Max-Planck-Institut für Mathematik Bonn

Bracket width of current Lie algebras

by

Boris Kunyavskii levgen Makedonskyi

Andriy Regeta

Max-Planck-Institut für Mathematik Preprint Series 2024 (9)

Bracket width of current Lie algebras

by
Boris Kunyavskii
levgen Makedonskyi
Andriy Regeta

Max-Planck-Institut für Mathematik
Department of Mathematics
Vivatsgasse 7
Bar-Ilan University
53111 Bonn
Ramat-Gan
Germany
Israel
Yanqi Lake Beijing Institute of Mathematical
Sciences and Applications (BIMSA)
Beijing
China
Institut für Mathematik
Friedrich-Schiller-Universität Jena
Jena
Germany

BRACKET WIDTH OF CURRENT LIE ALGEBRAS

BORIS KUNYAVSKII, IEVGEN MAKEDONSKYI AND ANDRIY REGETA

Abstract

The length of an element z of a Lie algebra L is defined as the smallest number s needed to represent z as a sum of s brackets. The bracket width of L is defined as supremum of the lengths of its elements. Given a finite-dimensional simple Lie algebra \mathfrak{g} over an algebraically closed field \mathbb{k} of characteristic zero, we study the bracket width of current Lie algebras $L=\mathfrak{g} \otimes A$. We show that for an arbitrary A the width is at most 2 . For $A=\mathbb{k}[[t]]$ and $A=\mathbb{k}[t]$ we compute the width for algebras of types A and C .

1. Introduction

Given a Lie algebra L over an infinite field \mathbb{k}, we define its bracket width as the supremum of lengths $\ell(z)$, where z runs over the derived algebra $[L, L]$ and $\ell(z)$ is defined as the smallest number n of Lie brackets $\left[x_{i}, y_{i}\right]$ needed to represent z in the form $z=\sum_{i=1}^{n}\left[x_{i}, y_{i}\right]$.

There are many examples of Lie algebras of bracket width strictly bigger than one, see, e.g., [Rom16]. However, the width of any finite-dimensional complex simple Lie algebras is equal to one [Br63]. For finite-dimensional simple real Lie algebras the problem of existence of an algebra of width greater than one is still wide open, see [Ak15].

The first examples of simple Lie algebras of bracket width greater than one were found only recently in [DKR21, Theorem A] among complex infinite-dimensional algebras. Namely, they appeared among Lie algebras of vector fields $\operatorname{Vec}(C)$ on smooth affine curves C with trivial tangent bundle, which are simple by [Jo86] and [Si96, Proposition 1]. More recently, it was proved in [MR23] that the bracket width of such Lie algebras is less than or equal to three, and if in addition C is a plane curve with the unique place at infinity, the bracket width of $\operatorname{Vec}(C)$ equals two.

In the present paper, we study the bracket width of another class of infinite-dimensional Lie algebras, namely current Lie algebras.

Let \mathbb{k} be an algebraically closed field of characteristic zero, \mathfrak{g} be a finite-dimensional simple Lie \mathbb{k}-algebra, A be a commutative associative \mathbb{k}-algebra with the identity. The current algebra corresponding to \mathfrak{g} and A is defined as the tensor product $\mathfrak{g} \otimes_{\mathfrak{k}} A$ with the bracket

$$
[x \otimes a, y \otimes b]:=[x, y] \otimes a b
$$

With respect to this bracket $\mathfrak{g} \otimes_{\mathfrak{k}} A$ is a Lie algebra.
Our first result provides an upper estimate for the bracket width of an arbitrary current algebra.

[^0]Theorem 1. The bracket width of $\mathfrak{g} \otimes_{\mathfrak{k}} A$ is less than or equal to 2 .
The main object of our interest is the Lie algebra $\mathfrak{g} \otimes_{\mathbb{k}} A$ where $A=\mathbb{k}[[t]]$ is the algebra of formal power series. In this case we expect a more precise statement.

