v,e) € T2, such that (k) # 0 if v is odd and for each
even ¢ such that v} is even we have v | = v}, i.e. i—1 does not appear in the partition v. Here v{ > v35 > ... > v,
is the partition d~ual to v.

To describe ¢¢, for Gx = SO(V) we choose a sufficiently large m € N. Let g € Gg. For any = € k* let V,
be the generalized z—eigenspace of g : V — V. For any x € k* such that 22 # 1 let A\¥ > A& > ... > A% be the
sequence in N whose terms are the sizes of the Jordan blocks of 7 'g : V, — V.

For any x € k* with 22 = 1 let A¥ > A& > ... > A% be the sequence in N, where (A\¥ > A\ > >
A 1), (AE >N > > )\””m)) is the pair of partltlons such that the corresponding irreducible representatlon of
the Weyl group of type Dgir, v, /2 is the Springer representation attached to the unipotent element x71g € SO(V,)
and to the trivial local data.

Let A(g) be the partition A(g)1 > A(g)2 > ... > A(g)am+1 given by A(g); = >, A¥, where x runs over

~ z j ’
a set of representatives for the orbits of the involution a — a~! of k*. Now ¢g, (g) is the pair of partitions
(Mg = Ag)s = - = AMg)2m—1), (Mg)2 = A(g)a = ... = Mg)am))-
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The preimage %{;1(/\, 1) is a stratum in Gy in all cases except for the one when the pair (A, u) is of the form
(M >A3>...2 Xam—1), (A1 > A3 > ... > Ao—1)). In that case 5511(()\,#) is a union of two strata, and the
conjugacy classes in each of them have the same dimension. B

If g is any element in the stratum G, .) corresponding to a pair (A,¢) € T2, A= (A1 > X2 > ... > \,) then
the dimension of the centralizer of g in Gy is given by the following formula

< 1
dim Zg, (9) =n+ Z(z - 1A = §|{z : A is odd}| — |{7 : A; is even and e()\;) = 1} (1.4.17)

i=1

1.5 The strict transversality condition

Recall that the definition of A%, and hence of ¥y s, depends on the choice of ordering of terms in decomposition
(1.2.14). In this section for every conjugacy class C € C(W) we define a variety Xy s, s € C such that every
conjugacy class O € G¢ intersects ¥y s and

dim O = codim Xy . (1.5.1)

It turns out that in order to fulfill condition (1.5.1) the subspaces b; in (1.2.14) should be ordered in such a way
that hg C bg is the subspace fixed by the action of s, and if h; = hf“\, h; = E)L and 0 < A < p < 1 then i < j, where A
and p are eigenvalues of the corresponding matrix I — O for s. In the case of exceptional root systems this is verified
using a computer program, and in the case of classical root systems this is confirmed by explicit computation based
on a technical lemma. In order to formulate this lemma we recall realizations of classical irreducible root systems.

Let V be a real Euclidean n—dimensional vector space with an orthonormal basis €1,...,&,. The root systems
of types A, _1, By, C, and D,, can be realized in V' as follows.

An

The roots are €; — €5, 1 < 4,5 < n, i # j, br is the hyperplane in V' consisting of the points the sum of whose
coordinates is zero.

Bn

The roots are ¢, £¢;, 1 <i<j<n, x5, 1 <i<n, hrp=V.

Ca

The roots are +¢; £¢;, 1 <i<j<n, 26,1 <i<n, hg=V.

D,

The roots are £e; £¢;, 1 <i<j<n,hrp=V.

In all these cases the corresponding Weyl group W is a subgroup of the Weyl group of type C,, acting on the
elements of the basis €1,...,&, by permuting the basis vectors and changing the sign of an arbitrary subset of
them.

Now we formulate the main lemma.

Lemma 1.5.1. Let s be an element of the Weyl group of type Cy, operating on the set E = {e1,...,en, —€1,...,—€n}
as indicated in Section 1.4, where €1,...,€y, s the basis of V introduced above. Assume that s has either only one
nontrivial cycle of length k/2 (k is even), which is negative, or only one nontrivial cycle of length k, which is
positive, 1 < k <n. Let A be a root system of type A,_1, Bn,Cy or D, realized in 'V as above.

(i) If s has only one nontrivial cycle of length k/2, which is negative, then k is even, the spectrum of s in the
complezification Ve of V is €, = exp(w)
except for possibly 1.

(i) If s only has one nontrivial cycle of length k, which is positive, then the spectrum of s in the complezification

of Vis €. = exp(%), r=1,...,k—1, and g = 1, all eigenvalues are simple except for possibly 1.

,r=1,...,k/2, and possibly g = 1, all eigenvalues are simple



1.5. THE STRICT TRANSVERSALITY CONDITION 37

In both cases we denote by V, the invariant subspace in V which corresponds to €, = exp(w),

‘ o - omi(2[ B2 112
r=1,..., [g] or eg = 1 in case of a positive nontrivial cycle and to €, = exp( mi2] = I T)), r=1,..., [k/zﬂ}

2
or g = 1 in case of a negative cycle. For r # 0 the space V,. is spanned by the real and the imaginary parts of a
nonzero eigenvector of s in Vg corresponding to €., and Vy is the subspace of fized points of s in V.

V.. is two—dimensional if €, # £1, one—dimensional if ¢, = —1 or may have arbitrary dimension if €, = 1.

Let A% be a system of positive roots associated to s and defined as in Section 1.2, where we use the decomposition

V=V (1.5.2)

as (1.2.14) in the definition of A%.. Denote by A; C A the corresponding subsets of roots defined as in (1.2.15).
Let A§ be the root subsystem fized by the action of s and I(s) the number of positive roots which become negative
under the action of s.
(#ii) If s has only one nontrivial cycle of length k, which is positive, we have

1. if A=A,_1 then Aj = Ap_k—1, I(s) =2n —k —1;

2. if A = B, (resp. Cy) then A} = By (resp. Cn_yi), I(s) = 4n — 2k for odd k and I(s) = 4n — 2k + 1 for
even k;

3. if A= D, then A = Dp_y, l(s) =4n — 2k — 2 for odd k and I(s) = 4n — 2k — 1 for even k.

k

5, which is negative, we have

(iv) If s has only one nontrivial cycle of length
1. if A = Bp(Cy) then Aj = By _k/2(Cr_py2), U(s) = 2n — k/2;
2. if A= D, then A§ = D, _y2, I(s) =2n —k/2 — 1.

(v) If s has only one nontrivial cycle of length k, which is positive, A is of type By, Cy or Dy, and k is even
then A = Ayjo U Ay o1 UAG (disjoint union), and all roots in Ay o1 are orthogonal to the fived point subspace
for the action of s on V.

(vi) In all other cases A = A
in decomposition (1.5.2).

UA§ (disjoint union), where imax is the mazimal possible index i which appears

Tmax

Proof. The proof is similar in all cases. We only give details in the most complicated case when s has only one
nontrivial cycle, which is positive, A is of type B, (Cy), and k is even. Without loss of generality one can assume
that s corresponds to the cycle of the form

€1 D E3—2E4—EG— - D Ef2 D EL D ER_1 S Ep_g— - — ez e (k>2), 81 > e = (K=2).

From this definition one easily sees that A§ = B,_,(Cr_r) = ANV’ where V' C V is the subspace generated
by €k+1,-..,6n. Computing the eigenvalues of s in V¢ is a standard exercise in linear algebra. The eigenvalues are
expressed in terms of the exponents of the root system of type Ax_1 (see [17], Ch. 10).

The invariant subspace V,. is spanned by the real and the imaginary parts of a nonzero eigenvector of s in V¢
corresponding to the eigenvalue €,.. If €, # +1 then V,. is two—dimensional, and for €, = —1 V. is one—dimensional.
In the former case V. will be regarded as the real form of a complex plane with the orthonormal basis 1,:. Under
this convention the orthogonal projection operator onto V,. acts on the basic vectors €; as follows

. k - k
€2j+1 *—)CEi, j:O,...,g*l,Egj r—)ce;], j:l,...,§, (153)

where ¢ = \/% . Consider the case when k > 2; the case k = 2 can be analyzed in a similar way.

To compute [(s) using the definition of A% given in Section 1.2 one should first look at all roots which have
nonzero projections onto V5 on which s acts by rotation with the angle 2%

From (1.5.3) we deduce that the roots which are not fixed by s and have zero orthogonal projections onto V;, /o
are £(e; +ex—jt1), j =1,... g The number of those roots is equal to k, and they all have nonzero orthogonal
projections onto Vj/o_1. From (1.5.3) we also obtain that all the other roots which are not fixed by s have nonzero

orthogonal projections onto Vj, /2, hence |Ay /51| = k. The number of roots fixed by s is 2(n — k)? since it is equal
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to the number of roots in Ag = Afj = By, (Cp—r). Hence A = Ay /o U Ay o1 UAg (disjoint union), the number
of roots in Ay g is [A| = |Ag| = |Agjo—1| = 2n* = 2(n — k)? — k = dnk — 2k* — k, |Ay o] = 4nk — 2k* — k.

Now using the symmetry of the root system A as a subset of V' and the fact that s acts as rotation by the
angles 2?” and 47” in Vi /o and V}, /91, respectively, we deduce that the number of positive roots in Ay /o (Ap/2-1)
which become negative under the action of s is equal to the number of roots in Ay /5 (Ap/2—1) divided by the order

of s in Vj,/2(Vi/2—1). Therefore

|Agsal  |Agjoq]  dnk -2k -k K
l(s) = = —— =dn -2k +1.
U(s) . 52 : T A2kt

This completes the proof in the considered case. O
Now we are in a position to prove the main statement of this section.

Theorem 1.5.2. Let Gk be a connected semisimple algebraic group over an algebraically closed filed k, and O €
N(W). Let Hx be a maximal torus of Gx, W the Weyl group of the pair (Gx, Hx), and s € W an element from
the conjugacy class UW(0O). Let A be the root system of the pair (Gy, Hy) and A% a system of positive roots in
A associated to s and defined in Section 1.2 with the help of decomposition (1.2.14), where the subspaces b; are
ordered in such a way that Hy is the linear subspace of hr fized by the action of s, and if h; = h’f\, h; = hL and
0< A< pu<1theni<j. In the case of exceptional root systems we assume, in addition, that A% is chosen as
in the tables in Appendiz 2, so that s = s's? is defined by the data from columns three and four in the tables in
Appendiz 2. Then all conjugacy classes in the stratum Go = ¢E¥i (F(O)) intersect the corresponding variety Yy s
at some points of the subvariety sH)Ny s, where HY C Hy is the identity component of the centralizer of § in Hy.

Moreover, if O € N(G,) C &(W) for some p, then for any g € Go
dim Zg, (9) = codimg, O = dim Xy ;. (1.5.4)

Proof. First note that the first identity in (1.5.4) for the codimensions is equivalent to identity (1.4.5) for the
corresponding dimensions. We shall divide the proof the remaining identity into several lemmas. First we compute
the dimension of the slice Sy 5, s € YW (0O) and justify that for any g € Go the last equality in (1.5.4) holds.

Lemma 1.5.3. Assume that the conditions of Theorem 1.5.2 are satisfied. Then for any g € Go, where O €
N(G,) C N(W) for some p, equality (1.5.4) holds, i.e.

dim Zg, (g) = dim Xy, = codimg, O.
Proof. Observe that by the definition of the slice Xy s
dim Yy s = I(s) + |Ao| + dim by,

where [(s) is the length of s with respect to the system of simple roots in A% . Hence to compute dim Xy s we have
to find all numbers in the right hand side of the last equality.

Consider the case of classical groups when each Weyl group element is a product of cycles in a permutation
group. In this case identity (1.5.4) is proved by a straightforward calculation using Lemma 1.5.1.

Let Gk be of type A,, and s a representative in the conjugacy class of the Weyl group which corresponds to a
partition A = (A > Ay > ... > \;;). Recall that s is the product of the cycles which correspond to the parts of .
The particular ordering of the invariant subspaces h; in the formulation of this theorem implies that the length i(s)
equal to the number A of positive roots in A% which become negative under the action of s should be computed
by successive application of Lemma 1.5.1 to the cycles s; of s, which correspond to \; placed in a non—increasing
order. We claim that according to this observation one has

k—1
Us) = D Usw), Use) =2(n = 3 X)) = M+ 1, (1.5.5)

where the first sum in (1.5.5) is taken over k for which Ay > 1, and we keep the notation of Lemma 1.5.1.
Indeed, recall that according to formula (1.2.16) we have the following disjoint union decomposition

M
A:U&k
k=0
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which implies another disjoint union decomposition
M
AS = U (A;, NA3).
l

Thus the length I(s) equal to the cardinality of the set A2 can be found as the sum of the cardinalities of the sets
A, NAS,
M
I(s)=1Aa%l= | J A, nAY. (1.5.6)
k=0,i1,7#0

We find the cardinalities of the sets A;, N A? by successive application of Lemma 1.5.1 to the cycles s; of s,
which correspond to A; placed in a non—increasing order.

According to our convention for the ordering of terms in sum (1.2.14) used to define A%, the cycle s; of s
which corresponds to the maximal part A; is the only cycle of s non-trivially acting on b;,, by Lemma 1.5.1
(vi). Applying part (iii) 1. of Lemma 1.5.1 to the cycle s; we obtain |A;,, NA%| = [(s1) = 2n — A\ + 1 and
Aft = Ap_x, = A\ A,;,, . The remaining cycles s, ..., s, of s corresponding to Ag > ... > A, act on AJ' and
leave the set A;,, and its subset A% N A,;,, invariant, so we can apply Lemma 1.5.1 to s2 acting on Aj* to get
|Aiy s DAL =1(s2) =2(n— A1) — A2+ 1 and AP = A,_x,—x, = A\ (A, UA;,,_,). Iterating this procedure
and using (1.5.6) we obtain (1.5.5).

The number of roots fixed by s can be represented in a similar form,

S

—1
Ao = Zl sk), Usk) =2(n— ) Ni)— A +1, (1.5.7)

=1

where the sum in (1.5.7) is taken over k for which Ay, = 1.
Finally the dimension of the fixed point space hg of sin his m — 1, dim ho =m — 1.
Recall now that
dim Yy s = I(s) + |Ao| + dim by, (1.5.8)

and hence

N

-1

dimsz_Zsz —l—m—l-Z(?( -

k=1

i=1

Exchanging the order of summation and simplifying this expression we obtain that

dim Sy =n+2> (i—1)\

i=1

which coincides with (1.4.6).

The computations of dim ¥y s in case of B,, and of C,, are similar. If (v,¢) € 7'22n, v=(v1 >y > ... > vpy),
corresponds to O € ﬂ(W) = N(G5) then ¥W(v,e) = (\,u) € A}, ~ W is defined in Section 1.4, part Cy,. A
consists of even parts v; of v for which £(v;) = 1, and p consists of all odd parts of v and of even parts v; of
v for which e(v;) = 0, the last two types of parts appear in pairs of equal parts. Let s be a representative in
the conjugacy class ¥"W (v, ¢). Then each part \; corresponds to a negative cycle of s of length , and each pair
i = 11 of equal parts of pu corresponds to a positive cycle of s of length p;. We order the cycles sk of s associated
to the (pairs of equal) parts of the partition v in a way compatible with a non—increasing ordering of the parts of
the partition v = (11 > v9 > ... > vp,), i.e. if we denote by si the cycle that corresponds to an even part vy of v
for which e(v;) = 1 or to a pair v = vi11 of odd parts of v or of even parts of v for which () = 0 then s > s
if Vi Z V.

Similarly to the case of A, by the definition of A% and by Lemma 1.5.1 applied iteratively to the cycles s in
the order defined in the previous paragraph, the length I(s) of s is the sum of the following terms [(sy).

To each even part vy of v for which e(v;) = 1 we associate the term

k-1
ﬁ)_ﬁ.
2 2’

1

U(sk) =2(n —

~.
Il
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to each pair of odd parts vy = vg41 > 1 we associate the term

k-1 k—1
l(sk) = 4(n — . %)72%: <2(n21;1)V2k> i (2(7121;) l/k2+1>;

i=1 i=1

note that the sum of these terms over all pairs vy = 41 = 1 gives the number |Ag| of the roots fixed by s;
to each pair of even parts v, = vg41 for which £(v;) = 0 we associate the term

k—1 k—1
Usi) =4(n =3 5) 2+ 1= (2@—2”;)—”;@) + (2@—2”;)—”’“; +;>

=1 =1

S

[\

The dimension of the fixed point space hg of s in by is equal to a half of the sum of the number of all even parts
v, for which () = 0 and of the number of all odd parts vy,

1 1
dim by = §|{z v, is odd}| + §|{z :v; is even and €(v;) = 0}]. (1.5.9)

Finally substituting all the computed contributions into formula (1.5.8) we obtain

m k—1
i 1
dim Y s = Z (2(71 - Z %) - V;) + §|{z :v; is even and e(v;) = 0} +
k=1 i=1
1. _ 1, .
+§|{Z v, is odd}| + §|{z v is even and €(v;) = 0}].

Exchanging the order of summation and simplifying this expression we obtain that

G 1
dim Yx s =n + Z(z — Dy + §|{Z :v; is odd}| + |{¢ : v; is even and e(v;) = 0} (1.5.10)

i=1

which coincides with (1.4.11) or (1.4.14).

In case of D,, the number dim X s can be easily obtained if we observe that the map UW s defined by the
same formula as "W in case of C),. In case when \T/W(z/, g) = (—, p), where all parts of p are even, there are two
conjugacy classes in W which correspond to U (v, ¢). However, the numbers I(s), |Ag| and dim b are the same
in both cases. They only depend on \AI)W(I/, ¢) in all cases. Let s € W be a representative from the conjugacy class
\TIW(V,E), v=W1>2vy> ... > Up).

From Lemma 1.5.1 we deduce that in the case of D,, the contributions of the cycles s; of s to the formula for
dim X s can be obtained from the corresponding contributions in case of C,, in the following way: for each pair of
odd parts vy, = 41 and for each pair of even parts vy, = vg1 with () = 0 the corresponding contribution I(sy)

to I(s) should be reduced by 2 and for each even part vy of v with (v,) = 1 the corresponding contribution I(sg)
to I(s) should be reduced by 1. This observation and formula (1.5.10) yield

G 1
dim Yy s =n + Z(z — v + §|{Z 1, is odd}| + |{4 : v; is even and (v;) = 0}| —
i=1
—{i:v;is odd}| — |{i: v; is even}| =
m
) 1 .. . . .
=n-+ Z(z — Dy — §|{z :v; is odd}| — |{i : v; is even and e(v;) = 1}]
i=1
which coincides with (1.4.17).
In case of root systems of exceptional types dim Xy ; can be found in the tables in Appendix 2. According to

those tables equality (1.5.4) holds in all cases.
O

Now we show that all conjugacy classes in the stratum Gop = (;5511( (F(O)) intersect the corresponding variety

Yks, 8 € UW(O). The strategy of the proof is as follows. We are going to use characterization (1.4.3) the stratum
Go.
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Let A% be the system of the positive roots introduced in the statement of Theorem 1.5.2,

K
be = P b (1.5.11)
=0

the corresponding decomposition of hr and h; € b; the corresponding elements of the subspaces b;.

We are going to rearrange the terms in the sum (1.5.11) and define a system of positive roots A}r, using the
rearranged sum as described in Section 1.2, in such a way that s is elliptic in a standard parabolic subgroup
Wy C W with respect to the system of simple roots in Al .

Let w be a minimal length representative in the conjugacy class of s in W7 with respect to the system of simple
reflections in Wj.

Let B; be the Borel subgroup in G corresponding to fAi_, L, the standard Levi subgroup with the Weyl
group Wi. Denote by By = B N Ly the Borel subgroup in L;. One can always find a representative w € Ly of w.

By characterization (1.4.3) any conjugacy class in Go intersects B1wB;. In Lemma 1.5.4 we show that in fact
any conjugacy class in G intersects BowBy; C B1wBj.

Next, in Lemmas 1.5.5 and 1.5.6 we prove that in fact one can take w = s. In Lemma 1.5.7 we verify that
By$Bs C Ny $Hy Nk, and hence any conjugacy class in G intersects Nx$sHy Nk D B2sBs.

We prove that any element of NysHy Ny, can be conjugated to an element of Nks'HENk C Nyxs$ZxNk. By
Proposition 1.3.4 (i) this implies that any conjugacy class in G also intersects i s. Finally we verify that in fact
any conjugacy class Go intersects Yy ¢ at some point of $HY Ny s.

We start realizing this program by defining A1+. Recall that hg is the subspace of hgr fixed by the action of s.
If ho =0, let b = h; and b, = h;, i = 0,..., K. Otherwise let b = bo, b, = bip1, B, = hi11,i=0,...,K — 1 and
choose an element h% € b such that bl («) # 0 for any root o € A which is not orthogonal to the s—invariant
subspace b’ with respect to the natural pairing between hr and bh.

By a suitable rescaling of h; we can assume that conditions (1.2.17) are satisfied for the elements A} and roots
a from sets A} defined as in (1.2.22) with h;, h; replaced by h;, h%. Indeed, observe that

Al ={aecA:hj(a) =07 >4, hi(a) #0} C{a€ A:hj(a) =0,j >i+1, hip1(a) #0} = A1,i=0,..., K—1

by the definition of the elements h.. Thus, since (1.2.17) is satisfied for h;, ¢ = 0,..., K, it is also satisfied for
h; = h; if i < K. By a suitable rescaling of h, we can assume that (1.2.17) is satisfied for iy as well.
Let A1+ be a system of positive roots in A = A(Gy, Hx) which corresponds to the Weyl chamber containing

the element h’ = Efio h}. By Lemma 1.2.2 the set of roots annihilating by is the root system of a standard Levi
subgroup L1 C Gk with respect to the system of simple roots in A}F. We denote the root system of the pair
(Lla Hk) by A(Lh Hk)

Using formula (1.2.1) and recalling that the roots 71,...vy form a linear basis of h'*, i.e. fori =1,...,1' v
annihilate by, we deduce that for i =1,...,1' v; € A(L1, Hx), and hence s belongs to the Weyl group Wy C W of
the root system A(Lq, Hy). Note that, as L; is a standard Levi subgroup in Gy, W is a parabolic subgroup in W
with respect to the system of simple roots in A_lk. Since 71, ...~ form a linear basis of h”*, the linear span of roots
from A(Lq, Hy) coincides with h’*, and hence the element s is elliptic in W; as s acts without fixed points on h’*.

Let w be a minimal length representative in the conjugacy class of s in W; with respect to the system of simple
roots in A(Ly, Hx)+ = AL NA(Ly, Hy). By Lemma 3.1.14 in [44] if w € UW(O)NWj is of minimal possible length
with respect to the system of simple reflections in W; then it is also of minimal possible length with respect to the
system of simple reflections in W, where in both cases the simple reflections are the reflections with respect to the
simple roots in AL. Note that w is elliptic in Wy as well.

Let B; be the Borel subgroup in Gy corresponding to —A}F, P, D Bj the parabolic subgroup of G corresponding
to Wy. Thus L; is the Levi factor of P;.

Denote by Bs = By N Ly the Borel subgroup in L;. One can always find a representative w € Ly of w.

Lemma 1.5.4. Any conjugacy class in Go intersects BowBe C B1wB;.

Proof. By characterization (1.4.3) the stratum G consists of all conjugacy classes of minimal possible dimension
which intersect the Bruhat cell BywB;. Denote by U; the unipotent radical of P;. Then by the definition of
parabolic subgroups one can always find a one parameter subgroup p : k* — Zg, (L1) such that

lim p(tnpt™) =1 (1.5.12)



42 CHAPTER 1. ALGEBRAIC GROUP ANALOGUES OF SLODOWY SLICES

for any n € Uy.

Let v € Go be a conjugacy class which intersects BiwB; at point bwb’, b,b’ € B; such that bwb’ & BowBs.
Since by definitions of By and U; we have By = ByU; there are unique factorizations b = un, b’ = u'n’, u,u’ € Bay,
n,n’ € Uy. By (1.5.12) we have

: N -1\ __ 1 —1N\,: .7 / -1\ __ P .
tlgr(l)p(t)bwb p(t )—}g%up(t)np(t Y p(t)n'p(t™") = uwu’ € Baw By,

and hence the closure of « contains a conjugacy class 7/ which intersects BiwB; at some point of BywBs C
BiwB;. In particular, dim v > dim 4’. This is impossible by characterization (1.4.3) of Go as 7 has minimal
possible dimension among the conjugacy classes intersecting B1wB;. Hence vy intersects BywB; at some point of
BywBy C B1wB;.

O

Lemma 1.5.5. Let Gk be a connected semisimple algebraic group over an algebraically closed field k of charac-
teristic good for Gx. Let Hy be a maximal torus of Gx, W the Weyl group of the pair (Gy, Hx), and s € W an
elliptic element. Denote by Oy the conjugacy class of s in W. Then ®V(0,) € N(Gy).

Proof. The statement of this lemma is a consequence of the fact that s is elliptic. Indeed, it suffices to consider the
case when Gy is simple. R R

In case when Gy is of type A, this is obvious since A (W) consists of the unipotent classes of Gy, N (W) =
N(Gy). In fact in this case Oy is the Coxeter class, and ®" (0,) is the class of regular unipotent elements.

If Gy is of type By, Cy or Dy, formula (1.5.9) implies that if ®V (O,) corresponds to (v,e) € T2,(T2,) then v
has no odd parts and no even parts v; with (v;) = 0. According to the description given in the previous section
the map 71 (71) is injective and its image consists of pairs (v,¢) € T2, (7T2,) such that e(k) # 0 if v is odd and
for each even ¢ such that v is even we have v | = v, i.e. ¢ — 1 does not appear in the partition v. We deduce

that ®"(0O,) is contained in the image of 7 (7%1), i.e. ®V(O,) € N(Gy) is a unipotent class in Gy.
In case when Gy is of exceptional type this can be checked by examining the tables in Appendix 2.

Now we show that in fact one can always take w = s.

Lemma 1.5.6. The element s is of minimal length in its conjugacy class in W1 with respect to the system of simple
roots in A(Ly, Hy)+ = AL N A(Ly, Hy).

Proof. First observe that the formulation of this lemma only uses root systems which can be described independently
of k. Therefore we can assume in the proof that the characteristic of k is good for Gy.

Let M; be the semisimple part of L; and O, = ®"1(0,,) C My, where O,, is the conjugacy class of w in the
Weyl group Wy = W(Ly, H). By the previous lemma applied to the group M; and the elliptic element w € Wy we
have O,, € N(M).

Therefore O, is the unipotent class of minimal possible dimension which intersects BywBy. By Theorem 0.7
in [86] the codimension of O,, in M; is equal to l;(w), where l; is the length function in W; with respect to the
system of simple roots in A(Ly, Hx)+ = A} N A(Ly, Hy),

codimyy, O, =1 (w). (1.5.13)

Now we show that s has minimal length in the Weyl group W; with respect to the system of simple roots in
the set of positive roots A(Lq1, Hy) .

Indeed, let E{Q , be the variety in M; associated to s € Wi and defined similarly to Yy s C Gk, where we use
A(Ly, Hy)+ as the system of positive roots in the definition of ¥j_..

Formula (1.5.4) confirmed in Lemma 1.5.3 is applicable to the slice ¥} , and yields

codimyy, O, = dim X .
Formula (1.5.8) and the fact that s is elliptic in W; imply that
dim ELS = l(s),
From the last two formulas we infer

codimyy, O, = dim X, = [1(s).
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The last formula and (1.5.13) yield I3 (w) = I1(s), and hence s has minimal possible length in its conjugacy class
in W7 with respect to the system of simple roots in A(Lq, Hy)+.
O

Now we can assume that s = w.
Lemma 1.5.7. Any conjugacy class v € Go intersects Sy s at some point of $HY Ny s.

Proof. Let a € ANh™*. Then a € A; N h’™* for some i > 0. Observe that by the definition of the subspaces b}, and
by the choice of the elements hy, K =0,..., K

Ainh™ ={BeA:hj(B)=0j>ihi(B) #0,ho(B) =0} ={BE€A:hj(B)=0,j>i—1h ,(B)#0,} =A1,,

and hence by (1.2.21) a € (A;)+ NH™ if and only if A, (o) = hi(a) > 0, i.e. a € (A;)+ N if and only if
o € AL N Al Therefore if we denote B3 = B N Ly, where By is the Borel subgroup corresponding to —A%, then
B3 =ByNL; = Bs.

By Lemma 1.5.4 applied to the element s € W any conjugacy class v € G intersects B2$Bs, and hence it also
intersects BssBs C B$B as B3 = By. But by the definition of L; s acts on the root system of the pair (L1, Hy)
without fixed points. Since Bs = B N L; and s fixes all the roots of the pair (ZxHk, Hx) we have an inclusion
B3 C Hy Ny, where Ny is the unipotent radical of the parabolic subgroup Py associated to s in the beginning of
this section. Hence B3$B3 C Ny $Hy Ny.

Recall that we denote by Hy the identity component of the centralizer Hy of $ in Hx. Next we show that all
elements of Ny$Hy Ny are conjugate to elements of NkéHf(’Nk C Nx$Zyx Nk by elements of Hy.

Observe that by parts (2) and (3) of the proof of the Theorem in Section 18.3 of [55] the set of elements
hsh=1$71 h € Hy is a closed subgroup Hj of Hy, and the map

Hy — H{,h— hsh™ 1571

is a surjectice group homomorphism with the kernel being Hy. Thus dim Hy = dim H{ + dim Hj.
Now consider the group homomorphism

¢ Hy x Hj, — Hy

induced by the group multiplication in Hy. By Corollary B in Section 18.1 of [55] its differential at the identity
element of H x Hj_is a linear isomorphism of the corresponding tangent spaces, i.e. of the Lie algebras of Hf x H}.
and of Hy. Since ¢ is a group homomorphism, this differential is an isomorphism of the corresponding tangent
spaces at all points of Hy x Hj. Thus its image must have the dimension equal to dim Hj + dim Hy = dim Hjy.

By 4.4, Proposition B in [55] the image of the homomorphism ¢ is a closed subgroup in Hy. The identity
dim H{ +dim H, = dim Hy implies that this image contains the identity component of Hy. But Hy is irreducible,
and hence the image of ¢ coincides with Hy, i.e. ¢ is surjective.

For the same reason the image of HY x Hy_in Hy under ¢ coincides with Hy, i.e. the restriction of ¢ to HY x Hj,
is surjective.

This implies that for any h € Hy there exist hy € H and Wikt e H, (W € Hy) such that

h = hoh'sh' 671 = W hosh' 1571,

or

K hsh! = hos. (1.5.14)
Since Hy normalizes Nk, we deduce from the last identity that any element nhsn’ € NyHys$Ny = NysHy Ny,
n,n’ € Nx, h € Hy, can be conjugated by an element i/ € Hy to an element &'~ 'nh’hosh' 'n'h’ € N HP$Ny =
Ny $HQ Ny, where hg € HY and h’ are related to h by (1.5.14).

Finally observe that NkéHﬁNk C Nyx$Zx Ny, and hence any conjugacy class 7 € G intersects Nks'HﬁNk C
Ny$ZyNx. By Proposition 1.3.4 (i) « also intersects i . Formula (1.3.18) implies that the Zyx—component of
any element from Ny $Zx Ny is equal to the Zyx—component in ¥y o = $Zik Ny s of its image under the isomorphism
Ny$Zy Ny >~ Ny x 5Zyx N . Therefore any conjugacy class v € Go intersects Yy s at some point of éHﬁNkys. This
completes the proof.

O

By the previous lemma the statement of this theorem holds.
O
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1.6 Some normal orderings of positive root systems associated to Weyl
group elements

For the purpose of quantization we shall need a certain normal ordering on the root system A% .
An ordering of a set of positive roots A is called normal if it satisfies the following property.

Property N. For any three roots o, B, v such that v = a+  we have either a <y < 8 or f < v < a.

If
Bl)"'a@D

is a normal ordering of A, any part of it of the form

Bhy Bht1s- -+ Brtbd

is called a segment and denoted by [Bh, Bhtb)-
If A, B C A, are two subsets, we write A < B if for any § € A, and ¥ € B one has 6 < ¢ with respect to a
normal ordering < on Aj.

Proposition 1.6.1. ([133], §3, Proposition 2) Let a1,...,q; be the simple roots in Ay, s1,...,s the corre-
sponding simple reflections. Let w be the element of W of maximal length with respect to the system si,...,s; of
simple reflections. For any reduced decomposition W = s;, ...S;, of W the ordering

61 = Oéil,ﬂg = 85§10y y e v 7ﬂD =S84 - Sip_1%ip (161)

is a normal ordering in Ay, and there is a one—to—one correspondence between normal orderings of Ay and reduced
decompositions of .

From this proposition and from properties of Coxeter groups it follows that any two normal orderings in A,
can be reduced to each other by the so—called elementary transpositions. The elementary transpositions for rank
2 root systems are inversions of the following normal orderings (or the inverse normal orderings):

a, B A+ A
«, Oé+5, 5 A2
(1.6.2)
«, a+ﬂv OZ+25, ﬂ B2
a, a+ B, 2a+38, a+28, a+38, B G

where it is assumed that (o, ) > (8, 3). Moreover, for any rank 2 root system there exist two normal orderings
one of which is contained in the list (1.6.2) and the other is the inverse ordering.
In general an elementary transposition of a normal ordering in a set of positive roots A is the inversion of an
ordered segment of form (1.6.2) (or of a segment with the inverse ordering) in the ordered set A, where o — 5 ¢ A.
We shall need the following property of normal orderings.

Lemma 1.6.2. Any root o in any normal ordering of a system of positive roots Ay cannot be represented as a
linear combination of roots strictly greater xor strictly less than o with non-negative integer coefficients.

Proof. Let w = s;, ...s;, be the reduced decomposition of the longest element w of W corresponding to a normal
ordering of A, so that the ordering has the form

Br =i, B2 = 8iQiyy -, BD = Siy - Sip_ Qipy -

Let a = B, for some k and define v = s;, ...s;,. As this decomposition of v is reduced, i.e. has minimal possible
length, being a part of the reduced decomposition of W, we have

VO = U0k = Siy -+ SiySiy - - Sip_ Qi = —Q;, € A,

and for n > k
VBn = Sijy + -+ 8iySiy + v 8iy Sijpq + v Sip_y Qiyy = Sijiq + - Sip_ O, € Ay
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Therefore if we suppose that o = 8 = Zfzkﬂ CnBn, cn € N then

D
-, = VP =va = E CnSipys -+ Sin_1 i, € A
n=k+1
Thus we arrive at a contradiction, and hence the presentation o = 3, = >, +1¢nBn, cn € Nis impossible.
The case of similar decompositions of « as linear combinations of roots strictly less than a with non-negative
integer coefficients is treated in a similar way. O

We recall some results of §3 and §4 in [133] on normal orderings and reduced decompositions. For w € W a
decomposition w = wv, u,v € W, is called reduced if I(w) = l(u) + l(v), where [(-) is the length function with
respect to the system of simple roots in A . In this case A, = A, Uv™1A,,.

Recall that for w € W, a decomposition w = s;, ... s;, is called reduced if it has minimal possible length equal
to I(w). Obviously, if w = uv, u,v,w € W is a reduced decomposition then the product of reduced decompositions
of u and v is a reduced decomposition of w.

An ordering of the set A, = {a € Atjwa € —AL} is called normal if it coincides with an initial segment of
some normal ordering of A.

Lemma 1.6.3. ([133], §4, Theorem 1) Let w € W. Then the following statements are true.

(i) Any simple root in A, can be moved to the first position in a normal ordering of A,, by a composition of
elementary transpositions.

(i1) Any two normal orderings of the set Ay, can be obtained from each other by elementary transpositions within
Ay

(#ii) Any two reduced decompositions of w can be obtained from each other using braid group relations in W.

() If w = s;, ...sj, is a reduced decomposition of w then 1 = a;,, B2 = 85,0, ..., Bp = Sj, ... Sj,_, 0, 5 Q
normal order of the set A,,, and

W=88 ...58,- (1.6.3)

Moreover, there is a one-to-one correspondence between the reduced decompositions of w, the presentations of
w of the form (1.6.3), and the normal orderings of the set A,,. In particular, any reduced decomposition of w is
an initial part of a reduced decomposition of the longest element w € W.

We shall also need the following generalization of the previous lemma.

Lemma 1.6.4. Let a1,...,q; be the simple roots in Ay, s1,...,s; the corresponding simple reflections, W =
Siy - --Sip @ reduced decomposition of the longest element W of W with respect to the system si1,...,s; of its gener-
ators, and

61 = Oéil,ﬁg = 855, Qyy et ,51) =S4 - Sip_1%ip (164)

the corresponding normal ordering in A, .

Let By, Br+i,---, Br+v be a segment of this normal ordering, w = s;,
reduced decomposition of w.

Let w = s, ...8;,,, be another reduced expression of w. Then the following statements are true.

(1)

the corresponding part of the

---Sih,er

W= 8i, -+ Sip_15jn  SjnipSinspsr - Sip (1.6.5)

is a reduced expression of W.
(i) The normal ordering of Ay corresponding to reduced decomposition (1.6.5) has the form

ﬁl)BQaﬁh—lvﬁhly' .. aﬂhmﬂh-’rb-ﬁ-l s 7BD7 (166)

where the segment By, , ..., By, is obtained from Bn, Bn+1, - - ., Butb by applying elementary transpositions to normal
ordering (1.6.4) such that each such transposition does not change the positions of all positive roots, except for
Brs Bhaty -+ Brro-

(iti) Let w = 84, ...84,_,. Then uDy—1 = {Bn, Brt1s---,Pntb}, and the segments B, Brii,- .., Brys and
Bhys- -+ B, correspond to the following two decompositions of the element uw ™ tu~1,

~1, 1
UWTUT =8B, .58, = 5B, - SBy, - (1.6.7)
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Moreover, if a segment Bp,,...,Bn, s obtained from Bh,Br+1,- .., Brys by applying elementary transpositions to
normal ordering (1.6.4) such that each such transposition does not change the positions of all positive roots, except
for B, Bht1s- - Brys, then the corresponding ordering (1.6.6) is normal, and there is a one-to-one correspondence
between reduced decompositions of w, decompositions of the element uw ™ u=! of the form (1.6.7), segments obtained
from Br, Bra1,- -+, Breb by applying elementary transpositions within the segment, and normal orderings of Ay of
type (1.6.6).

Proof. For part (i) we observe that the decompositions v = s;, ...si,_,, v = 5;,,, ...5;, are reduced being parts
of a reduced decomposition of w. Thus the decomposition W = wwv given by (1.6.5) must be reduced as its length
is equal to the length of w, i.e. to the cardinality of the set A,.

To justify (ii) we observe that, according to the definition of the normal ordering given in (1.6.4), after replacing
the part w = s;, ...s;,,, of the corresponding reduced decomposition w = s;, ...s;, with w = s;, ...s;,,,, the
roots at the first h — 1 and the last D — (h + b) positions will remain at the same places in new ordering (1.6.6) as
for the roots at these positions we still have the same expressions,

Bk = 84y 841Gy 1<k<h,

Bk = UWSjy - - - Sigyy Qg D>k>h+b.

Let 8] = a,,By = 84, Qipyy -5 By = Sijy -+ Sipyy_  Qiy,,, be the normal ordering of A,-1 associated to the
reduced decomposition w = s;, ...s;,,, according to Lemma 1.6.3 (iv). Then the segment S, Bny1,---, Buts
coincides with uf] = ua, , ufy = usi, i, - .., ufy = US;, ... 54, ,,,,- As a set this segment copincides with
U,Aw—l.

According to definition (1.6.1) in the new normal ordering (1.6.5) the roots from the set uA, -1 forming the
segment By, ..., By, are placed as follows uay, , us;, o, ., ..., USj, - .. 85, ,Q,.,- Note that according to Lemma
1.6.3 (iv) the segment aj, , 8j, Q1 -+ -5 Sjy - - - Sjpip_1 Xy 15 the normal ordering of the set A,,-1 which is obtained
from the segment (] = i, , 05 = S5,y -+, By = Sip - Sipip_1Qiyyy DY applying elementary transpositions by

Lemma 1.6.3 (ii). Therefore the segment

5h17 s 7Bhb = UG, US ), Qg g ooy USGy o v Sy 1 Qg

is obtained from the segment By, Bh41, - - -, Bhso = ufy, ubh . . ., ufy by applying elementary transpositions. At the
same time part (iv) of Lemma 1.6.3 implies statement (iii) of this lemma. This completes the proof.
O

To formulate the main statement of this section we shall consider a special type of factorizations of Weyl group
elements introduced in (1.2.1). This type is described in the following lemma.

Lemma 1.6.5. Let s € W be an element of the Weyl group W. There there is a decomposition s = s's? of the
form (1.2.1) such that any root o € A fized by the action of s is also fized by the action of s, i.e.

sfa=a=ac A (1.6.8)

Proof. Let s = s's? be any presentation of the form (1.2.1) of a Weyl group element s € W. In the proof we shall
use a decomposition (1.2.14) such that in sum (1.2.14) by is the linear subspace h = h* N hr of hg fixed by the
action of s pointwise. It will be convenient to put hyo = by even in the case when b is trivial. According to this
convention Ag = {a € A : sa = a} is always the set of roots fixed by the action of s, and Ay may be empty.

We shall also assume that the one-dimensional subspaces b; in sum (1.2.14) on which s!' acts by multiplication
by —1 and s? acts trivially, if there are any non-trivial subspaces of this type, are placed immediately after ho in
(1.2.14), i.e. they are labeled by indexes forming a set of the type {1,2,...,t}.

Recall that in Section 1.2 we denoted by A;, , k = 0,..., M the non-empty sets in the collection A;, i =0,..., K,
and that they are labeled in such a way that i; < 4 if and only if j < k.

Suppose that the direct sum @Z:o,upo h;, of the subspaces b;, , which correspond to the non—empty sets A;, ,
kE =0,...,M and on which s' acts by multiplication by —1 and s? acts trivially, is not trivial. Since the one-
dimensional subspaces h; on which s' acts by multiplication by —1 and s? acts trivially are placed immediately
after o in sum (1.2.14), the roots from the union Uz=0,ik>0 A;, must be orthogonal to all subspaces b;,,ir > 0
on which s' does not act by multiplication by —1 and to all roots from the set v,,1,...v as s2 acts trivially on
@Z:O b;.. Pick up a root v € UZ:MPO A;,. Then 7 is orthogonal to the roots v,41,...7y. Therefore, by the
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choice of 7, s} := s's, is an involution the dimension of the fixed point space of which is equal to the dimension of

the fixed point space of the involution s' plus one, and s3 := s, s is another involution the dimension of the fixed
point space of which is equal to the dimension of the fixed point space of the involution s? minus one,

dim 6% = dim §*" + 1,dim h* = dim h** — 1.

By the construction we also have a decomposition s = s}s3.

Now we can construct decomposition (1.2.14) using the new factorization s = s}s3 of s and the conventions
stated in the first two paragraphs of this proof. After that we can also apply the algorithm described in the previous
paragraph. Iterating these two steps we shall eventually arrive at the situation when the direct sum ®Z:07ik>0 Bi,
of the subspaces h;, on which s! acts by multiplication by —1 and s acts trivially is trivial.

This property also implies that any root fixed by the action of s? is fixed by the action of s as well,

sSPa=a=ae A,

which is property (1.6.8).

Indeed, if s2a = a then by the definition of the subspaces b;, C bg, a annihilates any s-invariant subspace
hi. C br on which s? acts in a non-trivial way. Therefore o may not vanish identically only on the direct sum
®z=0,ik>0 hi, of the subspaces h;, on which s! acts by multiplication by —1 and s? acts trivially or on hy. But
the sum @Z:o,upo b;, is trivial by the construction. Therefore o does not vanish identically only on by (if b is
not trivial) which implies a € Ay.

Note that condition (1.6.8) is a property of the corresponding decomposition (1.2.1) and that this condition
does not depend on decomposition (1.2.14) used in the arguments in the previous paragraph. This completes the
proof.

O

From now on we shall make the following assumptions.

1. We shall only consider decompositions (1.2.1) which satisfy property (1.6.8).

2. It will be convenient to use the convention adopted in the proof of the previous lemma and assume that in sum
(1.2.14) by is the linear subspace b = h*Nbg of hr fixed by the action of s pointwise, and it will be convenient
to put hp = b even in the case when b is trivial. According to this convention Ag = {a € A : sa = a} is
always the set of roots fixed by the action of s, and Ay may be empty.

3. As in the proof of the previous lemma, we shall also always assume that the one-dimensional subspaces b;
in sum (1.2.14) on which s! acts by multiplication by —1 and s? acts trivially, if there are any non-trivial
subspaces of this type, are placed immediately after by in (1.2.14), i.e. they are labeled by indexes forming a
set of the type {1,2,...,t}.

4. According to the arguments in the proof of the previous lemma, under assumptions 1-3 we can suppose that
the direct sum @y _g ;, <o hi, of the subspaces b;, on which s* acts by multiplication by —1, s> acts trivially,
and which correspond to the non—empty sets in the collection A;, ¢ =0, ..., K, is trivial.

Proposition 1.6.6. Let s € W be an element of the Weyl group W of the pair (g,h), A the root system of the
pair (g,h), s = s's? a presentation (1.2.1) for s, i.e. s',s* are involutions, s' = s, ...s,,, s> = Soypsr -+ Sy, the
roots in each of the sets vi,...,vn and Ypi41,-.., Y are positive and mutually orthogonal.

Let A%, be a system of positive roots defined by (1.2.20) using the presentation s = s's? and under assumptions

1-4. For any w € W denote Aj = {a € A% : wa € =A% }. Then the following statements are true.

(i) The decomposition s = s's? is reduced in the sense that l1(s) = I(s?) + I(s'), where I(-) is the length function
in W with respect to the system of simple roots in A%, and A% = A%, U s?(A%), AS_, = A%, Us'(A%) (disjoint
unions).

(i) If a € A%, (resp. a € A%, a € A, ora € AS_,), B € Ag, and a+ P € A then o+ € A%, (resp. a4 € A%,
a+BeA, ora+BecAl).

(iti) s*(A3) C AL\ (A% UAS UA).
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(iv) There is a normal ordering of the root system A% of the following form
18117' . 7ﬁtlvﬂt1+17 s 76#,%771) RN TN & PRI 777L76tl+p+17' . 76[1(31)7 SRR (169)

2 2 2 2 2 2 0 0
Bl?"'7ﬂt'a7n+17"'77n+27" '77n+35"'arYl’a/Bt,+q+l’—n+17"'7Bt/+q’ﬂt'+q+l7"'7ﬂl(32)’517"'7ﬂD0a
2

where

Agl = {61177511(31)} = {6115"'7ﬂtlaﬁtl+17'"aﬁtl_,'_l);"a’yla"'772a'"7737"'7’Ynaﬁtl+p+17"'aﬁll(sl)}7

As_ll = {O{EAiLgla: 704}:{ﬂtl_i_l,...,ﬂtl_i_p}:{ﬂt1+1,...,6t1+%,"}/1,...,’}/2,...,’)/3,...,"}/”},

where p = |AS_11|,

I(s') = p
t= H/@llaﬁtl“ = Hﬁtl+p+1’6l1(sl)]| =" 9 (1.6.10)
so that
2t = [AL N\ AL =1(s") — AL,
p—n p+n
|[/6t1+17ﬁt1+%]|: 2 ) ‘[7177771]‘: 2 y (1611)

2 2 2 2 2 2 2 2
e =1{B1, .. '36[(32)} = {81, B nt 1o s Vnk2y - Yt 3y - - - a71’7ﬂt,+q+l/—n+1a - 'aﬁt’+q>ﬁt’+q+1a e 761(52)}a
2

As_zl = {Oé € Aj_|$20( = —OZ} = {/8152’+15 e a/6t2’+q} = {Vn-i-l?' sy Y4250 Y43y - - - a’yl'a/Bt21+q+12’—n+1’ ce. 7Bt2/+q}a

where g = |A;21|,

’ 2 2 2 2 I(s*) —q

t' = (81, Bo1l = [1Bv4g+1, Bisn)ll = ——5— (1.6.12)
so that

2 = [AL N\ AL =1(5%) — |AG,
g—U+4+n g+l —n
|[ﬁt?,+q+l2’—n+1""7/8t2’+q]| = #’ |[77L+17""71’H = T; (1613)

(Ag)y :={pY,.. .,BODO} ={a e Alls(a) = a} = AT NAy.

Moreover, normal ordering (1.6.9) has the following properties.

(v) The length of the ordered segment Ay, C A in normal ordering (1.6.9),

Aer = {’yla"'7727'"7737"'7rynaﬁt1+p+17"'aﬁll(sl)a"'aﬁlQa"'76152’7771-"-17""777,-‘1-27'"77n+3a"'77l'}7 (1614)

is equal to
I(s) =1
|A"l+| =D — ( ( )2

where D is the number of roots in A%, and Dyq is the number of positive roots fized by the action of s.

+ Do) : (1.6.15)

(vi) For any two roots a, B € Ay, such that o < (8 the sum o+ B cannot be represented as a linear combination
22:1 CkYip, Where ey €N and o < 7, < ... <7y, < p.

(vii) The roots from the set s*(A%,) form a segment in normal ordering (1.6.9) preceding the segment formed by
the roots from the set A%, which is, in turn, followed by the final segment (Ag)4 = Ao N A% Thus the roots from
the set A = A3, U SQ(A;) form a segment in A% which contains A%,.

The roots from the set A%, form an initial segment which does not intersect the final segment AZU (Ag)4.

(viii) For any a € (Ay, )4, ix > 0 such that sa € (Ay,)1 one has sa > «, and if B,y € A;; U{0}, j < k and
sa+ fB,a+v €A then sa+ B,a+v € A3 and sa+ 3 > a+ 1.
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In particular, for any o € A%, o & Ag and any ag € Ag such that sa € A% one has sa > a and if sao+ag € A
then sa+ ap € A and sa+ ag > a.

(i) If a, B € Ay, NAY, ix, >0, a < 8 and s € A% then by, is two-dimensional, and the orthogonal projection of
sB3 onto b;, is obtained by a clockwise rotation with a non—zero angle and by a rescaling with a positive coefficient
from the orthogonal projection of o onto b;, .

Remark 1.6.7. According to the conditions 1-4 imposed before Proposition 1.6.6 in the decomposition s = s's? we

always have s% # id provided s # id but in the case when s is an involution we have s = s*> and s' = id. Hence in
this case A% =0, conditions 1-4 imply A% = A% U (Ag)4 (disjoint union), so that normal ordering (1.6.9) has
the form

2 2 2 2 2 2 0 0
51,'"aﬁt’a7n+17"'77n+27" '7’7n+3a"'7fyl’aﬂt/+q+l’—n+1a" '75t’+q56t’+q+13"'7ﬁl(32)7613"'75D0a
2

and
2 2
Am+ :{51""7Bt/77n+1’"'a7n+27~-~a7n+37---7’Yl/}-

Remark 1.6.8. The most important properties of ordering (1.6.9), which we shall need later, are (v) and (vi).
As An, 15 a segment, it is additively closed, and hence the roots subspaces in g corresponding to the roots from it

generate a Lie subalgebra my C n of dimension D — (% + D0>. We shall define a quantum group counterpart

of its enveloping algebra U(my.), and condition (vi) will ensure that the quantum group counterpart of U(my.) has
a non—trivial character which does not vanish on suitably chosen quantum root vectors corresponding to the roots
Y1,---,Y- This subalgebra of the quantum group and the non—trivial character will be used to define q-W—-algebras
in the framework of the Hecke algebra philosophy outlined in the Introduction. Formula (1.6.15) for the dimension
of my will play a crucial role in the proof of the De Concini-Kac-Procesi conjecture. More precisely, we shall obtain
and use the following relation

2dim m4 4+ dim ¥, = dim G,

where X C G is the transversal slice defined in part (ii) of Proposition 1.3.4 with the help of the same system of
positive roots A% as ordering (1.6.9).

Proof. Firstly we describe the set (A;, )+ = A;, N A% for 4, > 0 and some its subsets. Suppose that the corre-
sponding s—invariant subspace b;, is a two-dimensional plane. The case when b;, is an invariant line on which s?
acts by reflection and s! acts trivially can be treated in a similar way. The plane b;, is shown at Figure 3.

\ /
1A2
stA? \ /
1k \ / SzAzlk
\ /
\ i 7/
\ /
\ /
\ /
1 1
Aj U Pk \ / ) )
\ / i Uy, A”
Pk K D
N
N
N
N
~ sTAL

Fig. 3
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The vector h;, is directed upwards at the picture. By (1.2.21) a root a € A;, belongs to the set (A, )4 if and
only if h;, (o) > 0. Identifying hr and by with the help of the bilinear form one can deduce that o € A;, is in A%
if and only if its orthogonal, with respect to the bilinear form, projection onto b;, is contained in the upper—half
plane shown at Figure 3.

The involutions s' and s? act in b;, as reflections with respect to the lines orthogonal to the vectors labeled by
v}, and v, respectively, at Figure 3, the angle between v} and v} being equal to m —6;, /2. The nonzero projections
of the roots from the set {v1,...7,} N A;, onto the plane b;, are proportional to the vector v}, and the nonzero
projections of the roots from the set {y11,...,7}NA;, onto the plane b;, are proportional to the vector v,%. The
element s acts on b;, by clockwise rotation with the angle 0;, = 2(¢x + ¥i).

Let i, > 0 and Az(-:) the subset of roots in (A;, )+ orthogonal projections of which onto bh;, are directed along
a ray r C b;, starting at the origin. We call A(-T) the family corresponding to the ray r. Below we shall only

consider rays r which correspond to nonempty sets of the form A(T) so that (A; )4+ = UM’c A 2 (disjoint union
of non-empty sets).

Lemma 1.6.9. Suppose that i, > 0. The following statements are true.
(i) Each Az(‘:) is an additively closed set of roots.
(i) Let AEZI) and AZ(-ZQ) be two families corresponding to rays r1 and ro, and §; € AZ(:I), 0o €A
that 81 4+ 02 = 03 € A. Then the rays r1 and ro form an angle strictly less than 7, and 03 € AE:”, where AEZS) 18
the family corresponding to a ray r3 such that rs lies inside of the angle formed by r1 and ro.

(iii) Let 0 < j <k, and 61 € Ay, 62 € AE:) two roots such that 61 + 63 = 63 € A. Then 03 € AZ(.:).

522) two roots such

Proof. All statements are simple consequences of the fact that the sum of the orthogonal projections of any two
roots onto h;, is equal to the orthogonal projection of the sum.

For part (i) we observe that the orthogonal projections of any two roots «, 8 from AZ(.:) onto h;, have the same
direction therefore the orthogonal projection of the sum o + 8 onto h;, has the same direction as the orthogonal
projections of « and 3, and hence a4 8 € A(T)

For (ii) it suffices to observe that the sum of the orthogonal projections of d; and J; onto b;, is equal to the
orthogonal projection of the sum, and the sum of the orthogonal projections of §; and d2 onto b;, lies inside of the
angle formed by 71 and ry. The rays r; and o form an angle strictly less than 7 since by (1.2.21) the orthogonal
projections of all roots from (A;, )+ onto h;, belong to an open half plane.

Part (iii) follows from the fact that §; has zero orthogonal projection onto b;, .

O

Now we prove properties (i), (i) and (iii) in the statement of the proposition. Recall that by Theorem C in [18]
the roots 71, . ..,y form a linear basis in the annihilator h* of b with respect to the pairing between hr and b.
Therefore s' = s, ...s,, and s> =5, ., ...s,, fix all roots from Aq C .

Thus, from (1.2.16) with the convention by = h* adopted in this section, we have disjoint union decompositions

@ = LJ Ay, A% = LJ ALAL= LJ A (1.6.16)

k=0, >0 k=0,1;>0 k=0,ix>0

where AL = A, NAS, A2 = A, NAS, AS = A, NAS.

st

Lemma 1.6.10. Ifb;, is a plane then the sets Al and A2 have empty intersection and are the unions of the sets
A(:) with r belonging to the sectors Al (resp. A2 ). The set A3, is the union of the sets A( ") with r belonging to

3
the union of the non-overlapping sectors 32A1 and A2

If b, is an invariant line on which s acts by multzplzcatwn by —1 the set Al is empty and Aj = A2 This

set is the set Aik = (A, )+, where r is the positive semi-azis in b, .

Proof. Consider the case when b;, is a plane. At Figure 3 the elements from the sets A} and A? are orthogonally
projected onto the interiors of the sectors in the plane b;, labeled by Alk_ and Afk, respectively. Therefore the sets

Al and A2 have empty intersection and are the unions of the sets A(;)

Wi(]l T l)el()llgi]lg O e sectors A,Ll (] eS[).
A )
1k
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In the case when b;, is a plane the element s acts on h;, by clockwise rotation with the angle 6;, = 2(vx + ¥r)
(see Figure 3). Therefore the set Aj consists of the roots the orthogonal projections of which onto b;, belong to
the union of the non-overlapping sectors labeled szA}k and A?k at Figure 3.

If b;, is one-dimensional, we recall that by the assumption 4 made before this proposition there are no one-
dimensional subspaces b;, on which s! acts by multiplication by —1. Thus in this case the set Allk is empty, and

hence A§ = A? . This set is the set Al(-:) = (A;, )+, where r is the positive semi-axis in b;, . O

By the previous lemma Af = A? Us?Al (disjoint union), and hence by (1.6.16) A = Ui\il A = U,i\/[:l (A% UsPA} ) =
( f:il Afk) Us? (Uﬁil A}k) = A%, Us?A%, (disjoint union). In particular, by the results of §3 in [133] the de-

composition s = s's? is reduced in the sense that I(s) = I(s') + I(s?), as I(s), {(s') and [(s?) are equal to the
cardinalities of the sets AZ, A% and A?,, respectively. Similarly, A, = A% U sl(Azz) (disjoint union). This
proves (i).

Part (ii) immediately follows from Lemma 1.6.9 (iii) with ¢; = 0, Lemma 1.6.10 and decompositions (1.6.16)
and similar results for s~!.

To justify (iii) we recall that by (1.6.16) for any root o € A%, one has a ¢ Ag. In fact, in this case a € A%k,
where b;, is a two-dimensional plane, as by assumption 4 there are no one-dimensional subspaces h;, on which
s! acts by multiplication by —1. Hence using Figure 3 we deduce that the orthogonal projection of s?a onto b;,
belongs to the interior of the sector labeled SQA}k which belongs to the upper half plane and does not overlap with
the sectors A}k and Afk. Obviously s?a ¢ Ag. This implies s2a € A\ (A§1 UAS% U AO) which proves (iii).

Next we construct in several steps normal ordering (1.6.9) satisfying properties (iv)-(ix).
Step 1.

First we construct an auxiliary normal ordering on A% satisfying properties summarized in Lemmas 1.6.11 and
1.6.12 below. We do it by induction over the sets (A;, )+ = A;, NA%, k=0,..., M, where the sets A;, are defined
by (1.2.22). Note that by Lemma 1.2.2 each A;, is the root system of a standard Levi subalgebra in g.

For the base of the induction, consider the set (A;))+ = (A4y)+. If ig = 0 or b;, is one-dimensional then we fix

an arbitrary normal order on (A;))+ = (A4y)+-
If b;, is two—dimensional then we choose a normal ordering in (A;,)+ in the following way. First fix an initial

arbitrary normal ordering on (A;,)+. Since by Lemma 1.6.9 each set Ag:) is additively closed we obtain an induced
ordering for AZ(»Z) which satisfies the defining property for the normal ordering.

Now using these induced orderings on the sets Ag) we define an auxiliary normal ordering on (A;,)4+ such that
on the sets Ag:) it coincides with the induced normal ordering defined in the previous paragraph, and if Az(-:l) and
AE?) are two families corresponding to rays r; and 72 such that ry lies on the right from r; in bh;, then for any
a € AE;I) and § € AE;Z) one has a < 3. By Lemma 1.6.9 the two conditions imposed on the auxiliary normal
ordering in (A;,)+ are compatible and define it in a unique way for the given initial normal ordering on (A;, ).

Since s acts by a clockwise rotation on b;, we have s(AfZ)) = Agj(r)) for s(r) in the upper—half plane, and hence
the new normal ordering satisfies the condition that for any o € (A;,)+ such that sa € (A;,)+ one has sa > a.
Now assume that an auxiliary normal ordering has already been constructed for the set A, and define it for
the set A, .
By Lemma 1.2.2 A;, _, is generated by some subset of simple roots of the set of simple roots of (A, )+. Therefore
there exists an initial normal ordering on (A;, )4 in which the roots from the set (A;, )+ \ (A4,_,)+ = (A;, )4 form

i1

an initial segment and the remaining roots from (A;, )+ are ordered according to the previously defined auxiliary
normal ordering. As in case of the induction base this initial normal ordering gives rise to an induced ordering on
each set Az(:)'

Now using these induced orderings on the sets AE:) we define an auxiliary normal ordering on (A;, ). We
impose the following conditions on it. Firstly we require that the roots from the set (A;, )4 form an initial segment

and the remaining roots from (A;, _,)+ are ordered according to the previously defined auxiliary normal ordering.
Secondly, on the sets AEZ) the auxiliary normal ordering coincides with the induced normal ordering which is already
defined, and if Ag:l) and Ag:z’) are two families corresponding to rays r; and ro such that r; lies on the right from

r1 in b;, then for any o € AE:I) and § € AE:Q) one has a < . By Lemma 1.6.9 the conditions imposed on the
auxiliary normal ordering in (A;, )+ are compatible and define it in a unique way.
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Now we can proceed in a similar way by induction which yields an auxiliary normal ordering on A% of the
following form:

(AiM)+7"‘v(Aio)+, (1617)

where (A; )4+, K =0,..., M are disjoint segments placed in the auxiliary normal ordering as in (1.6.17), and for
each k with i > 0 the segment (A;, )+ is the disjoint union of the disjoint segments Agzj), j=1,..., My which
are placed in the auxiliary normal ordering in the following way

A AT (1.6.18)

ik

where for ¢ < j the ray r; lies on the right from r; in b;, .

Since s acts by a clockwise rotation on two-dimensional b;, we have S(AE:)) = Agi(r)) for s(r) in the upper—
half plane in b;,, and hence the new normal ordering satisfies the condition that for any a € (4A;,)+ such that
sa € (A;, )+ one has sa > a.

Note also that the roots from Zi,ﬁl
B,7 € A;,_, are such that sa € AE:(T)) C (Ai )+, sa+B,a+v € A then by (1.2.15) and (1.2.21) sa+0 € Agi(r)) C
AL N(A) 4, a+7 € Ag:) C ATN(A;,)+ and sa+ 3 > a+y as s(AEZ)) = Agi(m for s(r) in the upper-half plane.

These properties of the new normal ordering are summarized in the following lemma.

have zero orthogonal projections onto bh;, . Therefore if a € AE:) C (Ai)+s

Lemma 1.6.11. (i) Suppose that iy, > 0. Then for two-dimensional b;, one has S(AZ(-:)) = Agi(r)) if s(r) in the
upper—half plane, and AE—Z) < S(AE:))

(ii) In particular, for any o € Ag:) such that sa € (A; )+ one has sa > « and if B,y € A;,_, U {0},
sa+B,a+~vE€Athena+vyc AE:), sa+ B € AEj“” and sa+ 3 > a + 1.

Observe that, according to the definition of the auxiliary normal ordering of A% we have the following properties
of this normal ordering which can be seen from (1.6.17) and (1.6.18).

Lemma 1.6.12. The auxiliary normal ordering of A% = U,iw:O(Aik)Jr (disjoint union) has the following properties.
(i) For any k =0,..., M the roots from the disjoint sets (A;, )+ form segments, and for any k =0,...,M — 1
one has (Aq,)+ > (Aiyr )45
(ii) For any k = 0,..., M with ix, > 0 the roots from the sets AZ(-ZJ'), j=1,..., My form segments, (A;, )+ =
Ujjvikl AE:j) (disjoint union), and the roots from the set (Ag)y = Ao NAY, if it is non-empty, form a final segment;
(i1i) For any k =0,..., M such that the corresponding b;, is two-dimensional and for any two segments Az(-zl)

and Ag:z) corresponding to rays r1 and ro such that ro lies on the right from rq in b;, one has Agzl) < AEZZ).

Step 2.

Now we modify the auxiliary normal ordering in A% in such a way that the roots from the set A%, will form
an initial segment, the roots from the set s'(A$,) will follow immediately after it, the roots from the set s*(A%,)
will form a segment preceding the segment formed by the roots from the set A%, which will, in turn, be followed
by the final segment (Ag)y = Ag N A%

We shall do it with the help of the following lemma.

Lemma 1.6.13. Assume that A% is equipped with an arbitrary normal ordering such that the roots from a set
AZ(:) = {01,...,0a} for some ray r C b;, form a segment 01,...,0,. Suppose also that for some natural p
such that 0 < p < k, i, # 0 the roots from a set AZ(-? = {&,...,&} for some ray t C b;, form a segment

&1,...,& and that 61, ...,04,&1,...,& 18 also a segment. Then applying elementary transpositions within the seg-
ment 01,...,0q,&1,...,& one can reduce it to the form & ,...,&;,,05,,...,0;,.

Proof. The proof is by induction. First consider the segment 91, ..., d,,&1.

Since the orthogonal projections of the roots from the set A; onto h;, are equal to zero, for any ¢ € Az(,? and
vE AE:) such that ¢ +v € A we have ¢ +v € AE:). Assume now that ¢ and v are contained in an ordered segment
of form (1.6.2) or in a segment with the inverse ordering. By the previous observation this segment contains no

other roots from AEZ), and ¢ is the first or the last element in that segment. For the same reason the other roots
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in that segment must also belong to Ag:). Therefore applying an elementary transposition, if necessarily, one can
move ¢ to the first position in that segment.
Applying this procedure iteratively to the segment d1,...,d,,&1 we can reduce it to the form &, 0k,, ..., 0k, by

applying elementary transpositions within the segment d1,...,d,,&;.
Now we can apply the same procedure to the segment dg,, ..., dx,, &2 to reduce the segment &1, d,, ..., 0k, , &2
to the form &;,&2,6;,,...,6;, by applying elementary transpositions within the segment 6, , ..., dg,, €.

Iterating this procedure we obtain the statement of the lemma.
O

Now observe that according to Lemma 1.6.12 (i) the roots from each of the sets (A;, )4+ form a segment in
the auxiliary normal ordering of A%, and by Lemma 1.6.12 (ii) the roots from the sets AE:) form segments inside

(Ai)+. As we observed in Lemma 1.6.10, the sets A} (resp. A7) are the unions of the sets AE:) with 7 belonging
to the sectors Al (resp. A? ) at Figure 3, and hence by Lemma 1.6.12 (i) and (ii) (see also (1.6.17), (1.6.18)) the
roots from the sets A}k and Afk form an initial and a final segment, respectively, inside (A, )+.

Therefore we can apply Lemma 1.6.13 to move all roots from the segments A}k, k=0,..., M to the left and to
move all roots from the segments Afk, k=0,...,M to the right to positions preceding the final segment formed
by the roots from (Ag)4. After this modification the roots from the set A%, form an initial segment.

Now using similar arguments the roots from the sets szA}k, k=0,...,M forming segments by Lemma 1.6.10
and by Lemma 1.6.12 (i) and (ii) (see also (1.6.17), (1.6.18)) as well can be moved to the right to positions preceding
the final segment formed by the roots from the set A%, U(Ag). Note that by parts (i) and (iii) A%, Ns*(A%,) = {0}
and A%, Ns*(A%) = {0}. So the last modification does not affect the positions of the roots in A%, and in A%, and
after applying it the roots from the set SQ(A;) will form a segment preceding the segment formed by the roots
from the set A%, which is, in turn, be followed by the final segment (Ag); = Ag N A%. Thus the roots from the
set A7 = A% U 32(A§1) form a segment in A% which contains A?,. By construction the segment A% does not
intersect the final segment A% U (Ag)4. This proves that property (vii) holds for the ordering constructed at Step
2.

Thus at Step 2 we obtain a normal ordering on A% of the following form:
ilV (AiM)/Jrv BERE) (Alo)/Jrﬂ 82(A§1)7 A§27 (AO)+7 (1619)

where (A;,)L = (A )+ \ (ASUAS U (Ag)4), k=0,...,M are disjoint segments placed in the normal ordering
as in (1.6.19), and for each k with i; > 0 the segment (A;, ), is the disjoint union of the disjoint segments
)

AT) Al \(ASUAS)U(Ag)4), j=1,..., My,

1k 1k

ik

My,
Ay =Jar k=0,...,M, (1.6.20)
j=1

which are placed in the normal ordering in the following way
AL AT, (1.6.21)

where for ¢ < j the ray r; lies on the right from r; in b, .
The segment A%, (resp. A?%;) is the disjoint union of the sets A}k (resp. Afk), k=0,...,M,

M M
s=JaAlL AR =A% (1.6.22)
k=0 k=0

which are placed in the normal ordering obtained at Step 2 in the following way

Al

(3.7 0

S AL (resp. A? L. 7Afo), (1.6.23)

207 I

and the segment s?(A%,) is the disjoint union of the segments SQ(A}k), k=0,....M

M
(A% = ] s*(A)) (1.6.24)

S
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which are placed in the normal ordering obtained at Step 2 in the following way

s2(A])s - $2(AL). (1.6.25)

M

Note that Aj (resp. A? ) is the disjoint union of the sets A ) with r belonging to the sectors Aj (resp. A7)
at Figure 3 (we assume that A2 is the positive semiaxis if b;, 1s one—dimensional; for Al this s1tuat10n does not

occur),
1 _ (r) A2 _ (r)
Al = U A A2 U Ay, (1.6.26)
reAl at Figure 3 reA? at Figure 3
k k
so that for k=0,..., M
/ (ry 1 2( A1 2 :
AZ_(r) _ Al(r) \(ASUAS U(Ag)s) = A; ifr g Alk Us?(A;,) UA7 at Figure 3 ’ (1.6.27)
k k 0 otherwise
The segments sQ(Agk), k=0,..., M are non-empty for two-dimensional §;, only. They can be represented as
the following disjoint unions of segments
s*(Af,) = U AL (1.6.28)
rEsz(A%k) at Figure 3
which are placed in the normal ordering in such a way that
(r) (t)
A <A, (1.6.29)

where for any r,t € s*(A} ) at Figure 3, the ray ¢ lies on the right from 7 in b, .

The empty sets which may formally appear in the description of the ordering in formulas (1.6.19), (1.6.21),
(1.6.23), (1.6.25), (1.6.28), (1.6.29) should be omitted.

Note that these formulas imply that the ordering defined at this step has the form

AL A2 AR AR (1.6.30)

where A7, j =1,..., R are disjoint segments, A' = A%, AF~1 = A%, AR = (Ag),, and for j =2,..., R — 2 one
has AJ = A(r) for some k and r.

In formula (1.6.30) we could partition further the segments A' = A%, and Af~! = A%, as in (1.6.26). We shall
not do that since at the next step these segments will be reordered.

Note that according to the algorithm given in Lemma 1.6.13 for each fixed k the order of the segments formed
by the roots from the sets AZ(-:) is preserved after applying that lemma. Therefore the new normal ordering obtained
this way still satisfies the properties stated in Lemma 1.6.11 and 1.6.12 (ii), (iii). In particular, by Lemma 1.6.11
(i) for any j such that AJ ¢ AS U A, one has

AT < 5(AY). (1.6.31)

Step 3.

Now we can apply elementary transpositions to bring the initial segment formed by the roots from A%, =
{B:, ..., 3;1(31)} and the segment formed by the roots from A%, = {57, ... ,ﬁf(s2)} and preceding the final segment
(Ap)+ to the form described in (1.6.9).

For this purpose we shall use the following lemma.

Lemma 1.6.14. ([101], Theorem Aj; [18], Lemma 5; [125], Proposition 3.3) Let z € W = W(g,h) be
an involution. Fix a system of positive roots Ay in A = A(g,h), and let s1,...,s; be the corresponding simple
reflections in W. Then the following statements are true.

(i) There is a Levi subalagbra of g with Cartan subalgebra b and semisimple part m,, which has Cartan subalgebra
h. C b, such that z is the longest element of the Weyl group W(m,,b,) with respect to the system of simple roots
in Ay NA(m,,h,), and z acts by multiplication by —1 on the Cartan subalgebra .

(ii) z can be expressed as a product of dim b, reflections from the Weyl group W(m,,h,) of the pair (m,,h.),
with respect to mutually orthogonal roots.



1.5. NORMAL ORDERINGS OF POSITIVE ROOT SYSTEMS 55

(14i) There is a reduced decomposition of z, with respect to the system of simple roots in AL, of the form
z=ayr !, (1.6.32)

where x € W, and y € W' is the longest element in a standard parabolic subgroup W' of W such that W (m,, b,) =
W'z, and if y = sj, ...s;, is a reduced decomposition of y in W' and x = s;, ...s;, is a reduced decomposition
of x then

q
2= 8i ... 8§85, 55,80, - 8 (1.6.33)

is a reduced decomposition of z, so that the corresponding normal ordering of the set A,—» = A, has the form

517 .. '76t75t+15 o 7ﬂt+pa6t+p+17 .. 'a62t+p7

where z3; = =B, j =t+1,....,t +p, and {Bry1, ..., Beypt = Ap(mz, b)) = A(m,, b)) N A,

Let 54, ...58; be the initial part of the reduced decomposition of w corresponding to the normal ordering of
1 l(sl)

A? obtained at Step 2, so that (s')™' =s' =s;, ..., , = Spi e Sal By parts (i) and (iii) of Lemma 1.6.14

and by parts (ii) and (iii) of Lemma 1.6.4 for z = w = (s!)"! = st = 5;, - Siyay = 81 L - S} and v = 1, using
s (s
elementary transpositions within the segment 31, ..., 511(51) one can reduce it to the form
1 1 gl 1 1 1
/61’ s 7Bt 7/8154,-1’ o 7ﬁt+pa /Bt-l,-p-i,-la L aﬁl(sl)7 (1634)
where 8}, ..., B}, is a normal ordering of the system A% (m 1, hg1) = A(mg, b )NAS = A" of positive roots in

the root system A(mg1, b1 ) of the pair (mg1, b1 ), so that p is the number of positive roots in A% (mg1,b1) = A;I.
Note that by (1.6.33) one has t = I(s!) — (t + p), i. e. there are equal numbers of roots on the left and on the
right from the segment 8}, ,,...,},, in the segment

1 1 1 1 1 1
517 e 7Bt ’ﬂt-&-la e 7ﬂt+p?6t+p+1? e 761(51)7

and

(1.6.35)

This proves (1.6.10).

Observe that in the case of the involution s!, s' = s,, ...s,, is the expression mentioned in part (ii) of Lemma
1.6.14, and the roots 71, ...,7, span the Cartan subalgebra b,:.

Now according to the results of Appendix 1, applying elementary transpositions we can reduce the ordering
Bii1s-- -5 By, to the form compatible with the decomposition s' = s, ...s,,, i.e., we can bring it to the form

51}4»17"'7ﬂtl+¥v’yla'“772w”7’737“'77717 (1636)

where in the last formula we relabeled the roots 8} in such a way that after reordering 8 < 3} if and only if i < j,
and, according to the definition of normal orderings compatible with decompositions of Weyl group involutions
given in Appendix 1, the new ordering has the property that for any two positive roots a, 8 € A% (mg1,b,1) such
that 77 < a < B the sum « + § cannot be represented as a linear combination Zzzl Ck7i,, where ¢, € N and
a <y <...<7%, <pB. Formula (1.6.11) follows from the definition given in Appendix 1 (see formula (A1.1)).

Note that by Lemma 1.6.4 the elementary transpositions applied to obtain ordering (1.6.36) do not affect the
positions of the roots which do not belong to the set A% (mg1,bh) = As_ll.

Now let W = s;, ... ;, be the reduced decomposition @ corresponding to the normal ordering of A obtained
so far, w =s;, ;... Sipis2) the product of all simple reflections in the reduced decomposition @ = s;, ... s;,, such
that for k = 1,...,1(s?) the position of s;,,, in the reduced decomposition of W is the same as the position of the
root 37 in the segment /37, ... ,ﬁf(SQ) of the normal ordering of A% . We recall that {57,..., B?(SQ)} =A%,.

Now, similarly to the case of the segment A%, we can apply parts (i) and (iii) of Lemma 1.6.14 and parts (ii)
and (iii) of Lemma 1.6.4 with 2z = w = s;,, e Siy 2y W= Sip .. Sy, O the segment {/3%,... ,,BlQ(SQ)} =A%, In

the notation of Lemmas 1.6.4 and 1.6.14, s*> = (5°) 7! = wwu™' =uw™'u™" =542 _ ...s5. Using also the normal

1(s2)

ordering of the system of positive roots A% (mg2,hs2) = A(mgz, h,2) N A7 in the root system A(mgz,b,2) of the
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pair (my2, h,2) inverse to that compatible with the decomposition s2 = S4,41 - - - 8, we finally obtain the following
normal ordering of the set A?

1 1 pl 1 1 1
517"~vﬁta5t+17"‘7ﬁt+P;nv’yla”'7’727"‘7’737"'77nvﬁt+p+1w~~7ﬁl(sl)7~~'7 (1637)
2 2 2 2 2 2 0 0
Bl»"'751&’77’1’14’17"'7’Yn+27"‘77n+3a"'7’yl'7ﬂt,+q+l2’—n+17"'7ﬁt’+qa5t’+q+1v"‘751(52)7ﬂ17"°7ﬂD07
where
2 2
7n+17"'7’)/n+27"'a’YnJer"‘,’yl’aﬂt,+q+l;—n+1w~'36t’+q

is the normal ordering of the system of positive roots A% (my2, h,2) inverse to that compatible with the decomposition
$* =8y, - 8y,. By construction normal ordering (1.6.37) has the required form (1.6.9). Formulas (1.6.13) and

(1.6.12) are established similarly to (1.6.11) and (1.6.10), respectively. This completes the proof of part (iv).

We claim that normal ordering (1.6.37) has properties (v)-(ix) listed in the statement of this proposition.
Firstly we recall that according to Lemma 1.6.4 the elementary transpositions used at Step 3 do not affect the
positions of the roots which do not belong to A%, and A?%,. We state this property for future references as a lemma.

Lemma 1.6.15. The elementary transpositions used at Step 3 to bring the segments A% and A%, to the form
required in (1.6.9) do not affect the positions of the roots which do not belong to A%, and A%,. Thus the normal
ordering obtained at Step 3 has properties described in (1.6.19)-(1.6.81), except for (1.6.23).

From this lemma we deduce that the normal ordering constructed at Step 3 still has form (1.6.19), and hence
property (vii) holds for normal ordering (1.6.37) as it holds for the ordering constructed at Step 2.

For for o € AE:), i > 0 we still have o € Agi(r)) if sa € A% by the definition of the sets AE:). We claim that
Lemma 1.6.11 still holds for the normal ordering obtained at Step 3. We shall need a slightly more detailed version
of it which implies property (viii).

Lemma 1.6.16. (i) Suppose that iy, > 0. Then for two-dimensional b;, one has S(AZ(-:)) = Agi(r)) if s(r) in the
upper—half plane, and AE—Z) < S(AE:))
(i1) In particular, for any o € AZ(.:) such that sa € (A;)4 one has sa > « and if B,y € A;,_, U {0},

s+ pBya+v €A thena+ v € AEZ), sa+p e Agi(r)) and sa+ > a + 7.
(iii)
s(AL) C AL, s(A%L) > AL (1.6.38)
Proof. First observe that by Proposition 1.6.6 (iii), which has been already proved, s?(A%,) C A%\ (A%, UAS, UA).
Since A%, = s'(—A%,) we deduce that s(A%)) = s*s*(A%,) C A%, and s(A%) = s's?(AS,) > A%, This proves
(1.6.38).

Note that by Lemma 1.6.15 the normal ordering obtained at Step 3 still has properties described in (1.6.19)-
(1.6.27), except for (1.6.23). By (1.6.22), (1.6.24) and (1.6.26) formula (1.6.38) also implies that part (i), and hence
(ii), hold for r which belong to the sector A} at Figure 3.

If 7 belongs to the union of the sectors A7 and s*(A} ) at Figure 3 then AZ(.:) C AS, s0 s(AEZ)) C A*, and
properties (i) and (ii) are void.

If r ¢ Aj UA? Us'(A?) at Figure 3 then AE:) = Aiir) C (A, and properties (i) and (ii) hold for the
normal ordering defined at Step 2 which may only differ by positions of roots in A%, and A?, from the normal
ordering defined at Step 3 by Lemma 1.6.15. In particular, A%, > Al(:) with respect to both the normal ordering
defined at Step 2 and the normal ordering defined at Step 3. Therefore (i) and (ii) hold for the normal ordering
defined at Step 3 as well. This completes the proof.

O

Parts (i) and (ii) of the previous lemma imply property (viii) since when the corresponding b;, is one-dimensional
this property is void.

Ifa,€ A NAS, a < B and sf € A3 then b;, must be two dimensional, as otherwise s8 € A®. We show
that the orthogonal projection of s3 onto b;, is obtained by a clockwise rotation with a non-zero angle and by a
rescaling with a positive coefficient from the orthogonal projection of o onto b, .

Indeed, observe that by Lemma 1.6.15 the elementary transpositions which we used at Step 3 to bring the
segments formed by the roots from the sets A%, and A%, to the form required in normal ordering (1.6.9) do not
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affect the positions of the other roots and after this rearrangement the orthogonal projections of the roots from
A} (resp. A? ) onto b;, still belong to the sectors labeled Al (resp. A ) at Figure 3.

Therefore by Lemma 1.6.12 (iii) if o, f € A;, NA3, B € A}k and o < 8 then the orthogonal projection of «
onto b;, belongs to the sector labeled A;‘k at Figure 3. On the other hand since s3 € A?% the orthogonal projection
of s@ onto b;, belongs to the upper half plane and does not belong to the sector labeled A}k at Figure 3 as s acts
on b;, by clockwise rotation by the angle 8;, = 2(¢x + 1r) > 2¢%. Thus the orthogonal projection of sf onto b;,
is obtained by a clockwise rotation with a non—zero angle and by a rescaling with a positive coefficient from the
orthogonal projection of o onto b, .

