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0. INTRODUCTION AND NOTATIONS

We collect here some notations to be used in the paper.

1. f.(z) = z? + ¢ is the quadratic family

Je 1s the Julia set of f.

M = {c € C: J. is connected} is the Mandelbrot set

2. Denote ¢ — w, a Riemann map of C\ M onto {w : |w| > 1}
W — ¢y, denotes the inverse map

3. D.={z: f2(z) — oo,n — oo} is the basin of infinity for f.

u. is Green’s function of the basin of infinity with the pole at infinity:
ue(z) = limp oo 5 l0g | f7(2)]

Denote Q. = {z : u.(z) < 1}

4. B. is the Bottcher function at infinity, i.e. B, is holomorphic in a neighbor-
hood of 0o, B.(2) ~ z as 2 — o0, and B, o f.(2) = [B.(2)]?.
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2 GENADI LEVIN

In [DH1] the connectedness of M is proved by giving a formula for the Riemann
map ¢ — we:

we = Be(c). (1)

MLC Conjecture [DH2]. M is locally connected.

Assume for a moment that M is locally connected. Then the set of hyperbolic
dynamical systems in the space of all complex quadratic polynomials is dense [DH2].

Then also there is a topological model of M as S'/ ~, where w; ~ w, on the
unit circle St iff ¢, = cy,, and the relation ~ is known explicitly [DH1],[Dalg],|T].

In fact, the MLC Conjecture tells us about similarity between the dynamical
plane and the parameter plane (It is already expressed in the equality (1), see also
Sect. 2).

Due to Caratheodory theorem, one can restate the MLC conjecture as follows:

Every external ray RM = {c = ¢y, : w = rexp(2wit),r > 1} of the Mandelbrot
set converges to a unigque point on OM according to the topological model of M.

The local connectivity of M has been proven at the following points ¢ € dM:
for preperiodic f = f. [DH2|, for f with an indifferent periodic point, and for
finitely renormalizable f (Yoccoz, see [Y],[H]). There are examples due to Douady
and Hubbard of infinitely renormalizable polynomials f = f, such that M is locally
connected at ¢ but the Julia set of f is not locally connected. Lyubich [Ly] gives
combinatorial conditions on the renormalizations of f = f. which yield the local
connectivity of M at ¢ and the local connectivity of the Julia set. In [McM] it is
proved that all infinitely renormalizable f which are robust belong to the boundary
of M. The paper [S] in which the generalized Feigenbaum universality was proved
is also very important in this circle of problems.

An aim of the present paper is to give an approach to the MLC conjecture for
the infinitely renormalizable f’s with locally connected Julia set.

Acknowledgements. The paper was inspired by very useful discussions with D.
Sullivan and J.-C. Yoccoz. Construction of a metric in sections 5-6 is based on
an idea due to J.-C. Yoccoz. I am grateful also to Y. Jiang, M. Lyubich, S. Nag,
and F. Przytycki for helpful conversations. This work was done during the stays
at LH.E.S. (Bures-sur-Yvette) and Max-Planck-Institut fiir Mathematik in Bonn.
I thank the both Institutes for their invitations and hospitality.

1. CONTENT OF THE PAPER

We start with a construction which produces quadratic-like mappings é with
disconnected Julia sets from a quadratic-like mapping Q with connected one (cf.
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[DH1], [DHpol-1], [G], [LP]): see Sect. 2. It appears in many parts of the paper
(sometimes implicitly). We call Q by the M-deformation of Q.

Finitely renormalizable case is considered in Sect. 3.

In Sect. 4 we introduce M-stable polynomials. This notion plays a crucial role

in the rest of the paper. Let us stress that this is a condition on the polynomial
itself.

In sections 4-5 we prove that for a polynomial with locally connected Julia set
the M -stability is equivalent to the continuity of the map w — c¢, at the points
which correspond to the accesses to the critical value in the dynamical plane of the
polynomiael. This reduces the problem about the parameter space to some extremal
length problem in the dynamical plane.

Sections 6-8 are devoted to a proof of the following below Theorem 1.1 (see also
the remarks after the theorem).

In section 9 we prove Theorem 1.2 (we state it in the present section).

In the Appendix we extract a path through a disconnected Julia set, on which
the dynamics is “real”.

Let us formulate the Theorems 1.1 and 1.2.

Let f = f.., where

cy 18 real, and f is infinitely renormalizable. .

Given a renormalization Q@ = f™ of f, let us introduce an annulus A = A(Q) and
a domain U, = U,(Q) as follows (it is a standard construction: [S], [deM-vanSt]).
As usual, I, = [Q(0),Q%(0)] (up to the order), and F = f~{m—1) is a branch
homeomorphic on I, and passing through all intervals f*(I.),z = 1,2,...,m — 1,
of the renormalization, I D I(0) is the maximal interval such that the branch
F: T — R is still injective. Denote 2 = {z : u(z) < 1} and & = (C\R)U DN
Then F extends to a univalent function in . We let

V, = f~1o F(Q).

Note that Q V.= Qisa quadratic-like mapping in the sense of [DHpol-1]. We let
the domain

U.=Q (V)

and the annulus
A=V.\U..

Let A(U,) be the set of the domains U such that, for some i =iy >0, f*: U — U,
is an isomorphism. Define

aT@a[UUeA(U.) UNA]
p(A} U*) - area[A] ’

where area denotes the Lebesque measure on the plane. Denote m(A) the modulus
of the annulus A.
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Theorem 1.1. There exists a positive increasing function p,(m), m > 0, such that
p«(00) = 1, as follows. Assume there exis@s a sequence of renormalizations Q); of f,
such that for the corresponding annuli A* = A(Q;) and the domains U* = U,(Q;)
we have:

(AL UY) < pu(m(4Y)), (1.1)

for all i. Then the point ¢, € &M (remind f(z) = z%+ ¢, ) is accessible from C\ M.
Moreover, to every external argument to of the critical value ¢, in the dynamical
plane of f., there corresponds a ray in the Mandelbrot plane of the same argument
to that lands at c,.

Remarks.

1. Note that if a priori the point c, is accessible by an external ray of M of
argument ¢y, then {; ¢s an external argument of the critical value of f., in its
dynamical plane (see Theorem 5.2).

2. In fact, we prove a stronger statement because we replace the domain U, by a
domain W C U,. The domain W is constructed in section 7. It satisfies a Markov
property (like Yoccoz’s pieces): the components of f~*(W) and f~7(W) are either
disjoint, or one coveres other. Moreover, W contains the (*small”) Julia set

of the renormalization Q, and if some preimage W' of W intersects the compact
E, then W' = Q~"(W), for some n > 0. The boundary of W consists of arcs
of the Julia set of f, arcs of equipotentials, and arcs of preimages of the external
rays of arguments 0 and 1/2. Since we use here the external rays orthogonal to
equipotentials, we speak only about accessibility (along an external ray of M). If
would replace above the orthogonal external rays to the 3-fixed point of f and to
its preimage by rays crossing equipotentials at other angles, one would expect locall
connectivity at c,. The problem is that the modulus m of the annulus A is changed
if we change the angle in the definition of the external rays.

3. The main property we need from the Markov piece W is that one can control
(in terms of the modulus of A) how the boundary OW changes as we M-deformate
the quadratic-like Q. For example, if the renormalization is of disjoint type [McM],
it is enough to require that 9W belongs to'a fundamental annulus of a given mod-
ulus, say to @~ 1(A). In the present paper we construct the Markov piece with this
property for real polynomials, that’s why the Theorem 1.1 and the Theorem 1.2
(below) are about this case only.

4. The condition (1.1) means that the areas of a neighborhood of the Julia
set of f with respect to some special metrics, which we construct to check M-
stability of f, are finite and, moreover, are uniformly bounded for the sequence of
renormalizations @;. '

5. It was shown in [JH], [J] based on [S] that the Julia set of an infinite renor-
malizable real f is locally connected if f is of a bounded combinatorics. In [LSvS]
we prove a much stronger result, namely, the local connectivity of the Julia set for
a broad class of the polynomials z — 2% + ¢ with £ > 2 even and ¢ real, including
the all infinitely renormalizable polynomials of this form.
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In order to state the Theorem 1.2, let us fix some extra notations. Again f = f.,
is a real infinitely renormalizable quadratic polynomial. Let us fix an external ar-
gument to (access) of the critical value c. from the basin of infinity of f.,. Consider
again some renormalization @ = f™ of f. By Douady-Hubbard theory [DHpol-1],
there is a unique ¢ = ¢(Q) € IM, such that @ and f. are quasi-conformally conju-
gated. Moreover, the accesses ¢o/2 and #0/2 -+ 1/2 to the critical point of f define a
unique access ¢ = t(Q) to the critical value ¢(Q) from the basin of infinity of f.(q).
Given f. (o) and t(Q), we assign a non-negative number

d(Q) = max|c — ¢(Q)|,

where the maximum is taken over the all ¢ from the limit set of the ray R?E[Q) of
the argument t(Q) in the Mandelbrot plane. Then d(Q) = 0 if and only if this ray
lands at ¢(@Q), and, moreover, if and only if the ray Rfod lands at c,. On the other
hand, we define another quantity p(W) similar to the p(A, U.,) as follows. Here W
is the Markov piece for the renormalization @ (see Remarks above). Denote A(W)
the set of domains U s.t. fi: U — W is one-to-one, for some i = iy, and s.t. U is
contained in W. Then

arealUyeaow) Ul + area[E]
area[W] ’

p(W) =

where E is the Julia set of the renormalization . Then p(W) is some number
between 0 and 1. In the following statement A(Q) denotes the annulus for @
constructed befor Theorem 1.1.