Conjecture 2. Let \mathfrak{g} be a finite-dimensional simple Lie algebra. Then the bracket width of $\mathfrak{g} \otimes_{\mathbb{k}} \mathbb{k}[[t]]$ is equal to 2 if \mathfrak{g} is of type A_{n} or $\mathrm{C}_{n}(n \geq 2)$ and to 1 otherwise.

Our results partially confirm this expectation.

Theorem 3.

(i) The bracket width of $\mathfrak{s l}_{2} \otimes \mathbb{k}[[t]]$ is equal to 1 .
(ii) If \mathfrak{g} is of type A_{n} or $\mathrm{C}_{n}(n \geq 2)$, the bracket width of $\mathfrak{g} \otimes \mathbb{k}[[t]]$ is equal to 2 .

Some arguments supporting the conjecture for the types other than A_{n} or C_{n} will be given later, in Section 3.

We deduce from (the proof of) Theorem 3 some results on other current algebras.
Corollary 4. Let $\mathfrak{g}=\mathfrak{s l}_{n}$ or $\mathfrak{s p}_{2 n}(n \geq 2)$. Then for $A=\mathbb{k}[t]$ the width of $\mathfrak{g} \otimes_{\mathbb{k}} A$ is equal to 2.

This statement can be generalized to a wider class of rings A as follows.
Corollary 5. Let $\mathfrak{g}=\mathfrak{s l}_{n}$ or $\mathfrak{s p}_{2 n}(n \geq 2)$. Let A be a ring containing an ideal \mathfrak{a} such that the quotient $\bar{A}=A / \mathfrak{a}$ is a two-dimensional \mathfrak{k}-algebra. Then the width of $\mathfrak{g} \otimes_{\mathfrak{k}} A$ is equal to 2.

2. Proofs

We begin with the following general statement on finite-dimensional simple Lie algebras [BN11, Theorem 26].
Proposition 6. Let \mathfrak{g} be a simple finite-dimensional Lie algebra defined over an arbitrary infinite field of characteristic not 2 or 3 . Then there exist $w_{1}, w_{2} \in \mathfrak{g}$ such that

$$
\mathfrak{g}=\left[w_{1}, \mathfrak{g}\right]+\left[w_{2}, \mathfrak{g}\right] .
$$

This immediately implies Theorem 1.
Proof of Theorem 1. Consider a linear basis of $A, A=\left\langle 1=a_{0}, a_{1}, a_{2}, \ldots\right\rangle$. We have

$$
\mathfrak{g} \otimes A=\mathfrak{g} \otimes 1 \oplus \mathfrak{g} \otimes a_{1} \oplus \mathfrak{g} \otimes a_{2} \oplus \ldots
$$

Any element z of $\mathfrak{g} \otimes A$ can be written in the form $z=\sum_{i=0}^{k} z_{i} \otimes \alpha_{i} a_{i}$ with $z_{i} \in \mathfrak{g}, \alpha_{i} \in \mathbb{k}$. By Proposition 6, for every z_{i} there exist $x_{i}, y_{i} \in \mathfrak{g}$ such that

$$
z_{i}=\left[w_{1}, x_{i}\right]+\left[w_{2}, y_{i}\right] .
$$

Thus, we have:

$$
z=\sum_{i=0}^{k} z_{i} \otimes \alpha_{i} a_{i}=\left[w_{1}, \sum_{i=0}^{k} x_{i} \otimes \alpha_{i} a_{i}\right]+\left[w_{2}, \sum_{i=0}^{k} y_{i} \otimes \alpha_{i} a_{i}\right] .
$$

This completes the proof.
Proof of Theorem 3. Our first step consists in reformulating the property of $L:=\mathfrak{g} \otimes \mathbb{k}[[t]]$ to be of bracket width one as some condition on \mathfrak{g}.

Proposition 7.