The case when 8 € (A; )+, B & A}k, sB € (A, )+ is treated in a similar way with the help of Lemma 1.6.12
(iii). This proves (ix).

By the definition of normal ordering (1.6.9) the number of roots in the segment A, ,

A, = {’yl,...,’yg,...,73,...,’yn,ﬂtlﬂ,“,...,511(51),...,ﬂf,...,63,,'yn+1,...,7n+2,...,fyn+3,...,'yl/}
is
B = D= I8 Bl ool =18, ey B = 118,85, =
=D — Do — (81, 3] -

81082l = 182 ey Bl 1188 g1 B,
where Do = |[37, 8}, ]| is the number of positive roots fixed by the action of s. By formulas (1.6.10), (1.6.11),
(1.6.12) and (1.6.13) the last expression takes the form

p—n qg—(U"—n)
Ay | =D=Dy—t—Pom —t - T o =
_ (s =p Us*)=q p-n q=(U'-n) _ I(s) =V
—D-Dy- RS PR o (BES1D, ),

where [(s) = I(s!) 4 I(s?) is the length of s. This establishes (v).

Now let o, 8 € A, be any two roots such that a < . We shall show that the sum o+ 3 cannot be represented
as a linear combination > §_, ¢k, where ¢, € Nand a < y;, < ... <7, <f.

Suppose that such a decomposition exists, o + § = ZZ=1 cki,- Obviously at least one of the roots «, 8 must
belong to the set A (mg1,hs1) N A, or to the set Ap(mg2, hs2) N Ay, for otherwise the set of roots ;, such that
a < 7, < [ is empty because by the definition of Ay, , (Am, \ (Ay (Mg, he1) UAL (M2, 052))) N {71, ) = 0.

Suppose that a € Ay (mg1,bhs1) N A, . The other cases are considered in a similar way.

If & AL(mg2,be2) N A, then o+ 3 =31 cxvi,, and 75, < vy. In particular, since a € by and ;, € b
if v5, < Yn, we have 8 = ZZ=1 ckYi, — @ € hg. This is impossible by the definition of the ordering of the set
A4 (mg, hg) compatible with the decomposition s' = s.,, ... s,

If B € Ap(mgz,b2) N Ay, then a+ =317, cpyi, = D in<n CkYir 2 i,sn CkYir - This implies
o — Z CkYi = Z CkYip — B-
1L<n i >N
The Lh.s. of the last formula is an element of h,1 and the r.h.s. is an element hs2. Since b’ = b1 + b2 is a direct

vector space decomposition we infer that
o= Y am

i Sn,a<7iy

p= Z CkVik -

ik >n,7i), <B

and

But this is impossible by Lemma 1.6.2. Therefore the sum a + 38, a < 8, a, 8 € A, cannot be represented as a
linear combination ZZ=1 CkYip, Where ¢ € Nand a < 7, < ... <7, <. This confirms (vi) and completes the

proof of the proposition.
O

We shall also need another system of positive roots associated to (the conjugacy class of) the Weyl group
element s. In order to define it we need to recall the definition of a circular normal ordering of the root system A.

Let p1, B2, ..., Bp be a normal ordering of a positive root system A, . Then one can introduce the corresponding
circular normal ordering of the root system A where the roots in A are located on a circle in the following way
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. .

B2 Bp
f —b
-Bp —B2
AN .

Fig.. 4

Let o, 8 € A. One says that the segment [, 5] of the circle is minimal if it does not contain the opposite roots
—a and —f and the root 3 follows after o on the circle above, the circle being oriented clockwise. In that case one
also says that a < 8 in the sense of the circular normal ordering,

a < B < the segment [, 8] of the circle is minimal. (1.6.39)

Later we shall need the following property of minimal segments which is a direct consequence of Proposition
3.3 in [69)].

Lemma 1.6.17. Let [, 3] be a minimal segment in a circular normal ordering of a root system A. Then if a +
is a root we have
a<a+pB<p.

This lemma immediately implies the following property of minimal segments.

Lemma 1.6.18. Let Gy be a semisimple connected algebraic group, gy its Lie algebra, by C gk a Cartan subalgebra,
A the root system of the pair (gk,bx). For any minimal segment [a, 5] C A with respect to any circular normal
ordering of A, the linear subspace of gk spanned by the root vectors corresponding to the roots from [a, B] is an
algebraic Lie subalgebranj, g1 of gx. We denote the subgroup of Gy corresponding to this subalgebra by N, g C G-

Note that any segment in a circular normal ordering of A of length equal to the number of positive roots is a
system of positive roots.

Now consider the circular normal ordering of A corresponding to the system of positive roots A3 and to its
normal ordering introduced in Proposition 1.6.6. The minimal segment which consists of the roots a satisfying
71 < a < —1 is a system of positive roots in A as its length is equal to the number of positive roots and it is
closed under addition of roots by Lemma 1.6.17.

Definition 1.6.19. Let Ay = {a € A : v < a < —v1}, where the inequalities are with respect to the circular
normal ordering of A corresponding to the system of positive roots A% and to its normal ordering (1.6.9). The
system of positive roots A equipped with the normal ordering induced by the circular normal ordering is called the
normally ordered system of positive roots associated to the (conjugacy class of) the Weyl group element s € W.

Note that for the root system A, introduced in Definition 1.6.19 A3 N A, = A% \ A, where A, =
{Bi,....8! } = A% NA_. Therefore

g
: 1 1 : -
A+ = (Ajr N A+) U {_615 IR t+%} = (Ai n A‘f‘) U (_Asl)'
By Lemma 1.6.3 (iv) this implies that wsA; = A%, where ws = sg1 .. '756;%7 and if W = sy, © iy pn oo Sip

is the reduced decomposition corresponding to normal ordering (1.6.9) then wy = Si, pon +cSire

We have the following property of the length of s with respect to the sets of simple roots in A7 .
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Proposition 1.6.20. For all systems of positive roots A% the lengths I(s) of s with respect to the sets of simple
roots in A% are the same, and they are equal to the length of s with respect to the set of simple roots in any system
of positive roots Ay associated to s.

Proof. The first statement is a consequence of the definition of A% .

To prove the second assertion we recall that a root a € A;, belongs to the set (A;, )1 = (A, )+ NAY if and
only if h;, (o) > 0. Identifying hr and by with the help of the bilinear form one can deduce that o € A;, is in A%
if and only if its orthogonal projection onto b;, is contained in the upper-half plane shown at Figure 3.

According to the definition of the set Ay,

A, DAL = (A )+ \{ae (A )+ NAL ta<mp)U{—a:ae (A;)+ NAS, o <71}, (1.6.40)

ie A, NA, is obtained from (A;, )+ by removing some roots the orthogonal projections of which onto bh;, belong
to the sector labeled A}k at Figure 3 and by adding the opposite negative roots the orthogonal projections of which
onto b;, belong to the sector labeled s'Aj at Figure 3.

Recall that the involutions s' and s? act in b;, as reflections with respect to the lines orthogonal to the vectors
labeled by vi and v,%, respectively, at Figure 3, the angle between v}, and v,% being equal to m —6;, /2. Therefore the
element s acts on h;, by clockwise rotation with the angle 6;, = 2(py + 1), and hence the set A N A;, consists
of the roots the orthogonal projections of which onto b;, belong to the union of the sectors labeled s>A} and A%k
at Figure 3. Together with the description of the set A; N A, given in (1.6.40) it implies that the number of the
roots in the set A, NA;, ={a € A, NA; :sa€ A_}, where Ay = {a € Ay : sa € A_}, is equal to the number
of roots in the set AN A;,. From this observation we deduce that the length I(s) of s with respect to the system
of simple roots in A7 is the same as the length of s with respect to the system of simple roots in A, as both of

them are equal to the cardinality to the set inzo A2NA,;, (disjoint union) which is the same as the cardinality of
the set in:o AN A, (disjoint union).
O

We shall also need a family of systems of positive roots in A related to the circular normal ordering associated
to (1.6.9). According to Lemma 1.6.15 (see, in particular, formula (1.6.30)) for j = 1,... R the minimal segment

AN NI AT (1.6.41)

of the circular normal ordering associated to (1.6.9) is a system of positive roots in A as its length is equal to the
number of positive roots and it is closed under addition of roots by Lemma 1.6.17. Denote this system of positive
roots by A% . Note that by this definition AL = A%.

Lemma 1.6.21. Let I'* C Ai, k=1,...,R be the set of simple roots. Then T'* N Aq is a set of simple roots in
(Ao)4+ C AE | s0 the set of roots A% U A is parabolic.

Proof. We show first that for any «, 8 € Aﬁ such that « or 8 is not an element of Ay one has a + 8 € hg.

Indeed if o, 5 € A’i are such that « or 3 does not belong to Ag then a € A; , 8 € A;, for some iy, i, and i, > 0
or ig > 0. If a + B € by then the orthogonal projections of o 4+ 5 onto bh;, with any i, > 0 must be equal to zero.
The definition of the sets A;, implies now that p = ¢, i, = ig > 0 and either a € AE;), B e fAE:) or a € fAz(»;),
RS AE:) for some ray r. But this is impossible as by the definition of A’i and by the definition of the sets A7 in
(1.6.30) the set A only contains elements of one of the sets Al(-:) XOr —AZ(-Z). Thus a + 5 & bo.

Now if T* = {ay,...,oq} and T* N Ag = {ay,...,a,} with u < [ then by the first part of the proof for
o= 22:1 n;oy € A’jr with n; > 0 for some ¢ > u one has «a € hg. In particular, « € Ag C ho. Thus any element of
(Ag)+ C Af“,_ is a linear combination of the roots from the set I'* N Ay with non-negative integer coefficients, i.e.

I'" N Ay is a set of sinmple roots in (Ag),. This completes the proof.
O

The following lemma will be useful for defining Zhelobenko type operators for g-W-algebras both in the classical
and quantum case.

Lemma 1.6.22. For j=1,..., R — 1 the following statements are true.
. . i1
(i) S(AJ) C Af .
(i1) A7 NNs(AL U Ag) = {0}.
(iii) AT N Ns(ASUAg) = {0}
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Proof. (i) For j such that A7 ¢ A% U Aq one has by (1.6.31) AJ < s(A7) C A%, and hence (i) holds in this case by
the definition of Afl.

If j such that A7 C 32A§1 then

s(AY) C 318252A§1 = slAﬁl =—-A%.

Observing that A%, < s?A%, by Proposition 1.6.6 (vii) we deduce again that (i) holds by the definition of Af‘l.

Finally, if j = R — 1 then A®~! = A% and

s(A7) = sTs? A% = —s' A% C — (AT \ Ag) C —(AZ \ Ag) U(Ag)4 = AL

This completes the proof of part (i).

(ii) First observe that by Lemma 1.6.21 the set of roots AZF U Ay is parabolic. Therefore to establish (ii) it
suffices to show that AJ N s(A% U Ag) = {0}.

Indeed, if a € (AZr UAg) N A% is such that sa € A% then o € AF ¢ AS, k> j, so sA¥ C A%, and by (1.6.31)
sa € sAF > AF > AJ for k # R, sa € AR > AJ for k = R, and hence (i) holds in this case.

If o e Ai_ U Ay is such that sa € A® then (ii) obviously holds as Aﬂ_ C A%
Ifae (AJ+ UAg) NA? is such that sa € A% then a € —AS = —(A%, Us?A%,).

Assume that sa € AJ. If @ € —s?A%, then sa € A5, = Al s0 j =1 and Ai = A%. Thus we arrive at a
contradiction as by the assumption « € 752A§1 C AS.

If o € —A%, then a € Af by the definition of Af, and a & Ai for any j < R. Thus we again arrive at a
contradiction as by the assumption a € A’ for j < R. This completes the proof.

(iii) is obvious as s(A% U Ag) C A% U Ay, the set of roots A* U Ag is parabolic, and A7 C A%\ Ay.

The relative positions of the systems of positive rots A3, A, and of the minimal segments introduced in
Proposition 1.6.6 are shown at the following picture where all the segments are placed on a circle according to the
circular normal ordering of roots corresponding to normal ordering (1.6.9) of A%.
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Fig. 5

The reader may find this picture useful in combination with Lemma 1.6.17 when adding roots or commuting
roots vectors. This picture can be also useful for deriving some formulas containing g-commutators of quantum
root, vectors as explained in the next chapter.

1.7 Bibliographic comments

A uniform classification of conjugacy classes of Weyl group elements from which one can obtain presentation (1.2.1)
was suggested in [18].

The definition of systems of positive roots A% associated to (conjugacy classes of) Weyl group elements was
suggested in [113]. It is based on a deep generalization of the results by Coxeter and Steinberg on the properties of
the Coxeter elements. In our notation this corresponds to the case when 71, ...,y is a set of simple roots in A, so
that according to (1.2.1) s is a product of simple reflections, i.e. a Coxeter element. In this case there is a unique
plane in b, called a Coxeter plane, on which s acts by rotation by the angle 27 /h, where h is the Coxeter number
of g. This plane was introduced by Coxeter in book [21], and the pictures of root systems of Lie algebras of high
ranks which one can find in many textbooks are obtained using orthogonal projections of roots onto these planes.
The key observation is that all these projections are non-zero. Coxeter originally applied the above mentioned
procedure to construct regular polytopes.

Later in paper [126] Steinberg proved interesting properties of Coxeter elements using the properties of the
action of Coxeter elements on Coxeter planes.

The construction of the spectral decomposition for Weyl group elements in Proposition 1.2.1 suggested in [118]
is a generalization of similar results on the properties of the Coxeter plane which can be found in [17], Section 10.4.

The slices Y s introduced in [113] in the case k = C are generalizations of the Steinberg cross-sections to the
set of conjugacy classes of regular elements in G suggested in [127]. Xk s reduces to a Steinberg cross-section when
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M,---, is a set of simple roots, i.e. when s is a Coxeter element. In this case isomorphism (1.3.7) is stated in
[127] without proof. The first proof of this result appeared in [107]. However, that proof is not applicable for the
root system of type Eg. The proof of isomorphism (1.3.7) given in Proposition 1.3.4 is a refined version of the proof
of this result presented in [113].

Another construction of the slices Xy s in the case when s are elliptic can be found in [52].

A more general approach to the definition of the transverse slices to conjugacy classes in algebraic groups
generalizing the definition given in this chapter and the results of [52] was given in [91], and the relevant Weyl
combinatorics was developed in [90].

The closedness of the varieties NZsN was justified in [116], Proposition 6.2.

In book [121] Slodowy proved Brieskorn’s conjectures announced in [11] on the realization of simple singularities
using the adjoint quotient of complex semisimple Lie algebras. Although a significant part of Slodowy’s book is
devoted to the study of the conjugation quotient for semisimple algebraic groups and to constructing some its
resolutions, he ended up with a Lie algebra version of the construction of simple singularities and introduced
transverse slices for the adjoint action for this purpose. These slices are called now the Slodowy slices. The slices
35 can be regarded as algebraic group analogues of the Slodowy slices.

The Lusztig partition was introduced in [83]. Its definition is related to the study of the properties of intersections
of conjugacy classes in Gy with Bruhat cells established in [85, 86] where the map ®" from the set of Weyl group
conjugacy classes to the set of unipotent classes and its one sided inverse ¥W, which we use in Section 1.4, are
defined using these properties. These properties are also related to the generalized Springer correspondence. We
only briefly discussed the relevant results in this book.

The study of intersections of conjugacy classes in Gy with Bruhat cells was initiated in [127]. Some results
on these intersections were obtained in [35], and another map from nilpotent orbits in a complex semisimple Lie
algebra to conjugacy classes in the Weyl group was defined in [65]. In [85] it is mentioned that this map is likely
to coincide with the map ¥"W introduced in [85]. The results of [131] imply that the restriction of ¥ to N(Gy)
coincides with the Kazhdan-Lusztig map defined in [65].

The main result of Theorem 1.5.2 on the dimensions of the slices ¥y 5 is an experimental observation made in
[118], Theorem 5.2. Other results of Section 1.5 can also be found in [118].

Note that the slices X ; listed in Appendix 2 are slightly different from those from Appendix B to [118]. The
corresponding slices in both sets have the same dimensions. But in this book the roots ~1,...,7 in the tables
in Appendix 2 are chosen in such a way that the corresponding root systems A? satisfy condition (1.6.8). The
algorithm for constructing the slices X listed in the tables in Appendix B to [118] was modified to fulfill this
condition. The description of the original algorithm can be found in [118].

The ordering of the s—invariant planes in hr according to the angles of rotations by which s acts in the planes
as in Theorem 1.5.2 was used in [53] to prove properties of minimal length elements in finite Coxeter groups.

Normal orderings of positive root systems of the form A% described in Proposition 1.6.6 were firstly introduced
in [114] where one can also find the construction of normal orderings of positive root systems compatible with
Weyl group involutions from Appendix 1. Later the original definition was refined in [119]. Proposition 1.6.6 is a
modified version of Proposition 5.1 in [114] and Proposition 2.2 in [119].

Circular orderings of root systems were defined in [68] to describe commutation relations between quantum
group analogues of root vectors. In [116] this construction was used to modify the positive root systems A% in
order to construct positive root systems associated to (conjugacy classes of) Weyl group elements which appear in
the end of Section 1.6.



Chapter 2

Quantum groups

In this chapter we recall some definitions and results on quantum groups required for the study of g-W-algebras.
Besides the standard definitions and results related to quantum groups we shall need some rather non—standard
realizations of the Drinfeld-Jimbo quantum group in terms of which g-W-algebras are defined. These realizations
are related to the definition of the algebraic group analogues of the Slodowy slices in the previous section. We shall
consider the Drinfeld-Jimbo quantum group Uy, (g) defined over the ring of formal power series C[[h]], where h is
an indeterminate, and some its specializations defined over smaller rings.

2.1 The definition of quantum groups

In this section we remind the definition of the standard Drinfeld-Jimbo quantum group Uj(g). We mainly follow
the notation of [20].

Let V be a C[[h]]-module equipped with the h—adic topology. This topology is characterized by requiring that
{h™V | n > 0} is a base of the neighborhoods of 0 in V', and that translations in V' are continuous. In this book all
C[[h]]-modules are supposed to be complete with respect to this topology.

A topological Hopf algebra over C[[h]] is a complete C[[h]]-module equipped with a structure of C[[h]]-Hopf
algebra, the algebraic tensor products entering the axioms of the Hopf algebra are replaced by their completions
in the h—adic topology.

The standard quantum group Up(g) associated to a complex finite-dimensional semisimple Lie algebra g is a
topological Hopf algebra over C[[h]] topologically generated by elements H;, X;", X; , i =1,...,l, subject to the
following defining relations:

gt
[H, Hy] =0, [H, X[ = £ai X5, XPX; = XX =600,
. (2.1.1)
1—a;; r — Q5 —ai—T r . .
Sy | 1| oy =0, i
qi
where
Ki — edihHi, eh — q’ ql — qdl — edih’
m [m]q! | " —q"
] = e = e, = S

with comultiplication defined by
Ap(H)=H; @1 +10H;, A XD =X oK '+10X, AvX) =X, 91+K,0X,,

antipode defined by
Sw(Hi) = —Hi, Sp(X[") = =X K, Sp(X;) =K 'X;,

and counit defined by
Eh(HZ') = Eh(Xii) =0.

63



64 CHAPTER 2. QUANTUM GROUPS

We shall also use the weight—type generators

l
Y, =) dia'Hj,
j=1

where a;jl are the entries of the matrix inverse to the Cartan matrix a;;.
Let L' = ¢*"i. These elements commute with the quantum simple root vectors X as follows:

+ 75— +0i5 v+
LiXF L' =q "X . (2.1.2)
We also obviously have
L;L; =L;L;. (2.1.3)

The Hopf algebra Uj, (g) is a quantization of the standard bialgebra structure on g in the sense that Uy (g)/hUr(g) =
U(g), Ap, = A (mod h), where A is the standard comultiplication on U(g), and

Aj, — AP

A (mod h) = —0.

Here 6 : g — g®g is the standard cocycle on g, and AY"? = gy, o is the permutation in U, (g)®?, 0(z®y) = y®=.
Recall that
6(z) = (ad; ® 1 +1®ad,)2ry, 1L €g®g,
1
1 _
Iy :i§2n®miﬁ§ (X5, X_p) ' X153 ® X5p. (2.1.4)
= +

Here X413 € g4 are non-zero root vectors of g. The element r4 € g ® g is called a classical r-matrix.

2.2 The braid group action

One can define a quantum group analogue of the braid group action on g. The material covered in this section can
be found, e.g., in Section 8.1 of [20]. Let m;;, i # j be equal to 2,3,4,6 if a;;a,; is equal to 0, 1,2, 3, respectively.
The braid group By associated to g has generators T3, i = 1,...,[, and defining relations

T, ... = Ty . ..

for all 7 # j, where there are m;; 1"s on each side of the equation.
Recall that if X, are non-zero simple root vectors of g then one can introduce an action of the braid group
By by algebra automorphisms of g defined on the standard generators as follows:

T;(X+o,) = —Xza,, Ti(Hj) = Hj — aj;iH;,

1 L
Ti(Xa;) = (_a,,)|aaniJXa.7" i # g, (2.2.1)
ij)-
—1)% —Qij . .
Ti(X_qo,) = (=1) adX_;iX_aj7 i 7.

(—aij)!
Similarly, By acts by algebra automorphisms of Uy, (g) as follows:

T(X[) = —X; M Ti(X;) = e MINXG T(H)) = H, - agiH,,
T(XF) = 3 (-1) g (X)X (X)), i 4 (2.2.2)

T(X;) =Y (—1) g (X)X, (X)) i

r=0
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where ., .
(X,H" = (Xi), (X)) = Q r>0,i=1,...,1L
‘ [T] q1'

Recall that action (2.2.1) of the generators T; is induced by the adjoint action of certain representatives of the
Weyl group elements s; in G. Similarly, action (2.2.2) is induced by conjugation by certain elements of a completion
of Uy, (g)

To define these elements consider the restricted dual Cp[G] of Uy(g), i.e. the algebra topologically generated by
the matrix elements of finite rank representations of Uy (g), with the multiplication induced by the comultiplication
on Up(g). Cx[G] is naturally a Hopf algebra with the comultiplication induced by the multiplication on U (g) (see
e.g. [20], p. 113).

The topological dual Cp,[G]* of the Hopf algebra Cj[G] is just an algebra, and there is a natural embedding of
algebras Up(g) — C,[G]*.

Now define a g-exponential by

[r]q.!

k
expy (z Zqik(k 1) x (2.2.3)

Then the automorphism T; in (2.2.2) is given by the conjugation of elements of Uy, (g) < Cp[G]* in C,[G]* by
the invertible element T; € Cp,[G]* (see [103])
Hi(H;+1)
T, = expl - (—q7 X Kexp) (X )exp! 1 (—a X, K Vg 2 = (2.2.4)

H; (H;41)
2

= exp;;l(q;lX;rKfl)exp;;l(—Xi Jexp, 4(qu K;)q;

Note that the right hand side of the previous formula indeed defines an endomorphism for every finite rank repre-
sentation of Up(g) as the elements X Zi act nilpotently on every such representation, and the action of the elements
H; is semisimple.

The inverse of T; in (2.2.4) can be found using the identity

expy (z)expy 1 (—x) = 1

which implies

_ H;(H;+1) o _ -~
Tt =q; 7 expy, (0:X; K expy, (=X )exp, (a1 X7 K;) = (2:2.5)
_Hi(H;+1)

=gq, 2 exp;i(—inj'Ki)eXp;i (Xi_)exp;i(—qi_lXjKi_l).
From formula (2.2.5) we obtain the following relations in C,[G]*

H;(H;+1)

expy, (—X;") = eXp/q;I(—QinKfl)qz' ’ T‘fleXp/;l(—QlefKi) = (2.2.6)

(3

H;(H;+1)

= eXp;fl( qu K ) : eXp;fl(qlej)j—;71

Let

xlc

1
exp, (x) = exp;(qz) Zq2k (k+1) (2.2.7)
k=0

klg!

The multiplication in Cp[G] induces a map of C[[h]]-modules A, : C,[G]* — (Ch[G]RCLIG])*, (An(f))(z®@y) =
flzy), f € CLIG]*, z,y € C,[G], the restriction of which to Uy (g) coincides with the comultiplication on Uy (g).
With respect to this map we have (see [20], Proposition 8.2.6)

AW(Ty) = 6,T, @ T; = T; @ T0;, (2.2.8)

0; = exp, [(1 — ¢; X" ® X;71,0; = exp,, [(1 — ¢; *)K; ' X, @ X[ K],

AT =60, T T =T 01710, (2.2.9)

0, =exp,1[(1-¢) X[ © X700 = exp,—1[(1 - ¢f) KX @ XK, (2.2.10)

3
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where the right hand sides of these identities are well-defined automorphisms of tensor products of finite rank
representations of Uy (g), so that they can be evaluated on products in Cj[G] of matrix elements of such represen-
tations.

Denote ¢, = q% if the positive root a is Weyl group conjugate to the simple root «;. By Proposition 8.1.3 in

[20], for a reduced decomposition w = sy, ... s, Ty = Tj; - .. T, only depends on w and (2.2.8) implies
k k
An(Tw) =[] 05,Tw @ T = Ty ® Ty [ [ 05, (2.2.11)
p=1 p=1

where in the products 0, (resp. ?5;) appears on the left from 03, (resp. 55;1) ifp<gqg,andforp=1,....k
ﬁp = Siy - sipflaip, ﬁ; = Sip - Sip+1aip7

X5 =TTy X, Xﬁ,: TN XE Ky =TT K,

tp—1 p+17 " tp? tp+1
05 =exp, [(1-)XE ®@X5], 0y =exp,  [(1- K5 X @ X5 Kgr]
Br Pyg, I, )26, © g1 VB, Py, A, )2 sy, <y, B, 148, 1-

Note that for a reduced decomposition w = s;, ...s;, one has Tgl e T;l =(T;, ... T;,)" ' = Tuj,ll, and T,,—1
only depends on w. Therefore T, = T;l . T;l = Tuj,ll only depends on w and (2.2.9) yields

k
Ap(Ty) = [105,Tw®Tw =Tw Ty [[ 05, (2.2.12)

where in the products glﬁp (resp. 0, ) appears on the left from 5;% (vesp. 0, ) if p< g, and forp=1,....k
p q

X5, =Tt TN XE XE =

tp—1" 1p’ : lp+1

X K =71 .. T7' K,
5;1 71 tp—1 p?

/ I =t R —_—t —
0y = exp, 2 [(1- ql%]/))Xg;,) ®X5'], U5, = exp, 1 [(1—q3)Kp, X5 @ X5 Kpg,l.

I4

If way; = a; for some ¢ and j then by Proposition 8.1.6. in [20]

T,XF =X7, T X =X} (2.2.13)

2.3 Quantum root vectors

In this section we recall the construction of analogues of root vectors for Uy (g) in terms of the braid group action
on Up(g). Recall that for any reduced decomposition W = s;, ...s;,, of the longest element W of the Weyl group
W of g the ordering

B1 =, B2 =58iQiys ..., Bp = 84y - Sip_ Qi

is a normal ordering in A, and there is a one-to—one correspondence between normal orderings of A, and reduced
decompositions of w.
Fix a reduced decomposition @ = s;, ...$;,, of W and define the corresponding quantum root vectors in Uy(g)
by
X5 =T, ..T,

Tk—1

X (2.3.1)

We also define
Kg, =T, ... T, K.

Tk—1

Note that one can construct root vectors in the Lie algebra g in a similar way. Namely, the root vectors
X+, € 948, of g can be defined by
Xiﬂk = Til N Ek 1Xﬂ:a1,k7 (232)

where X1, are asin (2.2.1).
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The root vectors Xé[ satisfy the following relations:

«a k k kn
XEXG - ¢ PX XE = > Clly, .. k) (X5) (X)L (X)) =
a<d1<... <0, <pB
k k kn
= Y Ol k)X XEH™ L xE) ™ a <, (2.3.3)

a<d1<...<d,<B

+\k
where for « € A} we put Xéc)(k) = ([i:]a ), . k>0, g = q% if the positive root v is Weyl group conjugate to the
do *

simple root oy, C'(ki,...,k,) € C 1, C(ky,...,k,) € P, and P is the algebra defined b
p b b b q7q b b b b g y

Clg, g7 ] if g is simply-laced
p={ Clg,q ", ﬁ] if g is of type By, Cj or Fy . (2.3.4)
Clg, ¢, L ﬁ] if g is of type Ga

The fact that the coefficients C'(k1, ..., k) in the right hand sides of formulas (2.3.3) belong to the algebra P
was noted in [34], Lemma 1.1.1.

It X =cHi+...4¢H for some ¢y, ..., ¢ € R then from commutation relations (2.1.1) and from the fact that
the action of the braid group on the elements H; coincides with the action of the Weyl group on the corresponding
simple root generators of h we obtain

thXfeth = qi"‘(X)Xf7 (2.3.5)
where in the expression «(X) X is regarded as an element of h under the natural identification of the elements
Hy, ..., H, with the simple root generators of h.

In particular, (2.3.5) implies that for any k € N

(XFE)" = g V(XK (2.3.6)

Note that by construction
Xg (mod h) = X3 € g3,

(2.3.7)
X5 (mod h) =X_g€g_p
are root vectors of g.
Define an algebra automorphism 7 of Up(g) by
T(XF) = XF,7(H;) = —H;,7(h) = —h.
It satisfies the relations 7, " = 77;7 and hence for any a € Ay
T(Xy) = X.,
where N
T _ -1 -1 +
Xg, =T, ... T, ~ X, -
By applying 7 to relations (2.3.3) one can obtain the following relations for the root vectors Y;E
—t—=t (a8 vttt —+ k1 —+ k2 —+ kn
XaXﬁ —q ( ’B)XBXOL = Z D(k17-'-akn)(X61) (X(Sg) (Xén) =
a<d1<...<8,<B
—+ (k1) —+t  (k2) =+ (kn)
- > D'(ki,... . ka)(X5,) (X5,) .(X5) , a<pB, (2.3.8)

a<d1<...<d, <P
5 W _ &r / -1
where for « € Ay we put (X)) = T k=0, D(k1,...,kn) € P, D'(k1,...,ky,) € Clg,q7 ).
One can also obtain commutation relations between positive and negative root vectors. These relations are
known in some form. For completeness we give a proof of them using (2.3.3) and (2.3.8) only.
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Lemma 2.3.1. Let [-5,a], o, € A} be a minimal segment with respect to the circular normal ordering of A

corresponding to a normal ordering 1, ...,8p of Ay. Then
XIX; - X;X) = > Clhrs . k) (X)) (Xs,) 2 (X)) =
—B<01<... <<«
= Y O k) (X)) V(X)L (), (2.3.9)

—B<61<..<Ip<a

where the inequalities for roots in the sum are with respect to the circular normal ordering in A corresponding to
the normal ordering B1,...,0p of Ay, X5 = X;‘ for§ € Ay and X5 = X5 for§ € A, C'(k1,....ky) € Uy(H),
U,(H) is the Clq,q "] -subalgebra of Uy(g) generated by KX', i = 1,...,1, C(ky1,...,kn) € P', where P’ is the
P-algebra generated by Uy (H).

Also
—t—— = _ — ki~ .k — L kn
X, X; - XX, = 3 Dk, .. k) (X)) (X5,)™ . (Xs,) " =
—B<01<...<Ip<a
— - k1) ~ k - kn
- S Dk k) (X)) X)L (X)), a < By (2.3.10)

—B<ii<...<dp<a

where the inequalities for roots in the sum are with respect to the circular normal ordering in A corresponding to
the normal ordering By, ...,Bp of Ay, X5 = Y; ford € Ay and X5 = X4 ford € A_, D'(k1,.... k) € Uy(H),
D(ky,... kn) € P.

Proof. The proof is by induction over the length of the positive part of the segment [—f3, o], i.e. over the cardinality
of the set [, ] N A,. We shall consider the first identity in the case when a < . The others are proved in a
similar way.

Let W = sy, ...s;, be the reduced decomposition of the longest element of the Weyl group corresponding to the
normal ordering f1,...,8p of Ay.

First assume that a = 81 = «a;,. Let 8 = 3y, = 84, ... 84, ,,,- Then si_llﬂg, ceey Si_IIBD,O(il is another normal
ordering of A, and by (2.3.3) for this normal ordering

Lyt x— _ w—x+) — 71 ¥+ x— — v —
Til (XO‘ XB o Xﬂ XO‘ ) - Til (XilX,Bm B Xﬁth) -
= KN XX, g @ PIx X =

-1
i Pm s; Bm U

— 3 K 'Ok, k) (Xs) ™ (X5,)™ o (X5,)™,

—5; B <81 <. <O <—ay

where C(k1,...,ky,) € P, the inequalities for the roots in the sum are with respect to the circular normal ordering

of A associated to the ordering S;lﬂg, cee shlﬂp, oy, of Ay, and the quantum root vectors are defined using the

ordering shlﬁg, e si_ll,@D, oy, of Ay.
Now applying T;, to the last identity we get

X;rXﬁ_ N XB_X;F - Z Kilc(klv RS kn)(X(Sl)kl (X52)k2 s (Xén)kn =
—Bm<61<...<8,<—Bp

= Y KGOl k(X)) (X)L (X))
—B<i<...<Ip<a

where the inequalities for the roots in the sum are with respect to the circular normal ordering associated to the
original ordering (i, ..., p of Ay and the quantum root vectors are defined using the ordering f31,...,8p of A,.
This establishes the base of the induction.

Now assume that the identity in question is proved for all normal orderings of Ay and for all & = B with k < n
for some n > 0 and for all possible 8 such that [-3,a], a, € A, is a minimal segment.

Let o = By, = 84y -8, Qs B = PBm = Siy -S4, i, n < m. Then S;lﬂ27...78;16D,ai1 is another
normal ordering of A, and by the induction hypothesis for this normal ordering with s; la = Sig - Si,_ QG
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8;, B = Bm = Siy ... 8i,,_,q;, we have

th -
S [e3

i1

X, X,
Sil « S

i1

B Xs{llﬁ
. Koy b K,
= > Ok, o k) (Xsp) ™ (X)) o (X ),

1 .
=85, Bm<81<..<8), <s; e

where C(k},...,k.) € P, the inequalities for the roots in the sum are with respect to the circular normal ordering

in A associated to the ordering si_llﬁg, ceey si_ll,BD, oy, of AL and the quantum root vectors are defined using the
ordering Si:lﬁg, .. .,S;IBD,OQI of A,.

Now applying T;, to the last identity we get

_ _ k! =
Xo Xy =Xy Xa = > K7 C" (ks k) (X5)™ (X)L (X5,
—f<61<...<dp<a

where k'; is such that (5(’1 = —qy, in the previous formula, the inequalities for the roots in the sum are with respect
to the circular normal ordering associated to the original ordering f1, ..., 8p of A4, the quantum root vectors are
defined using the ordering Bi,...,8p of Ay, and C”(ky,...,k,) € P’. This establishes the induction step and
completes the proof.

O
Define an algebra antiautomorphism w of Up(g) by
w(XE) = XF w(H;) = Hi,w(h) = —h. (2.3.11)
It commutes with the braid group action and for any o € A, satisfies
wXhH)=Xx.. (2.3.12)
Define also an algebra antiautomorphism wq of Uy (g) by
wo(XE) = XE, wo(H;) = —Hi,wo(h) = —h. (2.3.13)
It satisfies
wwy = Wow,
wo(T,X) = (=1)* g, “Ti(woX;) = (=)™ "W T(X}),i # j,
wo(T;X[") = g7 *Ti(wo X)) = ¢ " Ti(X["), wo (TiX7) = ¥ Ti(wo X)) = ¢} (X))
As a consequence we obtain that if X is a homogeneous polynomial in quantum simple root vectors then
Ti(woX) = cxwo(TiX),
where cx = ep, € = %1, p € ¢%, and hence
wo(XT) =ca X7, (2.3.14)
where cq = €aPa, €a = £1, po € ¢%. We also have
wo(X5) = wow(X) = wwo (X)) = w(ca X)) = w(X) =t X (2.3.15)

2.4 Some subalgebras in quantum groups and their Poincaré—Birkhoff—
Witt bases

Now we shall explicitly describe a topological C[[h]]-basis for Up(g). We shall also recall the definition of some
rational forms of Uy (g) and of their bases.

Denote by Up,(ny), Un(n_) and Uy (h) the C[[h]]-subalgebras of Uy,(g) topologically generated by the X", by the
X, and by the H;, respectively. For any o € A one has XT € Uy, (ng). From the definition of the quantum root
vectors it also follows that [H;, X¥] = +a(H;)XE, i =1,...,1. Therefore using the uniqueness of the presentation
of any positive root as a sum of simple roots we immediately deduce the following property of the quantum root
vectors.
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Proposition 2.4.1. For 3 = 22:1 mia;, m; € N X; is a polynomial in the moncommutative variables Xii
homogeneous in each Xii of degree m;.

Denote by U;*(g) the subalgebra in Uy (g) generated over C[g, ¢~'] by the elements
K2 (xH® i=1,... k> 1.

The elements

- LKt Tt - Kl
{Kl,c} 11 4; i 9 ci=1,...,1, ceZ, reN (2.4.1)
qi

s _ ,—S
" s=1 %G~ %

belong to U;“*(g). Denote by U;**(H) the subalgebra of U,**(g) generated by those elements and by K*
i=1,...,1

The subalgebras U, (H), U;*(g) and U;**(H) of Up(g) are invariant under the braid group action.

Let Up(ny), Up(n_), (resp. Ur**(ny), and U;**(n_)) be the P (resp. Clg,q'])-subalgebras of Uy (g) (resp.
U,°*(9)) generated by the X", by the X, i =1,...,1, (resp. by the (X;")") and by the (X; )™, i=1,...,1,
r > 0), respectively. Denote also by Up(b+) (resp. U;¢*(b+)) the C[[h]] (vesp. Clg,q '])-subalgebras of Uy(g)
(resp. U;**(g)) generated by Up(ny) and by Up(h) (resp. by U;**(ny) and by Uy**(H)).

Using the root vectors Xét, and the elements (ng)(r) we can construct bases for these subalgebras. Namely,
let (XE)T = (X5 )™ .. (X5, (X5)® = (X5)") (X5 )", r = (r1,...rp) € NP, H* = H* .. H",
k= (ki,...,k) €N

Commutation relations (2.3.3), (2.3.8), (2.3.9) and (2.3.10) between quantum root vectors imply the following
lemma.

Lemma 2.4.2. (i) The elements (X1)*, (X)), (XT)®), and (X)® forr, t € NP form bases of Up(n,),
Up(n-), Uy (ny), and Uy (n_), respectively.
(ii) The elements (X ), (X ™)t and H® form topological bases of Uy (ny),Un(n_) and Uy (h), respectively.
(iii) The multiplication defines an isomorphisms of Clq, ¢~ ]-modules:

Ures(ny) @ UF** (H) @ Ur** (n_) — UI*(g), (2.4.2)

Uy (n-) @ Uy (H) & Uy (ny) = U (0)

and of complete C[[h]]-modules
Un(ny) @ Un(h) ® Un(n-) = Un(g),

Un(n-) @ Un(h) @ Un(ny) — Un(9),

where the tensor products in the left hand side are completed in the h—adic topology.

(i) Let [, B]={Byp, - - -, By} be a minimal segment in Ay, Up([a, B]), Up([—a, =f]) (resp. U;**([e, B]), U ([—a, —0]))
the P (resp. Clg,q~'])-subalgebras of Uy(g) generated by the X and by the X5, v € [a,B] (resp. by the
(X,Y*)(T) and by the (X’?)(T)’ v € [a, 8], > 0), respectively. Then Up([a, 5]) C Up(ny), Up([—a,—f5]) C
Up(n-) (resp. U;*([ov, B]) C Uy (ny), Uy ([, =B]) C U *(n_)), and the elements (Xg;)rp o (XEZ)“? (resp.
(X3)) . (X5)0)), ri €N form bases of Up ([, B]), Up([—a, =f]) (resp. Uz ([, B]), Uz ([—, =f])).

(v) Let Up([a, B]), Up([—a, —B]) (resp. ﬁtﬂ]es([a,ﬁ]), U;es([—a, —B])) be the P (resp. Clq,q '])-subalgebras
of Un(g) generated by the Y: and by the Y,;, v € [a, B] (resp. by the (Y::)(T) and by the (Y;)(T), v € [, f],

r > 0), respectively. Then Up([a,B]) C Up(ny), Up([—a,—p]) C Up(n_) (resp. U;es([a,ﬂ]) C U,(ny),

U, " ([~a,—f]) C Ur*(n_)), and the elements (Yi)”’...(Yi)’"q (resp. (Y;Ep)(rp)...(Yi)(”)), ri € N form

bases of Up ([a, B]), Up([~a, —p)) (resp. U, ([, B]), U, ([e, =B]))-

(vi) Let [, = B]={Bp, . .., Bq}, o, B € Ay be a minimal segment in A, Up/ ([, —]), Up: ([~ B]) (resp. U(TJZZs(H)([O" =0,

I’}Zis(H)([—a,B])) the P’ (resp. Uy®*(H))-subalgebras of Uy(g) generated by the X, (resp. (X)), where

v € [o,—f] or v € [—a, B], respectively, and X, = Xj ifv € Ay, Xy = X7 if vy € A_. Then the elements

(Xg,)77 ... (Xg,)"0 (resp. (Xﬁp)(rp) . (Xﬂq)(m))7 r; € N form bases of Up/(Jar,—f]) (resp. U{JZ“ZS(H)([a, -8])),

and the elements (X_g )™ ... (X_pg,)" (resp. (X_p,)) ... (X_p,)"9), r; € N form bases of Up/([—a, B]) (resp.
i (2 B1).
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(vii) Let Up/([o, =f]), Upr([—a, B]) (resp. U;ﬁsﬂ(H)([a -0)), U;}gig(H)([ @, B])) be the P’ (resp. U;**(H))-
subalgebms of Up(g) genemted by the X~ (resp. by the (X)) ("), where v € [o, =] or vy € [—a, B, respectively, and
X, = X ifvye Ay, Xy =X, if y € A_. Then the elements (Xp,)"»...(Xp,)"™ (resp. (Xp, ) (X ,) ),
r; € N form bases of Up/([a,— D) (resp. U;ﬁ«sﬂ(m([a —f])), and the elements (X_g )™ ... (X_g,)"@ (resp.
(y_gp)(rp) .. (Y_@q)(’"q)), ri € N form bases of Up:([—a, B]) (resp. U;JGTS%(H)([ a,f])).

Proof. The first four statements of this lemma are just Propositions 8.1.7, 9.1.3 and 9.3.3 in [20], and Proposition
40.2.1, Corollary 40.2.2, and Proposition 41.1.4 in [81] from which statement (v) also follows. The proofs of the
other claims are similar to each other. Consider, for instance, the case of the algebra {ﬁih( H)([ =0]).

Let [a, —B]={Bp, .-, B¢}, &, B € A4 be a minimal segment in A, U{ﬁis(m([a, —p]) the U;*(H)-subalgebra of

q

Uy (g) generated by the (X,Y)(’"), where v € [a, —f], and X, = X,JYr if ye Ay, X, =X7 if y€ A_. We show that
the elements (Xg,)") ... (X)), r; € N form a basis of Ures iy ([, =)

Consider the algebra U;“*(g) ®cjq,q-1) Clq). If z € U{,iis(H)([a,—B]) C Uy(g) then using commutation re-

q
lations (2.3.3) and (2.3.9) one can represent z as a U;**(H) ®c[q,q-1] C(g)-linear combination of the elements
(Xp, )" ... (Xp,)"), r; € N. We can also consider z as an element of U;¢*(8) ®clq,q-1] C(g) and by the Poincaré-
Birkhoff-Witt theorem for U;“*(g) ®c[q,q-1] C(q) (see Proposition 9.1.3 in [20]) the above mentioned presentation
of x is unique. Now by the Poincaré-Birkhoff-Witt theorem for U;**(g) (see Proposition 9.3.3 in [20] or parts (iii)
and (iv) of this lemma) the coefficients in this presentation must belong to U;**(H). This completes the proof in
the considered case.
O

A basis for U;**(H) is a little bit more difficult to describe. We do not need its explicit description.

Remark 2.4.3. The antiautomorphisms w and wo give rise to antiautomorphisms of Uy(g) and U;**(g) which we
denote by the same letters. Applying the antiautomorphism wy to the elements of the bases constructed in Lemma
2.4.2 and using (2.3.14), (2.8.15) we obtain other bases of similar types where the order of the quantum root vectors
in the products defining the elements of the bases is reversed.

FFTES

For any minimal segment [, 5] C AL, let U{ﬁis(H)([:ta, +5]) (resp. UUW(H)([:I:Q +5])) be the subalgebra in
U, (g) generated by U;®*([+a, +3]) (resp. by Ures([:lza, +4])) and by U;°*(H). Note that by this definition

Ug®(bx) = Ui () ([£61, £6p]) = U;Jerses(H)([iﬁl, +8p)), (2.4.3)
and that Gres
Ures(ns) = Us([£81, £8p]) = U, ([=61, £Bp)).- (2.4.4)

Using Remark 2.4.3 we obtain from parts (iii)-(vii) of Lemma 2.4.2 the following corollary which is a quantum
group counterpart of the properties of algebraic groups stated in Lemma 3.4.4 below.

Corollary 2.4.4. For any two subalgebras A, B C C of an algebra C denote by AB C C the image of the map
A® B — C induced by the multiplication in C.
Let [a, 8] C A be any minimal segment, such that [, 8] = [, ¥] U [8, 8] (disjoint union of minimal segments).
Then the following statements are true.
(i
U{}zis(H)([aﬁ]) = U{}Z‘Zs(m([a, U res(H)([(S Bl) = U{ﬁis H)([5 Al) Teﬁz (H)([ )

and
T=Tres

UUres(H)([Oé Bl) :ﬁ;]e’“sES(H)([aa’Y])U;]e’”s“(H)([(;a Bl) = U;JETSES(H)([(S 5])UUres(H)([ 7)-
(ii) If [, B] C Ay or |a, B] C A, the multiplication in U;*(g) defines isomorphisms of Clq, q~t]-modules
U™ (o ) @ U™ (H) = U ([e, UG (H) = Ugris (e, B1)
Ug™(H) @ U ([ov, B]) = U= (H)U ([, B]) = Ugris (v, B1),

TES FFTeSs

U, ([, ) @ U (H) = U, (l, BNUG (H) = Upryes (g1 ([, B),
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TEeS

Uy (H) @ Uy ([, B]) = Uy (H)U," (v, B]) = Ugsie gy (v, B))-
(i) If [o, B] C Ay or [, B] C A, the multiplication in U;°*(g) defines isomorphisms of Cq, q~']-modules

Ug ([,n]) @ Ug([6, B]) = U ([ /DU (6, 8]) = Ug® ([ev, B]),
Ug (16, 8) @ Ug* ([e,7]) = Uz (16, BHUG* ([, 7)) = Ug® ([ev, B]),

and

A(CRDE: ’"”([MD Ty (e DTG ([5,8) = Ty (o, B)),

U, (10,8D) @ U, ([esy]) = U7 (16, 80T, (fee 1) = U ([av, B]).

Remark 2.4.5. By part (Cﬁ) of the Pmpo5iti0n in Section 2.2 of [27], for any minimal segment [, 8] C A the
algebras [Ziib(H)([ , 0D, UUM () ([, B]), and other algebras of similar type which are defined in parts (iv)-(vii)
of Lemma 2.4.2, only depend on the Weyl group element s, . ..sg, where the product of reflections is taken over all
roots contained in the segment [, B] in the order on |« B] induced by the circular normal ordering of A. We shall
not need this result in this book.

We shall also need the following simple lemma.
Lemma 2.4.6. Let w € W be the longest element of the Weyl group. Then TzU;® (ny) C U7 (bs).

Proof. Let W = s;, ...s;, be a reduced decomposition of the longest element w of the Weyl group W of g,
B1 = iy, B2 = 8iyQigs .-, BD = Siy - Sip_, Qip
the corresponding normal ordering in A, and

Xy, =T T X, k=1,...,D
Tk—1 1k
the quantum root vectors.
Consider the inverse reduced decomposition of W, W = s;,, ...s;,. Since T only depends on w, we have for
k=1,...,D, r € N, using commutation relations (2.3.6),
To(X5) " =Ty . T T T (X)W =T,

iptg, - ik_1 ip -

Ty (X)) =

- (T (kaKik))T=ﬂTiD...T-

D Tk—1 [T]qlk' Tk—1

(X, )T, . Ty K7 € Ur(b_),

1k 1k—1

(X5 KG,) =

r —r(r—1
= (-1)7¢, "I, ... T

Tk—1
where to justify the last inclusion we used the fact that T;,, ... T;, _, (X, DIRES U, (n_) by part (i) of Lemma 2.4.2.

Since the elements (7;)(”, k=1,...,D, r € N generate the algebra U;**(ny) by Lemma 2.4.2 (v) and by
(2.4.4), we deduce that TU;**(ny) C U7 (b_). The other inclusion is established in a similar way. This completes

the proof.
O

In conclusion we note that the algebras U;**(g) ®cjq,4-1) C(g) and U;**(g) are graded by the elements of the
root lattice @. Indeed, one can assign weight —r1 5y — ... — rpBp + k181 + ... + kpBp to each element

(X)) (X5 )P X (XL )R (X)),

wt(X5,) ™ (X5 )X (X )R (X E )RRy =~ B — . = rpBp + k1B + ... + kpBb,

where X € Uy (H), use parts (i) and (ii) of Lemma 2.4.2 to extend the definition of the weight to U;**(g) and
observe that the relations in U;**(g) following from (2.1.1) are homogeneous with respect to this grading. Then
one can naturally extend this grading to U;**(g) ®c[q,q-1] C(q)-

For i1 € @ we introduce the Clg, ¢~ ']-submodule (U7**(g)), C Uy**(g), (U;**(g)), = {z € U;**(g) : wt(x) = p},
and call it the weight subspace of weight u of U7**(g). Alternatlvely, one has

(U7 (@), = {x € UJ**(g) : [h,a] = u(h)x for all h € b C Un(g)}, (2.45)
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where the commutator is defined in Uy (g), and § is regarded as a complex vector subspace of Up(g) spanned by
the elements H;, i =1,...,1.
By parts (i) and (iii) of Lemma 2.4.2 we have the following direct sum of Clg, ¢~!]-modules

Uy (g) = P WU (9)) -
HEQ

From the definition of the braid group action on Uy (g) and from (2.4.5) it follows that for all w € W one has

Tw((UJES(g))M) = (UJGS(G))ww
The algebra Uy (g) is, of course, not graded by the elements of the root lattice. But one can still define weights

of the elements of its topological basis introduced in parts (ii) and (iii) of Lemma 2.4.2,
wt(X5,)"™ . (X5, ) X (XE)" L (XF,)*) = =By — ... —rpBp + ki By + ...+ kpfp,
where X € Uy(h).

2.5 The universal R—matrix

Uy (g) is a quasitriangular Hopf algebra, i.e. there exists an invertible element R € Uy (g) ® Up,(g) (completed tensor
product), called a universal R—matrix, such that

APP(a) = RAR(a)R ™! for all a € Uy (g), (2.5.1)
and
(Ah & Zd)R = R13R23,
(2.5.2)
(id ® Ap)R = R13Ra2,
where Ris =R ®1, Roas3 =1® R, Ri3= (0 ®id)Ra3, and c(z @ y) =y @z, x,y € Ux(g).
From (2.5.1) and (2.5.2) it follows that R satisfies the quantum Yang-Baxter equation
R12R13R23 = R23R13R12. (253)
For every quasitriangular Hopf algebra we also have
(S®idR=(ido SR =R}, (2.5.4)
and
(S® SR =R, (2.5.5)
where S is the antipode.
An explicit expression for R may be written by making use of the g—exponential
1 .’L’
exp, (z) = exp)(qx) Zqzk("“)
in terms of which the element R takes the form
! !
R =[] exp,,[(1 - q5°) X5 @ X]lexp [h S (VieH)| =[] 0sexp [h > (Yi® H)) (2.5.6)
B i=1 B i=1

where the product is over all the positive roots of g, and the order of the terms is such that the a—term appears to
the left of the f—term if a < 8 with respect to the normal ordering

B1 = iy, B2 = 8iyQigs -, BD = Siy - Sip_ Qg
of A which is used in the definition of the quantum root vectors Xﬁi.

One can calculate the action of the comultiplication on the root vectors Xli in terms of the universal R-matrix.

For instance for Ay, (Xj ) one has
An(X5) = 0w, (X5 @1+ @ X5 )0, (2.5.7)
where for wy_1 = s;, ... 55, _,
9wk—1 = 951 s eﬁk—l'
The r-matrix r_ = —2h 1 (R —1®1) (mod h), which is the classical limit of R, coincides with the classical

r—matrix (2.1.4).

1
2
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2.6 Realizations of quantum groups associated to Weyl group elements

q-W-algebras will be defined in terms of certain integral forms of non-standard realizations of quantum groups
associated to Weyl group elements.

Let s be an element of the Weyl group W of the pair (g,§), and §’ the orthogonal complement, with respect to
the symmetric bilinear form, to the subspace of § fixed by the natural action of s on . Let h’* be the image of b’
in h* under the identification h* ~ h induced by the symmetric bilinear form on g. The restriction of the natural
action of s on h* to the subspace h™* has no fixed points. Therefore one can define the Cayley transform }J_rj of
the restriction of s to h”*. Denote by Py« the orthogonal projection operator onto h'* in h*, with respect to the
bilinear form.

Let k € Z be an integer number and U} (g) the topological algebra over C[[h]] topologically generated by elements

ei, fi, Hi, 1 =1,...1 subject to the relations:

i Ki—K !
[Hi, Hy] =0, [Hiye5] = aijey, [Hi f3] = —aiify, eify —a® fiei = 0iy7 =2
Cij = kK (1izph/*ala a]) ) KZ = edihHia
2.6.1)
17(1”‘ T rci 17(17;' —Qii—1 r . . (
S v | 0] e et =0 i 2
qi
1-ai; T oTCi 1- Qjj 1—a;—r r . .
SIge -y | T () s () =0, i 4
qi
Proposition 2.6.1. For every solution n;; € C, 4,5 =1,...,1 of equations
dj’flij - dznﬂ = Cij (262)

there exists an algebra isomorphism ¢y, .y : Uji(8) — Un(g) defined by the formulas:

l l
p=1

p=1

Proof. The proof of this proposition is by direct verification of defining relations (2.6.1). The most nontrivial part
is to verify the deformed quantum Serre relations, i.e. the last two relations in (2.6.1). For instance, the defining
relations of Uy (g) imply the following relations for vy, y(e;),

1—(1”'

l—a,»» nii—ding; —a;i—
S0 0 [ | g e ), () =

k=0 qi

for any ¢ # j. Now using equation (2.6.2) we arrive to the quantum Serre relations for e; in (2.6.1).

O

The general solution of equation (2.6.2) is given by

1
nij = QTIJ-(C” + 545), (2.6.3)

where Sij = Sji-
We shall only use the solution for which s;; = 0 for all 4,5 = 1,...[. Then
1

ni; = ﬁjczj (2.6.4)

From now on we assume that solution (2.6.4) is used to identify U7 (g) and Uy (g).

The algebra Uj(g) is called the realization of the quantum group Up(g) corresponding to the element s € W.
Denote by Uf(ny) the subalgebra in Uj(g) generated by e; (resp. fi), i =1,...,1. Let UZ(h) be the subalgebra in
Uj(g) generated by H;, i=1,...,1.
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We shall construct analogues of quantum root vectors for Uj(g). It is convenient to introduce an operator
K, € End § defined by

KHi=Y" %Yj. (2.6.5)
j=1 "
From (2.6.4) we obtain that
k1l+s
Kh=2""p hhe. 2.6.
ST Pyhheh (2.6.6)

Proposition 2.6.2. Let s € W be an element of the Weyl group W of the pair (g,h), A the root system of the
pair (g,h). Let U7 (g) be the realization of the quantum group Un(g) associated to s.
For any normal ordering of the root system Ay the elements

ep(s) = 1p{*nlij}(X;ehKSBv) and fa(s) = w{;ij}(e_hKSﬁng), BeAy

lie in the subalgebras Uj(ny) and Uf(n_), respectively.
The elements fg(s) € Ug(n-), B € An, defined with the help of the normal ordering (1.6.9) generate a
subalgebra Ui (m_) C Uj(g) such that
Up(m_)/hUj(m_) ~ U(m_),

where m_ is the Lie subalgebra of g generated by the root vectors X o, a € Apy, .

Proof. Fix a normal ordering of the root system Ay. Let 8 = 22:1 m;a; € Ay be a positive root, X; € Un(g)
the corresponding quantum root vector constructed with the help of the fixed normal ordering of Ay. Then
BY = 22:1 m;d; H;, and so K,BY = Zi,j:l m;n;;Y;. Now the proof of the first statement follows immediately
from Proposition 2.4.1, commutation relations (2.1.2) and the definition of the isomorphism Uin,}-
The second assertion is a consequence of (2.3.7).
O

Remark 2.6.3. To simplify the notation we shall often write eg(s) = eg and fz(s) = fa if it does not cause any
confusion.

The realizations U} (g) of the quantum group Uy (g) are related to quantizations of some nonstandard bialgebra
structures on g. At the quantum level changing bialgebra structure corresponds to the so—called Drinfeld twist.
The relevant class of such twists is described in the following proposition which is a combination of Propositions
4.2.13, 16.1.5, of formula (15) in §16.1 in [20], and of the results of §1 in [33].

Proposition 2.6.4. Let (A, u,2,A,e,S) be a Hopf algebra over a commutative ring with multiplication p, unit ,
comultiplication A, counit € and antipode S.
(i) Let F be an invertible element of A® A such that

(e®id)(F)=(id®e)(F) =1, (2.6.7)
and
Fi2(A ®id)(F) = Faz(id @ A)(F). (2.6.8)
Then
v =p(id® S)(F) (2.6.9)

is an invertible element of A with
v = (S @id)(FH).

Moreover, if we define A7 : A — A® A and ST : A — A by
AT (a) = FA(@)F~Y, S7(a) =vS(a)v™?, (2.6.10)

then (A, pu,1, AT e, 87) is a Hopf algebra denoted by AF and called the twist of A by F.
(ii) Suppose that A and F are as in part (i), but assume in addition that A is quasitriangular with universal
R-matriz R. Then AT is quasitriangular with universal R—matriz

RY = FaRF Y, (2.6.11)
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where Fo1 = oF.

(i) If F,G € AQ A are invertible elements, G satisfies (2.6.7) and (2.6.8), F satisfies (2.6.7) and (2.6.8) with
A replaced by AY then FG satisfies (2.6.7) and (2.6.8) and the twist of A by FG is the composition of the twists
of A by F and by G.

Let
l

Fy = exp( hz ””Y ®Y)) = exp(~h Y Y; ® K,H;) € Up(h) @ Un(h). (2.6.12)
4,j=1 i=1

Then from the definition of the commutative Hopf subalgebra U(h)[[h]] =~ Ux(h) C Up(g) it immediately follows
that Fy € Up(g) ® Up(g) satisfies (2.6.7) and (2.6.8) (see also [20], Proposition 6.5.8), and according to Proposition
2.6.4 (i)

A(@) = (WL, @ UTE )FAn Wy (@) F7 (26.13)

defines a comultiplication on U} (g).

Let Py be the orthogonal projection operator onto h’ in h with respect to the bilinear form on h. From the
formulas in part (i) of Proposition 2.6.4 it follows that on the generators the comultiplication Ay is explicitly given
by the following formulas

Ay(H)=H;®1+1® H;,

Ag(e) = e; @ e hdifli 4 ehrditTs Py Hi g o, A(f) = fi@1 e ndi 155 Py HithdiH fi,
the corresponding antipode Ss(z) is given by
Sy(e;) = _efhndi%thHieiehdiHiv Sy(f;) = _phrdi {2 Py Hi—hd; H; fio So(Hy) = —H;, (2.6.14)
and the corresponding counit €5 is given by
es(H;) = es(ei) = es(fi) = 0.

We shall always assume that the algebra U;(g) is equipped with this Hopf algebra structure.
Note that the Hopf algebra Uj(g) is a quantization of the bialgebra structure on g defined by the cocycle

§(z)=(ad, ®14+1®ad,)2ry, ri €g®gyg, (2.6.15)

where r§ =ry + 5 ZZ | K12 Py H; @ Y;, and r4 is given by (2.1.4).
By Propomtlon 2.6.4 (ii) Uj(g) is a quasitriangular topological Hopf algebra with the universal R-matrix

R*= (1’[}{_”11‘;'} ® 7’[}{_7111‘.7'})(]:2172]:71)’

- —hritsp , gV
RS:Hﬂequﬁ[(l_q52)f,3®ege hk1E2 Py, B }X

. (2.6.16)
xexp [B(LI_y (Vi@ Hy) = Sl ki Py Hi @ Vi) =

l 1
= oxp [y (Vi @ Hy) = iy w122 Py Hi V)|
_ 4sp ,_ig\gY v
~ Hﬁ exp,, [(1 _ qﬂ2)eh(K1*SPb zd),@’ fﬁ ® eﬁehﬁ ]7
where the order of the terms in the product over the positive roots is such that the a—term appears to the left
of the S—term if o < 8 in the normal ordering of A4 with the help of which the quantum root vectors eg, f3 are
defined in Proposition 2.6.2.

Similarly to (2.2.11) one obtains that for a reduced decomposition w = s;, ...s;, and T, = T;, ... T;, only
depending on w one has from (2.2.11) and (2.6.13)

k
=[] 05, 7<(Tw ® Tu)(F; )W @ Ty = (2.6.17)

=Ty @ To(Thy-1 @ Tyy—1) 11—[96,
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where in the products ng (resp. 52,) appears on the left from Hf,q (resp. 5;,) ifp<qg andforp=1,....k
P q

65 = w{;ij}( ; ) fﬁ - w{n”}( _th’Bp Xgp),ﬁp = Sil ...S¢p71a1p7

Xf=T,..T; XiX, T T X
By By

tp—1 Tp+17 tp)

€p, = 1/"{_737;].}(Y;;€h&ﬁ;v)7?/3;7 = 1/1{_737;],}(67}1[(55? Y;Z/)), Kg, = T;l . .Ti;ilKip, 51,9 = Sip - Sipp, (i,
05, = Fbg, ' = expy, (1= a50)ep, e "0 @ fy ],
5;1,3 = ]—'555;]:5_1 = expg,, [(1- qE,Q)Kg,leh”%Ph'ﬁ;vfﬁ, ®e€p K]
In the same way, for T, = Tgl . Z; only depending on w one has from (2.2.12) and (2.6.13)
=119, Fo(Tw @ T)(F ) Tw @ Ty = (2.6.18)
p=1
=Ty @To(Ty—1 @ Tpyr ) (F, 1H9

where in the products 9;1)/ (resp. 03,') appears on the left from g;q/ (resp. 0 NVifp<g,andforp=1,...,k
P q

=y (X5 )T, = % (X)) K, = T T K

i1 " T ip—1T tp?

1 +
X/J)p _T . T?,p 1X Bp:'sh"'sip_laipv

-1 ! hK -1 —hKB.Y yv— +/ +
e :w{mj}(X;r, KB, ), foy =Wy (e By X5 ),Bé,zsik...sipﬂaip,Xﬁ; =T, ...Ti . X

1y

/ -1 _ 2\ 1 —hsitzp,plY /
9/3/ —]‘195;}1 —equ;/pl [(1 —qBé)eﬁée T—s"b'"p ®fﬂ2,]’ (2619)

—s 1 —r _ 1 /
05, = Fobp, Fo ' = exp i [(1—q5, ) K5, e M @2, K,

P

2.7 The adjoint action

Next we discuss the properties of the adjoint action of a Hopf algebra on itself with respect to Drinfeld twists.
Define the right adjoint action of a Hopf algebra (A, u,, A, e, S) on itself by the formula

Adz(z) = S(2')za?, (2.7.1)
and the left adjoint action by
Ad'z(z) = 2'28(2?), (2.7.2)

where we use the abbreviated Sweedler notation for the comultiplication A(z) = 2! ® 22, z,z € A.
Note that by Lemma 2.2 in [60]

Adz(wz) = Adz! (w)Ada?(2). (2.7.3)
Proposition 2.7.1. Let (A, u,2,Ae,S) be a Hopf algebra, F € A® A an invertible element satisfying condi-

tions (2.6.7) and (2.6.8), (A, p,1, AT e, ST) the twist of A by F. Denote by Ad” the right adjoint action of
(A, 0, AT e, 57) on itself. Then for all z,z € A

Ad72(2) = 7 Adz (7)1 (2), (2.7.4)

where vF 1 A — A is an invertible morphism of A, regarded as a module over the commutative ground ring, defined

by
T(2) = UZ S(c;)zd;, (2.7.5)
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where v is given by (2.6.9), and F~' =3, ¢; @ d;.
The inverse map (1v7)~" is given by the formula

“2) = Z S(a;)vtz2b;, (2.7.6)

where F =), a; ®b;.
Proof. Firstly we check that formula (2.7.6) defines the inverse to ¢”. Indeed,
(7))t ZSaj vZScl )zd;b; —ZScla] )zdib; = z,
i
asl®l=F1F= Zz] cia; ® dib;.
Similarly,
VT (W) 2) = v Z S(cy) Z S(a;)vtzbd; = ZvS(aicj)v_lzbidj =w iz =2,
j i 0,J

as 1@ 1=FF =37, jaic; @bid;.
Now by (2.6.10), (2.7.1), (2.7.5) and (2.7.6) we have

Ad7z(2) = vS(aixte;)v 2biad; = vS(c;)S(x)S(ai)v L 2bia?d; = 7 Adx(v”) 7 1(2).

This justifies (2.7.4).
O

Proposition 2.7.2. Let (A, u,2, A€, S) be a Hopf algebra, F € A® A an invertible element satisfying conditions
(2.6.7) and (2.6.8), v € A given by (2.6.9), and F~* =3, ¢; ® d;.

Then
Av=F Hoav)(S® S)(Ful), (2.7.7)
and for all z € A
AT (2) = F (1 @) Z(W(Ad(d}cj)(zl)) ® S(ci)z2d2d;)F, (2.7.8)

where 7 : A — A is defined by (2.7.5) and we use the Sweedler notation for the comultiplication.

Proof. First we prove identity (2.7.7). Denote as before F = 3. a; ® b;. Then condition (2.6.8) can be written in
the form
Zaza ®ba ® b; —Zaz®a3bz®b b2 (2.7.9)
0,7 i,7

Applying the antipode and the comultiplication to the last factor in the tensor product we obtain

Zaza ®ba ® (Sb;)! Zaz®%bz ® (S(b;b7))" ® (S(b;b7))*.
i

Multiplying the first and the third, and the second and the fourth tensor factors we deduce

Z“Z L@ bia?( Zal S(b;b2))! @ a;bl(S(b;b7))2,

or, recalling that A is an algebra homomorphism, and S is an anticoautomorphism,
> ai(a;Sb;)! @ bi(a;Sb;)? Za, ((b;62)%) @ a;bS((b;b2)1).
4,J

Now, using the definition of v and the identity 7 = . a; ® b; in the left hand aside, and recalling that S is an
algebra antiautomorphism and A is coassociative in the right hand side we have

]—'Av—Zal S(b2b7) ® a;b} S(b}b7) = Zal S(b)S(63) @ a;blS(b7)S(b}).
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Applying the identity S(b3) ® blS(b?) = S(b?) ® (b)) = S(b;) following from the defining properties of the
counit and of the antipode we get

FAv=>"a;S(})S(b3)) ® a;e(b Zal Sb3) ®a;S(b)) = (v®1)Y_ SO @a;S(by), (2.7.10)

.7 J

where at the last step we also used the definition of v.
Now we simplify the sum in the right hand side of the last formula. Applying the antipode to the second and
the third factor in the tensor product in (2.7.9) and multiplying the first and the second factors after that we have

Z a;a}S(a?)S(b;) Z a;S(b})S(a;) @ S(b2)S(b;).

Using the defining property of the antipode in the left hand side, and the formula F = )", a; ® b; in the right hand
side we can rewrite the previous identity in the form

> aiela;)S(bs) ® S(by) = Y aiS(b}) © S(67)(S @ S)(F),

or by (2.6.7) and by the definition of v applied in the left hand side

v@l=>Y a;S(b})®SO})(S @ S)(F),

which is, by swapping the tensor factors, equivalent to

lov=">" 5(0b7)a;S(b})(S ® 8)(Fa),

or

D 807 @ aiS(by) = (1@ )(S @ S)(Fzrh).

Substituting this expression into the right hand side of (2.7.10) and multiplying by F~! from the left we obtain
(2.7.7).
Formula (2.7.8) is established in a similar way. Firstly we rewrite (2.6.8) in the following form

(A@id)(F"FR" = (id® A)(F 1) Fa', (2.7.11)
or explicitly, using the expression F~* =" . ¢; ® d;,

ddej@cidi@di = ¢ @dic; ®dd;. (2.7.12)

i,j 4,3

Applying the antipode to the first and to the second factor of the tensor product and the comultiplication to
the last factor we obtain from this identity

ZS(CJ-)S(C})(X)S(dj)S( Y@ d ®@d? = Zscz )@ S(c;)S(d}) ® (d?d;)' @ (d2d;)?,

or, recalling that =1 = ;¢ ® d; and swapping the first and the second factors in the tensor product,

(S@)FaHhelel)d Sc)eS(d)ed @d = Zscj D@ S(e;) @ (d2d;) @ (d2d;)>.

4,J

Multiplying this identity by 2! ® 22®1® 1 = A(z) ® 1 ® 1 from the right we also have

(S@9)(Felal))y S eS¢’ ed @d = ZSCJ S(d})z' ® S(ci)2” @ (didy)! @ (d7dy)*.

7
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Now we multiply the first and the third, and the second and the fourth factors in the tensor product in this
identity. Together with the coassociativity of the comultiplication in the right hand side this yields

(S® S)(Fa') DY S(c)z'd} @ S(c})2*dy = Zs ¢;)S(d})z"did} @ S(c;)z*d3d3. (2.7.13)

Applying the identity

A S(ei)zd) =Y S(c})2'd} @ S(c})2d]
in the left hand side of (2.7.13) we obtain

(S ® S)(Fyh)A ZS ci)zd;) ZS ¢;)S(d}) 2 d?d} ® S(c;)z2d3d3

which implies together with (2.7.5) and (2.7.7)

AT (2) Z S(ei)zdi) = F v v)(S e S)( Z S(ci)zd;) (2.7.14)

=F lvewv Z S(e;)S(d})z" d2d} ® S(c;)22dids.

Now we bring the right hand side of this identity to the form indicated in (2.7.8). For this purpose we rewrite
(2.7.12) multiplying it by Fes from the right, by applying the antipode to the first factor in the tensor product,
and by swapping the right hand side and the left hand side,

> S(ey) @dj@d] = ZS x)S(ch) ® 2y, @ d; Fas, (2.7.15)
J

where we also renamed some summation indexes.
Applying this identity to the expression in the right hand side of (2.7.14) and recalling (2.7.5) we finally obtain

AYT (2) = (v®o) Z S(ck)S )zld?c?dk ® S(ci)22did; F =

i,k

=F ' (1@v) ) (@5 (Ad(d]e)(z") @ S(ei)2 didy) F
,J
which completes the proof.
O

Apart from Drinfeld twists, there is another natural way for obtaining new comultiplications on a given Hopf
algebra described in the following obvious proposition (see e.g. [67], Proposition 5.2).

Proposition 2.7.3. Let (A, u,1, A g,S) be a Hopf algebra, v : A — A an algebra automorphism. Then (A, p,1, A¥, e, SY)
is a Hopf algebra, where
AY(z) = (v@v)A(v ), SY =vS(v'z), = € A. (2.7.16)

If (A 1, AL e, S) is quasitriangular with universal R—matriz R then (A, u,1, A¥ e, SY) is quasitriangular with
universal R—matriz
RY = (v@v)R.

We denote the Hopf algebra (A, u,1, AV, e, 57) by AV and call it the twist of A by v. Denote by Ad” the right
adjoint action of AY. One immediately has the following relation between the adjoint actions of A and of A".

Proposition 2.7.4. Let (A, p,1,A,¢e,S) be a Hopf algebra, v: A — A an algebra automorphism. Then

AdYz(z) = v(Adv~ Y (z)(v1(2))),, 2 € A. (2.7.17)
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Proof. By (2.7.16) we have
AdVz(z) = v(S(v to(v ) ) zu(v )2 = v(S(v ) v (2) (v e)?) = v(Adv T (z) (v (2))).
This completes the proof. O

Now we shall relate the two types of twists in the case when A = Up,(g). The following statements can be found
in [67], Theorem 5.1 and Proposition 5.4.

Proposition 2.7.5. Let w = s;, ...s;, be any reduced decomposition of an element w € W, T,, = T;, ... T;, .

Denote 6, = HI;:1 Op,, where 0, are defined in (2.2.11), and in the product 0, appears on the left from 0, if
p < q. Then the following statements are true.

(i) The element 0,' € Up(g) ® Un(g) satisfies (2.6.7) and (2.6.8), and Afﬁl is a comultiplication on Up(g).
(i) One has A‘Z’;l = A",

Proof. (i) The proof is by induction over the length of w. When w = s; is a simple reflection condition (2.6.7) for
01 = 0, ! is clear from its definition and from the definition of the counit &, and condition (2.6.8) is the statement
of Proposition 4.2.4 in [81], up to some change of the notation and different conventions on the comultiplication.
The second claim in (i) for 6, = 6;* follows from the first one and from part (i) of Proposition 2.6.4.

Now assume that the statement is true for all elements w of length k and for some w =s;, ...s;, and 1 < ¢ </
the element w’ = s;w has length k 4+ 1. Then by the definitions of 6,, and 6s,,, one has

esiw - el(n ® Tz)(ew)y

SO
O = (T; @ T3)(0,1)6; " (2.7.18)

Si

Condition (2.6.7) for 6 ;, is again clear from its definition and from the definition of the counit e.
To check condition (2.6.8) for 0}, we write using (2.7.18)

(O )12(An ®@id)(051,) = (T; ® T; @ id) (0, )12(0; ' )12(An @ id)(T; @ T30, T, @ T 1) (Ap @ id) (6;1).

Observe that by (2.2.8) Ay (Ti) = 6;T; @ T, so A (Ti(z)) = 0,(T; @ T;)(An(2))0;*, € Un(g), and that T; is
an algebra automorphism. Hence the previous identity can be rewritten as follows

(05 )12(An @ id)(05),) =

=(T;®T; @ Ty) (05, )12(0; ) 12(0:)12(T; @ Ty @ T;) ((An @ id) (65,1)) (6; D 12(Ap @ id)(0; 1) =
= (LT @ Ty) (0, 12(Ti @ Ty @ T,) (A @ id)(6,1)) (0, ) 12(An @ id)(0; ) =
= (10T, @ T,)(0, )12(T; © T; @ Th)(An @ id)(0,1)) (6; )12(An @id) (6, 1) =
= (T; ® T; @ T,)((0,, 2 (An @ id) (0,1)) (67 )12(An @ id) (6; ). (2.7.19)

(6,
(0;
Now recall that by the induction assumption 8; and 6,, satisfy (2.6.8), so that after applying (2.6.8) in the right
hand side of the previous identity we have

(Os)12(An @) (05,) = (T @ T @ T)((0;,1)23(id @ An)(05,1)) (07 )as(id © An)(6;7).
Finally repeating in the opposite order arguments similar to those which lead us to (2.7.19) we arrive at
(052)12(A @ id)(0;1,) =
= (T; © T)((0,1))25(0;)23(0)2s(T; @ Th @ Ty) (i © ) (0,1)) (0 )oslid @ An)(6; ) =
= (052)23(id @ M) (T @ T (0,1) (id © An)(67") = (0:73,)20(id @ D) (0;1,)

which confirms (2.6.8) for 1 and establishes the induction step. Thus the first claim in (i) is proved.

S;w
The second claim in (i) for 6! with arbitrary w follows from the first one and from part (i) of Proposition

2.6.4.
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(ii) Observe that by (2.2.11) Ay (T,,') =T, ' @ T,; 16,1, and hence
AT, (@) = (T, @ T, 1) (0, An(2)0w), = € Un(g), (2.7.20)

—1
or, by the definitions of A{w and of AZ” ,

—1

AT (2) = (05" An(2)0u) = Ay (x),x € Un(g).

This completes the proof.
O

We shall need the following proposition which is a version of Proposition 2.7.5 for the algebras U;(g). To
simplify the notation we shall identify U} (g) with Uy (g) as algebras using the isomorphisms from Proposition 2.6.1
with n;; given by (2.6.4), and omit ¢y, } in all formulas.

Proposition 2.7.6. Let w = s;, ...s;, be any reduced decomposition of an element w € W, T, = T;, ... T;,.
Denote 05, = H’;zl GE,,; where ng are defined in (2.6.17), and in the product ng appears on the left from ng if
p < q. Then the following statements are true.

(i) The element 05" € U;(g) ® Ui(g) satisfies (2.6.7) and (2.6.8), for ¢ = ¢4 and A = A, and Agiil is a
comultiplication on U} (g).
(ii) One has Al = Ai’ilsw.
Proof. (i) Firstly by (2.6.17)
FslpFy ' =05 (2.7.21)
From the definition of the commutative Hopf subalgebra U (h)[[h]] =~ Ux(h) C Un(g) ~ U;(g) it immediately
1

follows that F, ! € U;(g) ® U; (g) satisfies (2.6.7) and (2.6.8) for e = £5 and A = Ay, so AZ* is a comultiplication
on Uj(g) according to Proposition 2.6.4 (i). In fact by formula (2.6.13)
NN (2.7.22)

By Proposition 2.7.5 (i) and (ii) the element 0, € Uy (g) @ Uy (g) satisfies (2.6.7) and (2.6.8) with ¢ = &, and
1 -1
A=Ay, AZ” is a comultiplication on Uy (g), and AZ}” = Af“’. Using this identity and (2.7.22) we obtain

Fol p-1 g1
(A ) = Ay = Af. (2.7.23)

Finally note that on the subalgebra Uy, (h) C Uy, (g) one has AT* = A, and from the definition of the commutative
Hopf subalgebra U ()[[h]] =~ Un(h) C Un(g) ~ U;(g) it immediately follows that Fy € Uy (g) ® Uy (g) satisfies (2.6.7)
and (2.6.8) for £ = &, and A = A}™, so (A}*)7* is a comultiplication on Uy, (g) according to Proposition 2.6.4 (i).

Using this observation together with (2.7.23) and Proposition 2.6.4 (iii) twice we deduce that F,0, ' F; 1 = 65, !

satisfies (2.6.7) and (2.6.8) for e = 5, and A = Ag, Az‘s"_l is a comultiplication on U7 (g), and

95 -1

Al = (AT )R Fe = (AT (2.7.24)

(i) Observe that by (2.6.18) and by the definition (2.6.12) of Fs one has Ay (T,') = T,' @ T} (T, ®
Tw)(Fs)F165, 1, and hence by the definition of AT we obtain

AST” (z) = (Tw ®Tw)(}—S)-FsilezjilAS(x)oi;}—S(Tw @ Tw)(]-"gl),z € Up(9)-
Using the definition of AT» and conjugating by F,(T,, ® T}, )(F: ) one can rewrite this identity as follows
Fs(Tw® Tw)(fs_l)(Tw ® Tw)(AS(TuTlx))(Tw ® Tw)(}-S)]:s_l = 9;_1AS($)9;~

Using (2.6.13) and the definition of the braid group action on the generators of Uy (h) we can further transform the
left hand side and obtain

(T @ Tw) (T ' @ Tig ) (Fo) Fo ' FoAn (T ' a) F Fo(T @ T ) (F ) = 05,71 Au(2)65,
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or
(T © T) (T3 © Ty ) (FO)An(T ) (T3 & T (FY) = 05, A (2)0s, (2.7.25)
By definition (2.6.12) (T);' ® T);1)(Fs) = Fu-1sw, and hence by (2.6. 13)

(T @ Ty ) (Fo) ATy ') (T @ Ty N(Fi ) = Fumrswn(Ty ') Fti = A1 (T ).

“lsw
Using this expression in the left hand side of (2.7.25) and recalling the definitions of Agf”il and of AT

T
derive A ",
sw

w1, W

s —1
= Az“’ . This completes the proof.
O

Rewriting the identity in part (ii) of the previous proposition in the form
05 —1. -1
Ap-tgp = (Asw )Tw
and applying formulas (2.7.4) and (2.7.17) we obtain the following corollary.

Corollary 2.7.7. Denote by Ads and Ad, the right and the left adjoint action of the Hopf algebra U (g), respec-
tively. Then

Ady-rgpr = (A% )T (@) = Ty g% Ady(Tya) (%) T, (2.7.26)
where weﬁfl is defined by (2.7.5) with the help of the antipode Sy and of the multiplication in the Hopf algebra
Ui (g)-

From (2.7.8) and (2.6.17) we also obtain the following proposition which will be crucial for the definition of the
Zhelobenko type operators.