Theorem 1.2. There exists a positive function D{p, m) as follows. Assume that for
some sequence of the renormalizations Q; of f and for the corresponding sequences
of the annuli A* = A(Q;) and the Markov pieces W; we have: inf; m(A*) = mg > 0
and

d(Q:) < D(p(W;), mo).

Then d(Q;) = 0, that is the ray RM lands at the pon.fnomiaI f.

Remark. In what follows we don’t really use that the polynomial is quadratic
except for the section 3, where the Yoccoz theorem on local connectivity of the
Mandelbrot set is discussed. All other results of the present paper hold for the
maps of the form z — 2% + ¢ with locally connected Julia set.

2. CONSTRUCTION OF DISCONNECTED JULIA SETS. FROM A CONNECTED ONE

Let us fix a quadratic-like mapping P : U — V with connected Julia set J(P).
We assume that U \ J(P) is also connected (i.e. the Fatou set is empty). Assume
also that the critical value v of P is accessible from the domain D = U \ J(P) (it
is not a principal assumption: one can avoid it). Fix a point zg € D and let L be a
locally rectifible arc in D, which starts at zy and converges to v and such that all
preimages of L under the iterates of P are pairwise disjoint (see Remark 2.1). We
consider L as a semi-open arc: it includes zo but does not include v. Denote T the
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collection of the preimages of L under all iterates of P. Every arc ! in ¥ consists of
two semi-open ones which converge to a common preimage 2z of the critical value v
(we will say that I crosses J(P) at z). Let now E be a closed connected subset of
J(P) such that the preimages of v are dense in E (example: E = J(P)). Denote
g a subset of ¥ consisting of arcs that cross E. Given Riemann surface V \ E
with the standard complex structure, we construct a new Riemann surface Sg as
follows. Let us cut V \ E along an arc | € Xg, and identify pairs of points z,y
on different sides of the cut according to the rule: first, a=P*(z) = Pi(y) € L, for
some ¢ > 0; second, if X is a neighborhood of the point a devided by L on two
semi-neighborhoods X7, X2, then z € 9P~*(X;) and y € 9P~*(X;). Making this
procedure with all arcs | € X, we obtain the Riemann surface Sg, which inherits a
complex structure from V' \ E. Sg is a planar Riemann surface since every closed
loop on it separates it. By Uniformization Theorem, we can consider Sg as a
domain in C with the standard complex structure. Let IT: V' \ (E{JXg) — Sg be
the projection. It is a conformal isomorphism on its image S%. The complement
> g = Sg \ S% consists of open arcs corresponding to the cuts from Xg. Denote E
the union of the bounded components of the complement C\ Sg. Apriory, it is a
union of points and discs. Note also that P induces a holomorphic map P on the
part Sp of Sg. In the sequel the compact E is a Julia set of a quadratic-like map
(renormalization) Q@ = P" : U’ — V', V' C V. Then a proof from [McM] shows that
E has absolute measure zero (in particular, each component of Eisa point), that is
Eis removable for the holomorphic maps outside this compact. Consider now the
map @ = P™. It is holomorphic in II{U’ \ (E|JZEg)). Since E is invariant under
Q, the map Q extends to a continuous map on II(U’ \ E), and, hence, holomorphic
there. Then, by removability of E the map Q is in fact holomorphic in the domain
U’ which is II(U’ \ E) united with E. Thus Q is a quadratic-like mapping on U’
with the disconnected Julia set E.

Lemma 2.1. Let Ry, R2 be curves in V\ (E|J Zg) such that they converge to the
same point x of E. Then the curves II(R,),II(R2) converge to the same point T of
E. ‘

Proof. The limit set of each curve II(R;) is a point T; of E since it is connected
and it belongs to the disconnected set E. It is well known that each point z € E
is defined by a sequence ¢; of 0,1 as follows. Let v be a loop around E containing
the critical value of é, and g be its preimage. It is “eight”-curve which surrounds
two discs. Then 0 is the sign of one disc, and 1 is the sign of other one. Now ¢; is
the sign of the disc containing éj(z). Finally, the either point Z;,7 = 1,2 has the
same sequence because Il conjugates @ and é outside E(JZg (note that the curve
Q7 (R;) again does not intersect E|J g and it lands at Q7(z)).

The map Q (more exactly, a class of conformally conjugated maps) depends on
the point zp but does not depend on the initial arc L. Indeed, let L; be other arc
in V\ J(P) joining zo and v. Using the fact that IT conjugates @ and Q far from E,
it is easy to see (extending the conjugacy II deeper and deeper from a fundamental
annulus) that then the map Q, corresponding to L1 is holomorphically conjugate
to Q in its domain of definition. Thus the map Q depends only on the point z.
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We will call é by M-deformation of the renormalization Q of P. If we choose
Q = P, then P is called M-deformation of the quadratic-like mapping P
At the same time, the set of arcs Lg (in the plane of Q) as well as the set of
their projections II(Xg) (in the plane of é) play an important role since they relate
the maps @ and é : ’
If P is just a quadratic polynomial, then 11 extends to a holomorphic map at
infinity. In this case we always normalize 11 by the condition IT'(00) = 1.

Here is an analoge of MLC conjecture in this framework. Let £ = J(P), and
Q=P.

Is it true that P — P as zo — v inside of V' \ J(P)?

(Observe that the set of quadratic-like maps P (with an appropriate normal-
ization) corresponding to zp — v is compact, and a priori every limit map is a
quadratic-like map with a connected Julia set.)

It is the analoge of the MLC conjecture for the Mandelbrot set M. Really, let
P = f., be a quadratic polynomial, U = {2 : us(2) < 1},V = {z : ue(z) < 2},
E = J,. Then P is a quadratic polynomial f. with disconnected Julia set such
that

BCU (Zo) = BC(C).

In this case II = B 1o B.,, and MLC conjecture says that IT —id as zg — co.

Moreover, the question above is equivalent to the MLC conjecture itself: if f is a
unique quadratic polynomial quasi-conformally conjugated to P (by the Streight-
ening Theorem [DHpol-1]), then P — P iff the map w — ¢, is continuous at the
corresponding point. The proof is as follows. Let h be the quasi-conformal con-
jugacy between f and P. If f is a quadratic polynomial with disconnected Julia
set constructed from the f and the curve h(L), then the quasi-conformal distance
between P and fstays bounded from above as 29 — v. Hence, any limit map for P
and the corresponding for f are quasi-conformally conjugate. Since they are with
connected Julia sets, this proves the statement (we use the fact from [DHpol-l],
that if f;, and f., are quasi-conformally conjugate, and ¢; € M, then ¢; = ¢3).

Remark 2.1. Given a quadratic-like map P : U — V with connected and
locally connected Julia set J(P), and given an access to the critical value v from
the domain D = V \ J(P), let us find an arc L, which converges to v from D,
homotopic in D to the access, and such that the preimages of L under the iterates
are pairwise disjoint. Take a fundamental annulus Ay for P such that its boundary
consists of two Jordan curves. Let A{ be a standard (round) annulus which is
conformally equivalent to Ag. Let {R} be the set of curves in Ag corresponding
to the set of intervals in Aj orthogonal to the family of concentric circles in Ag.
Then the union of all preimages of the set {R} under the iterates of P is a set of
rays (call it again {R}) filled-in the domain D. Every ray from {R} lands. This
is because of the expanding property of the external map of P [DHpol-1] and the
local connectivity of J(P). Moreover, to each access to v there corresponds a curve
from {R} as needed.
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In the case of quadratic polynomial the role of the curves {R} plays usually
the curves crossing every equipotential {z : u{z) = const} at an angle 7 € (0, 7)
(so-called T-rays). The use of T-external rays instead of usual 7/2-rays is mostly
the matter of a taste. An equivalent (maybe less geometrical) way is given by
Branner-Hubbard’s twists [BH], which are extremal maps in a component of the
quasiconformal deformations of the polynomial f.. In fact, they transform orthog-
onal rays to 7-rays. In the sequel, whenever we speak about accessibility, usually
we use orthogonal, or 7/2-rays. But if we want to prove continuity of the map
w — Cy, we need the 7-rays (or something like them).