(i) The bracket width of L is equal to 1 if and only if \mathfrak{g} satisfies the following condition (*): every nonzero element $c \in \mathfrak{g}$ can be represented as a bracket of elements without common centralizer, i.e. there exist $a, b \in \mathfrak{g}$ such that $c=[a, b]$ and

$$
\begin{equation*}
C_{\mathfrak{g}}(a) \cap C_{\mathfrak{g}}(b)=(0) . \tag{1}
\end{equation*}
$$

(ii) Assume that A satisfies the conditions of Corollary 5. Then condition (*) is necessary for $\mathfrak{g} \otimes A$ to be of bracket width 1 .

The following simple lemma is needed for the proof of Proposition 7.
Lemma 8. Condition (1) is equivalent to the following one:

$$
\begin{equation*}
\operatorname{im}(\operatorname{ad} a)+\operatorname{im}(\operatorname{ad} b)=\mathfrak{g} . \tag{2}
\end{equation*}
$$

Proof of Lemma 8. Let (,) denote the Killing form on \mathfrak{g}, and let $V \subset \mathfrak{g}$ denote the orthogonal complement to $\operatorname{im}(\operatorname{ad} a)+\operatorname{im}(\operatorname{ad} b)$.

Suppose that condition (1) holds and prove (2). Assume to the contrary that (2) does not hold, i.e. $V \neq(0)$. Let d be a nonzero element of V. Then for any $e \in \mathfrak{g}$ we have $([e, a], d)=$ $([e, b], d)=0$. As the Killing form is invariant, this gives $(e,[a, d])=(e,[b, d])=0$. Since e is an arbitrary element of \mathfrak{g} and the Killing form is non-degenerate, we have $[a, d]=[b, d]=0$, i.e. d centralizes both a and b, contradiction.

Conversely, suppose that condition (2) holds and prove (1). Assume to the contrary that $C_{\mathfrak{g}}(a) \cap C_{\mathfrak{g}}(b) \neq(0)$. Let $d \neq 0$ centralize both a and b. Then the same argument as above shows that $d \in V$, contradiction.
Proof of Proposition 7. (i) Suppose that \mathfrak{g} satisfies condition (*) and show that the bracket width of $L=\mathfrak{g} \otimes \mathbb{k}[[t]]$ is equal to 1 . Let

$$
z=z_{0}+z_{1} \otimes t+z_{2} \otimes t^{2}+\ldots, \quad z_{i} \in \mathfrak{g}
$$

be an arbitrary element of L. We want to represent it as $z=[x, y]$ where

$$
x=x_{0}+x_{1} \otimes t+x_{2} \otimes t^{2}+\ldots, \quad y=y_{0}+y_{1} \otimes t+y_{2} \otimes t^{2}+\ldots, \quad x_{i}, y_{i} \in \mathfrak{g}
$$

which gives the equation

$$
\sum_{k=0}^{\infty} \sum_{i+j=k}\left[x_{i}, y_{j}\right] \otimes t^{k}=\sum_{k=0}^{\infty} z_{k} \otimes t^{k}
$$

which, in turn, yields the system of equations

$$
\begin{aligned}
{\left[x_{0}, y_{0}\right] } & =z_{0} \\
{\left[x_{0}, y_{1}\right]+\left[x_{1}, y_{0}\right] } & =z_{1} \\
& \cdots \\
{\left[x_{0}, y_{k}\right]+\left[x_{k}, y_{0}\right] } & =z_{k}-\sum_{i=1}^{k-1}\left[x_{i}, y_{k-i}\right]
\end{aligned}
$$

Without loss of generality we can assume $z_{0} \neq 0$. Condition $(*)$ together with Lemma 8 allows one to find x_{0}, y_{0} and then x_{1}, y_{1}. By induction, we find all other x_{k} and y_{k}.