Proposition 2.7.8. Let w = s;, ... s;, be any reduced decomposition of an element w € W, T, =T;, ... T;,. Then
ATy 05 ()T) = T @ T (L@ o) Y (0% (Ad(die)) (=) @ Su(e)?d2d)) Ty © T, (27.27)
4]
where 0571 =3 a; @b, v=3,a;8s(b;), 05, =3¢ @di, Az =2 @22, Ayd; = d} @ d?.
Proof. From (2.7.8) with A = A,, F =65"', § = S, we obtain
Ay (2)) = 05,(1@ ) Y (" (Ady(dfe;)(2")) ® Soles)zdd; )60y, 7, (2.7.28)
,J
where 0;_1 =20 @b, v=7>.0;5s(b;), 05, =), ci @di, Agz = 2t ® 22
By (2.6.17) and (2.6.6)

k
Au(Tw) =[] 05, Fo(Tw @ Tuw)(Fs )T @ Toy = 05, Fo(Toy @ Top) (Fy )T @ Ty = (2.7.29)

= 05T @ T(Ty' @ T )V (Fo)Fit = 05Ty @ TwFop-150Fs -
Now (2.7.28) and (2.7.29) imply

AS(Tglw%il(z)Tw) = AS(Tgl)As(wef‘;l(Z))As(Tw) =

R T @ TS0, (1 0) S0 (Ady(dhe) (1) @ Ss(61) 2285 05 T @ T Fape i Fo ! =
4,J
_’Fv]:_*lsw w ®T ( ®U)Z(w9fuil(AdS(dzlc])( )) ®S (CZ)Z d d ) ® Ty ]:w 1sw]:_
4,J

Conjugating this formula by F,,~1,,F; ! and observing that by the definition of A, one has
FutswFs "D ()FF, ! w-tswFa \FsAp(VF M FFo =

= ]:wflswAh( )f__lsw = Awflsw(')
we obtain
Ao (T 0% (2)T) = T @ T (1@ ) D (0% (Ady(dle;)(21) @ Sales)22d2d;) Ty @ T

]

This completes the proof.
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2.8 Some forms and specializations of quantum groups

In order to define g-W-algebras we shall actually need not the algebras U;(g) themselves but some their forms
defined over certain rings. They are similar to the rational form and the restricted integral form for the standard
quantum group Uy (g). The motivations of the definitions given below will be clear in Section 3.2. The results
below are slight modifications of similar statements for Up(g).

We start with a very important technical lemma which will play the key role in the definition of q-W-algebras.
Below we keep the notation introduced in Section 1.2.

Let s € W be an element of the Weyl group. By formula (1.2.1), s can be represented as a product of two
involutions, s = s's?, where s* = s, ...5,,, 8% =5y, ... S+,,, and the roots 71, ...,y form a basis of a subspace
h’" C h* on which s acts without fixed points. We shall study the matrix elements of the Cayley transform of the

restriction of s to h’* with respect to this basis.

Lemma 2.8.1. Let Py~ be the orthogonal projection operator onto b'* in h*, with respect to the bilinear form.

Then the matriz elements of the operator }fiPh/* in the basis v1,...,vy are of the form
1+s
<l_st/*’Yi,Vj> = €i;(%i, 75)5 (28.1)
where
-1 i<y
Eij = 0 ) :j
1 1>7
Proof. First we calculate the matrix of the element s with respect to the basis v1,...,7;. We obtain this matrix

in the form of the Gauss decomposition of the operator s : h'* — ™.
Let z; = s7;. Recall that s, (v;) =v; — Aijvi, 4ij = (7,7;). Define

Yi = Syy -+ Sy Vi (2.8.2)

Using this definition the elements z; may be represented as

Zi = Sy oo 8y Vi = Sy oo Sy (Vi = Avie) = Sy oo Sy Y — Ay = .= Y — g Apiyg.
E>i

Using the matrix notation we can rewrite the last formula as follows

ll
_ . A k>
Z; = ’;(I — V)kiyr, where Vi; = { 0 k< i (2.8.3)
To calculate the matrix of the operator s : h’* — h’* with respect to the basis 71, ..., we have to express the
elements y; via 1, ...,7y. Applying the definition of reflections to (2.8.2) we obtain
Yi = Syy oo Sy 1 Vi = Sy o+ - Sy Vi — Ai1iYic1=... =% — ZAkiyk-
k<i
Therefore
l/
A k<i
Vi :Z(IJFU)kiyk , where Uy; = { Ok b
k=1 =
Thus
l/
g = ST+ U3 (2.8.4)
k=1
Summarizing (2.8.4) and (2.8.3) we obtain
l/
svi=3 (I+U)"T=V)),, % (2.8.5)

k=1
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This implies

l/
1+ Z<21+U—V>
_ . (2.8.6)
1—s =\ U+V )y,

Observe that (U + V) = A, and (2I4+U —V);; = —A;je;;. Substituting these expressions into (2.8.6) we get

1+s _
(1 — sPh'*%%) = —(A™ pepiApi (V1) = €35 (Y, 15)- (2.8.7)

This completes the proof of the lemma.
O

Let vf,i=1,...,I' be the basis of h"* dual to v;, i = 1,...,1’ with respect to the restriction of the bilinear form
(+,-) to h’*. Since the numbers (v;, ;) are integer, each element v has the form ~; = 22:1 m;;7yj, where m;; € Q.
Therefore by Lemma 2.8.1 and using for simple roots a; the decomposition of the form Py~ o; = Zzzl(ai, Y)Yy =

Zl/ (i, Yp)Mpqyq We deduce that the numbers

p,q=1
1 1+ s
i = 5 Py, a5 | = 2.8.8

G

1 1+s o

= 2d Z (’Yk,Oéi)(’YhOéj) (1_8 hl*"yp7’yq) mkpmlq’ 2,3217._.,l
7 klp.a=1

are rational, p;; € Q, as all factors in the products in the sum in the right hand side are rational. Denote by d an
integer number divisible by all the denominators of the rational numbers p;;, 7,5 =1,...,1.

Let r € N be such that a;; le Z i,j =1,...,1. Let Uj(g) be the C(qﬁ)—algebra generated by the elements
i, fis Liil, tiﬂ, i=1,...,1 Wlth the same relatlons as the relations in U} (g) for the generators denoted by the same

symbols, where we assume that ¢! = exp(££Y;). The coefficients of these relations indeed belong to (C(qﬁ),
where qdr2 =elar,

Let U,(g) be the (C(qdv%)-algebra generated by the elements Xf,Lfl,tfl, 1 =1,...,1 subject to the same
relations as the relations in Uy (g) for the generators denoted by the same symbolb where we assume that tlil
exp(:t%)@). The coefficients of these relations indeed belong to C(g e ), where dez —ehar.

Note that by the choice of d we have ¢+ € Clqd,q~4].

The second form of Uj(g) is a subalgebra Uj(g) in U7 (g) over the ring A = P[qﬁﬂfﬁ]. U?(g) is the

subalgebra in U;(g) generated over A by the elements

K; — K_
L;tl til ﬁ, €;, f17 = 1,...7l.
1t Yy

Denote also by U4(g) the subalgebra in U,(g) generated over A by the elements

K, — K;! ‘
L;‘:l,t;‘:l, 771, Xz:t, 7,:].7...,l.
q4i — q;

For the solution n;; = ¢i;j to equations (2.6.2) the root vectors eg, fg belong to all the above introduced

1
2d;
specializations of Uy(g).

For any normal ordering of A we denote e(ﬁk) = 65 fﬁk) [kj]c 1, where eg, f are the corresponding quantum

1
root vectors from Proposition 2.6.2. Let Ug"“*(g) be the subalgebra in U;(g) generated over B = Clga? @? g a7
by the elements

) S GO GO N S R [ S

Denote also by Ug**(g) the subalgebra in U,(g) generated over B by the elements

LEVEL (XEHW =1, L k> 1.
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Let ¢ € C*. Fix a root of ¢ of degree r2d, ea? and if € = 1 put £74 = 1. Then we define the specialization
_1_ _1_
Uz(g) of Ui(g), UZ(g) = Ui(9)/ (g —ea?)Uz(g), and

5, res s,res 1 s,res
U (g) = Ug™(8)/(g7® — ea= )UR"*(g)

Uz (9), Ui(9), Ug"*(g), U2"**(g) and UZ(g) are Hopf algebras with the comultiplication given on generators

by the same formulas as in U} (g) with q(h% =l

The elements ¢; and L; are central in the algebra U;(g), and the quotient of Uf(g) by the two-sided ideal
generated by t; — 1 and L; — 1 is isomorphic to U(g). Note that none of the specializations of U;(g) introduced
above is quasitriangular. Similarly, the quotient of U;""“*(g) by the two—sided ideal generated by t; — 1 and L; — 1
is isomorphic to U(g), and the quotient of U7%*(g) by the two—sided ideal generated by and K; — 1 is isomorphic
to U(g) (see [20], Proposition 9.3.10).

The algebra isomorphism )y, .y with n;; = 57-¢;; induces isomorphisms of Uy (g) and Uj;(g) and of the forms

2d
and specializations of Up(g) and US(g) with the superscript s defined above and of their counterparts with the
superscript s dropped. We shall always identify them using these isomorphisms. To simplify the notation we shall
also write, if it does not cause confusion, eg = Xgethﬂv, fs= e’hKS'BVX[;, BeAL.

Note that the structure constants in the commutation relations for U%(g) = U(g) actually belong to P[gd, ¢~ 4],
so if k is divisible by d the specialization UZ(g) actually depends on € € C* but not on its root e?. As we shall see
below one can define an action of the universal R-matrix R*® on tensor products of finite rank Ug"“*(g)-modules.
This action will play a crucial role in subsequent considerations.

Ual(g), Ug*(g), U (g) and Ug"**(g) can be also regarded as subalgebras of Uy (g) ~ Uy (g), and U;**(g) can be
regarded as a Clg, ¢ 1]~ subalgebra in UZ"*(g) ~ Ug**(g).

Denote by Uj(ny),U;(n-) and Ug(h) the subalgebras of U;(g) generated by the e;, f; and by the t;, L;,
respectively, and let Us(bi) be the subalgebra in U7 (g) generated by UJ(n+) and by U7 (h), U, (bx) = U; (ns)U; (h).

Let U5(ny), U (n ) (Ug"°(ny), Ug"“*(n_)) be the subalgebras of U%(g) (Ug"“*(g)) generated by the e; and
by the f;, i = 1,...,1 (by the egr) and by the fi(r)7 i=1,...,1, 7 > 0), respectively, and U4(h) = U%(bh) the
subalgebra in UA( ) = U%(g) generated by t;, L;,i=1,...,1

The elements

,i=1,...,l, ceZ, reN

|:Kl,C:| _Hch+ls Klslc
" % s=1 4 — a4
belong to Uy *(g). Denote by Ug"**(h) the subalgebra of Uy (g) generated by those elements and by ¢!, LF!,
i=1,...1.

Let U “* (b4 ) be the subalgebra in Ug"“*(g) generated by Uz “*(ny) and by Ug"“*(h), Uz “*(b+) = UZ"“*(ny)UZ"“*(h).

The algebra antiautomorphism w of Up(g) defined by (2.3.11) gives rise to an algebra antiautomorphism of
Uj(g) ~ U(g). we denote it by the same letter. By (2.3.12) for any o € A it satisfies

w(f!l) = eoww(eoz) = fa- (289)

The algebra antiautomorphism wy of Uy (g) also induces an algebra antiautomorphism of U (g) =~ Uy(g) which
we denote by the same letter. From (2.3.13) we deduce that it satisfies

wo(ei) = eq,wo(fi) = fi-

Formula (2.3.14) implies
WO(ea) = Ca€q, (2810)

where ¢q = €aPa, €a = £1, po € ¢%. We also have
wo(fa) = wow(ea) = wwo(ea) = w(cats) = 5 wlea) = ;' fa (2.8.11)

One can check straightforwardly that wy is a coalgebra homomorphism of U (g).

The antiautomorphisms w and wy give rise to antiautomorphisms of Uy (g), Ug"**(g) and U (g) which we denote
by the same letters.

Using the root vectors eg and fz we can construct bases for the algebras introduced above.
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Lemma 2.8.2. Fiz o normal ordering of the system of positive roots Ay and let eg, fg be the corresponding
quantum root vectors defined in Proposition 2.6.2. Then the following statements are true.
(i) The elements fg satisfy the following commutation relations

« m1+é 1% Q, n
fafs —q@H =Pl pp = NT O(pr, pa) ST AP ) = (2.8.12)
a<d1<...<op <P

— > C'(prs- - ) SRR B < B,
a<1<...<6p<fB
where C(py,...,pn) € B, C'(p1,..., pn) € A.
(ii) The elements e* = eﬁ eg];, ft = ftg féll, forr = (ri,...7p), t = (t1,...tp) € NP form bases of
Ug(ny),Us(n_), respectively.

(iii) The multiplication defines an isomorphism of (C(q#)fmodules:
Us(no) 2 U3 (0) © Uj(ns) = U3().

(iv) The elements e, ft (resp. e() = e(ﬂ?) e(ﬁ?), f® = fé;D)...fé?)) forr, t € NP form bases of
Us(nyg), Us(n2) (resp. Ug""(ng),Ug"“*(n_)), respectively.
(v) The multiplication defines an isomorphisms of B—modules:

U™ (02) @ U™ (0) © U™ (ny) = U™ ().

(vi) Let [o, 8] = {Bp,..., B¢} be a minimal segment in Ay, US([e, B]), US([—a,—B]) (resp. Uz **(le, ]),
Ug"([—a, —B])) the A(B)—subalgebras of U;(g) generated by the e, and by the f,, v € [o, 8] (resp. by the (67) ()
and by the (f,), v € [a, B, r € N), respectively. Then the elements (eg,)™ ... (eg,)™, (fgq)’"q . (fs,)® (resp.
(e5,) ") ... (e5,) "), (f5,)0) ... (f5,)")), ri € N form bases of Ux([av, B]), Ui([~a, =B]) (resp. Ug"*([ex, B).
Ug 7"es([ a,—B])), respectively.

(vii) The elements ft (resp. f®) = fétDD) . flgil)) for t € NP with t; > 0 for at least one i > p form a basis in

the right ideal Y, of US(n_) (resp. Ug"*(n_)) generated by f, v € [Bp, Bp] (resp. by (f)), v € [Bp, Bp], r > 0).
(viii) For anyn >0, p=1,...,D —1 one has

n—1

FUE ((=Bps1, —Bp)) © D (U (= Bpa1, —Bo))o ) + U™ (= Bps1, —Bo)) £5

=0

where (Ug"*([=Bp+1, =Bp]))o = Yp+1 N Ug"“([=Bp+1, —Bp))-
(iz) Let [, B] C Ay or o, B] C A be any minimal segment, such that (o, 8] = [a, ¥] U [0, B] (disjoint union of
minimal segments). Then the multiplication in UZ"“*(g) defines isomorphisms of B-modules

U™ ([ ) ® U™ (15, 81) — U™ ([0, U™ (5, 8)) = U5 ([, A,

U™ (15, 81) © Uy ([ 7)) = Ug" (18, U3 ([, 7]) = Ug"* ([, )

Proof. Commutation relations (2.8.12) follow from commutation relations (2.3.3), (2.1.2), (2.1.3), Proposition 2.4.1,
the definition of the elements eg, fs and the definition of the isomorphism 1, y. This proves (i).

Statements (ii)-(vi) of this lemma follow straightforwardly from parts (i), (iii) and (iv) of Lemma 2.4.2 and
Propositions 2.6.1 and 2.6.2.

For (vii), using commutation relations (2.8.12) we can represent any element of the right ideal of U%(n_)
generated by f,, v € [Bp, Bp] as an A-linear combination of the elements f* for t € NP with ¢; > 0 for at least one
i > p. This presentation is unique by the Poincaré-Birkhoff-Witt decomposition for U5 (n_) stated in (vi).

Note that a similar result holds for the algebra U (n_) = Uj(n_) @4 C(qdv%) for the same reasons.

We can apply it to represent any element of the right ideal Y, of Uy"**(n_) C Ug(n_) generated by (f,)(",

v € [Bp,Bp), ¥ > 0 as a (C(qﬁ)flinear combination of the elements f®) for t € NP with ¢; > 0 for at least
one ¢ > p. This presentation is unique and by the uniqueness of the Poincaré—Birkhoff-Witt decomposition for
Ug"**(n_) stated in (vi) the coefficients in this decomposition belong to B. This completes the proof of part (vii).
(viii) is justified using similar arguments, commutation relations (2.8.12) and induction over n.
(ix) follows from Corollary 2.4.4 (iii) and Propositions 2.6.1 and 2.6.2.
O
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A basis for Uz “*(h) is a little bit more difficult to describe. We do not need its explicit description.

Remark 2.8.3. Applying the antiautomorphism wg to the elements of the bases constructed in Lemma 2.8.2 and
using (2.8.10) and (2.8.11) we obtain other bases of similar types where the order of the quantum root vectors in
the products defining the elements of the bases is reversed.

By specializing the above constructed bases for q# = 7 one can obtain similar bases and similar subalgebras
for UZ(g) and UZ"*(g).

Similarly to the case of U;“*(g), using parts (ii), (iii), (iv) and (v) of Lemma 2.8.2 one can introduce Q-gradings
on the algebras U (g), U5 (g), Ug"*(9), U2"**(g) and UZ(g). For instance, we have

Ug’,res (g) — @(Ugn'es (9));“
REQ

where

(Ug" " (0)u = {x € Ug"" (@) : [h,x] = p(h)x for all h € b C Un(g) ~ U (9)}-
Using formulas (2.5.7) and (2.6.13) one can also find that

Cheltsp gV ipgY s _
(fﬁk) wk 1( 3= Por O hb ®fﬁk +f5k )(ka 1) b= (2'8'13)

where

Gﬁ hnl 2Py BY —hBY —hf-il Ph/'yz +hy —

yYi = € “Yi»
i € Ua([=Br+1, =Bp]) N U " ([=Br+1, —Bp)),
z; € US([=B1, =Br=1]) N UZ"* ([ b1, —Br-1]),
Y,,z; belong to weight subspaces and have non-zero weights, «,, is the weight of x; (see [34], Corollary 4.3.2), for
Wh—1 = Siy « - - Sip_y
Oy =05, 05, 05, = expy, [(1—q57)ep, e 507 @ £y ], (2.8.14)
and
(O )™ = O5,_) " (05,) 7", (05,)7 =expa[(1 - g3 Vep.e TP @ gy ). (2.8.15)

From (2.8.13) we also obtain

As(f5)) = 05, (Gl @ fa + [, @ 1)"(05,_ )" = (2.8.16)

[}q|wk1 Wi —1

k(n—k) ~— n—~k k —
—ezuzw Galls @ L5 00 ) =

n
k(n—k) G-k (n—k) (k) (n) (n)
- 43, kaﬁk ®f5k +Zyi ®z; ",
k=0 i
where

n) _ e*h"‘l Py (n)*h’Y 5 (n)

)

yﬁ”) eIy, x (n) ¢ IS belong to weight subspaces and have non-zero weights, Yyl is the weight of J;( m) , I is the

ideal in Ug"**([—Bk, —Bp]) generated by f(f), i=k+1,...,D,p >0, and Ik< is the ideal in UZ"“*([—f1, —fk))
generated by fé’:),i: 1,...,k—=1,p>0.
Similarly
Ag(ep,) = O, (€5, ® e~ hBE 4 ehR TS Pyr BY ® eg,)(0; )’1 = (2.8.17)

Wk —1



2.8. FORMS AND SPECIALIZATIONS OF QUANTUM GROUPS 89

gV lisp gV
—e5 ®e hBy 4 ghntts Pys By ® e, +Zx;®y;’
i
where

v € Ua([Bra1, Bo))UL (D) NUZ"*([Br+1, Bo))Ug"*(b),
z; € UL([Br; Be—1)UL(h) NUZ"*([B1, Bre—1])Ug" " (b),

and y;, =, belong to weight subspaces and have non-zero weights.
From these formulas we deduce

Ss(fg) = —Gpfs — Z Ss(yi)xi = —Gg(fs + ZyiSs(xi)), (2.8.18)

Sy (s (fs + ZS (:)yi)Gs = —fsGp — Zx ) (2.8.19)

We also have

woSy (fp) = —Gplwofs + Zwo(yi)w05;l($i)) =
= —Gawofs — »_woS; " (yi)wo(xs),

wofs = =Gyt (woSi () + D woST (wi))-

As usual, one can define highest weight, Verma and finite-dimensional modules for all forms and specializations of
the quantum group U;(g) introduced above. We recall that by Propositions 6.5.5 and 6.5.7 in [20] Uy (g) =~ U(g)[[R]],
and this isomorphism of algebras restricts to the identity map on U(h) and induces a canonical isomorphism of the
center of Uy (g) and of Z(U(g))[[h]], where Z(U(g)) is the center of U(g). Therefore if V' is a Uy, (g)-module free and
of finite rank over C[[h]] then V3 = V/AV is a finite-dimensional U(g)-module which is completely reducible, and
its irreducible components are highest weight irreducible finite-dimensional representations of U(g). By Corollary
6.5.6 in [20], one has an isomorphism of U}, (g)-modules, V =~ V;[[h]], where the action of Uy, (g) on V;[[h]] is defined
using the algebra isomorphism Up(g) ~ U(g)[[h]].

Using the algebra isomorphism Uy (g) ~ U(g)[[h]], which restricts to the identity map on U(h), one can define
weight vectors in V' by requiring that v € V' has weight A € P if hv = A(h)v for any h € h C U(h) C U(g)[[h]] ~
Un(g). For A € P one also defines the corresponding weight subspace (V)y = {v € V : hv = A(h)v for all h € h}.

If V1 is the highest weight irreducible representation of U(g) with highest weight A\ € P} we call the corresponding
representation V' = V) the highest weight indecomposable representation of highest weight A. V) is generated by
a highest weight vector with respect to the action of h C Ux(h). All indecomposable Uy (g)-modules free and of
finite rank over C[[h]] can be obtained this way.

Let V' be a topologically free finite rank Up(g)-module. Recall that there is a contravariant non—degenerate
form (-,-) on V such that (u,zv) = (w(x)u,v) for any u,v € V, x € Up(g). Different weight spaces are orthogonal
with respect to this form.

The definition (2.3.11) of the antiautomorphism w implies that the w maps elements of negative weights to
elements of positive weights. From this remark we obtain the following obvious corollary which will be often used
later.

Lemma 2.8.4. Let V be a topologically free finite rank Up(g)-module. Let u,v € V, x,y € Up(g).
(i) If u is a highest weight vector and x € Un(g) has a weight which is not non-negative then (u,zyv) = 0.
(i) If v is a highest weight vector and y € Un(g) has a weight which is not non—positive then (u,zyv) = 0.

Recall that UZ"“*(g) ~ Ui (g) can be regarded as a subalgebra of U (g) ~ Ux(g). Let V be a Up(g)-module
topologically free and of finite rank over C[[h]] (for brevity we shall call such modules finite rank Uy (g)-modules).
Then a U **(g)-module V" is called a Ug"“"(g)-lattice in V if V" @ C[[h]] ~ V.

For any Uj,(g)—module V topologically free and of finite rank over C[[h]] a Ug"“*(g)-lattice V"** exists. Indeed,
by the above discussion it suffices to consider the case of indecomposable V' = V) generated by a highest weight
vector v. In this case, similarly to the proof of Proposition 4.2 in [88] (see also Proposition 10.1.4 in [20]) one
can show that V¢ = UZ"*(g)v is a Ug"“"(g)-lattice, V** is the direct sum of its intersections with the weight
spaces of V) and each such intersectlon is a finitely generated free B—module of finite rank. Moreover, using the
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arguments from the proof of Proposition 4.2 in Section 4.9 of [88] one can see that the last two properties hold for
any Ug"“"(g)-lattice in any topologically free Uj,(g)-module V' of finite rank over C[[h]]. Together cwith the results

of Section 10.1 in [20] this yields the following statement.

Proposition 2.8.5. (i) For any Uy(g)—module V topologically free and of finite rank over C[[h]] V"¢ is the direct
sum of its intersections with the weight spaces of V' and each such intersection is a finitely generated free B—module
of finite rank
yres — @(Vres))\’ (Vres))\ —Vresn (V))\
AEP

(ii) The specialization of V" at qﬁ = 1 is naturally a finite—dimensional U(g)—module.

For any Uy, (g)-module V topologically free and of finite rank over C[[A]], one can equip the module V"¢ with
a natural action of h, where h € h acts on the weight subspace of V"¢* of weight A by multiplication by A(h).

From the explicit formulas and the results in [81], Section 5.2 it follows that the braid group elements given by
(2.2.4) and (2.2.5) act in Uy (g)—modules topologically free and of finite rank over C[[A]] and leave Ug"“"(g)-lattices
in them.

More generally, if T, is the braid group element corresponding to w € W then T,,(V)x = (V)wa. This action
satisfies the property T,azv = T, (z)T,,v for any z € Uy(g) and v € V. The Ug"*"(g)-submodule V" C V is
invariant under the action of the elements T,,.

The following lemma will be useful for some calculations later.

Lemma 2.8.6. Let V' be a Up(g)—module V' topologically free and of finite rank over C[[h]]. Then the elements of
the subalgebra U;°*(H) act on weight vectors of V' by multiplication by elements of Clg, g1, and the elements of
the subalgebra Ug "(h) C UZ""(9) C Ug(g) ~ Un(g) act on weight vectors of V' by multiplication by elements of
B. Moreover,

Virh={veV: Kv—q)‘(H) i=1..,0L V") ={veV™ K U—q;\(H) i1=1,...,0} (2.8.20)

Proof. By the definition of the action of h on V the elements

K. T K c+1—s K 1 5 1—c .
|: laC:| :H id; ,z:l,...,l,ceZvreN
" % os=1 @ —q°
i N H : T qMH i)tetl—s q*X(Hi)Jrs—l—c
act on a vector of weight A\ by multiplication by [[,_; = — 7qu _ T (S IAH) + ot ] ), and
K', i =1,...,1, act by multiplication by qi’\(H ). Also for v € V the condition K;v = qj\(H) v, i= 1,.“,1 i

equivalent to hv = A(h)v for any heb - Uh( ) This implies (2.8.20).
The case of the generators ', L', i = 1,...,1 of the algebra Uy "**(h) is considered in a similar way.
O

The specialization of V¢ at qﬁ —ea? isa highest weight U2"*°(g)-module. In general this module is not
irreducible even if V' is indecomposable.

The R-matrix R* acts in tensor products of Ug"“*(g)-lattices in Uj(g)-modules topologically free and of finite
rank over C[[h]]. Namely, recalling (2.6.16) we can represent R® in the form R* = E5R§ = R§E;, where

l l
1+
Ry = exp [h (Z(Yie@Hi)—Zml_z Hi®Yi>

i=1 i=1

k(k+1) _ _ 1+s \%
(Zqﬁ T (1) Y @ et > =

(2.8.21)

0 k(k+1) v
H(z -t e ),
B k=0
X k(k+1) s v
= I (S0 0t o o)
B k=0

= H Z qﬂ 2 (1 — qg2)kekh(nﬁph1*id)ﬂvf§ ® e/(gk)ekhﬁv> ,
B
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and for f =) 2:1 i
_ 14s v kRS Sy
e~ RhRIEE Py BY o TRh 2 o Y, e Ug"(h) nUL(b).

We can define the action of R on tensor products of modules of the form V", where V is a highest weight
finite rank Up(g)-module as follows. If V7 W7 are two such modules and vy € V", w, € W7 are vectors of
weights A and p then we define

_ 1+s
Rius @ w,, = q(A,u) (Hfl,spnf*u)\)v)\ ® wy,
and q(AHU‘)_(K%Ph’*‘U")‘) € B.

Since for any 8 € A, and any module of the form V" where V is a finite rank Uy (g)—module, f/gk) and e,’g,
belong to Uz “*(g) and act as zero operators on V"** for k large enough, and for any k

e M € U (0) NUA),

&? naturally acts on tensor products of such modules.

For two modules of the form V"¢ W7 where V and W are highest weight finite rank Uj(g)-modules, we
denote by RVW the operator corresponding to the action of R® in V7 @ W7es.

With this definition the identity

AZPP(:E) — RSAS(x)RS*l’x c Ug’,res<g)

still holds being evaluated in tensor products of modules of the form V"¢, where V' is a finite rank Uj,(g)-module.
We shall also need the following technical lemma regarding the action of the elements T, and T, on finite rank
indecomposable modules.

Lemma 2.8.7. Let V be a finite rank Uy (g)-module. If T,T" are two elements of the braid group By which act as
the same transformation on h C Ur(h) and v is a highest weight vector in V then Tv = tT"v, where t is a non—zero
multiple of a power of q.

Proof. Since v generates a highest weight indecomposable submodule V) C V of highest weight A equal to the
weight of v, and V) is invariant under the braid group action, we can assume without loss of generality that
V=VWV.

First observe that similarly to the proof of Proposition 4.2 in [88] (see also Proposition 10.1.4 in [20]) one can
show that V' = Uy**(g)v is a U;*(g)-lattice in V) in the sense that V' ®cjq,4-1) C[[h]] = V. This module coincides
with the one defined in Section 4.1 in [88] (see also Proposition 10.1.4 in [20]).

It is well known that any element T' of the braid group acts as an invertible linear automorphism of V’ which
can be specialized to any non—zero numeric value of ¢ in the sense that for any ¢ € C* T gives rise to a linear
automorphism of U;**(g)/(¢—¢)U;**(g)-module V! = V' /(q—¢)V'. It suffices to verify this statement when 7" = T;
for i =1,...,1, and in this case it follows from the explicit formulas and the results in [81], Section 5.2.

Recall that elements of the braid group act as Weyl group elements on h C U, (h). Assume that the action
of T and T" on h C Up(h) coincides with the action of a Weyl group element w. Since the C[g, ¢~!]-submodule
of V’ which consists of elements of weight wy has rank one and Tv and T'v must belong to this submodule, the
relation Tv = ¢(¢)T’v must hold for some rational function ¢(q) of ¢ with poles or zeroes only at zero and infinity.
Indeed, if t(go) = 0, go # 0,00 then in V, we have Tv = 0, i.e. T' does not induce an automorphism of V, , and if
t=1(q}) = 0, g}, # 0, 00 then in Vq’6 we have T’v = 0, i.e. T” does not induce an automorphism of Vq/g,' In both cases
we arrive at a contradiction. Thus t(¢) must be a non—zero multiple of a power of q.

O

2.9 Bibliographic comments

The material presented in Sections 2.1, 2.2, 2.3, 2.4 and 2.5 is mostly standard and we refer to books [20, 58, 81]
for more details and omitted proofs. Formula (2.2.4) can be found in [103].

Realizations of quantum groups associated to Weyl group elements were introduced in [108] in the case of
Coxeter elements and in [114] in general.

The results of Section 2.7 are new, except for Propositions 2.7.3 and 2.7.5 the statements of which can be found
in [67] as Proposition 5.2, Theorem 5.1 and Proposition 5.4.

Lemma 2.8.1 is a generalization of the result of Exercise 3 in Chapter V, §6, [10].
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Specializations of quantum groups similar to those which appear in this book were considered in [116]. In this
book we introduce slightly different specializations of quantum groups in order to use restricted specializations as
well.



Chapter 3
q- W—-algebras

In this chapter we introduce q—W-algebras and study the structure of their the quasi—classical versions, Poisson
q-W-algebras. In the next chapter similar results will be obtained for q-W-algebras.

As we briefly mentioned in the introduction the naive definition of q-W-algebras as Hecke type algebras
HFk(A, B, x) requires some modification. In fact the main ingredient of the definition of q-W-algebras is the
adjoint action of the quantum group on itself, and they are defined using a B-subalgebra C%[G,] of the quantum
group the restriction of the adjoint action to which is locally finite. When ¢ is specialized to € € C* which is not a
root of unity the algebra C3[G.] becomes the locally finite part of the quantum group with respect to the adjoint
action which was introduced and studied by Joseph.

The algebra C%[G.] is a quantization of the algebra of regular functions on a Poisson manifold G, which is
isomorphic to G as a manifold and the Poisson structure of which is closely related to that of the Poisson—Lie group
G* dual to a quasitriangular Poisson—Lie group G.

After recalling basic facts on Poisson—Lie groups in Section 3.1 we introduce an algebra C[G*] of functions on
G* in Section 3.2, its quantization C[G*] C U (g) and the subalgebra C%[G.] C CE[G*].

A special choice of the bialgebra structure entering the definitions of C[G*], C[G*] C Uj(g) and C[G.] is
crucial for the definition of g-W-algebras. It depends on the choice of a Weyl group element s € W and ensures
that one can define a subalgebra C;[M,] C C5[G*] equipped with a non—trivial character, so that the g-W-algebra
WE(G) can be defined as the result of a quantum constrained reduction with respect to the subalgebra CE[M].

Next, in Section 3.4 we proceed with the study of the specialization W#(G) of the algebra WE(G) at qﬁ =1.
We recall that W#(G) is naturally a Poisson algebra which can be regarded as the algebra of regular functions on
a reduced Poisson manifold which is also an algebraic variety. Poisson reduction works well for differential Poisson
manifolds. Therefore it is easier firstly to describe the reduced Poisson structure on the algebra of C'*°—functions
on the reduced Poisson manifold and then to recover the structure of the algebraic variety on it. This is done in
Proposition 3.4.3 and Theorem 3.4.5.

In Section 3.5 we define a projection operator II into the algebra W#(G). In Theorem 3.5.7, which is central in
this chapter, we obtain a formula for the operator II suitable for quantization. This formula plays the key role in
the proof of Theorem 4.7.2 describing a localization of the algebra W§(G) in terms of a quantum counterpart of
the operator II. Miraculously the formula for IT from Theorem 3.5.7 can be directly extrapolated to the quantum
case.

3.1 Some facts on Poisson—Lie groups

In this section, following [20], Ch. 1, we recall some notions related to Poisson—Lie groups. These facts will be
needed for the study of Poisson q-W-algebras.

Let G be a finite-dimensional Lie group equipped with a Poisson bracket, g its Lie algebra. G is called a
Poisson—Lie group if the multiplication G x G — G is a Poisson map. A Poisson bracket satisfying this axiom is
degenerate and, in particular, is identically zero at the unit element of the group. Linearizing this bracket at the
unit element defines the structure of a Lie algebra in the space TG ~ g*. The pair (g, g*) is called the tangent
bialgebra of G.

Lie brackets in g and g* satisfy the following compatibility condition:

93
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Let 6 : g — g A g be the dual of the commutator map [,]« : g* A g* — g*. Then ¢ is a 1-cocycle on g (with
respect to the adjoint action of g on gAg).

Let cfj, f9% be the structure constants of g, g* with respect to the dual bases {e;}, {e’} in g, g*. The compatibility
condition means that

Cbesik - Cfls ;k + Cgsfiji - C'Ibfsf;i + C?)sf;k = 0
This condition is symmetric with respect to exchange of ¢ and f. Thus if (g, g*) is a Lie bialgebra, then (g*,g) is
also a Lie bialgebra.
The following proposition shows that the category of finite-dimensional Lie bialgebras is isomorphic to the
category of finite-dimensional connected simply connected Poisson—Lie groups.

Proposition 3.1.1. ([20], Theorem 1.3.2) If G is a connected simply connected finite-dimensional Lie group,
every bialgebra structure on g is the tangent bialgebra of a unique Poisson structure on G which makes G into a
Poisson—Lie group.

Let G be a finite-dimensional Poisson-Lie group, (g,g*) the tangent bialgebra of G. The connected simply
connected finite-dimensional Poisson—Lie group corresponding to the Lie bialgebra (g*, g) is called the dual Poisson—
Lie group and denoted by G*.

(g,g%) is called a factorizable Lie bialgebra if the following conditions are satisfied (see [100]):

1. g is equipped with a non—degenerate invariant scalar product (-,-).

We shall always identify g* and g by means of this scalar product.
2. The dual Lie bracket on g* ~ g is given by

(X, Y]+ [X,rY]),X,Y €g, (3.1.1)

DO | =

(X, Y], =

where r € End g is a skew symmetric linear operator (classical r-matriz).

3. r satisfies the modified classical Yang-Bazter identity:

X, rY]—r(rX, Y]+ [X,rY]) = —-[X,Y], X,Y €g. (3.1.2)
Define operators r+ € End g by
1
re =g (r+id).

We shall need some properties of the operators r4. Denote by by and n+ the image and the kernel of the operator
T4
ir=Imry, tx=Kerryg. (3.1.3)

Proposition 3.1.2. ([8], Lemma 6.6; [104], Sect. 4) Let (g,g*) be a factorizable Lie bialgebra. Then

(i) i+ C g is a Lie subalgebra, the subspace £+ is a Lie ideal in iy, it = €y.

(i) ¥+ is an ideal in g*.

(i1i) iy is a Lie subalgebra in g*. Moreover i = g*/ty.

() (ix,i%) is a subbialgebra of (g,9") and (ix,i}) =~ (ix,ix). The canonical paring between iz and iyis given
by

(X+,Ye)r = (X4,77'Vy), X4 €ig; Yo €ig. (3.1.4)
The classical Yang—Baxter equation implies that r1 , regarded as a mapping from g* into g, is a Lie algebra
homomorphism (see [104], Proposition 7). Moreover, 75 = —r_, and 7 —r_ = id.
By Proposition 9 in [104], the mapping
g —=gdg X— (X4, X)), Xi = riX, (3.1.5)

is a Lie algebra embedding (Here g @ g is the Lie algebra direct sum of two copies of g). Thus we may identify g*
with the image of this embedding in g & g.
Naturally, embedding (3.1.5) extends to a group homomorphism

G*—-GxG, L— (Ly,L_).

In the situations considered later in this book this homomorphism will be always an embedding. In such situations
we shall identify G* with the corresponding subgroup in G x G.
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3.2 Quantization of algebraic Poisson—Lie groups and the definition of
q-W-algebras

In this section we introduce the main object of this book, q-W—algebras. We start by defining the relevant Poisson—
Lie groups and their quantizations. We consider algebras defined over the ring B since later in our construction
the restricted specialization of the quantum group Uj(g) defined over B will play the key role.

Let g be a finite-dimensional complex semisimple Lie algebra, h C g its Cartan subalgebra. Let s € W be an
element of the Weyl group W of the pair (g,h) and A, the system of positive roots associated to s. Observe that
cocycle (2.6.15) equips g with the structure of a factorizable Lie bialgebra, where the scalar product is given by the
symmetric bilinear form. Using the identification End g = g ® g the corresponding r—matrix may be represented as

1
TS:P+7P_+I{1+

S
Py,
sh

where P, P_ and P, are the orthogonal projection operators onto the nilradical ny corresponding to Ay, the
opposite nilradical n_, and §’, respectively, in the direct sum

g=ny+h +b++n_,

and 't = bh*® is the orthogonal complement to b’ in h with respect to the symmetric bilinear form.

Let G be the connected simply-connected semisimple Poisson-Lie group with the tangent Lie bialgebra (g, g*),
G* the dual Poisson-Lie group.

Observe that G is a connected simply—connected semisimple complex algebraic group (see e.g. §104, Theorem
12 in [132]). Note also that

kl+s
s:P i
"+ ++21—s

1 k1+s 1
Py + =P, 15 =—P 42 Py — -P
bt 5l T To1 v gty

where P, is the orthogonal projection operator onto h C g with respect to the symmetric bilinear form, and hence
the subspaces iy and €1 defined by (3.1.3) coincide with the Borel subalgebras by in g corresponding to Ay and
their nilradicals ny, respectively. Therefore every element (L, ,L_) € G* C G x G may be uniquely written as

(LJrvL*) = (n+,n,)(h+,h,), (3'2'1)

where ny € Ny, hy = exp((§1E2 Py + 3id)x), h- = exp((5 12 Py — Lid)z), = € h. In particular, G* is a solvable
subgroup in G X G. In general G* is not algebraic.

Our main object will be a certain algebra of functions on G*, C[G*]. This algebra may be explicitly described
as follows. Let my be a finite-dimensional representation of G. Then matrix elements of 7y (L4 ) are well-defined
functions on G*, and C[G*] is defined as the subalgebra in C°°(G*) generated by the matrix elements of my (L),
where V' runs through all finite-dimensional representations of G. The elements L™V = 7y (L+) may be viewed
as elements of the space C[G*] ® EndV. If we fix a basis in V, L**V can be regarded as matrices with entries Liij’v
being elements of C[G*].

For every two finite—dimensional g—modules V and W we denote rivw = (my @ mw)rL € EndV ® EndW,
where 73 is regarded as an element of g ® g.

Proposition 3.2.1. ([106], Section 2) C[G*] is a Poisson subalgebra in the Poisson algebra C*>°(G*), the Poisson
bracket on C[G*] is given by
{L{E’Vv LQi)W} = _2[rftVWﬂ LT’VL;WL
(3.2.2)
LoV Ly = =2V, LV L,

where
LF =1 oLy, LFV=I1,¢L%Y L}V LY € C[G*] ® EndV ® EndW,

Ix € EndX is the identity endomorphism of a vector space X, rftVW is regarded as an element of C[G*] @ EndV ®
EndW wvia the embedding

EndV @ EndW — C[G*] @ EndV @ EndW,a ® b+ 1 ®a ® b,
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in the left hand sides in (3.2.2) the Poisson brackets of LYY, L¥" € C[G*] ® EndV @ EndW are taken with
respect to the Poisson structure on C[G*], and the composition endomorphisms is taken in EndV @ EndW, and the
commutators in the right hand sides of (3.2.2) are taken in C[G*] ® EndV ® EndW.

Moreover, the map A : C[G*] — C[G*| ® C[G*] dual to the multiplication in G*,

A(LGY) Z L , (3.2.3)

is a homomorphism of Poisson algebras, and the map S : C[G*] — C[G*] dual to taking inverse in G*,
S(ILEY) = (TFY) ™)y
is an antihomomorphism of Poisson algebras.

Remark 3.2.2. Recall that a Poisson—Hopf algebra is a Poisson algebra which is also a Hopf algebra such that
the comultiplication is a homomorphism of Poisson algebras and the antipode is an antihomomorphism of Poisson
algebras. According to Proposition 3.2.1 C[G*] is a Poisson—Hopf algebra.

Now we define a quantization of the Poisson—Hopf algebra C[G*]. For any finite rank representation my :
Ug"*(g) — V7", where V is a finite rank representation of Uj(g), one can define an action of elements H;,
i=1,...,1 on V" by requiring that H; acts on weight vectors of weight A by multiplication by A(H;). Then from
the definition of the R-matrix R* and from formula (2.8.21) it follows that L%V given by

17V = (idomy)RS, = (id@ my SRS, LYY = (ido my)R.

are well-defined invertible elements of U;(g) ® Endg(V"°").

If we fix a basis in V"¢, ¢L*V may be regarded as matrices with matrix elements (qLi’V)ij being elements of
Uy (g)-

We denote by Cg[G*] the B~Hopf subalgebra in U;(g) generated by the matrix elements of (L*V)*! and of
(2L=V)*!1 where V runs through all finite rank representation of Uy, (g).

Let C3[G] be the restricted Hopf algebra dual to UZ"“*(g) which is generated by the matrix elements of finite
rank representations of U “*(g) of the form V"°*, where V' is a finite rank representation of U;(g). By Proposition
2.8.5 (i) C[G] is naturally P x P—graded. Note that for different s the Hopf algebras C%[G] are isomorphic as
coalgebras.

We shall use the following notation for elements of C}[G]. Let V" be a U}"“*(g)-lattice in a finite rank Uy (g)-
module V. Recall that there is a contravariant non-degenerate form (-,-) on V' such that (u,zv) = (w(z)u,v) for
any u,v € V, x € Up(g). Assume that u is such that (u,w) € B for any w € V"®*. Then (u,-) is an element of
the dual module V"***. Since V and V"°* are of finite ranks and (-, -) is non—degenerate all elements of V"*** can
be obtained this way. Clearly, for any v € V"¢ (u,-v) € C§[G], and by the definition C%[G] is generated by such
elements.

If V is a complex algebraic variety, we denote by C[V] the algebra of regular functions on V. By the definition
of C%[G] we have the following lemma.

Lemma 3.2.3. The quotient Cj [G]/(qﬁ —1)C%[G] is isomorphic to C[G] as an algebra, C§ [G]/(qﬁ —1)C[G] ~
ClG].

We also have the following description of C%[G*].

+(Y;— n1+be/Y) i(—Y,- 1+3Ph/Y,)

Lemma 3.2.4. Ci[G*] is the B-subalgebra in U} (g) generated by the elements q
i=1,...,0, fa=(Q1 —qu)fg, ég=(1 —qg)egehﬁ ,Be AL,

Proof. This lemma is analogous to the results obtained in Section 1.4 and Theorem 3.2 of [29], and in Proposition
4.2 and Theorem 4.6 in [28], in the case of the quantum group associated to the standard bialgebra structure.

We only briefly outline the main steps in the proof as the arguments used in the case of the standard bialgebra
structure can be applied verbatim in the setting of this lemma.

Let w;, ¢ = 1,...,1 be the fundamental weights of g. Then from the definition of the elements ¢ and from
formula (2.8.21) it follows that in*NEPh’Yi is equal to the matrix element (id ® g;)R®, where g;(-) = (v, Vw,),
and v,,, is a highest weight vector of VJ** normalized in such a way that (v,,,v.,) = 1. Other elements from the
EEi=R I Py YD) g E ViR Py YD)

L:I:,V

set ¢ T—s ., are obtained in a similar way.
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The fact that fB =(1- qﬁ_2)f3, ég = (1— q%)eﬂehﬁv, B € A4 belong to Ci[G*] follows, e.g, from a slight
modification of Theorem 3.2 in [48] (one should just replace the quantum R-matrix associated with the stan-
dard bialgebra structure with R-matrix (2.8.21)). This theorem along with the description of the generators
qi(y‘_"l SPyrYe) (= Y‘_“ﬁzph’y"’), i = 1,...,1 as matrix elements also imply that the elements listed in the

statement of the lemma generate C%[G*].
O

We refer the reader to [29], Section 4 of [28], Section 3.6 in [48] or Section 2.8 of [130] for a more precise relation
between the algebras C[G] and Cj[G*]. We shall not need these results in this book.
From the quantum Yang-Baxter equation (2.5.3) for R® we get relations between 4.5V

RVWarzWarEV —apEVap SWRVW, (3.2.4)

RVWapzWap oV —apVap s WRVW, (3.2.5)

arFW qL;t’V we understand the following elements of U} (g) ® Endg(V"®) @ Endg(W7"**),

where by
qLit’V = qLi’V X IW’V‘eS, qL;‘;W = IVTQS ® qLi’W’

Ix is identity endomorphism of X, and RVW € Endg(V"%*) ® Endg(W ") is regarded as an element of US(g) ®
Endg(V"*%) ® Endg(W7"°®) via the embedding

Endp(V"*) ® Endg(W"®) — U (g) @ Endg(V"®") @ Endg(W"™*),a ®b— 1 a®b.

From (2.5.2) we can obtain the action of the comultiplication on 9%V
As(1L ) Z Ly @1LGY (3.2.6)
and the antipode,
+,V V-
Ss(1L; ") = (1Y) (3.2.7)

Since R®* = 1®1 (mod h) relations (3.2.4) and (3.2.5) imply that the quotient algebra C%[G*]/(qﬁ —1)Ci[G¥]
is commutative, and one can equip it with a Poisson structure given by

L [a17 a2]

{21,22} = (mod (ga® — 1)), (3.2.8)

dr? qﬁ 1

where ai, ay € C4[G*] reduce to z1,25 € (C%[G*]/(qﬁ — 1)C%[G*] mod (qﬁ —1).

Obviously, the comultiplication and the antipode in Cj[G*] induce a comultiplication and an antipode in
(C%[G*]/(qﬁ — 1)C%[G*] compatible with the introduced Poisson structure, and the quotient C%[G*]/(qﬁ -
1)C%[G*] becomes a Poisson-Hopf algebra.

Proposition 3.2.5. The Poisson-Hopf algebra C%[G*]/(qrh% —1)C%[G*] is isomorphic to C[G*] as a Poisson—Hopf
algebra.

Proof. In the case when the underlying bialgebra structure is the standard one used in the definition of the Drinfeld—
Jimbo quantum group this proposition is the Theorem in Section 12.1 in [30]. The arguments in the proof given
there can be used verbatim to prove this proposition. Note, however, that our approach to the definition of the
algebra C%[G*], which follows the ideas of [36], §2, is different from the one adapted in [30]. The two approaches
are equivalent. But in our framework one can give a more straightforward and shorter proof of this proposition
which is presented below.

Denote by p : C3[G*] — C3 [G*]/(qﬁ — 1)C%[G*] := C[G*]’ the canonical projection. We also denote by the
same letter the canonical projection p: U3 “*(g) — Uz “*(9)/(q g UG (g) :== U™*(g).

If V is a free over CJ[[h]] of finite rank Un(g)-module, 7y the corresponding representation of Ug"“*(g) in the
space V"¢ equipped also with the natural action of h with respect to which elements H;, i = 1,...,[ act on weight
vectors of weight A by multiplication by A(H;), then V := Vs / (qﬁ —1)V7e is a finite-dimensional module over
U"**(g) equipped also with the natural action of h with respect to which elements H;, i = 1,...,l act on weight
vectors of weight A\ by multiplication by A(H;). We denote by 7y, the corresponding representation of U(g).
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Let py : V™ -V = V’”es/(qﬁ —1)V"* be the projection of V" onto V. Then any element T' € Endg(V"*)
gives rise to an element v(T) € End(V) defined by v(T)o = pyTwv, where v € V7 is any representative of
veV = Vres/(qﬁ —1Vres If o € Ug"“*(g) then according to this definition v(my () = my-(pz).

Let

LY = (pov)(IL™Y) € C[G*) @ EndV. (3.2.9)

Then the map
1: C[G*] — C[G™]
defined by
(@id) LY =LY (3.2.10)

is a well-defined algebra isomorphism. Indeed, consider, for instance, element L™V From (2.6.16) it follows that

LY =TTgexplp((1 = 457) f) © m(Xg)] %

3.2.11
X (p ® id) exp [2221 hH; @ (k12 Py + Zd)yz)} . ( :

On the other hand (3.2.1) implies that every element L, may be uniquely represented in the form

L, = Hexp [bgX ) exp [Zb

i=1

+id)Y;|, b, b3 € C,

and hence

14V =[] explbsmo(X)lexp [SL, bimp (52 Py +id)Y:)]

where the order of the terms in the product over the positive roots is the same as in formula (2.8.21) for the R~
matrix. Comparing this with (3.2.11) and recalling the definition of + we deduce that ¢ is an algebra isomorphism.
We have to prove that ¢ is an isomorphism of Poisson—Hopf algebras.

Observe that R®* = 1 ® 1 — 2hr® (mod h?). Therefore from commutation relations (3.2.4), (3.2.5) it follows

that C[G*]’ is a commutative algebra, and the Poisson brackets of matrix elements INJZiJV (see (3.2.8)) are given by

(3.2.2), where LEV are replaced by L*V . The factor # in formula (3.2.8) normalizes the Poisson bracket in such
a way that bracket (3.2.8) is in agreement with (3.2.2). 7

From (3.2.6) we also obtain that the action of the comultiplication on the matrices L*V is given by (3.2.3),
Li,V

where are replaced by LEV. This completes the proof.

O

We shall call the map p : C3[G*] — C%[G*]/(qﬁ — 1)C%[G*] = C[G*] the quasiclassical limit.

From the deﬁnitlon of the elements L%V and from formula (3.2.6) it follows that the matrix elements of
V= (resp. 4L~ VE ) form a Hopf subalgebra Ci[By] C CE[G*] (resp Cg[B-] € C%[G*)), and that CE[G*]
contains the subalgebra C}[N, | generated by the elements fg =(1- 45 )fg, [CRSIANT

Next we define the algebra C[G,]. For any finite rank representation V' of Uy (g), let 1LY = e~V laptV =
(id@my )RS R®. Let Ci[G.] be the B-subalgebra in C§[G*] generated by the matrix entries of LY, where V runs
over all finite rank representations of U (g). From the definition of R® we have

k(k+1)
R21R Hﬁ Zk 045 2 [(1_(1* ) ege *hk’i1 2Py Y ®f(k)]

k(k+1) s p gV _ v k
[(1 _qﬁ ) hkki=5 Py 8" —hkf fk ®€( ) kB ]

(3.2.12)
X exp QhZZ 1Y®H}Hﬁ2k 04p 2

Using this formula one immediately checks that actually Ci[G.] C U%(g) N Cx[G*].

Define the right adjoint action Ad, of U#(g) on U;(g) by formula (2.7.1) and the left adjoint action Adj of
U;(g) on U7 (g) by formula (2.7.2).

Recall that C3[G] is the restricted Hopf algebra dual to Ug"“*(g) which is generated by the matrix elements
of finite rank representations of U5 “*(g) of the form V", where V is a finite rank representation of U;(g). The

action Ad], induces a right adjoint action Ad, of U;"*(g) on C[G] defined by

(Adaf)(w) = f(Ad,a(w)), f € C5[G].z,w € U™ (q). (3.2.13)
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One can also equip finite rank representations of Ug"“*(g) of the form V", where V is a finite rank represen-
tation of US(g), with a natural action of C%[G*], for which the elements

o ldts ] Y, g LEs A .
q:‘:(Y; nl—sPh’n)’qi( Y; ﬁl—sPh’Yl)’ ’L:].,...l

act on a weight vector vy of weight A by multiplication by the elements

i(()@,,\v)—n(}jjp,,,n,,\v))7qi(—(n,,\v) K(FE2 Py Y, AY)) €B,i=1,...1

q

)

respectively, and all the other generators of C§[G*| belonging to Uz "“*(g) act in a natural way. Therefore adjoint

action (3.2.13) can be extended to an action of Cj[G*], where elements x € Cj[G*] act by the same formula
(3.2.13).

For & € C* we define C.[G] = C4[G]/(qa® — a7 )C[G], C3[G.] = CH[G.]/(qa? — e )TL[G,], where ea? is
a root of € of degree ﬁ.

Recall that by Lemma 3.2.3 C}[G]/(¢a* — 1)C%[G] ~ C[G], and denote the canonical projections C3[G] —
(C‘Z';[G]/(qﬁ —1)C3|G] ~ C[G], CE[G4] — C[G4]/(ga — 1)C[Gy] := C[G,] by the same symbol p.

Proposition 3.2.6. (i) The map

¢ : C3[G] — C[G.], ¢5(f) = (id® [)(R3,R?) (3.2.14)

is an isomorphism of UZ"“*(g) and Cj[G*]-modules with respect to the adjoint actions Ad, defined by (3.2.13) and
(2.7.1), respectively. In particular, C3[G.] is stable under the adjoint action of Ug"“*(g) and Ci[G*].

(ii) Let G, C G be the image of G* C G x G under the map q : G* — G, q(L+,L_) = L7'L, (see (3.2.1)
for the description of G* in terms of G X G). Then G, = B_By is the big Bruhat cell in G, the algebra C[G.] is
generated by the restrictions of elements of C[G] to G, = B_B., the restriction map induces an isomorphism of
algebras ¢1 : C[G] = C[G.], and ¢1p = pép.

(iii) If € is mot a root of unity the algebra C2[G.] can be identified with the Ady locally finite part US(g)!"" of
Us(a),

U2(9)"" = {z € U2(g) : dim(Ad,UZ (g)(2)) < +oo},

where the adjoint action of the algebra UZ(g) on itself is defined by formula (2.7.1).

Proof. Firstly, we prove (i) and (ii). From the definitions of the algebras C§[G] and C%[G.] it follows that (3.2.14)
is surjective.

Recall that by Lemma 3.2.3 we have the following algebra isomorphism C; [G] = C5[G]/ (¢ o7 — 1)C4[G] ~ C[G].

By (3.2.1) G, = B_By is the big Bruhat cell in G, and by the definition the algebra C[G.] = C1[G.] =
C%[G*]/(qﬁ — 1)C%[G.] is generated by the restrictions of elements of C[G] ~ (C“"B[G]/(qﬁ —1)Cg[G] to G =
B_B.. As the big Bruhat cell is dense in G, we have an isomorphism of algebras ¢; : C[G] — C[G.] induced by
the restriction map.

Now observe that by the definition of map (3.2.14) one has ¢1p = po5.

Let h € CE[G], h # 0 be such that ¢p(h) = 0. Dividing by an appropriate power of (qu2 — 1) we can assume
without loss of generality that p(h) # 0. Then ¢1p(h) = ppg(h) = 0 which implies p(h) = 0 as ¢ is an algebra
isomorphism. Thus we arrive at a contradiction, and hence ¢p is injective. We conclude that ¢p an isomorphism
of B-modules.

By Proposition 11(ii) in [70], Section 10.1.3, (3.2.14) is a morphism of U}"*’(g) and C}[G*]-modules with
respect to the adjoint actions Ad, defined by (2.7.1) and (3.2.13), respectively.

(iii) It remains to establish the isomorphism CZ[G.] = UZ2(g)?™ which can be done similarly to the proof of
Proposition 1.7 in [71]. Let V,,,, ¢ = 1,...,l be the finite rank representation of Uy (g) with highest weight w;,
i = 1,...,1. Below we use the notation introduced in the proof of Lemma 3.2.4. From formula (3.2.12) and

from the definition of 1LY = (id ® 7y )R5; R? it follows that the matrix element (id ® g;)R5;R* of ¢LVi  where
gi(-) = (vi,v;), and v; is the highest weight vector of V¢ normalized in such a way that (vs,v;) = 1, coincides
with L2. This implies that L? are elements of the algebra C.[G.] C Us(g) as well.

Denote by $ C CZ[G.] C U;( ) the subalgebra generated by the elements L? € C$[G.], i = 1,...,l. Similarly
to Theorem 7.1.6 and Lemma 7.1.16 in [59] one can obtain that U(g)/" = Ad,U2(g)$. Since C2[G.] is stable
under the adjoint action we have an inclusion, U?(g)f™" C C2[G.].
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On the other hand the adjoint action of Uf(g) on CZ[G] is locally finite by the definition of CZ[G] and of the
adjoint action. Using isomorphism (3.2.14) we deduce that the adjoint action of UZ(g) on CZ[G.] is locally finite
as well. Hence C2[G.] C US(g)/"", and C[G.] = UZ(g)’™.

O

We shall need the following property of the algebras Cg[G*], C}[G.] and Cj[G].

1+s

Proposition 3.2.7. (i) Let C3[H| C C}[G*| be the subalgebra generated by the elements qim*nﬁph’m), gEYimr= Py Ya)
i=1,...,1. Then C}[H] is B—free with a countable basis V;, i € N.
(ii) The algebra Cg[G*] is free over B, and the elements

Nl U O
with nj, kj,i €N, j=1,...,D form a B-basis in C3[G*].
i11) The algebra C%[N,] is free over B, and the elements froo R for fRrpRe R0 with ki e N s a
B Bp B 17 B2 Bp J
B-basis of CE[N4].
iv) The subalgebra C3|G.] C Cr|G*|, and the algebra C%|G| are free B-modules.
B B

14s
—s

Proof. (i) Recall that by Lemma 3.2.4 C§[G*] is the B-subalgebra in U (g) generated by the elements gFYimr=s Py Ya)
qi(fyﬁ”ﬁpﬁ’yi), i =1,...,1, fN[g =(1- qEZ)fg, ég = (1 — q%)egehﬁv, B € Ay. The subalgebra Cj[H]| of

+(Yi—w 12 P Y;) j:(—Yi—n%Ph/Yi)’ i=1,..

C%[G*] generated by the elements g ,q .,1 is in turn a subalgebra of the

B-subalgebra Ui (h) C U (g) generated by the elements U; = qﬁyﬂ U7t i=1,...,1. The last algebra is obviously
B-free with a basis consisting of the products Uy ... U}", ni,...,n; € Z. Since B is a principal ideal domain the
subalgebra in CE[H] C Ug(h) is also B—free by Theorem 6.5 in [102]. We denote by V;, i € N the elements of some
B-basis of this subalgebra.

(ii) From Step 1 of the proof of the Theorem in Section 12.1 in [30] it follows that the elements

NSl U O
with nj, k;,i € N, j=1,...,D form a B-basis in Cx[G*].

(iii) By Step 1 of the proof of the Theorem in Section 12.1 in [30] the products fgg’ fgll with k;,€ Nis a
B-basis of C3[N4]. Applying the algebra antiautomorphism wy to these elements we obtain that fkll f kj . f kl;
with k;, € N is also a B-basis of Cj[N_,].

(iv) Since B is a principal ideal domain, and the algebra Cg[G*] is B—free by part (ii), the subalgebra C3[G.] C

Cp|G™] is also B-free by Theorem 6.5 in [102], and isomorphism (3.2.14) implies that Ci[G] is B-free.
O

Suppose that the positive root system A, and its ordering are associated to s as in Definition 1.6.19. Denote
by C3[M,] the subalgebra in Cj[N,] generated by the elements fz, € An, .

By Lemma 1.6.18 the linear subspace of g generated by the root vectors X, (resp. X_), a € Ay, is in fact a
Lie subalgebra m, C g (resp. m_ C g). By definition Ay, C Ay, and hence my C n.

Note that one can consider ny and my as Lie subalgebras in g* via embeddings

n,—=g-Cgdg, v (z,0),

my—g" Cgdg, x> (2,0),
m_—g"Cgdg, x— (0,2),
where g* is regarded as a Lie subalgebra of g @ g using the embedding (3.1.5).
Using these embeddings the algebraic subgroups Ny, M1 C G corresponding to the algebraic Lie subalgebras
ny,my C g can be regarded as Lie subgroups in G* corresponding to the Lie subalgebras ny, my C g*.

From this observation and from Proposition 3.2.5 (see especially formula (3.2.10) we obtain the following prop-
erties of the algebras Cx[Ny] and CE[M4].

Proposition 3.2.8. The algebra CE[Ny] is a deformation of the algebra of regular functions on the subgroup
Ny C G*, and Cx[My] is a deformation of the algebra of regular functions on the subgroup My C G* in the

sense that p(C3N,]) ~ C[N,] and p(C3M..]) & CIM.]. Thus C[N,] ~ Ch[N,}/(q* — )C3N.] and CIM.] ~
C[My)/(ga® —1)Cx{[M4] are naturally Poisson subalgebras of C[G*| ~ C[G*]/(qa® — 1)Cx[G*].
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Note that M_ can also be regarded as a subgroup in G* corresponding to the Lie subalgebra m_ C g*.
The following proposition gives the most important property of the subalgebra Cj[M,] which plays the key
role in the definition of q-W-algebras.

Proposition 3.2.9. (i) The defining relations in the subalgebra C3[My] for the generators fg =(1- qgQ)fg,
B € Am, :={B1,...,Bc} are of the form

Py « K(EEP v ;o7 k1 £ 7kn
fafs —q DTGB faf = N Ok, k) a2 fi @ < B, (3.2.15)
a<61<...<d, <P

where C(ky, ..., k,) € B. )
(ii) The products fkllflz2 . fgcc form a B-basis of Cx[M].
(i4) If k = 1 then for any k; € B, i = 1,...,1" the map x; : Cx[M,] — B,

o 0 e
Xq(fs) :{ k. gi{;“ wh (3.2.16)
is a character of CE[M,] vanishing on the r.h.s. and on the Lh.s. of relations (3.2.15).

(iv) Assume that 2% # 1, and * # 1 if g is of type Ga. Suppose also that there exists n € 7 such that
e"d=1 = 1. Let k = nd. Then the algebra C:[M,] = (C%[MQ/((]# - 5ﬁ)(C%[M+], where 77 is a root of € of
degree -, is isomorphic to UZ(m_).

(v) Under the assumptions of part (iv), the elements f* = fg' ... f5, ri €N, i=1,...d form a linear basis of
Uz(m_).

(vi) Under the assumptions of part (i), for any ¢; € C, i =1,...,I' the map x2:US(m_) — C,

x?(fﬁ)={ gi gi{gl’”"%'} : (3.2.17)

is a character of US(m_).

Proof. (ii) By Lemma 2.8.2 and Remark 2.8.3 any element of C}[M] can be uniquely represented as a (C(qdv%)f
linear combination of the elements fgll fkj e fgf By Proposition 3.2.7 (ii) the coefficients of this decomposition
must belong to B.

(i) From (2.8.12) we also obtain commutation relations (3.2.15) with C'(ky,...,k,) € C(qﬁ). As we already
proved the products figll fkj . fg: form a B-basis of C3[M,]. Therefore the coefficients C(k,...,ky) in (3.2.15)
belong to B.

(iii) Assume that x = 1. In order to prove that the map x; : Cz[M] — B defined by (3.2.16) is a character we
show that all relations (3.2.15) for fa, fﬁ with o, 8 € Ay, which are obviously defining relations in the subalgebra
Cg[M], belong to the kernel of x;. By the definition the only generators of Cy[M ] on which xj may not vanish
are f%., i=1,...,1". By part (vi) of Proposition 1.6.6 for any two roots o, f € Ay, such that o < § the sum a+
cannot be represented as a linear combination 22:1 CkYi,, Where ¢, € Nand a < v, < ... <7;, < . Hence for
any two roots a, 3 € Ap, such that o < B the value of the map x; on the right hand side of the corresponding
commutation relation (3.2.15) is equal to zero.

Therefore it suffices to prove that

S(F [ isYj ﬁ/*i,]"VN _ i35 #’*iaji . .
Xo(fyifoy — gy (=5 Pyreviy )f'yjfwj) = kik;(1 — g TG Pyreviny )) =0, i<j.

The last identity holds provided (v;,7;) + (12 Py, v4) = 0 for i < j which is indeed the case by Lemma 2.8.1.

(iv) Assume now that €24 # 1, and & # 1 if g is of type Go. Suppose also that there exists n € Z such that
end=1 = 1. Let k = nd. R

Under these conditions imposed on & the map C{[M] — US(m_), fo — (1 —¢3?)fa, @ € A, is obviously an
algebra isomorphism.

(v) By Lemma 2.8.2 and Remark 2.8.3 the elements f* = f’? ...frz, r; € Ny i=1,...d form a linear basis of
Us(m_).

From (2.8.12) we obtain the following commutation relations

« n 1+ 1% O 1 2 n
fafs — @D Ind=Pyma) g — > D(ky, ... ko) fSi 22 ff, a < B, (3.2.18)
a<1<...<6, <P
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where D(kq,...,k,) € C.

(vi) In order to show that the map x2 : US(m_) — C defined by (3.2.17) is a character we verify that all relations
(3.2.18) for fo, fs with a, B € Ay, , which are obviously defining relations in the subalgebra UZ(m_), belong to the
kernel of xZ. By the definition the only generators of UZ(m_) on which x? may not vanish are f,,, i =1,...,. By
part (vi) of Proposition 1.6.6 for any two roots o, § € Ay, such that o < § the sum o+ 3 cannot be represented as
a linear combination 22:1 CkYi» Where ¢ € Nand a <4, <... <7, < . Hence for any two roots o, § € Ap,
such that a < S the value of the map x? on the right hand side of the corresponding commutation relation (3.2.15)
is equal to zero.

Therefore it suffices to prove that

. I4s . o 1+ o ..
X;(f%fwj _ 5(%%)+nd(1_5Pn'*%m)fwf7j) = cicj(1 — 6(%,%)+nd(1_5Ph/*'ymg)) =0, i< ]

By Lemma 2.8.1 ({£2Py,v:,7;) = —(7i,7;) for i < j, and hence

XE(Fyfry — (i) +nd(1E Pa'wm]‘)f’”f%) = cic;(1— () 1=nd)y —

nd—1

for i < j as by the assumption & = 1. This completes the proof.

O

Now we are ready to define g-W—algebras. In the rest of this section we assume that x = 1. Denote by Iz the
left ideal in Cj[G*] generated by the kernel of xg, and by py: the canonical projection Cx[G*] — C3[G*]/Ip := Qj.
Let @p be the image of C3[G.] C C3[G*] under the projection pys, Qg = py: (C5[G.]).

We shall need the following properties of Q% and @Qp.

Proposition 3.2.10. Qj and Qg are free B-modules.

Proof. Using the B-basis ~ R
NSl T O
with nj, k;j,1 € N, j =1,..., D of Cg[G*] from Proposition 3.2.7 (ii) and the definition of C[G*]/Iz one immedi-
ately sees that the classes of the elements égll . égg\/;fkg - fg‘ill withn;, kn,ieN,j=1,...,D,m=c+1,...,D
form a B-basis in CZ[G*]/I5.
Since B is a principal ideal domain the B-submodule Qg C CE[G*]/Ip is B-free.
[

Lemma 3.2.11. The adjoint action of Cx[M,] on Cj[G.] induces an action on Q' and on Qp.

Proof. Observe that we have an inclusion [C[M, ], Kery;] C Kery;. Using this inclusion, formula (2.7.1), the fact
that Ay(Ci[M4]) C Ci[B4] @ CE[M4] (see formula (2.8.13)) we deduce that the adjoint action of C{[M,] on
C%[G.] induces an action on Q% and on @Qg.

O

We call the action of CZ[M,] on Qp and on Qg the adjoint action as well and denote it by Ad.
Let B., be the trivial representation of C;[My] given by the counit. Consider the B-submodule WjE(G) of
Ad-invariants in Qg,
W3(G) = Homc%[M+](BES7Q5>. (3.2.19)

Proposition 3.2.12. (i) WE(G) is isomorphic to the B—submodule of all v+ Ig € Qp such that mv € Ig (or
[m,v] € Ig) in CEZ|G*] for any m € Ig, where v € CE[G*] is any representative of v + Ig € Qp.
(11) Multiplication in C3[G*] induces a multiplication on W(G).

Proof. (i) For the proof we shall firstly derive the formula for the adjoint action of the generators fg. From (2.8.13)
using linear independence of weight components and the fact that C}[B, ] is a Hopf algebra we obtain

Au(f3) =G5l ® fo. + fo, @1+ i @, (3.2.20)
where

1+s Vo

its p,BY—hBY ~ —hkiEEP yY +h
= P BT e CHBY ), §s = e M o Vet g

Gg = ehr
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9; € C([=Br+1,—Bb));
z; € Cp([~P1, —Br-1]),
7;,T; belong to weight components and have non-zero weights, ., is the weight of Z;,
Cs([~Bk+1, —Bpl) (resp. Cp([—B1, —Bk-1]))

is the subalgebra in Cg[N,] generated by ngl, ceey ng (resp. fgl, ceey fgkfl).
By (3.2.20) we also have

Se(fs) = =Gafs =Y Sa(i)d:.
Combining this formula with (3.2.20) and using (2.7.1) we deduce

Adsfﬂkw = _G/Bk [fﬁk’w] - ZSS(?);)[-'Z'“U}]

The induced action of the elements fgk € Cx[My], Br € An,, on Qp takes the form
Ad, a0 = =G (fa. — x5 (Fa))v =D Ss (@) (@ — X (#:))v, B € A, - (3.2.21)

We have to show that Wj3(G) is isomorphic to the B—submodule of all v € Qg C Q% such that mv = 0 in Q%
for any m € Ip.
The left ideal I is generated by elements x — x;(z), x € Cy[M,]. Therefore by (3.2.21) if for some v € Qg

mv = 0 in Qz for any m € I then v is invariant with respect to the adjoint action of all generators fgk of Cx[M,],
and hence v € WE(G).

Now assume that v € W§(G). We shall prove that mv = 0 in Q} for any m € Ig.

Since the left ideal I is generated by elements z—x; (), z € Cg[M] it suffices to show that (z—x;(z))v = 0 for
any « € C3[My]. We shall prove this statement by induction using the subalgebras Ca([—51, —8%]), k =1,...,¢,
so that Cp([—p1, —Bc]) = Ci[M].

Observe that f; is a simple root, and hence from (3.2.21) we obtain

0= Adsfﬁlv = _G51 (.fﬁl - XZ(fBl))U'

Since the element G, € Cg[N4] is invertible this implies
(F5. = x3(Fs:))0 =0,

ie. (z—x5(z))v=0in Qp for any x € Cs([—B1, —1]) as the subalgebra Cs([—f1, —F1]) is generated by f5,-
Now suppose that for some 1 < k < ¢ (z—x;(z))v = 0 in Qj for any = € Cg([~f1, —Bk-1]). Then from (3.2.21)
we obtain

0= AdSJZBkU = —Gpg, (fﬁk - X;(fﬁk))v - Z Ss(gi) (% — XZ(i'Z))U = _Gﬂk (fﬁk - X;(fﬂk))v

since &; € Cp([—f1, —Br—1]). The previous identity and the fact that the element Gg, € Cg[N,] is invertible yield

(fo. = X5(fa.))v = 0.

Now observe that by Proposition 3.2.9 any element = of C5([—31, —5%]) can be uniquely represented in the form
x = fg,z+ 2, where z,2" € Cp([—S1, —Bk-1]). Therefore

zv = (fp.2 + 2" = (Fa.x5(2) + x5 (=)o = (G (fa )X (2) + x5 (=)o = xg(fanz + 2o = X (@)v.

This establishes the induction step and proves the first claim of this proposition.
(ii) From the description of Wj(G) obtained in part (i) it follows that if v1, v, € CZ[G*] are any representatives
of elements vy + I, v2 + Ig € WE(G) then the formula

(v1 + Ip)(ve + Ig) = vive + I,

defines a multiplication in W3(G). This completes the proof.
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The B-module W3(G) equipped with the multiplication opposite to the one defined in the previous proposition
is called the g-W-algebra associated to (the conjugacy class of) the Weyl group element s € W.

In conclusion we obtain some results on the structure of @Qp. Consider the Lie algebra £z associated to the
associative algebra Cj[M], i.e. £ is the Lie algebra which is isomorphic to Cj[My] as a B—module, and the Lie
bracket in £ is given by the usual commutator of elements in Cj[M,].

Note that since x; is a character of Ci[M] the ideal Ip is stable under the action of Cj[My] on Cx[G*] by
commutators. Therefore one can define an action of the Lie algebra £5 on Qx = C5[G*]/Ig:

m - (z+ Ip) = py: ([m, z]). (3.2.22)

where € Cj[G*] is any representative of « + Iz € C[G*]/Ig and m € Cj[My]. The algebra W5(G) can be
described now as the intersection of the B~—module of invariants (C§[G*]/I5)*# with respect to action (3.2.22) with

Qs C C5(G™]/Is,
Wi(G) ~ (C3[G*]/I)*" N Q. (3.2.23)

Denote by By: the rank one representation of the algebra Cz[M,] defined by the character xj. Using the
description of the algebra Wg(G) in terms of action (3.2.22) and the isomorphism Cz[G*]/ I = Ci[G*|®cg ar,1 By
one can also define the algebra Wj3(G) as the intersection

Wi(G) = Homeg a1 (Bys, CalG™] ®@cyar,) By:) N Qs
Using Frobenius reciprocity we also have
Homcy (ar,](Bys, C3lG™] ®@cyary) Bys) = Endeg e+ (C[G™] @cy ary) Bys)-

Hence the algebra Wj(G) acts on Cj[G¥] @cg M) Bys from the right by operators commuting with the natural left
Ci[G*J-action on C[G*|®cy ar, 1 Bys- By the definition of W3(G) this action preserves Qs C Qp = C3[G*|®cy ;)
By: = C3[G*]/I5 and by the arguments of this paragraph it commutes with the natural left Cy[G.]-action on Qg.

Thus Qg is a C[G.]-Wj(G) bimodule equipped also with the adjoint action of C}[M,]. By (2.7.3) the adjoint
action satisfies

Adgx(yv) = Adgzt (y)Adz? (v), = € CE[M,], y € C[G.],v € Qp, (3.2.24)

and Ay(z) = 2! @ 22

Denote by 1 € @Qp the image of the element 1 € C%[G,] in the quotient @ under the canonical projection
Cg[G+] = Qp. Obviously 1 is the generating vector for Qg as a module over C}[G,]. Using formula (3.2.24) and
recalling that Qp is a C3[G.]-W5(G) bimodule, for z € Cj[My],y € C5[G.], and for a representative w € C2[G,]
of an element w + Iy € Wj3(G) we have

Adsz(wyl) = Adsz(ywl) = Adszq (y)Adsza(wl) =

= Adsz1(y)es(z2)wl = Adsz(y)wl = wAdsz(yl).

Since Qg is generated by the vector 1 over Cj[G,] the last relation implies that the action of W3(G) on Qg
commutes with the adjoint action.
We can summarize the results of the discussion above in the following proposition.

Proposition 3.2.13. The B-module Qg is naturally equipped with the structure of a left C}[G.]-module, a right
Cg[M4]-module via the adjoint action and a right W3(G)-module in such a way that the left C[G.]-action and
the right C3[M,]-action commute with the right W5(G)-action and compatibility condition (3.2.24) is satisfied.

Finally we remark that by specializing ¢ to a particular value € € C, € # 0, one can define a complex associative
1 1
algebra C.[G.] = C[G.]/(qa® — ea?)C[G,], its subalgebra C.[M ] with a nontrivial character x? and the
corresponding W—algebra
WZ(G) = Homes ar,(Ce,, Q2), (3.2.25)

where C., is the trivial representation of the algebra C2[M] induced by the counit, Q. = QB/QB(qﬁ — gﬁ)
Obviously, for generic € we have W2 (G) = W3(G)/(gq T —ca? YWE(G).
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3.3 Poisson reduction

In this section we recall basic facts on Poisson reduction. They will be used in the next section to describe Poisson
g-W-algebras as reduced Poisson algebras.
Let M, B, B’ be Poisson manifolds. Two Poisson submersions

M
v pY
B’ B
onto B’ and B form a dual pair if the pullback 7'*C°(B’) is the centralizer of 7*C°(B) in the Poisson algebra
C°°(M). In this case the sets B = n’ (7~1(b)), b € B are Poisson submanifolds in B’ called reduced Poisson
manifolds (see [129], §8).

Fix an element b € B. Then the algebra of functions C*°(B;) may be described as follows. Let I, be the ideal
in C°°(M) generated by elements 7*(f), f € C*(B), f(b) = 0. Denote M, = m~1(b). Then the algebra C°°(M,)
is simply the quotient of C°°(M) by I;. Denote by P, : C>°(M) — C*°(M)/I, = C*°(M,) the canonical projection
onto the quotient.

Lemma 3.3.1. Suppose that the map f — f(b) is a character of the Poisson algebra C*°(B). Then one can define
an action of the Poisson algebra C*°(B) on the space C*°(M,) by

f-o=B{r"(f),e}), (3:3.1)

where f € C®(B), ¢ € C®(My) and ¢ € C>®(M) is a representative of ¢ in C®°(M) such that Py(p) = .
Moreover, C*>(By) is the subspace of invariants in C*(My) with respect to this action.

Proof. Let ¢ € C*°(M,). Choose a representative ¢ € C°°(M) such that Py(@) = . Since the map f — f(b) is a
character of the Poisson algebra C*°(B), b € B is a Poisson submanifold of B with the zero Poisson structure, and
hence the right hand side of (3.3.1) only depends on ¢ but not on the representative .

Indeed, if f,g € C*(B), g(b) =0 and h € C>°(M), so that hr*(g) € I, then we have

{m*(f), b (9)} = =" (f), 7" (9)} + 7" ({7 (f), h} = hm™{ [, g} + 7" (g){7"(f), h}- (3.3.2)

Next, hn*{f, g} € I}, since the map f — f(b) is a character of the Poisson algebra C*°(B), and hence {f, g}(b) = 0.
Clearly, by the definition of Iy, 7*(g){7*(f),h} € I,. We deduce that the right hand side of (3.3.2) belongs to Ij.

Therefore for any f € C°°(B) one has {f, I} C I, and hence formula (3.3.1) defines an action of the Poisson
algebra C'°°(B) on the space C*°(My).

Note that at the same time this proves that Hamiltonian vector fields of functions 7*(f), f € C°°(B) are
tangent to the submanifold Mj.

Using the definition of the dual pair we obtain that ¢ = #'*(¢)) for some 3 € C*(Bj) if and only if
Py({m*(f),#}) = 0 for every f € C*°(B). This implies that C*°(By) is exactly the subspace of invariants in
C>°(My) with respect to action (3.3.1).

O

The algebra C>(B}) is called a reduced Poisson algebra. We also denote it by C>(M;)¢™ (B).

Remark 3.3.2. Note that the description of the algebra C°(My)C™ (B) obtained in Lemma 3.3.1 is independent of
both the manifold B’ and the projection w'. Observe also that the Hamiltonian vector fields of functions 7*(f), f €
C>(B) are tangent to My, and hence the reduced space Bj may be identified with a cross-section of the action of
the Poisson algebra C*°(B) on M, by Hamiltonian vector fields in the case when this action is free. In particular,
in this case Bj may be regarded as a submanifold in My,.

In the case when the map f — f(b) is a character of the Poisson algebra C'*°(B), the Poisson structure on
the algebra C'°°(By) can be explicitly described as follows. Let @1, o € C™ (M3)¢™(B). Choose representatives
@1, P2 € C°(M) such that Py(¢1) = 1, Po(@2) = ¢2. Then

{o1, 02} = {1, P2} mod 1. (3.3.3)

By Lemma 3.3.1 the class in C*°(M)/I, = C*°(M,) of the function in right hand side of this formula is C*°(B)-
invariant and independent of the choice of the representatives ¢, g2 € C*°(M).
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An important example of dual pairs is provided by Poisson-Lie group actions. We say that a Lie group A
with Lie algebra a locally acts on a manifold M if there is a Lie algebra homomorphism X +— X from a to the
Lie algebra of vector fields on M. In this case, by the existence and uniqueness theorem for solutions to ordinary
differential equations, this homomorphism can be integrated to a local group action of A on M in the sense that
for every point m € M there exists an open neighborhood U of m and an open neighborhood V' of the identity
element in A such that there is a smooth map V x U — U, (a,u) — aowu, and if aj,az € V and ayas € V then
(a1a2) ou = ay o (ag o m). Moreover, if we denote by ©,, the differential of the map V. — U, a — a o m at the
identity of A then ©,,(X) = X(m) for any X € a, m € M.

Note that in this case the Lie algebra a acts on C*°(M) by

Xoap:)/(\lp7 X €a, o€ C°(M).

We shall denote the space of invariants for this action by C°°(M)4.

Right local Lie group actions are defined in a similar way, X — X being a Lie algebra anti-homomorphism in
this case. R

If all vector fields X, X € a are complete then by the existence and uniqueness theorem for solutions to ordinary
differential equations U = M and V = A, i.e. there is a Lie group action of A on M.

Recall that a (local) left Poisson—Lie group action of a Poisson—Lie group A on a Poisson manifold M is a (local)
left Lie group action A x M — M which is also a (locally defined) Poisson map (as usual, we suppose that A x M
is equipped with the product Poisson structure). If in this situation the space M/A is a smooth manifold, there
exists a unique Poisson structure on M/A such that the canonical projection M — M/A is a Poisson map (see
Proposition 3.3.5 below for a more general statement).

Right Poisson—Lie group actions are defined in a similar way.