3. ON FINITELY RENORMALIZABLE QUADRATIC POLYNOMIALS

Let f, be a finitely renormalizable quadratic polynomial without attracting and
indifferent periodic points. Yoccoz has proved the following two fundamental results
studying his puzzle [H],[M],[Y}].

Theorem Y1. J, is locally connected.
Theorem Y2. M is locally connected at the point a € M.

To demonstrate some of ideas of the paper we prove here Theorem 3.1 which
is a part of the Yoccoz's result (see [H|). We indicate a comparably easy proof
of Theorem 3.1 (cf. [H]) making use the theory of the Yoccoz's puzzle and the
following

Theorem. (J. Kahn) The J ulia set J, of the finitely renormalizable polynomial f,
is removable for the homeomorphisms holomorphic outside of J,.

For simplicity we assume that f, is not renormalizable at all {or not simple
renormalizable [McM]).

Theorem 3.1. (see [H] for proof) Let to be an external argument of a € J,. Then
tg is an external argument of a € M and ¢, — @ as w — w, = exp(2wity).

Proof. Let wy, — w, and ¢; = ¢,,, — b. We have to prove b = a.

There is a unique angle 7, such that the arc [, starting at wy, crossing circles
|w| = const at the angle 7, and containing in the disc {w : |w — w,| < |wp — wa},
converges to w,. Let zx = Br'(wy), Lk = B;'(lx), and £ be the set of all
preimages of L, of all orders. We form the Yoccoz’s pazzle as usual using the
orthogonal external rays to a-fixed point of f,. Let {P}4 be the set of all (closed)
pieces of a fixed depth d. Then, for all £ big enough, the arcs in ¥; and the
boundaries of the pieces of depth d are disjoint. For given piece P of depth d and
for such k we define P°* as a closed domain with the boundary B! o B,(9P). As
k — oo, then P°* tends to P®, a piece of f,. Indeed, define also

Hk: B—IOBa

Ck

and
M=B;'08,

on D, = C\ J,. From the condition, IIy — II on every compact in D,. Moreover,
it is easy to see that the convergence extends to the set {Jio, fii (). It follows,
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P — P% Given nested sequence of pieces P; of f., there is a sequence i(k) of
indexes such that the pieces P, i = 1,...,i(k), of f., are defined, and i(k) — oo
together with k.

Our aim is to prove that the conjugacy II extends to a homeomorphism J, onto
Jp. It is well defined also on the preimages of the fixed point a of f,. On the rest
of J, we want to define II on J, as follows. Given zy € J, and a sequence of pieces
P;(20) shrinking to 29, we want to show that the compact P}, = ﬂ:(:l) P£* tends
to a point, if £ — oo. It will be II(zp).

Let A = P'\ P” be an annulus given by the puzzle of f,, and A°*, A® the
corresponding annuli of f.,, f.. Note that f, : A — f(A) is an unbranged covering
if and only if the same is true for f., : A% — f. (A), for given A and all big
k. The reason that the pieces P}, of fe, ( corresponding to 2o € J, ) shrink to
a point is the same as for the usual pieces for f,: starting from a non-generated
annulus we find many “good” descendents of it. Details follow(cf [M]):

I. The orbit of zp is not accumulated by zero. Then it does not hit a thickened
puzzle piece }E’N(O). We construct the thickened puzzle pieces of depth N —1 for the
maps fe, { k big) and repeating arguments from [M], we get that diamPgr, , < A*C,
for some fixed A <1 and C' >0 and k > k(h). But Py, — P} .,k — 0.

II. The critical point is recurrent for f,. Then there is a non-generate annulus
A, (0) and a sequence of critical annuli A4;, such that fI' : A;, — A,, is unbranged
of degree d; so that

> modAy, =» 27 modAn = co.

If £ — oo, then A% tends to a non-generate annulus A%, of f,. Consider a summand
modA;, in the above sum. Then for k — co the modA* tends to 2= modA®,. Tt
implies F;},(0) — {0} in this case. Let now zo be a point of J. with the orbit
accumulated at zero. Then there are infinitely many different annuli A, .q(20)
which are conformally isomorphic to 44(0). Passing to f., we obtain the same for
given n,d and all big k: modAZY ,(20) = modAg(0). Again Py (20) tends to a
point. If the orbit of 2y stays away from 0, this is the previous case.

ITI. The critical orbit is not recurrent and orbit of zg accumulates at zero. Then
again we can repeat argument from [M] and obtain arbitrary many (as k — o0)
dynamically defined annuli Aj*(2) with moduli bounded away from zero.

Thus we have defined IT: J, — J,. The map II is “onto” because the union of
the pieces of a depth d coveres the Julia set. It is injective because given z # y from
Jo we separate them by two pieces P and P and then P and P will separate
II(z) and TI(y) for big k. Let us show the continuity of II. It is convenient to pass .
to an open covering by (new) pieces P* uniting some of P (see [M]). Let z; — =,
where z € J,. If z; € Pj(z), then II(x;) € P;**(x) k big.

Thus we have constructed a homeomorphism II which conjugates f, and f, and
holomorphic outside the Julia sets. To complete the proof we apply the Theorem
by Kahn stated above.

4, M-STABLE POLYNOMIALS

In this section we consider a quadratic polynomial f = f._, such that:
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(4.1) the Julia set J of f is connected and locally connected,

(4.2) f has no attracting and indifferent periodic orbits.

Let B = B.,,u = u.,. Let g be an external argument of the critical value
¢« = f(0), that is B~1(exp(27itg)) = f(0). Let V; be a small semi-neighborhood of
exp(27itg), and Uy be the image under B! of V;. A given point zy from Up,there
exists a unique angle (o) such that an arc L = L(zg) that crosses equipotentials at
the constant angle 7(20) and is contained in the domain Uy converges to f(0). Let
2(zg), or just ¥, be a collection of the preimages of L under f of all orders n > 0.
The arcs in ¥ are pairwise disjoint. Fix a domain Q = {z : u(z) < 1} and define
a new Riemann surface S = S(zp) as in section 2. We cut  along every arc from
¥, and, on either side of the cut, we identify pairs of points with the same value of
the Green function u. If we exclude the Julia set J from the 2, cut along the arcs
in ¥ and identify points as above, we obtain the Riemann surface .S, which inherits
a complex structure og from §2. '

Let IT: Q\ (JUZX) — S be the projection. It is a bijection on its image S’. The
complement ¥/ = S\ S’ consists of open arcs corresponding to the cuts from .

Definition 4.1. Given round annulus C = {z : r; < |z — a| < ra} in Q, define
a quantity m(C, zg) as follows. The number m(C, zp) is the extremal length of a
family of curves I'(C, zp) = {7} on the surface S such that: (a) v and the curves
from ¥’ have no common arcs (but, of cause, can cross each other), and (b) if x is
an end of v, then either z € I1(9C), or z belongs to a curve from %', such that this
curve 1neets I1(8C). We call the polynomial f by M-stable on the access tg, if
there exists a positive § such that, for each round annulus C of the modulus not
big and not small (say, between 1/2 and 2),

liminf m(C, zo) > 6,

as zo — f(0) inside Uy. ,
We say that f is M-stable on its external ray of argument ¢g, if
lim inf m(C, z) > 6, as zo — f(0) along the external ray of f of the argument ty.

Remark 4.1. One can define also the M-stability of f on a sequence of points
{2,352, which tends to 2o inside the access ¢y (that is the sequence B(z,) tends
to the point exp(2witg) of the unit circle). Then all statements on the M-stability
can be obviously adapted to this notion.

Definition 4.2. To every point zg € Uy we correspond a unique ¢ = ¢(zp) according
to the rule:

we = B(zp).
(Cf. the end of Sect. 2.)
Set Q. = {z: u.(z) < 1}, and S; = Q. \ J.
Proposition 4.1. The Riemann surface S is conformally equivalent to the S(2p).

Proof. (In fact, we have proved it already in Sect. 2.) With the slope 7(29) chosen
above, we cut the basin of infinity of f. along the curves that start at 0 or at any
its preimage and cross the equipotentials u, = const at the angle 7(zp). We get a
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domain A r(,)- Then we extend the Bottcher function B, of f. from infinity to a
univalent function B in A, ;(,,). By the construction, the map

(B) ™o B2\ (J|JZ) - S.

is well-defined and agrees with the dynamics. Therefore, it extends to an isomor-
phism between S(2) and S..

Remark 4.2. We have seen that the Riemann surface S(zo) is isomorphic to
( a part of ) the basin of infinity for a polynomial outside the set M. So the M-
stability actually tells us about moduli of annuli for polynomials outside M and,
on the other hand, allows us to use the dynamics of the only map f to check the
condition (see sections 5-6).

The next important statement explains why the Julia set J is not included in
the definition of S(zp).

Proposition 4.2. Let C, be any annulus in Q.. Then the modulus of C, equals to
the extremal length of the family of curves, which join the boundary components
of C. and avoid the Julia set J..

Proof. The Julia set J. has absolute mesaure zero [McM], and such sets are remov-
able for extremal lengths [AB].

The first application of the M-stability gives the

Proposition 4.3. Let R(c(z0)) be the T(z0)-ray of fo(,,), which passes via its
critical value ¢(zp), and let l(zo) be an arc of the R(c(zp)) between c(zp) and the
Julia set. If f is M-stable, then the Euclidean diameter of l(z9) tends to zero as zg
tends to f(0) inside Up.

Proof. Let C(zp) be the annulus Q) \ {(20). The domains Q. have geometry
uniformaly bounded on ¢ in a neighborhood of M. Hence, it is enough to prove
that the modulus of C(zp) tends to infinity as zp tends to f(0). If zo is close to
f(0), we find a large integer n as follows. There exist n pairwise disjoint closed
round annuli Cy, ..., C,, each of modulus 1, such that: C; encloses L(z¢) and 992,
and each next C; encloses the preceeding one and 9. If zq is close enough to f(0),
then m(C;, 20) > 6,7 =1, ...,n. Now, let us consider any curve -, which joins I(zg)
and 9§.(,,). It contains n pairwise disjoint arcs 71, ..., Y», where +; is a curve of the
family T'(C;, z9) coming from the definition of M-stability. If we take into account
Proposition 4.2, we get modulus of C(zp) is greater than né, i.e. tends to oo as

z0 — f(0).

We will see that M-stability is equivalent to continuity of the map w — ¢, on
the unit circle provided the Julia set of polynomial is locally connected. We start
with the following

Proposition 4.4. Assume that the map w — c¢,, Is continuous at a point wg, and
Cwy, = @ € OM. Assume the polynomial f, has no indifferent periodic points and
obey the property:
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for every € > 0, there exists a finite number of domains Py, ..., P,, such that
(a)Euclidean diameters of all P;, diam(P;) < ¢, (b)OP; consists of arcs of equipo-
tentials, external rays, and finitely many periodic points of f, or their preimages,
(c)among the points P; () J, there are no zero and its preimages.

Then f, is M-stable.

Proof. Fix a round annulus C of modulus m € (1,2]. Choose ¢ so small that the
modulus m’ of more narrow annulus C’, which is 2 x e-neighborhood of C, is almost
the same: m//m > 1/2. Given ¢, find the domains P; from the condition of the
proposition. Observe that the condition (c) yields that for all zg so that B,(zo) is
close enough to wq, the set of arcs X(z) is disjoint with the boundaries of all P;.
Denote Py, ..., P, those of P; that intersect 8C, and forget about others. Let now
w be close to wy, zp = B }(w), and ¢ = ¢,,. By the.condition, ¢ — a as w — wg.
Then (1)II¢ = B !0 B, tends to the identity uniformely on every compact subset of
D, = C\J,, and (2)domain Pf with the boundary I1°(0F;) is well defined and tends
to P; as w — wg. Choose w so close to wo that (1)every PF is in e-neighborhood of
P;, (2)II¢(8C \ Ui, P;) stays in e-neighborhood of 8C. After this, if v is a curve
of the family T'(C, zp), then it joins at least the opposite sides of the annulus C’,
and we are done.

It follows from the above proposition, Theorem 3.1, and Theorem Y1 (Sect. 3)

Corollary 4.1. The finitely renormalizable quadratic polynomials without attract-
ing and indifferent periodic points are M-stable.

To prove the main result of this section, we need

Lemma 4.1. Let f be as above, i.e. its Julia set J is connected and locally
connected, and f has no attracting and indifferent periodic orbits. Then for every
€ > 0 there is a neighborhood P¢ of the zero such that diam(P¢) < ¢, and OP*
consists of finitely many arcs of equipotentials, arcs of external rays, and periodic
points of f and their preimages.

Proof. Assume f is infinitely renormalizable, otherwise this follows from the Yoc-
coz’s puzzle (see [M]). By [M], one can assume also that the critical point zero is
recurrent. By [McM], there exists a sequence of renormalizations f* : U; — V,
where U; C V; are neighborhoods of zero, such that the small Julia sets E; of these
renormalizations are ordered by inclusion: E;1, C E;. Note that 0 € E; and the
sequence (F;) of the sets contains a sequence of iterates of zero that tends to zero
(otherwise zero would not be a recurrent point). Since all E; are connected and
J is locally connected, diam(E;) — 0 as ¢ — co. Now it is easy to end the proof
using the Yoccoz’s puzzles.

Theorem 4.1. Let f = f., be M-stable on its external ray of argument tq. Then
¢« is accessible from C\ M and has external argument tg, i.e. ¢, — ¢, as T — 1,
where w = rexp(2nty). If, moreover, f is M-stable on the access ty, then ¢, is
continuous at exp(2witg).

Proof. We will prove only the first statement. Let wy — exp(27tg) along the ray
and ¢k = ¢, — b. We have to prove b = c.. We will construct a quasi-conformal
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conjugacy H between the given map f and the f,. Let ¢ be ¢i, or c.. If ¢ = ¢, we
denote J? the Julia set J. completed by the arcs of 7 /2-external rays via the critical
point and its preimages (see Remark 2.1). For two points z,y in the dynamical
plane of f., define d.(z,y) as Euclidean diameter of the following arc [z, y|. joining
z and y. If z,y are in the Julia set, or in the completed Julia set, then [z,y] is
the unique arc joining z,y inside this set. If z and (or) y are outside of the set,
then we add to the above arc the arcs of m/2-external rays from the points to the
Julia set (external rays are defined well since ¢y is not periodic under the doubling
o). Given a point z outside the Julia set J of f, we define Hy(z) = B;' o B(z)
whenever this expression makes sense, i.e. for all z not in the set of arcs E(z) with
z = B7 1o B, (ct). Particularly, Hi(z) is well defined for fixed z and all big k. As
¢k — b, we have: Hy(z) — H(z) = B; ' o B(zx). Now, given z € J preimage of
zero under an iterate of f, and given ci, we define Hy(x) as the arc in JZ, in the
construction of M-deformation f., of f. Using our assumption f., — f, and the
Proposition 4.3, we conclude that for every x preimage of 0, the arc Hy(z) tends
to a point (as k — 'oo0), which will be H(z). Given ¢, define Hy(x) for any other
point z € J, i.e. for  not a preimage of zero. By Lemma 2.1, all 7/2-external rays
converging to z, still land at one point after the M-deformation of f to f.,. This
point is said to be Hy(z).

Let z,y be two points on which H; have been already defined.

Claim 1. There exist constants C > 0, > 0 such that, for any two points z,y
as above and for any k big enough,

de, (Hi(2), He(y)) < Code ()"

Proof of the Claim 1. Certainly, we use M-stability of f.,. Let A be the annulus
Qc, \ [He(x), He(y)]e,, and A be the annulus Q. \ [z,y]c,. Like in the proof of
Proposition 4.3, we derive that the modulus of Ay is greater than §; x the modulus
of A, where 6, depends only on f., and on the é from the definition of M- stablhty
This relation between moduli implies the statement.

Using Claim 1, it is easy to check that the sequence Hi(z) is a Cauchy sequence.
Its limit is said to be H(z). Given z,y, we get:.

|H(z) - H(y)| = lim [Hi(z) - H(y)| < lim de, (Hi(2), H(y)) < Cde.(w,9)".

So, H is continuous. Since H(J) = J, the Julia set J, is locally connected too.
The maps f and f, have the same M-deformations f.,. It allows us to define
H=!':J, —» J. Thus, H : C — C is a homeomorphism conjugated f and fy. I
remains to show that H is quasi-conformal. For this, it is enough if H does not
change the moduli of the all round annuli too much. To prove it, let us again
use M-stability of f (cf. proof of Proposition 4.4). Fix a round annulus C in
the dynamical plane of f of modulus m € [1/2,2]. Choose € > 0 so small that the
modulus m’ of more narrow annulus C’, which is 2 x e-neighborhood of C, is almost
the same: m’/m > 1/2. Given ¢, one can find € > 0 with the property that for the
domain P¢ from Lemma 4.1 we will have: sup,sq diam(f~(P¢)) < ¢ (we use local
connectivity of J and Caratheodory theorem). Observe that the condition on the
boundary of P¢ yields that for all zp so that B(zp) is close enough to exp(2mty),
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the set of arcs ©(zo) is disjoint with the boundaries of all f=*(P¢). Especially, Hy,
are defined on f~#(P¢) for all > 0 and all .