Note that the property for a map to be Poisson is a local property, so it makes sense to consider locally defined
Poisson maps.

Denote by (-, -) the canonical paring between a* and a. A map p: M — A* is called a moment map for a (local)
left Poisson group action M x A — M if

Lz = (u"(04+), X)(&), (3.3.4)

where 6 4~ is the universal left—invariant Maurer—Cartan form on A*, X € q, X is the corresponding vector field on
M and &, is the Hamiltonian vector field of ¢ € C*°(M).

Proposition 3.3.3. ([79], Theorem 4.9) Let Ax M — M be a left (local) Poisson group action of a Poisson—Lie
group A on a Poisson manifold M with moment map p: M — A*. Denote by Il 4« the Poisson tensor of A*. Then
there exists a right invariant bivector field A on A* such that II,, = I14« + A is a Poisson tensor on A* and the
map 1 M — Aj, is Poisson, where Aj, is the manifold A* equipped with the Poisson structure associated to I1,,.

From the definition of the moment map it follows that if M /A is a smooth manifold then the canonical projection
M — M/A and the moment map p: M — A* form a dual pair.

The main example of Poisson—Lie group actions is the so—called dressing action. The dressing action may be
described as follows (see [105], §3; [80], Theorem 2.4; Example 4.3 in [79]; and formula (2.24) in [106]).

Proposition 3.3.4. Let G be a connected simply connected Poisson—Lie group with factorizable tangent Lie bial-
gebra, G* the dual group. Then there exists a unique left local Poisson—Lie group action

GxG =G, (Ly,L_),9) go(Ly, L),

such that the identity mapping p: G* — G* is the moment map for this action.
Moreover, let q : G* — G be the map defined by

q(Ly,L_) = L7 L.

Then
q(go (Ly, L)) =gL Li'g". (3.3.5)
The notion of Poisson—Lie groups may be generalized as follows.

Let (a,a*) be the tangent Lie bialgebra of a Poisson—Lie group A. A connected Lie subgroup K C A with Lie
algebra £ C a is called admissible if the annihilator €~ of € in a* is a Lie subalgebra ¢+ C a*.
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Proposition 3.3.5. ([105], Theorem 6; [79], §2) Let Ax M — M be a Poisson—Lie group action of a Poisson—
Lie group A on a Poisson manifold M. If K C A is an admissible subgroup of A then the space C* (M)K of
K -invariants in C* (M) is a Poisson subalgebra in C*° (M).

If M/K is a smooth manifold, there exists a Poisson structure on M/K such that the canonical projection
M — M/K is a Poisson map, and C>®(M/K) ~ C> (M) as Poisson algebras.

We shall need the following particular example of dual pairs arising from Poisson group actions.

Let A x M — M be a left (local) Poisson group action of a Poisson—Lie group A on a manifold M. Suppose
that this action possesses a moment map u : M — A*. Let K be an admissible subgroup in A. Denote by £ the
Lie algebra of K. Assume that - C a* is a Lie subalgebra in a*. Suppose also that there is a splitting a* = t + ¢+
(direct sum of vector spaces), and that t is a Lie subalgebra in a*. Then the vector space £* is naturally identified
with t.

Assume that A* = TK' as a manifold, where K-, T are the Lie subgroups of A* corresponding to the Lie
subalgebras £- t C a*, respectively. For any a* = tkt € A* with k¥~ € K+, t € T denote 71 (a*) = k*,
nr(a*) = t. This defines maps Ty : A* — K+, mp: A* — T.

Proposition 3.3.6. Suppose that for any k't € K+ the transformation

t—t, (3.3.6)
t = (Ad(kH)t)s,

where the subscript t stands for the t-component with respect to the decomposition a* =t + ¥+, is invertible.

Define a map : M — T by

J= Tl

Then

(i) @ (C* (T)) is a Poisson subalgebra in C*° (M), and hence one can equip T with a Poisson structure such
that w: M — T s a Poisson map;

(ii) The algebra C> (M)" is the centralizer of i* (C* (T)) in the Poisson algebra C™ (M). In particular, if
M/K is a smooth manifold the maps

M

> L (3.3.7)
M/K T
form a dual pair.

Proof. (1) We claim that multiplication in A* gives rise to a right Poisson—Lie group action Al x A* — A} Indeed,
for g € A* denote by Iy, 7, the left (right) translation by g on A*. By the definition of II,,

I, (gh) = ILa« (gh) + A(gh) = ly TLa- (h) + . TLa- () + rreA(g) = Ly Tas (h) + 1, TLu(g), (3.3.8)

where we used the fact that 114« (gh) = Iy, - (h) 4+ r, 014+ (g) as A* is a Poisson-Lie group and that A is right
invariant. By the definition of Poisson—Lie group actions and Poisson maps, identity (3.3.8) is equivalent to the
fact that multiplication in A* gives rise to a right Poisson-Lie group action Ay, x A* — A7.

Since £ C a is a Lie subalgebra and gL = ¢ the subgroup K+ C A* is admissible. Therefore restricting the
action A% x A* — A% to K+ we deduce that C* (AZ)Ki is a Poisson subalgebra in C°°(A},), where the action of
K+ is induced by the action of K+ C A* on A* by right translations.

Now recall that A* = TK* as a manifold, and hence C"’°(AZ)KL = C(T). Thus T naturally becomes a
Poisson manifold and the map 77 : A} — T" becomes Poisson. We deduce that the map @ = 7ru is Poisson as the
composition of the Poisson maps p: M — A,’; and 7 : AZL —T.

(ii) By the definition of the moment map we have

Ly = (u*(0a-), X)(&), (3.3.9)

where X € a, X is the corresponding vector field on M and &, is the Hamiltonian vector field of ¢ € C(M).
Since A* = TK™, the pullback of the left-invariant Maurer-Cartan form p*(f4+) may be represented as follows

pH(0ax) = Ad(mperp) " (I 07) + (T o) Ot
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where (Tx1p) 0L € €L
Now let X € €. Then ((mgrp)*0x1), X) =0 and formula (3.3.9) takes the form

Loy = (Ad(rgop)  (7°07), X)(&) =

= (Ad(m e 1) H(0r), X) (7 (&p))-

(3.3.10)

Since by the assumption transformation (3.3.6) is invertible, Lo = (Ad(mgrp) ™ (07), X) (11, (&) = 0 for any

X € tif and only if 71, (§,) = 0. Thus the function ¢ € C°>°(M) is K-invariant if and only if {¢,7*(¢)} = 0 for
any ¢ € C°°(T). This completes the proof.

O

From the previous proposition, from Lemma 3.3.1 and Remark 3.3.2 we immediately obtain the following
corollary.

Corollary 3.3.7. Suppose that the conditions of Proposition 3.5.6 are satisfied. Let t € T be such that the map
f = f(t) is a character of the Poisson algebra C°(T). Then the action of K on M induces a (local) action on
71 1(t) and a (local) action on C=(m=1(t)) given by

Xop = (Ad(mp )~ (07), X) (7, (&5)), X € £, € CZ(7 (1)),

where ¢ is any representative of o € C®(u=1(t)) = C(M)/I; in C>(M). The algebra C>= (i (t))X of invariants
with respect to this action is isomorphic to the reduced Poisson algebra C° (' (1))~ (1),

3.4 Poisson reduction and g-W-algebras

In this section we realize the quasiclassical limit of the algebra W3(G) as the algebra of functions on a reduced
Poisson manifold. In this section we always assume that x = 1 and use the notation and conventions introduced in
Section 3.2. In particular, we always assume that the system of positive roots A is associated to the Weyl group
element s as in Definition 1.6.19.

By Proposition 3.2.8 one can define a character x* of the Poisson algebra C[M,] such that x*(p(z)) = xj(x)
mod (qn%? — 1) for every x € Cx[M].

Recall that the image of the algebra C%[G.] under the projection p : C3[G*] — C3[G*]/(1 — qﬁ)C%[G*] is a
certain subalgebra of C[G*] that we denoted by C[G.] in Section 3.2. By part (ii) of Proposition 3.2.6 C[G.] ~ C[G]
as algebras. Let I = p(Ip) be the ideal in C[G*] generated by the kernel of x°. Then by formula (3.2.23) the Poisson
algebra W#(G) = W;(G)/(qﬁ — 1)W;(G) is the subspace of all z + I € Q1, Q1 = Qp/(1 - qﬁ)QB c C[G*)/I,
such that {m,z} € I for any m € C[M_], and the Poisson bracket in W*(G) takes the form {(z + I),(y + 1)} =
{z,y}+ 1,2+ I,y+ 1 € W?*(G). Using the Poisson analogues of formulas (3.2.22) and (3.2.23) we can also write
W*(G) = (C[G*]/T)*M+] N @y, where the action of the Poisson algebra C[M, ] on the space C[G*]/T is defined as
follows

z-(v+1) = py({z,v}), (3.4.1)

v € C[G*] is any representative of v + I € C[G*]/I and x € C[M].

One can describe the space of invariants (C[G*]/I)CI+] with respect to this action by analyzing the related
underlying manifolds and varieties. First observe that the algebra (C[G*]/I)®M+] is a particular example of the
reduced Poisson algebra introduced in Lemma 3.3.1 .

Indeed, recall that according to (3.2.1) any element (L4, L_) € G* may be uniquely written as

(L4, L) = (ny,n_)(hy, ho), (3.4.2)

where ny € Ny, hy = exp((125 Py + 35Py1)x), h— = exp((2 Py — 3Py1)x), z €.

Formula (3.2.1) and a decomposition of elements of N, into products of elements which belong to one-
dimensional subgroups corresponding to roots also imply that any element L, can be represented in the form

Ly = Hﬁ exp|bs X 5] x

3.4.3
exp Zé:l bi(iph' + %Phu_)Hl} R bi,b[-} € (C, ( )
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where the product over roots is taken according to the normal ordering associated to s.
Now define a surjective submersion pas_ : G* — M, by

1237 (lu’,7 L,) =My, (344)

where for L, given by (3.4.3) m4 is defined as follows

me= [ eplbsXs)
BEAM,

and the product over roots is taken according to the normal order in the segment Ay, , .

Note that by definition C[My] = {¢ € C[G*] : ¢ = p(m4)}. Therefore C[M,] is generated by the pullbacks of
regular functions on M, with respect to the map ups_. Since C[M] is a Poisson subalgebra in C[G*], and regular
functions on M are dense in C*° (M) on every compact subset, we can equip the manifold M, with the Poisson
structure in such a way that pps_ becomes a Poisson mapping.

Let v € M, be the element defined by

ll
u=[]explt:X,,],t: = ki (mod (g3 — 1)), (3.4.5)
i=1

where the product over roots is taken according to the normal order in the segment An, and k;, i = 1,...,1" are
defined in formula (3.2.16).

By Proposition 3.2.5 (see formulas (3.2.9) and (3.2.10)) the elements L= = (p@v)(¢L*") belong to the space
C[G*] ® EndV/, and the map

1 CH[G]/ (g7 — 1)CH[G*] = C[GY), (1@ id)[*Y = L*V

is an isomorphism of Poisson—Hopf algebras. In particular, from (2.6.16) it follows that

LY = [Tz explp((1 — g5°)fp) © mr(Xp)] x

(p ® id)exp {Zﬁzl hH; ® (122 Py + Pbu)yi)} , (3.4.6)

From (3.4.6) and the definition of x*® we obtain that x*(¢) = ¢(u) for every ¢ € C[M,]. x® naturally extends
to a character of the Poisson algebra C'*° (M. ).

Now applying Lemma 3.3.1 we can define a reduced Poisson algebra C*(uy; (u))¢” (M+) as follows. Denote by
I,, the ideal in C°°(G*) generated by elements p}, ¥, ¥ € C>®(My), ¢¥(u) =0. Let P, : C°(G*) — C*(G*) /I, =
C*°(u}; (u)) be the canonical projection. Define the action of C°°(M) on C*®(uy; (u)) by

¥ = Pul{pin v, 0}), (34.7)

where ¢ € O®°(M_), ¢ € C®(uy; (u)) and ¢ € C=(G*) is a representative of o such that P, = ¢. The reduced
Poisson algebra C®(uy; (u))¢”~ (M+) is the algebra of C'°°(M, )-invariants in C°(u}; (u)) with respect to action

(3.4.7). The reduced Poisson algebra is naturally equipped with a Poisson structure induced from C*°(G*) as
described in (3.3.3).

Lemma 3.4.1. Let q(u,} (u)) be the closure of q(uy, (u)) in G with respect to Zariski topology. Then Qq ~

Clg(uy (w)], and the algebra W*(G) is isomorphic to the algebra of regular functions on q(uy; (u)) pullbacks of
which under the map q are invariant with respect to the action (3.4.7) of C= (M) on C>=(uy; (u)), i.e.

W*(G) = Clg(ppy ()] N C™(uy) (u))C~ M),

where Clg(py) ()] is regarded as a subalgebra in C™(uy; (u)) using the map ¢* : C®(q(uy, (w)) — C®(uyf (w))
and the imbedding Clg(pny; (u))] € O (q(uy; (u))).
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Proof. First observe that by the definition i, (u) is a submanifold in G* and that I = C[G*] N I,. Therefore
by the definition of the algebra C[G*] and of the map up;_ the quotient C[G*]/I is identified with the algebra of
functions on py; (u) generated by the restrictions of elements of C[G*] to uy; (u).

Also by the definition Q; C C[G*]/I is the algebra generated by the restrictions to sz, (u) of the pullbacks of

elements from the algebra of regular functions C[G] under the map g : G* — G. Therefore Q1 = Clq(u,; (u))].

From these observations we deduce that W*(G) = (C[G*]/T)*™M-1nQ, = (C[G*]/D)™M-I N Clg(uy} (w))].
Since C[M_] is dense in C*°(M_) on every compact subset in M_ we have

C™ (it ()™ M=) o o (uf (w)) M,

Now observe that action (3.4.7) of elements from C[M_] coincides with action (3.4.1) when restricted to ele-
ments from C[G*]/1, and hence W*(G) = (C[G*]/T)®M-) 1 Clg(zt (w)] = O (i, ()M N Claunt (w)] =

C*(uy (w)¢~ M=) n (C[q(u];[ar (u))]. This completes the proof.
O

We shall realize the algebra C™(uy; (u))¢™ (M+) as the algebra of functions on a reduced Poisson manifold. In
this construction we use the dressing action of the Poisson-Lie group G on G*.

Consider the restriction of the (local) dressing action G x G* — G* to the subgroup M_ C G. We shall describe
the reduced Poisson algebra O (uy; (1)) M=) in terms of the dressing action.

Lemma 3.4.2. The preimage /QLX/[{ (u) C G* is locally invariant under the (locally defined) dressing action of M_,
and the algebra C™(puy} (u))M- is isomorphic to C=(uy; (u))C™ M+,

Proof. The proof will be based on Corollary 3.3.7.

First observe that according to part (iv) of Proposition 3.1.2 (i_,i4) = (b_,b,) is a subbialgebra of (g, g*).
Therefore B_ is a Poisson—Lie subgroup in G.

By Proposition 3.3.4, by part (iv) of Proposition 3.1.2, and by the definition of the moment map we have for
any X € b_, p € C*°(G*)

Lgp(Ly,Lo) = (b (Ly, L), X)(&p) = (T 1 (05.), X)(&), (34.8)

where X is the corresponding vector field on G*, &, is the Hamiltonian vector field of ¢ € C°°(G*), and the map
up_ : G* — By is defined by up_(L4,L_) = L. Now from Proposition 3.1.2 (iv) and the definition of the
moment map it follows that pup_ is a moment map for the restriction of the dressing action to the subgroup B_.

Next observe that the complementary subset to Ay, in A is a minimal segment Agw. Now using Proposition
3.1.2 (iv) the subspace m= in b, can be identified with the linear subspace in b spanned by the Cartan subalgebra
b and by the root subspaces corresponding to the roots from the minimal segment A% .- Using the fact that the
adjoint action of h normalizes root subspaces and Lemma 1.6.17 we deduce that m* C b is a Lie subalgebra, and
hence M_ C B_ is an admissible subgroup.

Moreover, the dual group B, can be uniquely factorized as B, = M, M=, where M+ C B, is the Lie subgroup
corresponding to the Lie subalgebra m* C by, and M, C B, is the Lie subgroup corresponding to the Lie
subalgebra m .

Now observe that m* = h+m* o C by (direct sum of vector spaces), where m* o 1s the Lie subalgebra generated
by the root vectors corresponding to the roots from the minimal segment A% . The Lie subalgebra m is generated
by the root subspaces corresponding to the roots from the minimal segment A, . Since all root subspaces are
invariant under the adjoint action of h and the restriction of the adjoint action of the root vectors corresponding
to the roots from the minimal segment AJ,  is nilpotent we deduce that for any my € my, k't € M*, k+ = hkg,

h e H, ki = exp(z), z € m* one has

(Ad(hkg ) (), = AdA((Adkg (m ), ) = Adh((exp(adz)(m))m, ) = Adh((Id + V)(m.,)).

where the subscript m, stands for the m,—component in the direct vector space decomposition b, = m, + m=,
and V is a linear nilpotent transformation of m.
The maps Adh and Id 4+ V are obviously invertible. Hence for any k+ € M+ the map

my = mp, e o ARk (mo ),
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is invertible as well.
We conclude that all the conditions of Corollary 3.3.7 are satisfied with A = B_, K = M_,A* = B,,T =
M., K+ = M=+, ;= pup_. It follows that the preimage u;j_ (u) C G* is locally stable under the (locally defined)

dressing action of M_, and the algebra C*(uy; (u))M- is isomorphic to C*®(uy; (u))¢” (M+). This completes the
proof.
O

Observe that by (3.3.5) under the map q : G* — G, q(Ly,L_) = L™'L, the dressing action becomes the
action of G on itself by conjugations. Consider the restriction of this action to the subgroup M. Denote by
mq © G — G/M_ the canonical projection onto the quotient with respect to this action. We shall see that

mq(q(uy, (u))) is an algebraic variety and C[m,(q(uy, (u)))] =~ W*(G). We shall also obtain an explicit description

of the variety q(u;, (u)) and of the quotient m,(q(uy; (w))).
First we describe the image of the level surface py; (u) of the map up;  under the map g. Let X,(t) =

exp(tX,) € G, t € C be the one-parameter subgroup in G corresponding to root o € A. Recall that for any
a € A4 and any t # 0 the element

5a(t) = Xa()X_o(—t7HX,(t) € G (3.4.9)

is a representative for the reflection s, corresponding to the root a. Denote by s € G the following representative
of the Weyl group element s € W,
s =54, (t1) ... 5y, (tr), (3.4.10)

where the numbers t; are defined in (3.4.5), and we assume that ¢; # 0 for any i.
We shall also use the following representatives for s' and s2

st = Sy, (t1) - o2 8y, (E0), §2 = Sypir (tng1) - o84, (tr).

The following Proposition is an improved version of Proposition 7.2 in [117] suitable for the purposes of quan-
tization.

Proposition 3.4.3. Let ¢ : G* — G be the map defined by
q(Ly,L_)=L""L,.
Suppose that the numbers t; defined in (3.4.5) are not equal to zero for all i. Then
q(uy; (W) C N_sH°Z,M_=N_sH°M_Z, = (N_NN)Z_sH°M_Z, = (3.4.11)

=(N_NN)Z_sH°Z,M_ C NsZN,

where HC is the connected subgroup of H corresponding to the Lie subalgebra b = b~ C b, Zo = Z N Nx.
The closure q(uy; (w)) of q(uys (w)) in G with respect to the Zariski topology is also contained in NsZN.

Proof. Using definition (3.4.4) of the map j5s_ we can describe the preimage iy, (u) as follows
,u;i (u) = {(uyhy,n_h_)n_ € N_ hy = eT:st‘"”,a: ebh,ye NA+\A‘“+}, (3.4.12)

where, as in Section 1.3, for any additively closed subset of roots Z C A which does not contain opposite roots we
denote by Nz the subgroup in G generated by the one—parameter subgroups corresponding to the roots from =.
Therefore

q(uyf (W) ={h=*n"tuyh|n_ € N_ hy =%z ch,y e NA A, }. (3.4.13)

First we show that for any y € NA+\Am+ and n_ € N_ the element n_'uy belongs to N_sH°Z, M_. Fix the

circular normal ordering on A corresponding to the normal ordering of A associated to s as in Definition 1.6.19.
In the proof we shall frequently use the following lemma.

Lemma 3.4.4. Let [, f] C A be a minimal segment and assume that [«, 5] = [a,v] U [, 8], where the segments
[, 7] and [0, 8] are disjoint and minimal as well. Then any element m € N, ) can be uniquely factorized as
m = gi192 = 9391, 91,91 € Niay], 92,95 € Nis 5. Moreover, if § = 3 then for any m’ € Niq ) and any t € C one
has m' Xp(t) = Xp(t)m”, where m" € Niq .
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Proof. The proof is obtained by straightforward application of Lemmas 1.3.1 and 1.6.18.

O
Since the roots 71, ..., 7, are mutually orthogonal the adjoint action of s.,(¢;), 7 =1,...,n on each of the root
subspaces g.,, j = 1,...,n,j # i is given by multiplication by a non-zero constant. Therefore there are non-zero
constants ci, ..., ¢, such that X, (Cx)Sqyy - Syt = Sy« 8y Xy (=15 1), k= 2,...,n, and we define ¢; = —#; .
Obviously we have
Xy () o Xy, (tn) = Xy (=e1) . Xy, (men) Xy, (en) - Xoqy (1) Xy, (T) - X, () =
— X (en) <o X (00) X, () o X (t0) 11 = X_o (—e1) .. X (—ca) € Nav,
where A" ={a € A_: -y <a< —y,}.
Using the relation X_, (—t; 1) X, (t1) = X, (—t1)s,, one can rewrite the last identity as follows
Xy (tr) - Xy, (Bn) = m Xy, (en) - Xy, (€2) Xy, (—t1) 87, X, (B2) - Xy, (En).- (3.4.14)

Now we can write

Xy (en) - Xy (e2) Xy, (1) =
= X (en) - X (€)X (—01) Xy (—2) oo X ()Xo (0n) < X (c2).

The product X_-, (cn) ... X, (c2) Xy, (—t1) X1, (—c2) ... X_,, (—c,) belongs to the subgroup of G generated
by the one-parameter subgroups corresponding to roots from the set Al = {a € A : —y < a < 7,5l =
—a}. By Lemma 1.6.17 the minimal segment {a« € A : —y < a < v} is additively closed and the set of
roots on which s' acts by multiplication by —1 is also additively closed. Hence A' is additively closed, and
X—’Yn (Cn) . AX_,Y2 (CQ)AXA/1 (—tl)X_,Yz(—Cg) . X_%(—cn) € Na:.

Let Al :=A'NA, ={aeA;:a<y,s'la=—a},and AL :=A'NA_ ={a e A_: -y <a,s'a=—a}.
Then A! = Ai U AL (disjoint union), and, using Lemma 1.3.1, the element

Xy (ea) o Xy (€)X, (—01) X (—c2) .. X (—¢0) € Nar = Nt Nay
can be uniquely factorized as follows
X (en) oo X (€2) X, (—0) Xy (—c2) . Xy () = ma},

where nj € Na1, 2} € Na1 .
Substituting the last relation into (3.4.14) and using the definition of ¢z and the orthogonality of roots v; and
Y2 we obtain

Xy (t1) . Xy, (tn) = 22y Xy (en) - Xy (CS)SMX—W(*tz_l)X'm (t2) ... Xy, (tn),

1
where ny = ninh € Ny, A :={a e A_:s'a = —a}.

Now we can use the relation X_.,(—t;")X,,(ts) = X,,(—t2)s,,, the orthogonality of roots v; and 72, and
apply similar arguments to get

Xy (t1) o X, (tn) = noxi Xy (en) o Xny(c3) X s (a2) Sy Syp Xy (83) - . Xy, (81), a2 # 0. (3.4.15)

We can also write
X (en) o Xy (03) X (a2) =

=X_, (cn) .. . X_qy(e3) Xy, (a2) X _ry(—c3) ... Xy (—cn) Xy, (cn) ... X (c3).

The product X_, (cn) ... X1 (c3) X5, (a2) X~y (—c3) ... X, (—cpn) belongs to the subgroup of G generated by
the one-parameter subgroups corresponding to the roots from the set A? = {a € A : —y3 < a < 7,8 =
—a}. By Lemma 1.6.17 the minimal segment {a € A : —y3 < a < 7o} is additively closed and the set of
roots on which s' acts by multiplication by —1 is also additively closed. Hence A? is additively closed, and
X—’Yn (Cn) - AX'_,\/3 (C3)X72 (GQ)X_VS(—Cg)) . X_%(—cn) € Np-.

Let A2 :=A’NAL ={a€A;:a<y,s'la=—a}and A2 :=A’NA_={aeA_:sla=—-a,—y; < a}.
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Then A2 = Af_ U A? (disjoint union), and, using Lemma 1.3.1, the element
X . (en) . X_qy(e3) Xy, (a2) Xy (—c3) ... Xy, (—cn) € Na2 = N2 Naz
can be represented as follows
X_ o (en) . X (e3) X, (a2) X _yy(—cs) ... Xy, (—cp) = niay, (3.4.16)

where nj € Na2 , 25 € Naz .
Substituting the last relation into (3.4.15) and using the definition of ¢35 and the orthogonality of roots -1, v2
and 3 we obtain

Xy (t1) .. Xy, (tn) = ”233/1”%33/2/)(7%@71) X, (ea)sy, szxw(_tgl)X“/a (t3) ... Xy, (tn). (3.4.17)

Since AL C A%, Na1 C Naz, and we deduce that xinszy € Npz. Therefore using Lemma 1.3.1 and the

decomposition Naz = Np2 Naz we get xinsal = nfxh, xh € Naz, ny € Na2 . Now (3.4.17) takes the form

Xoy (1) - Xy, (tn) = n35 Xy, (cn) - . Xqy(ca) sy, 572X7V3(_t3?1)X73 (t3) ... Xy, (tn),

where nz = nany € N,..

We can proceed in a similar way to obtain the following representation

X, (t)... X, (tn) = nTs,, ...5,, =nis’, ne Npa1,@ € Nan, (3.4.18)

where A :={a e Ay :a<y,sla=—a}={ae ALy <a<y}
Note that s' acts by multiplication by —1 on the roots from A%, so AT = AL = sl(Aﬁ). Therefore
Nan = (sl)_lNAi s' C€ N, and (3.4.18) can be rewritten in the following form

X, (t)... X, (tn) = ns*(s") 'Fs' =ns'n/, ne NASI,TL = (s")7'Ts' € Nan. (3.4.19)

Similarly one has

" "2, 1

Xepia(tns1) o Xy (tr) = sy, 05y = 0"s™n” 0" € Ny2,n™ € Npv, (3.4.20)

where AY := {a € A_: s2a = —a},and AY :={a € A_: —y, 11 <a < —y}.
Combmlng (3.4.19) and (3.4.20), using the definition of the circular normal ordering of the root system A
associated to s, Lemmas 1.3.1, 1.6.18 and 3.4.4 one can obtain

=1 .1 7 1. 2 1

nZtuy =nZtns'n'n"$*n’"'y = ks'gs®n"y, g € Nas\ao. k € N_. (3.4.21)

By Proposition 1.6.6 (iii)
sPAS C AL\ (A5 UAS UAY) C A, (3.4.22)

Now the minimal segment A% \ Ay can be represented as the following disjoint union
AT\ A = (Ai \ (AL U AO)) U AL (3.4.23)
Note that by the definition of A% we have
sHAL N\ (A% UAY)) C AL\ (AL UA) C AL\ A (3.4.24)

Observe that the segments A%, A% \ (A%, UAp) are minimal with respect to the circular normal ordering on

A associated to s. Thus from (3.4.23) and Lemma 3.4.4 we deduce that the element g € Nas\a, from formula

(3.4.21) can be uniquely decomposed as the product g = ¢’¢”, where ¢’ € N_ —(A3\(A%,UA))? and g € N_as . By
sl s

(3.4.22), (3.4.24) we have (s?)"1g”s> € M_ and s'¢’(s?)"! € N_, and (3.4.21) takes the form

1 0 1.2 11 1 .2, 1

n"tuy = ks'g'g"s*n"y = ks'g/(s') 1s(s?) g 5?0y = K shy, i = (3.4.25)

_ (82) 1g//s2n/// € M,,kl _ kslg/(81)71 cN_.
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The element ny belongs to the subgroup Na, A’ :={a € A : vy < a < —vp}. We have the following disjoint
union of minimal segments (see Figure 5)

A = (A'NAL)YU(A N (=AS)U(Ag NAL)U(—Ap, ).

Therefore by Lemmas 1.3.1 and 1.6.18 we obtain Nar = NAIQAE NA/Q(,Azl)NAOmAJrM_. Note that by the
definition of Z, Najna, = Z4 = Z N N,.. Therefore we have a unique factorization ny = 3’2y m, where 2z, € Z,
y € Nanas, Namn(-as,), m e M_. The images of all roots from the set (A’NA%)U(A'N(=A%)) = (A"\Ag)NA,
under the action of s belong to A_ by Proposition 1.6.6 (vii), (iii) and (i). Hence sNanas, NA/Q(_Ail)s_l C N_,
and sy’s~! € N_. Thus substituting the factorization ny = 3’2z, m into (3.4.25) we obtain

1

nZluy = k'szem =K' smom e M_ k" =Ksy's' € N_,zp,2, =szys7 ' € Z,. (3.4.26)

Hence
n"tuy € N_sZ,M_. (3.4.27)

Next we prove that for any n_ € N_,z € h and y € NA+\Am+ we have h:lnzluyh+ € N_sH°Z, M_, where
hy = €3 ie. q(uy) (w) C N_sHYZ,M_.

Let H' C H be the subgroup corresponding to the Lie subalgebra b’ C . We obviously have H = H'H°. From
the definition of 71 it follows that for any ho € H and b’ € H’ the elements h; = hoh’ and h_ = hy 's(h') are of
the form hy = ¢"+% for some x € h and all elements hy are obtained in this way.

Next observe that the set N_sH°Z, M_ is invariant with respect to the following action of the subgroup of
H x H formed by elements of the form (hy,h_) = (hoh', hg's(h)):

(hy,h_)oL=h""Lhy,h=hy =hoh',h_ = hy's(h). (3.4.28)
Indeed, let L = vskzyw, vE N_,w € M_,z, € Z,,k € H° be an element of N_sH°Z, M_. Then
(he,h_)o L =hZ'vh_hZ'skhyhi 'z why = h='vh_skh3hi 'z why (3.4.29)

since s 'h=tshy = hoh'~'hoh' = h3. The right hand side of the last equality belongs to N_sH°Z, M_ because H
normalizes N_, M_ and Z,.
Comparing action (3.4.28) with (3.4.13) and recalling that by (3.4.27) for any n_ € N_ and y € Nao_ \a, , One

has n"'uy € N_sZ,M_ C N_sH°Z, M_ we deduce o
q(uy) (w)) C N_sH°Z, M_. (3.4.30)
Now we show that
N_sZ M_=N_sM_Z,=(N_NN)Z_sM_Z, =(N_NN)Z_sZyM_=(N_NN)sZ_Z,M_. (3.4.31)
First observe that we have the following disjoint union of minimal segments (see Figure 5)
A_=((AZ\NA)NAL)U(AgNAL)U (AL NAL).
Therefore by Lemmas 1.3.1 and 1.6.18 we obtain a unique factorization

N_ = N(Ai\Ao)ﬂA,NAoﬂAfNAilﬂAf = (NQN,)Z,(N, N N)

as N(Ai\Ao)ﬂAf =NNN_, Nagjpa_. =Z_=ZNN_, NA210A7 =N_NN.
Note that the elements of the subgroup N_ NN = Nas na_ are transformed to M_ by the conjugation by s71
as by part (iii) of Proposition 1.6.6

sTHAL) = s251(A%) = —s%(A%) € (A% \ (A% UASL UAY)) C —Ag, .

We deduce that any k” € N_ can be uniquely represented in the form k" =nz k", me NNN_, 2. € Z_ =
ZNN_, k" € N_.NN, s~ 'k"s € M_. Therefore for any m € M_, 2z, € Z, we have

K'smz, =nz_sm'z,me NON_,m' =s k"smeM_,2_ € Z_,
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and hence N_sM_Z, C (NN N_)Z_sM_Z,. The opposite inclusion is obvious. Thus N_sM_Z, = (NN
N_)YZ_sM_Z,.

Similarly one obtains N_sZ ,M_ = N_sM_Z, = (NNN_)Z_sZ M_ = (NNN_)Z_sZ M_ = (NN
N_)sZ_ZM_. This proves (3.4.31).

Since the conjugation action of H° normalizes N_, (N_ N N), Z4, and H° is fixed by the conjugation by s, one
immediately obtains from (3.4.31)

H°N_sZ ,M_=N_sH°Z . M_=N_sH°M_Z, =(N_NN)Z_sH°M_Z, =

=(N_NN)Z_sH°Z,M_=(NNN_)sZ_H°Z,M_ C NsZN,
where the last inclusion follows from the inclusions Z_H°Z, C Z, M_ C N. This proves the identities in (3.4.11)
and together with inclusion (3.4.30) establishes (3.4.11) completely.

Since by Proposition 1.3.4 NsZN is Zariski closed in G, the Zariski closure q(u;, (u)) of q(uy; (v)) € NsZN
in G is contained in NsZN.
O

Now we are in a position to describe the closure g(u;, (u)), the quotient 7,(g(u; (u))) and the algebra W*(G).

Theorem 3.4.5. Suppose that the numbers t; defined in (3.4.5) are not equal to zero for alli. Let N®* C N_ N N,
be the subgroup generated by one—parameter subgroups corresponding to the roots from the minimal segment —A®,
where A® = A\ Ay, ={a € AL\ Ag:y <a}, N°=N_ps, and M®> = M_NN,. Then

(i) the variety q(uy; (w)) is invariant under conjugations by elements of M_, the conjugation action of M_ on
m is free, and the quotient m, (m) is a smooth variety;

(ii) q(uy) (w) = N_sZM_ = N_sZM* ;

(i41) ﬂq(m) ~ N%sZM?* ~ ¥, = sZ Ny, the conjugation action

M_ x N*sZM* — N_sZM-_ (3.4.32)

is an isomorphism of varieties, and hence the algebra Clq(uy, (u))] = C[N_sZM_] is isomorphic to C[M_] ®
C[NssZM?);

(iv) The algebra W*(G) is isomorphic to the algebra of regular functions on N*sZM?* , W*(G) =~ Cr,(q(uy, (u)))] =~
C[N®*sZM?] ~ C[S,] ~ C[N_sZM_|™-. Thus the algebra W5(G) is a non—-commutative deformation of the algebra
of regular functions on the transversal slice X3 >~ N°sZM? .

Proof. (i) Firstly, as we observed in Lemma 3.4.2 the preimage y;; (u) is locally stable under the (locally defined)
dressing action of M_. On the other hand by Proposition 3.4.3 q(ux/fl_ (u)) € NsZN, so by Proposition 1.3.4 (i) and
Proposition 3.3.4, q(uuy; (u)) is (locally) stable under the action of M_ C N on NsZN by conjugations. Since the
conjugation action of N on NsZN is free the (locally defined) conjugation action of M_ on g(uy; (u)) is (locally)
free as well. -

Now recall that by Proposition 3.4.3 ¢(uy; (u)) C NsZN. Since by Proposition 1.3.4 (i) the conjugation action
of N on NsZN is free and regular, sZN, being a cross-section for this action, and ¢(u,; (u)) is closed, the local
action of M_ on q(,u];[{ (u)) C NsZN by conjugations extends by continuity to the genuine regular action of

M_ C N on q(u;} (u)) which is free as well. Therefore the quotient 7,(q(1y; (u))) is a smooth variety.

(ii) We show now that the closure of g(u,; (u)) contains N_sZM_. Recall that by (3.4.11) q(u}; (u)) C
N_sH°Z,M_ = N_H°Z,sM_. From (3.4.13) it follows that g(u,, (u)) is closed with respect to the right
multiplication by arbitrary elements from Z, and with respect to the left multiplication by arbitrary elements from
N_,as Z, C NA+\Am+, and q(ugj_ (u)) is closed with respect to the right multiplication by arbitrary elements
from Na\a,, - q(uy/ (w)) is also closed with respect to the restriction of action (3.4.28) to the subgroup of H x H
which consists of elements of the form (hg, hy'), ho € H°. Thus by (3.4.29), and since Z, normalizes M_ and s
centralizes H', q(u;; (u)) contains elements of the form ksn for some n € M_ C N and arbitrary k € N_HZ,.

Now recall that ho(a) > 0 for a € A%\ Ag and hg(a) = 0 for a € Ag (see formula (1.3.45) and the discussion
after it), and hence the C*—action on G induced by conjugations by the elements h(t) from the one-parameter
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subgroup generated by hg € b’ is contracting on N and fixes all elements of Z. Applying action (3.4.28) with
h = h(t) to the elements ksn with arbitrary k € N_H°Z, we immediately deduce, with the help of (3.4.28), that
the M_—component n can be contracted to the identity element using the above defined contracting action, and
hence the closure of g(u,; (u)) contains the variety N_Zs as Z_ C N_, and the closure of Z_H°Z, is Z.

By (3.4.13) q(ut)} (w)) is closed with respect to the left multiplication by arbitrary elements from N_. Recall

also that M_ C N freely acts on ¢(u,; (u)) by conjugations by part (i). Therefore q(u,; (u)) also contains the
set N_.ZsM_ = N_sZM_.
Note that
N_sH°Z ., M_ C N_ZsM_ C q(uy; (v)) C N_sHOZ M_,

where the last inclusion follows from (3.4.11), and all Zariski closures are taken in G. This implies, after taking
Zariski closures in G, that

N_ZsM_ = q(uy; (u)) = N_sHZ, M_. (3.4.33)

Lemma 3.4.6. N_ZsM_ is a closed irreducible subvariety of G of dimension dim ¥4 4+ dim M_.

Proof. First note that A_ = ((A% \ Ag) NA_)U (AT NA_)U(A_NAg) (disjoint union of minimal segments).
Now by lemma 3.4.4 there is a unique factorization

N_=Na_ =N \agna_Najna-Na_na, = (N-NN)Nasna_Z-
as Nas\ag)na. = N- NN and Na_na, = ZNN_ = Z_. We deduce
N_ZsM_ = (N_(\N)Nayna_Z-ZsM_ = (N- 1 N)Nasna_ZsM-. (3.4.34)

From the definition of A; and A% (see formula 1.6.9 and Definition 1.6.19) it follows that A} NA_ C A%,.
Therefore

Nasna_ € Na:s, . (3.4.35)

Recall that Z is generated by H° and by the one-parameter subgroups corresponding to the roots from Ag.
Note that H® normalizes N, as,, and by Proposition 1.6.6 (ii), the one-parameter subgroups corresponding to the
roots from Ag also normalize Nas . Therefore Z normalizes Na= , and we deduce using (3.4.35)

Nasna_Z C Nas,Z = ZNa, (3.4.36)
By part (iii) of Proposition 1.6.6
STUAL) = s251(A%) = —s2(A%) C —(A%\ (A% UASL UA)) C —An,,
and hence, recalling (3.4.36), we obtain
Nasna Zs C Zss’lNAzls = ZsNy-1(as,) C ZsM_.
Together with (3.4.34) this implies (compare with (3.4.11))
N_ZsM_=(N_NN)ZsM_.

Now consider the group Nias\a,na_ = N- N N. By the definition of Ay and A% (see formula 1.6.9 and
Definition 1.6.19) (A% \ Ag) NA_ = ((—=AZ_,)NA_)U (A% \ ((—A%_,) UAy)) (disjoint union of additively closed
subsets of roots).

Now by lemma 1.3.1 there is a unique factorization

N_NON = Nas\agna- = Neasna-Nas\(-ar_,)uae)-

We deduce
N_ZsM_ = (N, N N)NAimAfZ,ZsM, = N(,As )QA—NAi\((*Az,l)UAO)ZSM*' (3437)

s—1
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Recall that Z is generated by H® and by the one-parameter subgroups corresponding to the roots from Ay. Note
that H® normalizes Nps \((-A*_,)UAg), and by Proposition 1.6.6 (i), the one-parameter subgroups corresponding
to the roots from Ag also normalize Nas\((~as_)uny)- Therefore Z normalizes Na:=\((—a:_,)ua,), and we deduce

N_ZsM_ = N(_AzfﬂmA— ZNAi\((—Az,I)UAO)SM* (3438)

S and Ao we have

By the definition of the sets Ag,h AS
sTHAZ N\ (A1) UAY)) = A2\ (A3 U Ay),
and hence, recalling (3.4.38), we obtain

N_ZsM_ = Nias_ynaZss™ Nas\(-as_uagsM- = Nias_yna ZsNevas\(-a2_yuag) M- =

—1

= N-az_pna_ZsNaz\(-anusg M- = N-a:_na_sZN_is

il

where Nas \((—anuan M- = N_g;
1.6.6 (iv)).
Note that N(_a: yna_ = Ny-1 N N_, where N1 = {n € N :s1ns € N}, so we have

] C© N, and [B], 7] = {a € A% : a <y} (we use the notation of Proposition

N_ZsM_ = (Ny-x N N_)sZN g1, )-

Finally observe that
sT'N_ZsM_ =s'(Ny-s NN_)sZN_ig1 ,) C NZN.

Therefore by Lemma 1.3.5 s 1 N_ZsM_ is a closed subvariety of NZN as
NZN ~ N x Z x N,

s} (N1 NN_)s C N, N_igt 1,
sTHNg-1 NN_)s X Z X N_jg1

] € N are closed algebraic subgroups, and s™*N_ZsM_ is the image in NZN of

] under the product map. In particular,

N_ZsM_~s ' (Nex NN_)s X Z X N_{g1 . (3.4.39)

The variety NZN is closed in G by Lemma 1.3.5, and hence s ' N_ZsM_ is a closed subvariety of G. Thus
N_ZsM_ is a closed subvariety of G.

From the isomorphism of varieties (3.4.39) using Theorem 1.5.4 in [124] it follows that N_ZsM_ is also irre-
ducible as s71(Ny-1 N N_)s, Z, and N_is1 ,, are irreducible.

To find the dimension of N_ZsM_ we observe that by formula 1.6.9, by Definition 1.6.19 and by part (vii) of
Proposition 1.6.6 (—A%_,)NA_ = (=A*_)\{a € A® :a < —m}, and =[], w] = (—Am, )U{a € A% 1 a0 < —1}
(disjoint union). Note also that {a € A® : o < —y1} C —A%_, Thus

dim Ny-s N N_ = dim N_as_ na = (A ) \{ae A ta < —m} = |- Al - [{a € A ta < =},

and

dim N_jg1 )= {a € AZ ta < =y} + | — An, |

Now using isomorphism (3.4.39) we obtain

dim N_ZsM_ =dim N,-» N N_ +dim Z +dim N_

towl =
=[-Al | -HaeeAlra<—yp}+Hae Al ta< -} + |- An | +dim Z =
=|AI_i|+dim Z +dim M_ = dim Ny +dim Z + dim M_ = dim ¥, + dim M_.

This completes the proof of the lemma.
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Now from (3.4.33) and Lemma 3.4.6 we infer
N_ZsM_ = q(uy; (u)) = N_sHOZ, M_.

Now we show that N_ZsM_ = N_ZsM?. Observe that M_ = N_Am+, and by the definition of Am+ (see
part (v) of Proposition 1.6.6), and by part (vii) of Proposition 1.6.6, Am, = Af U (An, \ A7) (disjoint union of
minimal segments), where Ay = Ay, NAS.

Using Lemma 3.4.4 we have a unique decomposition

M_=N_(an \anN-ag, = N_(an,\a9M> (3.4.40)

ER

as by the definition M* = M_ N Ny = N,Aﬁ‘+. If a € A, \ AZ then sa € A% by the definition of Ag, and by

Proposition 1.6.6 (viii) we have sa > «, and if sa 4+ ag € A for ag € Ag then sa + ag € A% and sa + ag > o,
so in both cases sa, sa + a9 € A% and sa, sa + ag > «. This implies sa, sae + ap € A, In particular, from the
definition (1.6.19) of the root system Aj it follows that in both cases sa, sa + ap € A;. Observing also that
7 is generated by the one-parameter subgroups corresponding to roots from A and by the centralizer of s in
H which normalizes all one—parameter subgroups corresponding to roots, we deduce sN_(Am+\ Ai)s’l C N_ and

zsN_(Aer\Ag)s’lz*l C N_ for any z € Z. Thus by (3.4.40)
N_ZsM_ = N_ZsN_a, \apM2 = N_ZsN_(a, \as)s 'sM2 C N_sZM:.

The opposite inclusion is obvious. So we obtain that N_ZsM_ = N_ZsM?.

(iii) We show that N*ZsM? is a cross-section for the free conjugation action of M_ on N_ZsM_ = q(uy; (u)).
Note that by the definition N*sZM?* C N_ZsM_ = q(uy; (u)).

From Figure 5 and Proposition 1.6.6 (i), (iii), (vii) we obtain —A7 = (—A®) U —(Ay,,) (disjoint union of
minimal segments). By the definition N, = N_psy N* = N_ps, M? = N,Als”. Therefore Lemma 3.4.4 implies

the following unique factorization Ny = M?® N®. Thus if szns € sZNg, z € Z, ns € N then ng can be uniquely
factorized as ng = mgng, ms € M?, ng € N° and we have

§2Ng = SZMgNg.
Conjugating this element by ns; we deduce that szng is uniquely conjugated to the element
ngszmg € N°sZM?

and hence N*sZM?® ~ sZ Ny = ¥ is a cross—section for the conjugation action of N on NsZN as well. At the same
time by construction the bijection N°sZM?* ~ sZ N, is an isomorphism of varieties, where the variety structure on
N3sZM? is induced from N® x Z x M? using the product map

N°x Z x M? — N°sZM?, (ns,z,ms) — ngszms.

Observe that any two points of N°*ZsM? are not M_—conjugate. Indeed, we have an inclusion N°*ZsM?* C
q(,u&{ (u)), and two points of CI(NX/[{ (u)) can not be M_-conjugate if they are not N—conjugate in NsZN D
q(uy) (w)) as M_ C N. But N°ZsM?® =~ % is a cross-section for the conjugation action of N on ZsZN by
Proposition 1.3.7 (i). Thus any two points of N*ZsM?* are not N—conjugate, and hence they are not M_—conjugate.
Therefore the closed variety m,(q(¢;, (u))) must contain the closed variety N*ZsM?® ~ ¥,.

From formula (1.6.15) for the cardinality |Ay, | of the set Ay, and from the definitions of g(u}y, (u)) and of

N*ZsM?® we deduce that the dimension of the quotient 7,(q(uy; (u))) is equal to the dimension of the variety
N*ZsM?,

- o
dim Wq(q(u]@{ (u))) =dim G —2dim M_ =2D +1—-2|An, | =2D+1—-2 (D — l(8)2 l — D0> =

=1(s) +2Dg +1—1' = dim N, +dim Z = dim sZN, = dim X, = dim N°*ZsM?*.
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Since 7, is a morphism of varieties and the conjugation action of M_ on q(ux/[{ (u)) = N_ZsM_ is free
by part (i), m;'(N*ZsM?®) is a closed smooth subvariety of the smooth variety N_ZsM_ = q(uyf (u)), and
dim 7, (N*ZsM*) = dim N*ZsM* + dim M_ = dim X, + dim M_.

Now recall that by Lemma 3.4.6 N_ZsM_ = q(u1;; (u)) is irreducible and has the same dimension, dim N_ZsM_ =

dim ¥, 4+ dim M_ = dim 7, '(N*ZsM*). By [50], Ex. 1.10(c) the identity for the dimensions and the closed in-

clusion 7, '(N*ZsM?*) € N_ZsM_ imply n;'(N*ZsM?*) = N_ZsM_.

Therefore 7,(q(py, (u))) =~ N*ZsM?*, N*ZsM? is a cross-section for the action of M_ on q(uy; (u)), and the
conjugation action
M_ x N°ZsM? — N_ZsM_

is an isomorphism of varieties. We conclude that the algebra C[g(u,; (w))] is isomorphic to C[M_]® C[N*ZsM?],
Clalit () = CM_] & CN*Zs 2],
(iv) Now recall that by Lemma 3.4.1

W*(@) = Clg(py (w)] N O™ (uyt (w)C™ M),

where Clg(u); (u))] is regarded as a subalgebra in C°°(u,; (u)) using the map ¢* : C>®(q(uy, (u))) — C®(uy (w))
and the imbedding Clg(uy; (u))] € C™(q(upy (w))-
By Lemma 3.4.2 the algebra C™(u,; (u))™- is isomorphic to O (u}, (u))¢” M+), and hence

W*(@) = Cla(uat ()] N C= (- ()™ M) = Cla(uyt ()] N C= (it (w)™-. (3.4.41)

As we already proved the variety q(,u;;_ (u)) is stable under the conjugation action of M_, and the map

Tq q(p@ir (u)) — wqq(ﬂjwi (u)) is a morphism of varieties. Moreover, under the map g : G* — G the local dressing
action of M_ on G* becomes the conjugation action on G. Therefore the map

Clrgq(ar ()] = Clalppy_ ()] N O™y ()™=, @ mge) (3.4.42)
is an algebra isomorphism, where Clg(pz); (u))] is regarded as a subalgebra in C*°(u}, (u)) using the map
¢ C%(q(ppf, (w)) = C= () ()

and the imbedding Clg(uy; (u))] € C™(q(upy (w))-

Combining (3.4.41) and (3.4.42) we obtain that W*(G) ~ C[r,q(u,; (v))] ~ C[N_sZM_]™-. This completes
the proof.
O

3.5 Zhelobenko type operators for Poisson q-W—-algebras

In this section we present the main result of this chapter, a formula for a projection operator II : CIN_ZsM_] —
C[N_ZsM_]M- onto the subspace of invariants C[N_ZsM_]™- which is isomorphic to W*(G) as an algebra
according to Theorem 3.4.5 (iv). This formula has a direct quantum analogue which will be introduced in the next
chapter.

The operator II can be defined following the philosophy of [119] where a similar projection operator onto
the subspace C[NZsN]N C C[NZsN] was defined and studied. More precisely, according to Theorem 3.4.5 any
g € N_ZsM_ can be uniquely represented in the form

g=nngzsmn t,neM_,n,e N mge M, z€Z. (3.5.1)
If for f € C[N_ZsM_] we define IIf € C[N_ZsM_] by

(TLf)(g) = f(n~"gn) = f(nszsm;) (3.5.2)
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then IIf is an M_—invariant function, and any M_—invariant regular function on N_ZsM_ can be obtained this
way. Moreover, by the definition I1? = II, i.e. IT is a projection onto C[N_ZsM_]M-.

To obtain an explicit formula for the operator II we firstly find an explicit formula for n in terms of g in
(3.5.1). Denote by w the Chevalley anti-involution on g which is induced by the antiautomorphism w of U;(g) on
U(g) ~ Ui (g)/hU;(g). We also denote the corresponding anti-involution of G by the same letter.

An explicit formula for II suitable for quantization will be given in terms of matrix elements of finite—dimensional
irreducible representations of G. Let H C G be a maximal torus, Ay C A = A(G, H) a system of positive roots,
P, the corresponding set of integral dominant weights, By the corresponding Borel subgroup, B_ the opposite
Borel subgroup, N+ the unipotent radicals of B4, respectively. For any p € P we denote by v, a non-zero highest
weight vector in the irreducible highest weight G-module V), of highest weight p, and by (-,-) the contravariant
non-degenerate form on V), such that (v, zw) = (w(z)v,w) for any v,w € V,,, z € g and (v,,v,) = 1.

Let B1,...,8n be anormal order on Ay, X4g,,..., X+, € g the corresponding root vectors defined in (2.3.2).
We shall need some special matrix elements of finite-dimensional irreducible representations of G. These matrix
elements can be defined by specializing the results of Lemma 2.3 in [29] at ¢ = 1. By this lemma there are integral
dominant weights u, € Py, p=1,...,D and elements v, € V,, such that

. (np) (n1) _
X(”D) o X(”l) — Loif X—BD i 'X—ﬂ1 - X*BP 3.5.3
(v, —Pp b Vi) 0 otherwise ’ ( )

where for a € A, k € N we define Xék) = Xk—‘,’;

Since by this definition (vp, X_g,v,,) = (W(X_3,)vp,vu,) =1, (vu,,v,,) = 1, and the highest weight subspace
in V,, is one-dimensional, we deduce that w(X _g,)v, = vy,

We shall need the following properties of the matrix elements (v, vy, ).

Lemma 3.5.1. (i) Forany 1 < g <p < D, anyy = X(_%DD)...X(_%’;) € U(g), where n; € N, y # 1, one has
w(y)vg = 0. In particular, for any u € U(g)

(vg, yuvy,) = 0. (3.5.4)

n,

(ii) For any 1 <p < D, any y = XE”BZ) . .X,Bp) € U(g), where n; € N, y #1,X_g5 , one has w(y)vy, = 0. In
particular, for any u € U(g)
(vp, yuvy,) = 0. (3.5.5)

We shall later prove Lemma 4.2.2 which is a quantum group analogue of this Lemma. Lemma 3.5.1 follows
1
from Lemma 4.2.2 by specializing at gz = 1.

Corollary 3.5.2. (i) For any 1 <q<p <D and any g € N|_g, _p,,] one has w(g)vy = v,.

(i4) For any 1 <p < D and X g, (u) € Ny_g y, u € C one has w(X_p,(u))v, = vp + uvy,.

(i4) For any 1 < p < D and ny € Ni_g ., _—p,), "2 € N—g,_, —p], X-p,(u) € Ny_gy, u € C one has
(vp, M1 X _pg, (u)novy,) = u.

Proof. Using the unique factorization N_ = Ny_g,y... N;_g,; introduced in Lemma 1.3.1 and the exponential
map in the one-parameter subgroups Ny_g,1,..., Ny_g,} one reduces the proof of parts (i) (ii) and (iii) of this
corollary to the statements of parts (i) and (ii) of the previous lemma, and to the definition of the matrix elements
(Vp, vy, ), Tespectively. O

Let GY := N_HN, C G be the big Bruhat cell. Recall that by Lemma 1.3.2 (iii) we have an isomorphism of
verieties N_HN, ~ N_ x H x N4 as N_HN, is the orbit of the unit element in G for the following action

(N xBy)xG—G,(n_,by)og= n,gbll,

and By ~ Ny x H as a variety Lemma 1.3.2 (i) (see also Lemma 8.3.6 in [124]).

The big Bruhat cell can be defined in G as the compliment of the common zero locus of the regular functions
(U, vu), o € Py, p # 0. These functions together with the constant function equal to 1 = (vo,-vg) form a
multiplicatively closed set S, and the localization of C[G] by this set is isomorphic to C[N_HN,] (see e.g. [132],
§9 and §100).

For any complex algebraic variety V' and any subset X C V we denote by Vy (X) C C[V] the vanishing ideal of
X in C[V].
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Lemma 3.5.3. Let ¢, € C(G) be the rational function on G defined by

(’Up, gvup )

op(g) = T

Then the following statements are true.
(i) pp € CIN_HN,]. Moreover, there are unique factorizations N+ = Nyig,3 ... Ny+g,} which induce the
isomorphism of varieties
N_HN, ~CP x H xCP (3.5.6)

Under this isomorphism the function ¢, becomes the p-th coordinate function on CP on the first factor in (5.5.6)
(i) ¢p and Vo (Ni—g, —p,JHNy) generate Vgo(Ni—g, ., —p, HNY).
(1) ¢4, ¢ =1,...,p generate Vgo(Ni_g, ., —pp)HN).

Proof. (i) ¢p € CIN_HN,] as (vy,,v,,) €S, ¢p € C[G][S™], and the localization of C[G] by & is isomorphic to
C[N_HN,].

By Lemma 1.3.1 there are unique factorizations Ni = Nyig,} ... Ny} which imply the isomorphism of
varieties (3.5.6) using the exponential maps for the one-parameter subgroups, where for convenience we inverse the
order of factors in CP, i.e. the k-th factor in N¢ippy .- Nytp,y corresponds to the D — k + 1 factor in CP.

In particular, if n_hn, € N.HNy,n_ € N_,he€ H,ny € Ny then n_ =nX g, (u)na, n1 € N_g, ., —pp]s
ng € Ni_g,_, g, X—p,(u) € N_g y,u € C. Since v, is a highest weight vector (v,,n_hn v, ) = pu,(h)(vp,n_v,,)
and (vy,,n_hnyv, ) = py(h) # 0. By Corollary 3.5.2 (iii) one has (vy,n_vy,) = (vp,m1X_g, (u)nov,,) = u. Using
these identities in the definition of ¢, we obtain

(vp,n_hnyv,,)

_h = =
Sop(n TL+) (Uup7 n_ h’I’L_A,_UMP) u

Thus under isomorphism (3.5.6) ¢, becomes the p-th coordinate function on CP on the first factor in (3.5.6).
This proves part (i).

(ii) Under isomorphism (3.5.6) Ni_g, _g,JHNy ~ CP~P*! x H x CP, and ¢, becomes the first coordinate
function on CP~P+1. We deduce that the ideal generated by ¢, and by Vgo (V| (8, H N, ) is the vanishing ideal
of Vao(Ni_g,,1,—pp] HN4+) ~ CP~P x H x CP. This proves part (i).

Part (iii) follows from part (ii) using induction over p.

O

Next, we shall need to consider some normal orderings on A associated to s in Definition 1.6.19. We label the
roots in the initial segment Ay, C Ay of the system A, ordered as in Definition 1.6.19 as follows

611) e 7ﬂ1n176217 e 352n27 e aBRfll o -BRflnR,U
Where {Bll? tee 7/61'”1} = Al rWAI'\'1-¢_7 {/BR—ll . 'ﬂR—lnR,l} = AR71 rWAI’I’I_*_7 and fOI‘ 1 < j < Ri 1 {/ley . ';5]’717} =
AJ.
Let
Siiq e S’ilnl Sigq v - Si2n2 o Sip_q1 v SiR—lnR,l

be the corresponding initial part of the reduced decomposition of the longest element of the Weyl group associated
to the normal ordering introduced in Definition 1.6.19.
Let wj =54, ... Sijn, - Note that since

Aty 1 =AM AL, UAU. UAT! (3.5.7)

for j=2,...,R—1 one has 4
(wl RN wjfl)_lAi = A+ (358)

by the definition of A’ .

Remark 3.5.4. Note that each root system Ai inherits a mormal ordering from the circular normal ordering
associated to (1.6.9). Therefore for each j =2,..., R —1 the corresponding isomorphism (8.5.8) induces a normal

ordering on A with respect to which the images of the roots from the segment Bj1,. .., Bjn; form an initial segment.
We denote the roots in this segment by §;1,...,04m;, 61 = (w1 . cowj—1) Bk, k= 1,...,n;, and the remaining
roots by i, k =n; +1,...D in the increasing order according to the values of k. To keep the notation uniform

we also write 1, = P1x, k=1,...,D.



122 CHAPTER 3. Q-W-ALGEBRAS

For j=1,...,R—1define §; = (wy ... w;j—1) " 's(w ... w;_1), where we assume that wg = 1, so 5y = s.
For each j = 1,...,R—1, k =1,...,n; we define matrix elements (vjx, v,,,) by condition (3.5.3), where for

j = 1 the normal ordering on A introduced in Definition 1.6.19 is used, and for j > 1 the normal ordering on A
induced by the normal ordering on A’ with the help of isomorphism (3.5.8) is used, and £, = d;5. Let

(,Ujk7g/871vﬂjk)

. 3.5.9
Vs G55 10, ( )
Hijk 7 Hijk

ejk(g) =

Let G = N_HN,5;,j=1,...,R—1. Multiplication by §Ijl in G from the right yields the isomorphism of G?
with the open dense Bruhat cell G® = N_HN, C G,

G» = G% g gs; . (3.5.10)

GY can be defined in G as the compliment of the common zero locus of the regular functions (v, v,), p € P4,
1 # 0. These functions together with the constant function equal to 1 = (vg, -vg) form a multiplicatively closed set,
and the localization of C[G] by this set is isomorphic to C[N_H N,] (see e.g. [132], §9 and §100).

Thus if we introduce the multiplicatively closed sets S; = {(v,, -/5711)“)7 pwe Py}, j=1,...,R—1 then

G'={geq: (vu,giﬁlvu) #0Vu € Py}, (3.5.11)
and
Cl[¢7] = CE][S; 1] (3.5.12)

By Lemma 1.6.21 the set of roots (w; ... wj_l)’l(fAf|r U Ag) is parabolic. Let P/ C G be the corresponding

parabolic subgroup, V- 7 its unipotent radical, and P; C G the subgroup generated by the one—parameter subgroups
corresponding to the roots from the additively closed set (w;...w;j_1)" (=A% U Ag). The semisimple part L’ of

Piis (U,}l .. .’U}j_l)ilL’wl .. W51 as —(—A‘i_ U Ao) N (—Ai_ U Ao) = Ao.

Lemma 3.5.5. (i) For any j =1,...,R—1, k=1,...,n;j, and g = n_z5;n € Ni_5;1,—8;015G, where n_ €
2z€L7, andn e N’ orne N(w,..aw;_1)-1(~as) one has

N[—5jk7—5jD]7
(vjk,gfs?lvujk) = UV 200, ) (3.5.13)
and
(Uu,gfglvu) = (U, 2Uu), (3.5.14)
where u € C is defined from the unique factorizations n_ = X_s, (u)n' =n"X_s, (u), n',n" € Ni_s,, ., 5,5 with
the help of Lemma 8.4.4. Thus
eik(g) = u. (3.5.15)

(ZZ) Let Zi = (w1...wj,l)_lZiwl...wj,l, Mi = Ni n (wl...wj,l)_lM,wl...wj,l, j=1...,R—1.
Then for any j = 1,...,R —1, k = 1,...,n; one has Ni_s, _s,,Z. HZ}5;N’ C G’. Moreover, for k =
1,...,n; the function ;i € C[G?] and the ideal JikC = Vai(Ni—s ZiHZingi) generate Jikttee .
Ves (Ni_s 20 HZ5;M7).

W) For any j = 1,...,R—1, k = 1,...,n; the functions p;m, m = 1,...,k and the ideal J/''°° generate

(iii) For any j = 1,...,R—1, k = 1 i the functions ; 1,...,k and the ideal J'"° generat
ij+1loc'

jk»—0;D]

jk+1,—0;D

Proof. By Corollary 3.5.2 (i) and (ii) we have

(vjmgfs?lv”jk) = (vjk,n”X,(;jk(u)zgjnfglvﬂjk) = (vjk,zgjnfglv#jk) + u(vuj,c,z%n/s?lv#jk). (3.5.16)

If n € N7 the weight components of the vector z@né?lvﬂjk belong to —(wy ... wj_1) " s(Ag U Ai) + wji by
the definition of P?, and by Lemma (1.6.22) (i) this set empty intersection with —(wy ... w;—1) "' AJ + p1j5. On the
other hand the weight of v;; is equal to pjr — 65 € —(wy ... wj_l)_lAj + ;5. Since different weight subspaces

are orthogonal with respect to the contravariant form, the first term in (3.5.16) vanishes in this case.
The same conclusion can be obtained if n € Ny, ...w,_,)-1(~as) With the help of part (ii) of Lemma 1.6.22.
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In both cases the ji;;—weight component of z5;n5s;
of (3.5.16). If n € N’ we note that the set of roots —(w; ... wj,l)’ls(AOUAi) is parabolic and —(wy ... w;_1) " s(AgU
AV ) U (wy.owjoq) Tt s(Ag UAYL) = (wy...wj—1)"*Ag. Therefore the p;,—weight component of z%n@lvﬂjk is
equal to the i ,—weight component of zv,,, , and we obtain (3.5.13).

The case when n € Ny, w;_,)-1(—as) can be treated in a similar way noting that LjN(wl_“,wjil)—l(_Ag) C
(w1 ...w;j—1)" (P), and the semisimple part of the parabolic subgroup (wy ...w;_1)"}(P) is L7.

Formula (3.5.14) is established using the same arguments.

Formula (3.5.15) follows from the definition of ¢;, formula (3.5.13) and (3.5.14) with p = ;.

(i) Note that Z7 = (wy...w;_ 1)~ Ziwy...wj1 C Ny as Afwy.cw;_y)-r N Ag = {0} by (3.5.7). Thus for

50127 ' HZ’3;N”, where n_ € Ni_s zy € Z), h € H and n € N/ one has

1UM . can give a nontrivial contribution to the right hand side

g =n_z_hzysin € N_
from (3.5.14)

85k, — ik, —0;5D]>

('U/ug:sjlvu) = (v, 2-hzyvy) = (v, hoy) # 0.

From (3.5.11) it follows that N[,(;jk,,(;jD]ZZHZingz c GI.
By the definition ¢, € C[G’] ~ C[G] [Sj_l}.
Now let I be the ideal in C[G’] generated by the function ¢j and the ideal Jiktoe
From formula (3.5.15) it follows that an element g € Nj_5,, s, 0127 HZJ 55 M belongs to Nis

if and only if ¢;3(g9) = 0. Therefore the zero locus of I coincides with the closure of Nj_;
It remains to show that I is radical.

Indeed, let ¢ € C[GP] be such that ¢ € I for some n € N, n > 0, ie. ¢" = f+g, f = @ipp for some
m €N, m >0and p € C|[GP], g € JI#°° " Then the restriction of ¢” to N[,(;jk,,(;jD]ZZHZj %Mj coincides with
the restriction of f to Nj_ 551 _5]D]Z HZ7} 8;M’. In particular, the restriction of ¢" to Ni_s,,, _5]D]Z HZJ §j M
vanishes on Ni_s ., _s 147 HZJ 5;M? . This implies that the restriction of ¢ to NiZs,0,-8,0] 27 HZI SJM] must
also vanish on N[,(;jkﬂ’,(;jD]Z_HZisJMﬂ.

By Lemma 3.5.3 (i) the composition of the isomorphisms (3.5.6) and (3.5.10) yield an isomorphism of varieties

o] 2L HZ45; M
120 HZ/5;M7..

0jk+1,—05D

Gl ~CP x HxCP, (3.5.17)

and under this isomorphism the function ¢;; becomes the k-th coordinate function on C? on the first factor in
(3.5.17).

Now formula (3.5.15) and simple induction over & imply that under isomorphism (3.5.17) Nj_;
becomes a subset of CP x H x CP of the form

122 HZ)5; M7

ik>,—0iD

0x...x0xCx X,
———

k — 1 factors

where the factor C in the last product corresponds to the k-th component in C” in the first factor in the right hand
side of (3.5.17), X}, is a subset of all the remaining factors in the right hand side of (3.5.17), and the function ¢
becomes the coordinate function on the factor C. . ‘ '
From formula (3.5.15) it follows that an element g € N|_s,, | ,5]D]Z 'HZ? sJMJ belongs to Ni_5,,,,,—s, o2 HZ5; M’
if and only if gojk( ) = 0. Hence X;, ~ N[_5]k+17_5]D]Zj HZ’ ’s\jMﬂ, and under isomorphism (3.5.17) we have
Ni_sprr 6,002  HZ\5;M? =0 x ... x 0 x 0 x Xj,.
We conclude that if ¢ vanishes on Nj_s,, ., —5,,1 22 HZ8;M” , its restriction to N|_s,, _s,,) 27 HZ’.5;M’
coincides with the restriction to this subset of the function @?ki/z for some p € N;p > 0 and ¢ € C[G?]. Thus
c= w?k(@[} + ') + 9", where ¢/, 9" € ijloc, and hence ¢ € I by the definition of .

We deduce that I is radical. This implies I = J/ 19 and completes the proof of part (ii).
Part (iii) follows from (ii) using induction over k.

Now we come back to the description of the projection operator II.

Proposition 3.5.6. Let g = nns,zsmsn~' be the unique presentation (3.5.1) for an element g € N_ZsM_.
Then n can be uniquely factorized as n = X_g,,(u11) ... X—p, ..  (UR—1ny_,) where we assume that the root
vectors X_p,, used in the definition of the one-parameter subgroups are related to the root vectors X s, used in



124 CHAPTER 3. Q-W-ALGEBRAS

the definition of the functions @ji as follows X_p,, = Ad(wi ... wj_1)X_5,,, and the numbers uj, can be found
inductively by the following formula

ujk = @jk((wl N wj,l)_lgjk(wl e U}j,l)), (3518)

where g1, = n;klgnjk, ik =X g, (u11) ... X g, (ujr—1), j=1,...,R—=1,k=1,...,n; and it is assumed that
nip =1 and X*ﬁjo (ujO) = Xfﬁjflnjfl (ujnj—l)'

Proof. The numbers u;;, can be found by induction starting with u;;. We shall establish the induction step. The
case of uy; corresponding to the base of the induction can be considered in a similar way.
Assume that ui1,...,u;j,—1 have already been found. Then

gik =155 gk = X g, (win) - X gy (Wroing  nszsmeX gy o (—UR-1ng ) - X g (—ugn).

Now (wy . ..wj,l)_lgjk(wl ...w;_1) has the form of g from Lemma 3.5.5 with v = u;,. Therefore we obtain
(3.5.18) by formula (3.5.15).
O

For a representative w € G of a Weyl group element w € W we denote the operator on C(G) induced by the
conjugation by w on G by the same letter,

(wf)(g) = flwgw™), f € C(G).

Observing that in the notation of Proposition 3.5.6 for g = nnszsmen= € N_ZsM_ we have n~'gn = n zsm,
and recalling the definition of the operator II in (3.5.2) we infer the following theorem from Proposition 3.5.6.

Theorem 3.5.7. Let I1;;, be the operator on the space of rational functions C(G) on G induced by conjugation by
the element exp(—¢jxX_s,,),

(I f)(g) = flexp(=@jn(9) X -5, )9 exp(pik(9) X -5,,))- (3.5.19)
Then the restriction of the composition
I .. g, owf1 ollgy ... oy, owgl...ow§i2OHR,11...HR,lanl oWy ... WR—2

to C[N_ZsM_] is equal to the projection operator Il onto the subspace CIN_ZsM_1M~ of M_—invariant regular
functions on N_ZsM_, 1 : CIN_ZsM_] — C[N_ZsM_]M-

II = H11 e H1n1 o wl_l o H21 e H2n2 o ’LU2_1 ...0 w}_%l_Q 9] HR_11 e HR—lnR,l cwy... WR—2. (3520)
Corollary 3.5.8. The operator Il : C[(wy ... wg_2) " *N_ZsM_(w; ... wp_2)] — C[N_ZsM_]M- defined by
Hc = H11 .. .H1n1 wal 9] H21 .. .H2n2 O’w;1 “e O’LU];£2 o HR,11 N .HRflnR_l =1IIo (w1 . .'U}R,Q)_l. (3521)

18 surjective.

This corollary has a quantum counterpart which will be formulated and proved in the next chapter. The
operator II, has a direct quantum analogue.

3.6 Vanishing ideals

Let ¢ : C[G] — C[G7] = C[G][S; "] be the canonical ring homomorphism, J7* := L1 gkt
By this definition _ ' 4 ,
J* =Va(Ni_s,, s, 2> HZ,5;M?). (3.6.1)
Lemma 3.6.1. (i) Jikle = ij[Sfl].
(ii) JIk1C = ijl[Sj_l], where JI¥' € C[G] is the ideal generated by J7* and by (Vjm, 85 "), m=1,... k=1,

J
2 .
where we assume that J71" = Jit,
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Proof. (1) If f € JIR then f=4y/d,9€C[G], ¢ €S;and f vanishes on N|_;
Lemma 3.5.5 (ii)

Z’ HZ’ 3;M’ . Since by

jk>—0;iD]

Ni_s ZVHZIEM. c G,

jk>—05D]
and by (3.5.11) ¢’ does not vanish on G’ we obtain that g vanishes on N[_(;jk,_(;jD]ZiHZi?jMi, ie. ge Jik. We

deduce that J7#'° ¢ JIK[S1]. The opposite inclusion is obvious.
(ii) Note that by the definition of ¢;,, one has

(Ujma ggj_lvujk) = ‘ij(g) (qum ) ggj_lvujm ),

~—1
and (vy,,,,"s

7 Uu;n) € Sj. Therefore the statement in part (ii) follows from Lemma 3.5.5 (iii).

O

Next we give several descriptions of the ideals J7*. Lemma 3.5.5 (ii) and (iii), Corollary 3.5.8 and the statements
of this section are the only results of this chapter which will be used in Chapter 4 for the purposes of quantization.

Proposition 3.6.2. (i) For j =1,...,R—1, k=1,...,n; let njk,gji,mj_ C g be the Lie subalgebras of the
subgroups N5, —5;p]s ZL and M’ of G, respectively. Then the ideal J7* consists of the matriz elements of the
form (w,-v) € C[G|, where w,v €V, V isa ﬁmte dimensional representation of g, and (w, ys;hzyav) =0 for any
y€U(nyk), heU(h), z4 6U(3+) z € U(ml).

(ii) The ideal J7* is generated by the matriz elements of the form (u,-v) € C[G], where u is a highest weight
vector in a finite-dimensional representation V of g, and v € V' satisfies, and (v,5,z4xv) =0 for any z4 € U(5,),
zeU(m’).

The proof of this proposition follows from the following lemma.

Lemma 3.6.3. Let Gy,...,Gx C G be the Lie subgroups corresponding to Lie subalgebras g1,...,8r C @, respec-
tively, and g € G. The following statements are true.
(i) The ideal Vg (G19Gs . ..Gy) C C[G] consists of the matriz elements of the form (w,-v) € C[G], where w,v €
V, V is a finite-dimensional representation V of g, and (w,z1gx2...xv) =0 for any z; € U(g;), i =1,..., k.
(i1) If Gy = B_ the ideal V(G19Ga ... Gy) C C[G] is generated by the matriz elements of the form (u,-v) €
C|G], where u is a highest weight vector in a finite-dimensional representation V' of g, and v € V is such that
(u, gz ... zv) =0 for any x; € U(g;), 1 =2,..., k.

Proof of Proposition 3.6.2. Since s fixes all roots from Ag, Z; is generated by one-parameter subgroups corre-
sponding to roots from (Ag)y, and any representative of any Weyl group element normalizes H, we have

j -1 -1
HZ_],'_SJ' :H(wl...wj_l) Z+sw1...wj_1 :H(wl...wj_l) 5Z+w1...wj_1) =
= (U/l . wj_l)*lsHZ+w1 Wi = H§JZ_]~_ = /S\]HZi
Therefore we can write

=Va(Nis,p, -5, 2  HZL5;M7 ) = Ve (N 5,225 HZI M), (3.6.2)

—0jk,—

Since for j = 1,...,R—1, k = 1,...n; (Ao)- C [-Bjk, —Bp] we deduce that (wl...wj,l)_l((AO),‘) C
(wy ... wj—1) " ([-Bjk BD]) [~0jk, —0;p], and hence Z/ C Ni_s,, —5,,) C N_. Thus N5, _5,,2. =
Ni_s,.,—8;p]> and (3.6. ) takes the form

=Va(Ni—s,p,—5,p) 5 HZ. M) = Vo (N|_s,, - JD]ngziMi). (3.6.3)

Now part (i) of Proposition 3.6.2 follows from part (i) of Lemma 3.6.3, with k =4, G1 = N|_s,, _s,,], G2 =
G3—Z+,G4fMJ and g =5;.

Part (ii) of Prop051t10n 3.6.2 follows from parts (ii) of Lemma 3.6.3 with k = 3, G1 = N_s,, _5,,)H = B_,
GQ—Z+, Gs = M’ and g = 5.

O

Proof of part (i) of Lemma 3.6.5.
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Since for any j =1,...,k, ¢,4; =1,2,..., r§- € R, x; € g; one has

1.1 i1 .91 1.1 iy 12 1.1 ik .tk
e e T gea®2 | e T e ek TR € G1gGs ... Gy,

we obtain that for every element (w, -v) € Vg(G19Gs . ..Gg)

d"” 1.1 i1 .01 1.1 i2 12

1,1 ik ke
0= —F———— | i_o(w,en®1 . e ¥ ge2®2 | e %2 | "k "k Tk y) =
k i i |ri=0\""
Hj:l | J 5 dr;
= (w,z} ... xlgrs. . a2k xp . 2lbv),
wherenzzj 12 Zj 1 (”H) . Thus (w, z1922 ... xxv) = 0 for any z; € U(g;), j =1,...,k of the form
;= le .. .xj as in the previous formula. By linearity (w,z1922...2,v) =0 for any z; € U(g;), j =1,..., k.

Conversely, let (w,-v) be any element of (C[G] such that (w,z19x2...2,v) =0 for any z; € U(g,), j=1,...,k.
Observe that the Lie groups Gj, j = 1,...k are connected, so that each G] is generated by exp(g;). Thus any

element of G19G> ... G} can be written in the form gi1ggs ... gx, where g; = € Jen J=1,.. k0 € {1,2,...},
.Z'; €gj,i=1,...,4i;. Now we have

W, g19g2 - . . gpv) = w,em%...e‘"’ji1 e e
9199 g g

1 n! i1\nil nl in\n'2 nk i\
=Y m(w,(:@ L@ g™ L @) (ah)mh L (@) ) = 0.
nieN Llj=11li=1

Thus (w, -v) € Vg(G19Gs2 ... Gy). This completes the proof.

O

The proof of part (ii) of Lemma 3.6.3 is based on the description of closed subvarieties in B_ \ G in terms of
the so—called generalized Pliicker coordinates.

Recall that matrix elements of the form (u,-v), where u is a highest weight vector in a finite-dimensional
representation V of g, and v € V, can be viewed as sections of line bundles on B_ \ G (see [38], Section 3.1).
They are also called generalized Pliicker coordinates on B_ \ G. More precisely if V' has highest weight A then
(u,-v) is a section of the line bundle on B_ \ G associated to the one—dimensional representation of By = w(B_)
corresponding to .

Lemma 3.6.4. Any closed subvariety in B_ \ G is the zero locus of a finite set of generalized Pliicker coordinates.

Proof. Indeed, the flag variety B_ \ G can be realized as the G-orbit O of the line [u] defined by a non—zero lowest
weight vector u in the projectivisation P(VJ) of a finite-dimensional irreducible representation V7" of G' dual to a
highest weight irreducible representation V), with a regular dominant highest weight u (see e.g. [9], Section 2 or
[46], §4). Note that B_ \ G is a projective complete variety (see [124], Section 6.2, in particular, Lemma 6.2.2),
and hence by Proposition 6.1.2 (iv) in [124] it is closed in P(V).

If we identify V,, with V;; using the contravariant form then a highest weight vector u of V,, becomes a lowest
weight vector in Vi and the class [g] € B_\ G of an element g € G corresponds to w(g)[u] = [w(g)u] € O C P(V);).

Now let v € V,,. Then

(u, gv) = (w(g)u,v) = (z,v),2 = w(g)u € V], (3.6.4)

so that [z] = [w(g)u] € O C P(V]).

Any y € V,; can be written in the form y = 25:1 cnen € V[, where e,, n =1,...,5 is a weight basis of V.
The functions ¢,(y) = ¢, are linear coordinates on V. Moreover since V,, >~ V;" one can find elements v, € V,
such that ¢,,(y) = (y,v,). In particular, ¢, generate the algebra of polynomial functions on V7, and any closed
subvariety in P(V};), and hence in O, which is closed in P(V}), is the zero locus of a finite collection of some
polynomials homogeneous in ¢,, (see [50], Ch. 1, §2).

If f(¢1,...¢s) is such a polynomial of degree d then the equation f(¢1(y),...¢s(y)) = 0 is well-defined in
P(Vy), ie. if y € V; is its solution then any element of the line [y] € P(V);) is also its solution. Now using (3.6.4),
the definition of ¢, and the homogeneity of f we deduce that for [z] € O f(¢1(x),...ds(x)) = 0 if and only if
f((u,gv1), ..., (u,gvg)) = 0 for any g € G, where [g] € B_\G corresponds to [x] under the isomorphism O ~ B_\G.
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Note also that using algebraic rules for matrix elements we immediately obtain that f((u,-v1),...,(u,vg)) is a
generalized Pliicker coordinate defined using the representation Vu®d and the highest weight vector

wW=u®.. . @ueV
———

d times

Le. f((u,-v1),...,(u,vs)) = (u®,-v) for some v € V. The last two facts imply that any closed subvariety in
B_ \ G is the zero locus of a finite set of generalized Pliicker coordinates.
O

Proof of part (ii) of Lemma 3.6.5.
Observe that the projection p : G — B_\G is an open map by Theorem 5.5.5 in [124], so that for any U C B_\G
p~Y(U) = p~1(U). In particular,

p Y (B_\B_gGy...G}) =p Y (B_\B_gGs...G}) = B_gG;...G}. (3.6.5)

By Lemma 3.6.4 the closure B_ \ B_gG> ... G is the zero locus of a finite set of generalized Pliicker coordinates.
Therefore by (3.6.5) h € B_gGs ... G if and only if all generalized Pliicker coordinates from this set vanish on the
class [h] of h in B_\ G. But if (u,-v) is the matrix element corresponding to one of these Pliicker coordinates then
by the definition this Pliicker coordinate vanishes on [h] € B_ \ G if and only if (u, hv) = 0. Therefore the matrix
elements (u,-v) corresponding to the Pliicker coordinates the common zero locus of which is B_ \ B_gG> ... Gk
generate Vg (B_gGs...Gi) = Va(B_gGs ... Gy).

If (u,v) € Va(B-gGs...Gy), where u is a highest weight vector in a finite-dimensional representation V' of
g, and v € V then by part (i) of Lemma 3.6.3 (u,z19z2...2,v) = 0 for any z; € U(g;), ¢ = 1,...,k, where
g1 = b_. Since w(U(b_))v = w(U(by))v = Cuv the last condition is equivalent to (u,gxs...z,v) = 0 for any
x; €U(gi), t =2,...,k. Thus the ideal Vg(B_gGs...G})) C C[G] is generated by the matrix elements of the form
(u, -v) € C[G], where u is a highest weight vector in a finite-dimensional representation V of g, and v € V satisfies
(u, gxa ... zKv) =0 for any z; € U(g;), ¢ = 2,...,k. This completes the proof.