Let C® be a new annulus obtained by joining with 8C those preimages of P¢
that intersect 8C. Then H(C*®) is an annulus in the dynamical plane of f,, and its
modulus tends to the modulus of the annulus H(C) as ¢ — 0. Now let us look at
the annulus Hi(C*), when k is big. On the one hand, its modulus is not less than a
definite part of m (the modulus of C), just by M-stability of f. On the other hand,
its modulus tends to the modulus of H(C®) as k — oco. Let us prove it. If it is not
the case, then there is a sequence z; of points on boundaries of some f ~(P*¢), and
a sequence of indexes kj, such that z; tends to y but Hy (z;) — Hy,(y) does not
tend to zero as j — oo. It is impossible by the following reason. If z; is close to
y, we find many round annuli around [z;,y]., like in the proof of Proposition 4.3,
. and then, by M-stability, the modulus of the annulus Qc, -\ [Hk,(z;), H k,-(y)]c,,j is
as big as we wish, when 3 — oo.

5. A SUFFICIENT CONDITION FOR M -STABILITY

We fix a quadratic polynomial f without attracting and indifferent periodic orbit,
and with connected locally connected Julia set. Let W be a neighborhood of zero
of f with Markov property: if 7,7 are positive integers, then the components of
f~{(W) and f=7(W) are either disjoint, or one coveres other. We call W critical
piece for f. An example of W is a critical Yoccoz’s piece.

We assume that the following conditions are fulfilled:

(5.1) Let zp belong to an access to f(0) (see Definition of M-stability). If zq is
close to f(0), then the set of arcs £(zp) and the boundary OW are disjoint.

According to this condition, we can consider the part W(z) = II(W) of the
Riemann surface S(2p).

(5.2) There exists a K-quasi-conformal mapping pw of W(zo) onto W'such that
ww = II71 on OW (zp).

Accordind to this condition, the map Hy = pw oIl is K-quasi-conformal where
it is defined, and Hw |sw =id.

Theorem 5.1. Assume there exists a sequence W, of the critical pieces for f such
that every W, satisfies (5.1)-(5.2) and, moreover,

(A) sup,, K,, < 00,

where K, is the maximal dilatation of pw,_, and

(B) diam(W,,) — 0 as n — o0.

Them f is M-stable.

Proof. For each W,, and each zg close enough to f(0) (so that (5.1)-(5.2) hold) we
define a conformal metric o, (z)|dz| on the set S(zo) \ (J|JZ(20)) as follows.

1. If f7(z) ¢ W, for all j =0,1,2,... we let 0,(2) = 1 (Euclidean metric).

2. If z € Wy, then 0,(2) = |(Hw, ).(2) + (Hw, )=(2)] a.e.

3. Let fi(z) € W, and fi(z) ¢ W, for 0 < i < j — 1. Then there is a domain
U such that f7 : U — W, is one-to-one. We define Hy = f~7 o Hy,_ o f7 and
on(2) = 1(HO ) (2) + (HuYol2)]

1Here and in the next section we apply an idea of spreading a metric to a domain according
to scales. I learned it from J.-C. Yoccos, who used this idea in other situation.
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Given a round annulus C of radii 74,72 with the modulus 5= log = e (1/2,2)
and using condition (B) of the theorem, we fix € small enough and n large enough
so that if A(W,,) is the set of all preimages f~7(W,,), then

~diam(U) < e,

for every U € A(W,,). (We use that the Julia set is locally connected.) It is easy to
check that then for all 2y close enough to f(0) and for the metric o, the o,-length
of any S-curve in C is bounded from below by 79 — r; — 2¢ while o,-area is bounded
from above by K. [(r2 + €)% — (11 — €)?], where K, = sup K,, < c0.

We derive from this statement and from Lemma 4.1

Theorem 5.2. Let f = f.. don’t have an attracting and indifferent periodic point,
and its Julia set be locally connected. If the map w — ¢, is continuous at a point
w, = exp(2mity) and ¢, = ¢4, then ty is an external argument of the critical value
of f, and f is M-stable on the access ty. If ¢y, has only radial limit ¢,, then f is
M -stable on the external ray of argument t.

Proof. First, we show that tg is also an external argument of ¢, in the dynamical
plane of f.. Take a positive sequence €, — 0, and choose the sequence of neighbor-
hoods P, = P* of zero from the Lemma 4.1. Fix n. If w is close to w,, then by
the condition, ¢ = ¢,, is close to ¢., and P, is transformed to a neighborhood PS of
c. Hence, the external ray of f, at the argument ¢y crosses dF,. Since P, shrink
to c., we are done. Second, we set W, = P, and use the Theorem 5.1.

6. ON M-STABILITY OF INFINITELY
RENORMALIZABLE REAL QUADRATIC POLYNOMIALS

Fix a real infinitely renormalizable quadratic polynomial f = f. . It has the
locally connected Julia set [LSvS]. Consider a renormalization @ = f™ : Uy — Vj,
where the domain Uy contains the critical point zero. Let E = N,_,Q~™(U)
the Julia set of the renormalization, and denote J; = f*(E),i = 1,2,...,m, where
Jm = E. Let R(co) be an orthogonal external ray of argument o to the critical
value co = f(0). Let z0 € R(co) and L be a part of R(co) between zp and co.

Let us consider the M-deformation Q of the renormalization @ of f (see Sect. 2).
As we know, Q is a quadratic-like mapping with a disconnected Julia set E and the
natural holomorphic projection IT : C\(E U Tg) — C\(E | £g) is defined (remind
Y g is the set of those preimages of L under the iterates of f that intersect the small
Julia set E, otherwords, £ coincides with |, @~ "(f~!(L))). Moreover,

MoQ=Qoll

whenever both hand-sides are defined.

We want to find a simply-connected neighborhood W of zero which obey the
following properties:

(W1) W is a critical piece for f: if i, j are positive integers, then components of
f~H (W) and f~7(W) are either disjoint, or one coveres other.
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(W2) W contains the small Julia set E. There is a bigger domain W’ such that
the annulus W'\ W has a positive modulus m(W'\W) > 0 and W' (\U,5, f(0) =
W N Uino f™(0). A

(W3) If a w/2-ray R(f*(0)) to the iteration of the critical point f*(0) intersects
W then f*(0) € W and R(f*(0)) (W is connected.

(W4) The boundary OW does not intersect the arcs

leZeUf(ZE)- U™ 1(Zk)

(WS) OW and F have at most finitely many common points. By Lemma 2.1,
II(0W) is a simple closed curve. We denote by W a bounded domain with oW =
I1(0W). We assume there exists a K-quasiconformal smooth map ¢ : W w
suth that ¢ = IT-! on the boundary. Let us extend ¢ to C\ W by I~1L.

Definition 6.1. A(W) is the set of components of f~7(W),j = 1,2,...,, which
lie in W and for which there is an index i = 4y such that f* : U — W is an
isomorphism. By the condition (W1), given Uy € A(W) there exists a maximal
finite chain of domains U; € A(W),j = 1,...,I such that Uy C Uy C Us... C U;. We
call { + 1 the level of Up and the chain {U;};_, is associated to Up.

Lemma 6.1.

I Let U € A(W). Then 83U (N Zg = 8. Moreover, UNEg =0

II. Let U € A(W) be of level k. IfV # U is a domain from the chain associated to
U, then 8U N f~*v(Zg) = 0, where the branch f~*V corresponds to f*V : V — W.
Moreover, U f~V(Zg) =0

Proof. 1. Assume some [ € L g intersects dU. We have two indexes: ¢ = iy and j
such that f/+1(1) = Ly.

1. i > j. Then W intersects the ray R(f*~7(0)) and, by condition (W3), 0 €
f7(U). A contradiction.

2. i < j. Then 8W intersects fi({). This is a contradiction with the condition
(W4) since the latter arc belongs to g f(Zg)...UU ™~ 1ZE).

3. ¢ = j. This again contradicts to (W4).

Then assume that [ belongs to U. Since ! intersects the small Julia set E, we
obtain that in fact U = Q™ ™(W) for some n > 0. Now by conditions (W1)-(W2)
the map f™" : U — W is of degree two. It contradicts to the definition of U.

Part II is proved by induction on the level k. '

Definition of the metric o.

We set h = @oll. It is a continuous map of W\ (E|J Lg) into W so that hlaw =
id.

We define a map H from W\ (E|JZg) into W as follows. f z € W\ (E|J ZE)
does not lie in any U € A(W), then H(x) = h(x). Otherwise z belongs to a
finite mazimal chain of domains {Uj};?:O of A(W), Up C Uy... C Uy. Let i; = iy,
denote the corresponding indexes, i < tx—; < ... < ig, that is for some branch
f~% : W — U; is an isomorphism. We define

k

thOH(f—ij ohofi-‘)=h0(f_i'°OhOfi*)O...O(f_ioOhOfio)-

=0
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Now we will define the metric o(z), where z is a point outside of the Julia set J
of the polynomial f and outside of the set of arcs £ (Remind that ¥ is the collection
of the preimages of Ly under all iterates of f.)

If fi(z) g W forall j =0,1,2,... we let o(z) = 1 (Euclidean metric).

If z € W, then o(2)|dz| = |dH(2)], so that o(z) = |(H),(2) + (H)%(2)]-

Let f7(z) € W and f'(2) ¢ W for 0 < i < j — 1. Then there is a domain
U such that f¢ : U — W is one-to-one. We define Hy = f~7 o H o f7 and
o(z) = |(Hu)(2) + (Hu)z(2)l.

Properties of the map H and the metric o.

1. Hz)=zif z € OW.

2. H(z) is continuous if z € W\ (EJ J).

3. If v is a S-curve in W which has only two common points z,, x5 with the
boundary of W, then H(#) is a usual curve in W joining z, and z.

4. Denote W) the union of the points of domains U € A(W) of the level
1=1,2,.., WO = W\ W), Then the o-area of W,

A(W) = /W(a(z))zda:dy < iK‘“area[H(W(”)].
=0

Indeed, if z € W then H is K'*'-quasiconformal, and

H.|+ |Hz =
AW) < '——"—_'(|Hz|2 ~ |He[Y)dzdy < ) K" / (IH.|* - |Hz|*)dzdy.
IHz| - |Hz| =0 wi{t)

Notation 6.1:

A(W) = i K+ areaHW®)].
1=0

5. There exists a positive decreasing function C = C(m), C — 1 as m — o0, as
follows. If f*: U — W is one-to-one, then

AW) = [ (o()Pdsdy < c—%

area(U},

where C = C(m(W’\ W)) (see property (W2) of the definition of the domain W).
Proof. Set G = f*. Then G~! extends to a univalent map in W’. By Koebe dis-

tortion theorem, there is a function C as above such that [(G~1)/(z)/(G™Y) (v)I? <

C(m(W’'\ W)), for all z,y € W. Note that that quasiconformal dilatations of

Hy =G 'oHoG at z and H at G(z) are equal. Then

A(U) < i K area[GY(H(WN)Y)),
=0

where
area[G~ (H(W ")) /area[U] < Carea[H(WW)]/area|W].
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Theorem 6.1. Given the infinitely renormalizable polynomial f with locally con-
nected Julia set, assume the existence of a sequence of domains W,, with the prop-
erties (W1)-(W5) such that diamW,, — 0 asn — oo and

A'(W,)
sup C» area[W,] < 00,
where C, = C(m(W, \ W,.)). Then f is M-stable on the external ray of the
argument tg.

Proof follows the one of Theorem 5.1.

7. CONSTRUCTION OF THE MARKOV PIECE W FOR REAL POLYNOMIALS

Let us remind notations from the end of Sect. 1.

Q = f™ is a fixed renormalization of a real infinitely renormalizable f, E
is its Julia set, J; = f(E),i = 1,2,...,m — 1 are the other “small” Julia sets
of the renormalization. The interval I. = [@(0), @%(0)] (up to the order), and
F = f~(m=1} i5 a branch homeomorphic on I, and passing through all intervals
fill.),: = 1,2,. — 1 of the renormalization, I D I, is the maximal interval
such that the branch F : I — R is still injective. Denote = {z : : u(z) < 1} and

= ((C\R)UI)N Q. Then F extends to a univalent function in . We let
V.= flo F(Q).
Note that @ : V, — Qisa quadratic-like mapping. We let
Uo=Q7' (Vi)

and
A=V, \U..

Denote [—a’, a’] the trace of V, on R. The points a’ are the critical points of f™
closest to zero. Let k, be such that f*-(a’) = 0.

Let V(i) = f{(U,),i=1,2,...,m — 1. Then V(i) is a component of f~(m=9)(V,)
that contains f*(I,).

Define A(V.) as the set of domains U such that f*: U — V, is one-to-one, for
some i = iy > 0. For example, V(i) € A(V.) while U, is not.

Note that the intersection of the domain V, with the Julia set J of f consists of
two “horizontal” arcs (crossing the imaginary axis) and two “vertical” arcs (crossing
the real axes). These notions are still in force for an-arbitrary U € A(V.) as it is
homeomorphic to V,.

First, we want to study relations between domains of A(V,).

Lemma 7.1. The point o’ (or —a’) hits a “small” Julia set J; if and only if E
and J; have a common point (the renormalization Q is of S-type [McM]). In this
case m = 2.l (i.e. an even number), and, moreover, f' is again a renormalization.
Besides, in this case a/ separates the points f2'(0) and f'(0).

Proof. If Q is of B-type, and a is the common end point of E and J;, which is a
periodic point of f of period k, then £ and J; are interchanging by f*, i.e. k =1
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and m = 2.. Moreover, by [McM,Theorem ???], f! is again a renormalization,
and its Julia set contains F|JJ;. The rest of the statement “if” is clear from the
picture. Let us prove “only if”. Let a’ € J;. Then b = f™(a’) = f(0) since b is
the iterate of zero in J; of order < m. Assume the sets £ and J; don’t touch. It
follows the closest points of E and J; are two fixed points of f™. Then a’ must
be in between of them because otherwise a point of J; would belong to the E. A
contradiction.

Lemma 7.2. 1. There exists a unique U € A(V,) which contains «’. Then iy = k.,
and U [\ V. is a subarc of a “vertical” arc of V,.

2. The above U coincides with one of the domains V(j) if and only if the
renormalization Q is of B-type.

Proof. 1. Let some U € A(V.) contain a’. If ¢y < k., then a’ is not a closest to
zero critical point of f™. If iy > k,, then 0 € f*(U), i.e. fiv : U — V, is not
one-to-one. Thus ¢;; = k,. To prove the existence, it is enough to show that there
are no iterates f*(0),i = 1,2,...,m — 1 on [~a’,a’]. If there is, then it contradicts
to Lemma 9.1. The rest is obvious.

2. f U =V{(j), then o’ € J;, and we apply Lemma 7.1.

Notation 7.1: U’ is the unique domain in A(V,) containing a’. So that f*- :
U’ — V. is one-to-one.

Lemma 7.3. U’ intersects U, if and only if Q is of B-type and U’ is one of V(j).

Proof. 1f U’ intersects U,, then V, intersects V(k,), and we apply Lemma 7.2. If,
conversly, @ is of 3-type, then U’ contains even a point of E.

Lemma 7.4. If U € A(V,), UNOV. # @, but U # 2U’, then the following two
possibilities can occur:

(a) UM OV, is a smooth arc, iy > m , i.e. f™(U) € A(V,), and the domain
f™(U) is symmetric with respect to the real axes; '

(b) U (N 8V. consists of two smooth arcs meeting at a point z € U at the angle
7/2, iy < m, and fV(z) = 0. Moreover, for each x € V. such that fi(z) = 0,
i < m, there exists a unique U € A(V,) withiy =i andz € U.

Proof. Let T = U[)6V.. Let T be a smooth arc. Assume iy < m. There are no
preimages of zero of order < iy on T (since there are no iterates of zero of order
< mon V,). There exists a minimal j < 4y such that 7/ = fJ(T) is an arc of
the imaginary axes. If f7(U) would not be symmetric about 77, then we would
complete U by a bigger domain from A(V,) with the same iyy. Thus f7+H(U) is
symmetric about R and then fiv=9(7") = V,R. It is a contradiction with a fact
that f™ is a homeomorphism on its image on the part of 8V, in the upper (lower)
halfplains. The rest follows. Now let T consist of a finitely many smooth arcs ({;)
such that I; meets l;,; at a point z; at the angle 7/2. Then f*(z;) = 0. Let
k = min(k;). Let us show that kK = iy. The case k£ < iy is impossible because
otherwise J would contain a closed curve. The case & > iy is ruled out since
f*¥:U - V, is one-to-one. Thus k = iy. It follows U () dV. consists of two smooth
arcs.

The Lemma 7.4 implies the following
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Lemma 7.5. If Uy, U; € A(V,), Uy intersects Uy and iy, < iy,, then Uy (U =
f~tva(I), where I is either one of the intervals I, = V, R or V, (iR,

or I consists of two orthogonal intervals meeting at zero: one is a “half” of
V. MR and the other one is a “half” of V, []iR.

It yields, in its turn,

Lemma 7.6. (An order in A(V,).) Let U; € A(V,), i = 0,1,2. If Uy intersects Uy,
and U, intersects Uy, but Uy does not intersect Us, then the possibility iy, > iy,
and iy, > iy, is not realized.

Definition 7.1 (of the Markov piece) W.

We distinct two cases.