O

3.7 Bibliographic comments

The results on Poisson-Lie groups used in this book can be found in [20], [32], [100], [106].

Proposition 3.1.1 is stated in [20] as Theorem 1.3.2 and Proposition 3.1.2 and the relevant properties of classical
r-matrices can be found in [8], [104].

The result stated in Proposition 3.2.1 can be found in [106], Section 2.

Q-W-algebras for realizations of quantum groups associated to Weyl group elements were introduced in [110, 111]
in the case of Coxeter elements and in [114] in the general situation. However, in the definitions given in those
papers other forms of the quantum group are used. The definition of q-W-algebras in this book is more close to
the one given in [116]; it uses the Ad locally finite part of the quantum group (see [59], Chapter 7) which reduces
to the algebra of regular functions on G when ¢ = 1. However, in this book we define all algebras over slightly
different rings.

The exposition in Sections 3.2 and 3.4 follows [114, 116] with some appropriate modifications.

The presentation of the results on Poisson reduction in Section 3.3 is close to [112], Section 2.3. More details on
the notion and the properties of dual pairs and Poisson reduction can be found in [105], and for statements related
to the moment map for Poisson-Lie group actions the reader is referred to [79].

The original definition of the Poisson algebras W#(G) using the classical Poisson reduction only was given in
[113].

The definition of the classical Zhelobenko type operator II in Section 3.5 is a modified version of the definition
given in [119].
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Chapter 4

Zhelobenko type operators for
q- W—-algebras

In this chapter we define a quantum analogue II¢ of the operator II. and apply it to describe q-W-algebras. Observe
that the operator II is defined using the conjugation action and operators of multiplication by the functions ;.
The conjugation action has a natural quantum group analogue, the adjoint action. But multiplication by functions
in C[G] is quite far from the multiplication in the algebra C%[G.] which is used in the definition of q-W-algebras.
However, using isomorphism (3.2.14) of Ad-modules C}[G.] and C[G] we can try to describe g-W-algebras in
terms of the space Ci[G] multiplication in which is more closely related to that of C[G]. Therefore it is natural
to expect that a quantum analogue of the operator Il., if it exists at all, should be defined in terms of the adjoint
action and of operators of multiplication in C%[G] using appropriate quantum analogues of formulas (3.5.19) and
(3.5.21). We shall see that this conjecture is almost correct. In fact C%[G] should be replaced with a certain
localization. More precisely, recall that the operator II. is defined using the functions ¢, given by (3.5.9). Natural
analogues of matrix elements which appear in formula (3.5.9) can be defined. But formula (3.5.9) contains some
artificial denominators zeroes of which do not correspond to any singularities of the functions ¢;i, which are in fact
regular, in the formula for II.. It turns out that in the quantum case formulas similar to (3.5.9) make sense but
the denominators in them are not canceled in the formula for II¢, and we are forced to use localizations containing
all such denominators. This will also force us to replace the algebra W3(G) with a certain localization WE’ZOC(G)
of it.

The main difficulty in defining a quantum analogue II¢ of the operator II. is that the proof of the fact that
the operator defined by (3.5.20) is a projection operator onto W#(G) is based on isomorphism (3.4.32) a quantum
counterpart of which does not make sense. Recall that Wj3(G) is the space of invariants with respect to the adjoint
action of C}[M4] on Q. Although quantum analogues of operators (3.5.19) can be defined the proof of the fact
that their composition similar to (3.5.21) is an with the image being the localization WE’ZOC(G) of W3(G) should
only use the algebra structure of Ci[G], the properties of the adjoint action of Cx[M,] on @Qp, and the structure
of Qp. These are the only technical tools in our disposal.

Thus our first task is to describe in terms of C%[G] the Cj[M4]-module Qp originally defined using Ci[G.].
In the classical case this would correspond to describing the vanishing ideal of the closed subvariety N_ZsM_ ~
N_ZsM? C G as by Lemma 3.4.1 and by Theorem 3.4.5 QB/(qﬁ —1)@Qp ~ C[N_ZsM?]. It turns out that not
all elements of C[G] generating the vanishing ideal of N_ZsM? have nice quantum counterparts in C}[G]. Recall
that C[G] is P x P—graded via the left and the right regular action of H on G. The subvariety N_ZsM* C G is
closed and some generators of its vanishing ideal belong to the graded components and some do not. It turns out
that at least some of the generators of the latter type have no nice quantum counterparts. But for our purposes
it suffices to replace N_ZsM?® with a larger set N_LsM?® the vanishing ideal of which has a nice quantum
counterpart I5! in C%[G]. This counterpart is described in Proposition 4.1.2 and its image under the natural map
C3[G] ~ CE[Gy] — Qg is zero.

After recollecting some facts on the algebra C}[G] and on the adjoint action in Section 4.2 we study properties
of It in Section 4.3.

In order to show that I1¢ is an operator with the image Wj3'°(G) we shall need some relations which resemble

relations in the algebras (C[Gj]/ijloc,
In Section 4.5 we introduce the localizations mentioned above and study their properties and the relevant

129



130 CHAPTER 4. ZHELOBENKO TYPE OPERATORS FOR Q-W-ALGEBRAS

properties of the adjoint action. The results obtained in Sections 4.1, 4.2, 4.3, 4.4 and 4.5 are prerequisites for the
study of the properties of the quantum analogues Pj;, of the operators II;;, and of their compositions in Section 4.6,
the main properties being summarized in Proposition 4.6.1. In Proposition 4.6.7 we also define quantum analogues
of monomials in variables ¢;;, which play a crucial role in the study of equivariant modules over a quantum group
and in the proof of the De Concini—-Kac—Procesi conjecture.

Finally in Section 4.7 we prove that the image of the operator II¢ almost coincides with the localization WE’ZOC(G)
of the algebra W3(G).

4.1 A quantum analogue of the level surface of the moment map for
q-W-algebras

In this section we describe a quantum counterpart Ij;* C C[G] of the vanishing ideal J''. As we mentioned in the

introduction to this chapter isomorphism (3.2.14) of Ad,—modules C%[G.] and C}[G] plays a central role in the

description of I}'. Note that since both wy and the antipode S; are algebra antiautomorphisms, the compositions

wpS; ! and Sswo are algebra automorphisms. For technical reasons we shall replace the adjoint action of Uz *(g)
on C[G] with the twisted adjoint action defined by

(Adzf)(w) = f(woST (A z(Sswow))), (4.1.1)

where f € Ci[G],z,w € Ug"“*(g). Since wy is an algebra antiautomorphism and a coalgebra automorphism we
can also write

(Adjzf)(w) = f((woS, ) (@ Ywwo(a?)) = f(Ss(woatJwwy(2?)) = f(Adswo(@)(w)). (4.1.2)

Consider isomorphism (3.2.14) twisted by the automorphism wS; !,

¢ : CE[G] — Cx[GL], f = (id ® f)(id ® woS; 1) (R RT). (4.1.3)

If Kk = 1, by the definition of @p = pys;(Cx[G.]), where pys : C3[G*] — C[G*]/Is = Qp is the canonical
projection, and by Lemma 3.2.11 ¢ induces a homomorphism of C}[M]-modules

¢ : C5[G] = @B, o(f) = ¢(f)1, (4.1.4)

where C[G] is equipped with the restriction of action (4.1.1) to Cx[M, ], @ with the action induced by the adjoint
action Ad of Cx[M.], and 1 is the image of 1 € C3[G.] in @p under py:.

Now we make some preparations to state a quantum counterpart of Proposition 3.4.3. The proof of Proposition
3.4.3 was based on the Chevalley commutation relations between one-parameter subgroups in G as described in
Lemma 3.4.4 and on formula (3.4.9) for representatives of Weyl group elements in G. In the quantum case instead
of the Chevalley commutation relations we have commutation relations between quantum root vectors, and the
Weyl group is replaced with the corresponding braid group generators of which are also expressed in terms on
generators of the quantum group by formula (2.2.4). However, in the quantum case the generators of the braid
group do not square to identity automorphisms of the quantum group and we are only allowed to use the braid
group relations. The action of the braid group on quantum root vectors is also very difficult to control. It is much
more complicated than the conjugation action of representatives in G of Weyl group elements on root vectors in g.
All this brings additional complications to the proof of Proposition 4.1.2 below which is a quantum counterpart of
Proposition 3.4.3.

As before we assume that a Weyl group element s € W and a normally ordered system of positive roots A,
associated to s are fixed as in Definition 1.6.19, and denote by 1, ..., 8p the ordered roots in A,. Soif ay,...,q
are the simple roots in Ay and W = s;, ... s;, the corresponding decomposition of the longest element w € W then

Br =y, B2 =80y, ..., 0D = Siy .. Sip_ Q.

Unless explicitly stated otherwise, we shall assume that all quantum root vectors are defined using this normal
ordering of A, .
Let Uz (w'(b+)) = Ug7ee ) ([Bry +1, —Br, 1) be the subalgebra in Ug**(g) generated by the elements

res
Uq

(X5, (X, ) (X g e (X)) g eNJi=1,..., D,

1 Ky Brys+1
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where By, = -, and by Uy (H). The reason for the use of the symbol U;**(w'(by)) for this subalgebra will be
clear later from the definition of w’ € W in formula (4.1.73) and Remark 4.1.10.

Below we denote the multiplication in the algebra C%[G] by ®. We recall the notation introduced in Section
3.2 for elements of Ci[G]. Let V" be a Ug"“*(g)-lattice in a finite rank Up(g)-module V. Recall that there is a
contravariant non—degenerate form (-, -) on V such that (u,zv) = (w(x)u,v) for any u,v € V, x € Uy(g). Assume
that w is such that (u,w) € B for any w € V", Then (u, ) is an element of the dual module V"***. Since V and
Ve are of finite ranks and (-, -) is non—degenerate all elements of V"*** can be obtained this way. Clearly, for any
v € V" (u,-v) € Cx[G], and by the definition C}[G] is generated by such elements.

Let cs € B, B € A, be elements such that

[ keB B=ri=1,...U
=30 otherwise

As we observed in Proposition 3.2.7 (ii) the elements €5 .
form a B-basis in C[G*].

Clearly, the elements €} ...égg%fgg) ;fitl(fﬁn —cg )™ ... (fs, — ¢s,)™ with nj,mj,i €N, j=1,...,D

also form a B-basis in C[G*]. Let I be the B-submodule in C[G*] generated by the elements

L ERPVAfR 5 with ny,myi €N, j=1,...,D

égll te égg‘/ifngD T g:r;l (fﬁc - cﬁc)mc s (fﬁl - cﬁl)ml

with n;,m;,i € N, j =1,...,D, and where at least one m; > 0 for j < ¢+ 1. Since these elements are linearly
independent they form a B-basis in I§.

Proposition 4.1.1. Let J5'' be the left ideal in Cj[G] generated by the elements (u,-v) € Cx[G], where u is a
highest weight vector in a finite rank representation V. of Ux(g), and v € V" is such that (u, Tszv) = 0 for any
x e Uy(w'(by)). Denote Iy = (JL @5 C(qa?)) NCLIG]. Let QX be the image of Cy[G.] C C4[G*] under the
canonical projection Cg[G*] — Cg[G*|/I%. Denote by 1 € Q% the image of 1 € C3[G*] in CE[G*]/IK. Then the
following statements are true.

(i) p(J5") C I§ N C3[G.] and (IF') C TN CHIG.).

(i1) If u is a highest weight vector in a finite rank indecomposable representation Vy of Up(g) of highest weight
A such that (u,u) =1 then for any f € C5[G] we have

o(f @ (u, T )1 = exp(Ad (g~ Is Por HDATy (py)gls ™ i) (id—nPy )Yy (4.1.5)

1+s

C1 s v _plts—1p L —1)\V
= eng® HOETERON (A (g e N (1)1 € @,

where ¢y = cH,li,:1 k', c € B* is an invertible element of B which only depends on X, y1,...7, andn; = XV (v;) >0
fori=1,....n,n; = AV(sly;) >0 fori=n+1,...,I'. The classes in the quotient C3[G*]/I% of the elements of
C%[G*] in the right hand side of (4.1.5) belong to Q% C Cg[G*]/Ik.

In particular,
—1, . . v
(p((u, ~T;1u))1 _ C)\q(s +id)(id—K Py )\ l1e QIZ(S

q(s_lJrid)(id*“Ph’)Avl should be understood as the class of the element q(s_lﬂd)(id*"‘Ph’))‘v € C3[G*] in the quotient
C3[G*)/IE. This class belongs to Q.

Proof. The proof of this proposition is based on Lemma 4.1.8 which will be proved in the end of this section.

(i) We start proving this proposition by obtaining a useful expression for (id ® woS;1)(R5;R?). In order to do
that we recall some properties of universal R-matrices (see (2.5.4), (2.5.5)),

(S, @id)R® = (id @ STHYR® = R°™1, (S, ® S5)R® = R?, (4.1.6)
Using the first identity above we can write
R5IR® = R, (id ® S,)(R°T) = (id ® S, 1) (R, ) (id @ S,)(R*™) = (id ® S,)((id @ S7%)(R3;, ™) o R*TH),

where
(a®b)o(c®d) =ac® db.
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Now since wg an algebra antiautomorphism we have
(id @ woSTY) (R, R?) = (id @ wo)((id @ ST (R, ™M) o RE ™) = (id @ woST2) (R, 1) (id @ wo) (RS, (4.1.7)

Recalling the definition (2.6.16) of R® and (2.8.14), (2.8.15) we obtain

R~ exp[ ZY@H Zlﬁl

Vv
x JT expy 11— a3)fs @ epe ™15 PP =
BEA

sz,,Hi ®Y;) (4.1.8)

“D8 5 @ egq” ] x

K1+
= 1 exp, [0 - e

BeAL

Pb/H 2Y)|,

xexp[ ZY@H Zn

where the order of the terms in the products over the positive roots is opposite to the normal ordering in A .
Let p be a half of the sum of the positive roots. Using the fact that

572 = Ad, ¢*,

which can be derived straightforwardly from the definition (2.6.14) of S, we also deduce

(id @ S7?)(R3, ™) H exp, _1 [(1—qj3 2)q ’2’8(”V)egqﬁv ® eh(nﬁph’*id)ﬁvfg] X (4.1.9)
BeAy
1

! 1+s
exp [—h(z:(YZ ® H;) +Zm1 .

i=1 i=1

H;®Y;)

The order of the terms in the products in the formulas above is such that the a—term appears to the left of the
B—term if o« > B with respect to the normal ordering of A .
Substituting (4.1.8) and (4.1.9) into (4.1.7) we arrive at the following expression for (id ® woS;1)(R5;R?)

(id © woS= 1) (RS, R) Hexp (1= ¢3)g ﬂ(pv)eﬁqﬂv ®w0(eh(N%Ph/7id)ﬁvfﬁ)] y

l

X exp lh(Z(Y ® H) +Z/@

i=1 i=1

Pb,H ?Y/]) (4.1.10)

l
1+s
X exp lh(Z(Yz ® H]) — Zf{l — sPh/Hi ®Y")
i=1

i=1

-
_ 1+s ,8Y
X I | equgl[(l - Q;Zg)fﬂ ® wo(ege™ 1= PP,
o

where in the product
-

II

—

the upper (the lower) arrow indicates the order of the terms in the first (the second) factor of the tensor product
relative to the normal ordering of A, and superscripts f (resp. r) indicate that the corresponding term appears
in the front (resp. in the rear) of all the other terms in the product.

Assume now that u € V has highest weight A and v € V"°* is any vector of weight p such that g(-) := (u,v) €

Cg|G]. Observe that by (2.3.13) and (2.8.11) all elements zg = wo(eh(“%})h’ﬂd)ﬁv f3) in the first product of the
g-exponentials in (4.1.10) have strictly negative weights. As u has the highest possible weight in V| we deduce by
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Lemma 2.8.4 (i) that only constant terms in the expansions (2.2.7) of the g-exponentials in the first product in
(4.1.10) will contribute to the formula for ¢(g) = (id ® g)(id ® woS;!)(R5;R*). Using also the definition of the
action of the generators H, Hif, Y/, Yif on u and v we obtain from (4.1.10)

K2

(1, 0)) = (id ® g)(id © woS; 1) (Rgy R?) = g FREE P A b oL Py

!
. _hrltsp gV
x(id ® g)([ [ expys1[(1 = 43)f5 @ wolege™™ =1 7)).

—

Using the definition (2.2.7) of the g-exponential and formulas (2.3.13) and (2.8.10) this can be rewritten as
follows

o((u,v)) = g TRTEE P A R Py
— ~ ~ _ h ﬁP , Vv _ h 1+SP/ Vv
X Z d(ma,...,mp)fg7 ... fa ' (u,e” ™= A e(BTl)...e MDART=s hﬁDegZD)v), (4.1.11)
D
where d(my1,...,mp) € B*, and the sum is finite as the elements e,(gn) act by zero on V for large enough n.

Recalling that according to the definition in Proposition 2.6.2 65;0 = (X;)(”)Q"Ksﬂv, where ¢"K«8" = "% = P"’ﬁv,

and using commutation relations (2.3.5) we can write

14s v 14 v
e_mlhnl—s o/ 1 e;}ml) e_mDh”TiPh’BDe(ﬁmD) —

(I "
— o—mihRIEL Py By (Xgl)(ml)qlesﬁlv ”.e*mDhN%Ph'ﬂfva(X;D)(mD)quKs% -
=b(my,...,mp)(X) ™) .. (X], )me)q  KelmBittmpfn) (4.1.12)

where b(mq,...,mp) € B*.
Next, since v has weight u, we can rewrite (4.1.11) using (4.1.12) as follows

. AV 4k

(1, 0)) = g R RN R P
X )R T ()™ () ), 4113
'i=‘mli,.€.1§.!D
where d'(my,...,mp) = d(my,...,mp)b(my,... ,mD)q—u(Ks(m1/31V+...+mDﬁg)) c B

Now using the definitions of I and of Q¥ = Im(C§[G.] — Cx[G*]/1K) we have in Q¥

o((u, v))1 = g T Py A =R Py (4.1.14)

c+1

l/
X > (s, mer, - omp) [TRE R et (u, (X)) (X)) (g )omert) (X )R o),
i=1

where ¢(ny,...,ny, Met1,...,mp) € B*, and the sum is finite.
Lemma 4.1.8 applied to the products (le)("l) .. (X;‘;/)(”l’) in the previous formula and the fact that by the

definition of the algebra U;“*(w'(by)) one has (X;Cﬂ)(m“rl) e (X;D)(MD) € Ures(w'(by)), imply that in Q

o((u, v))1 = g FrTEE Py A Y =R Py (4.1.15)

c+1

l/
X > ey, mers . mp) [TRS P52 F (u, T X (na, e ) (X)) (X))o 1 =
i=1

= Z Zq (u7 Tsyiv)la

where z; € Cx[G.], X(n1,...,n0),y: € Uj®(w'(by)).
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Since every element of V"¢ is the sum of its weight components a formula similar to that which appears in the
last line of (4.1.15) holds for ¢((u, -v))1 with arbitrary (u,-v) € Cj[G], where u is a highest weight vector.

If v is chosen in such a way that (u,Tszv) = 0 for any z € Uy (w'(by)) we deduce from (4.1.15) that
(u, Tsy;v) = 0. Thus ¢((u,v))1 = 0 in Q%. This implies ¢((u,-v)) € I N CH[G.], as p((u,v)) € C[G.] by the
definition of ¢.

Now using the properties (see formulas (2.5.2))

(As ®id)R® = RizR3s, (id © Ag)R® = RigRi,,
and the fact that wy is a coalgebra automorphism (see Section 2.8) and Sy is an anti-coautomorphism we get
(id ® Ay)(id ® woS; 1) (R R?) = (id ® wo Sy ' ® woS; 1) (id @ A%P) (RS, R®) =
= (id ® wpST2 @ weSTH(RY "R, M) (id @ wo @ wo) (R "R35™H).

In the case when v has weight p, from this identity we obtain, similarly to (4.1.14), that for any f € C%[G] in

o(f @ (u,0)1 = (id® f © (u, v))((id® A )(id@woS’l)(Rile))l _ (4.1.16)
(N}t:P[’/+id))\vQD<f) (—r1E h/-Hd)u %

X Z C(n17"‘>nl'7mc+17"‘> Hkn7f . gl_jjl( 7(X’;'r1)(n1) (X+ )(nl/)(“)(+r 1)(mc+1)"'(X;D)(mD)U)1:
AN
j=c4+1,..., D

(K, itiph/"'id))‘v(p(f) T Pb/—&-vd);t

X > (s M1, o.M Hk”zf”w Fort (w, ToX (n, - ) (X, Yomer) (X3 )me))1

D c+1

which implies, similarly to (4.1.15), that for arbitrary v

7 @ (o)t = 3l a1, Tl

where af, 2] € C3[G.], yj € U;*(w'(by)). Hence o(f @ (u,-v))1 = 0 in Qf by the choice of v, ie. o(JL) C
IEN (CB[G*] as o(f ® (u,-v)) € C3[G,] by the definition of ¢.
In order to show that ¢(I}') C I N C[G.] we naturally extend ¢ to and Ad-module isomorphism ¢ :
C,[G] = C4[G.), where C,[G] = C4[G] ®5 C(q?), Cy[G.] = C4[G.] ®5 C(ga?). By the definition of T4 we have
oI c (I ®s (C(qﬁ)) NC%[G.] as obviously @(J[l),ll ®n5 (C(qm%)) C If®p C(qﬁ) since we already proved that
o(JE) € I§ N C[G.], and (CE[G]) € CH[G.].
We also have (I ®3 C(q#?)) N CH[G.] C (1;; ®5 C(q#?)) N CH[G*] as C4[G. ] C C4lG).

Recall that by the definition the elements &g ... &5" sz"; . ngj:l (fs.—cs.)™ ... (fs,—cp, )™ withn;,m;,i €
N, j=1,...,D, and where at least one m; > 0 for j < c+1 form a B-basis in IB, and this basis can be completed

to a B-basis of C3[G*] which consists of the elements e} .. égg‘/}fg; . fgz:l (fs.—cp.)™ ... (fa, —cp,)™ with
nj7mj,i eN,j=1,...,D.

This implies (1§ @5 C(q#*)) NCH[G*] = I, and hence p(I}') C (I§@5C(qa*))NCH[G.] = (I§25C(q#2))N
Cx[G*]) N C4[G] = I§ N CH[G,]. This completes the proof of part (i).

(ii) Consider formula (4.1.16) with v = T 1u,

p(f © (u, T, )l = (4.1.17)

(k it; Py, +id)\Y Qﬁ(f)q571( KT 1te Ph/+ui))\v

=4q

X Z c(n17"'7nl'7m0+17"'7 Hknlme gnitl( 7(X’¢;)(nl) (XI/)(”[’)(X"‘CJFI)(WC-#I)(X/;‘D)(mD)T§7

D

9

tu)l =
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_ q(m}inP,,/—&-id))\v(p(f)qs’l(—niszh/-i-id)/\VX
ll

> c(ny, ..y meyn, . omp) [RE A2 - fret (u, T X (na, o me ) (X ) en) (X)) T ),

Be+1 ct1
ng,mj €N i=1
Pi=1,..., 4
j=c+1,..., D
Observe that the roots —f1,...,~Bk,, Bk, +1,--.,Bp corresponding to the elements

(X/;l)(nl)v e (ngﬂ )(nkl/)’ (Xg’]cll+l)(nkl/+1)7 o (XED)(nD)7
which generate together with Uy“*(H) the subalgebra U;**(w’(b)), form a minimal segment {a € A, —f; < a <
v} which is, in fact, a system of positive roots (see Figure 5). Therefore if an element of U;®*(w'(by)) has a
non-zero weight, the product of this element and of any other element of Uy*(w’(b;)) has also a non-zero weight.

On the other hand, from the expression in the last line of (4.1.17) it follows that only terms with
X, .. om)(XE

c+1

o) (X)) € U (w (b))

of zero weight may give non-trivial contributions to the right hand side of (4.1.17). Since the elements (XZ{)("),
Be{ae Ay i a>y}r C {ae A—p < a < vy} have non-zero weights if n > 0, only the terms with
Mer1 = ... =mp = 0 will give non-trivial contributions to the right hand side of (4.1.17).

Now the second expression for ¢(f @ (u, T *u))1 in (4.1.17) yields

o © (u, T u)1 = (4.1.18)
1+4s - Vv —1 14s . \2 l/
= T RN o (pyge T RPN ST gy ) TR (u (X)L (X ) O T ),
n; €N i=1

where d(nq,...,ny) € B*.
Now observe that since u has weight A, and different weight spaces in V' are orthogonal with respect to the
contravariant form (-,-), only elements

(X)) (X T e Ve

of weight A can contribute to the right hand side of formula (4.1.18).

Because the roots 7y, ...,y are linearly independent, for ny,...,ny € N the element

(X)) (xS e vres

has weight A if and only if nyys + ... +ywnpy =X —s A =3" AV(y)v + Zé/:nﬂ AV (s9;)7i, where to obtain
the last expression we also used the fact that the roots 71, .. .7, are mutually orthogonal and the roots v, 41,... v
are also mutually orthogonal. This implies n; = AV(v;), i = 1,...,n, and n; = \V(s'vy;), i = n+1,...,I'. Note
that for i =n+1,...,0’, by Proposition 1.6.6 (i) one has s'y; € s'(A%) C A5 \ A%, C Ay, son; = AV(sty;) >0
as A € Py. Also, for the last reason n; = AV(y;) > 0fori=1,...,n.

By Proposition B.6. from [2], in this case we have (X,Y*l)(”l) e (le,)(”l’)Ts’lu = ecou, where € € {£1} and
co € ¢* only depend on 7, ...,y and A. Therefore formula (4.1.18) takes the form

v

- ni (kI Py+id)AY sTH—rIEE P, +id)AY
QD(f(X) (u7 'Ts 1“))1 = CH ki q( 15 Py +id)A Qp(f)q (=K TEE Py tid)A 1,
i=1
where ¢ € B* is an invertible element of B which only depends on A, v1,...7qy, and n; = AV(y), i = 1,...,n,

ni=A(sly),i=n+1,...,0.
The last formula can also be rewritten as follows
! 14+ . v -1 14 . v
P @ (u, T )1 = e T kg EEE RN g it P’y

i=1
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l/
= [ kgl RN A (g R )1
i=1
4 1, . the 1 L
- chzmq(s Fid)(id=rPy N o AQ0 (g(—RTEES T ParksTOAY Y ())] =
i=1
l/
= cHk?iAds(q—(n}fZPb/+z‘d),\v)((p(f))q(s—1+id)(id—nph,)/\v1 _
i=1
l/
= [Tk e(Add (g™ (s Por DN () gl D =RPy AT,

=1

In particular, in Q]g
ll
o((u, Ty ')l =c H friqls i) (id=nPy ATy
i=1
This completes the proof.
O

Now consider the case when x = 1 and k; € B, i = 1,...,l" are defined in (3.2.16). Recall that the elements
€ Vifgl . gj:l(fga —cg, )™ ... (fﬂi—cﬁl)ml with ng»,mj,i €N, j=1,...,D form a B-basis in C5[G*]
and observe that when x = 1 the elements (fz, — cg.)™ ... (fs, —cg )™ with nj,m;,i € N, j =1,...,D, and
where at least one m; > 0 for j < c+1, form a B-basis of Keryy. Therefore, if £ = 1, we have Ilg = I, and hence

Qlé = (), so we can apply the previous proposition to get the following statement.

Proposition 4.1.2. Assume that k = 1 and k; € B are defined in (3.2.16). Then the following statements are
true.

(i) Jllgll,fél C Ker ¢.

(i) If u is a highest weight vector in a finite rank indecomposable representation Vy of Up(g) of highest weight
X such that (u,u) =1 then for any f € Cj[G]

1+s

O(f @ (u, Ty u)) = exp(Ad) (g~ T Por DA (1)) g AT = (4.1.19)
v _ldsg—lp 4 =1V
= exg” A g(Ad) (gl e Pt A (1) € @,
where cy = c]_[li/:1 kl't, c € B* is an invertible element of B which only depends on X, y1, ...y, andn; = XY (y;) > 0,
i=1,...,n,n;=A(s'y) >0,i=n+1,...,I'. Here the classes in the quotient C3|G*]/Is = Q)3 of the elements
of C3[G*] in the right hand side of (4.1.19) belong to Qp C CE[G*]/Is = Qj.

In particular,

¢((u7 ~TS_1u)) — c)\qQPh/J_ /\\/1 c QB,

o+ M1 should be understood as the class of the element ¢*F v+ = C3lG*] in the quotient CE|G*]/Ip = Qf.
This class belongs to Qp.

The rest of this section will be devoted to the proof of Lemma 4.1.8. This proof is in turn split into several
other lemmas.

Lemma 4.1.3. Let V' be a finite rank representation of Un(g), u,v € V weight vectors. Let W = s;, ... Si, be a
reduced decomposition of the longest element of the Weyl group W. Then for any B = s, ... 8i,_, o, € Ay and
keN
(u, (X)) = 37, Ky (X5) P (X)) To), (4.1.20)
p,p’

where the sum in the right hand side is finite, X{BjE =T ... T, X K, €Clg,q7'], and

1’

Tg =T, ... T T, "T; ' ... T " (4.1.21)

k—17" 1 Ue—1

If v has weight \ then identity (4.1.20) is not trivial if and only if u has weight A+ kB. In this case the finite sum
in (4.1.20) is taken over p and p’ subject to the condition p' —p— Y (\) = k, so all terms K, (X/;)(p) (X;)(p ) Tyv
have also weight X\ + kf3.
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Proof. Assume that v is a weight vector of weight A. Then the left hand side of (4.1.20) is not zero if u is of weight
A+ k@ as different weight subspaces of V' are orthogonal with respect to the bilinear form (-, -), so we can assume
that u has weight \ + k.

Conjugating (2.2.6) by T;, ... T;,_, we get

) N ) Ly Halary
expy, (—X5) = exp, 1 (i X5 K5 )g;  * exp (g X5)Ts, (4.1.22)

where K/gzqﬁv :qgﬁ,ngTil...T

ip 1 dig .
Evaluating this identity on the matrix element (u,-v) and using (2.2.3) we obtain

00 —7—1 0o —1v+\p
gD (4, (X 0) = (0, 3 g B (¢ X, I'{ﬂ )P w S g D (¢; f(ﬁl)iv)
=0 [plg.! =0 [p'lg:!

Observing that the elements Hg act on weight spaces of V' by multiplication by integer numbers, that the
elements (X 5 )P and (X;{)p, map weight spaces of V' to weight spaces and for large enough p and p’ they act on
V by zero endomorphisms, we obtain (4.1.20) for v of weight A\, where the sum in the right hand side is such that
all terms K (X[;)(p)(XE)(p/)Tgv have weight A + kg, i.e. p’ —p— BY(A\) = k, and the number of these terms is
finite. This completes the proof.

O

Next we obtain some useful relations in the Weyl group which lead to important formulas for the action of braid
group elements on quantum root vectors. Recall that according to Lemma 1.6.14 (i) s! is the longest element in
the Weyl group W (m1, he1) of the semisimple part m,i of a Levi subalgebra of g, the Cartan subalgebra of mg: is
denoted by b1 .

The system of positive roots Ay (mg1,h,1) := Ay NA(mg1, by ) of the root system A(mgi, ha) = As_ll U(—As_ll)
is the set (we use the notation of (1.6.9))

A-‘r(msl)bsl) = {717"'7'727"'a737'"77na_ﬂt1+17"'7_ﬁtl+%} (4123)

and s! acts on the elements of this set by multiplication by —1. According to (1.6.9) the number of roots in
Ay (mg, bg) is equal to p. The roots in (4.1.23) are ordered as in the normal ordering of A, associated to s. With
respect to this normal ordering the set (4.1.23) is the disjoint union of an initial segment and a final segment in
the normal ordering of A,. Therefore m,: is in fact the semisimple part of a standard Levi subalgebra of g, for
otherwise by Lemma 1.6.14 (iii) there would be some roots preceding those from the set (4.1.23) in the normal
ordering of A;. Thus by Lemma 1.6.14 (iii)

Ar(ma,ha)={acA; :slac A }={ac A, :sta=—a}. (4.1.24)

This also implies that one can define the subalgebra Up(m 1) C Up(g) generated by the elements XZ-1L and H; for
a; € Ay (mg,bha) and its restricted specialization Uy (mg1) C Uy (g).

Let
Sl = Sy - Sip = Sikl RPN Sik2 “- Sikn Sikn+1 SR Sip,ikl = il, (4125)
be the reduced decomposition of s! in W(m,i,hs) corresponding to (4.1.23) as described in Lemma 1.6.14 (iii),
where s; = s,,, o; are simple roots in Ay (mg1, b)),

Ym = Sig, « - Sigy - Sig, 1y, M=1,00,m, (4.1.26)

!is an involution we also have the following reduced decomposition

Since s
8 = Sip, .- Siy = Sip oo Sig, 1 Sin, - Sigy - Sig, - (4.1.27)

Let v1 < By <Y,y Bg = Siy -+ 8iy,_, @iy, ¢ = 1,..., ky. Note that according to (4.1.23) (see also (1.6.11))

kn:p—l%:pj;n. (4.1.28)
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Since s! = —1 in W(mg1,bhg1)

1

8T =84y 8iyS Siy e Sig = Sig e S8iySiy oo+ SiySiy oo Sig = Sigyy - SiySiy -+ Sigs

and in the right hand side we obtain a reduced decomposition of s! as the number of simple reflections in it is equal
to p, i.e. to the length of s'.
Now by the previous formula

1

S§ G, = Qi = Sigyq e SiySiy e SigQiy = T8y e SipSiq - Sig 1 Qg
and hence
Sigyy -+ SipSiy - Sig_ Qi = Q. (4.1.29)
Form the expressions ., = Sigy - Sigy - Sigy, 1 Qig, , M= 1,...,n we deduce
Sqpeee Sy = (4.1.30)

— . ) ) g1 ~1Y(s, . oogl -1 ) ) ) ) -1 -1y _
= Siy, (Siy, -+ Sigy_1 Sig, Sipyr " Sin, )(Sin, - Siny 1 Sing Sipg_1 """ Sikl) e (Sigy e Sigy e Sing 4 -15ing y Sin, |1 Sikl) =

S

1k Si S’Z

= Sik1+1 . S¢k2715¢k2+1 e 18k Sing -1 Sikl .

q—1

In particular, in the right hand sides of the following formulas we have reduced decompositions

1_ = g, . . . g, .
8 = Sy .Sy, = Sip 1 e Sigy 1 Sigy g - Sigy, 1 Sin, Sig, 1 - Sig, (4.1.31)

and
1

S = Sikn N silslsil . Sikn = sikn Sikn71 PN Sikl Sik1+1 N Sikgflsik2+l N sikn—l (4.1.32)
as by (4.1.28) the number of simple reflections in them is equal to k,, + k, —n =2k, —n=p+n—n=p,ie to
the length of s'.

Multiplying (4.1.31) and (4.1.27) by (s, Si,, _, ---Si,, )" on the right we obtain the following identity for
reduced decompositions

Sik1+1 e Sik271sik2+1 e Sikn—l = Sip e Sik”Jrl. (4133)
As the roots 7y, m = 1,...,n are mutually orthogonal we deduce using (4.1.30) and (4.1.26)
Sy - Sﬂyq 1Yq = Szk1+1 .. .Sik2718ik2+1 '"Sikq,lflsikq,lsikq,lfl .. 'Siklsikl "'Sikq—laikq =
= Sik1+1 e Sik2718ik2+1 e Sikq,lflsikq,1+1 e Sikq—laikq = ’yq = Sikl e Sikq—laikq' (4134)
Therefore
Sik:q—l N sikl Sik1+1 . Sik2713ik2+1 N Sikq,lflsikq,1+1 N Sikq71aikq = Oéikq,
where
Sikq—l - sikl Sik1+1 . Sikz—lsikQJrl . Sikq,lflsikq,ﬁrl - Sikq—l
is a reduced decomposition since it is a part of reduced decomposition (4.1.32).
The last two properties and (2.2.13) imply
+ +
Tikq lellel "Tik271Tik2+1 "'Ekq_l—lﬂkq_1+1 "'Ekqleikq :Xikqv
or
+ 1 +
Tyt Ty Tiggyn -+ T T, "'Tikq—lek =T, T, —1X":kq' (4.1.35)
Using the definition of 7., (see (4.1.21)) we obtain
T, .. T, = (4.1.36)
—1 —1p—1 —1 1p—1 —1 -1 -1 —1
T, (T, - Ty T Ty T )Ty, - Ty, T, L T ) (T, - .I“Z-k%l_lTikq_lTikq_t1 T ) =
-1 -1 ~1
=T, +1Tipy 1 Tigyy - 'Tikqfl—lTikq_lTikq_lfl T
Recalling also that Xi =T, --- Tz‘kq,lXiﬂ; and applying formula (4.1.35) we arrive at
q
+ 1 -1 1 +
Ty Ty X5, =T 41 Ty Ty - T - 1T Tikq Ty T "'Ekq—lXikq =
+ - -1 y* _¥E
=Ty t1- Ty Tinyin - T T, - Ek 71X =T, .'.Tikq—lXikq =X, . (4.1.37)
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Lemma 4.1.4. Let V be a finite rank representation of Up(g), u,v € V weight vectors. Then for any my,...,m, €
N the following statements are true.

(1)
(u, (X)) (X)) = (u, K (ma, ... oma) Ty, ... Ty,0), (4.1.38)
where K(ma,...,my) € Uy (m; )Uzes(['yl,vn]), Uy (ms) C U (g) is the subalgebra generated by (X ) for

simple roots B € Ay (mg,ha) and k > 0. Moreover, K(my,...,m,) belongs to a weight subspace of UT“( ).
(ii) If w € V is a highest weight vector then

(u, (X)) (X)) = (u, K (ma, ... ,ma) Ty, .. Ty, v), (4.1.39)

where K'(my,...,my) € U;es([’yl, Ynl). Moreover, K'(my,...,my) belongs to a weight subspace of U;**(g).

Proof. By Lemma 4.1.3
(, (X)) (X)) =

= K me (uy (X)) (X)) T, (X)) (X)) DT, (X)) (X)) T, ),
where the sum in the right hand side is finite and K(f,ll e Clg, g .

Using (4.1.37) and observing that XAYi1 -X

4 » as 71 the first simple root in the normal ordering of A associated
to s, we obtain

(u, (X)) (X ) Endy) = (4.1.40)
€1,erisCn —_— 1 —+ / —_— —t / —_— " —+ /
= Z K5 (u, (X)) (X)) (X)) (X)) (X)X )T, LT, ).

SRR cn

’
n

o
e~
o

Now to justify (4.1.38) we show that all monomials

yen) (X)) (4.1.41)

Tn

YN c -+ EAYe C: S cl v
(X%)( 1)(X71)( 1)(X72)( 2)(sz)( 2)...(X

Yn

TES

belong to Uy (m;)U, ([y1, ])U;* (H).
Indeed, denote by 3, the last root in normal ordering (4.1.23). Then (Y;Lnil)(c;,l) (X)) € U;efeq(H)([—'yn, Yn-1]),

where here and in this proof below we consider only minimal segments [, 3] of the circular ordering of A(mg1, 1)
corresponding normal ordering (4.1.23) of A (mg,b,1), and the corresponding subalgebras of U;**(mg1), so, in

particular, [—vn, ¥n—1] C A(mg, b)), and ﬁ;]i’:geS(H)([_'VmﬁYn—l]) - Uges(msl)'
Then by Corollary 2.4.4 (i) we obtain
(x5,

TYn—1

) (X)) (X3, € Tgeean (= vt DX, ) = (4.1.42)

= Tgrreeary (= ms =BpD)Trses a1y (15 1) (X5,) ) C Tty (= ms =Bp)) Ty (015 m))-

FFTres

Next, (Y;_z)(ciﬂ)(Y;ﬁ_l)(c" Ve Uyres (i) ([=Yn—1,Tn—2]), and by (4.1.42) and by Corollary 2.4.4 (i) one has
~ T c! SR Cn— ~ 7+ c () (7T (e
(X'Yn—2)( n_2)(X')’n71)( 1)(X’Yn—1)( " 1)(X"Yn)( )(X’Yw)( ") €

FFTES

€ UUTCS(H)([ %—1,%—2})6;]?@5(11)([—%7 _Bp])U;]e;ﬁS(H)(['Yla’Yn]) =

FFTes

= UUTES(H) ([=yn-1, *5p])U;J€;es(H)([’7h Vn—z})U;Je;es(H)([*Vm *ﬂpDU;Je;es(H)([’Yl, Tn]) =

FFTeSs FFTeESs

:UU]I“ES(H)([ Yn—1, 5p])UUres(H)([*’YmVn—z])U;J?es(H)([%,’Yn]):

*UUTH H)([ Tn—1, ﬂp])UUTES(H)([ 'Ym*ﬂp])U;]c:;ES(H)(hla’Yn—QDU;Jz-SES(H)(['Yla'YnDC

c ﬁU;es(H)([*%—h *Bp])ﬁze;es(ﬂ) ([v15 val)-
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One can proceed by induction in a similar way to get

TES

— —t ’ —_ —=res
(X)) () (X)) (X)) (X, )X ) € Ty (=71, =B T es (ay (1, ). (4:1.43)

Next, Corollary 2.4.4 (ii) implies

F5TESs +=Tes +=Tes +5TEeSs

Ugres () (=70 =Bpl)Uures ey (11 7n]) = Ug ([=71, =BpD UG (H)U ¢ (1, 7)) U™ (H) =

=T, (=7, =BT, (i, wa DU (H) = Up* (m )T (b, 7)) U S (H),
where at the last step we also used the fact that by the definition U;es([—’yl, —Bp]) = Uj*(m,).
Now (4.1.43) takes the form
—_ —t ’ R —+ ’ res _ \=res
(X0,) (0 (X)) D (X)) (X)) L (X)) (X)) € U (m )T (I, v U (H). (4.1.44)

Thus, recalling that v is a weight vector we deduce (4.1.38) from (4.1.40) and (4.1.44) using Lemma 2.8.6.
Finally note that v and T’,, ... T, v are weight vectors, and different weight subspaces of V' are orthogonal with
respect to the bilinear form (-, -). Therefore we can assume also that K(mg,...,m,,) in (4.1.38) belongs to a weight
subspace of U;**(g), so that the weight of u is equal to that of K(my,...,m,)T,, ... T, v.
(4.1.39) follows from (4.1.38) by Lemma 2.8.4 (i) because the only elements of U, (m;), whose weights are
not strictly negative, belong to C[g, ¢~ !]. This completes the proof.
O

Lemma 4.1.5. Let V be a finite rank representation of Un(g), u,v € V. Suppose that u is a highest weight vector,
and v is a weight vector. Then for any mq,...,m, € N

(u, (X)) (X)) = (u, Ty, .. T, U (my, ... mp)v), (4.1.45)
where U(my,...,my) € Uy ([=71, —7n]) belongs to a weight subspace of U7**(g).
Proof. Since u is a highest weight vector, Lemma 4.1.4 (ii) implies

(u, (X)) (X )0) = (u, K (ma, ... oma) Ty, .. Ty, v), (4.1.46)

where K'(mq,...,my,) € U;es([mﬁn]).

Denote T' =T, ... T,, . We find the action of (T*)~* on the generators of the algebra U;es(['yl,fyn]).
Consider reduced decomposition (4.1.25) of s!,

1 — . . — . . . . . y — 7
8T = Siy . eeSiy = Siy - Sig, « o Sig, Sig, 11 -+ Siyy Uk = 11, (4.1.47)

and the roots 8, = si, ...8;,_ s, ¢ =1,..., k, forming the segment [y1,v,].
From (4.1.36) with ¢ — 1 = n and (4.1.33) we obtain

T' =T, ..T, =Ty 1T, Ty T, T T T = (4.1.48)
=T, ... Ty, T, T T
Therefore for the generators (Y;q)(’“) = Tgl T (X+)(k), g=1,...,kn, k €N, of the algebra U;es(['yl, Tn]) we
obtain .
(T X)W =Ty T, T T T (X = (4.1.49)

=T, Tt .1 tr-to Tt (xR
ip T U1 1g—1 1q

W1 =ik, 41
where T,,, =15, .. Ty,
position (4.1.47).

By (4.1.29), (2.2.13)

for the reduced decomposition wy = s;, ...s;, which is an initial part of reduced decom-

kn

ol T T (X = (™)
p U lg—1 iq iq ’

and hence
Tt T T (X =T

Ty 41 ig—1 thn Zq+1(

X+)(k)
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Substituting this into (4.1.49) we infer

15t
(T (X)) =T, Ty, - Tiyy s (X)W = Ty (X, (4.1.50)
where for ¢ =1,...,k, we denote 6, = s;, ..., @;, , and X;; =T, - Eq+1X+

Let U7°*(mf;) be the subalgebra of Uy (m,1) generated by (X;r)(k) for simple roots 8 € Aj(mg,bhs) and
k > 0. We show that for ¢ =1,...,k, and k > 0 one has (X;q)(k) € Uges(m;).

Indeed, observe that s;, ...s; i, ...si, ., is the reduced decomposition of s', with respect to the system of
simple roots in Ay (mg1, b, ), obtained according to (4.1.32) in the following way

1 _— . . 1 . . _— . . . . . . _— . . . .
8T = Siy, + - 8iyS Siy - Siy = Siy wee8iySiy - SiySiy e Siy, = Sy 80,80, Sy - (4.1.51)

Si, -..Si, is an initial part of this reduced decomposition.
Now by Lemma 2.4.2 (i) we deduce that for ¢ = 1,...,k, X;q =Ty ...T; X+ € Ure*(m},), and also

q+1
obviously

kn

(XH® e Ures(m}) (4.1.52)

for any k > 0. Since for ¢ = 1,...,k, and k& > 0 the elements (Y;q)(k) generate U;es([’yl,'ynh we deduce from
(4.1.52) and (4.1.50) that B
(TH™H Ty [y 9)) € Ty (U (m$)).

By this inclusion (T%) "} (K'(m1, ..., my)) € Ty, (Ur**(m?,)), and (4.1.46) takes the form

(u, (X)) (X 0) = (u, K (ma, . yma) Ty, . Ty, ) = (4.1.53)
= (u, Ty, ... Ty (THHEK (my, ... ,mp))0) = (u, Ty, ... Ty K (M1, ... ymyp)v),
where K" (my,...,my,) = (TY)"YK'(my,...,m,)) € Twl(U;es(m:])).

Now we factorize U, (mf,) in an appropriate way to bring (4.1.53) to form (4.1.45). Observe that using reduced

decomposition (4.1.51) one can define the corresponding normal ordering of Ay (mg1, b)),

d)k," = Oéikn yoeey d)l = Sikn ce sizail,qﬁp = Sikn e silaip, ey ¢k"+1 = Sikn e SiISiP N SiknJrQOéiknJrl,
and the elements N
Yo, =Xt

Yy, =T; ' TP X

Lk 11”7

Y, =T, ... T X!

P Tkp 1 p? "t

Yo =T T T T X

Ty TTT 01 T lp k43" tkp+2’
Yoo 11 = Ti:j ...Ti:lTi‘ T HX;’;RH,

which belong to Uy (mf,) by Lemma 2.4.2 (v).
Let Ures([qbkn,qﬁl]) C Up**(m};) be the subalgebra generated by (Y3)®) i =1,...k,, k€N, and Ures([gzﬁp7 Gk, +1]) C

Uy (m5 1) the subalgebra generated by (Yy,)*), i =k, +1,...p, k € N.
Now by Corollary 2.4.4 (iii),

U7 () = Uy (s ok, 11U, (108, 01). (4.1.54)
We find the action of the automorphism T, =T;, .. .Tik on UT”([QSP, Ok, +1]) and Ureg([(ﬁkn,qbl]).

By the definition of the elements Yy, , for r =k, +1,...

Ty (Yo, )™ = ( u~--Tikn)(Y¢r)(’“)=(TZ-;1-- T XH®. (4.1.55)

Tr41

Since u is a highest weight vector, by Lemma 2.8.7 we have T, ... Ty, u = w(c)T;, ... T;, u, where ¢ € Clg,q~']*.
Therefore for any element w € V' we can write

(u, Ty, ... Ty, w) = c(u, Ty, ... Tjw) = c(u, Taw), (4.1.56)
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where Ty1 = T, ...T;, is the braid group element corresponding to reduced decomposition (4.1.47). Now by
(4.1.55), using the definition (2.2.2) of the braid group action and commutation relations (2.3.6), we obtain for all
generators (Yy, ) ), r =k, +1,...p, k € Nof U, ([¢p, b, +1])

ToTw,(Yp)® =T, ... T, T, .. Ty, (Yo )P =T, ... T, T T (X)) =

1 1

: ] +\(k) _ : X v \k _ v k _
=T T (X)) = [k]qiw.!ﬂl...:ﬁ“_l( X, K;,) _—W%!( X5 Kp, ¥ =
—k(k— — TEeS
= (—1)Fq; TV )W KE € Uty (FBrass -, —Bo)),
where Kg =1T;, ...T;,. ,K;. . Thus
T T, (U, ([, Or41])) C Ugzes (my (= Bra1s - - =Bpl)- (4.1.57)

On the other hand by the definition of the elements Yy , for r = 1,...k, we have for all generators (Y¢,,,)(k),

F5TES

7":1 kna kENOfU ([¢kn7¢l])
1 1 _
Ty (Yo, )M =T, ... Ty, (Yy,)H) = 7 Ty T (XD = 7 Ty T (X KGR = (4.1.58)
Qip* Giy*
=L X K =
ICTRARC

—k(k— —
= (=15 VOGRS, € Ui (=, =)

where K5, =T;, ... T;,_, K;,, and we also used the definition (2.2.2) of the braid group action and commutation
relations (2.3.6).
Thus
T, Uy ([@r, 011)) C UG oy (=715 =7n))- (4.1.59)
Now recall that in (4.1.53) K" (m1, ..., my) € Ty, (Uy**(m},)), and hence we can write K (my, ..., mp) = Ty, A,
Ae Uqres(m:l).
Factorizing A according to (4.1.54),

A= Zaz iy GZEU *([Pp Dk 11]); bi GU *([ph,,, 1)),

7

we obtain

K"(mi,...,mp) =Ty, (A) = Z(Twl (@i))(Tw, (b)) = Z(Twl (ai))ei,

where ¢; = T, (b;) € {/zis(H)([_'Vlv —vn]) by (4.1.59).
Now recalling (4.1.56), (4.1.53) can be rewritten as follows

(u, (X)) (X)) = e(u, T, . Ty K" (ma, .. ymg)v) =

= CZ (u, To1 ((Tow, ) (a;))civ) = CZ (T T, ) (a;))Taciv) =
= cZ(u, giTs1cv)

where g; = (Tt Tw, )(ai) € Upsts gy ([=Brns15 -5 =Fp]) by (4.1.57).
Observe that the only elements of the algebra ﬁiis(H)([—Ban,...,—Bp]) whose weights are not strictly

negative belong to Uy**(H ), and hence by Lemma 2.8.4 (i) the last formula takes the form

(u, (le)(ml) . (X;;)(m”)v) =c(u, Ta K" (my,...,mp)v) = CZ(U,Q;TSIC»L"U) =
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=c(u, TxU) = (u,Ty, ... T,,U'v), (4.1.60)

where g; c UqfreS(H), and U’ — Zi(Tsl)il(g;)ci & U[T],Z"iS(H)([if}/l? *"}/n])
Recall finally that by Corollary 2.4.4 (ii) we have U552, gy ([=71, =7a]) = Ug®*([=71, —v])U3**(H) and that

according to Lemma 2.8.6 elements of U;**(H) act on weight vectors by multiplication by elements of Clg,q™'].
Therefore (4.1.60) immediately implies (4.1.45).

Finally note that v and 7', ... T, u are weight vectors, and different weight subspaces of V' are orthogonal with
respect to the bilinear form (-, -). Therefore we can assume also that U(my,...,m,) in (4.1.45) belongs to a weight
subspace of U;**(g), so that the weight of T\, ...T, u is equal to that of U(my,...,m,)v. This completes the
proof.

O
Now we obtain an analogue of Lemma 4.1.4 for s>. We argue in the way similar to the previous discussion
in the case of s!. According to Lemma 1.6.14 (i) s? is the longest element in the Weyl group W (mgz2,b,2) of the
semisimple part m,2 of a Levi subalgebra of g, the Cartan subalgebra of m,2 is denoted by b,z.

The system of positive roots A4 (mgz,he2) := AL NA(m,z2, h,2) of the root system A(mgz, bhgz2) = AS_Ql U(fAS_Ql)
is the set (we again use the notation of (1.6.9))

2 2
A+(m82ah52) = {,YTL-‘rlv' s n425 oo n43s - - a’yl'aﬁt,+q+l’—n+1a s 7Bt’+q}a
2

which is in fact a segment, and s? acts on the elements of this set by multiplication by —1. The roots in (4.1.61)
are ordered as in the normal ordering of A associated to s. Note that, in fact, Ay(mg, bs2) = A% (Mg, be2) =
A(mge,he)NAL = AL

As before if W = s;, ... s;, is the reduced decomposition of the longest element w € W corresponding to A,
we write v, = S;; .- Sy Stk o1 i, form=n+1,...,1I"
Ty =T ...T; Then E+(msz, hs2) = w (A (mg2, b)) is the set of positive
roots of the semisimple part m,> = Adw~!(m,2) of a standard Levi subalgebra of g. Indeed, by part (iv) of Lemma

1.6.3 the reduced decomposition Sit, .y Sips which is a part of the reduced decomposition W = s;, ... $;,, can
be completed to a reduced decomposition of w, w = Sit, g o SipSjy - S, and by the definition the roots

Let w = s;,

Ykp41—17 kpy1—1

1-1?
from the set 54_ (myz2,he2) = w (AL (M2, by2)) form an initial segment in the corresponding normal ordering of
A, . Therefore, if m,z was not the semisimple part of a standard Levi subalgebra of g, by Lemma 1.6.14 (iii) there
would be some roots preceding those from the set w=!(A, (m,2,b,2)) in this normal ordering.

Therefore one can define the subalgebra Uy (m,2) C Up(g) generated by the elements XijE and H; for a; €
A, (mg2, b,2) and its restricted specialization Uy (mg) C U7 (g).

Lemma 1.6.14 (i) also implies that 52 = w~!s?w is the longest element in the Weyl group W(msz,bsz) =
w™W (mg2, hy2)w with respect to the system of simple roots in w=! (AL (m,2, bhy2)).

For any root g € A, denote

~ ~=* 1 ~
X;=T,"(X5), Xz = Twl(X?;), Ts =Ty ' TsT,. (4.1.61)

Denote by 3, := BE,H the greatest root in the segment Ay (mgz, h,2) with respect to ordering (4.1.61). Then
by the definition T, (U7 ([=yn+41, —Br])) := Uy®*(m) is the subalgebra in the algebra U;*(m2) generated by
(XB_)(k) for simple roots 8 € A, (my2,b,2) and k > 0.

Similarly to Lemma 4.1.4 we have the following lemma.

Lemma 4.1.6. Let V be a finite rank representation of Up(g), u,v € V weight vectors. Then for any myuy1,...,mp €
N one has
(ua (X';r,l,+1)(mn+l) ce (X'j;/)(ml/)v) = (U, K(mn-‘rl; cey ml’)T’Yn+1 T T’Yzlv)v (4162)
res ——1 ,—res

~ 771 p—
where K(mpy1,...,my) € Tujl(Uges([—’ynH, -8:)NT,, (U
K(mp1,...,mu) belongs to a weight subspace of U;**(g).

o (s, w]) =0 me)T, Uy (lymt1, ), and

From Lemmas 4.1.5 and 4.1.6 we obtain the following statement.
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Lemma 4.1.7. Let V be a finite rank representation of Up(g), u,v € V weight vectors. Suppose that u is a highest
weight vector. Then for any mq,...,my € N

( (X)) (X)) (X)) (X, ) 0w =

Tn Tn+1
=(u,Tyy o Ty Ty o T T X (M, o my )T M), (4.1.63)
where X (my,...,my) € Us®*(ny), Ty =T;, Ty, for w' = s, < Sy, and X(my,...,myp) belongs to a weight

subspace of U;**(g).

Proof. By Lemmas 4.1.5 and 4.1.6 we have, using the notation introduced in these lemmas,

(u, (X)) (e (xoF Y mee) (X Y m)y) =

Ynt1 Yt

= (u, (X)) (X)) T, (X)) (X)) T ) =

Y1
= (u,Tyy ... Ty, Uy oy mp) T K (moyry oo ymyp) Ty - Ty T ), (4.1.64)
=~ —=—1
where U(my,...,my) € U;es([_’yla _A/n])’ K(mpt1,...,mu) € TJI(UJGS([_’YnJrl» _ﬁr}))Tw (ﬁges([7n+17 'Yl/]))v S0

FFTES

. = -1 .
we can write K (mpi1,...,my) =T, (a)by, aj € Up®([=ynt1, —Br]), by € T, (Uy ([Ynt1,70])). Substitut-
ing this into (4.1.64) we obtain
(u, (X)) (X)) md(xy ) Omee) () medy) = (4.1.65)

Y1 Yn+1

= (W, Ty, ... T, Ulma,...,mn)Tow Y T (00T, . Ty, Ty tv) =
J

T T w

= Z(m T, ... T, U(m,... ,mn)aijbjimJrl T T ),
J

where U(mu, ..., ma)a; € Ug®*([=71, =) U3 ([=m+1, —Br]) C Uz ([=71, —B:])-
Observe that by Corollary 2.4.4 (iii) Ug** ([=71, =Br]) = Uy** ([=Br,+1, =B- DU ([=71, =7al), so U(ma, ..., mp)az =
> cjo] for some ¢} € Uy ([=Br,+1, —B]), 0] € Ug®([=71, —ml)-
Now (4.1.65) takes the form
(u, (X)) (X)) (X ) Omee) (X )0y = (4.1.66)

Yn+1 Y

=> (WT, ... T, ol TybT, ... T, Ty o) = > (u, (T, ... T, ()T, ... Ty, 0l Tubi T, ., . T, T ).
0,J 0,J
If v, < B < 3, then by (4.1.24) we have 8 € A (ma,ha) = {a € Ay : sla € A_}. This implies s!3 € A,
and hence by the definition of the braid group action, for v, < 8 < 8, k € N the element T, ... T, (X/;)(k) has
weight —ks'8 < 0. Since the elements (Xg)(k) for v, < B8 < By, k € N generate U, ([~ Bk, +1, —Br]), we deduce
that the only elements of T, ... T, (U7**([~pk,+1,—B+])) which do not have strictly negative weights belong to
Clg,q™']. Thus by Lemma 2.8.4 (i) the right hand side of (4.1.66) takes the form

(u, (X)) (X3 ) (X ) omee) () mey) = (4.1.67)
= (W, (Tyy .. Ty, ()T, - Ty 0l Tubs Ty, T, T ) = (w, Ty, o Ty, pTub Ty, o T, T M),
,J J
where c’f € Clg,q7 1Y, pi=>; c’gog = U;es([—vl, —Yn])- N N N
Now we proceed as in the proof of Lemma 4.1.5. Namely, denote T? = T, .- Ty,. We find the action of
(T2)~! on the generators of the algebra T;l(ﬁ;es([ynﬂ, W)
For yp41 < By < v we have by the definition 8, = wsg, ., ... 8i,_, i, ¢ = kny1,...,ky, where we use the
reduced decomposition W = s;, ...s;,, and w = s;, ... s,
Similarly to (4.1.50) we infer

ne1 Lt

)X, — T, T,
( ) Bq - 7’kn+1 e lkl/

T, ...T

ky lg41

Xt (4.1.68)
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Denote for ¢ = kpi1,...,ky, 0q = Sigy, -+ Siger Vigs and
X) =T, . T.X (4.1.69)
We show that )A(g: e Uy (ny) for ¢ = kpy1,.. . ki
Indeed, the element wy ' = Sig,, -+ Skay 1S & part of the reduced decomposition
W= Sip - Siy, 1150k, -+ Sin,,, oS0 (4.1.70)

inverse to that corresponding to the normal ordering in A, associated to s. Therefore by part (iv) of Lemma
1.6.3 we can consider it as an initial part of another reduced decomposition of the longest element w € W. Now
by Lemma 2.4.2 (i) one has X;; € U,*(ny) for ¢ = kny1, ..., ki which obviously implies that for the generators

=+ ——1 —res
(Xﬁq)(’“)7 q=knt1,--.,kr, k € N of the algebra Twl(Uq ([Yn+1,7])) we have by (4.1.68)

~+

() (X ) =Ty T () = Tug(RE)® € Ty Ty (U(04)) = T (U7 (n1)),
where Ty, =T5, 1 .Tik,/ . Thus
FoN—1 AL F7res res
(%)M Ty U (a1 w])) € T (U7 (n)). (4.1.71)

Now, from (4.1.67) and (4.1.71) we obtain

(1, (65) ™) L (X)) (X)) L (X )m)) = (4.1.72)
= Z ’Yl . ’anjT T’Yn+1 . T’YZ/ ((T2> (bj))Tq;lv) = Z(ua T’Yl . T’)’ p]T T"/n+1 . 'T’yl/(Twz (b_ly))T'L;lU) =
J J
= Z 1T T%+1~ TmebgTwQ T, ') = Z(uva - Ty, p; TV T, v),

J
where (T2)~1(b;) = T, (), U € Uz (ny),

T= TwT7n+1 . T’YllTwzﬂ
and
Tw/ = T'wT'wz == El e Ekl/ )
for

W' =wwy = 8i; ... iy, (4.1.73)
We find the action of T~! on the algebra U°*([—v1, —7,]). First we obtain a convenient expression for T'. If

W= S - .. Sikn,+1 ‘e Szkl’ Sikl/Jrl « e Si. - Sip (4174)

is the reduced decomposition of the longest element of the Weyl group corresponding to the normal ordering in
A associated to s, so that 32 = Sin, py + o+ Siky, Si, 41 -+ Siy 19 the corresponding reduced decomposition of 2, then,

similarly to (4.1.48), we have

—1 -1
Ty .. Ty, =T, .. TZWHTZ}C ) Tz,c .. .Tikn+1
and hence B N
Ty oy T.n,T T’Yn+1 Ty T, - Ty, = Ty T, (4.1.75)
This identity together with the definition of T, imply
T="T, T%+1 . T%,T =T ... Ty, , T . "Ekl,+1' (4.1.76)
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Observe that T is the braid group element corresponding to the reduced decomposition

Siq o Sikn_‘_l—lsir ‘e Sikl/+1 (4177)

which is a part of the reduced decomposition

W= 83 .. Sikn+1—18ir e Sikl,+18ikl, e Sik”+1 - Sip
obtained from reduced decomposition (4.1.74),

w =S8 ... Sik,,L+1—1Sik7L+1 ce Sikl/ Sikl/+1 oo Si e Sipy

. . /\2 _ . . . . . . . . o . .

by inverting the part §% = s,  ...si, Si, 4 -+ 8i,. This inversion gives a reduced decomposition again because
52 = —1 is the longest element in W (m,z, b,2).

Now for B1 < B¢ < By, By = siy .. 8i, 04, Xg =15, ... T, X, , t = 1,... ks, we have by (4.1.76), by
commutation relations (2.3.6), and by the definition of the braid group action (see (2.2.1)), for all generators
(th)(k), t=1,...,kn, k €N, of the algebra U;**([—v1, —7Vn])

1
T (X)W = T T T LT T T T (X0 = (4.1.78)
Qiy *
1 1
= (T .ottt T T X ) = (-t Tttt T XK )R =
[k]q”! Ty 41 L 417 2t 1t [k]q”] Ty +1 e Tk, -1 41"l t
_ 1 —1 11 1 v\ pyk k k(k—=1)p—1 11 —1 (v +H\(B)\ pk
= i T T T DR = (DM TVT IO T (D )R,
where
_ m—1 —1p—1 —1
R = Tikl/+1 T Tikwfﬁ1 ...Tml(Ki ).

Since Sisy,an - SipSin, 1o Sin is a reduced decomposition by (4.1.77), by part (iv) of Lemma 1.6.3 we can
consider it as an initial part of a reduced decomposition of the longest element w € W, and hence by Lemma 2.4.2

(v)
Z® =1t Tt T (G ® e Ul (ny). (4.1.79)

Tky+1 I Tk, yq—1 t+

Therefore for 81 < f; < B, using (4.1.79) one has from (4.1.78) for all generators (X[;t)(k)7 t=1,...,k,,
k € N, of the algebra U;*([~v1, —7a))

7Y X;)® = (~1)Fgf* N ZMRE € UT (b)) (4.1.80)

Bt

This implies
T=H UG (=, =) € UG (b4),
and hence (4.1.72) takes the form

(u, (X)) (X)) (X ) Omee) (X ) dy) = (4.1.81)

Tn Tn+1

=> (W, Ty, ... T, TP;biT ) = (u, Ty, ... T, TX'T, ),
J

where p/; = T !(p;) € Uy**(by), so that X' = Z:j pib € U (by).

We also have by the definitions of T"%H Ty, =T, T,,,, ... Ty,) and of T,y = T,,T,, that
T, .. T, T=T,.. .7, T, .. Ty, Ty, =T, ... T, T,  ..T,TyTw, =
= T’Yl et T’Yn T’Y'n+1 e T’Yl/ Tw/ :

Therefore we can rewrite (4.1.81) as follows

(u, (X)) (e (X Ymee) (X Mgy = (u, T, LT Ty Ty, T X'T ). (4.1.82)

Yn+1 "
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Now recall that by Corollary 2.4.4 (ii) X" € Uy**(by) = U, (ny)U;*(H). Observe also that T,'veVis
a weight vector, and by Lemma 2.8.6 elements of U;**(H) act on it by multiplication by elements of Clg,q™'].
Therefore (4.1.82) immediately implies (4.1.63).

Finally note that TJ,lv and Tuj,lTW ... T, u are weight vectors, and different weight subspaces of V' are orthog-
onal with respect to the bilinear form (-, -). Therefore we can assume also that X (mq,...,my) in (4.1.63) belongs
to a weight subspace of U;“*(g), so that the weight of TJ,1T7 ...T,u is equal to that of X(mq,... ,ml/)Tu_),lv.
This completes the proof.

1
O

Lemma 4.1.8. Let V be a finite rank representation of Uy (g), u,v € V weight vectors. Suppose that u is a highest
weight vector. Then for any mq,...,my € N

(u, (X)) L (X)) (X)) L (X)) =

Yn+1

=(u,Ty, ...T,,T LT, Yv) = e(u, TsYv),

Tnt1 M

where
Y= > Fanp(Xg )"0 (X5) ™ (X

kyr 1 kyr+1

) (X)) € Ut (w! (b4)),
N1y D
1]*

np € Clg,q7 1], the sum is finite, and c € Clq,q~1]* is an integer power of q up to a numeric factor.

,,,,,

Proof. We bring the right hand side of formula (4.1.63) to the form stated in this lemma. Firstly, using part (iv) of
Lemma 1.6.3 we complete the final part Sig,, + - Si of reduced decomposition (4.1.70) to a reduced decomposition

o ‘ . . . , P /
W= Siy,, +8iySpy, 11+ Spp> and consider the corresponding normal ordering Bkz/’ IS (SRS By of Al

Define the corresponding quantum root vectors

— Tt Tt X 1<q<ky
X . = ’Lkl, 1g—1 1q
B T Tt Tt Xf ky+1<q¢<D’

w Pk +1 :
and the basis of U;**(ny) as in Lemma 2.4.2 (v),

(X5 V) (X)X, ) (X)), (4.1.83)

kl’ 1 k:L/+1 D

Similarly, we also complete the final segment Sipy, 41+ Sip of reduced decomposition (4.1.74) to another reduced

" 1

decomposition w = s;, -+ 8ipSpy -+ - Spy, ,» and consider the corresponding normal ordering B,@’V oo B

TR Pk, +17 "
of A, . Define the corresponding quantum root vectors Z
Xt — LTy, . .qu71X1t1 1<qg<kyp
B4 Tikll+1-'-Tiqf1Xi-: kl"i‘lgqu ’
where Ty =Ty, .y ... Tip for w” =s;, ;... sip, and the basis of U7**(n) as in Lemma 2.4.2 (i),
(XES’C'L,H)(WCZI“) e (Xl;rg)(nD)(X[;r{’)(nl) o (XBI/JZ/ )(nkl, ) (4.1.84)
We can represent the monomials (y;,,cl/+1)(nkl/+1) . (X;‘/D)(np) using basis (4.1.84),
~ Nk ~t n
(X%H)( bt (X, )P) = (4.1.85)
— X+, (e, 41)  (xF o) (x+ @) (xt (k)
qlgD Car,an ( ﬁkl/+1) ! ( D) ( 51) ( 5’%/) v
where Cy, . 4, € Clg, ¢ ']. Applying T, to this identity we get
<" (Pkeyr+1) <5 (np) —
(Xg ) o (Xg) (4.1.86)

1 D

1

2 Fpp
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S Cornan (X, )0 (X)) (X)) (X, ),

By +1 ks
q1;--,4D

where by Lemma 2.4.2 (v) for ky +1< ¢ <D

=+ ~+ —1 —1 + res
Xg =TwXg =T, ...T1 X} €U (ny), (4.1.87)
and for 1 < g < ky
X; = w/X;é, = Tu T Ty, - Ty, Xy =TTy, ... Ty, X5 € Uy (bo), (4.1.88)

where we used the fact that T, ...qule;; € U;**(ny) by Lemma 2.4.2 (i) and T5U;%*(ny) C U **(b-) by
Lemma 2.4.6.
Observe that for 1 < ¢ < ky, sp, ... 8, 0p, € Ay by Lemma 1.6.3 (iv) as sp, ... Spy,, 18 areduced decomposition
being a part of the reduced decomposition w = Siny 41+ SipSpy - Sp, - Therefore ws,, ...sp, ,ap, € A_.
Thus the elements XE{; € Uy**(b-), 1 < ¢ < ky have strictly negative weights, Wthf{ =WSyp, - Sp,_,p, < 0.
Now by (4.1.87) and (4.1.88) we have that in (4.1.86)
ST \tupa) (L \(mp) o pyres
(XB,’“Z/H) v (X ) €U (ny),
(X5, ) (06,0 € U o)

and the elements 5 3
(Xg‘i/)(‘h) . (X;‘l/‘/l/ )(‘Ikl/) c Uges(b_) _ U{;es(H)U;‘es(n_)
have strictly negative weights unless ¢1 = ... = g, = 0.
By the uniqueness of the Poincaré-Birkhoff-Witt decomposition (2.4.2) in Lemma 2.4.2 we deduce that (4.1.86)
takes the form

=+ (nk,+1) =+ (np)
(Xﬁx'wH) e (Xﬁb) -
= qul/+17~~~QD (nglwrl)(qkllﬂ) o (X;D)(QD),

Qkys+15---,9D

where Cy, 11....ap € Clg,q7']-
Applying Tuj,l to this identity we obtain that (4.1.85) takes the form

—+ —+ \(n
(Xﬂ;/c )(nkl/+1) (X )( D) — Z C,

1 D

ap (Xg )W) (X)), (4.1.89)

Kyl K

le/+1»-~7QD

Recalling basis (4.1.83) we infer that every element of U]**(ny) is a Clg, ¢~ ']-linear combination of monomials
of the form N .
e (’I’L /) e n + (’I’L ’ ) + n
(X, ) (X )t 1)(Xﬁ'k’l,+1) watt) (XBB)( 2 (4.1.90)
Kostant’s formula shows that they form a Clg, ¢~ ']-basis of U7 “*(n,.).
Now for 1 < g < ki we have

TwXg, = ToTt TN X =T TX = =T, T, X, Ky, = = X5, K, (4.1.91)
where
Kg, =Ty ... Ty, , Ki,,
and for kpy +1 < q¢< D
Tw/X;{(,Z, =TT, T X = X4 (4.1.92)

The last two identities and commutation relations between elements K and quantum root vectors following from
relations (2.3.5) imply

~+ n ~ T \(n n n
T ((X%)( ) (X)X, ) ’“z'“)...(X;g)( D>> = (4.1.93)

Ky +1
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= er--:nkl, (Xg“u )(nkl/) o (Xgl)(m)(Xg-kl/H)(nkl/+1) . (X;D)(nD)’

. Cq . 1 1
where in,_“’nkll is a monomial in Kli 7...,Kli .

Recalling basis (4.1.90) we can express X € U;*(ny) in (4.1.63) as follows
ial +wt+ ng 1 \(n
X= > Fnl,,,,,nD(X%)( b) (X ) M(X S

/
1 Ry 41

)(nkll+1) o (X;B)(TLD)’

ni,...,Np

where F,, ., € Clg,¢7'] and the sum is finite.
Now using (4.1.93) we deduce that in (4.1.63)

TwXT,'= Y F),

N1, ND

o (X5 V) (X)X f ) (X ), (4.1.94)

Br,, B1 By +1

,,,,,

where Frlll = Fnl,.“,nDthm,nk, € UQ(H) - UqTeS(H)'

RPN (35} !
Observing that T, ...T,, ., Ty, ... T, u is a weight vector and using Lemma 2.8.6, formula (4.1.63) can be
rewritten as follows

(u, (X)) (X)X ) omee) (X ) mdy) = (4.1.95)
= Z Foonpu, Ty, ... T, T, ... T, (XB_kl, )(’ﬂkl/) o (X/gl)(nl)(XB"CllJrl)(nkl/-%—l) o (XED)("’LD)/U) =
Nn1y....ND
=(u,Ty,...T,,T,,,, ... Ty, Yv),

where
Y= 3 Funn (X5 )™ GG e () R) € U (w! (b)),
ni np

Fo, ...np € Clg, ¢~!] and the sum is finite. This proves the first formula in the statement of this lemma.

To justify the last formula in the statement of the lemma we observe that T, ...T%, T, ...T,, and T, * act

as the same transformations of h C Up(h) and apply Lemma 2.8.7. This completes the proof.

O
In the course of the proof of the previous lemma we obtained the following result.
Corollary 4.1.9. The products
(X5, )mhe) (X )("1)(X;kl,+1)("’“u“) (X)) (4.1.96)
or
(X;cl,ﬂ)("’w“) (X)X ) (X)) (4.1.97)
form Uye*(H)-bases in the subalgebra U,;**(w'(by.)) of U;**(g) generated over U,;**(H) by the elements
(X5, ) ()™ (X ) e (X)) € Ni =1, D. (4.1.98)
14 1
Proof. If Y € Ur**(w'(by)) then by (4.1.91) and (4.1.92) we have T,)'(Y) € Ur**(by). By (4.1.94) YV =
T (T, (Y)) can be represented as a U,¢*(H)-linear combination of elements (4.1.96). By Kostant’s formula

they form a U;®*(H)-basis in Uy (w'(by)).
The case of elements (4.1.97) is considered in a similar way. This completes the proof.
O

Remark 4.1.10. The use of the symbol U;**(w'(by)) is motivated by the fact that the algebra U;**(w'(by)) is
generated by elements (4.1.98) which are defined with the help of the quantum root vectors corresponding to the
r00ts —fr, .- =B, Bry+1,---,Bp. They form a system of positive roots A”"_ﬁ/ n A such that w’_lAfﬁ/ = A,.
Indeed, recalling (4.1.73) we obtain that A, -+ = {B1,..., Bk, } by Lemma 1.6.3 (iv), and hence w’flAf =A, as
the number of the roots in AQ‘_/ is the same as in Ay. So, we infer that A:’fl =w'Ay. Thus w'(by) := Adw'(by)
is the Borel subalgebra of g the nilradical of which is generated by the root vectors corresponding to the roots from
Ail, and Uy (w'(by)) is the restricted version of the quantum counterpart of the enveloping algebra U(w'(by)).
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4.2 Some auxiliary results on the quantized algebra of regular func-
tions on an algebraic Poisson—Lie group

In this section we give several formulas related to the adjoint action and commutation relations in the algebra
CzlG].

Let f31,..., 8y be a normal order on Ay, fg,,..., fs, € Uz “°(g) the corresponding root vectors defined with
the help of this normal ordering.

Firstly, following [12], Theorem 1.8.16 we recall the commutation relations in the algebra C%[G] which follow
from the fact that Uj(g) is quasitriangular. Namely, if V', V' are finite rank representations of Up(g), (V )y, (V'),,
(V)g, (V") their weight subspaces of weights 7, p, 5 and ~, respectively, and v € (V),,v1 € (V'),, u € (V)g,u1 €
(V') then evaluating the identity A%P(z)R* = R*A,(x) on the matrix element (u,- v) ® (u1,- v1) and recalling
formula (2.6.16) we obtain

1+4s . (VASRY]
q((ﬁl_SPh/-i-’Ld)"] P ) (Ul, . Ul) ® (u’ . U) + Z Z (u17 . unl,.“’anl) ® (u’ . u—nl,...,—’!LD’U) —
veQ,,v#0 ny,...,np €N,
niBL+...+npBp =v
_ q((ﬁit:ph,wd)ﬁv,wv)(u’. 0) @ (ug,- v1)+ (4.2.1)
ltsp s v VY ANV Y
+ D ) g T RGN D Y ) @ (@(tny, g ), 1),
veQ,v#0 Ny, np €N,
n1B1+...+npBp =v
h
where - ) o)
U—ny,....,—mp = c,nhm’,anﬁl o f b
Uny,...np = Cnl,.“,nDegi v eggv
Ciny .. +np € B, and similarly evaluating the identity A%P(z)R3, ' = R$; ' A,(2) on the matrix element (u, - v)®
(u1,- v1) we get
1+s T YRRV,
q((’ﬁ—sph' id)n’,p") (Uh . Ul) ® (’LL, . v) + Z Z (U’la . uLnl ..... 7anU1) X (u’ . u;‘ll’”an'U) =
veQy,v#0 ny, ..., np €N,

n1B1+...+npBp =v

14s ;
_ q((nmphlfld)ﬁvy"fv)(uv . v) X (ub . ’Ul)+

3 3 (52 Py —id) (BY 40" )y o) (o1 /
+ q 1=s70 (w(unl,...,np)uﬂ : U) & (w(u—nl,...,—np)ulv : vl)’
veQ,v#0 Ny, np €N,
niBL+ ... +npBp =v
where o) )
’ 7 np ni
u—nl,A..,—nD - C—nl,...,—npf,@D e f 1 0
li ! np ni
Uny,..;np = Cn1,...,np€8p =+ €1

C/inl,.“,inD €B.
Ifo="Tvye (V)s-1y,v1 =T; v, € (V)s-1,, u € (V)g,ug = v, € (V'),, where vy € V and v, € V' are

highest weight vectors, then the previous identity yields

q((nitiPh/—idMV»uv)(vm. T 0,) @ (u,- T oy) = (4.2.2)

_ q((HEthfid)/B\/’Mv)(u’_ Ts_lv)\) ® (U,tu' Ts_lvu)'
The next lemma shows how the adjoint action behaves with respect to the multiplication in CZ[G].
Lemma 4.2.1. For any f,g € C}[G],x € UZ"*(g9) we have
A% (f 2 g)(- - ) = (Ad%2)(- ) @ g(woSy 1) (&) - woa?),

where A2z = (As ® id)Asz = 2! @ 22 ® 23 in the Sweedler notation.
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In particular,
AdY fa(f@g)(- ) = f(-)@g((woSs M) (fs) ) +(AdS f5f)(- )2 g(Gp- HZ(AdSIz‘f)(' )®9((woS: ) (yi)- )+ (4.2.3)
(G- G5 ©9(Ga- wolfs) + Y AN ) @ g((woST ) ud) - wors) =

= f(: )®9((wO5§1)(fﬂ)' )+ (A fsf)(- )@ 9g(Gs- )+ f(Gs- G5")@g(Gs - wolfs))+

+ 3G ) ©9(Gs - ) + AL ) @ ollenss )+ o)
and
n n—k
AL (o)) =30 3 g I T MG ) ) ) @ glwoSs (GRS TR - wo(£5)+
k=0 p=0
n—1
33 a ARG N ) @ g((woSTHEF YT - wol£5)+ (4.2.4)
k=0 1
Al ONE) @ g((woSs ™) - wola™)),

where Gg, ©;, Vi, P, ygp) are defined in (2.8.13) and (2.8.16), and Ay(z;) = z} @ 22, Ay(y;) = y} @ 2,

3

As(ygp)) = ygp)l ® ygp)Q in the Sweedler notation.
Proof. Denote, using the Sweedler notation,
Az = (A, ®id®id)(As ®id)Asz = ' @ 2° @ 2° @ 2*
and observe that the definition of Ad/, implies that for any z,z € UZ"“*(g)
AP (Adlxz) = (22 @ 2')(22 ® 21)(Ss2® @ Sea?) = AdLx?2? @ ot 2! S,

Let z = Sswoy, vy € Ug"*(g). Then, since wyS; ' is an algebra homomorphism and a coalgebra anti-
homomorphism, we deduce

AwoS; ALz Sswoy) = (WS @ weSTHAPP(AdLxz) = (wo S5 ! ® wo Sy A 2?22 @ 2! S =

= (woS7" @ woST ) Ad@® (Sswo)(y') ® o' (Sswo) (1) Ss2” = wo ST Ada® (Sswo) (1)) ® (woSTH) (zh)yPwor”.

Evaluating the last identity on f ® g we get the first formula in the statement of the lemma. (4.2.3) and (4.2.4)
are obtained from it using (2.8.13) and (2.8.16).