The disjoint type renormalization, i.e. the small Julia set F of the renormaliza-
tion @ = f™ is disjoint from the all other small Julia sets J;. Then W = Q~1(W,),
where the domain W) is defined by the condition:

W, C V, such that the domain V, \Wl consists of the points = with the prop-
erty: there exist a finitely many U; € A(VL),i = 1,2,...,4(z) such that = € Uy,
Uy N 0OV. # 0, and for each i the domain U; intersects U;y; and does not intersect
Uito.

The 3-type renormalization, i.e. E meets other Julia set J; at a point a, f'(a) =
a, (f)(a) < —1. Let a-half plane be a half plane (right or left) containing
a. Denote U” the intersection of V, \ U’ with the a-half plane. Let F be a
branch of f~™ contracting to a. It is well defined at least in the intersection
of V. with the a-half plane. Then we define a domain V] = U/ |J(-U}), where
Ulr=U"YFU"YUFEU"JF3U"){.... Now we define the domain W, exactly
like we defined the domain W in the first case (the disjoint type renormalization)
by replacing V, by the new domain V. Finally, we let W = Q~1(W,).

Remark 7.1. We need a preimage of W) by @ in the first case because we need
an annulus A = V, \ U, around W such that it does not intersect 7 /2-external rays
to the iterates of 0 not belonging to the “central” Julia set E. By exactly the same
reason, we need the extra preimage by @ in the second case (f3-renormalization).

Theorem 7.1. The domain W constructed above is connected and simply-
connected and it satisfies the properties (W1)-(W5) (Sect. 6). For the disjoint
type renormalization W belongs to U,\Q~'(U,). In the both cases one can choose
the K -quasiconformal homeomorphism ¢ : W — W (see (W5)) in such a way that
its maximal dilatation K depends only on the modulus m. of the annulus V., \ U,,
and, moreover, ¢ is smooth in the domain W with the distortion sup |o. |/inf|e:|

bounded from above by a function which depends only on m,.

Proof. (Sketch.) Using the Lemmas 7.4-7.6 we show that W is connected and
simply-connected. The properties (W1)-(W4) follow from the construction of W
(we use the orthogonal rays only). Prove (W5). In the case of disjoint renormaliza-
tion W, belongs to A = V,\U, because of Lemma 7.6. Then in the case of disjoint
renormalization we have a Koebe space for the projection IT as IT is univalent in
R2UQ(A)UA. In the case of S-renormalization the domain W, has exactly 4
joint points with the Julia set E: the fixed point e (jointly with other small Julia
set), its preimage —a, and two preimages of —a under @. Then in neighborhoods
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of these points we use local dynamics. It can be done in terms of the modulus m.,.
Out of these neighborhoods we use the Koebe space for I as above (maybe we use
more preimages of A under @, but their number is defined by m.).

8. END OF THE PROOF OF THE THEOREM 1.1

We are going to apply the Theorem 6.1. Remind that a domain U € A(W)
is of level I > 0 if the maximal chain of domains Uy = U, Uy, ..., U; from A(W),
U; € Uipr, contains exactly ! elements. W) is the set of points of the domains of
I-level. Let U7,j = 1,2,... be all domains of level one. They are pairwise disjoint
and the induced map T is defined on W): T|,; = fi, where i = iy;, so that
T :U’ — W is an isomorphism. Let h = @ o II (see Sect. 6) and T=Toh Ll Tn
these notations we have (see definitions in Sect. 6):

area H(W®] < area[T~"(W)).
If T|y = f*, for some 1-level domain U € A(W), then, for any z € W,
T} (2) = Q7@ o [~ (),

where Q@ = f™ is the considered renormalization, i = r(z)m + L(z), and r(z) is
the unique r > 0, such that Q"(7T~1(z)) lies in V, \ U., if the renormalization is
disjoint, and it lies in @~}(V, \ U,) in the case of S-renormalization. So L(z) > 0
and f~L®)(z) belongs either to V, \ U,, or to Q=Y (V, \ U.).

We continue as follows:

T~Ya) = ho T~ (z) = po o Q™) o f~L(g) =

= o Q") oo fH)(g),

Observe that every map
U = Q'—r(:c) ollo wa(:r:)

extends from a neighborhood of x € W to a univalent holomorphic function on
either V. (disjoint type), or U, (B-type). The argument: this domain (V,, or U.)
is disjoint with the external rays R(f*(0)), if f*(0) is not in the central small Julia
set. Let us fix the modulus m, of the annulus A. By thiiwe fix also the maximal
dilatation of the map ¢ and its distortion on the domain W = II(W). Remind that
¢ = II7! in a neighborhood of BW, so that we can extend ¢ by II™! outside of
W. Since the modulus of the annulus V, \ W is at least m., U(W) has bounded
distortion (in term of m., of cause). Let now the density p(A, U,) of the domains
U € A(U,) (i.e. ff:U — U, is an isomorphism, for some 7 = i) in the annulus A
tend to zero. Then the relative area occupied by the all domains of the form ¥ (W)
in W tends to zero too. For this, we just note that the maps Q™" are holomorphic
on II{A) together with the Koebe space except perhaps one branched point which
cannot disturb too much when we consider the area. Thus, for each ¥ the domain
¥ (W) has a small Euclidean diameter and is surrounded by the annulus II(A) (of
the modulus m.). Hence, all maps ¥ : W — W are uniformely contractible by
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a factor A < 1, in the hyperbolic metrics of Vi and TI(V,), and A 0 as p(A4,U.)
tends to zero. Returning from II(V,) to V., by the smooth map ¢, we get that all
branches of the map T-!: W — W are contractible in the hyperbolic metric of V,
by a factor tending to zero with the density p(A4, U,). So if the latter density is less
than some p.(m.), we can apply Theorem 6.1.

To end the prove, we show that p.(m.) — 1 as m, — oo. If m, the modulus
of A is large, then the renormalization @ is of disjoint type (see [McM,pp.110-
111]). Then II is close to identity on @~2(A) JQ~1(A)|J A. Hence, the maximal
dilatation and the distortion of ¢ are close to 1. Moreover, Q and Q are close on V.
If now the density p(4, U,) < 1is fixed and m. — oo, then area[T =} (W)]/area[W)
cannot be too large since already Q~!(A) gives enough impact in the area[W].

9. PROOF OF THE THEOREM 1.2

Fix a renormalization Q. So the number p(W) € (0,1) and the modulus m, of
the fundamental annulus A are given. Let d(Q) be close to zero. It follows from
Sect.2, that é is close to @ on V,, that is II is close to identity on A (see Remark
9.1 below). Then we can follow the proof of the Theorem 1.1 from the previous
section. :

Remark 9.1. One should have in mind the following. Let ! be any non-tangent
access to zero of the polynomial f (it means that [ is mapped by the external
conjugacy of f to a non-tangent curve converging to a point of the unit circle).
Then ! is also a non-tangent access to the zero with respect to the quadratic-like
map (renormalization) Q. In its turn, the latter curve (in the @-plane) induces a
non-tangent access [; to the zero in the plane of the quadratic polynomial f.(q). So
in the uniformization plane of the Mandelbrot set we obtain two curves: one is the
external ray {w : w = rexp(27it(Q)),r > 1}, where t(Q) is an external argument
of ¢{@), and the other one is a non-tangent curve to the same point of the unit
circle, namely, this is the curve B g)(fo)(l1)). Now, by a Lindelof’s theorem, the
limit sets of the parameter ¢ € @M corresponding to these two curves coincide, i.e.

this is the limit set of the ray Rf{Q).

APPENDIX. A COMBINATORIAL RELATION BETWEEN A
DISCONNECTED JULIA SET AND A REAL POLYNOMIAL: THE R-PATH

Fix a polynomial f. outside M and other polynomial f., on the intersection of
the real line and M. About the latter polynomial we will assume the following:

(A1) f.. has no attracting and parabolic periodic orbit.

(A2) There is a real decreasing sequence {c, 152, which tends to c. and such
that c, is a root of a hyperbolic component of M (that is, f.. has a periodic orbit
with multiplier 1, or —1)

Denote 8% two external arguments of the point ¢, € M [DH1]. They are
conjugate, that is the corresponding points exp(27i6%) of the complex plane are
conjugated.

Denote 6% the limits of the sequences 8%, and wf = exp(2mi0%). (If M is locally
connected, 8% are the external arguments of the point ¢, € OM.)
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Let us say that an angle (slope) T € (0,7) corresponds to a point w = exp(2wit)
of the unit circle, or simply corresponds to t € [0,1) «ff the curve that passes via the
point w. and crosses every circle |w| = 7,7 > 1 at the anlge T lands at the point w.