O
It will be convenient to consider a left action Ad® of UZ"“*(g) on Cj[G] defined as follows
(Ad°zf)(w) = f(Adsz(w)). (4.2.5)
It is related to Ad? by the formula
(Ad“zf)(w) = (Adqwo () f)(w). (4.2.6)

To define quantum analogues of the ideals J7* we need to introduce quantum counterparts of matrix elements
(3.5.3). By Proposition 8.3 in [48] there exist integral dominant weights p,, p = 1,...,D, and elements v, €
(Vi )up—p, such that (vy,-v,, ) € C3[G], and

0 otherw1se

("D) (n1) _
(vp7woSS_1(f(zD)...f(?l))vup):{ Vit fo, o fa = fs (4.2.7)

where the highest weight vectors v,, € V,,, are normalized by the condition (v,,,v,,) = 1.
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Since w(wo S (f3,))vp € (Vu, ), and the subspace (V,,,),, is one-dimensional this definition implies

W(WOS;I(fﬁp))Up = Vpy, - (4.2.8)
In particular, (v, ,-v,,) € Cg[G], and
(09057 (f3y) - T ) = (0 T 00 ). (42.9)
Let
Ap = (vp, T 0y,)s A = (v, T M op,).- (4.2.10)

From (4.2.2) we deduce
(v#p7 'Tsilxuﬂp) & (vpv 'Tsilv#p) = q((72KS+id)B;/)M;)(vpv 'Tsilvl»tp) ® (v,upa 'Tsilv#p)v
ie. UV
AS @ A, = ¢((T2EFDB ) 4, @ AD. (4.2.11)

More generally, denote A7 (-) = (v, Ty

tv,) € CilG], u € Py, where v, € V, are highest weight vectors
normalized by (vy,v,) = 1. Then

A ® Ap _ q 2Ks+id)oé1zvp»#v)Ap ® A/SU (4.2.12)

The following statement is a quantum counterpart of Lemma 3.5.1. In fact Lemma 3.5.1 can be proved by
1
specializing the statement of Lemma 4.2.2 at ga-2 = 1.

Lemma 4.2.2. (i) Foranyl1 < q<p <D,y € wyS;  (Ug"([~Bp, —Bp])) of the form y = woS; (f(”D) .fé:p)),
ni €N, y#1, and any u € Ug"“*(g) one has

(vg, yuvy, ) = 0. (4.2.13)

In particular, w(y)vy = 0 in this case.
(ii) For any 1 < p < D, y € woS; (U5 (=B, —Bp)) of the form y = woS; (F527) ... f5)), ni € N,
y # 1LwoS;(fs,), and any u € Ug"**(g) one has

(vp, yuvy,) = 0. (4.2.14)

In particular, w(y)v, = 0 in this case.

S, T‘PG(

Proof. (i) Observe that, by the definitions of wy and of Sy, wS; ' is an algebra automorphism of U;"“*(g) such
that woS;(Ug ™ (n1)) C Ug"*(bx) and woS; 1 (Ug" (b)) = Uz **(h). Therefore, since v,, € V,, is a highest
weight vector generating Vﬂp, by Lemmas 2.8.2 (iii), 2.8.4 (ii) and 2.8.6 we have

Vi, = woST (U™ ()0, = woS3 (U™ (n2)wo ST (U™ () wo S5 (U™ (1) vy, = (4.2.15)

— w08, (U ()TN OV (6 )0, = woS; (U (1))

Therefore we can write (4.2.13) in the form

(vg, yu)v,) = (vg, ywoS3 (¥ )v,) (4.2.16)

for some y' € UZ"**(n_). We claim that that the right hand side of (4.2.16)vanishes.

Indeed, ywoS;L(y') = woSs_l(f(ZD) e fé:p)y’) and fﬁ(ZD) . fé:" y' belongs to the right ideal Y, in U3 " (n_)
generated by fé:”), u>p>gqand n, > 0. By Lemma 2.8.2 (vii) the elements féT;D) . fgl“) with at least one
ny > 0 for u > p > ¢ form a linear basis of this ideal, and this basis does not contain multiples of fz, . So by (4.2.7)

we have

(Vg w0 Sy (5P £y You,) = 0.

The result that we proved implies that w(y)v, is orthogonal, with respect to the contravariant form, to any
element of the form wv,, , v € UZ"*(g). Since any element of V,, is of this form and the contravariant form is
non-degenerate we deduce that w(y)vq = 0.
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(ii) By (4.2.15) we can write, similarly to (4.2.16),

(Vps Y1) = (U, yw0 S5 (¥ ), ) = (v, w0 ST (S22 - 57y Yo,) (4.2.17)

for some y' € UZ"“*(n_).
f("D) .f/gp Yy’ belongs to the right ideal Y41 of UZ"“*(n_) generated by

Fime i)

If at least one n; > 0 for some i > p,
f(m“), u > p and m,, > 0. By Lemma 2.8.2 (vii) the elements with at least one m, > 0 for u > p

form a linear basis of this ideal, and this basis does not contain multiples of fs, . Therefore according to (4.2.7)
(vp,wo S5 (y")vp,) =0, for any y” € Y11, (4.2.18)

and hence the right hand side of (4.2.17) vanishes if at least one n; > 0 for some i > p.
If n; = 0 for all ¢ > p we have f(nD)...fnp) "= fﬁn")y’ np > 1. By Lemma 2.8.2 (ix) ¥y € Uz " (n_) =
Ug"*([=Bp+1, —Bp)UZ"* (|- b1, Bp]) and hence by Lemma 2.8.2 (viii)

np—1

£y € £ UST (= Born, —BoDUE™ (=81, —Bp)) € D (U™ ([~ Bpsr, —Bo))o S5 U™ ([=B1, —By)) +

=0

U (= Byper, ~BD S5 U™ (=61, =By,

where (Ulssvms([_ﬁp-‘rla —Bp]))o = Yp41 N UZ‘ "*([=Bp+1, —Bp]), so for i < ny, one has

(Ug" " ([=Bp+1, _BD]))(]féi) U™ ([=B1, =Bp]) € Ypra-

Thus by (4.2.18)
(09057 L Y0) = (0 w055 5"y ), 5" € U™ (=Bpsrs —B0]) 12 US™ (=B, By

By Lemma 2.8.2 (vi) and by Remark 2.8.3 the decompositions of elements of U™ ([—Bp41, —BD])]‘(TL”)US " (=81, —Bp))

with respect to the basis f(mD) . f(ml) only contain non-zero multiples of elements of the basis with m, > n, > 1.

None of these elements is equal to fglp. Therefore by (4.2.7)

(Vg Yuv,) = (0, Y9085 (¥ )0u,) = (Up w085 (F5 1 0u,) = (v, w0 S (5" Vv, = 0.

Thus
(vp, yuvy,) = (vp, f("D) .. f(:”)uv#p) =0

if y = woS (F5P) S # 1L we ST (fs,)-

The result that we proved implies that w(y)v, is orthogonal, with respect to the contravariant form, to any
element of the form wuv,,, u € Ug"*(g). Since any element of V,, is of this form and the contravariant form is
non—degenerate we deduce that w(y)v, = 0.

This completes the proof of Lemma 4.2.2.
O

In order co define quantum counterparts of functions ¢, we have to introduce a certain localization Cj'*°[G]
of C3[G]. By Lemma 9.1.10 in [59] it is possible to define a localization of C%[G] in the sense of locahzatlon for
nonfcommutative algebras which contains the quantum counterparts of the denominators in the definition of the
functions ¢, given by (4.2.10). We shall not need these results in full generality. In fact we shall only need right
denominators and (Cfg’loc[G] will be defined as a “right” localization of C}[G]. The exact meaning of this term will
be explained below.

We start by introducing a subalgebra C[G]o C C[G] a proper localization of which contains all the required
denominators.

Lemma 4.2.3. The set of elements (u,-T; 'v) € Cg[G], where v is a highest weight vector in a finite rank
representation V' of Ux(g) and uw € V' form a subalgebra C%[Glo in CH[G].
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Proof. It suffices to show that the product of two elements from C%[G]y belongs to C3[Glo. Let s = 54, ... 55, be
a reduced decomposition of s. Then by (2.6.17)

k
A(Ty) =[] 05, F(Ts @ T)(FS T, @ T, (4.2.19)
p=1

where in the products Ggp appears on the left from ng ifp<g,and forp=1,...,k

—1 hK.BY _ =1 —hK:.BY yv— _
65]) :d){n”}(X;pe ﬁp )’fﬁf@/}{n”}(e BpXﬁp)va*Sh"'Sip—laipv

+ +
XE=T,.. T, X

p—1
S — - Ii1+75 ’ M
HBIJ - equﬁp [(1 a qB:)eﬁpe Per=s Py BF ® pr]
Next,
Fo(Ty @ Ty)(FY) = qZim (TYi®T Ko HimYi @K Hi) 057, (T Yi® Ko Toy Hi-Yi® Ko Hy) (50 (ViOKHi=Yi@KHi) _
(4.2.20)
Here we also used the identity S2'_, T.Y; ® KT H; = Y\_, ¥; ® K H; which holds since T.Y;, ToH;, i = 1,...,1

is a pair of dual bases in b.
Now by (4.2.20) formula (4.2.19) takes the form

k
A(T,) = H 05, To @ T, (4.2.21)

p=1
and for two highest weight vectors v € V,v’ € V' we have by Lemma 2.8.4 (ii)
AT Yoo =T v T M. (4.2.22)

S S

Therefore for any u € V, v € V' we have by (4.2.22)
(u, T, ') @ (W, T ) = (wed, T, v T ) = (wed, T (ve o). (4.2.23)

Since v ® v’ is a highest weight vector in V ® V', the last identity implies (u, T 'v) ® (v, T, *0v') € C§[Glo. This
completes the proof.
O

From formulas (4.2.2) and (4.2.23) it follows that the set &5 = {cq"ﬁA;m € Pr,c e C'n € Z} is a
multiplicative set of normal elements in C%[G]o.
In particular, if vy € V and v, € V' are highest weight vectors, u € (V)g, then by (4.2.2)

AZ ® (u7 . T;lv)\) — q((ﬁﬁph/—id)(ﬂ\/—AV)vﬂv)(u7 . T;lv)\) ® AZ (4224)
For u = vp, A = A, this yields
AZ ® Ap = q_((ﬂ%t: Pb/—id)ﬁ;\;v/‘v)AP ® A;’u (4225)
and for u = v, we obtain
A7 @AY = A @A} (4.2.26)

Let C3'°°[G]o be the localization of C4[G]o by .. Denote &% = {f ® g~! € C5"°[Glo|f,g € &}, 671 =
{f~1 € C'[Glolf € &.}.

We shall need more information on the structure of subalgebras Uy in CSB’lOC [G]o generated by the elements
B, = A% @ A, € C5°[Glo, (4.2.27)

where p = 1,...,k, and the multiplication in (Ci;loc[G]o is still denoted by ®. The elements B, are quantum
analogues of functions ¢,. From (4.2.25) and (4.2.26) we also obtain

A3 @B, = ¢ (WP =i B g A3 (4.2.28)

The following Lemma is similar to Proposition 8.3 in [48].
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Lemma 4.2.4. Let Uy, be the (non-unital) subalgebra in (CSB’ZOC[G]O generated by the elements B, = Ag_l ® A, €
C%,loc[G}O, p =1,...,k, and UL the (non-unital) subalgebra in CH[G.] generated by the elements e, = (qul _
qu)qﬁgegp, p=1,...,k. Then the map

B, — ey
gives rise to an algebra isomorphism ¥ : Uy — Ug.

In particular, the elements B, satisfy the following commutation relations

1+s k

BpB, — ¢Pr P+ (55 PyBof)p B — > Clhprs-oos kr_l)B:;fll ...B", p<r, (4.2.29)

where C(kpy1,..., k1) € B.

Proof. First observe that the map
b+ CHIG] = CHB_], (1, 0) > (u® id, (wo ® id) (R)v @ id)

is an algebra homomorphism. Indeed, since wy is a coautomorphism we have by the first property in (2.5.2) in the
case of Ay and R*

(As ®1id)((wo ®id)(R?)) = (wo @ wp ® id)(As ® id)R® = (wp ® wo ® id)(R15R53) = (wo ® id)(R33)(wo ® id)(R33),
and hence
P((u,v) ® (v, 0")) = (u@id, (wo ® id)(Ri3)v ® id)(u @ id, (wo ® id)(R33)v" ® id) = ((u, v))P((, v")),

i.e. 9 is an algebra homomorphism.

Recall that by Lemma 4.2.3 elements of the form (u,-T; 'v) € C§[G], where v is a highest weight vector in a
finite rank representation V of Up(g) and u € V, form a subalgebra C[G]o in C3[G].

From (4.2.22) we also deduce that the map

C3[Glo — CE[GY, (u, Ty v) = (u, )

is an algebra homomorphism. Composing this map with 1) we obtain another algebra homomorphism °.
Next using (4.1.6), (4.1.8) and the definition of A, we obtain

P2(Ap) = (vp @ id, (oS5 1 Ss @ id)(R)vy, @ id) = (v, @ id, (woS; ' ®id)(R* ™ v, @id) =

1+s .
q(nEPh/—&-zd),uX qﬁv

= (a5, —as,) e,

Similar]
ey 0/ 40 (k12 Py +id)p)
P (Ap) =q\"1=" P,

From the last two formulas we deduce that ¢° gives rise to an algebra homomorphism o : Uy, — U g such that

—1 _ \
ﬁ(Bp) = ﬂ(Ag ® AZD) = (qﬁpl - qu)qu eBp - ep'

This homomorphism is surjective by construction. ¥ is also injective as 1° is injective (see Proposition 8.3 in [48]
and [130], Theorem 2.6 for the proof).

Commutation relations (4.2.29) follow from (3.2.15) by applying w and by multiplying by qﬁg P>
O

Denote Cj'*“[G] = CH[G] ®cy (a1, Cx'*[Glo. C5'*°[G] is naturally a left C[G]-module and a right Cj'*°[Go-
module. We denote by @ both the left C[G]-action and the right C;'*°[G]o-action on Cj'°°[G] and call these

actions multiplications. We shall often omit the symbol ® to shorten the notation if it does not lead to a confusion.
From (4.2.25) it follows that

&IA, C BA,GE 6B, C BAGL UAS = ASU,, (4.2.30)

where BA,&* (resp. BA,&?) is the B-submodule in Cj;'*°[G] generated by A,&* (resp. by A4,6%).
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By (4.2.29) we also have
UpBr CB.Ur—1+ Ur—la r>p, (4231)

and hence if we denote by U, the non-unital subalgebra in C§[G] generated by Ay, ..., 4, then by (4.2.25) and by
the relations A, = A, B,,r=1,...,D we have

UpA, C AU, 16+ U, 1651 >p. (4.2.32)

Also by (4.2.25) B B
U,A8 = AT, (4.2.33)
Let JP = C5[G]U, C Ci[G] be the left ideal generated by U,, JP'° c C5'°°[G] the image of J? ® &% C
CglG] ® Cx'*°[Glo under the projection Ci[G] @ Cx'**[Glo — CH[G] @cy(c1o C'[Glo = C5'°[G].
Lemma 4.2.5. JPI°A, = Jrlo°B c Jr— il  forr > p.

Proof. Firstly, the identity Jrlee A, = Jrl¢ B follows from the definitions of A, B, and of Jrloe,
Now we establish the inclusion. Since by the definition JP'°¢ = JP&* = C[G|U,&* for any r > p one has by
the first formula in (4.2.30)

JPICA, = JPSTA, = JPA,G. (4.2.34)
By (4.2.32) we have
JPA, = CH[GIU, A, C C4GIA T, 165 + T, &%) C J5&*F = o, (4.2.35)
This completes the proof.
O

4.3 Quantized vanishing ideals

In this section we introduce and study quantum analogues of the ideals J7', j =2,..., R — 1.
Firstly we obtain an alternative description of Jllsll which agrees at the classical level with the description of
J in Proposition 3.6.2 (ii). We start with a technical lemma.

Lemma 4.3.1. Let Ay = A, NA] and note that (Ag)+ = Do NAL = AgNAL. Both Ay, (Ao)+ C Ay are
minimal segments. Denote by Uy (—Ag, ) and Uy ((Ag)+) the subalgebras of Ug“*(g) corresponding to —Agq,
and (Ag)+, respectively (see Proposition 2.4.2 (iv) for their definition). Let b € U;**(w'(by)), (u,u') € Cx[G] an
element of C3[G] such that u is a highest weight vector in a finite rank representation V- of Un(g), v’ € V. Then

(u, Tsbu') = (u, Ty Z 2t i), (4.3.1)

where 2% € Uy ((Ao)4), o} € Ug (A, )-

Proof. First note that U;*(w'(by.)) = UUTES(H)([BIW'H’ —Bk,]), and we have a disjoint union of minimal segments
(see Figure 5)

By, =Bry ] = (=A% ) U (=(AL\ (AT U (A0)4))) U (o)t U (A% \ Am, ),

where the order of the segments in the union agrees with the circular normal ordering of A corresponding to normal
ordering (1.6.9) of A5.
Applying iteratively Corollary 2.4.4 (i) we obtain using this union

U (' (04)) = U5 oy (1B 1. — By ) =
By (— (A% \ (ATU (80)1))) U (Aa)s U (A% \ A, DUF (1 (~A3,) =
ooy (— (A% \ (ATU (o) )DUF (a1 (Do)t U (A% \ A DUF (1 (—A3,) =
e (AT \ (A3 U (A0)))UF oy (A% \ A JUF a1y (B0) -0 UFe oy (~ A3, ).
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Note that (Ag)+ C A4 and —Ap,, C A_. Therefore by Corollary 2.4.4 (ii)
Uy (w'(64) = Ugyes (ry (= (AL \ (A U (Do) ))Ug5 (1) (A% \ A U2 (1) (B0) ) UG (H)UF* (AR, ) =
Ugies () (= (AL \ (A5 U (B0) ))UG5% () (A% \ Am JU; (H)U;< ((R0) 1)U (=An,) = (4.3.2)
Uges (i) (= (AL (AT U (Do) ))Upee (1) (A% \ Am JUG?((B0)4)Ug (=A%, )-
Now observe that by the definition of A% we have s(—(A% \ (A$U (Ag)4))) € —A%, and that s™!(s(—(A% \
(AfU(A0)4))) = =(A3 \ (AJU (Ao)4)) C AZ, so in fact s(—(A% \ (AJU (Ag)4))) € —(AL\AJ) C A,

where the last inclusion follows from the definition of A_ (see also Figure 5). Recalling that for p € @ one has
Ts(Uge*(9))u = (U;*(8))sp we deduce

T (U2 () (— (A% \ (A U (Ao) ) € P (g (4.3.3)
n<0

Next, A% \ An, C A%, s0
$(A%\ Ap,) C s's?(A%) = —s'(A%),

where at the last step we used the fact that s? is an involution, and hence s> (A%,) = —A?%,. Now by Proposition
1.6.6 (i)
S(A%\ Am,) C —s'(A%) € —(AT \AL) C AL,

where at the last step we used the definition of A_ (see also Figure 5). Similarly to (4.3.3) the last inclusion implies

LUy (D% \ D)) € DU (@), (43.4)

n<0

Now we can express any b € U;**(w'(by.)) using (4.3.2) as follows
b= Zyiwizﬁrmi, (4.3.5)

where i € Ut (~(83\ (A3U (80)1))), 0 € Ut (A% \ Aw,), 74 € U7 (o)), s € U (-2, ).
Let (u,- u ) € C%[G] be such that u is a highest weight vector in a finite rank representation V' of Uy (g), and
u’ € V. Using (4.3.5) we obtain

(u, Tsbu') ZT Yi) T (wi) T2 ).

Note that by (4.3.3) and (4.3.4) the weights of the elements T(y;) and Ts(w;) are non—positive, and hence Lemma
2.8.4 yields

(u, Tsbu') ZT Y Ts (W) Te2' zpu’), (4.3.6)

where y, € U(Tﬁis (AL (AU (A0)4))), wi € U&iﬁs ) (A% \ Am,) have zero weights. Recalling that —(A% '\

(AU (Ag)+ )) and Ai \ Ap, are minimal segments we deduce that the only zero weight elements of the algebras
U{ﬁis(H)( (AT \ (AZU(Ap)4))) and U(’}i‘ig( )(A%2 \ Am, ) belong to Ug**(H). Therefore y;, w; € Us*(H), and by
Lemma 2.8.6 (4.3.6) takes the form

(u, Tsbu') Zk (u, T2y i) ZTZ+£U

where k; € Clg,q7'], 2%, € Uy ((Ao)y), o = ki € Uges(—AfM). This completes the proof

The following description of J1131’ is analogous to the description of J'! in Proposition 3.6.2 (ii).

Lemma 4.3.2. Jéll coincides with the left ideal generated by the elements (u,-v) € C[G] such that u is a
highest weight vector in a finite rank representation V. of Un(g), and v € V satisfies (u,tszazv) = 0 for any
z2e Uz " ((Ao)4), x € Ug"*(—Am, ) and any element t, of the braid group acting on b C Up(h) in the same way
as s.
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Proof. Firstly we prove the statement for t; = T as in the definition of Jéll.
Assume that (u, Tsbv) = 0 for any b € U7**(w’(by)). Observe that UZ"*((Ao)+) C Ug"*(h)Ur**((Ao)+) and
Ug"*(=Am,) CUZ"*(h)U;**(=An, ). Thus

US TES((AO) )US ’I"ES( Am+) C UZ, ’I"ES({))U;GS((AO)+)U§,T€S(b)Uq’!‘ES(_Am+) — (4.3.7)

= Ug" (D) U ((80) 1)U (—Am,)
as Ug®((A0)+)Ug" () = Ug"* () Uz (Do) +)-
Since (A0) s —Am, C [Br, +1, =By, we have Uze((80) 1)Uy (=Am. ) C Uta gy (1B +1: =B, ]) = U< (@' (64).
Thus by (4.3.7)
US ’I"eS((AO) )UE,TGS(_Am+) C Ul\; TES(h)ly';‘es(u)/(b+))7

and for any z € Ug"**((Ao)4), © € Ug"**(—Am, ) one has zo = Y, hib;, hy € Ug"**(h), bi € U7°*(w’(by)). So by

Lemma 2.8.6
(u, Tszyav) = Z(u, hibiv) = ZQ‘(U, biv) =0,
where ¢; € B are defined by c;u = h;u.
Conversely, if (u, Tszqxv) = 0 for any z € Ug"**((Ag)+), x € Ug"*(=A},, ) then by Lemma 4.3.1 with v’ = v

(u, Tsbv) = (u, T Z ZiT;v), (4.3.8)

where for all i z; € Uj*((Ao)+), z; € U (=Aq,) C U (—Am,).
Observe that U™ (h)Ug"**((Ao)+) D UF**((Ao)+) and Ug"*(h)Ug"** (= Am,) D Ur**(=Am, ). Thus

Uges((A0)+)UgeS(7Am+) C Ugmes(h)Ugres((AO)+)U[53’TSS(b)Ug’res(*Am_,_) _ (439)

= Ug" (D) Uz ((A0) )Up" " (= Am, )

s U (80) 1)U () = U5 ()U"** (o)),
By (4.3.9) formula (4.3.8) takes the form

(u, Tsbv) = (u, Ts Zh;z; )

where for any z; € UZ"*((Ao)4), ) € UZ"*(=Awm, ), b € Ug"°(h).

Thus by Lemma 2 8.6
(u, Tsbv) = Z(u,h;zgmlv) Zc (u, ziztv) =0,
where ¢, € B are defined by cju = hju
Hence Jllg coincides with the left 1dea1 generated by the elements (u, -v) € C%[G] such that u is a highest weight
vector in a finite rank representation V' of Uy (g), and v € V satisfies (u, T zxv) =0 for any z € Ug"*((Ao)+),
€ U™ (—Am,).
Finally by Lemma 2.8.7 T used in the definition of Jéll can be replaced in the statement of this lemma with

any element t; of the braid group acting on b C Up(h) in the same way as s. This completes the proof.
O

We proceed with the definition of the quantum analogues of the ideals J7!, j = 2,..., R — 1. Denote Ojm,; =
(Wi wj—1) " Brtnp, = (wi...wjo1) " Be. Let Ug" " ([=0ju, —8jm,]) = Tyl s, U5"*([=Bjr, —Bc]) be the
subalgebra in USJ’T”( ) generated by the elements Tw11 . 1fﬁn), B € [=Bjk, —BRr—1nn_.), n € N. Note that from
the definition of the elements f3 it follows that T, ! cwy 1f(n)( )= f(w1 wy_1)- 15(8;) for B € [—Bj1, —Bp], where for
a € Ay and j > 1 the elements f,(5;) are defined using the element s and the normal ordering on A introduced
in Remark 3.5.4. To shorten the notation we write from now on fo(én) (55) = f(n) for B € [—d;1, —d;p] if it does not
cause a confusion. We shall also need the subalgebra U, “*([—d;x, —6,p]) C Ugj’res(g). »

In complete analogy with the definition of the ideals J7! for j = 1,..., R — 1 we define Jél as the left ideal

generated by the elements (u,-v) € (C? [G] such that u is a highest weight vector in a finite rank representation
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V' of Un(g), and v € V satisfies (u,ts,z12v) = 0 for any z; € Ugj’ms(gi) = T,!

LWy

Ug"((Do)4), = €
Ug"“*([=6;1,—6jm,]) and an arbitrary fixed element t5, of the braid group acting on h C Uy (h) in the same way
as 5.

Note that by Lemma 2.8.7 this definition does not depend on the choice of #5,. For j =1 this definition agrees
with the previously given definition of Jllgl/ due to Lemma 4.3.2.

Also similarly to I}' defined in Proposition 4.1.1 we introduce left ideals I%l = ngl N CY[G] in C¥ [G], where
ngl = ‘]éll @B C(qﬁ)a ] = 1,7 s 7R —1.

Next, for the left ideals I, ;31 we obtain a description similar to the one given in Proposition 3.6.2 (i). We start

with a technical lemma which will allow us to use properties of the vanishing ideals J7* to prove some properties
of their quantum counterparts.

Lemma 4.3.3. Let X be a free B-module, V C V' C X two its submodules such that V = V' mod (qﬁ D\

Proof. First observe that by Theorem 6.5 in [102] V' C X is B-free, as B is a principal ideal domain, and V C V'
is a free submodule of V'. Let e,, a € A be a basis of V. As noted in the proof of Theorem 6.5 in [102], A is a well
ordered set, i.e. it is a totally ordered set in which any nonempty subset has a smallest element. Then as shown
in the proof of Theorem 6.5 in [102] V' has a basis elements of which have the form f, =3, _, cley, a € B C A,
where ¢ # 0, ¢& € B, and the sum is finite. Since V' =V’ mod (qﬁ — 1)V’ we must have B = A, and ¢ # 0 mod

(qﬁ —1) for all a € A.

Now using a simple transfinite induction we can express the elements of the basis e, regarded as elements of V]

in terms of f,. Indeed, if ag € A is the minimal element then e,, = cgg—lfao, and assuming that eq = >, -, gfjlfb,

a _ _
g4 € C(qa®), g3 # 0 holds for all d < a we get e, = @' (fa— > y_nches) =@ (fa—Dpeuch Zhébg{jfh), where
all sums are finite. This establishes the induction step and completes the proof.

O

Lemma 4.3.4. (i) For j=1,...,R—1, let t5, be an arbitrary element of the braid group acting on b C Uy(h) in
the same way as 5. Let Jj' be the left ?deal in ng [G] generated by the elements (w,-v) such that (w,yts, z4xv) =0
fOT any 'y EIU/Z‘;j,TES‘(b—)’ Z+‘€/ Ulsijfes(zi-)vx € Ulz’j,Tfs([itsjla‘*(sjmj])'
Then J§' C J§' and J;; = JE = JIt mod (¢® — 1)Jg;i | .
ii) Denote JiV' = JI' @p C(qga?), Ji' = Ji' @p C(qg@?). Then JIV = Ji'. Thus I} = Ji' N CH[G] =
q B q B q q B q B
a/ S
JITNCHIG].
1 . . S res 5 I~
(iii) J, JL and I} are stable under the Adgj ~action of Ug""**([~6;1,—0jm,]). Thus CZ[G]/JL" and
(C? [Ci]/]él are naturally equipped with the Ugj’res([féﬂ, —08jm,])—action induced by the Adgj -action ongj’T'es([féjl,
on C#[G].

Proof. (i) If (u,-v) € ngl is one of the elements generating Jéll, i.e. u is a highest weight vector in a finite rank
representation V' ofAUh(g), and v € VAobeys '(u, tgjz+;UAv) =0 for any z4 € Ugj’ms(giL T € Ugj’res([—éﬂ, —8im,]),
then for any y € Uz (b_), 24 € U5 (%), © € U ([=6;j1, —0jm,]) one has by Lemma 2.8.4 (i) and by the
definition of J%ll that

(u, yts; 24 2v) = (u, yots, z+7v) = c(u, ts; z42v) = 0,

where yg € Uéj’ms(h) is the zero weight component of y, and ¢ € B is defined by cu = you.

Thus (u,-v) is also one of the elements generating Jfél, so that Jéll - ng. This proves the first claim of part
(i) of the lemma.

Next, observe that the specializations of Ug’"**(5%,) and of UZ""**([~0;1, —6;m,]) at q@* = 1 are isomorphic to

5j,res

U (;ﬂ) and U(m? ), respectively, the quotient of the specialization of U, 5 (b-)at qﬁ = 1 by the ideal generated
by L;—1,and by t;—1,i =1, ..., is isomorphic to U(b_), and the elements L, and ¢; act by identity transformations

on the specialization of any module V"¢% at qﬁ = 1. Therefore recalling Proposition 2.8.5 (ii) we deduce that the
specialization of Jél at qﬁ = 1 is generated by the matrix elements of the form (w, v) € C[G], where w,v € V,
V is a finite-dimensional representation of g, and (w,ys;z42v) = 0 for any y € U(b_), 24 € U(3’,.), « € U(m?’),

75jmj])
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and the specialization of Jéll at qdﬁ =1 is generated by the matrix elements of the form (u,-v) € C[G], where u
is a highest weight vector in a finite-dimensional representation V' of g, and v € V satisfies, and (v, ;24 2v) = 0 for

any z4 € U(gi), zeU(ml).

Since the enveloping algebra of any Lie subalgebra of g is also a Hopf subalgebra of U(g), the product of
any element of C[G] and of (w,-v) € C[G], where w,v € V, V is a finite-dimensional representation of g, and
(w,yS;z42v) = 0 for any y € U(b_), z4 € U(3}), * € U(m’) satisfies the same condition. So in fact the
specialization of JZJ; at qd% = 1 consists of the matrix elements of the form (w,v) € C[G], where w,v € V, V is a
finite-dimensional representation of g, and (w,ys;zyxv) =0 for any y € U(b_), z4 € U(Q,Jr) zeUml).

Now from parts (i) and (ii) of Proposition 3.6.2 it follows that JZ;/ = J%l = J’' mod (g g 1)ng.

(ii) Note that by part (i) ngl/ c J4' are submodules of the B-module Cy [G] which is free by Proposition 3.2.7
(iv). Also, by part (i) ng = Jéll = J7' mod (qﬁ — 1)JJ Therefore by Lemma 4.3.3 JJ! = lel

(iii) Firstly we prove the statement for Jéll.

From formula (4.2.4) with s = 5; we have for any 8 € [~0;1, —0jm;]

n n—=k
AdG S (f@g)(- ) =D D ap TR AG (G AP ) © 9lwo S G TSR - wo(fE))+
k=0 p=0
S A G ) oSG ) ol s o)
k=0 1

I D) @ gl(@oSTH ™) - wo@™)).

Assume that g(- ) = (u,- v) € (Czj [G], where u is a highest weight vector in a finite rank representation V' of
Un(g), and v € V is such that (u,ts,z,2v) = 0 for any 2, € Ugj’res(gi), € Ug" " ([<0;1, —0;m,]), and f € CZ[G]
is arbitrary.

We claim now that all terms in the right hand side of the last formula belong to ngl. More generally, one can
prove the following statement.

Lemma 4.3.5. Let g(- ) = (u,- v) € (Czj [G], where u is a highest weight vector in a finite rank representation V
of Un(g), and v € V is such that (u,tg;zywv) = 0 for any zy € Us”Tes( ), v e USJ’TES([ 81, =0jm,]). Then for
any y' € USJ’Tes(b_) and b € Ug""*([=8;1, —0;m,]) the element g(y - b) satisfies the same properties as g.

Proof. By Lemma 2.8.6
gy - b) = (u,y - bv) = (u,y5 - bv) = co(u, -bv),
where y, € Ué\j’res(b) is the zero weight component of 3 and ¢y € B is defined by You = cou.
Also, for any z; € Uy " (5}), x € Ug""*([~d;1, —0jm,]) we have zb € USJ’TGS([ i1, —0jm,]), and hence by
the definition of g
(u,y'ts, zyxbv) = co(u, tg, z1xbv) = 0.

O

) z

previous lemma 1mphes that all terms in the right hand side of (4.3.10) belong to le , L.e. AdO f )(f®g)( -, )€
Jél/. Since the elements f ® g, with f, g € CZ{ [G] as in (4.3.10), span Jé we obtain Ad2 f(n)(J]1 ) C Jl];/. The
elements f/gn)7 B € [0j1,0jm,] generate Uf;j’res([—éjh—&jmj]), and hence Jé is stable under the Adgj—action of
Ug" (=851, ~8jm, ).

If we naturally extend the AdAv—actlon of USJ’TES([ 81, —0jm;]) to Cy[G] we immediately deduce that JJ' =

Jél ®p C(ga o ) is stable under this action.
Hence 1 %1 =Ji'n Cy [G] is also stable under this action as clearly Cy [G] is Adgj —stable.

Since S, (G5" 7 £5 ), 85,(G5 "), S, () MYy ¢ U (b_) and £, 2t eUW“([ 8j1,—6;m,]) the
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Assume now that g(- ) = (w,- v) € (CZJ [G] is such that (w,yts zyov) = 0 for any y € USJ’TES(b_),z+ €
U;j’Tes(aﬂ_) x € UGJ "([=6;1,—6jm,]), and f € CZ[G] is arbitrary. 4

We claim again that all terms in the right hand side of the last formula belong to J{;. More generally, one can
prove the following statement.
Lemma 4.3.6. Let g(- ) = (w,- v) € (Czj [G] is such that (w,yts,z av) = 0 for any y € UGJ "Cbo), 2y €

Ugj’Tes(gi),m € Ul?’res([—éjl, —0jm,]). Then for any y' € USJ’TQS([]_) and b € Ugj’res([—(Sjl, —0jm,]) the element
g(y’ - b) satisfies the same properties as g.

Proof. The results is obvious as for any y € UGJ "), 2 € Usj’r"([ 051, —0jm,]) one has y'y € Ug”rpg(b,),xb €
UGJ’W?([ 951, —0jm,]), and hence
9(y'yts; 24 xb) = 0.
O

Since Sg, (G5" P £ ), 85,(G5 y" ), SSJ(yl(") ) € Uy (b-) and £, € UF" (=01, ~8jm,])
the previous lemma implies that all terms in the right hand side of (4.3.10) belong to JZ;, ie. Ad0 f(n)(f ®
g, - )€e Jél. Since the elements f ® g, with f,g € (C? [G] with g as in the previous lemma span Jz]’j‘ we obtain
Ad2 fén)(Jél) JL'. The elements f(”)7 B € [61,0im,] generate Ugj’res([—(Sjl, ~0jm,]), and hence J§' is stable

under the Adg -action of Ug" (61, —0im,])-
This completes the proof.

4.4 Higher quantized vanishing ideals

The next step in our approach is the definition and the study of quantum analogues J%k and JZ;C/ of the ideals J7*
and J7*' for k > 1. ~

Firstly, for each j =1,...,R—1, k =1,...,n; we define the matrix elements (v;, v,,,) € Cy [G] by condition
(4.2.7), where for j = 1 the normal ordering on A, introduced in Definition 1.6.19 is used, and for j > 1 the normal
ordering on Ay defined in Remark 3.5.4 is used, and 8, = 0. Let

Ak () = (Wi, Tg op)-

Lemma 4.4.1. Forj=1,...,R—1,k=1,...,n; +1, let J%k/ be the left ideal in (Czj [G] generated by JZ;/ and
by Ajp, p=1,...,k—1.
Let ts; be an arbitrary element of the braid group acting on by C Uy(b) in the same way as 55, ij the left ideal in
Cy [G] generated by the elements (w, -v) € C [G] such that (w, yhts, zyav) = 0 for anyy € wOSA (Ug Uy (=0, —6;p])),

h c UGJ req(b)7 Z+ e Us] T'E‘?( 1 ) = USJ,Tes([ 5]1, 6jm]])
Then the following statements are true.

(Z) If p < k then for any y’ S wosg_jl((]gj,res([ 5]k7_ ])) of the form y _ OJOS (f("p) fgnk)); nl e N,
be U;:Nles([*(;ﬂ, —6jm,]), W' € Ugj’res(h) one has

Ajp(y'H - b) € JE
If in addition y' # 1,w05§j1(f5jk) or the zero weight component of b is zero then

Aj(y'n - b) e T (4.4.1)

Aji(85 (fo,)7) = By () = AR (). (4.4.2)

(i) JIt < Jit ¢ JIF and JIY < JIF ¢ Jg’“.
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(iii) For any y' € USJ’TES( _),be Ugj’res([—éﬂ, —6jm,]), W' € Ugj’res(h), if the zero weight component of y' is
zero or the zero weight component of b is zero then

ASi(y by e gt c gt < gk

S;,res ik’ j
(iv) Ad (UF" ([~ 85k, —0m, )T C TE".

Proof. (i) If p <k and ¢’ # 1 then A;,(y'h' - b) = 0 by Lemma 4.2.2 ().
If y' = 1 we have to show that A;,(h'yhts,z1xb) = 0 for any y € woSA (Ug U (=81, —6p])), h € USJ "*(h),

Zy € Usj,reg( ) x € Us,,?"es([ 5]1, —(5ij]).

By linearity it suffices to check this condition for y of the form y = wOS (f("D) f(n’“))7 nf € N as these
elements form a basis of wongl(Ugj’Tes([—chk, —4,p)))-

Again if y # 1 then Aj,(h'yhts; 2, 2b) = 0 by Lemma 4.2.2 (i).

Ify=1

Ajp(h'yhts, 2 xb) = (vjp, h'his, z+sz§;1va) CipCip(Vip, ts, z+xbt§_jlv”jp) = ¢jpCp(Vjp, ta, (24 D)V, ),

o . /
where h'hv;, = ¢;pvj, and TA Vyj, = C]ptg Vujps Cips Cjp € B.

Lemma 4.4.2. (i) For any v € Uéj"res(gi)Ugj’res([—(sjh —0jm,]) the element t5;(v) has no weight components of
weights which belong to —(wy ... w;_1) A7,

(ii) For any v € Us]’res( ‘)Uq] "([=6;1, —6jm,])and any b € Ugj’res( UE"([=6;1, —6jm,]) which has no
non-trivial zero weight component the element ts, (vb) has no non—trivial zero weight component.

Proof. (i) The weights of the weight components of t5, (v) belong to —N(wy ... wj,l)’ls(Aﬂ_ UAyp), and by Lemma
1.6.22 (ii) this set has empty intersection with —(w; ... w;j_1) A

(ii) The weights of the weight components of ¢, (vb) belong to N(5;([—0;1, —8jm,]) U (w1 ... wj—1) " s(Ag)4) =
N(wy ... wj—1) " s(([=Bj1, —Bc]) U (Ao)+), and the set [—B;1, —Bc] U (Ag)+ is contained in the minimal segment
[BY, —Bc]. Therefore if b has no non-trivial zero weight component the element vb has no non-trivial zero weight
component as well. Hence #5; (vb) has no non—trivial zero weight component. O

Since zyxb € Ugj’res (31)U§j’res([—5ﬂ, —0jm,]) by part (i) of the previous lemma the element ¢, (24 2b) has no
weight components of weights which belong to —(wy ... wj_1)7'A7, and —d;, € —(wq ... w;—1) A7, Since v;, has
weight @i, — 0jp,

Ajp(R'htg, 21 ab) = ¢jpCi,(vip, s, (24 2b)vy,,) =0
by orthogonality of different weight subspaces with respect to the contravariant form. This proves part (i) for

p < k.
Ifp=Fky #1 wOSil(f(;]k) then A;,(y" - b) = 0 by Lemma 4.2.2 (ii).

If 4 = 1 we have to show that Ajj.(h'yhts,zxb) = 0 for any y = oJOS’ (f f("")) n eN he UGJ "*(p),
Zy € UEJ’TSS(3+)7x € Ugj’res([_(sjl? _6jmj])'

Again if y # 1,wOS/Sle(f5jk) then Aji(h'yhts, z4xb) = 0 by Lemma 4.2.2 (i).
Ify=1

Ajo(h'yhts, zyab) = (vj, h'htg, 2 20T 0y, ) = ey vk, ta, 20 @bt v,,) = ¢ (Vs b, (24 20)v,, ),

where hh'v;, = ¢;v;, and Tglvﬂjk = c}ktglvww Cik, c}k € B.

Since zyab € Us"res(gi)Ugj’Tes([—éﬂ, djm;]) by Lemma 4.4.2 (i) the element tg, (2, 2b) has no weight com-
ponents of weights which belong to —(wy .. wj 1)TAY and =ik € —(wy ... wj— 1) A7, Since v;; has weight
Hik — Ok,

Ajr(Wyhts, 2, xb) = ¢y (vjn, ts, (24 xb)vy,, ) = 0

by orthogonality of different weight subspaces with respect to the contravariant form.
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If y = wo S5, (fs,,) then

Aj(h'yhts, z4ab) = (vj, h'wo ST (o) hts, 21 2bT5 oy, ) =

= }/kcg'k(”jkMOSA (fo,0 )hts, zy bt Yop,,) = i (Vs s, (2 ab)up, ),

/ — Al . /) - _ — // ///
where h'vji = ¢ vk, hvy, = v, and Tg Ve = cjktA Vpjp> Cips i € B.

The element t5, (21 2b) has no non— tr1v1a1 zero weight component by Lemma 4.4.2 (ii) as by the assumption b
has no zero Welght components in this case. So we deduce that

Ajk(y h'yhts Z+Ib) = jkcjkcjk(vﬂjk’tSJ(Z-‘rxb)vllgk) =0
by orthogonality of different weight subspaces with respect to the contravariant form. .
Ifp=ky = wosgjl(fgjk)we have to show that Ajk(ngl(f(;jk)h'yhtgjz+xb) = 0 forany y = wo S (f(nD f(n’“)),

Ok
nl €N, h e Ug" (), 24 € U™ (3%.), 2 € U5 ([=0j1, —0jm,])-
In this case

A ( (f(Sch )h yht Zerb) (quka h/yht§j Zerng‘;lvujk) = jkC}k (quk, ) yht§j (Zerb)quk)v

where h'v,jx = djrvy,, -
Again if y # 1 then

Ajk(ngl(fgjk)h’yhtgj zyab) = djpcly. (v, yhts, (z4xb)vy,,, ) =0
as vy, is a highest weight vector.
Ify=1
]k(s’\ (f(s]k)h/yht Zerb) - jkcjkcjk(vujwtaj (Z+xb)vﬂ]k)

The element 5, (24 xb) has no non-trivial zero weight component by Lemma 4.4.2 (ii) as by the assumption b has
no zero weight components in this case. We deduce that

Ajk( (féjk)h/yhp zpab) = chgkcgk(vujutsj(Z+17b)1’ugk) =0

by orthogonality of different weight subspaces with respect to the contravariant form.
Formula (4.4.2) follows from (4.2.9).
This completes the proof of part (i).

(ii) We show that Jék/ C J%k. Indeed, by Lemma 4.3.4 (i) any element from Jéll belongs to JZ;. We claim that
Jél C Jék, where the same braid group element 5, is used in the definitions of both algebras.

Let (w ) € J§' be one of the elements generating J§ , i.e. (w, yts, 2 av) = 0 for any for any y € USJ’TGS([J_)7 2y €
USJ "), € USJ "= 6j1,—(5]-m ]). Then (w,yhts, zyav) = 0 for any y € woSA (U, s”ms([ djk,—0;p])), h €
UZ70), 2 € U (0w € Ug " (=1, ~bym,]) a5 woSs (UF" (=650, ~S0))UE"(8) € U™ (b.).
Thus (w,-v) € JZ; is one of the elements generating JZ;C. .

We deduce using Lemma 4.3.4 (ii) that Jéll C Jz]; - Jék.

By part (i) A, € ngk forp=1,...,k—1. Since Jél/ and A;, with p < k generate J%k/ as a left ideal, we obtain
that JI*  JiF.

(iii) In order to show that Aij (y -b) € Jél/ we shall check that it is one of the generating elements of Jéll.
More precisely, we verify that Aij (y' - b) = c(vy, ~bT§_p1vH) for some ¢ € B, and

Af: (Y'ts, zyxb) = (vu,y’tgpz+be§:J1vlt) = (w(y’)vu,tgszrbeg:leﬂ) =0 (4.4.3)

for any z4 € Usjﬂeé( ) Usj,res([ 5]'17 *6]7117])
Since w changes the signs of the weights, the weights of the weight components of w(y’) belong to N(A ). Thus

Aij (y -b) = (W(yé)vm 'ng_plUu) = c(vp, 'ng_plvu)a
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where y; is the zero weight component of 3/, ¢ € B is defined by yyv,, = cv,.
Next, for any 2z, € U;j’res(gi_), z € UZ"**([~0;1, —6;m,]) one has using the previous formula

Afj (Y'ts, zab) = c(vp, ts, z+be§;1vu) = cc’ (v, t5, z+xbt§_jlvu) = ' (vy, ts, (z4xb)vy), (4.4.4)

where ¢’ € C¢%, ¢’ # 0 is given by Lemma 2.8.7 using the condition nglv,t = c”tg_jlvu.

If the zero weight component of ¢’ is zero then ¢ = 0. Thus (4.4.3) holds. In fact Aij (y' - b) =0 in this case.

By Lemma 4.4.2 (ii), if the zero weight component of b is zero then the zero weight component of tg, (zyxb) is
zero as well, and hence the right hand side of (4.4.4) vanishes as different weight subspaces are orthogonal with
respect to the contravariant form. Thus (4.4.3) holds.

This completes the proof of part (iii).

(iv) Firstly, the ideal Jél/ is stable under the Adgj —action of Ug'""**([<8;1, —0jm,]), and hence under the Ads,—
action of U§j7res([—5jk, —0jm,]) C Ui;j’res([—éﬂ, —0jm,]). Therefore by part (ii) and by the definition of J%k/ we
infer

5j,res i1’ i1’ ik’ ik
A (UF" (=85, —8jm, D) TG C Jf C T C I

Since the elements fén), B € [0k, —0jm,;], n € N generate Ugj’ms([—djk,—djmj}), and Jél/ and Aj, with
! S
p < k generate Jék , it remains to show that for arbitrary f € CJ[G], 8 € [~6jx, —0jm,], and n € N one has
AdL £ (f @ Agp) € JE for p < k. )
Indeed, consider formula (4.3.10) with arbitrary f € CiJ[G], g = Ajp, p <k, n €N, and B € [~6;, —0jm,]. By
part (i) the second factors in all ®-products in C;; [G] in the terms in the right hand side of (4.3.10) belong to Jék.

Thus Adgj fén)(f ® A € Jék. This completes the proof of Lemma 4.4.1.
[

Lemma 4.4.3. For any j € {1l,...,R—1}, 1 <k <nj +1 the following statements are true.
. i1’ j

(i) JE Ay < T o | |

(ii) For any p € Py JE Ay < Ji ¢ g3

(111) For any jn € Py Jék/Afﬁ C Jék.
Proof. (i) To show that Jél/Ajk C Jék it suffices to verify that for any (u,-v) € C? [G], where u is a highest
weight vector in a finite rank representation V' of Up(g), and v € V is such that (u,ts zyzv) = 0 for any 2, €
Ugj’res(gi),x € Ugj’res([—éjl, —0jm,]) one has

((u,v) ® Aji)(yhts,z4x) =0 (4.4.5)

for any y € woST (U " ([=0j0, ~;0])s h € UF " (0), 24 € UF"*(5),2 € U (=811, ~Gjm, -
We shall use this condition with t5, = ng.
From (2.8.13) and the fact that wo S5, ! is an anti-coautomorphism preserving weights we obtain

A () =1®y+ Y vi®w, (4.4.6)

where the weights of the elements v; are strictly negative.
From formula (2.6.18) with k equal to the length of 5; we have

k k
= =5 S (“Yi@Ks Hi+Ts.Y,@Ts Ks. Hi)7 = 5 = =
A, (Ts,) = [[ 05, ¢>==r V@K BT Vel K B0 o T = T 05 Ts, © T, (4.4.7)
p=1 p=1
where we used the fact that K3 h = gi? wj__llPh/wj_lh for any h € b, so have K3, s5, = s5,K5;, and hence by
J

(4.2.20)

q i=1(Ts, Yi®@Ts; K5 Hi—Yi®Ks Hi) _ 1. (4.4.8)
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Since u is a highest weight vector we obtain using Lemma 2.8.4 (i), (4.4.7), the definition of 5217/ after (2.6.18),
and (4.4.6) that the left hand side of (4.4.5) takes the form

((u,v) ® Aji)(yhTs,242) = (u, h'Ts, 22 2') (vjk, thigj ziszglv/%) =
= t(u, h' Ts, 2z 2" ) (vjk, yh° T, zia:QT;jlvwk) = t(u, h' Ts, 24 x'0) (vjk, yh* Ts, (252%) vy, ), (4.4.9)

where t is a non—zero multiple of a power of ¢ defined in Lemma 2.8.7 by the condition ng lvﬂjk = tT;jlvM,c and
we use the Sweedler notation for the coproducts. R
By linearity it suffices to check condition (4.4.5) for y € y € wongl(Ugj’res([—éjk, —0;p])) of the form

o)y

J .
5i n’“)) n] € N.
D

gk /7

y = woS;(

In this case by Lemma 4.2.2 (i) the second factor in the right hand side of (4.4.9) vanishes if y # 1,woS;*(f5,,.),
and hence (4.4.5) holds.
If y =1 (4.4.9) takes the form

((u,v) ® Ajp)(yhTs, z4x) = tt'(u, Ts, 2L a'v) (v, Ts, (25 2%)v,,,), (4.4.10)

where ¢ € B is defined by t'u ® t2v,;, = t'u ® vjj.

From (2.8.13) or (2.8.16) it follows that 2% € Ugj’Tes([—Jlk, —0;m,]), so the weights of 2% belong to N[—8;1, —6;m,] C
N(ws ... wj,l)_l(—Ai U (Ap)+). The first line in (2.8.17) implies that the weights of the weight components of
2% belong to N(wy ... w;—1) " ((Ao)4 U [=Bjr, —Bp,]) € N(wy ... wj,l)_l(—AZr U (Ag)+). We conclude that the
weights of Ts, (23 27) belong to N(wy ... w;j_1) " 's(—=A% U (Ag)4), and by Lemma 1.6.22 (ii) this set has empty
intersection with the set —(wy ... w;_1)"*AJ which contains —d;x. Since the weight of v;j is pjr — ;1 the right
hand side of (4.4.10) vanishes as different weight spaces of V,,, are orthogonal with respect to the contravariant

form.
Ifty= wOngl(f(;jk) then by (4.4.2) formula (4.4.9) takes the form

((u,v) ® Aji) (yhTs, 24@) = t(u, h' Ts, 24 x'0) (v, WP Ts, (25 2% vy, ) = 7 (u, Ts, 24 2 0) (v, Ts, (25270,
4.4.11
where ¢ € B is defined by t'u ® t*v,,, =t"u®v,,,. | !
Recall that from (2.8.13) or (2.8.16) it follows that 2% € U™ ([=8;1, —0jm,]) = Ug"" (w1 ... wj—1) " [=Bj1, —Bc]),
and the second line in (2.8.17) implies that 22 € U (w1 ... w;j—1) 7 [BY, =Bj—1n,_.])UZ " (b). Since [—Bj1, 8],
(B8Y, —Bj—1n; 1] C (81, —Bc], and [87, — ] is a minimal segment, the zero weight component (23 z?)o of 23 z? belongs
to Uz “°(h), and by (2.8.13) or (2.8.16), and by the second line in (2.8.17) we have z12' ®@(222%)g = 3, 2020 @i,
Zn € Ug”’ms((wl coewi—1) TN (Do) 1), T € Ug”’ms((wl coewj—1) T =B, —Be]), hn € Ugi’ms(h). Thus (4.4.11) takes
the form
((u,v) ® Ajp)(yhTs, zx) = tt" (u, Ts, 2L a'0) (v, T, (2527 )ovp,, ) =
=tt" (u,ngznxnv)(vuijgj hnvy,,) =0
n
since (u,ng 2nxnv) = 0 for all n by the choice of u and v. Thus (4.4.5) holds, and the proof of part (i) is completed.

The proof of part (ii) is similar to that of part one. The same arguments are applied with Aj; replaced by Af:j .
Formula (4.4.11) will be replaced with

((u,v) ® Aij)(ythjz+x) = ti(u, Ts, 2 ') (v, Ts, (25 2%)vp),

where  is defined by the condition Az, (yh)u @ v, = tu® vy. The rest of the proof is repeated verbatim.

For part (iii) we recall that Jék/ is the left ideal in C} [G] generated by JZ;/ and by Aj,, p < k. By part (ii)
TV Ay it c ik, .

Using commutation relations (4.2.12) we deduce that the left ideal in (Czj [G] generated by A;,, p < k is invariant

5 Ny ;
with respect to multiplication by A,/ from the right. This observation together with the inclusion J§' A7 € Ji*
imply the inclusion in part (iii).

O]
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4.5 Localizations

jikloc i boc j o 5;,loc j o s;,loc
Let Ji¥" and ngk/ the images of J4* ® 6;, c ClGl® (CB]"I [G]o and of Jék/ ® 63 Cc GG @ CBJ’Z [Glo,
respectively, in (ng’loc [G] under the projection (Cf;j Gl ® C?’IOC[G]O — (C‘;;j (G] ® s - C?’lOC[G]O = (C?’loc [G].
B 0
. loc -1.loc 1 . yloc -.1loc 1
Lemma 4.5.1. Let Jgkl = J" op C(qa?), Jgk/ = Jék/ ®5 C(qa7).
. loc ., sloc .. loc ., 1loc 3. loc .loc 3. loc
Then JiK'° = Ji¥" Thus P = Ji*"* ncy'*[q] = T ncy*![q).

Proof. Let ¢; : (Clggj [G] — (Clgsj’loc [G] be the canonical B-module homomorphism. Since Jék C Jék/ by Lemma 4.4.1

kloc

B y jk/loc
(ii), J§ < Jg  , and hence

_ i loc _ -k/lOC
TR ) gt UE ). (4.5.1)
When specializing q@? to 1 the matrix elements Aji, become (vjg, -glvwk), and the set &3, becomes the set
S; by their deﬁniti?ns. By Lemma 4.3.4 (i) J%l/ = JZ%1 = J/1 mod (qﬁ - 1)Jé1. Therefore Jék/ = J7* mod
(qﬁ —1) and Jék/ = JI*'° mod (qﬁ — 1) by Lemma 3.6.1 (ii).
ik L 1 . jkloc ploc 1
On the other hand J3}" = J7* mod (¢@? — 1) by Lemma 3.6.2 (i), and hence J = J’* " mod (¢g&? —1) by
Lemma 3.6.1 (i).
., 1loc . loc - loc 1 B .. loc _ ., 1loc 1
Thus Jékl = {{Sk = JI" mod (qa® — 1), and hence ¢; Y™y = Oy I(Jék/ ) mod (ga? — 13. But
-.loc ;. 1toc 5, . . _ -.loc 1 _ i 1t0C
L]l(Jfgk ), L;l(Jék/ ) € C4 [G] which is B-free. Thus by Lemma 4.3.3 ¢; LI @5 C(qz7) = L 1(J1Jgk, ) @8
(C(qﬁ), or
. loc . yloc
TR = R, (4.5.2)

where we denote by the same symbol the natural extension
1 CF[G] ®5 C(g7) — CF"*°[G) @5 C(q?).

. loc ., 1loc
Formula (4.5.2) implies that Jg’“l = Jgk, . This completes the proof.
O

Corollary 4.5.2. For any j€{l,...,R—1}, 1 <k <nj+1 the following statements are true.
- loc ; .loc
(i) For any j € {1,...,R—1}, 1 < k < nj +1 one has I Aj, = I}" By, C Iék ., m < k, where
-1
Bjk = A(])k X Ajk; A?k =A
loc . .loc
(i1) For any j € {1,...,R—1}, 1<k <n;+1, p € Py one has Iljgk A7 Cfék .

. .
(iii) For any j € {1,...,R—1}, 1 < k < n; one has I}’ ” c IF+

loc
Hik*
1loc

Proof. Part (i) follows from Lemma 4.4.3 (i), Lemma 4.2.5 with s = §;, U, being the algebra generated by Aj,,
n < m, and from Lemma 4.5.1.

Part (ii) follows the definition of I ékloc.

Pert (iii) follows from the obvious inclusion Jék/ C Jékﬂ/ and from Lemma 4.5.1

Forje{l,...,R—1}, 1<k <mn;+1let
oc Sj,loc ikloc
Cl[G) = CE " [GI/ I

(Cé“;f [G] is naturally a left (C? [G]-module.
From Corollary 4.5.2 (i) and (ii) we deduce the following statement.

5j,loc

Lemma 4.5.3. For j € {1,...,R—1}, 1 <k < n; multiplication from the right on CJ""[G] induces a natural
action of A} € Sz, € Py oon Cﬁc[G], and for k > m, right multiplication by Aj, and by Bji gives rise to
well-defined homomorphisms of left (Cf;j [G]-modules (Clj‘;i [G] — (Cé-‘;f[G},



4.5. LOCALIZATIONS 167

In the next two lemmas we study the properties of the adjoint action. These properties will be needed to study
properties of quantum analogues of the operators IL;; defined in (3.5.19).

Lemma 4.5.4. (i) For any j=1,...,R—1,n €N, B € [0;1,0jm;] and f € C? [G] we have
AdO f(n)(f ® Aij) — qn((2K§j —id)BV,uV)Adgjfén)(f) ® Aij (453)

in CH[G)/J3.
(i1) The adjoint action of Ug " ([=051, —6m,]) on C¥ [G]/Jéll defined in Lemma 4.5.4 (iii) induces an action
on (Cloc [G] satisfying

Adgj fén) (f ® Aij—l) _ q—n((Qng —id)ﬁV,HV)Adgj fén)(f) ® Af:] fe (CZOC[G}. (4.5.4)
This action is locally finite.

Proof. The proof of part (i) follows from formula (4.2.4) applied to g = Af:j. By Lemma 4.4.1 (iii) all terms in the

right hand side of (4.2.4) belong to Jél/, except for term in the first sum which corresponds to p =n, k = 0. It
gives the right hand side of (4.5.3).
Part (ii) follows from Lemma 4.5.1 and from part (i).

Local finiteness of the action of U S“Tes([ 81, —0jm;]) on CL°[G] follows from the local finiteness of the action
of Uéj’res([—éjl, —08jm,]) on (CSBJ [G] and from formula (4.5.4).

O
Lemma 4.5.5. The AdA —action of Ug " ([=0jks —6jm,]) on (C? [G] induces a locally finite action on (ClOC[G] =
Czj’loc[ ]/IZ;’c satisfying (4.5.4) for any f € ClOC[G].

Proof. By Lemma 4.4.1 (iv) Adgj(Ugj’reS([—éjk,—5jmj])Jék/ c JIF. Since JI' < JI*¥ the adjoint action on
6’[ ]/le/ defined in Lemma 4.5.4 (i) satisfies the property Ad2 (USJ’T“([ djk, —5jmj])(Jék//Jé1/) C Jék/Jéll.
Hence by Lemma 4.5.1 the action of US]’T“([ djk, —0jm;]) on (CIOC[G] defined in part (ii) of Lemma 4.5.4 satisfies

3;,res loc loc loc loc
Adg, (U (=050, —0im, DUE /1) C I /15
Thus this action induces an action on Cl5°[G] = Cs“loc[ G/ I} %' This action is locally finite as Adgjsaction of

Ugj’TES([_gjk, —0jm,] on C? [G] is locally finite.
O

—1

Proposition 4.5.6. For j =1,..., R —2 the morphism of C[[h]]-modules lejlwgf“jj : U,fj (9) — U,fj“(g) induces
an invertible morphism of B-modules ¢; : C?“ [G] — C? [G] which is defined by

(65 )(@) = FTz%  (2),2 € UG (g), f € CZ (G (45.5)

and satisfies -
G AL (T, ) = Ad™ (2)¢y, = € U ™" (g), (4.5.6)
6;(f®9) =Y (AdY (dLca)$5£)(-) @ g(Ty  (vSs, (em) - d2dn)), f.g € CZ[Gl.y € UF"(g), (4.5.7)

m,n

& —1 5
where Gij =D o Om @b, V5, =D amSs; (b)), O, =D, cn @ dy, Ag,dy = dt @ d?,.
The inverse to ¢; is given by

(67 1) @) = F(@ )T, (@), 2 € U7 (0), f € CFIG) (45.8)
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Proof. Recall that by (2.6.17) for the reduced decomposition w; = s, ... Sy, and Ty, =T, T, we defined

njyp - - njnj

nj

o = [1065.. (4.5.9)
k=1
where in the products 9§J’k appears on the left from Gijm if kK <m, and
5 _ —2Ks.8Y, s, 1 —2K5.68Y,
9§;k = exPg; | [(1— qéji)eéjk,e EACLNY f5jk]7 9;;k = equa_.lk [(1— q(%jk)e‘sjke IR ® fdjk},
J

_ + hKs. 5%, _ ( —hKs.8% v— o )
s, = (Xéjke i%%), fs.. = (e 3% ngk)a(sjk = Snyp - Sy Qg

Xt =1 T X+

Sk MGt I -1 g

Observe that for f € C?“ [G] one has f(T;1Ty,) € C?“ [G] as the braid group acts on finite rank Ug’“’ms (9)-

i
modules. )

Formula (2.7.5) for z/;g’wjj is expressed in terms of Qifj and of vz, the definitions of which contain infinite series
in divided powers of quantum root vectors (see (4.5.9)). Only finitely many such divided powers act on a given

finite rank U gj 7 (g)-module in a non-trivial way. Therefore only finitely many terms in the infinite series will

contribute to formula (4.5.5).

2K 5j41,7€8

% %% which appear in the formula for 03’1 also act on finite rank Ug (g)—modules as such
TSV
—2K3%;05%k acts on a subspace of weight A by multiplication

The elements e

modules are direct sums of their weight subspaces, and e
by M2K5,%0%) ¢ B
We conclude that (4.5.5) defines a morphism of B—modules ¢; : (ngj“ G] — (CgBj [G).
Formulas (4.5.6) and (4.5.7) follow from (2.7.26) and (2.7.27), respectively.
O

Lemma 4.5.7. (i) For j=1,...,R—2 one has qu(JZ;Hl/) C JZ;”H.
(ii) For j = 1,...,R—2, f € CZ"'[G] one has ¢;(f @ Ai™") = (¢;f) ® Tujjl(Afﬁ'“) mod Jénjﬂ, where
TUle(Aij+l)(.) = Aﬁjﬂ (Tq;jl _ij)'

(11t) If p,v € P are such that wjp+v € Py and j = 1,...,R — 2 then Tl;jl(Ai”l) @AY = A%

wipty mod

j’I’Lj +1
JirtL

Proof. (i) By the definition of Jénj and of Jé“ll it suffices to show that for any f € (C?“[G] and ¢(-) = (u,v) €
C?“[G] such that w is a highest weight vector in a finite rank representation V' of Uy(g), and v € V satisfies
(u,ts, ., zyaxv) = 0 for any z; € U;j“’res(gfl), x € Ugj“’ms([—éjﬂl, —d,+1]) and some element ¢z, , of the braid
group acting on h C Uy () in the same way as 5; one has

Sj+1

(b](f ® g)(w ®yht§jz+x) =0

forany w € Uy “*(g),y € oJOS’;jl(Ugj’res([—(SjnjH, ~8;p]))s h € U™ (0), 24 € Ug""(5%), 2 € U™ (=61, —Ojm;])-
Indeed, from the explicit formula for vs, and for HZ;J] and from the fact that Sg, preserves weights, and for

k=1,...n; T, (es,,) has strictly negative weights it follows by Lemma 2.8.4 (i) and by formula (4.5.7) that

wj

6;(f @ 9)(w @ yhts,zyx) =Y (Ad™ (dy,en) 3 f)(w)g(Ty, | (0S5, (cm)yhts, 2+ ady,dy)) =

m,n

= S (A () ) () 0, T (055, (e hts, =)o) = SO (AQ (e0) f) () (1, T (yhts, 21 o)

m,n n

Since w; ! [—=8jn, 41, —0;p] C A_ Lemma 2.8.4 (i) implies that the right hand side of the last formula takes the
form

¢;(f @ g)(w @ yhts, zyx) = o Z(Adsj (en)o; f)(w)(u, Tujjl (hts, 2y xdy)v), (4.5.10)
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where yo € B is the zero weight component of y.
Next, zd, € Uy “([~6;1, —0jm,]), therefore by Lemma 2.8.2 (ix) we can write zd,, = > p TnpThy + Yn, where

Tnp € Ug"’ms([—éjl7 —0jn;]) have strictly negative weights, yn, x7,, € UgJ "*([=6jn,;+1, —0;m,]), and (4.5.10) can be
rewritten as follows

i (f @ 9)(w @ yhts zyx) = yo Y _(Ad* (cn) 3 f)(w)(u, Ty ! (hts, 24 Trply, )0) + (4.5.11)

p,n

+yo (A (), ) (w) (u, Ty, (hts, 2. yn)0) =

=10 Y _(Ad™ ()¢ ) (w) (u, Ty (hts, (z0p)) Ty (b5, 20 )0) + 0 Y (AD™ ()5 ) (w) (us s, T (z9m)0),

p,n

T 1tAT 1

S+17 SJw

where ¢ € B is defined by the condition Tfl(h)u = cu and tz

The weights of the weight components of tg, (24 2,,) belong to Ns]((wl cwj—1) T (Ag)4 U [=851, —0jn,]) =
N(w; ... wj—1) " (s(=A7 U (Ap)+)) and by the choice of Tpp they do not belong to N(w; ... w;_1)7*(Ag)+. Since
by Lemma 1.6.22 () s(AY) C AJH, and (wy...w;)” 1AJ+1 = A, we deduce that the weights of the weight
components of T, (htSJ (24%np)) are non-zero; they belong to N(A_ U (wy...w;)"*(Ag)4+) and do not belong to

N(wy ... wj)~ (A0)+ C Ay. In particular, these weights are not non—negative, and hence by Lemma 2.8.4 (i) the
first term in the left hand side of (4.5.11) vanishes as u is a highest weight vector.
For the second term we note that by the definition

T (UF 7 (55)) = Ug ™ 1), T (U5 (=8my 15 =05, 1)) = Ug ™" (=051, =81)),

so that T’ (z4yn) € Ug”l’res(giﬂ)U?“’Tes([ 0j+11, —0;j4+1]). Therefore the second term in the right hand side
of (4.5. 11) ‘vanishes by the choice of u and v. This completes the proof of part (i)

(ii) By the definition of J]n’ it suffices to show that for any f € (Cs”] [G] one has
i (f @ A+ (w @ yhts, z4.) = (6, ) (w)AZ+ (T, yhts, 2 2T,

for any w € U5 (g), y € woS5, (U™ ((=8jn,+1,=0;p])), b € U " (0), 24 € U™ (5%4),0 € U™ (=01, =0y, ])-
Similarly to (4.5.10) we obtain

05(F © AJ) (w @ yhts, z4x) = yo 3 (D (€0) by )W) (0 Ty (s, 24 2y ), 0) = (4.5.12)

=yo (A% (), ) (w) (v, T, (hts, (z2dn) o),

where yo € B is the zero weight component of y, and we assume without loss of generality that 5, , =T, 1th Tw 1
Note that only the zero degree component of z;zd, can contribute to the right hand side of (4.5. 12) Since

zyady, € U‘S]’T%( i)UE”T“([féﬂ, —08jm,]), the weights of the weight components of z, zd,, belong to

N((w1 .. .’lUj_l)il(Ao)_i_ U [7(5}'1, 76jmj} = N(wl - wj—l)il((AO)—l- U [75]'17 760])

Observe that (Ag)+ U [—Bj1, =B C [BY, —B] which is a minimal segment. Therefore only the product of the zero
degree components of zy, x and d, can contribute to the right hand side of (4.5.12). From the formula (4.5.9) for

95}; =Y, Cn ®d, it follows that only one term with d,, = 1 has this property, and the corresponding ¢, =1 as
well. We conclude that (4.5.12) takes the form

o;(f® A,S:J“)(w ® yhts, z4x) = yo(¢; f)(w)(vy, Tle(htgj (z12))vp)-

Finally since w; ™ '[—0;n,+1,—0;p] C A_ and y € wo S, (USJ’T%([ djn;+1,—0;jp])), Lemma 2.8.4 (i) implies
that the right hand side of the last formula takes the form

¢ (f © AT ) (w @ yhts,zi.x) = (8,f) (w) (v, Ty yhts, 24T, b5, v0) = (6,F) (W) AT (T yhts, 2 aTy,).
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This completes the proof of part (ii).
(iii) By the definition of J5" it suffices to show that

(AF(T, ! Tu,) ® AF) (yhts, zpx) = Auj s (Yhts, z4x) (4.5.13)

for any w € Ué]’mb(g) Y € woSs, (Uéﬂ%([ Sjn;+1,—0;ip])), h € Uzsgjmes(b) Zy € Us”res( ).w € Ué]’mé([ 815, —0jm;])-
We shall use this condition with ts, =T,
From (2.8.13) and the fact that wOng !'is an anti-coautomorphism preserving weights we obtain

A () =vo+ Y v @h+ Y vk @ wy, (4.5.14)
% k

where the weights of the elements wy are strictly negative, y; € wongl(Ugj’res([—@njH, —d;p])) have non-zero
weights, h} € Ug""“*(h), and yo € B is the zero weight component of y.
By (4.2.21)
Ag,(Ts,) = 03 Ts; © T,
Recalling the definition of 637 and observing that v, and v, are highest weight vectors and that the weights of
the elements of T’ (wOSA ( g”ms([ 8jn;+1, —0;p]))) are non—positive as w; ~*[—d;n,+1, —0;p] C A_ we deduce

using also (4.5.14) that the left hand side of (4.5.13) takes the form
(Afj“ (Tujj1 Tw,;) ® Aif)(ythj z1x) = yo(vy, Tuj W' Ts, 22 T, Ts

Si+1
= yo(vu, Ty w, L(h Tg](z+x1))vu)(vu,h2ng (zixQ)vV).

We deduce that only the zero weight components of z +x and of zixz can contribute to the right hand side of the

v) (vy, T, 25 2% T5,0,) = (4.5.15)

last formula. Since the comultiplication preserves weights and z,z € Uy (31)U§j " ([<051, —0;m,]), the weights
of the weight components of z4x belong to
N((wr - wj—1) 7 (Ao)+ U [=8j1, =Gjm,] = N(wr ... w;j—1) 7 ((Ao)+ U [=Bj1, —Be]).

Observe that (Ag)+ U [—Bj1, —Bc] C [BY, —B] which is a minimal segment. Therefore only the product of the zero
degree components (z4)p and xg of 4 and z, respectively, can contribute to the right hand side of (4.5.15). By the

definition of the algebras Us”res( %) and Us”res([ 051, —0jm,]) we have (24 )o,z0 € B. Therefore we can rewrite
(4.5.15) as follows

(Af:j“(Tle “Tw,;) ® Aij)(yhT’s\j 24@) = yo (24 )owo (v, Ty (R )v,) (vy, hP0,) = (4.5.16)

wj
= y0(2+)0$0(ij Uy & vy, hij Vp ® vu) = y(](z+)0x()(iju+ua hij,quu) = y(](ij;H»ua hTS\] (ZJr-T)ijp,Jru) =
= (Vuy s YT, 24 0T V) = DYy (YT, 240).

This establishes (4.5.13) and completes the proof.
O

Proposition 4.5.8. (i) If u,v € P, are such that wjp + v € Py then for j =1,..., R — 2 the following relation
holds in (Cé‘;f 11Gl:
—1 3\7‘ 1 _ S
T, (A7) = AY ® A
(i) For j=1,...,R—2 ¢, induces a morphism of B-modules

65 : CnlG] = Cff 1[G (4.5.17)

wjp+v

which satisfies ~
¢ AL (T, tx) = Ad% (2) ¢y, @ € U™ ([=8jm, 41, —6jm, )5 (4.5.18)
and ~ —
o (f @ A7) = (¢, f) @ Ay iy @AY f € Cé'o-fn[GL
O(f @ AT ) = (0,0) 0 AT 9 AT, S € Cl(G)
where p,v € Py are such that wju+v € Py.
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Proof. (i) follows from Lemma 4.5.7 (iii) and from the definition of (Cé-‘;f_‘j 1[G
(ii) follows from part (i) of this proposition, from Lemma 4.5.7 (i) and (ii), formula (4.5.6) and from the
definitions of C{%¢},[G] and (Céonc 111Gl
O

4.6 Zhelobenko type operators for q-W—-algebras

This section is central in this part and in the whole book. We are going to introduce and study some quantum
analogues of the operators I, and II. defined in (3.5.19) and (3.5.21). It turns out that the analogues Pj;, of I,
can be obtained by proper extrapolation of the expansion of the conjugation operator in (3.5.19) in terms of the
adjoint action operator and by replacing the coefficients ¢;; with their quantum counterparts Bj;, introduced in
Corollary 4.5.2 (i). However, the proof of Proposition 4.6.1 which asserts that the image of their composition P,
consists of invariant elements with respect to the adjoint action of UZ"**(m_) is rather complicated. It entirely
relies on the properties of [ ékloc
previous sections of this chapter.

The point is that in the quantum case we do not have in our disposal the isomorphism (3.4.32) which plays a
crucial role in the proof of a similar property for the operator II., given by (3.5.19), (3.5.21), as one can see from
the proof of Proposition 3.5.6.

We start with the definition of quantum analogues P;,, of the operators I1;,. For technical reasons we shall also
need more general operators Pf,. More precisely, by Lemmas 4.5.3 and 4.5.5 for f € C°[G], j =1,...,R—1,

p=1,..,n5 nk €N n >k we have a well defined element AdY fi" " (f) @ By, € <C§.‘;5[G]. Note that by

Lemma 4.5.5 for each f € (Cé-"“[ G] Ad2 fén k)(f) =0forn—k> N(f), Where N(f) € N depends on f. Therefore
we can define define an element PF,(f ) (Cg%c [G] by

, of the quotients (Cé-‘;f [G] and of the adjoint action, which were obtained in the

(n—=1)(n—2k)

PE(D) = S (-1, F Al 1P () 0 B, (16.1)

In particular, formula (4.6.1) defines an operator
Py, : Cir[G] — Cie[d).

Denote P]Qp = Pjp.
The following proposition summarizes the main properties of the operators Pj,.

Proposition 4.6.1. (i) Foranyj=1,...,R—1,p=1,...,n; the composition
ngp = P11 e P1n1 e} (bl o P21 e P2n2 e} ¢2 ...0 ¢j71 o le e Pjp : (CS(;)C[G] ClOC[G] (462)

is well-defined. In fact P<j, is well-defined as an operator with the domain (Cé‘;il[G}

(ii) For any f8 € [B11, Bjp), n > 0 and for any f € Clo¢, | [G] we have
AU (P<jp(£)) = 0. (4.6.3)
In particular, for any x € Ug"**([= P11, —Bjp)), f € Ci6 1G]
AdJz(P<jp(f)) = es(2) P<jp(f),
and if we denote P, = P<p_1y,_, then for any x € U " (m_), f € ClﬁilnRﬂ_‘_l[G]
Moreover, for j=1,...,R—1,p=1,...,n4, (j,p) # (R—1,nr_1) one has
AL (Pejplf)) = cpa Pesp(Ad2 17 ), (4.6.4)

where we assume that Bj,, 1 = Bj111 and cjpi1 € {£q"}.
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The proof of Proposition 4.6.1 is quite long. It will be split into several lemmas. Firstly we shall show that

P, is well-defined as an operator with the domain of definition C¢,,[G], i.e. Ijy’ TS P ¢ Clo¢[G] belongs
to the kernel of this operator.

Then we prove that for n > 0 Ad% fg?L)Pjp is the zero operator. This is done using an explicit calculation and
27 p
observing that Adgj f g;) has some properties analogues to properties of derivations of order n.
Finally to show that for 5 € |11, f;p] and n > 0 Adgfén)(PSjp(f)) = 0 we shall use the property of the images

of operators Pj, mentioned in the previous paragraph and commutation relations between P;, and Adgj f/gn) for
B > 0, which, in particular, lead to commutation relations (4.6.4).

Firstly, we are going to show by an explicit calculation that for n > 0 Ad0 f5n)P ’ip 1S the zero operator. Since

the right hand side of formula (4.6.1) contains products of elements from (Cs“ ’“|G] and of B?,, we have to study

ip’
the adjoint action on such products.

Lemma 4.6.2. (i) Let Bj, = AY) ) Aj, € (Cs]’loc[ Glo, f € Cle[G], j=1,....,R—1,p=1,...,n;. Then for
any k,n € N the identity
. min(n,k) @n—r)h+ 200 o [ K 0 p(n—r) o
ALV (feBE) = Y g [ . ] Adg £, (f) © B, (4.6.5)
r=0 a5,
holds in (Cé»‘z’f [G].
(ii) For any two roots o, B € A we denote
ciﬁ — q((2K5+id)o¢,ﬁ).

Then for any j=1,...,R—1,p=1,...,n;, m,neN, f € (Cl"c[ I, B € [0jpr1,05m,] the identity
AdY f5(f @ By) = (c5) )™ AdY £ () © By, (4.6.6)
: loc
holds in C5°[G].

Proof. (i) We prove (4.6.5) by induction over k. We start with the case when f is the image of an element of (C? [G]
in C{¢[G] under the canonical map C [G] — (CS”ZOC [G] — Cloc[G]. Firstly by (4.2.4), we have for any n € N

Ado f(n)(f ® Ajp) — q n(x Ph"stfé pslip—0jp) AdO (fén )(f) ®Ajp+

+q(n71) K 1+

o= Simtar=0i) 2D AQY (£D)(£) @ AjylwoSs (fs,,))+

—k(n—k) n kIES P 5. S i —0s - n—k k
+Z ( K15 Pyr6ip—0ip,Hjp 5Jp)Ad%j (G57if§]p ))(f) ®Ajp('o~)0( (g]p)))_f_

JJP

#3720 Gk D () 6 4 (0S5 (G ) - en(F)) (4.6.7)

»?0p °J Jjp ip
k=1

n n—k—2

+Z Z —k(n k)—p(n—k— ;D)Ad() (Gékf(;p))(f)@AjP(wOS;j ( S pfé:; h p)) (f(SJp))

k=0 p=0

+ZZ g5 "I AQY (G5 Ea" T () @ Agp((wo S5 ) (G k") - wo(£i)+

k=0 < o
1
ZAd“ ) © A0S ™) - wola™)).

By (4.4.1) all terms in the right hand side of (4.6.7), except for the first two, vanish. Also by (4.4.2) we have

Ajp((wongl)(fgm) ) = A9, and hence in both cases we have

AdY FV(f @ Agp) = " P =Sipttin =0 AdG (£I)(f) @ Ajprt
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1+4s

g DTS Py Sip=biptin=3in) ¢ (” I)Ado( (” 1))(f)®A?p~

Since by definition elements of 65 ! naturally act on (Cé»‘;c [G] by multlphcation from the right one can multiply

the last identity by (A?p)_1 from the right. Using commutation relations (4.2.2), formula (4.5.4) and recalling the
definition of B;, we obtain

n n— n—1 n n
AL £V (f @ Bjp) = qp AL £V (F) + g3 AdL £V (f) © By, (4.6.8)
Multiplying the last identity by A;l from the right and using the same arguments we get
AL [ (f @ AL @ Byp) = qp PAL [V (T @ ALY + gt AdL £V (F @ ALY @ By,

Since elements f ® A7 span (Cé—‘;f [G] formula (4.6.8) holds for any n € N, f € (Cl"C[G}7 i.e. (4.6.5) holds for any
n € N, k = 1. This establishes the base of induction.

Now we assume that (4.6.5) holds for some natural k and for all natural n and prove that it holds for k + 1
and all natural n. The arguments given below are the same for both cases, and we consider them simultaneously.
Since by Lemma 4.5.3 right multiplication gives rise to a well-defined action of Bj, on (Cé-‘;f[G], we have for any

fe (CZOC[G} using the base of induction and the induction assumption

min(n—1,k)
n— =1 —rk+ " —r(n-1) | k n—r—1 .
=g 1 Z q n r 5 r(n [ ; Adgféjp )(f)®B;~€p +
qs

ip 3jp Sj
r=0 Jip
min(n,k) @ g £E=1) T(T 1 k |
on n—r —rn 0 n—r k—r+1 __
+q5.7’p Z Q5]p |: r :| Adg] féjp (‘f) ® ij o
r=0 955p
min(n,k+1) (2n—r) (k+1)+ 20 k (k+1) k )
. n—r —rn r r— 0 n—r k—r+1 __
- Z qéjp <q5jp |: r :| + q5jp |: r—1 :| ) Ad?} f5jp (f) ® ij -
r=0 455p 955p
min(n,k+1) (2n— )(k+1)+M, - ka1
D VI B T UL it
r=0 o qs;

ap

- k ) [k | k+1
Tosp [ " ]qs R L1 qs N " qs
Jip j

ir

where we used the identity

which can be found e.g. in [62], Proposition 6.1. This establishes the induction step and completes the proof of
(4.6.5).
Formula (4.6.6) is proved in a similar way by induction using Lemma 4.4.1 (i), formulas (4.2.4), (4.4.2), (4.5.4),
and the definition of Bj,.
O

The previous lemma shows that the operator AdO f (n) acts on f® Bj’-“p as a quantum analogue of a derivation

of order n such that the derivative of Bj, by Ad f§ is equal to one. Recalling the definition of the classical
counterpart ¢;, of Bj, one can observe that a 51m11ar formula can be obtained in the classical case as well. It will

be given by specializing (4.6.5) at qdr2 =1
In the next lemma we show that for n > 0 the composition Adgj f 5(;;) Pj, is the zero operator. At the same time

il L
this lemma lays a basis for the proof of the fact that the kernel of P<j, contains I3’ +170¢ /I o

Lemma 4.6.3. For annyCé»‘Z’f[G],jzl,...,Rfl,pzl,...,nj, k=0,1,... we have

ijp(f ® Bjp) =0, (4.6.9)
Ad2 [ (P (f)) =0, n > 0. (4.6.10)
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Proof. Since by Lemma 4.5.3 right multiplication by Bj, gives rise to an action of B;, on (Cé—‘;f[G] we have by (4.6.1)
and (4.6.5) with k = 1

> (n—1)(n—2k)

p = lin—2k) L n—k—1 n
P]kp(f®B]p) = Z (_1) QtSjP 2 q‘?ka lAng ‘gjp )(f)®ij+
n=k+1
i (n=1)(n=2k) n—k "
+> (=g, Ay I (e Bl =
n=k
> nindl=2k) 4\ p n—k n
== (-1, Adg 1 () @ By
n=k
o w—i&n 2k n—k n
+Z( n" 4s;, Ado ( )(f)®ij+1:0
n==k

which proves (4.6.9).
Similarly by (4.6.1) and (4.6.5) we obtain

AL £ (P (f)) = AdQ, £ (Z J: AdY, <’“><f>®pr>=

k=0

ad BDk 4 op—t)k+ 22Dt | k n— _
B DD DI et V] e e B
qs

Jip
k=0 =0 i

Introducing a new variable of summation k — ¢ = r and using the identity

n— n+k—t ntk—
i IR A
qs

8jp djp
Jip

we get
AdY £ (P (f)) =
o n (r4t—1)(r+t) . t(t 1) ] I ]
[yt TR e R e [ +t r+n 0 ("“) v
DB - - ARG @ By,
r=0 t= das, b S a5y,
Now recalling that
T+t r+n [ n] [ r+n ]|
t r+t Tt T
955 955 “4s5p - - 3jp

we obtain

Ad 1 (P(f) =

oo (7‘ 1)7‘ =
=3 L <Z<—1>fqaji”" a ) Ad (/51 )() @ By, = 0,
as,;, a5

t=0 ip
where we used the identity
n
Z t 7t+tn n -0
t
t=0 s,

which follows from the g—binomial theorem (see e.g. [43], Ch. 1).
This proves (4.6.10).
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Lemma 4.6.4. (i) Let k € N. Then foranyj=1,...,R—1,p—1,...,n; one has P;;(Iépﬂloc/léploc) =0. Thus
Pf is well-defined as an operator with the domain (Cé‘;i_l[ ]

(it) Moreover, for any 1 <i<j<R—-11<q<mn;, 1 <p<n; suchthat g <pifi=j, and any k;; € N the
composition
Pk’qu::” 0di...0p;_1 oP;flj1 ...Phr

q v Jp

is well-defined and gives rise to an operator with domain (Céop‘iH[G] , and the target space being (Cégc[G].
In particular, the composition P<j, = Pi1...P), is well-defined and gives rise to an operator with domain
Cloc | [G] and the target space being CYy°[G].

il il iyl
Proof. Let us show that pr (g L /I Oc) = 0. Indeed, by the definition of I}’ +1°¢ and by commutation relations

: loc inloc
(4.2.2) for any element f € I{gpﬂ there exists an element u € B, u # 0 and g, h € I} such that uf = g+h®Bjp,.
Let f,g, h ® Bj, and h be the classes of the corresponding elements in (Céfz’f [G]. Note that h ® B;, = h ® B;, and

g = 0, and by the previcius Lemma Pﬁf" (h® Bjp) = Pﬁf"(ﬁ ® Bj,) = 0. Thus ng(ﬁ) = qu;"(f) = 0. Since
u # 0 this implies Pfg’d( f) = 0. This completes the proof of the first statement.

The remaining statements of the lemma are simple corollaries of the first assertion and of (4.5.17).
O

Next, we are going to study how the adjoint action of quantum root vectors commutes with the operators Pj,.
For this purpose we shall need some commutation relations between quantum root vectors stated in the following
lemma.

Lemma 4.6.5. Let fz € Ug"“°(g) be quantum root vectors defined with the help of an arbitrary normal ordering
on Ay. Then for any a < B, a, 5 € Ay and any m,n € N we have

m

fém)fén) _ (Ciﬁ)mn Z qg(m—l) Z f(:Dl) o fé:")fém_p), (4.6.11)

,,,,,
p=0 a <6 <...<6p <8

where the coefficients dP

v pn € B do mot depend on m.

Proof. To prove this lemma it suffices to show that

Ia'ts = Z > S5 S TS, (4.6.12)

where

P = gpm=1) [ " } )
P 1,
and the coefficients ¢§ € A do not depend on m.

Indeed, dividing (4.6.12) by [n],,![m]q,! we arrive at an identity of the form (4.6.11) where the coefficients

db . . @& priori belong to (C(qdf ). But by the uniqueness of the Poincaré-Birkhoff-Witt decomposition in
Ug"“(n_) (see Lemma 2.8.2) we have db € B.
Now we establish (4.6.12). Firstly we consider the case n = 1. By commutation relations (2.8.12) we have

m—1
filfa = ()™ fafil + Y ()™ 1 i > Cpr,. o pa) [ L2 2 f =l (4.6.13)

k1=0 a <8 <...<6np <B
Pl pn €N

where C(p1,...,pn) € A. The first term in the right hand side of this formula agrees with the term in the right
hand side of (4.6.12) corresponding to p = 0. The other terms in the right hand side of (4.6.13) will contribute to
the terms in the right hand side of (4.6.12) with p > 0.

Denote

Dyfa = 3 Clpr,ee e pa) L T2 f2

a<d; <...<d8p<B
Pls-- s pn €N
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Then (4.6.13) takes the form

m—1

Fil s = (o)™ fafil + D (chp)™ T R D fuf (4.6.14)

k1=0

To get the term in the right hand side of (4.6.12) corresponding to p = 1 we have to move f*! to the right in
(4.6.13) using commutation relations (2.8.12),

fafts :CZsz5foz+ Z C(p1’7pn)f f . 'fé: 2035f5fa+D5fa7 (03 <67 (4615)

A <8 <...<bp <3S
Pls---s pn €N

and keep the leading term c s f5 fo for each 0 = 61,...,6,. Since for weight reasons d1p1 + ... + dppn = a + 3, so
the weight of Dgf, is a + (3, this yields

m—1
Ffs = ()" ol + D (chp)™ M ekt Ds fafT T + R, (4.6.16)
k]ZO

where R stands for the terms contributing to the terms in the right hand side of (4.6.12) with p > 1. Now

m—1 m—1 q2m 1
k _ B _
E (cap)™™ i 1Cala+ﬂ (cap)™ ! E (cap)” (e aﬂ)kl = cap)"” ! E q%l = ! e =
95 — 1
k1=0 k=0 k1=0

= (cap)™ ™ mlae = (c5p)™ 'S,

and (4.6.16) takes the form

Fa f5 = (cop) ™ falil + (o)™ 1Sy, > Cloroewspa) S5 52 S S0+ R (46.17)
a<ép <...<b6p <B
Pls-- s pn €N
The second term in the right hand side of this formula agrees with the term in the right hand side of (4.6.12)
corresponding to p = 1.
To get the term in the right hand side of (4.6.12) corresponding to p = 2 we have to move f*! to the right in
(4.6.13) using commutation relations (2.8.12),

ki—1
Farfo = (cla) " fa f3 + Y (€)M a2 Do fa £, (4.6.18)
ka=0
and keep the terms containing one “differentiation” Ds, f, for some ! = 1,...,n. Since the weight of Ds, f, is a+4y,

this yields

m—1ki—1 n

Re 3 30 30 S )™ e o (e )P (e )0 e x (4.6.19)

k1=0ko=01l=1 g=1

k k1—1)(g—1 k-1 k1—1)p,
G LI Ll ICIN L LN A Ll
XOP1, - pa) I3 F3 T 0T D fu ST S R F T+ Ry,
where R; contains only terms with more than one “differentiation” Ds, f,, for some [ =1,...,n.

Now by the definition of the coefficients (¢ (xﬂ) and using the identity é1p1 + ...+ dppn = a + 8 we have

C \m—ki—1/.s \k S \kipi_i.s  \ki(pi— ki —k ko \(ki—1)(g—1)( s
(i)™ R M (s, )P L (chs, )P () 1 Q)(Caé) RS rs) 2(0351)( R 9

= (CZﬁ)m_l(cZQ)kﬁ_kQ (0251)_q(025l+1)_pl+1 st (Cz5n)_pyl7

z 1)(1f1—1)pz+1 o (685 )(kl—l):lln —
I+ QOn

Z Z(Ciﬂ)m_kl_l(cial)klpl---(0351,1)16”)“1(Ciél)kl(m_q)(%a)kl TR ()P (e ) B 1)(Ca51+1)(k1_1)p”1-~-
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(e, ) =

m—1 k‘l—l
= ()™ ) k) T ) DD D () =
kl =0 k2=0
m—1 kl 1
_ (Czﬂ)m_l(ciél)_q(ciﬁz+1)_le » aén —Pn Z Z q2(k1+k2)
kl—O kz 0
and, after combining terms containing the same monomials f} f ... [¥", equation (4.6.19) takes the form
R = (chp)" > Grrvpn SmdbL - SE 72+ By, (4.6.20)
a<8<...<b6p <P
Pls-- s pn €N
where
m—1 k‘l 1
-5 S e
k1=0ko=0
and the coefficients ¢, € A do not depend on m. The first term in (4.6.20) will agree with with the term in
the right hand side of (4.6.12) corresponding to p = 2 if we show that S2, = qi(m 2 [ 7; } .
da

Now we can continue in the same way taking into account more “derivatives” Dy, f, to obtain formula (4.6.12)
with n = 1, where

m— 1I€1 1 p 1— 1
S:D _ E E § Q> 2(k1+ka+.. +kp)
k1=0 k2=0 kp=0

From this formula it follows that the coeflicients SP, satisfy the following relations
SP =8P | 4 gAm—bgrl. (4.6.21)

On the other hand for the g-binomial coefficients we have
- qa + qa _ °
|: p qo p q. p ) do

oP — gp(m=1) { m ]
m — 4o p .,

Ch = Chy +a™Ver T,

If we denote

this implies

i.e. the coefficients CP, satisfy the same relations (4.6.21) as the coefficients SE,. Since these relations completely
determine them once S} are known and C9 = S§ =1, C3 = S35 = ¢2, C3 = S5 = q.[2],.,, we deduce that CP, = S?,
for all m and p (compare with Theorem 6.1 in [62]). Thus formula (4.6.12) is established for n = 1.

For n > 1 we argue by induction over n. The base of the induction is already established. Now assuming that
the statement is true for n — 1 we show that it holds for n. Indeed,

1 n
=@ S S I = (46.22)
g=0 a<dé; <...<6p<B
P11y pn €N
m m—q / ’
< -1 : k 7 —q—k
= (cfxﬂ)m(n ) Z Z (CZB)m pc DYyl SmSm qf 11 s f§n f(;n a ’
g=0 k=0 a<dé <...<ép<pB
Pl pl, €N

where c;, o € A do not depend on m.
1

rePy
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Now

—kq
q Qk _ qa k+q
Sty = S

Introducing new summation variable p = k + ¢ in (4.6.22) we can rewrite (4.6.22) in the form

—(p—aq)q

m. P
5 q / ! eme
Rf=la)™ 2, 2 ()T TS R SR
qa*

p=0g=0 a<é; <...<6p <8
!

Py p;l €N
Combining terms containing the same monomials f f e f(;j we arrive at an identity of the form (4.6.12)
where the coefficients ¢f  —a priori belong to C(qa= a2 ) But by the uniqueness of the Poincaré-Birkhoff-Witt
decomposition in U%(n_) (see Lemma 2.8.2) we have ¢p =~ € A. This completes the proof of (4.6.12).

O

The next lemma shows how the adjoint action of the quantum root vectors commutes with the operators P;y,.

Lemma 4.6.6. Foranyj=1,....,R—1,p=1,...,n;, p<qg<my, and any f € (Cé—‘;f[G] we have

A1 (Pio(D) = L PLAR (30 Ji o D)), (14623
k=0 Pjip+1s---3Pjq
where only a finite number of terms in the sum are non-zero, dpgp+17 piq € B,
k _ 1 if k:pjp+1:~~':qu71:0
Pjp+1sPjq—1," 0 otherwise ’
and for 0 <n <m and any k
dlg, .,0n — 0
In particular,
a8 5 (Pip() = Pip(AdZ, (S5, ) (D). (4.6.24)
Proof. By formula (4.6.6) and by the definition of P;, we have
> (n—1)n . .
A2 f (Pp(£) = 3 (=1)"gs, 2 dgms AdY (£ 1™)(f) @ BY,
n=0
Using (4.6.11) we can rewrite this formula as follows
Ad2, £ (P (f)) =
<" 1)" k(n—1 S gj n—k ip jaq
-y G "5, (055, ) A, ST A (YT B E)().
n=0 k=0 Pjp+1,--Piq

Now recalling that wo(q) = ¢! and swapping the order of summation in the last formula we get

fam ( Jp(f)) =

— n OO k1) ) 10 pln—k) [ 4 10 " Pipr1)  (ps0)
=SS 1)y g VAL F AL (ST ) ey
n=0 k=0 Pjp+1,5---5Pjq

oo oo . (n=1)(n—2k) n—k L )
= ZZ(_l) q5jp ’ Ado ‘g )(Ado ( Z dI;JP+11 7pyqf5Jp;iY) f(gif‘l))(f)) -

k=0n=k Pjp+1s--:Piq

= Z P]kp(Ang ( Z dlpcyp+lv -Pjq f(sijj’_'l*'l o féf{;d)(‘f))
k=0 Pjip+15---Pjq

f(n)f(m) = (c 5j ymn (m) f(n)

(4.6.24) is obtained in a similar way using the relation 550 05,000 = (€50 5,01 Sipi1d 0



4.6. ZHELOBENKO TYPE OPERATORS FOR Q-W-ALGEBRAS 179

Now we have all prerequisites to prove Proposition 4.6.1.

Proof of Proposition 4.6.1 Firstly, the composition (4.6.2) is well defined by Lemma 4.6.4 (ii).
By Lemmas 4.6.4, 4.6.6, and formula (4.6.10) we have for any f from the domain of P;, and 614 < 3j,

AQL T (Pejp(D) = 0 P AN DD dit, o S0 f ) (e Py () | =

k1=0 P12;---,P1q

=S PR YD Addah, L A AP AL (P Pu(f) | =
k1=0 P12;---,P1q

SoPh ST AdNdSy, L S AP (P Py () ]

k1=0 P13;---,P1q

where, by weight counting in the left hand side and in the right hand side, for each k; d0 0...0=0.
Similarly,

AL (Pl f ZPff ST AN, B0 (P Py(£) | =

k1=0 P13,---,P1q

=S P Y Add, ST SR (PANS ) P Py () | =

k1=0 P13;---,P1q

=3P YD AN BT P (PaPrs L Py (f)

k1=0 P14, Piq

Now we proceed along the same line,

Adf3 (Pajp(£)) =
_ Z Z Plkll Z AdO O O,p14 o f(gilo) ) (plq) sz Z AdO difsmmfépm)fépm )P13 o Pjp(f)) =
k1=0k2=0 P14,---,P1q P13:P1a

=> > B Y Ad(dgl ... ,pqu6p15 f(plq )(Pf3 ) AdY( (dg2,, fﬁ“ VPi3... Pip(f)) | =

k1=0ko=0 P14;---,P1q Py

=SSP AN £ EPN (Pl Y PisAdl(d, )P Py() | =

k1=0 k2=0 P14,--+,P1g Pla

=SS PR YD woldf) ANy P AP (PR PrsPu . Py ()

k1=0 k2=0 P14,---,P1q
But dgfo is zero if py4 > 0 and we infer

AdSF (Pejp(f)) =

o0
= Z P Z Ad? dlo“o 0.p15,.. ,pquapls) f(plq )(Pi2Pis ... Pip(f))

k1=0 Pi5,---,P1q

Now we repeat the same steps until we reach ¢ in the composition (4.6.2). When Ad( éf)) with ¢ > n; needs

to be moved on the right from ¢; in (4.6.2) we use formulas (4.5.18) and (4.2.6) and the fact that for ¢ > ny
T, (£61,(8)) = ooy, (52).
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Similar arguments work for the compositions P;; ... Piy,, @ > 1 and for f5, (5;) with ¢ > n; and T_
Repeating these arguments we arrive at

o0

o) PE Pl o¢ioPo ... Papyoda...0p;10P... Pp(f) =0

777777

d’g 0.0 =0 for all ki. This proves (4.6.3).
(4 6. 4) is established in a similar way using (4.6.23), Lemma 4.6.4, (4.5.18), (4.2.6), and formula (4.6.10).
O
In conclusion, using the operators P, and the elements Bj, we define proper quantum analogues of monomials
in functions ¢;,. They will play a crucial rule in establishing a quantum group version of the Skryabin equivalence
in Section 5.2 and in the proof of the De—Concini—-Kac—Procesi conjecture.

Proposition 4.6.7. For m;;, k;; € N the elements

Bim,y = Pri(. - Piny—1(Prny (01(Po1 (- - - Pany—1(Pony (92(- - - ¢r—2(Pr-11(- - -

Prtng 2P (B BRI ) B ) ) B ) BRE) BB € CiY(C)
satisfy

Magimag ) (mig =1 . . .
Adg(f(lfln fé];RllZRll))(B{mij}) = {m”}H H ’1q5 2 if m;; :]fij for i= 1,...,R—-1,7=1,...n;
0 if kij =my; if (zg) < (pq) and kpy > my,, for some (pq)

where the pairs (ij) are ordered according to the lexicographic order and Clmy;} € {+4¢%}. Thus
my j—l)

mij

BR-1np_,

Adg(fkllll fkR Inp— 1)(B{mij}):{ O{m”}HZ 1 HJ 1q5” [mij]%i]‘! if My Zkij for i=1,....R—1,7=1,...

if kij =mg; if (i) < (pg) and kpq > nyq for some (pq)
In particular, the elements Byy,, ) are linearly independent for different {m;;},i=1,...,R—1,j=1,...n

Proof. The proof follows from Lemmas 4.4.3, 4.5.5, 4.6.4, 4.6.6, formula (4.6.10) and Proposition 4.6.1. We shall
prove the statement by induction.
First observe that by Proposition 4.6.1

A% FP Py (. Proy 1 (Prny (61(Por (- - Pong—1 (Pany (62(. . - dr—2(Pr-11(. ..
B11

- Protng y—2(Protng,—1(Bp 1p " )Br ) BREE)) L)) By ) ) By ) B L B ) = 0

for any k > 0 and recall that right multiplication by Bj; gives rise to an operator on C{%°[G] by Lemma 4.5.3.
Therefore from (4.6.5) for (jp) = (11) we have

k
Ad(s)f(nu)(B{mij}) =
k11(k11—1)

=05, - Pl Pin—1(Pray (01(Por(- - - Pony—1(Pony (92(. - dp—2(Pr-11(- - -

MR—1ngp_4 MR—1np_ -1

e Protnpy—2(Protnn i —1(Br_ i BRI, ) o BRE™)) ) By ?) - ) B3i™)) By, ) - - Biy'?)

if k11 = mq1 and
A (B =0
Sf 11 ( {mij}) -

if k11 > maq1.

Now assume that for some 1 <p< R—-1,1<q¢g<mny

0/ p(k m
Ad (f,@ 11) e f,é pQ))(B{kllr-wkpqxmpq+17~~;mR—1nR71}) = (4625)

rq

Fij(kij—1)
= dpq H 9s,; ’ Pepg(Ppgt1 - - Ppnpfl(szp((bp( p+11 - Pp+1np+171(Pp+1np+1 (Gp1(- .. dr—2(Pr-11 -
(i5)<(pa)
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mRr—1 _ MR—1 11 _ Mp42n Mpn
: 'PRfl’ﬂR—I*Q(PRflnR—lfl(BRfln:;Ijl 1) Rfan}jlil ) s Bgf’n“)) . -)Bp:2n:+p:2> s Bg?fﬂu))Bpni p) s B;ZTF%

where we assume that mpn,+1 = my411, and dpg € {+¢%}.

Then by (4.6.4) and by the induction assumption

Adg(f(]fln) f(kpq+1

/8pq+1 )( {klla-“7kpq7mpq+17---;mR71nR71}) =

ig(kig—1

kij(kij—1)
=dpgcpqrr || 05, ° PepaAdL () (Pogit - Pony 1 (Pon, (6p(Pos11 - Posing 1 (Ppring o (6p i1 (- r—2(Pro1i ..
(i5)<(pq)

MR—1np_ MR—1ng_1—1 _ Mp+2 Mpn
< Protnp—2(Pr-tnp—1(Br_iny "y ) Br_tnpi1 ) - BrIg ")) - )Byfan, 27) - By ) Bony ") -+ Bygiih),

where cpq1 € {£¢”} is defined in (4.6.4). Denote dpgi1 = dpgCpg+1 € {Eq”}.
The last formula can be simplified using (4.6.5), the fact that
k
Ado ( §p3+1)(qu+1(- .. Ppnp—l(Pp’er (d)p( p+11 - Pp+1np+1—1(Pp+1np+1 (¢p+1(- .. (ZSR—Q(PR—II s

MR—1np_ MR—1np_,-1 _ Mpion m
- Proang—2(Pr-1np - 1(Br_in, " ) Broing i1 ) - BREW)) - )By a0 1) - B ) Bpny ") - Byl ?)) = 0

for any k > 0, Lemma 4.6.4 and recalling that right multiplication by Bp4+1 gives rise to an operator on Cpg + 1loe@
by Lemma 4.5.3. This yields

0 p(k11) (k _
Ads(f 1111 fﬁp:)itl )(B{klla pq7mpq+17 ;melnR,l}) -

kij(kij—1)

= dpg+1 H 4s,; ’ (P<pgt1(-+ - Pony—1(Pon, (D0 (Pot11 -+« Potang iy -1 (Pptang, o (Ppa (-
(ij)<(pg+1)
MR—1np_ MR—1np_1— MR—
- ®r—2(PR-11--- ... Protng 1 —2(Protng —1(Bg 1, ) B ) - BRI

Mpt2 Mpn
B BB Bpatid)

if kpg+1 = Mpgy1 and
0 (kn) (k 1)
Adg(fa,, " - fo )

Bpat1 )( {kll7~~-7kpq7mpq+17"<7mR71nR71}):0

if kpg4+1 > mpg+1. This establishes the induction step and completes the proof of the proposition.
O

Since the ordering on the set of roots 8;;, i =1,...,R—1, j = 1,...,n; induced by the lexicographic ordering
of the pairs (ij) coincides with the normal ordering on the segment A, , we can rewrite the properties of the
elements By, 1 as follows to simplify the notation for later use.

Corollary 4.6.8. Forny,...,ne ki,...,k. € N there are elements
B, n. € CIG]

which satisfy

0/ p(k1) (k) | cenyn(g) if ny =k, for p=1,...,c
Ady(fp," - s, )(Bn, "°>_{ 0 if kij=mn;,i=1,...,p—1 and k, >n, for some pe{l,...,c} ’

where cn, . (q) € {£q”}, and hence

c/

0/ rky k. B ny.om. i np =k, for p=1,....d
AdS(fl"'fﬁc)(Bnl'”"C){ 0 if ki=n;,i=1,...,p—1 and k, >n, for some pe {1,...,c} ’

where ¢}, . (q) = ¢ny..n.(q) H;:ﬂ”p]qﬁp!'
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4.7 A description of g-W-algebras in terms of Zhelobenko type oper-
ators

Now we are in a position to describe g-W-algebras in terms of the operator P introduced in the previous section.
Recall that q-W-algebras are only defined when the value of the parameter  is equal to one. Therefore in this
section we always assume that £ = 1. As a B-module the -W-algebra W3(G) is the space of C%[M, ]-invariants
in @ with respect to the adjoint action. In order to use the operator P, for the description of this space we shall
transfer the results of Proposition 4.6.1 from C{%¢[G] to a localization Q%° of Qs using a natural extension of the
C[M,]-module homomorphism ¢ : C[G] — Qs to a homomorphism Cj'*°[G] — Qlg°. Recall that according

to Proposition 4.1.2 I3 belongs to the kernel of the homomorphism ¢, and as we shall see I, élloc belongs to the
kernel of the extension of ¢ to C‘Z‘g’loc [G]. Therefore one can compose this extension with the operator P,., and by
Proposition 4.6.1 the image of this composition is invariant with respect to the natural extension of the Cj[My]-
adjoint action to Qg’c. The operator I, is a classical counterpart of this composition and using the description of
II. given in Corollary 3.5.8 we shall show that the image of the composition is a localization of the algebra WE(G).

More precisely, formula (4.1.19) and the surjectivity of the map ¢ imply that one can define a natural action of

the algebra generated by the elements qQPh’LAv € C%[G*], A € Py on Qp as follows
¢ o(f) = (A (g2 ) ()N 1 = (4.7.1)

— ¢ A, (g2 A (o(f)) PP

loc

where the last identity follows from part (i) of Proposition 3.2.6. Let Q}$° be the localization of () by the elements
2P, A
gy , A€ Py.

Now consider the subalgebra Cj'*°[G.] C Cj[G*] generated by Cg[G.] and by the elements ¢*7'**" | X € P.
Note that the adjoint action of these elements normalizes C}[G.] in C[G*] as C}[G.] is the direct sum of its weight
components. Therefore Q¢ is the image of (Ci;’loc[G*] under the natural projection py: : C3[G*] — C[G™]/Is,
and hence the adjoint action of C§[M,] on Qp naturally extends to Q4%°.

Lemma 4.7.1. Let &k = 1. Assume that for i = 1,...1' k; € B*, where k; are defined in (3.2.16). Then c) € B*

s,loc

for any X € Py, and ¢ extends to a Cx[My]-module homomorphism ¢ : Ci °°[G] — Q¥°,

s ~1p

O(f @ A7) = e 1T AT AT A G AQQ (T P =TI (1)), f e CH[G, (4.7.2)

and I}glloc belongs to the kernel of this homomorphism, so
¢ : CIY[G) — Q"

Proof. From formula (4.1.19) it follows that ¢ extends to a Cj[M,]-module homomorphism ¢ : C'*°[G] — Qlg°

which is defined by (4.7.2), and by Proposition 4.1.2 I élloc belongs to the kernel of this homomorphism.
O

By (v4.5.3) for X € Py A3 is Cg[M, |-invariant with respect to the Ad2-action on Ci$¢[G], and hence ¢(A3) =
P2 1 is Cy[ M ]-invariant with respect to the Ad,-action on QY°. Thus by (4.1.19) and (3.2.24) we have for
B € Am,

1+s

S(AQ2(F5)(f @ AY)) = exAd, () (p(AdS (g~ TP HDA) (1)) 2Pors ATy

and
S(A(fa)(f @ A57Y) = ¢ P A Ad, (fs) (p(AdD (g T8 Por HDAT ) (£))) g~ 2Pars AT

The last formula completely determines the adjoint action of Cj[My] on Q?C.
Now we can describe q-W-algebras in terms of the operator P.

Theorem 4.7.2. Suppose that k = 1 and k; € B* for i = 1,...1', where k; are defined in (3.2.16). Then the
composition ¢ P, gives rise to a well-defined operator

¢ = ¢P. : Ci° 1, 1G] — WE'(G), (4.7.3)
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where W'°°(G) = Homgs (17,1(Cs, Q°)-

Moreover, we have an imbedding of Cg[M]-modules, Q¢ C Cg[G*]/Ip, multiplication in C§[G*] induces a
maltiplication in W'°°(G) and we have an imbedding of algebras W5(G) € Wg'**(G).

Let Wiloe(G) = Wl (G) @5 C(q ar? ), ImIIZ the image of 114 and denote Im,I1¢ = ImII? ®p (C(qd%)

Then W'°¢(G) = ImyII¢ and W5'°(G) = Wg'(G) N Im, 4.

Proof. By Lemma 4.7.1 and by Proposition 4.6.1 the composition II¢ = ¢P : Cl¢c  ~ [G] — Wg'(G) is
well-defined. All other claims of this theorem, except for the isomorphisms W;’ZOC(G) = Im,II¢ and Wg’lOC(G) =
W'°(G) N Tm,I1¢ follow from the definitions and are established similarly to Proposition 3.2.12.

Using Lemma 4.3.3 one sees that in order to establish these isomorphisms it suffices to verify that the special-
ization of IT¢ at qﬁ = 1 is surjective.

loc

In order to do that we observe that by the definition and by Theorem 3.4.5 the specialization of Q)5 at qﬁ =1
is isomorphic to the localization C'*[N_ZsM_] of the algebra C[N_ZsM_] by the classical counterparts of the ele-

ments A3 which we denote by the same symbols, A3 = (vy,-s~1vy). Denote by C[(w; ... wr_o) 'N_ZsM_(w ...

the image of C/°°[N_ZsM_] under the map f ~ (w;...wgr—2)(f). This map sends A3 to a function which we
denote A‘El’:’l Wi 2) 1A
1. WR—2

By (4.5.3) for A € Py A3 regarded as elements of C!5°[G] are C[M, |-invariant with respect to the Ad%-action
on Ci9°[G], and hence ¢(A3) = @l 1 s C3[M 4 ]-invariant with respect to the Ads—action on Q{¢°. Therefore
their classical counterparts A§ = (vy,-s~'vy) € C[N_ZsM_] are M_—invariant, and hence C'*°[N_ZsM_]M~ is
the localization of C[N_ZsM_]"~ by the elements A3, A € P;.

This result and explicit formulas (3.5.19), (3.5.20), (3.5.18), (3.5.21) for the operator II., formulas (4.6.1) with
k = 0 and the definition of the operator P. imply that the specialization of the operator IIZ at qﬁ = 1 gives
rise to a natural extension of the operator Il : C[(wy ... wr_2)N_ZsM_(w; ... wr_2)"'] = C[N_ZsM_]"- to an
operator I10¢ : C1¢[(wy ... wr_2) ' N_ZsM_(w; ... wr_s)] — CI°°[N_ZsM_]M~ given by

TIloe(f AT T S TL(H)ASY £ € Cl(ws . wra)N_ZsM_(w; ... wr_s)""].

(wl...’waz)*l/\

Since the operator Il is surjective, I1L°¢ is also surjective.

From the surjectivity of the specialization of the operator 1I¢ at qﬁ = 1 it follows that ngoc(G) = ImlII¢
mod (qa? — 1)W3'°(G). Note also that TmII¢ C W'*°(G) are submodules of the B-module Q¥°, and Q¢ is a
B-submodule of the B-module C%[G*]/Ig which is free over B by Proposition 3.2.10. Since B is a principal ideal
domain Q%° is B-free by Theorem 6.5 in [102].

The properties mentioned in the previous paragraph and Lemma 4.3.3 imply that W;’IOC(G) = Im,II¢ and
W' (G) = W5'°(GQ) N Im, 119, This completes the proof.

O

4.8 Bibliographic comments

The results presented in this chapter are entirely new.

Commutation relations in the algebra C%[G] which appear in Section 4.2 can be found, for instance, in [12],
Theorem 1.8.16.

The definition of the Zhelobenko type operators for g-W-algebras was inspired by the construction of extremal
projection operators and of the Zhelobenko operators due to Zhelobenko. The definitions and the statements in
this chapter are conceptually close to the definition and the properties of the Zhelobenko operators introduced and
studied in [133]-[141] (see also [66]). Below, for the convenience of the reader who is familiar with these papers, we
give references to similar statements from them. However, the results of [133]-[141] and [66] are not used in this
book and not directly related to it.

For k = 0 the operators P}“p are counterparts of the Zhelobenko operators ¢, introduced in [133], §2 and §5,

in [141], Definition 5.2.1, and for k£ > 0 the operators Pﬁ, are counterparts of the operators q,(lk?n defined in [66],

formula (4.9).

Properties of the Zhelobenko operators similar to those of the operators Pj, mentioned in Proposition 4.6.1 can
be found in [133], §5, Proposition 1 (iii) and (iv), [141], Proposition 5.2.4 (b) and (c), [66], Lemma 4.5 (ii), (iv) and
(v).

wr—2)]
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Zhelobenko operators ¢,, conceptually analogous to P, were defined in [133], §5, Definition 1, [141], Definition
5.2.4.

Properties (4.6.9) and (4.6.10) are counterparts of Proposition 3, parts (i) and (iii) in [133], §2, and of properties
() and (B) in Section 5.2.4 in [141].

Lemma 4.6.4 is analogous to a similar property for the Zhelobenko operators stated in [141], Proposition and
Corollary 5.2.3, and in [66], Lemmas 4.3 and 4.5 (iii).

Formulas similar to (4.6.23) are used in the proof of Proposition 5.2.4 in [141] and in Proposition 4.4 in [66].

Theorem 4.7.2 is analogous to Theorem 2 in [133], §6 and to Theorem 5.5.1 in [141] for the Zhelobenko operators.



Chapter 5

Application of g-W-algebras to the
description of the category of
equivariant modules over a quantum

group

In this rather short chapter we apply Corollary 4.6.8 to establish an equivalence between the category of finitely
generated representations of a g-W-algebra and a category C3!°°[G.,] — modéz (M, ] of equivariant modules over a
quantum group. Categories of this kind were denoted A — mod’; in the introduction. The structure of modules

from the category C2!°¢[G.] — mod?éz[ is similar to that of g — K—modules or of principal series representations

s[M
over complex semisimple Lie algebraas. .
The proof of the main theorem of this chapter, Theorem 5.2.1, is based on Corollary 4.6.8. In this framework
one can give precise values of € for which the categorical equivalence holds. Remarkably, with slight modifications
this method is also applicable to the study of the structure of finite-dimensional representations over quantum

groups at roots of unity. This will be done in the next chapter.

5.1 A category of equivariant modules over a quantum group

In this section we define a category of equivariant representations over a quantum group.
1
Suppose that £ = 1 and let € € C. Fix a root €@ of € of order 7-z. Let UZ(g), Us(m_), C'*°[G.], C[M,],
C:[B4], Ci[G*], Qle, Weloe(@), x&, C.., I, ¢, B , Ci5°[G)- be the natural specializations at qo? = em? of

ni...Ne
Ujl(g)’ Ui\(m—)v (Cia’loc[G*]a (C%[M+]a C%[B-i-]v C%[G*]a lBOCa W[S;JOC(G)a XZ? Bssa IBa ¢7 Bnl---”c? (Cllolc[GL respeCtively
We shall always assume that [n]e, # 0and e2di £ 1fori=1,...,1,n € N. Then C:[M,] = US(m_)=US"**(m_),
U (g) = U (g) and C:[G*] is a subalgebra in U27*(g) as C3[G”] is a subalgebra in Ug"*(g).
Let J = Ker &g|cs(ar,] be the augmentation ideal of CZ[M] related to the counit &5, and Ce, the trivial
representation of CS[M] given by the counit. Let V be a finitely generated C2!°¢[G,]-module which satisfies the

following conditions:

1. V is a right C2[M]-module with respect to an action Ads such that the action of the augmentation ideal J
on V is locally nilpotent.

2. The following compatibility condition holds for the two actions
Adgz(yv) = Adga! (y)Adga? (v), = € CIM,], y € CH°[G.], v €V, (5.1.1)

where Ag(x) = 2! @ 22, Adx!(y) is the adjoint action of 2! € CS[B] on y € C¢[G,].
An element v € V' is called a Whittaker vector if Adszv = e5(z)v for any « € CZ[My]. The space

Homgs(ar,1(Ce,, V) = Wh(V). (5.1.2)

185
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is called the space of Whittaker vectors of V.

Consider the induced C2[G*|-module W = CZ[G*] @csitocg,) V- Using the adjoint action of CZ [G*] on itself
one can naturally extend the adjoint action of CZ[M] from V to W in such a way that compatibility condition
(5.1.1) is satisfied for the natural action of C2[G*] and the adjoint action Ad of CZ[M ] on W. As we observed
in Section 3.2 A (C2[M4]) C CE[By] ® C2[M,].

We shall require that
3. For any = € CZ[M,] the natural action of the element (S; ® x2)As(z) € C:[G*] on W coincides with the
adjoint action Adgx of z on W.
As in the second part of the proof of Proposition 3.2.12 one can check that the last condition implies that for
any z € C>°°[G,] N I. and v € Wh(V) zv = 0.
Denote by C2!¢[G.] —modé% (a1, the category of finitely generated C2!°¢[G]-modules which satisfy conditions (1)-
(3) above. Morphisms in the category C5°¢[G ] — modég[ a,) are C21°¢[G]- and CZ[M,]-module homomorphisms.
We call C&lo¢[G,] — modé (a1, the category of (C2[M4], x2)—equivariant modules over C31°¢[G.].
Note that the algebra Wg’lOC(G) naturally acts in the space of Whittaker vectors for any object V' of the category

1[G — mod .

w—w € C°°[G,] N I, and hence for any v € Wh(V) wv = w'v. Moreover, by the definition of the algebra
W5'°°(G) and by condition (5.1.1) we have

Indeed, if w,w’ € CH°°[G,] are two representatives of an element from Wy3'°(G) then

Ad,z(wv) = Adgz! (w)Adz? (v) = Adga! (w)es(z?)v = Adsz(w)v = e4(z)wo.

Therefore wv is a Whittaker vector independent of the choice of the representative w.

For any C-module R we denote by homc(C:[M,]), R) the subspace in Home¢(C2[M,], R) which consists of
the linear maps vanishing on some power of the augmentation ideal J = Ker ¢4 of C{[M,], hom¢c(C:[M4],R) =
{f € Hom¢(CZ[M4],R) : f(J™) = 0 for some n > 0}. Note that for every element f of hom¢(CS[M,], R) one
has f(x) = 0 if  does not belong to a finite—dimensional subspace of C5[M,], and hence homc(C:[My], R) =
hom¢(Ci[M4],C) ® R.

Equip the space homc (CE[M4], R) with the right action of CZ[M] induced by the multiplication in CZ[M,] from
the left. To study the properties of this module we shall need a special filtration on the algebra Ci[My] = UZ(m_).

Recall that the algebra UZ(g) can be equipped with the DeConcini-Kac filtration such that the associated
graded algebra is almost commutative. For r, t € N” define the height of the element u, 4, = e*tf%, t € US(h) as
follows ht (up ) = Zi’;l(ti + r)ht B; € N, where ht 3; is the height of the root §;. Introduce also the degree of
Ur gt DY

d(ur7t7t) = (Tl, ey TDytp, ..., T, ht (ur,w)) € N2DP+L,

By Lemma 2.8.2 the elements €™t f* span UZ(g) as a linear space.
Equip N2P*! with the total lexicographic order and denote by (Ug(9))x the span of elements uy¢; with
d(urt,¢) < k in UF(g). Then Proposition 1.7 in [23] implies that (UZ(g))x is a filtration of UZ(g) such that

the associated graded algebra is the complex associative algebra with generators e,, fo, @ € Ay, t;tl, i=1,...1
subject to the relations
i() _ i)
tit; =tits, tit; =t =1, tiegts = e T eqy tifatil=edf,
4sp .
eafﬁ = 5(175Ph aﬁ)fﬁeom
(5.1.3)

1ts
eqeg = e @PIHEEPy B oo o < B,

1+s

foafs = E(a,6)+(1,sPh/*a7B)f6fm a< B.

Such algebras are called semi-commutative.

Lemma 5.1.1. Let J = Ker ¢, be the augmentation ideal of C3[M,], R a C-module, hom¢(C:[M,],R) = {f €
Homc(CE[M4], R) : f(JP) = 0 for some p > 0}. Equip homc(CE[M,], R) with the right action of CZ[My] induced
by multiplication on C[M4] from the left. Then the CZ[M]-module home(C3[M4], R) is injective.
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Proof. First observe that the algebra C:[M,] ~ UZ(m_) is Notherian and ideal .J satisfies the so-called weak
Artin—Rees property, i.e. for every finitely generated left U?(m_)-module M and its submodule N there exists an
integer n > 0 such that J"M NN C JN.

Indeed, observe that the algebra Uf(m_) can be equipped with a filtration induced by the De Concini-Kac
filtration on the algebra UZ(g) in such a way that the associated graded algebra is finitely generated and semi-
commutative (see (5.1.3)). The fact that Uf(m_) is Notherian follows from the existence of the filtration on it for
which the associated graded algebra is semi-commutative and from Theorem 4 in Ch. 5, §3 in [57] (compare also
with Theorem 4.8 in [92]). The ideal J satisfies the weak Artin—Rees property because the subring UZ(m_) + Jt +
J?t? 4+ ... C US(m_)[t], where t is a central indeterminate, is Notherian (see [94], Ch. 11, §2, Lemma 2.1). The
last fact follows from the existence of a filtration on U2(m_) + Jt + J?t? + ... induced by the filtration on US(m_)
for which the associated graded algebra is semi—commutative and again from Theorem 4 in Ch. 5, §3 in [57].

Finally, the module Hom¢(C2[M4], R) is obviously injective. By Lemma 3.2 in Ch. 3, [50] the module
home(Ci[M4],R) = {f € Homc(C:[M4],R) : f(JP) = 0 for some p > 0} is also injective since the ideal J
satisfies the weak Artin—Rees property.

O

5.2 Skryabin equivalence for equivariant modules over a quantum
group

Now we can formulate the main theorem on the structure of the category C3!°°[G.] — modég[M” and on the
properties of its objects.

Theorem 5.2.1. If [n]., # 0 and g2di £ 1 fori=1,...,1, n € N then the functor E — Q¢ Opystoc () E, is an

equivalence of the category of finitely generated left W2'°¢(G)-modules and of the category C°°[G,] — modé% (M)
The inverse equivalence is given by the functor V Wh(V). In particular, the latter functor is exact.

Every module V. € C3'°°[G,] — mod?éé[MJr] is isomorphic to homc(C3[M,],C) @ Wh(V) as a right CZ[M4]-
module, where homc(CE[M,],C) is equipped with the right action of C:[M,] induced by the multiplication in
C:[M,] from the left. Q¢ is isomorphic to homg(CE[M,],C) @ W2l¢(G) as a CI[M,]-W2l¢(G)-bimodule,
where the right W21°¢(G)~action is induced by the multiplication in W21°¢(G) from the right. In particular, V is
C2[M]-injective, and Extg.;p,1(Ce,, V) = Wh(V).

Proof. First we prove that QL°° is an object in C3!°¢[G,] — mod?ég[MJr].
the augmentation ideal J of C{[M ] on Q% is locally nilpotent. All the other properties of objects of the category
Celoc[G,] — mod?é:i[M” for Q!¢ were already established in Proposition 3.2.13.

Indeed, recalling the C$[M ]-module homomorphism of ¢, : C}5°[G]. — QL°¢ and the definition of the adjoint
action on Ci9°[G]. in formula (4.5.4) we deduce that in order to show that the adjoint action of the augmentation
ideal J of C:[M,] on Q% is locally nilpotent it suffices to show that the Adgfaction of the augmentation ideal
J of CZ[M,] on C.[G] is locally nilpotent. But the last fact is true as C.[G] = @ cp, VX ® Vi, where V) is the
finite-dimensional irreducible representation of UZ(g) of highest weight A, and the action of CZ[My] on Vi ® V)
induced by the adjoint action is locally nilpotent since the action of CZ[My] on finite-dimensional irreducible
representations is locally nilpotent. _

Now let V' be an object in the category C2'¢[G.,] — mod?éé[MJr]. Fix any linear map p : V. — Wh(V) the
restriction of which to Wh(V') is the identity map, and let for angf v eV o (v): CiMs] — Wh(V) be the C-linear
homomorphism given by o.(v)(z) = p(Adsz(v)). Since the adjoint action of J on V is locally nilpotent o.(v) €
hom¢ (CE[M4], Wh(V)), and we have a map o, : V' — homg(C2[M], Wh(V)) ~ homc(CZ[M],C) @ Wh(V).

By definition o, is a homomorphism of right C3[M;]-modules, where the right action of CZ[M] on

We shall prove that the adjoint action of

hom¢ (CI[M4], Wh(V))
is induced by multiplication in CZ[M] from the left. We claim that o, is an isomorphism.
First we prove that o, is injective. The proof will be based on the following lemma that will be also used later.

Lemma 5.2.2. Let ¢ : X — Y be a homomorphism of US(m_)-modules. Denote by Wh(X) the subspace of
Whittaker vectors of X, i.e. the subspace of X which consists of elements v such that xv = e4(x)v, x € US(m_).
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Assume that the action of the augmentation ideal of U3(m_) on X is locally nilpotent and that the restriction of ¢
to the subspace of Whittaker vectors of X is injective. Then ¢ is injective.

Proof. Let Z C X be the kernel of ¢. Assume that Z is not trivial. Observe that Z is invariant with respect to the
action induced by the action of UZ(m_) on X, and that the augmentation ideal of U?(m_) acts on X by locally
nilpotent transformations. Therefore by Engel theorem Z must contain a nonzero Uf(m_)—invariant vector which
is a Whittaker vector v € X. But since the restriction of ¢ to the subspace of Whittaker vectors of X is injective

¢(v) # 0. Thus we arrive at a contradiction, and hence ¢ is injective.
O

Now recall that the action of J on V is locally nilpotent. All non—zero Whittaker vectors in V' belong to Wh(V)
and by the definition of o, their images in homg¢(C2[M, ], Wh(V')) are non-zero homomorphisms non-vanishing at
1. Therefore by Lemma 5.2.2 o, is injective.

Next we show that o. is also surjective. Denote @y, n, = ¢, (5)71¢>5(th_””€), where ¢ (e) are the

Ny...Ne ni...Ne

values of ¢

mny...MNe

(g)at qd% = ¢ which are all non—zero by the choice of eaz, By Corollary 4.6.8

k1 k. _J1if ny=k, for p=1,...,¢c
Ads(fg - fo) (@nrme) = { 0 if kj=n;,i=1,...,p—1 and k, >n, for some pe{1,...,c} (5.2.1)
Since for any v € Wh(V) and z € C2!°°[G.] N I. we have zv = 0, the elements x,,, ., v are well-defined and
satisfy Adsz(2n, . n,v) = Adsz(2n,. n,)v, * € CE[M,]. For the same reason formula (5.2.1) implies

k1 ke v if ny,=k, for p=1,...,¢
Ads(fl"'fﬂc)<x"1“'"“v){ 0 if kj=mn;,i=1,...,p—1 and k, >n, for some pe{1,...,c}

)

and hence

k1 kv J v if np=k, for p=1,...,¢
oc(Tn1.nc V), "'fﬂc){ 0 if kj=n4i=1,...,p—1 and k, >n, for some pe {1,...,c} (5-22)

Observe that the elements fgll fgcc form a linear basis of C3[M,]. Elements of this basis are labeled by
elements of the set N¢. Introduce the lexicographic order on this set, so that (k1,...,ke) > (n1,...,n.) if k; = n;
fori=1,...,p—1and k, > n, for some p € {1,...,c}.

Now let k = (k1,...,k.) € N°, v € Wh(V) and denote

O (Thy.. V) = fE.

Since f% € homc(C2[M, ], Wh(V)) it does not vanish only on a finite number of the elements fal o f5e with
k= (ki,...,ke) > (n1,...,n.) =n. Also by (6.3.8) j”qi‘(j"gl1 o fge)=0fork <mn=(ni,...,ne).

Let n' = (n},...,nl) € N¢ be the largest element such that k > n! and
k, pni nl
PRy =y £0. (5.2.3)
Denote
nl
v _O-E(xn%.“névl)'

Then (5.2.2) and (5.2.3) imply that for gy = f% + f® € home(C$[M,], Wh(V)) one has

vy

0if n=(ny,...,n.) >nt n#k

vitn=k (5.24)

1= |

Since g1 € homc(CZ[My], Wh(V)) it does not vanish on a finite number of the elements f5'...fz with

n! >n=(ny,...,n.). Let n? = (n?,...,n2) € N be the largest element such that n' > n? and

gl(fgf . -fgf) =vy # 0. (5.2.5)

Denote
n2

vy _UE(mn%unEUQ)'
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Then (5.2.2) and (5.2.5) imply that for go = f% + f2' + f2 = g; + f2 € home(C[M,], Wh(V')) one has

0if n=(ny,...,n.) >n?n#k
ni Ne\ ’ ) Ioe )
gz(fl'“'fc){vifn:k (526)
Iterating this procedure we obtain a sequence of elements k > n! >n? > ... >n’ > ..., n’ € N° and a sequence
of elements g; € home(CZ[My], Wh(V)) such that
" n 0if n=(ny,...,n.) >n’,n#k
. 1 c — ) k) b
g’(fl“‘fc)_{vifn_k . (5.2.7)

Since by Theorem 1.13 in [51] (see also Theorem 2.4.2 in [6]) the lexicographic order on N¢ is a well-order the
sequence k > n! >n? > ... >n’ > ... must be finite, i.e. for some i € N

L emy noy [ 0ifn=(ng,...,n.) >n‘,n#k
g’(fl"'fc)_{vifn:k , (5.2.8)
and there is no element n = (n1,...,n.) < n’ such that
n2 n2
gi(fa) - f5°) #0. (5.2.9)

Therefore hX = g; satisfies

K/ rns noy v it (na,..o,ne) = (R, k),
hy (£, "'fﬁc){ 0 if (n1,....n) # (kv ko)

This implies that the elements hX with (ky,...,k.) € N°, v € Wh(V) generate homgc(C2[My], Wh(V)). We
deduce that the elements o, (zp, .. n,v) with (n1,...,n.) € N°, v € Wh(V') generate home (CZ[M, ], Wh(V)) as well.
Therefore o, is surjective.

Next, we shall need another lemma.

Lemma 5.2.3. Let ¢ : X = Y be an injective homomorphism of U (m_)-modules. As above, denote by Wh(X)
the subspace of Whittaker vectors of X, i.e. the subspace of X which consists of elements v such that xv = e5(x)v,
x € US(m_). Assume that ¢ induces an isomorphism of the spaces of Whittaker vectors of X and of Y, and that
Extlljg(mi)(Css,X) = 0, where C._ is the trivial representation of US(m_). Suppose also that the action of the
augmentation ideal J of US(m_) on the cokernel of ¢ is locally nilpotent. Then ¢ is surjective.

Proof. Consider the exact sequence
0=-X =YW =0,

where W’ is the cokernel of ¢, and the corresponding long exact sequence of cohomology,

0 = Extrem_(Ce,, X) = Extirom 1(Ce,,Y) = Extrem_y(Ce,, W) =

— Ethlfg(m,)((Cfs?X) — ...

Since ¢ induces an isomorphism of the spaces of Whittaker vectors of X and of Y, and
Ext,ljg(mi)((CES,X ) = 0, the initial part of the long exact cohomology sequence takes the form

0 — Wh(X) — Wh(Y) — Wh(W') — 0,

where the second map in the last sequence is an isomorphism. Using the last exact sequence we deduce that
Wh(W’) = 0. But the augmentation ideal J acts on W’ by locally nilpotent transformations. Therefore, by Engel
theorem, if W’ is not trivial there should exists a nonzero UZ(m_)—invariant vector in it. Thus we arrive at a
contradiction, and W’ = 0. Therefore ¢ is surjective.

O
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Now we show that Q!°¢ is isomorphic to homgc(C2[My],C)) ® W21°¢(G) as a C[M,]-W2t°¢(G)-bimodule.
Indeed, by the definitions of the spaces homc(UZ(m_), W?(G)) and hom¢(UZ(m_),C) we have an obvious right
U$(m_)-module isomorphism homg (US(m_), W2!°¢(G)) = homc(Ug(m_),C) ® W2l¢(Q).

Now consider the U?(m_)-submodule o= *(homc (U2 (m_),C)) of Q¢, where

home (U2 (m_),C) C home (U2 (m_), WSle(@)).

Obviously o7 ! (home(Ug(m_),C)) ~ home(UZ(m_),C) as a right U?(m_)-module.

Let ¢. : o7t (homc(Ug(m_),C)) @ W2l¢(G) — Q¢ be the map induced by the action of W°¢(G) on QL.
Since this action commutes with the adjoint action of US(m_) on Q!¢ we infer that ¢. is a homomorphism of
Us(m_)-W2°¢(G)-bimodules.

We claim that ¢. is injective. This follows straightforwardly from Lemma 5.2.2 because all Whittaker vectors
of o (home(UZ(m_),C)) ® W2°¢(G) belong to the subspace

1@ W2'°(G) C o7 (home (U (m-),C)) @ W2'°(G),

and the restriction of ¢. to this subspace is injective.
Now we show that ¢ is surjective. By Lemma 5.1.1 one can immediately deduce that the right UZ (m_)-module
oL (homc(UZ(m_),C)) @ W°¢(Q) ~ homg(UZ (m_), Ws1°¢(@3)) is injective. In particular,

Ext{re (m_y(Ce, 07 ! (home (US (m_), C)) @ W2'(G)) = 0.

One checks straightforwardly, similarly the case of the map o., that the other conditions of Lemma 5.2.3 for the
map ¢. are satisfied as well. Therefore ¢. is surjective.

Thus Q¢ is isomorphic to home(C2[M,], C)) @ W°¢(G) as a C2[M]-W2°¢(G)-bimodule.

Now we prove the main claim of this theorem. Let E be a finitely generated W2!°¢(G)-module. Since QL¢ ~
homc(CE[M,],C)) @ W21°¢(G) as a CS[M,]-W2!l°¢(G)-bimodule, we have

QY @yysitoe ) B = home (C[M], €)) @ WE*(G) @yystoe ) E = home (C2[M,],C)) @ E
as a CZ[My]-module. This implies
Wh(QL® @y sioe gy B) = Homeau, (Ce,, QF° @ypsitoe ) E) = Homgesay, ) (Ce,, home (CEM, ], C) @ E) =
~ Homg;ar, ) (Ce, , home (CZ[ML], E)) ~ home (CZ[ML] @csay) Ce,, E) ~ E. (5.2.10)

Therefore to prove the theorem it suffices to check that for any V € C3°¢[G,] — modé[ m,) the canonical map
f:Qle Byysitoe () Wh(V) — V is an isomorphism.

In order to do this we observe that QL @y s.i0c ;) Wh(V') is an object of the category C2'*°[G] — modé (M, ]
since Q¢ is an object of this category. The action of the augmentation ideal J on Q¢ Opys.toc () Wh(V) is locally
nilpotent. By (5.2.10) the space of Whittaker vectors of QL° Dpyaitoe ) Wh(V) is 1 @ Wh(V'), and the restriction

of f to 1® Wh(V) induces an isomorphism of the spaces of Whittaker vectors of QL°¢ Byysitoc ) Wh(V) and of V.

Therefore f is injective by Lemma 5.2.2.

As we proved above o, : V — homc(Ci[My], Wh(V)) ~ homc(C:[M4],C) ® Wh(V) is an isomorphism of
C¢[M,])-modules for any module V € C°¢[G,] — modé[M”. By Lemma 5.1.1 hom¢(C3[M4],C) ® Wh(V) is
injective over CZ[My]. Therefore V is injective as an CZ[M,]-module with respect to the adjoint action. In

particular, Q'¢ ®Ws,§zOC(G) Wh(V) is injective over CZ[M, ], and hence Ext(lcg[hf+](CES,Qéoc Opystoc () Wh(V)) =0.

Recall also that f induces an isomorphism of the spaces of Whittaker vectors of Q%¢ Dyysitoc ) Wh(V) and
of V and that the adjoint action of J on V is locally nilpotent. Therefore f is surjective by Lemma 5.2.3 with
X = Qloe Opysitoe () Wh(V), Y =V, ¢ = f. This completes the proof of the theorem.

O

5.3 Bibliographic comments

A categorical equivalence for Lie algebras, called the Skryabin equivalence, similar to that considered in this chapter
was established in the Appendix to [97].



5.3. BIBLIOGRAPHIC COMMENTS 191

The main theorem of this chapter is an improvement of Theorem 7.7 in [116] where a similar equivalence was
established in a quantum group case for ¢ specialized to generic values ¢ = ¢ € C. The proof of Theorem 7.7 in
[116] relies on homological methods and arguments related to the properties of the quasiclassical limits W*(G) of
q-W-algebras. In this book we use the approach similar to the original Skryabin’s idea.

The definition of the category of equivariant representations over a quantum group given in Section 5.1 is a
slight modification of a similar definition given in Section 7 in [116], minor changes being related to the fact that
in Corollary 4.6.8, and more generally in the previous chapter, we dealt not with quantum groups themselves but
with their localizations.
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Chapter 6

Application of g-W-algebras to quantum
groups at roots of unity and the proof of
De Concini—-Kac—Procesi conjecture

In this chapter we are going to use the elements B,, ., introduced in Corollary 4.6.8 to study the structure
of representations of quantum groups at roots of unity. De Concini and Kac observed that every irreducible
representation of a quantum group U.(g) at a root of unity ¢ is in fact a representation of a finite-dimensional
quotient Uy, (g) of the quantum group, and hence every such representation is finite-dimensional itself. The quotient
U, (g) here depends on the representation. Later De Concini, Kac and Procesi also conjectured that the dimension
of every such representation is divisible by a number b which depends on (an isomorphism class of) U,(g); a precise
definition of b will be given in Theorem 6.3.2.

Our main goal in this chapter is to prove this conjecture. We shall also obtain other related results on the
structure of finite-dimensional representations of U,(g). Firstly we are going to use an observation that every
finite-dimensional representation of U,(g) can be equipped with a second right action of a finite-dimensional
subalgebra U,, (m_) of the so—called small quantum group, and the dimension of this subalgebra is equal to
b. The choice of the subalgebra U,, (m_) depends on U,(g) and the action of U, (m_) satisfies a compatibility
condition similar to condition (5.1.1) for equivariant modules over quantum groups at generic e. Thus every
finite-dimensional representation of U, (g) is in fact an equivariant U,(g) — Uy, (m_)-bimodule. Next we prove
that every finite-dimensional representation of U, (g) is cofree over the corresponding subalgebra U, (m_) which
confirms, in particular, the De Concini-Kac—Procesi conjecture. Remarkably, to prove this statement one can
apply almost verbatim the arguments from the proof of Theorem 5.2.1 on the quantum group version of the
Skryabin equivalence for generic € which overemphasizes again a striking similarity between the categories of
finite-dimensional representations of algebras U, (g) and the categories of equivariant modules over quantum groups
introduced in Section 5.1.

The peculiarity of the quantum group case is that one can explicitly construct cofree bases of finite-dimensional
U,(g)-modules using the elements By, ., from Corollary 4.6.8.

6.1 Quantum groups at roots of unity

In this section we recall some results on representation theory of quantum groups at roots of unity.

Let m be an odd positive integer number such that m > d; is coprime to all d; for all ¢, € a primitive m-th root
of unity. An appropriate number d, which appears in the definiton of the algebras U.(g) and UZ(g), can be found
from the following proposition.

Proposition 6.1.1. Let A be an irreducible root system, A% the system of positive roots associated to the conjugacy
class of a Weyl group element s € W in Theorem 1.5.2, s = s+, ... 5, representation (1.2.1) for s, au,...,q; the
system of simple roots in A%.. Then

(1) if A is of exceptional type the lowest common multiple d' of the denominators of the numbers % (}f‘; Py oy, aj) s
J

where 4,5 = 1,...,1 is given in the tables in Appendix 2;

193
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(i1) if A is of classical type then the conjugacy class of s corresponds to the sum of a number of blocks as in
(1.4.7), (1.4.8), (1.4.12) or (1.4.15). To each block of type X we associate an integer d;j(X), 4,5 = 1,...,1 as
follows:

if A is not of type Ay, Dy, an orbit with the smallest number of elements for the action of the group (s) on E
corresponds to a block of type A, and s does not fix any root from A then

for A = B
2p+1 if n=2p is even;
- p+1 ifn=2p+1,n+#4p—1is odd;
dij(An) = P ifn=4p—11is odd and i < j; (6.1.1)
2p ifn=4p—11is odd and i > j;
for A =C
2p+1 if n=2p is even;
N p+1 ifn=2p+1,n+#4dp—1is odd;
dij(An) = 2p ifn=4p—1is odd and i < j; (6.1.2)
P ifn=4p—1 is odd and i > j;
for A =Dy if Ai_1 C Dy is the only nontrivial block of the conjugacy class of s then
2p+1 ifl=2p+1 is odd;
dij(Ai—1) =4 p+1  ifl=2p+2,1#4p is even; (6.1.3)

P if l =4p is even;

for A = Ay if s is a representative in the Coxeter conjugacy class, i.e. the conjugacy class of s corresponds to
the block of type A;, then

dij(Ar) = 1; (6.1.4)
in all other cases
| k+1 if k is even;
dij (i) = { Bl 41 ifk s odd; (6.1.5)

i all cases
dij(cn) = dij(Bn) = dij(Derw(awfl)) =1,

where, as before, we use the notation of [18], Section 7 for (blocks of) Weyl group conjugacy classes.

Then a common multiple d' of the denominators of the numbers % }J_rj Pyrv oy, aj>, where 1,5 =1,...,1 is the
J
lowest common multiple of the numbers d;j(X), i,7 =1,...,1 for all blocks X of the conjugacy class of s.

If of,...q is another system of simple roots then a common multiple of the denominators of the numbers
dlj (HSPb/*a“aj) will be also a common multiple of the denominators of the numbers d%- (1+9Ph/*04 ;) and
vice Versa.

Proof. First observe that if A’+ is another system of positive roots with the simple roots «f,...,a; then a; =
2 Lol > Zk L bFalY, where c¥, bF are integer coefficients. Hence
1 1
1 [(1+s 1+s i 1+s kop 1 1+s
d—j (1 — SPh/*ai,aj) = <1 — S_Ph/xai’a;./> = Z c; b? (1 Ph/*Olk, /\/> = Z 1b§d Pf)' ak, s

k,p=1 k,p=1

and a common multiple of the denominators of the numbers % (1+S Py-al, o ) will be also a common multiple of
J

1

the denominators of the numbers T (H'S
J

Pyrvay, aj) and vice versa.

In case of classical irreducible root systems we shall compute a common multiple d’ of the denominators of the
numbers d% (f_rzphl*oz oz]>,
W' C W generated by the simple reflections corresponding to roots from a subset of o, ..., a; (for instance, one
can take A/, = A (mg1,bs) from the proof of Theorem 1.5.2).

Since different blocks of the conjugacy class of s correspond to different disjoint mutually orthogonal subsets of
simple roots in o, ..., q] it suffices to consider the case when the conjugacy class of s corresponds to a diagram

with a single nontrivial block. We shall compute d’ in case when this block is of type A, & > 1. Other cases

where A, is chosen in such a way that s is elliptic in a parabolic Weyl subgroup
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can be considered in a similar way. Assume that the root system A is realized as in Section 1.5, where V is a
real Euclidean n—dimensional vector space equipped with the standard scalar product, with an orthonormal basis
€1,...,En. In that case simple roots are

o, =¢e;—eiy1, 1 <i<n, af, =ep;

’ . / .
o =i —€i+1, 1 <1< n, a, = 2ey;

Dy

, . ’ .
ai:E‘:i_Ei+1a1§Z<na an:En,1+€n,

Then s is of the form
1.2 .1 2

§=155",8 =58a Sar .-y S =Sal  Sal e
where in the formulas for s°, i = 1,2 the products are taken over mutually orthogonal simple roots labeled by
indexes of the same parity; the last simple root which appears in those products is a; Lk = Ep+k — Eptk+1, SO
Visee s Vo = Qppgy Mgy vy Qpios Qg oo

v

We have to compute the numbers (%Ph/*a;,a]

). We consider the case when i < j. The case when 7 > j
can be obtained from it by observing that

1+s Y 1+s ;o (o, ah)
(1_SPb/*ai,aj = — I_SPh/*aj,ai 7) (616)

First recall that by Lemma 2.8.1

1+s
(l_sph'*%ﬂj> =€ij (7,5 (6.1.7)
where
-1 i<y
Eij = 0 i:j
1 1>7

Let w; be the fundamental weights of the root subsystem A, C A with respect to the basis of simple roots o,

i=p+1,....p+k, .
+1

t
wézsp+1—|—...—|—5p+t—m26p+j,t:1,...,k.
j=1

Since a, ;, t = 1,...,k form a linear basis of ", and wi, t =1,...,k form the dual basis we have

1+s K 1+s
<1 — SPh/*ag,a;v) = Z (wi¥, al) (1 — Ph/*a;H,oz;\fs_u) (w;,a;\/).

S
t,au=1
Since the scalar product in V is normalized in such a way that a;\/ﬂt = a;Jru, uw=1,...,k we obtain using (6.1.7)
l+s . 1+s
(1—sf%”“5ay> = E:(Wﬁﬂﬂ)<1_Sf%”aéu»abu>(w;4%v)= (6.1.8)
t,u=1

k
- Z(il)t(wé\c O‘;)(wé—l + wé—l—lv O‘;‘V)a
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where we assume that wy = wj; = 0.
Now one has to consider several cases.
If one of the roots o, o/. is orthogonal to b’ then the left hand side of the last equality is zero.
If o, s € {y1,..., 7} then by (6.1.7) the left hand side of (6.1.8) is equal to £1.
foaj=ap,, 1<t<k, of=a,,,  then

1+ 2t
(1 _ Sph’*agva;‘v) = (—1)"(wi— +W2+1aa;v+k+1) = (-1~ 5m)7 (6.1.9)

where 6 = 2 if a;-\/ = 26p4k41 OF a;\/ = Eptk + Eptk+1, ¥ = 0 in the former case, and ¢ = 1 in the latter case. In
all other cases ¥ = 0 and 6 = 1. Note that § # 1 only in case when A is of type B,, or D,; for arbitrary s this
situation can only be realized if an orbit with the smallest number of elements for the action of the group (s) on
E corresponds to a block of type Ay and s does not fix any root from A. The denominator r of the number in the

right hand side of (6.1.9) is given by

2p+1 if k =2p is even;

r={ p+1 ifk=2p+1,k+#4p—1isodd; (6.1.10)
= if k =4p — 1 is odd.

A / /I /
If a; = oy q, & = gy then

2

1+s
(1 _SPf,/*a;,a;-V) = (o) = D

where § = 2 if o = 2,511 or &} = epi + Epyrr1, ¥ = 0 in the former case, and ¥ = 1 in the latter case if

k = 2. In all other cases ¥ = 0 and 6 = 1. We again obtain (6.1.10).

If o) = aj, .y, @) = aj, 4y then
1+s & pok—1
(1 — SPh/*ag,a;.V> =(-1) (w;cflva;\g»k%»l) =—(-1) 5m7
and we obtain (6.1.10).
If af = aj, oy = 4y then
1+s k
(T2 Rreatia) = -0 Vs + ) =
t=1
—1
t 2t0 k k—1 k—1
==y )1+ —) — (D (-1+—= ) —0+ (- -1+ — ).
( )< +k+1)k+1 ( )< +k+1>k+1 =D Ay

t=1
Using the fact that
Z(_l)r-i-l?ﬁ _ (_1)n+1 n(n2+ ) and Z(—l)T—HT _ { D) if n is odd;

—% if n is even
r=1 r=1

we obtain

1-s if k is odd.

1+s — 0492 ifkis even;
( Pb/*a;7aljv) = { ki k+1 ’
k+1

The denominator r of the number in the right hand side of the last equality is given by

2p+1 if k= 2pis even;
r= 1 if k=2p+1, nis odd and ¥ = 0;
p+1 ifk=2p+1isoddandd=1.

Summarizing all cases considered above and adding the case i > j (see (6.1.6)) we arrive at (6.1.1), (6.1.2),
(6.1.3), (6.1.4) and (6.1.5).

Other cases can be treated in a similar way.
O
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Now one can choose d = 2d’, where d’ is defined in the previous proiposition. However, we shall not always
assume that d is chosen in this way and that the system of positive roots A% will not be chosed as in Proposition
6.1.1 unless it is explicitly specified.

We shall always assume that d and m are coprime. This condition is equivalent to the existence of an integer n
such that €”?~! = 1. From now on we shall also assume that x = nd. With this choice of £ we have the following
relation between the generators ¢; and L; of the quantum group Ux4(g), t; = L?. In particular, the specialization
Ue:(g) of Ux(g) coincides with the specialization of the simply connected form of the standard Drinfeld-Jimbo
quantum group without generators t; at ¢ = €.

Let Z. be the center of U.(g). In the following proposition we summarize the results on the structure of Z.. In
particular, we recall that in case when ¢ is a root of unity Z. is much larger than in case of a generic €. In fact in
the former case Z. contains a remarkable subalgebra Zy the properties of which impose very strong restrictions on
the structure of irreducible representations of U.(g).

Proposition 6.1.2. Fiz the normal ordering in the positive root system A, corresponding a reduced decomposition
W = 8, ...5i, of the longest element W of the Weyl group W of g and let X be the corresponding quantum
root vectors in U.(g), and X, the corresponding root vectors in g. Let x, = (4 — ;)™ (X;)™, vt = (60 —
en )M To(X)™, where To =Ty, ... Ty, a € Ay, and [, =L, i=1,...,1.

Then the following statements are true.

(i) The elements x£, o € Ay, I;,i=1,...,1 lie in Z..

(it) Let Zo (ZF and Z3) be the subalgebras of Z. generated by the = and the I (respectively by the X and
by the l;ﬁl). Then th C Uc(ny), Z§ C U.(b), th is the polynomial algebra with generators v, Z3 is the algebra
of Laurent polynomials in the l;, Zoi =U:(ny) N Zy, and multiplication defines an isomorphism of algebras

-1
«

Zy ® Zy @ Z§ — Zo.

The subalgebra Zy is independent of the choice of the reduced decomposition W = s;, ... Sip,.
(iii) U=(g) is a free Zo—module with basis the set of monomials (X T)*LS(X ™) for which 0 < 7y, tg, s; < m for
i=1,...,1, k=1,...,D, where fors = (s1,...5) € Z,
Ls=Ly .. L.

(iv) Spec(Zy) = C2P x (C*)! is a complex affine space of dimension equal to dim g.

(v) The subalgebra Zy is preserved by the action of the braid group automorphisms T;.

(vi) Let G be the connected simply connected Lie group corresponding to the Lie algebra g and G§ the solvable
algebraic subgroup in G x G which consists of elements of the form (Ly,L_) € G x G,

(Ly, L) = (t,t ) (ny,n_), ny € Ny, t € H.
Then Spec(Z3)) can be naturally identified with the mazimal torus H in G, and the map
T : Spec(Zy) = Spec(Z;) x Spec(Z) x Spec(Z; ) — G,
Flug, t,u) = (X (up), 71X (u_)"1), ug € Spec(Z5), t € Spec(ZY),
X* : Spec(ZF) = N,
X" =exp(zgy, X p,)exp(zs, X-p, ,)...exp(zg X _p,),
Xt = eXp(xEDTO(X—,BD)) exp(a:;DilTo(X_,@Dil)) .. eXp(xEITO(X_Bl)),

where :Ei should be regarded as complez-valued functions on Spec(Zy), is an isomorphism of varieties independent
of the choice of reduced decomposition of w.

Parts (ii) and (iii) of Proposition 6.1.2 can also be reformulated in terms of the quantum root vectors e, and

Ja

Proposition 6.1.3. Let s € W be a Weyl group element, and ey, fo the quantum root vectors defined in Proposition
2.6.2. Then the following statements are true.

(i) The subalgebra Zy is the tensor product of the polynomial algebra with generators e, fI*, a € Ay and of
the algebra of Laurent polynomials in l;, i =1,... 1.

(ii) U-(g) is a free Zo—module with basis the set of monomials fFLSe® for which 0 < ry, tg,s; <m fori=1,...,1,
k=1,...,D.
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Let K : Spec(Z{) — H be the map defined by K(h) = h?, h € H.
Proposition 6.1.4. Let G° = N_HN_ be the big cell in G. Then the map
=X KX" : Spec(Zp) — G°
is independent of the choice of reduced decomposition of W, and is an unramified covering of degree 2*.

Denote by Ao : Gf — G° the map defined by A\o(Ly,L_) = L='L,. Then obviously 7 = \g o 7.

Another important property of quantum groups at roots of unity, which distinguishes the root of unity case, is
the existence of the so—called quantum coadjoint action which is an automorphism group action on an extension of
U.(g). Tt is defined with the help of derivations i of U4(g) given by

x;Hm 1
zf (u) = [ [ ’] ' ,u] y (W) =Tox Ty H(u), i=1,...,1, u€ Uy(g). (6.1.11)
mlg,!
Let 20 be the algebra of formal power series in the z¥, o € Ay, and the liﬂ, i = 1,...,1, which define

holomorphic functions on Spec(Zy) = C2P x (C*)!. Let
Ue(0) = U=(0) ®2, Zo. Ze = Z: 92, Z

Proposition 6.1.5. (i)On specializing to ¢ = ¢, (6.1.11) induces a well-defined derivation z of U.(g).
(ii) The series

expltzt) = 3 L (et

converges for all t € C to a well-defined automorphism of the algebra ﬁg(g).

(#ii)Let G be the group of automorphisms generated by the one—parameter groups exp(tg;t), i1=1,...,1. The
action of G on ﬁs(g) preserves the subalgebras 25 and 20, and hence G acts by holomorphic automorphisms on the
complex algebraic varieties Spec(Z.) and Spec(Zp).

(iv)Let O be a conjugacy class in G. The intersection O° = O N G is a smooth connected variety, and the
variety 7=1(O°) is a G-orbit in Spec(Zy).

Given a homomorphism 7 : Zy — C, let
Un(g) = Uc(9)/ I,

where I, is the ideal in U.(g) generated by elements z —7(z), z € Zy. By part (iii) of Proposition 6.1.2 U, (g) is an
algebra of dimension md™ ¢ with linear basis the set of monomials (X*)*LS(X~)* for which 0 < ry,tg,s; < m for
i=1,....,k=1,...,D.

If g € G then for any n € Spec(Zy) we have gn € Spec(Zy) by part (iii) of Proposition 6.1.5, and by part (ii) of
the same proposition g induces an isomorphism of algebras,

9:Un(g) = Ugy(g): (6.1.12)

Since on every irreducible representation of U.(g) the subalgebra Z; of the center Z. acts by a character
n : Zo — C, every irreducible representation of U.(g) is a representation of some algebra U,(g) for a unique 7.
This reduces the study of irreducible representations of U.(g) to the study of representations of finite-dimensional
algebras U, (g). Moreover, taking into account isomorphisms (6.1.12) it suffices to consider a representative in each
isomorphism class of these algebras under the isomorphisms induced by the action of the elements of the group G
on U.(g).

6.2 Whittaker vectors in modules over quantum groups at roots of
unity
It turns out that any finite-dimensional representation V' of U,(g) can be equipped with another action of a

subalgebra Uy, (m_) of a small quantum group which is a root of unity “truncated” version of the algebra U%(m_)
for an appropriate s depending on 7. The new action is compatible with the original action of U, (g) in a certain
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equivariant way, and the dimension of U, (m_) is equal to b = madim Oxy — ppdim M=, where Oy, is the conjugacy

class of my € G. The existence of the second action is crucial for the proof of the De Concini-Kac—Procesi conjecture
and for the study of other properties of finite-dimensional representations of U, (g).

In this section we define the algebras U,, (m_) and their actions on finite-dimensional representations of U,(g).
These definitions are related to the notion of Whittaker vectors for finite-dimensional U, (g)-modules which are
defined using root of unity versions of characters x;. We start by reminding the definitions of these characters.

Firstly let us observe that UZ(m_) can be regarded as a subalgebra in U.(g). Therefore for every character
n : Zy — C one can define the corresponding subalgebra in U, (g) generated by f., o € An, . We denote this
subalgebra by U, (m_). By part (ii) of Proposition 6.1.3 we have dim U, (m_) = mdim m-.

In order to define analogues of characters xj for quantum groups at roots of unity we shall need some properties
of the finite dimensional algebras U, (g) and U,(m_) and auxiliary results on non-zero irreducible representations
of the algebra U,(m_).

Observe that by Proposition 1.6.6 for any two roots o, 8 € Ay, such that o < 8 the sum « + 3 can not be
represented as a linear combination ZZ=1 ckiy, where ¢, € Nand a < 7, < ... < 7, < f, and hence from
commutation relations (2.8.12) one can deduce that

Fafg — el TndGE Pyrasf) g g > Ok ko) fEn fint L fR e g, (6.2.1)

a<61<...<,<B

where at least one of the roots ¢; in the right hand side of the last formula belongs to © = {a € Ay, : a &
{M,...,}}, J is the ideal in U,(m_) generated by the elements fg € U,(m_), § € ©. Thus from part (ii) of
Proposition 6.1.3 and commutation relations (6.2.1) it follows that if 81 < 3 < ... < [, are the roots in the
segment Ay, , the elements

ke_
Thorky = [o fo )t S5 (6.2.2)

for k; € N, k; < m form a linear basis of U,(m_), and elements (6.2.2) for k; € N, k; < m and k; > 0 for at least
one f3; € © form a linear basis of J.

Lemma 6.2.1. Let n be an element of Spec(Zy). Assume that n(f') = a; # 0 fori = 1,...,1'and that and
n(fg) =0 for B € An,, BE&{m,...,w}, and hence fI! =n(f}}) = a; # 0 in Uy(m_) fori=1,....0I" and f' =0
in Uy(m_) for B € An,, BE{v1,-..,w}. Then the ideal J is the Jacobson radical of Uy(m_) and Uy(m_)/J is

isomorphic to the truncated polynomial algebra

C[f%, ceey fvl/]/{fnz = ai}i:l,“.,lf

Proof. First we show that J is nilpotent.
Let ¢ be the largest number such that k; = 0 for j > ¢ in (6.2.2) and k; # 0. Then we define the degree of
Tky,... ke DY
deg(Try,.. k) = (ki,i) € {1,....m—1} x {1,...,c}.

—1} x{1,...,c} with the order such that (k,7) < (k¥',j) if j >ior j=1¢and k' > k.

i) €{1,...,m—=1}x{1,...,c} denote by (Uy,(m_)), the linear span of the elements z, ..,
with deg(zy, ,...k.) < (k,i) and define Jy, ) = T N (Uy(m_))x,qy- We also have (Uy(m_)) ) C (Up(m_))u ;) and
Ty C T 5y if (k, 1) < (K, j), and J(y—1,c) = J. Note that for the first few i linear spaces J4 ;) may be trivial,
and these are all possibilities when those spaces can be trivial.

We shall prove that J is nilpotent by induction over the order in {1,...,m — 1} x {1,...,¢c}. Let (k,i) be
minimal possible such that J ;) is not trivial. Then we must have k = 1. If y € J(1 ;) then y must be of the form

y = fpv, (6.2.3)

Equip {1,...,m
For any given (k

where v is a linear combination of elements of the form fgill e fg; for Biyy .-y Bi, €{M1s--+y W}, B> Biy, and B
is the first root from the set © greater than - in the normal ordering of A, associated to s. Here it is assumed
that fgjl fgi =1 if the set {71,...,7n} is empty.

Now equation (6.2.1) implies that for any f,Bij which appears in the expression for v one has

1+s

fofo, — PP ImIGER BB £y s € Tnri1) =0 (6.2.4)
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as by our choice of i J(p,—1,i—1) = 0.
Formula (6.2.4) implies that the product of m elements of type (6.2.3) can be represented in the form

f5 ',
where v’ is of the same form as v. Since f5' = 0 we deduce that j(Ti) =0.

Now assume that J(Ik‘fl) =0 for some K > 0. Let (k¥,i’) be the smallest element of {1,...,m — 1} x {1,...,c}

which satisfies (k,4) < (k’,i’). Then by Propositions 2.6.2 and 6.1.3, and by (6.2.1), any element of J{; ;) is of the
form fg,u+ v, where v’ € J1, ;) and if B € © then u € (Uy(m_)) 4, if By & © then u € Jip 4.
Now equation (6.2.1) together with (2.8.12) imply that for any u € (U, (m_)),;) one has

ufg, = cfp, u+w, (6.2.5)

where ¢ is a non-zero constant depending on u, and w € J4). By formula (6.2.5) the product of m elements
fa,up + u;,, p=1,...,m of the type described above can be represented in the form

m

> 15 (6.2.6)
j=0

where ¢; € J(i) for j =0,...,m —1 and if By € © then ¢, € (Uy(m_))4); if Br € O then ¢, € J(ii). In the
former case f§’ = 0, and the last term in sum (6.2.6) is zero; in the latter case f5' = n(fg’) # 0, and the last

term in sum (6.2.6) is from J(3 ;). So we can combine it with the term corresponding to j = 0. In both cases sum
(6.2.6) takes the form

m—1
> 1 (6.2.7)
=0

where ¢, € J(x,5)- By (6.2.5) the product of K sums of type (6.2.7) is of the form

(m—-1)K

Y
Z fBz"Cj’
=0

where each c;-’ is a linear combination of elements from ‘7(55 i) By our assumption j(fkf by = 0, and hence the product
of any mK elements of J iy is zero. This justifies the induction step and proves that J(,,—1,) = J is nilpotent.
Hence J is contained in the Jacobson radical of U,(m_).

Using commutation relations (2.8.12) we also have (see the proof of Proposition 3.2.9)

f"{q‘,f’}’j - f"/jf’)’i € j

Therefore the quotient algebra U,(m_)/J is isomorphic to the truncated polynomial algebra

(C[f’yu ceey f'yl/]/{f": = ai}i:l,...,l’
which is semisimple. Therefore J coincides with the Jacobson radical of U,(m_). O

In Proposition 3.2.9 we constructed some characters of the algebra U?(m_). Now we show that the algebra
U,(m_) has a finite number of irreducible representations which are one-dimensional, and all those representations
can be obtained from each other by twisting with the help of automorphisms of U,(m_).