Denote 7, a slope that corresponds to one of the points w*, say, to the point
w, . The case w} will differ only by notations. Let Cy be an analytic curve in the
dynamical plane z — f.(z) that passes via zero, and crosses every equipotential
{2 : ue(2) = a}, a < uc(0), at the angle 7,. (Such a curve is unique as w¥ are not
periodic points under the map w — w?.) Tt lands at two points ki, kg of J. (it has
a finite length because of hyperbolicity of f. [DH2]). Let JX be the Julia set J,
united with the curve Cp and all preimages of Cp under f., of all orders [LS]. Then
J* is a connected and locally connected compact in the plane. A curve R crossing
every equipotential at an angle 7 € (0, 7) and joining infinity and the Julia set is
said to be a T-external ray of f.. It lands at a unique point of J, and its 7-external
argument ¢ € T is well defined [DH2], [GM], [LS], [L1]. Namely, the point exp(2mit)
is the end point of the curve, which passes via a point B.(z), z € R close to oo, and
crosses every circle |w| = r at the angle 7. In particular, T.-ray of zero argument
lands at a fixed point of f. which is called 3.

Definition Al. The R-path, or (3, 5], is the unique curve in J} which joins
the fized point 8 and its preimage 3 different from 3. The positive direction on the
R-path is defined from ' to B.

Denote:

Ic = Ic,c. = [r@!aﬁ} n Jc
is the subset of the Julia set of f. on the R-path.

L. =R[)Je,

is the subset of the Julia set of the polynomial f., on the real line, that is simply
the closed interval between the fized point of f.. with positive multiplier, 3., and
its preimage P different from B, .

Remark Al. A point z lies in the R-path if and only if it has at least two
T.-arguments starting with different digits (in their 2-expansions). In particular,
the curve Cj belongs to I, since its points have 7.-arguments 6./2 and 6,/2 + 1/2.

The main result of this section is

Theorem Al.

1. I.. is invariant under f..

2. There exists a non-decreasing surjective map H : I. — I, of the Cantor set
I. of the R-path onto the interval I., such that Ho f. = f. o H, and H(z) = H(y),
for some z,y € I, if and only if fI([z,y]) = Co, for some integer r > 0, where [z, y]
denotes the arc in [(', 8] between z and y.

A key ingredient in the proof gives the following

Lemma Al. Let R(c) be the 7.-external ray, which contains the critical value c.
Then R(c) lands at a point of the R-path.

Proof of Lemma A1. Tt is enough to show that the landing point v of the ray R(c)
admits at the same time 7.-argument 6} (because #F have different first digits.)
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If we will prove, that for every n = 0,1,2, ... the rays RT of the arguments 6%
land at the same point z,, then we will prove the statement (because J? is locally
connected and 6% — 0?) This fact is a particular case of the following known
Lemma A2, which can be derived from the Douady-Hubbard-Lavaurs combinatorial
theory of the set M (see [Sc]). For the sake of completness we sketch here a
proof (cf.[L1]) using a notion of the rotation number, and Douady-Hubbard-Sullivan
theorem [D] (on univalence of the multiplier in a hyperbolic component of M).

Lemma A2. Let ty and t be two external arguments of a hyperbolic component
A of the Mandelbrot set of period d, that is to,t}, are the external arguments of the
root ca of A. Let us fix ¢ in the complement of M, let T € (0, ) be chosen so that
T-ray through w. lands at a point in the interval (to,tg). Then, in the dynamical
plane of the polynomial f., T-rays of the arguments ty and t{, land at one point,
which is a periodic point of f. of period d.

Remark A2. To prove Lemma Al, we apply Lemma A2 to the sequence of the
hyperbolic components of M with the pairs of external arguments 6%,

Proof of Lemma A2. (cf. [L1]) Fix a slope 1y corresponding to the point exp(2wity).
Consider the ray R of the slope 1y in the dynamical plane f.. It doubles at a point
zo such that f¢(zp) = ¢ and then lands at two periodic points 2, and 2z of the
period d. The points z1, 29 belong to different components K, Ky resp. of the
set {z : u(z) < u(c)/2¢%} so that K1 (K2 = {z0}. The point z; admits other 7o-
argument, ty, and one of the periodic points, say zo, has other mp-argument 2 so
that 2¢(¢p — t1) = ¢, — to. We want to show that (a) to = t§, and (b) if 7 changes
between o and 7§ then T-rays of the arguments 1o, 7} always land at the point z.
Let the slope 79 correspond to ¢5. Look at the rotation number v(7) of 2, when 7
changes from 1y to 5. Then v changes monotonically from zero to one. If now (a)
is not the case, then there exists another root on the boundary of the hyperbolic
component A, which is different from ¢a. This is a contradiction with the Douady-
Hubbard-Sullivan theorem. So t; = t;. To prove (b) observe that, for 7 € (7, 7)),
the iterations of the 7-ray R(¢) passing via c land inside the component K and its
further d — 1 iterations. So they don’t hit the corresponding iterations of K, and,
hence, none iteration of R(c) can coincide with the external rays of z;. Therefore,
the T-arguments of z; cannot change (see [GM]). On the other hand, if 7 is close
enough to and bigger than 7y, the arguments of z, are 79, 5. This proves (b).

Remark A3. After Lemma Al, we have the following analogy between the
map f. restricted on the R-path [#, 3] and any real quadratic polynomial f;, with
—2 < b < 0.25, restricted on the invariant interval Iy of the real line. First of all,
a difference is that the R-path is not invariant under the f, since 0 belongs to it,
while its image, ¢, does not. On the other hand, (and this is the similarity), if k;, k2
the landing point of the curve Cy C [0, §] passing via zero, then, by Lemma Al,
the point v = f.(k1) = fc(k2) lies on |3, B]. Moreover, the images under f. of the
following arcs on the R-path: between 3 and k,, and between 8’ and ks, coincide
with the arc in the R-path between 8 and v. So the points k;, ko play the role of
the “different sides” of the critical point zero of f,, and the point v plays the role
of the critical value b of f,. ‘
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Proof of Theorem A1. Let us continue the preceding remark. By Lemma A1, the
point v has arguments §%. Then all iterations of v lie on (8, 8] since they have
external arguments starting with the different digits. Thus, the kneading sequence
©.(v) of v is well defined and equal to the limit of the kneading sequences ©.(z,) of
the periodic points z,, = z,(c). Let us show that ©.(v) coincides with the kneading
sequence O, (c.) of the critical value of the polynomial f., (the kneading invariant
of f..). Indeed, let us consider again 7,-rays of the arguments 6F, n = 1,2, ....
For each parameter b in the wake of the corresponding hyperbolic component of
M (particularly, for ¢ and c,) they land at a periodic point z,,(b) of fy, which is a
holomorhpic function of b in the wake (see Lemima A2). Now, take the sequence of
real parameters ¢, from the definition of ¢.. Then the kneading sequence 0O.(x,)
equals the kneading sequence ©,_(c,) of the real map f. . But O, (c,) tends to
the kneading sequence O, (c.) of the limit map f.. [MT]. This directly leads to the
conclusions of the theorem. (Remind, by Guckenheimer’s theorem, the polynomial
fe. does not have wandering intervals, hence, it is determined by its kneading
invariant). |

Reminder: o(t) = 2.t(mod1), t € [0,1). Then o™(t) = 2™.t(rnodl).

Corollary Al. The set of T,-arguments of the points in the R-path consists of
those t for which, for all i > 0, o*(t) lies either in [0, 0], or in {8}, 1].

Corollary A2. Fix z in the Julia set J. and consider the set A(x) of its T.-external
arguments. There are only three possibilities: .

1. None iteration of x hits the set I., and A(x) consists of one element t(z).

2. For some | > 0, the l-th iteration of x hits a point y of I., which is not a
pre-image of v, and A(z) consists of two elements t*(x) so that

5

ti(:ﬂ) = 0.61, ey €y (ti(y))a

where €, ..., ¢ is a group of digits 0,1, and (t*(y)) denotes the sequence 0,1 in the
2-expansion of the external arguments t*(y) of the point y.

3. For some ! > 0, the I-th iteration of z hits either ky, or ko, and A(z) consists
of three elements t*(x),t*%(x) so that

t=(z) = 0.€y,...,€,0,(0,),

f.+($) = 0.61, ey €y 1, (9:),
t°4(x) = 0.1, ..., &1, €, (67,

where: €, ..., ¢ is a group of digits 0,1, € is either 0, or 1 depending on whether the
point fl(x) is k1, or ka, and () denotes the sequence of 0,1 in the 2-expansion of
6.

Proof of Corollary A2.

1. The edges of the R-path have the only external arguments 0,1/2.

2. and 3. It is enough to show every point y of I. has exactly two external
arguments whenever this point is not a preimage of v. Assume ¢;,7 = 1,2,3 are
different arguments of y. Let y;,y» start with the same digit, but differ by a digit
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of number 2 > 1. Applying Theorem Al,p.1, we find a preimage of R-path under
f: between external rays of arguments ¢; and ?2. It means that f! is not one-to-one
in a neighborhood of y, that is y is an 7-preimage of v.
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