Proposition 6.2.2. Let ) be an element of Spec(Zy). Assume that n(f]') = a; # 0 fori=1,...,l'and that and
n(fg) =0 for B € An,, BE&{v,...,w}, and hence fI' =n(f7}) = a; # 0 in Uy(m_) fori=1,...,0I" and f§' =0
in Uy(m_) for p € An, B & {71,-..,}. Then all non—zero irreducible representations of the algebra U, (m_)
are one—dimensional and have the form

i ={ 0GR (6.28)

where complex numbers ¢; satisfy the conditions " = a;, i = 1,...,1'. Moreover, all non—zero irreducible repre-
sentations of Up(m_) can be obtained from each other by twisting with the help of automorphisms of U, (m_).
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Proof. Let V be a non-zero finite-dimensional irreducible U, (m_)-module. By Corollary 54.13 in [31] elements of
the ideal J C U,(m_) act by zero transformations on V. Hence V is in fact an irreducible representation of the
algebra U, (m_)/J which is isomorphic to the truncated polynomial algebra

(C[fvn‘ .. afw]/{fn; = ai}i:l,m,l“

The last algebra is commutative and all its complex irreducible representations are one—dimensional. Therefore V'
is one-dimensional, and if v is a nonzero element of V' then f,,v = ¢;v, for some ¢; € C, i = 1,...,I. Note that
n(fy!) = a; #0,i=1,...,0' and hence ;" = a; # 0,4 = 1,...,I'. In particular, the elements f,, act on V by
semisimple automorphisms.

If we denote by x : U,(m_) — C the character of U,(m_) such that

m={ 0 fE

and by C, the corresponding one-dimensional representation of U, (m_) then we have V = C,.
Now we have to prove that the representations C, for different characters x are obtained from each other by
twisting with the help of automorphisms of Uy, (m_).

Since ¢ = a;, i = 1,...,0’ there are only finitely many possible characters x corresponding to the given 7 in
the statement of this proposition. If x and x’ are two such characters, x(f,) = ¢;, @ = 1,...,l" and X'(f,,) = ¢,
i = 1,...,I' then the relations ¢ = ¢/ = a;, i = 1,...,l' imply that ¢, = e™i¢;; 0 < m; < m—1, m; € Z,
i=1,...,0.

Now observe that for any h € b the map defined by fo — e*Mf, a € Ay . is an automorphism of the algebra
UZ(m_) generated by elements f,, o € An, with defining relations (2.8.12). Here the principal branch of the
analytic function €* is used to define €*(")| so that e*(MeB(h) = (@B for any o, B € Ap, . If in addition
gmnih) =1 j=1,...,I' the above defined map gives rise to an automorphism ¢ of Up(m_). Indeed in that case
(g7 f ym = ', i =1,...,0' and all the remaining defining relations f = n(f') = a; # 0, i = 1,...,l',
8 =n(f5") =0, B € An,, B & {n,...,w} of the algebra U,(m_) are preserved by the action of the above
defined map ¢.

Now fix h € b such that v;(h) =m,, i =1,...,1’. Obviously we have ™™ = 1,4 =1,...,l’. We claim that the
representation C, twisted by the corresponding automorphism ¢ coincides with C,.. Indeed, we obtain

X(gf%‘) = X(Emif'y,;) =eMic; = C;;, t=1,... ,l/.

This completes the proof of the proposition.
O

Now we can define the notion of Whittaker vectors. Let V be a U,(g)-module, where 7 is an element of
Spec(Zy) such that n(f]') = a; # 0 for i = 1,...,l'and that and n(f5) = 0 for B € An,, B & {71,...,w} Let
X : Uy(m_) — C be a character defined in the Proposition 6.2.2, C,, the corresponding one-dimensional U, (m_)-
module. Then the space V, = HomUn(mf)((CX, V') is called the space of Whittaker vectors of V. Elements of V,
are called Whittaker vectors.

Now we describe the space of Whittaker vectors in terms of a nilpotent action of the unital subalgebra U, (m_)
generated by fo, @ € An, in the small quantum group Uy, (g) = UZ(g)/I,, corresponding to the trivial central
character 7, such that 7(n;) =1 € G and m(v5) =0, a € Ay, m(l) =1,i=1,...,1

Recall that UZ(m_) is a right coideal in UZ(g). One can also equip the algebra Uf(m_) with a character given
by formula (3.2.17), where the numbers ¢; are the same as in the definition of the character x. We denote this
character by the same letter, x : US(m_) — C.

Note that V' can be regarded as a U.(g)-module and a U?(g)-module assuming that the ideal I, acts on V in
the trivial way. Now observe that Ay : US(m_) — UZ(g) ® US(m_) is a homomorphism of algebras. Composing
it with the tensor product Ss ® x of the anti-homomorphism S, and of the character x, which can be regarded
as an anti-homomorphism as well, one can define an anti-homomorphism, UZ(m_) — UZ(g), x — Ss(z1)x(x2),
As(x) =21 @2, . € UZ(m_).

Using this anti-homomorphism one can introduce a right U?(m_)-action on V' which we call the adjoint action
and denote it by Ad. It is given by the formula

Ad; zv = Ss(x1)x(z2)v,z € UZ(m_),v €V, (6.2.9)
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where Ag(x) = 21 ® Ta.

Note that using the Swedler notation for the comultiplication, (A; ®id®id)(As ®id)Ag(x) = 11 QT2 @ T3 X4,
the coassiciativity of the comultiplication and the definition of the antipode we have for any « € Uf(m_), y € U(g),
v € V (compare with the proof of Lemma 2.2 in [60])

Adsz(yv) = Ss(z1)x(x2)yv = Ss(x1)yraSs(z3)x(24)v = Adszy (y)Adsaa(v). (6.2.10)

We shall need the following formula for the action of the comultiplication on the quantum root elements f3,
l
B= Zizl i € Am+7 c; €N,

nd 1+s

> Pyreag,ag)c;
A(fs HK“”HL 4 (= Fr vy Rfs+fe@1+ (6.2.11)

=1 1,7=1

-1
+Zy7, ®xia T; € U<B7yi S U>BUES (h))

where U, is the subalgebra (without unit) in U?(m_) generated by f., o < 8 and Usg is the subalgebra (without
unit) in U (n_) generated by f,, a > . Formula (6.2.11) is a straightforward consequence of (2.8.13).
Similarly to the Proposition in Section 5.6 in [25] we infer that Zj is a Hopf subalgebra in U?(g). Namely,

—d Ph/*al,aj)

KmHL i QM+ e,

105)

Ay(eM) =el" @ K7™+ HL ® el

A (L) =L"® L.
Therefore recalling that by the definition of x for x € UZ(m_) N Zy one has x(z) = n(z) we deduce
Adg zv = Sg(x1)x(x2)v = n(Ss(x1)x2)v = 5()v,0 €V,

where & is the counit of UZ(g). Note that by the definition of the ideal I,, the ideal U (m_) NI, C UZ(m_) is
generated by the elements 7', a € A, and e,(f7') = 0 for a € A, by the definition of £,. Hence the adjoint
action of UZ(m_) on V induces an action of the subalgebra U, (m_) of the small quantum group Up,,(g). We call
this action the adjoint action as well.
Note that the small quantum group U,,(g) is a Hopf algebra with the comultiplication inherited from UZ(g).
The space of Whittaker vectors V, can be characterized in terms of the adjoint action as follows.

Lemma 6.2.3. The space of Whittaker vectors V,, coincides with the space of Uy, (m_)—invariants for the adjoint
action on V,

Vi={veV:iAds; 2(v) =es(z)v Vo e U, (m_)} (6.2.12)

nd ( iJr

Pyr+ag,aj)c;

L; which appears in (6.2.11), T =

Proof. Indeed, denote by Tp the factor Hz L K I

l ci 7M(1+
Hz lK Hz] 1L

i,j=1

T2 Pyrxau,5)¢q

. Then simiularly to (2.8.18) we obtain
Solfs) = =Ss(Tp) 5 = 3 Ss(wi)ai- (62.13)
Now for 3 € An,, (6.2.11), (6.2.13) and definition (6.2.9) of the adjoint action imply
Ad, fav="T5"x(fs)v—T5" fav — Z Sy (yi)ziv + Z S (yi)x(zi)v =
= T3 (x(f) = fo)v + D So(y) (x(1) = i)v, @i € Uz, yi € UngU (). (6.2.14)

If v € V, we immediately obtain from (6.2.14) that Ad, fgv = 0 for any § € A, , i.e. v belongs to the right
hand side of (6.2.12).
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Conversely, suppose that v belongs to the right hand side of (6.2.12). We shall show that zv = x(z)v for
any z € UZ(m_). Let U<p be the subalgebra with unit generated by U.s. We proceed by induction over the
subalgebras U.s,, k = 1,...b+ 1, where as before d; < ... < d; is the normally ordered segment A, and we

define U<6b+1 to be the subalgebra Uf(m_).
Observe that d; is a simple root and hence U.s, = 0. Therefore we deduce from (6.2.14) for 5 = §;

Ad, f51U = T(Sjl(x<f51) - f51)1} =0.

Since T, 5_11 acts on V' by an invertible transformation this implies (x(fs,) — fs,)v = 0, and hence zv = x(x)v for
any z € Us, as U, is generated by fs, . -
Now assume that for some k < b zv = x(z)v for any © € Us,. Then by (6.2.14)

Ads fsv= T§;1(X(f6k) - f5k)v =0.

As above this implies
(x(fs.) = fo.)v =0. (6.2.15)
By Proposition 2.6.2 any element y € Ug,,, can be uniquely represented in the form y = f5,3" + v, where

y',y" € Uss,. Now by (6.2.15) and by the induction assumption
yo = (fo.y' + 3" )v = x(fs.)x (W) + x@" v = x)v,

i.e. yv = x(y)v for any x € Ucs,,,. This establishes the induction step and completes the proof.

The following proposition is an analogue of the Engel theorem for quantum groups at roots of unity.

Proposition 6.2.4. Let 1) be an element of Spec(Zy). Assume that n(fJ}) = a; # 0 for i = 1,...,1" and that
n(fg) =0 for B € An,, BE&{m,...,w}, and hence fI! =n(f7}) = a; # 0 in Uy(m_) fori=1,...,0I" and f§' =0
in Uy(m_) for B € An,, B & {m,-..,w}. Let x : Uy(m_) — C be any character defined in Proposition 6.2.2.
Then any non-zero finite-dimensional U, (g)-module contains a non-zero Whittaker vector.

Proof. We begin the proof with the following lemma.

Lemma 6.2.5. The augmentation ideal J* of Uy, (m_) coincides with its Jacobson radical which is nilpotent.

Proof. The proof of this fact is similar to that of Lemma 6.2.1, and we shall keep the notation used in that proof.
We define j(lk,z) = ‘71 N (Uﬂl (m*))(k,iﬁ so that “7(1161) C “7(116’,j) if (k7l) < (k/7j)7 and “7(17nfl,c) = jl-
We shall prove that J! is nilpotent by induction over the order in {1,...,m — 1} x {1,...,c}. Note that
(k,i) = (1,1) is minimal possible such that Jj ;) is not trivial. If y € J(4 1) then y must be of the form

y=afg,acC. (6.2.16)
The product of m elements of type (6.2.16) is equal to zero,
fram =0,

as ffr =0 in Uy, (m_). We deduce that (J} ;)™ = 0.

Now assume that (\7(11“))[{ = 0 for some K > 0. Let (k’,4') be the smallest element of {1,...,m—1}x{1,...,¢c}
which satisfies (k, ) < (k’,4’). Then by Propositions 2.6.2 and 6.1.3 any element of j(lk,’i,) is of the form fg,u+/,
where v’ € ‘7(1,”) and u € (Uy, (m_)) 1.4

Now equation (2.8.12) implies that for any u € (U, (m_)) ;) one has

ufg, =bfg, u+w, (6.2.17)
where b is a non—zero constant depending on u, and w € j(lk i) By the formula (6.2.17) the product of m elements
fa,up + u;,, p=1,...,m of the type described above can be represented in the form

m

T (6.2.18)
j=0
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where ¢; € «7(11“) for j=0,...,m—1and ¢y € (Uy,(m_))(x,5)- Since fg’ =0 the last term in sum (6.2.18) is zero.
So sum (6.2.18) takes the form

m—1
> 1, (6.2.19)
=0

where ¢} € ;7(1,”) By (6.2.17) the product of K sums of type (6.2.19) is of the form

(m—-1)K

Y
Z fﬁz' Cj ?
Jj=0

where each ¢ is a linear combination of elements from (j(l,”))K . By our assumption (j(lkz))K =0, and hence the

product of any mK elements of J(lk,’i,) is zero. This justifies the induction step and proves that “7(17nfl,c) =J'is
nilpotent. Hence J! is contained in the Jacobson radical of U, (m_).
The quotient algebra U,, (m_)/J?' is isomorphic to C. Therefore J' coincides with the Jacobson radical of
Upy (m-).
O

Now let V' be a finite-dimensional U,(g)-module. Then V is also a finite-dimensional U, (m_)-module with
respect to the adjoint action. Thus V' must contain a non-trivial irreducible U,, (m_)-submodule with respect to
the adjoint action on which the Jacobson radical J*' must act trivially. From (6.2.12) it follows that this non—trivial

irreducible submodule consists of Whittaker vectors. This completes the proof of the proposition.
O

Now we show that for any 7 € Spec(Zy) subalgebras and characters which appear in Propositions 6.2.2, 6.2.4
and in Lemma 6.2.3 indeed exist. Moreover, we shall see that to each n € Spec(Zy) one can associate a subalgebra

of this type the dimension of which is equal to madim O

¢= |J Ge

cec(w)

=1, where O, is the conjugacy class of mn € Ge¢.

Proposition 6.2.6. Let

be the Lusztig partition of G, n € Spec(Zy) be an element such that mn € Ge, C € C(W) and s™' € C. Let A% be
the system of positive roots defined for s in Theorem 1.5.2, Ay the corresponding system of positive roots associated
to s, d = 2d', where d' is defined in Proposition 6.1.1. Assume that m and d are coprime.

Then there exists a quantum coadjoint transformation g such that & = gn satisfies {(f)}) = a; #0 fori=1,..., U
and {(f5") = 0 for B € Am,, B & {n,...,w}, where fo € Ug(m_) are generators of the corresponding algebra
Ug(m_) C Ue(g). Let x : Us(m_) — C be any character defined in Proposition 6.2.2. Then any finite-dimensional
Ue(g)-module contains a non—zero Whittaker vector with respect to the subalgebra Us(m_) and the character x, and
any U, (g)-module contains a non-zero Whittaker vector with respect to the subalgebra Ug(m_) =g 'Ue(m_) and
the character x9 given by the composition of x and §, xY =x 0 : Ug(m_) — C.

Moreover, dim Ug(m_) = dim Ug(m,) = madim Omy — ppodim One — pdim m— 4ypope Onry is the conjugacy
class of ™y € G¢, and Ox¢ is the conjugacy class of 7§ € Ge.

Proof. First observe that the system of positive roots A% satisfies the conditions of Theorem 1.5.2 when s is replaced
with s~1. Indeed, in the case of classical root systems its definition only depends on the spectral decomposition of
h under the action of s which is the same as the spectral decomposition of h under the action of s~1. In the case of
exceptional root systems one has to note in addition that obviously dim ¥, = dim ¥,-1, and hence all properties
of A% used in the proof of Theorem 1.5.2 are satisfied if s is replaced with 571 in the proof.

Let N+ = {n € N : s'nis € N}. Applying Theorem 1.5.2 to s~! and to the system of positive rootrs
A% and swapping the roles of N and of N we deduce that all conjugacy classes in the stratum G¢ intersect the
variety s ' HN,—1 which is a subvariety of the transversal slice ¥,-1 = s !ZN,_: to the set of conjugacy classes
in G. Note that N -1 is not a subgroup in N,. But every element of 7,1 € N,-1 can be uniquely factorized
as follows fig—1 = n/ n_,, ﬁil €N, 1NNy, NoqonNnN_=NNN_, N, ouoNN, C My, where M, C N, is
the subgroup corresponding to the Lie subalgebra m,. Therefore every element s~ 'hgig,—1 € s "'H°N, 1 can be
represented as follows s ' hofs—1 = s‘lhoﬁ;lﬁ;l, and conjugating by n__, we obtain that s 1hofs—1 is conjugate
to ﬁ;,ls’lhoﬁj,l.
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Since the decomposition s = s's? is reduced

s(Ny o1 NN_)s'=s(NAN_)s' Cc M.

Taking into account that H° normalizes M, we have ﬁs__ls’lhoﬁ:’_l = s’lhohalsﬁs__lsflhoﬁ:_l = s 1homs,
ms = hy lsﬁs__ls_lhoﬁj_l € M,. We deduce that all conjugacy classes in the stratum G¢ intersect the variety
SilHOMJ’_.

Recall that by (3.4.25) with the roles of Ny and N_ swapped we have v = n’sm for some n’ € N,m € M,

where v € GG is an element of the form

l/

v = Hexp[tiX,%],

i=1
t; € C are non—zero constants depending on the choice of the representative s € G and the product over roots is
taken in the normal order (1.6.9) associated to s. We deduce that s~ = mv~1n/.

Now let s thoms, hg € H°,m, € M, be an element of s"'H°M,. Using the previous expression for s~! we

can write s~ 'hom, = mu~'n’hgm,. Conjugating this element by m~! and recalling that H° normalizes N, we
infer that s~'hgm, is conjugate to

1 1
v hgmem = v Y hon = Xo(hgn, hy 2v),

1 11
where n = hy'n'mgm € Ny, hg € HP is any element such that hihi = hg, Ao is defined immediately after
Proposition 6.1.4. We deduce that all conjugacy classes in the stratum G intersect the variety v"'HON, .
By part (iv) of Proposition 6.1.5 we conclude that if nn € Spec(Zy) satisfies 7 € G¢ then there is a quantum
L1 1
coadjoint transformation g such that 7(gn) = (hén, h, 2v) for some n € Ny, hZ € H°.
Denote £ = gn. From the definition of the map 7 and of the element v it follows that

exp(g(‘rED)X*ﬁD) exp(g(x[;D,I)XfﬁD—l) s eXp(g(x/; )X*ﬁl) =t

which implies ((X)™) = —fi;__l)m #0fori=1,...,0" and that {((X;)™) =0for B € An,, BE& {711, , W}

(E’Yi
By the definition of the elements fg with § = 22:1 m;o; we have fg = Hé,j:l L;-nm”Xg. Therefore the
Lo i (X5 )™, where cg are non-—

commutation relations between elements L; and X 5 imply that fgT =cg ]_L =1 Lj
zero constants, and hence £(f5') = cg H;j:l L) ((X5)™). Since §(Lj) # 0 for j =1,....1, {((X;)™) =
—m #0fori=1,....,0' and {((X5)™) =0 for B € An,, BE {n,....w} we deduce {(f]}) = a; # 0 for
i=1,...,0" and {(f5") =0 for B € An,, B & {m,...,7}. Thus { satisfies the condition of Propositions 6.2.2 and
6.2.4. Let Ug,(m_) = Us(m_) be the corresponding subalgebra in Ug(g).

Note that by Theorem 1.5.2 for any g € G¢ we have
dim Zg(g) = dim ¥,-1,

where Z(g) is the centralizer of g in G.

By the definition of ¥, -1 we also have dim X1 = [(s) +2Dg +dim h’L. Observe also that dim G = 2D +dim b
and dim b — dim h'" = dim §’ = I/, and hence from (1.6.15) we deduce that dim m_ = D — Dy — 1(l(s)=1) =
1(dim G — dim ¥,-1) = 3dim Oy and dim Ug(m_) = dim Ug,(m_) = mdm m- = mzdim Oy where O, is the
conjugacy class of any g € Ge.

In particular, dim Ug(m,) = mzdim Omn where Oy is the conjugacy class of 7 € Ge.
The remaining statements of this proposition are consequences of Proposition 6.2.4.
O

6.3 Skryabin equivalence for quantum groups at roots of unity and
the proof of De Concini—Kac—Procesi conjecture

In this section we shall study the U,, (m_)-action on finite-dimensional U, (g)-modules introduced in the previous
section. We shall show that each such module is U, (m_)-cofree. Taking into account that dim U, (m_) =
m2dim Om this will imply the De Concini-Kac—Procesi conjecture.
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The main observation with the help of which we shall prove these statements is that the structure of U, (g)-
modules is similar to that of a root of unity analogue @, of the module Q%¢, and the results of Propositions 4.6.1 and

4.6.8 can be specialized to qﬁ — ¢@7 and transferred to Qy and, more generally, to any finite-dimensional U, (g)—-
module using root of unity analogues of the homomorphism ¢. In particular, using images of the specializations
By, .. of the elements B, ,, in finite-dimensional U, (g)-modules one can construct their Uy, (m_)-cofree bases.

To realize this program for any given 1 € Spec(Zy) we assume that A% is the system of positive roots defined
for s in Theorem 1.5.2, A, the corresponding system of positive roots associated to s, d = 2d’, where d’ is defined
in Proposition 6.1.1. Assume that m and d are coprime. Fix a quantum coadjoint transformation g € G as in
Theorem 6.2.6 and denote £ = gn € Spec(Zy). Since according to (6.1.12) g gives rise to an isomorphism of the
algebras U, (g) and Ug(g) it suffices to consider the case of the algebra Ug(g).

Our first objective is to obtain root of unity analogues of Proposition 4.1.2 and Lemma 4.7.1. We start by
introducing the notions required for the formulations of these statements. For indeterminate ¢ these notions were
introduced in Section 4.1.

Let x be a character of Ug(m_) defined in Proposition 6.2.2, C,, the corresponding representation of Ug(m_).
Denote by Q, the induced left Ue(g)-module, Q, = U¢(g) ®u,(m_) Cy. @y can also be naturally regarded as a
UZ(g)-module via the natural projection UZ(g) = U.(g) — U¢(g).

Let Cl¢[G], Clo°[G.], CE[G*], BS, ... C%[G]. be the natural specializations at gr® = 7@ of Cckela),
C5'°lG.], CE[G*], Bay. m., CI5¢[G], respectively.
Define the twisted adjoint action of U2"%*(g) on CI[G] by

(Adzf)(w) = f(woSs " (Adia(Sswow))) = f((woSi ) (@ )wwo(2?)), f € C[G], 2, w € U™ (g). (6.3.1)

Specializing isomorphism (3.2.14) at qﬁ = ¢a? and twisting it by woS; ! we obtain a U$"**(g)-module homo-
morphism

¢ : CE[G] — CE[GL], f = (id @ f)(id ® woS; ) (RERT). (6.3.2)

Observe that the subalgebra in U2"¢*(g) generated by fg, B € Ap, is isomorphic to Uy, (m_). Therefore composing
homomorphism (6.3.2) with the natural projection Ci[G.| C UZ(g) = Ue(g) — @, we obtain a homomorphism of

Uy, (m_)-modules

b« C2[G] = Qy, 0 (f) = ¢ ()1, (6.3.3)

where CZ[G] is equipped with the restriction of action (6.3.1) to Uy, (m_) and @, with the action induced by the
adjoint action Ad of U,, (m_) and 1 is the image of 1 € C[G,] in Q¢ under the map CZ[G.] = Q.

Similarly, for any finite-dimensional Ug(g)-module V' and any w € V, one can define a U, (m_)-module
homomorphism ¢ : CZ[G] — V by

¢¢ : CIG] =V, ¢e(f) = o (f)w.

Proposition 6.3.1. The specialization I}' C CE[G] of the left ideal I})* C C3[G] at qa® =ea? lies in the kernel
of ¢¢'.

Moreover, if u is a highest weight vector in the specialization at qﬁ = cu? of a finite rank indecomposable
representation Vy of U (g) of highest weight A and such that (u,u) =1 then for any f € CZ[G]

1+

O (f @ (u, Ty Mu)) = e (A2 (e T2 Por DN (1)) (u, T M), (6.3.4)

where Adg(e_(”d%P"’Hd)Av)(f) is the adjoint action of the element

(pglEs NN (pglEs NN 1 1 _(ndlts i)\
c (nd X% Pys+id) A =q (nd X% Pyr+id) X (mod (qrzd —€r2d))76 (nd{=5 Pyr+id) A EC;[G*]

on f € Ci[G].
One can define an action of an operator glid+s™ ) (id=ndPy )X 5 e image of C:[G] in V by the formula

. —1 . i . —1 - A\
glidts ) (d=ndPy AT () = o (AdY (e~ (s IUd=ndBy )XY (1)) ot ((u, T ), (6.3.5)

where Adg(5_(id+571)(id_"dph’)’\v)(f) is the adjoint action of the element

Ef(idJrs’l)(idfndPh/))\v _ qf(idjts*l)(idfnde/))\V (mod (qﬁ . 6ﬁ))7Ef(idJrs’l)(idfndP,,/))\V € C:[G*]
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on f € Ci[G].
Using this operator formula (6.3.4) can be rewritten as follows

1+s

SE (S ® (u, T M) = U DB N g (AqQ (endamss R DT (1)), (6.3.6)

id+s™1) (sd—nd Py )Y E(id-&-s*l)(id—ndP,,/)/\v Jno

The operator &’ is invertible. More precisely, for someng € N the action of (
coincides with the action of the element

Eng(idJrs_l)(idfndPh/))\v _ qno(id+5_1)(id7ndPh/)/\V (mod (qﬁ 7eﬁ)%gno(id+s_l)(id7ndPh/))\v € U(h),

and hence (E(id+s_1)(id7ndPh/)/\v)nom _ f(gngm(id+5_l)(id7ndPh/))\V) =c, € C*.
¢¢ extends to a Uy, (m_)-module homomorphism ¢ : Cloc|G) — V,

1+4s

—nd)s—1 nd)s— V oy V . — . Vi -1 — — Vi
¢15U(f®Af\71) :€(<1 ds _+Qind)s=2 p 3V A )(g(zd—&-s DY(id—ndPy )X ) ¢?(Adg(€(ndlﬂs 1Py —s~ YA (),
(6.3.7)

and the specialization Isuloc C C2l°[G] of Iélloc C (CSB’lOC[G] at qﬁ =ca? belongs to the kernel of this homomor-
phism, so

o CIFIG) > V.

Proof. In order to prove this proposition one can apply Proposition 4.1.1 for K = nd and qd% specialized to Ed%,
and the appropriately modified arguments before Proposition 4.1.2 and from the proof of Lemma 4.7.1.

Indeed, by the definition of I with kK = nd, k; = ¢;, i = 1,...,0' for ¢;, i = 1,...,1’ used in the definition
of x, the specialization of Ilg at q# =caz belongs to the annihilator of w, and hence by Proposition 4.1.1 the
specialization I} C C2[G] of the left ideal I C CE[G] at q@? = lies in the kernel of PF.

Formulas (6.3.4), (6.3.5) and (6.3.6) are obtained by specializing the corresponding formulas in Proposition
4.1.1 at qﬁ = c@7 with & = nd.

The only essential difference is that the operator e is invertible and for some ny € N its
action coincides with the action of the element g0(id+s™)(id=ndPy)A” ¢ [7s(p)  This can be justified as follows.

Recall that elements v, i = 1,...,l’ form a linear basis of h’. Let v, i = 1,...,1’ be the basis of §’ dual
to )/, i =1,...,0" with respect to the restriction of the bilinear form (-,-) to §’. Since the numbers (v, 'ij) are

(id+s~ ") (id—ndPy/ )XY

integer each element ~; has the form ~; = Zgzl mijyy, where m;; € Q. Therefore Py \Y = Z;’:l(/\v,'yg )y =

Zi; g=1 (A7 )mpgyy belongs to the rational span of the set of simple coweights Vi, i = 1,...,l, and hence
(id + s71)(id — ndPy)AY belongs to the rational span of the set of simple coweights Y;, i = 1,...,1 as well. We
conclude that there exists an integer ng € N such that ng(id+s~1)(id —ndPy )AY belongs to the integer span of the
set of simple coweights Y;, 7 =1,...,[, and q"(’(id""‘f1)(”_"0”3”’))‘v € Ug(h). Soif we define gno(id+s™)(id—ndPy )XY _
qno(idﬂ*l)(id—ndph,)xv mod (quld o gﬁ) then gno(éd+s™!)(id—ndPy/ )XY € U(h).

Now using (6.3.4) and (6.3.5) one immediately verifies that
. — 1N/ Vi . —1 . Vv _ n
(el DEamnaR AT 0 G (f) = o (Adg (e DO AT (£)) 5 (u, T u)™)

and that
o ((u, Ty tu)™) = o (idts ™) (id—ndPy )\

Recalling the equivariance of . with respect to the action of U>"**(g) D UZ(h) we obtain from the last two

identities that i v
(2PN o g ) =

_ gno(idJrs_l)(idfndPh/))\VSps(f)é_fno(idJrs_l)(idfndPh,)AVgno(id+s_1)(id7ndPh/)>\V,w _
3 “H(id—n HAY ng(id+s~ 1) (id—n A w
_ 5ng(szrs )(id—ndPyr )X @E(f)w —¢ o(id+ )(id—ndPyr)X ¢§ (f)
Finally applying verbatim the arguments from the proof of Lemma 4.7.1 we deduce that gbé“ extends to a

Uy, (m_)-module homomorphism ¢¢ : C2'¢[G] — V in such a way that (6.3.7) holds, and the specialization
1117 Coloc| @] of Iélloc C C5°1q) at q@* = c? belongs to the kernel of this homomorphism, so

o¢ : CI5°[G). — V.
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Y (id—nd Py )XY

Note that due to invertibility of the operator g(*+s™ no localization of V, which appears in Lemma

4.7.1 for @ in the case of indeterminate g, is required.
O

Now we define root of unity counterparts of q-W-algebras. Let W:’E(G) = Endy, (4)(Qy)°"" be the algebra
of Ue(g)—endomorphisms of @), with the opposite multiplication. The algebra Wj’é(G) is also called a q-W-
algebra associated to s € W and to { € Spec(Zp). Denote by Ue(g) — mod the category of finite-dimensional left
Ue(g)-modules and by W .(G) — mod the category of finite-dimensional left W7 (G)-modules. Observe that if
V'€ Ug¢(g)—mod then the algebra W7 . (G) naturally acts on the finite-dimensional space Vy = Homy, (m_(Cy, V) =
Homy, (4)(Qy, V') by compositions of homomorphisms.

The following theorem is a root of unity analogue of the Skryabin equivalence for equivariant modules over
quantum groups. This theorem uncovers some striking similarity between the structure of the category of finite—
dimensional representations of Ug(g) and of the category of equivariant modules over a quantum group for generic

E.

Theorem 6.3.2. Every module V € Ue(g) —mod is isomorphic to Home (U, (m_),Vy) as a right Uy, (m_)-module,
where the right action of Uy, (m_) on Homc (U, (m_), V) is induced by the multiplication in U,, (m_) from the left.
@y is isomorphic to Homc (Uy, (m-)) ® WZ(G) as a Uy, (m_)-W?(G)-bimodule. In particular, V is Uy, (m_)-
injective, EXt.Um(m,)(Cs» V) =V, and the dimension of V is divisible by dim Ug(m_) = mzdim O,

The functor E — Q) Bw (@) E establishes an equivalence of the category of finite—dimensional left W;E(G)—
modules and the category Ue(g) —mod. The inverse equivalence is given by the functor V — V... In particular, the
latter functor is exact, and every finite-dimensional Ue(g)-module is generated by Whittaker vectors.

Proof. Let V be an object in the category Ug(g) — mod. Fix any linear map p : V' — V,, the restriction of which
to Vy is the identity map, and let for any v € V 0.(v) : Uy, (m_) — V, be the C-linear homomorphism given by
o:(v)(x) = p(Adsz(v)), and we have a map o, : V — Homc (U, (m_), V).

By definition o, is a homomorphism of right U,, (m_)-modules, where the right action of U,,, (m_) on

Home (Uy, (m-), Vy)

is induced by multiplication in U, (m_) from the left.

We claim that o, is an isomorphism. Firstly, o, is injective for otherwise its kernel would contain a non—zero
Whittaker vector. Indeed by Lemma 6.2.5 the augmentation ideal of U,, (m_) coincides with its Jacobson radical
which is nilpotent. Therefore its action on the kernel of o, is nilpotent, and hence the kernel, if it is non—trivial,
must contain a non-zero Whittaker vector annihilated by the augmentation ideal of U,, (m_). But all non-—zero
Whittaker vectors in V' belong to V, and by the definition of o, their images in Homc(U,, (m_), V}) are non-zero
homomorphisms non-vanishing at 1.

Next we show that o. is also surjective. Indeed, for ni,...,n, = 1,...m — 1 and any v € V,, the elements
pMete = ¢ (5)_1¢E(B;1___nd) are well-defined, all ¢}, . (¢) being non-zero by the choice of &, and Corollary
4.6.8 for ky,..., k. =1,...m — 1 implies

ks ke maome ) v if mp =k, for p=1,...c
Ads(fl"'ff@c)v _{ 0if kj=n4,i=1,...,p—1 and k, >n, for some pe{l,...,c}

7

and hence
n1.mey (ki kv J v if np=k, for p=1,...,¢
oe(v )(fl"'fﬁc)_{o if kj=n;i=1,...,p—1 and k, >n, for some pe{l,...,c} (6.3.8)
Observe that the elements fgll .. fgcﬁ ki,...,ke=1,...m—1 form a linear basis of U,, (m_). Elements of this
basis are labeled by elements of the set N¢ | where N,;, = {0,1,...,m — 1}. Introduce the lexicographic order on

this set, so that (k1,...,ke) > (n1,...,nc) if k; =n; fori=1,...,p—1and k, > n, for some p € {1,...,c}.
Note that for any (ki,...,k.) € N¢ the number of elements (ni,...,n.) € N¢ such that (ki,...,k.) >
(n1,...,n.) is finite.
Now let (k1,...,k:) € N7, v € V. If for (nq,...,n.) € N§, such that (k1,...,k:) > (n1,...,n.) we denote

oe(vnlne) = foyone
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where for (k1,...,ke) > (n1,...,0c) Uny..n. € Vi are defined by induction starting from vy, x, = v as follows

Unyne = — Z fn’ln’t(fnll s fn;)v (639)

then using (6.3.8) one obtains

"/1 nfﬁ o v”h-u’ﬂc lf (7’7/1, n’c):(nl,...,nc),
f“l“'"c(fl“‘fﬂﬁ—{ 0 i (nl,...,nl) > (na,...

From this property and from (6.3.9) one immediately checks that if we define

ki..ke _
v - Z fn1...nc

(k1,eeke)>(n1,.ne)

then for any (ni,...,n.) € N¢,

ki...ke( pma Ne\ v if (nla"'7n0):(k1a"'7k6)a
£ (fzalwfc)—{ 0 i (n1,....ng) # (kroeeo ko) (6.3.10)
Since the elements f’Cl fgcc, ki,...,ke=1,...m —1 form a linear basis of Uy, (m_) (6.3.10) implies that the

elements fF* with (ki,...,k.) € NS, v € V,, generate Homc(U,, (m_), V), and hence the elements o (v™!+")
with (n1,...,n.) € N§,, v € V,, generate Homc(Uy, (m_), V) as well. Therefore o, is surjective, and the first part
of the theorem is proved.

Similarly to the case of generic e (see last part of the proof of Theorem 5.2.1) one shows that @, is isomorphic
to Homg (Uy, (m-)) @ WZ(G) as a Uy, (m_)-W¢(G)-bimodule.

Let E be a finite- d1mens10nal we (G)fmodule Using the isomorphism @ ~ Homc (Uy, (m-)) ® WZ(G) of
Up, (m_)-W_ (G)-bimodules and the hnear space isomorphism W2 . (G) = Endy, (5)(Qx)?"? = Homy, (m_)(Cy, Q) =
(Qx)x, one immediately deduces similarly to the case of generic e in the proof of Theorem 5.2.1 that (Qy Bws (@)
E), = E. Therefore to prove the second statement of the theorem it suffices to check that for any V € Ug(g) —mod
the canonical map f : @, Ows (G) Vi — V is an isomorphism.

Indeed, f is injective because otherwise by Proposition 6.2.4 its kernel would contain a non-zero Whittaker
vector with respect to x. But all Whittaker vectors of @), Ows (@) V, belong to the subspace 1 ® V,,, and the
restriction of f to 1 ® V, induces an isomorphism of the spaces of Whittaker vectors of @y, Bws (@) V, and of V.

In order to prove that f is surjective we consider the exact sequence

0— Qy Ow:,(G) ViV =W =0,
where W is the cokernel of f, and the corresponding long exact sequence of cohomology,

0— Ext?]n1 m ) (Ce, Qy Ow: (G) Vi) — Ext?]m(mi)((cs, V) — Ext?]m m_)(Ce, W) —

— Ext%]n1 (m_)((CE, Qy Ows (G) Vi) —
Now recall that f induces an isomorphism of the spaces of Whittaker vectors of @) Bws (@) Vy and of V.
As we proved above the finite-dimensional Ug(g)-module @y ®W:£(G) Vy is injective over Uy, (m_), and hence

Ext%]n1 (mf)(CE, Qy Ow: (@) Vy) = 0. Therefore the initial part of the long exact cohomology sequence takes the
form
0=V, =Vy—=W,—0,

where the second map in the last sequence is an isomorphism. Using the last exact sequence we deduce that
W, = 0. But if W were non-trivial it would contain a non-zero Whittaker vector by Proposition 6.2.4. Thus
W =0, and f is surjective. This completes the proof of the theorem.

O

By the previous theorem every module V' € Ug(g) — mod is isomorphic to

Homc(Uy, (m-), Vy) = Home (Up, (m-), C) © Vy
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as a right Uy, (m_)-module. In fact, one can show that the algebra U, (m_) is Frobenius, i.e. its left regular
representation is isomorphic to the dual of the right regular representation and its right regular representation is
isomorphic to the dual of the left regular representation. Thus as a right U,, (m_)-module V is isomorphic to
Up, (m_) ® V,,, where the right action of U, (m_) on U, (m_) ® V, is induced by the multiplication in U, (m_)
from the right. In particular, V' is U,, (m_)—free.

More generally, we have the following proposition.

Proposition 6.3.3. For any character n : Zg — C the algebra Uy(g) and its subalgebra U,(m_) are Frobenius
algebras.

Proof. The proof of this proposition is parallel to the proof of a similar statement for Lie algebras over fields of
prime characteristic (see Proposition 1.2 in [41]) and for the restricted form of the quantum group in [74]. We shall
only briefly outline the main steps of the proof for Uy, (g). The proof for U,(m_) is similar.

The key ingredient of the proof is the De Concini-Kac filtration on U.(g) ~ US(g) defined as in Section 5.1.
For r, t € N” introduce the element u, ¢ = e"tf*, t € U.(h), where we use the notation of Lemma 2.8.2. Here
the generators fu,eq,a € Ay and the ordered products of them are defined with the help of the normal ordering
of Ay associated to s. Define also the height of the element u, ¢ as follows ht (uy ) = Z?:l(ti +ri)ht 5; € N,
where ht 3; is the height of the root ;. Introduce also the degree of uyt+ by

d(ur,tyt) = (7‘1, - ,’I’D7tD, . ,tl, ht (ur,t,t)) € N2D+l.

Equip N2P+1 with the total lexicographic order and for k € N2P+1 denote by (U.(g))x the span of elements wuy ¢
with d(urs,:) < k in U.(g). Then Proposition 1.7 in [23] implies that (U.(g))s is a filtration of U.(g) such that
the associated graded algebra is the associative algebra over C with generators ey, fo, @ € Ay, Lil, i1=1,...1

K3
subject to the relations

LZL] = LjLi, LiL;1 — L;lLi — 17 LieaL;l _ Eoz(Y,-)eO” LifaL;l — E_a(yi)fa,

eafﬁ _ €nd(£Phl*a’B)‘fﬁea,
(6.3.11)

1+s
eals = E(avﬁ)"‘nd(1—st’*a’ﬁ)e,3€a, o < /6,

fafp =P tndGE PR fof o < B,

Such algebras are called semi—commutative.
By Theorem 61.3 in [31] it suffices to show that there is a non-degenerate bilinear form B,, : U,(g) x U, (g) — C
which is associative in the sense that

B, (ab,c) = By(a,bc), a,b,c € Upy(g).

Consider the free Zp—basis of U.(g) introduced in part (ii) of Proposition 6.1.3. This basis consists of the
monomials z; = f*L%% I = (ri,...,rp,s1,...,81,t1,...,tp) for which 0 < 7y, t5, 8, < m for i = 1,...,1,
k=1,...,D. Set I'=(m—-1—r1,....m—1—rpm—1—s1,....m—1—s,m—1—1t;,...,m—1—tp) and
P=(m-1,...,m—1).

Let @ : U.(g) — Zp be the Zp-linear map defined on the basis z; of monomials by

@wﬂz{l I=P

0 otherwise

Let x = >, crxr, cr € Zy be an element of U(g), and cx # 0 a coefficient such that d(zx) is maximal possible
with cx # 0 in the sum defining «.

Using the definition of the De Concini-Kac filtration and commutation relations (6.3.11) one can check that
O(xxg) = azck, where a, is a nonzero complex number (see [74], proof of Theorem 2.2, Assertion I for details).

Therefore the bilinear form B, : U,(g) x U,(g) — C associated to the associative Zy-bilinear pairing B :
U:(9) ®z, U:(g) = Zo, B(z,y) = ®(zy) is non—degenerate and associative. This completes the proof.

O

We restate the results of the discussion before the previous proposition as its corollary.

Corollary 6.3.4. As a right Uy, (m_)-module, every module V € Ug(g) — mod is isomorphic to Uy, (m_) ® V,,
where the right action of U, (m_) on U,, (m_) @ V, is induced by the multiplication in U,, (m_) from the right. In
particular, V is Up, (m_)—free.
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6.4 Properties of g-W—-algebras associated to quantum groups at roots
of unity

In conclusion we study some further properties of g-W-algebras at roots of unity and of the module @,. We keep
the notation introduced in the previous section. First we prove the following lemma.

Lemma 6.4.1. The left Ug(g)-module Q,, is projective in the category Ug(g) — mod.

Proof. We have to show that the functor Homy, () (Qy, ") is exact. Let V'* be an exact complex of finite-dimensional
Ue(g)—modules. Since by the previous theorem any object V' of Ug(g) — mod is isomorphic to Home (U, (m_), V)
as a right U, (m_)-module we have

V*® ~ Homg (U, (m_), V"),

where V* is an exact complex of vector spaces and the action of U,, (m_) on Home (U, (m_), V") is induced by
multiplication from the left on Uy, (m_).
Now by the Frobenius reciprocity we have obvious isomorphisms of complexes,

Hong(g)(QX, V) ~ Hong(g)(QX7 Ve = HomUs(nL)((CX7 V)~
~ Homy;, (m_)(Ce, Home (Uy, (m_), V")) ~ Home (Uy, (m_) @y, m_) Ce, V') =V",
where the last complex is exact, and we used the fact that by Lemma 6.2.3 for any finite-dimensional U¢(g)-module

V one has Homy, m_)(Cy, V) ~ Homy, (m_)(Ce, V). We conclude that the functor Homy, (m_)(@y,-) is exact.
O

The properties of g-W-algebras at roots of unity are summarized in the following proposition.

Proposition 6.4.2. Denote b = mdim m- = ppzdim Orc  Thep Q4 ~ Ue(g) as left Ue(g)-modules, Ue(g) ~
Mat,(W: :(G)) as algebras and Q ~ (WSVE(G)OPP)” as right WZ .(G)-modules.

Proof. Let E;, i = 1,...,C be the simple finite-dimensional modules over the finite-dimensional algebra Ug(g).
Denote by P; the projective cover of E;. Since by Theorem 6.3.2 the dimension of E; is divisible by b we have
dim E; = bry, r; € N, where 7; is the rank of F; over U,, (m_) equal to the dimension of the space of Whittaker
vectors in F;. By Proposition 2.1 in [97]

Ue(g) = Maty(Endy, ) (P)PP),

where P = @?:1 P". Therefore to prove the second statement of the proposition it suffices to show that P ~ Q,.
Since by the previous lemma (), is projective we only need to verify that

r; = dim Homy, () (P, ;) = dim Homy, (4)(Qy, Ei)-
Indeed, by the Frobenius reciprocity we have
dim Homyp, (4)(Qy, £i) = dim Homy, (m_)(Cy, E;) = 7.

This proves the second statement of the proposition. From Proposition 2.1 in [97] we also deduce that P? ~ Ug(g)
as left Ug(g)-modules. Together with the isomorphism P ~ @), this gives the first statement of the proposition.

Using results of Section 6.4 in [95] and the fact that @, is projective one can find an idempotent e € Ue(g) such
that Qy ~ Ug(g)e as modules and (W (G))PP ~ eUg(g)e as algebras.

By the first two statements of this proposition one can also find idempotents e = ey, ez, ...,e, € Ug(g) such
that ex +...+ep, =1, e;e; = 01if i # j and e;Ue(g) =~ eUg(g) as right Ug(g)-modules. Therefore e;Ue(g)e =~ eUg(g)e
as right eUg(g)e-modules, and

b
Qy ~ Ue(g)e = @ e;Ue(g)e ~ (eUg(g)e)b ~ (W;g(G)"pp)b

i=1

as right W7, (G)—modules. This completes the proof of the proposition
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Corollary 6.4.3. The algebra W (G) is finite-dimensional, and dim W (G) = mdim s

Proof. By Proposition 3.4.5 2dim m_ 4 dim ¥, = dim G. Therefore by the definition of @}, we have dim @, =
mdim G=dim m— _ -y dim m_+dim 25 Ripally from the last statement of the previous theorem one obtains that
dim W, (G) = dim Qy /maim M= = ppdim Xs

O

Using Proposition 6.1.1 we deduce from Proposition 6.4.2 the following statement on the structure of the algebra
Uy(g)-

Corollary 6.4.4. Let 1 € Spec(Zp) be an element such that m € Ge, C € C(W) and s~ € C, d = 2d’, where d’
is defined in Proposition 6.1.1. Assume that m and d are coprime.

Then U, (g) ~ Maty(W::(G)), where § € SpecZy is chosen as in Proposition 6.4.2, and b = mzdim Oy

Let L be a sheaf of algebras over SpecZy the stalk of which over n € SpecZy is U, (g). Assume that the conditions
imposed on m are satisfied for all Weyl group conjugacy classes in C(W). Then the sheaf L is isomorphic to a
sheaf the stalk of which over any n € SpecZy with ™ € G° N Ge, C € C(W) is Mat,(WZ (@), where § € SpecZ

. ) iy _ 1gi
is chosen as in Proposition 6.4.2, s~ € C, b= m2dm Omn,

6.5 Bibliographic comments

The study of representations of quantum groups at roots of unity was initiated in [23], where the quantum coadjoint
action was defined as well. This action was studied in detail in [25] where the De Concini-Kac—Procesi conjecture
on the dimensions of irreducible representations of quantum groups at roots of unity was formulated.

The results on quantum groups at roots of unity stated in Section 6.1 can be found in [23] and [25]. Proposition
6.1.1 first appeared in Appendix A to [118]. The statements of Proposition 6.1.2 can be found in [23], Corollary
3.3, [25], Theorems 3.5, 7.6 and Proposition 4.5. Proposition 6.1.4 is Corollary 4.7 in [25], and the statements of
Proposition 6.1.5 appear in Propositions 3.4, 3.5, [23], and in Proposition 6.1 and Theorem 6.6 in [25]. Finite—
dimensional quotients U, (g) were introduced in [24].

The notions of Whittaker vectors for representations of quantum groups at roots of unity, of the algebras
Up, (m_), and of their actions on finite-dimensional representations of U, (g) were introduced in [117], and the
exposition in Section 6.2 follows [117] as well.

In the representation theory of Lie algebras in prime characteristic there is a conjecture similar to the De
Concini-Kac—Procesi conjecture. It is called the Kac—Weisfeiler conjecture. Our proof of the De Concini—-Kac—
Procesi conjecture is conceptually similar to the proof of the Kac—Weisfeiler conjecture given in [120] which is in
turn a straightforward prime characteristic generalization of the proof of the Skryabin equivalence for reductive Lie
algebras over algebraically closed fields of zero characteristic suggested in the Appendix to [96]. All these proofs
go back to the original Kostant’s idea on the proof of the classification theorem for Whittaker representations of
complex semisimple Lie algebras in [72], the proof of the Skryabin equivalence in [96] being a significantly refined
and simplified version of the proof of the main Theorem 3.3 in [72].

The properties of g-W—algeras at roots of unity are similar to those of W—algebras associated to semisimple Lie
algebras in prime characteristic proved in [97], Proposition 6.4.2 being an analogue of Theorem 2.3 in [97].
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Appendix 1. Normal orderings of root systems compatible with invo-
lutions in Weyl groups

By Theorem A in [101] every involution w in the Weyl group W of the pair (g, ) is the longest element of the
Weyl group of a Levi subalgebra in g with respect to some system of positive roots, and w acts by multiplication
by —1 in the Cartan subalgebra b,, C b of the semisimple part m,, of that Levi subalgebra. By Lemma 5 in [18] the
involution w can also be expressed as a product of dim b,, reflections from the Weyl group of the pair (my, ),
with respect to mutually orthogonal roots, w = s,, ...s,, , and the roots vy1,...,7, span the subalgebra b,,.

If w is the longest element in the Weyl group of the pair (m,,b,,) with respect to some system of positive
roots, where m,, is a simple Lie algebra and b,, is a Cartan subalgebra of m,,, then w is an involution acting by
multiplication by —1 in b,, if and only if m,, is of one of the following types: A1, B;, Cy, Doy, E7, Eg, Fy, Go.

Fix a system of positive roots Ay (my,b,,) of the pair (my,h,). Let w = s,, ...s,, be a representation of w
as a product of dim b,, reflections from the Weyl group of the pair (m.,, b, ), with respect to mutually orthogonal
positive roots. A normal ordering of Ay (my, b)) is called compatible with the decomposition w = s, ...s,, if it
is of the following form

Bla"'76%771)"'7727"'7737"'a’Y’ru

where p is the number of positive roots, and for any two positive roots a, 8 € A (my,, b,,) such that v; < a < S the
sum « + B cannot be represented as a linear combination EZZI CkYi,, Where cp € Nand a <y, < ... <7, <f.
Note that from the definition it also follows that

p

181, Begall = 557, -l =

p+n
5

(AL1)

Existence of such compatible normal orderings is checked straightforwardly for all simple Lie algebras of types
A1, B, Cy, Doy, Er, Eg, Fy and G3. In case A; this is obvious since there is only one positive root. In the other cases
normal orderings defined by the properties described below for each of the types By, Cj, Doy, E7, Eg, Fy, G2 exist
and are compatible with decompositions of nontrivial involutions in Weyl group. We use the Bourbaki notation for
the systems of positive and simple roots (see [10]).

.Bl

Dynkin diagram:

[e5} (e] a2 ap—1 (&%)
® o “ e [ O ———— @
Simple roots: a; = €1 —e9, 0 = €3 —€3,...,00_1 = E]_1 — £, Q] = £].

Positive roots: ¢; (1 <i<1),e; —¢j,e;+¢; (1 <i<j<I).

The longest element of the Weyl group expressed as a product of dim bh,, reflections with respect to mutually
orthogonal roots: w = s, ... s,.

Normal ordering of A (my,, b,,) compatible with expression w = s, ... S¢,:

€1 —€2y..,€1-1 —&,E1y.-+,E2,...,E,

213
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where the roots ¢; —¢; (1 < i < j <) forming the subsystem Ay (A;_1) C A4 (B)) are situated to the left
from e1, and the roots €; +¢; (1 < ¢ < j <) are situated to the right from e;.

.Cl

Dynkin diagram:

a1 (€5] ap—2 aj—1 (&%)
. . DY . . —— .
Simple roots: oy =1 — €9, 0 = €9 —€3,...,0q_1 = €1 — £, Q1 = 2¢.

Positive roots: 2e¢; (1 <i<l),e; —¢ej,e;+¢; (1 <i<j<lI).

The longest element of the Weyl group expressed as a product of dim bh,, reflections with respect to mutually
orthogonal roots: w = sac, ... 52,

Normal ordering of A (my,, b,,) compatible with expression w = sa, ... Sa2¢,:

51—52,...,51_1—6[,261,...,282,...,265,

where the roots ¢; —¢; (1 < ¢ < j <) forming the subsystem Ay (A4;—1) C A (C}) are situated to the left
from 2¢q, and the roots €; +¢; (1 < i < j <) are situated to the right from 2¢;.

L4 -D2n

Dynkin diagram:

Q2p—1
[ ]
(7} Qg 2p—3 aQn/
’ ) - ’ ’ \
[ ]
(057
Simple roots: Q] = &1 — €2, =E9 —€3,...,02n_1 = E2n—1 — E2n, QX2 = E2n—1 + €2y

Positive roots: €; —¢j,e; +¢; (1 <i<j < 2n).

The longest element of the Weyl group expressed as a product of dim h,, reflections with respect to mutually
orthogonal roots:

W = Sey—e35e14€3 + - Sean_1—e2nSean_1+€2n-

Normal ordering of A (my,, b,,) compatible with expression

W = Sey—eoSe1+en -+ - Seap_1—€2nSean_1+ean *
€2 —€3,84 —E&5,...,82n—2 ~E€2n—1,---,E1 —E2,E3 —E&4,...,E2n—-1 — E2n—2,
€1+¢€2,...,63+€E4,...,E2n—1 + E2n,

where the roots ¢; —¢; (1 <1i < j <) forming the subsystem A, (A4;_1) C A4 (C)) are situated to the left
from e; + €2, and the roots €; +¢; (1 <@ < j <) are situated to the right from e, + €.
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o [
Dynkin diagram:

(6751 Q3 Qg (6% (673 (67%4
[ [ [ ] [ [ [
o
Q2

Simple roots: oy = 1(e1+¢es) — (et e3+eatestegter), o =e1+er, a3 =62—€1, u =e5— €2, Q5 =
€4 —E3,0 =E5 —&4,Q7 = & — €5,

Positive roots: £&; +¢; (1 <i<j <6), e5—e7, 2(es —e7 + Zle(—l)”(i)ei) with Z?zl v(i) odd.

The longest element of the Weyl group expressed as a product of dim h,, reflections with respect to mutually
orthogonal roots:

W = Seg—e15e2+e15e4—e35e4+e35e6—e55e6+e55e5—e7+
Normal ordering of A (m,,h,) compatible with expression

W = Sey—e1Sep+e1Se4—e35e4+e35e5—e55e6+e5Seg—er *

Q1,83 —E€2,E5 —&4,...,E68 —E7,...,E2 —€1,84 —E3,E6 —E5,..-,
g6 t+¢€5,...,64+¢€3,...,62F €1,

where the roots te; +¢; (1 <¢ < j < 6) forming the subsystem A, (Dg) C A4 (E7) are placed as in case of
the compatible normal ordering of the system A (Dg), the only roots from the subsystem A (A4s) C A4 (Dg)
situated to the right from the maximal root g —e7 are 2 —€1, €4 —€3, €6 — €5, the roots ; +¢; (1<i<yj<6)
are situated to the right from €¢ + €5, and a half of the positive roots which do not belong to the subsystem
A4 (Dg) C AL (E7) are situated to the left from eg — 7 and the other half of those roots are situated to the
right from eg — e7.

o Fjg

Dynkin diagram:

a1 Qa3 Qg (671 (675 (674 ag
[ ] [ [ [ [ ] [ ] [
o
Q2

Simple roots: a; = %(51 +eg) — %(52 +egtestestester), ay=¢c1+ey, a3 =63 —€1, Qq =E3— Eg, Q5 =
€4 —E3,0 = E5 — E4,7 = E¢ — E5,8 = €7 — €G-

Positive roots: +&; +¢; (1 <i < j <8), 3(es + Z:Zl(—l)”(i)ei) with ZZ:l v(i) even.

The longest element of the Weyl group expressed as a product of dim h,, reflections with respect to mutually

orthogonal roots:

W = Sey—e1Sexte1 Seq—e3Seqte3Seg—esSegtes Seg—erSegter-
Normal ordering of A (m,, b, ) compatible with expression

W = Sey—e1 Seater Sea—e3SeqtesSeg—esSeptes Seg—erSeg—er *
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Q1,83 —€2,E5 — E€4,E7 —€6,---,E2 —E1,E4 —E€3,E6 — €5,

€8 —€7y...,68 + €7,...,E6 T+ E5,...,E4 T E3,...,E2 + €1,

where the roots +e; +¢; (1 < i < j < 8) forming the subsystem A (Dg) C A, (Es) are placed as in case
of the compatible normal ordering of the system A, (Ds), the roots ¢; +¢; (1 < i < j < 8) are situated to
the right from eg + €7; the positive roots which do not belong to the subsystem A, (Dg) C AL (Fs) can be
split into two groups: the roots from the first group contain %(58 + &7) in their decompositions with respect
to the basis €;,7 = 1,...,8, and the roots from the second group contain %(58 — £7) in their decompositions
with respect to the basis €;,7 = 1,...,8; a half of the roots from the first group are situated to the left from
€9 — €1 and the other half of those roots are situated to the right from eg + 7; a half of the roots from the
second group are situated to the left from €5 — €1 and the other half of those roots are situated to the right
from eg — e7.

Fy

Dynkin diagram:

Simple roots: Q] = &2 — €3, = E3 — &E4,03 = E4,004 = %(61 — &9 — &3 — 64).
Positive roots: ¢; (1 <i<4),e;—¢j,6;+¢; (1<i<j<4), $(e1tertegtey).

The longest element of the Weyl group expressed as a product of dim h,, reflections with respect to mutually
orthogonal roots: w = s, Sz, 5¢,5¢,-

Normal ordering of A (my,, b,,) compatible with expression w = ¢, Se, Se;Se,:

Ay, €1 —€2y...,E3 —E4y..-43E1y...5E2,...,E4,

where the roots ¢; £¢; (1 <14 < j <) forming the subsystem A, (Bs) C A4 (F}y) are situated as in case of
By, and a half of the positive roots which do not belong to the subsystem A (By) C Ay (Fy) are situated to
the left from £; and the other half of those roots are situated to the right from e;.

G

Dynkin diagram:

a1 a9

Simple roots: a; = €1 — 9,0 = —2¢1 + €9 + €3.
Positive roots: ay, a1 + as, 2aq + ag, 3a; 4+ ag, 3a1 + 20, as.

The longest element of the Weyl group expressed as a product of dim h,, reflections with respect to mutually
orthogonal roots: w = Sqa, S3a; +20s -

Normal ordering of A (my, b,,) compatible with expression w = $4, $30; 205"

Q, a1 + a2, 3a1 + 22, 201 + g, 31 + az, ag.
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Appendix 2. Transversal slices for simple exceptional algebraic groups.

In this appendix, for simple exceptional algebraic groups we present the data related to the varieties ¥y ; defined
in Theorem 1.5.2. Let Gk be a connected simple algebraic group of an exceptional type over an algebraically closed
field k, and O € N (W). Let Hy be a maximal torus of Gx, W the Weyl group of the pair (Gk, Hx), and s € W an
element from the conjugacy class ¥ (0).

Let A be the root system of the pair (G, Hx) and A? the system of positive roots in A associated to s and
defined in Section 1.2 with the help of decomposition (1.2.14) where the subspaces h; are ordered in such a way
that in sum (1.2.14) hg is the linear subspace of hr fixed by the action of s, the one-dimensional subspaces b;
on which s! acts by multiplication by —1 are immediately preceding ho in (1.2.14), and if h; = h’;\, h; = f)L and
0 <A< pu<1theni< j. We also use a decomposition s = s's? for which the direct sum @Z:O,ik>0 b;, of the
one-dimensional subspaces b;, on which s! acts by multiplication by —1 is trivial. Such decomposition always
exists. As a consequence condition (1.6.8) is satisfied. Let Xk s be the corresponding variety defined in Proposition
1.3.4 (ii).

Then straightforward calculation shows that

dim Zg,(n) = dim ¥y

for any n € O € N(G,) C N(W). The numbers dim Zg,(n) can be found in [75], Chapter 22 (note, however,
that the notation in [75] for some classes is different from ours; we follow [85, 123]). The numbers dim X s are
contained in the tables below. These two numbers coincide in all cases. The tables below contain also the following
information for each O € N(W):

— The Weyl group conjugacy class ¥ (O) which can be found in [85];

— The two involutions s' and s in the decomposition s = s's?> € ¥W(0); they are represented by sets of natural
numbers which are the numbers of roots appearing in decompositions s' = s,, ...s,,, s = Sypyq - -+ 8,5 Where
the system of positive roots A? is chosen as in Theorem 1.5.2, and the numeration of positive roots is given in
Appendix 3;

— The dimension of the fixed point space hg for the action of s on b;

— The number |Ag| of roots fixed by s;

— The type of the root system A fixed by s;

— The Dynkin diagram I'f§ of Ay, where the numbers at the vertices of I'j are the numbers of simple roots in A%
which appear in I'§; the numeration of simple roots is given in Appendix 3;

— The length [(s) of s with respect to the system of simple roots in A% ;

—dim Xx = dim ho + |Ag| + I(s);

— The lowest common multiple d’ of the denominators of the numbers d% (f_“:; Pyr-a, aj), where 7,5 =1,...,[;
Gos.
] v (0) st s? dim by |Ag| Ay ry I(s) dim Yy d
Al Al - 6 1 2 Al 1 5 8 1
[ ]
(A1)s Ay - 4 1 2 Ay 2 5 8 1
[ ]
~ ~ 1
Ay A+ Aq — 6 0 0 — — 6 6 1
GQ (al) A2 5 2 0 0 - - 4 4 3
Go Go 1 2 0 0 - - 2 2 1
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F,.
@ vW(0) st 52 dim bo |Ao| Ao rs I(s) | dimXy, | d
A1 A1 - 24 3 18 Cg 4 3 2 15 36 1
o — 00— o
(A1), A - 21 3 18 Bs 12 3 15 36 1
o—eoe—e
- 16
A1 2A1 - 2 2 8 BQ 2 3 20 30 1
oe— 0
5
- 11
A + Ay 44, - 18 0 0 - - 24 24 1
23
Ay A, 23 1 2 6 A 3 4 14 22 3
o—e
A, A 19 4 2 6 Ay 1 2 14 22 3
e — 0
(BQ)Q BQ 16 8 2 8 B2 2 3 10 20 2
oe—e
As+ A, | Ay+ A | 23 ; 1 0 - - 17 18 3
(Ay+ Ay | As+ Ay | 19 ;‘ 1 0 - - 17 18 3
Ay + Ay Ay + Ay 233 i 0 0 - - 16 16 3
B A 16 114 1 2 A 3 13 16 2
[ ]
(Cs(ar))s | BatAr| 16 ; 1 2 | A 2 13 16 2
[ )
i 5
Cg(al) Az + A 16 6 0 0 - — 14 14 2
11
16 5
F4(a3) D4(a1) 2 11 0 0 — — 12 12 1
16
Bs D, 1 9 0 0 - - 10 10 1
2
1
Cs Cs + Ay 4 3 0 0 — - 10 10 1
14
Fi(as) Fi(a) L ) 0 0 - - 8 8 1
4(Qa2 4(a1 3 10
9 1
F4(a1) B4 2 4 0 0 - - 6 6 1
1 2
Fy Fy 5 X 0 0 - - 4 4 1
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Es.
0O W (0) st 52 dim by | |Ao] | Ao rs I(s) | dim Sy | d
Ay Ay - 36 5 30 As 1 3 4 5 6 21 56 1
o — 0 — 06— 06— 0
23
2A1 2A1 - 36 4 12 A3 3 4 5 30 46 1
e —0 — 0o
8
19
34 4A, - 2 0 - - 36 38 1
27
35
A, A, 35 2 4 12 24, 1 3 5 6 20 36 3
e — o e — e
A+ Ay Ay + Ay 35 3 3 6 Ay 5 6 23 32 3
e — 0
1 2
2A2 2A2 35 3 2 6 A2 5 6 22 30 3
e — 0
2
As +2A; | As+2A, 35 7 2 0 - - 26 28 3
11
A3 A3 23 224 3 4 2A1 3 5 19 26 2
[ ) [ ]
1 2
245 + Ay 3A, 6 3 0 0 - - 24 24 3
35 5
2
As + Ay Az + 24, 23 g 1 0 - - 21 22 2
24
D4(a1) D4(a1) 4 8 2 0 - - 18 20 2
23 19
A4 A4 g}l ; 2 2 Al 5 14 18 )
[ ]
23
D, Dy 2 4 2 0 - - 16 18 1
15
21 !
Ay + Ay Ay + Ay 2 1 0 - - 15 16 5
24 5
8
Ag As + Aq 1 0 0 0 - - 14 14 1
6 10
19
9 15
Ds(a) | Ds(ar) 12 1 0o | - - 13 14 2
7
16
1 9
As+ A1 | Eslas) 2 10 0 0 - - 12 12 1
6 19
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] W (0) st s2 dim bg | Ay Ay rs I(s) dim Yy ¢ d
4 1
Ds Ds 2 1 0 - - 9 10 2
15
6
6 1
E6 (al) E6(a1) 8 2 0 0 - - 8 8 1
9 5
1 2
FEs FEs 4 3 0 0 - - 6 6 1
6 5
E~.
0O W) | st s?2 | dim by | |Ag] A rs I(s) | dim Sy | o
Ay Ay - 63 6 60 Dg 3 33 99 1
[ )
7 6 5 a4/
e—0—0o—eo
AN
[ )
2
49
2A1 2A1 - 63 5 26 Al + D4 3 50 81 1
[ )
7 2 4/
[ ) e — 0
AN
[ )
7
(341)" (341) - 49 4 24 Dy 3 51 79 1
63 o
2 1/
e — 0
AN
[ )
5
19
40
(341)" @A) | - | 3 6 34, > 3 6 60 69 1
63 [ ) [ ) [
Ay Ay 62 1 5 30 Asg 2 4 5 6 7 32 67 3
o —0 —0—0— 0o
21
62
33
4A4 TA; - 44 0 0 - - 63 63 1
18
19
16
Ay + Ay Ay + Ay 62 310 4 12 Az 4 5 6 41 57 3
o —0 — 0
1
Ay +2A1 | Ay +2A1 | 62 18 3 2 Aq 5 46 51 3
30 °
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0 W (0) st s?2 | dim bo | |Ag] Ay rs I(s) | dim Xy | d
1
Ay + 34, Ay + 34, 62 ].58 2 0 — — 47 49 3
30
2142 2A2 ég ,]% 3 6 Ag 4 5 40 49 3
e — 0
As A, 49 317 4 14 | A+ A, s 4 5 | 31 49 2
o —0 — 0o
1
(A3 + Al)// (Ag + Al)/ 49 7 3 12 A3 2 4 5 32 47 2
37 e —o0 — o
) 1
245 + Ay 34, 25 2 1 0 - - 42 43 3
62 6
7
(As+41) | (A5+24)" | 49 | o 2 2 A 3 37 | 41 |2
28 *
1
4
Az +24, As + 34, 49 7 1 0 - - 38 39 2
16
37
D4(a1) D4(a1) 3 8 3 6 3A1 2 5 7 30 39 2
49 32
[ ] [ ] [ ]
3 7
D, (al) + Ay D4(a1) + Ay 49 8 2 4 24, 2 5 31 37 2
32 ° °
3
D, D, 1 28 3 6 34 2 5 7 28 37 1
49 ° ° °
22 4
(Ag + AQ)Q A3 + A2 20 2 2 A1 7 33 37 6
49
21 °
2
3 7
A3 + A2 D4(a1) + 2A1 49 8 1 2 A1 5 32 35 2
32 ®
7
3 9
As + Ay + A 2A3 + Ay 11 0 0 — — 33 33 2
49
14
26
A4 A4 ig é 3 6 AQ 2 4 24 33 5
e — o
6 7
AY Al 40 20 2 6 Ay 3 4 23 31 3
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] vW(0) st 52 dim by |Ay| Ay rs I(s) dim Yy d
5
18
28
Dy + Ay Dy +3A; 1 929 0 0 — — 31 31 1
30
31
37 1
As+ Ay Ay + Aq 6 2 0 - - 27 29 5
45 9
4 1
Ay + As Ay + Ay 37 2 1 0 — — 26 27 15
45 6
1 24
D5(a1) D5(a1) 28 2 2 A1 5 23 27 2
18
36 °
22 ;1
(A5 + Al)// As + Ay 23 2 0 0 - - 25 25 3
24 21
8
Air) (A5 + Al)n 169 1? 1 0 — — 24 25 3
32
5
D5(CL1) + Ay D5(CL1) + A 1 24 1 0 - - 24 25 2
18 28
36
4
1 6
Dﬁ(ag) DG(QQ) + A1 9 15 0 0 - - 23 23 1
31
40
1 28
(A5 + Al)/ E@(ag) 4 29 1 0 - - 22 23 3
16 31
3 1
Dy Dy 6 2 2 Aq 2 17 21 2
28
19 °
B
Dg(ag) + Aq E7(CL4) 4 31 0 0 - - 21 21 1
7 35
1
Dy + Ay Dy + Ay 3 2 1 0 — — 18 19 2
o 28 6
19
11 6
Ag Ag 19 9 1 0 - - 18 19 7
26 10
3 1
Dﬁ(al) Dﬁ(al) 5 12 1 2 A1 2 16 19 1
28 13 °
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] W (0) st s2 dim by Ny Ay rs I(s) dim Yy d
1 190
Dg(ar) + Ay Az 12 11 0 0 - - 17 17 1
13 29
2
1 3
Dg Dg + Ay 6 5 0 0 - - 15 15 1
7
28
8 1
E6(a1) Eﬁ(al) 19 4 1 0 - - 14 15 3
22 6
3 1
Es Es 6 9 1 0 - - 12 13 3
19 11
N
D¢ + Ay Er(a3) 2 11 0 0 - - 13 13 1
6 22
L
E7(a2) E7(a2) 4 192 0 0 - - 11 11 1
16 13
6|,
E7(a1) E7((11) 9 5 0 0 - - 9 9 1
10
7
L
E; E 4 5 0 0 - - 7 7 1
6 7
Esg.
@ vW(0) st 52 dim bo [Ao| Ay I'g 1(s) dim Xy s d’
Aq Aq - 120 7 126 E~ 1 3 4 5 6 7 57 190 1
e — 06— 06— 06— 06— 0
[ ]
2
2A 2A - o7 6 60 D 2 90 156 1
1 1 120 6 . 9
7 6 5 4/
e —0 —0 — o
AN
[ ]
3
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dim ho

1A

Ao

I(s) | dim Xy s

34,

61
97
120

24

Dy

108 136

Ay

Ay

119

72

Eg

1 3 4 5 6

56 134

44,

84,

13

19

50

67

69

83
119

120 120

Ay + Ay

As + Ay

119

69

30

1 3 4 5 6

T 112

Ag + 24,

Ag + 24,

119

31
69

12

3 4 5

86 102

As

As

97

74

40

6 5 4/

95 100

Ag + 344

A +44,

119

92 94

245

245

63
119

12

245

76 92

24, + Ay

3A,

63
119

A

78 86

Az + A

(As +24,)

97

12

As

2 4 3

69 84

194(01)

134(a1)

24

Dy
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0 W (0) st s2 | dim bo | |Ag| | Ao rs I(s) | dim Sy | d
7
Dy Dy 8 61 4 24 Dy 3 52 80 1
97 °
2 4/
e—oeo
AN
1 2
24y + 24, 44, 6 | 3 0 0 - 0| s |3
63 )
119 8
)
7
32
As + 24, As +4A, 97 36 1 0 - 75 76 2
50
61
7 15
D, (al) + Ay Dy (al) + Ay 97 32 3 6 34, 2 3 5 63 72 2
68 ° ° °
959 6
(Ag + AQ)Q A3 + A2 29 3 4 2A1 2 3 65 72 6
97
56 ° °
13
Ay + Ag (245) T 22 2 4| 24, 2 3 64 70 2
97 40
62 ° °
A4 A4 gg ; 4 20 A4 2 4 5 6 44 68 5
o—9o—0—o
5
26
Ast Ayt Ay | 245424, | | 2T o 0 - 6 | 66 |2
97 32
36
50
7 4
D4(a1) + A2 D4(a1) + A2 25 15 2 0 - 62 64 6
97 68
9
13
25
Dy + Ay Dy +4A, 8 35 0 0 — 64 64 1
59
63
80
2 11
2A3 2Dy (aq) i 1? 0 0 - 60 60 1
97 68
| 1
Ag+ Ay Ay + Aq 8 3 6 Ay 4 5 51 60 5
93
26 o —o
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0 W (0) st s2 dim by | |Ao] | Ao rs I(s) | dim Sy | d
8 39
D5 (al) D5(a1) 61 3 12 A3 3 4 5 43 58 2
31
75 o — o —o
2
(Ds + As)s Dy + As S 2 0o | - - 54 56 3
63 59
71
1
Ay + 24, Ay + 24, g;l 182 2 0 — - 54 56 5
26
18 1
Ay + As As+ Ay 74 6 2 2 Ay 4 50 54 15
93 8 °
18 |
Ag+ Ay + Ay Ay + Ay + A 74 6 1 0 — — 51 52 15
93
8
15
A5 (A5 + Al)/ 1 34 2 6 A2 4 5 44 52 3
44 35
68 e—oeo
19
8 39
Dy ((11) + Ay Dy (al) + Ay 31 61 2 2 Aq 4 48 52 2
75 *
2
8 32
Dy+ A, D4+ Aj 53 1 0 - - 49 50 2
31
61
64
1 34
(A5 + Al)// Eb' (ag) 8 35 2 6 AQ 4 5 42 50 3
44 68 o—o
7 1
Dy Dy 8 3 12 As 2 4 5 33 48 2
61
44 e— o —o
2 1
Ay + As 2A4 > 4 0 0 — - 48 48 5
74 6
93 8
3
4 5
Dy (al) + Ao Dy (al) + As 8 39 0 0 — — 46 46 2
31 61
75
1
23 15
(As + Al)/ As+ Ay + Ay 24 34 0 0 — — 46 46 3
25 35
68




APPENDIX 2. TRANSVERSAL SLICES FOR EXCEPTIONAL ALGEBRAIC GROUPS 227
] vW(0) st s2 dim bg | |Ao] Ay rs I(s) | dim Sy, | d
11
12
Dg(as) 2Dy z gé 0 0 - - 44 44 1
61
64
1 4
5 34
As + 24 E(;(CLQ) + A, 8 35 0 0 - - 44 44 3
44 68
9
2 19
As + Ay E7(CL4) + A 5 41 0 0 - - 42 42 1
8 99
76
3
7 8
D5 + Ay D5 + 24, 16 1 0 - - 39 40 2
61
30
32
1 19
2A4 Eg(as) 2 gé 0 0 - - 40 40 1
8 76
3 8
D6 (al) D6 (al) 7 9 2 4 2A1 2 5 32 38 2
61 37 ° °
40 1
Ag Ag 44 13 2 2 Ay 2 34 38 7
62 14 °
0| ]
As + Ay Ag + Aq 44 13 1 0 - - 35 36 7
62 14
I
Dg(al) + A1 A/7 9 34 1 2 A1 5 33 36 2
37 35 °
AN
(D5 + As)s Ds + A, 25 o 1 0 - - 35 36 6
61 24
)
8 20
Ds + A, A7 4+ Ay 9 33 0 0 - - 34 34 2
37 34
35
15 1
E6 (al) Eg(al) 44 6 2 6 A2 2 4 26 34 3
55 8 o —o
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@ vV (0) st 52 dim bo | [Ao] | Ao 3 I(s) | dim ¥y | d
4
14
1 17
Dg Dg + 24, 3 2% 0 0 - - 32 32 1
27
55
o
D7 (as) Dr(a2) 7 16 1 0 - - 31 32 2
61 20
1 8
FEg Fg 7 26 2 6 Ay 4 5 24 32 3
44 27 o—o
a
(A7)s Al 38 14 1 0 - - 31 32 4
48 15
3 4
A Ds(as) o 8 0 0 - - 30 30 1
61 24
15 ;
Eﬁ(al) + Ay E6(a1) + Aq 44 8 1 0 — — 29 30 3
%5 10
22 7
23 11
Dg (ag) Ag 2 192 0 0 - - 28 28 3
31 25
N
De + Ay Er(as3) 2 39 1 2 Ay 5 25 28 1
8 41 ®
I
(D7(a1))2 Dr7(aq) 8 33 1 0 - - 27 28 2
12 49
12
1 21
D7(CL1) Dg (ag) 6 25 0 0 - - 26 26 1
8 27
49
1 5
Es+ A Es+ A ! g 0 0 - - 26 26 3
6 1 6 2 7 26
44 27
7
6 10
E7(a2) E7((L2) + A 8 12 0 0 - — 24 24 1
48 16

30
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0 vV (0) st 52 dim by | Ao Ag rs I(s) dim Yy ¢ d
1 21
As Es(as) : 2 0 0 . 24 1
8 49
10 1
D7 Dg(aq) 1; ;2 0 0 - - 22 22 1
25 22
4 )
Erlas)+ A1 | Eslas) 7 8 0 0 N 22 1
23 20
24 33
L
Er(aq) Er(ay) 13 3 1 2 Ay 2 17 20 1
14 39 °
3 4
Dg (al) Eg ((Lg) ’ 8 0 0 - - 20 20 1
23 26
24 27
4
1 8
E:(a1) + A4 Dsg 13 17 0 0 - - 18 18 1
14 18
19
10 2
Dg Es(as) ;g g 0 0 - - 16 16 1
22 7
2
1 3
Er Er+ Ay 6 ) 0 0 - - 16 16 1
8 7
32
7 1
Er+ A Eg(aq) 1 2 0 0 - - 14 14 1
12 6
25 8
2 1
Eg(ag) Es(ag) 3 8 0 0 - - 12 12 1
5 10
7 20
6 1
Eg(al) Es(al) 8 2 0 0 - - 10 10 1
10 )
11 7
1 2
Eg Eg :31 g 0 0 - — 8 8 1
8 7
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Appendix 3. Irreducible root systems of exceptional types.

In this Appendix we give the lists of positive roots in irreducible root systems of exceptional types. All simple roots
are numbered as shown at the Dynkin diagrams. The other roots in each list are given in terms of their coordinates
with respect to the basis of simple roots. The coordinates are indicated in the brackets ( ). Each set of coordinates
is preceded by the number of the corresponding root. These numbers are used to indicate roots which appear in

the columns s!, s and T'§ in the tables in Appendix 2.

Go.

(=2 B

F4.

Es.

10
11
12
13
14
15
16

0120
0111

=
=
DN
= O

=
N
[N ]
= o

~ o~ o~ o~ o~ o~ o~
o (a]
— =
[\ [\
\] =
NN U NI N

17
18
19
20
21
22
23
24

1221

e e e e e e
—_ =
NN
N W
N =
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10
11

12

W~

© oo N o ot

10
11
12
13
14
15

100000
010000
001000
000100
000010

101000
010100
001100
000110
000011
101100

( )
( )
( )
( )
( )
(00000 1)
( )
( )
( )
( )
( )
( )

Er.

1000000
0100000
0010000
0001000
0000100
0000010
0000001

( )
( )
( )
( )
( )
( )
( )
(1010000)
(0101000)
(0011000)
(0001100)
(0000110)
(000001 1)
(1011000)
( )

0111000

13
14
15
16
17
18
19
20
21
22
23
24

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

3 4
° °
°
2

0101100
0011100
0001110
0000111
1111000
1011100
0111100

( )
( )
( )
( )
( )
( )
( )
(0101110)
(0011110)
(0001111)
(1111100)
(1011110)
(0112100)
(0111110)
( )

0101111

25
26
27
28
29
30
31
32
33
34
35
36

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

0011111
1112100
1111110
1011111

0112110

0111111
1122100

( )
( )
( )
( )
(0 )
(0 )
( )
(1112110)
(1111111)
(0112210)
(0112111)
(1122110)
(1112210)
(1112111)
( )

0112211
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46
47
48
49
50
51

L N O Ot ke W

10
11
12
13
14
15
16
17
18
19
20
21

1122210
1122111

1123210

( )
( )
( )
(0112221)
( )
( )

1122211

Es.

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001
10100000
01010000

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
(00110000)
(00011000)
(00001100)
(00000110)
(0000001 1)
(10110000)
(01110000)
(01011000)
(00111000)
(00011100)
( )

00001110

52 (1112221) 58
53 (1223210) 59
54 (1123211) 60
55 (1122221) 61
56 (1223211) 62
57 (1123221) 63
3 4 5 8
[ ] [ ] [ ) [ )
[ ]
2

22 (00000111) 43
23 (11110000) 44
24 (10111000) 45
25 (01111000) 46
A7

26 (01011100)
48

27 (00111100)
49

28 (00011110)
50
29 (00001111) 51
30 (11111000) 59
31 (10111100) 53
32 (01121000) 54
33 (01111100) 55
34 (01011110) 56
35 (00111110) o7
58

36 (00011111)
59

37 (11121000)
60

38 (11111100)
61
39 (10111110) 6
40 (01121100) 63
41 (01111110) 64
42 (01011111) 65

1223221
1123321

(
(
(1223321
(
(1234321
(

)
)
)
1224321)
)
)

2234321

(00111111)
(11221000)
(11121100)
(11111110)
(10111111)
(01122100)
(01121110)
(01111111)
(11221100)
(11122100)
(11121110)
(11111111)
(01122110)
(01121111)
(11222100)
(11221110)
(11122110)
(11121111)
(01122210)
(01122111)
(11232100)
(11222110)
(11221111)
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APPENDIX 3. EXCEPTIONAL ROOT SYSTEMS

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

11122210
11122111
01122211
12232100
11232110
11222210
11222111
11122211
01122221

11232210
11232111
11222211
11122221
12232210
12232111
11233210
11232211

( )
( )
( )
( )
( )
( )
( )
( )
( )
(12232110)
( )
( )
( )
( )
( )
( )
( )
( )
(11222221)

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

12233210
12232211
11233211
11232221
12243210
12233211
12232221
11233221
12343210

12233221
11233321
22343210
12343211
12243221
12233321
22343211
12343221

( )
( )
( )
( )
( )
( )
( )
( )
( )
(12243211)
( )
( )
( )
( )
( )
( )
( )
( )
(12243321)

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

(22343221)
(12343321)
(12244321)
(22343321)
(12344321)
(22344321)
(12354321)
(22354321)
(13354321)
(23354321)
(22454321)
(23454321)
(23464321)
(23465321)
(23465421)
(23465431)

(23465432)
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