Conversely, assuming that the bracket width of L equals 1 , looking at the zeroth and first equations of the above system and applying Lemma 8 once again, we conclude that condition $(*)$ holds in \mathfrak{g}.
(ii) Suppose that A satisfies the conditions of Corollary 5 and that the width of $\mathfrak{g} \otimes A$ is equal to 1 . We have to show that condition $(*)$ holds. We argue as in the necessity part of the proof of (i). Namely, let $\{1, \bar{t}\}$ be a linear basis of $\bar{A}=A / \mathfrak{a}$, and fix a preimage t of \bar{t}. Let $z=z_{0} \otimes 1+z_{1} \otimes t$ be an element of $\mathfrak{g} \otimes A$ with $z_{0} \neq 0$. Any such z can be represented in the form $z=[x, y]$ with

$$
x=x_{0}+x_{1} \otimes t+\sum_{i \geq 2} x_{i} \otimes a_{i}, \quad y=y_{0}+y_{1} \otimes t+\sum_{i \geq 2} y_{i} \otimes b_{i}
$$

with $a_{i}, b_{i} \in \mathfrak{a}$. We then arrive at the system consisting of the first two equations in (3). By Lemma 8, condition ($*$) holds in \mathfrak{g}.

We now continue the proof of Theorem 3 using the criterion obtained in Proposition 7.
Proof of Theorem 3 (i). This case is easy because any element c of $\mathfrak{g}=\mathfrak{s l}_{2}$ is either nilpotent or semisimple.

First assume that c is nilpotent. We can use the natural representation of \mathfrak{g} and write $c=$ $e=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Take $a=h / 2=\operatorname{diag}(1 / 2,-1 / 2), b=c$. We obtain $[a, b]=c, C_{\mathfrak{g}}(a)=\operatorname{span}(a)$, $C_{\mathfrak{g}}(b)=\operatorname{span}(b)$, so that $C_{\mathfrak{g}}(a) \cap C_{\mathfrak{g}}(b)=(0)$.

Let now c be semisimple, write $c=h=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Take $a=e=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), b=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. We obtain $[a, b]=c, C_{\mathfrak{g}}(a)=\operatorname{span}(a), C_{\mathfrak{g}}(b)=\operatorname{span}(b)$, so that $C_{\mathfrak{g}}(a) \cap C_{\mathfrak{g}}(b)=(0)$, as above. Condition $(*)$ is satisfied, hence the bracket width of L is equal to 1 , as claimed.
Proof of Theorem 3 (ii). We have to prove that for $\mathfrak{g}=\mathfrak{s l}_{n}(n \geq 3)$ and $\mathfrak{g}=\mathfrak{s p}_{2 n}(n \geq 2)$ the bracket width of L is greater than 1 . Together with the upper estimate from Theorem 1 this will imply that the width is equal to 2 .

We thus have to prove that \mathfrak{g} does not satisfy condition $(*)$. This means that we have to exhibit an element c such that any a, b with $[a, b]=c$ have a nonzero common centralizer. We shall choose c to be a rank 1 matrix in the natural representation of \mathfrak{g}. This will allow us to apply the following general lemma from linear algebra.

Lemma 9. [Gu79] Let A, B be square matrices such that $\operatorname{rk}(A B-B A) \leq 1$. Then one can simultaneously conjugate A and B to upper triangular form.
Remark 10. See [EG02, Lemma 12.7] for an alternative proof of Guralnick's lemma (attributed to Rudakov).

We now go over to a more general set-up, using the notion of almost commuting scheme of \mathfrak{g}, see [GG06], [Lo21]. First, let us define it for $\mathfrak{g}=\mathfrak{s l}_{n}$.

Let R denote the vector space $\mathfrak{s l}_{n}^{\oplus 2} \oplus \mathbb{C}^{n} \oplus\left(\mathbb{C}^{n}\right)^{*}$. The subscheme $M_{n} \subset R$ is defined as

$$
\begin{equation*}
\left\{(x, y, i, j) \in \mathfrak{s l}_{n}^{\oplus 2} \oplus \mathbb{C}^{n} \oplus\left(\mathbb{C}^{n}\right)^{*} \mid[x, y]+i j=0\right\} \tag{4}
\end{equation*}
$$

and is called the almost commuting scheme of $\mathfrak{s l}_{n}$.
In a similar way, for $\mathfrak{g}=\mathfrak{s p}_{2 n}$ we consider its natural representation $\mathbb{C}^{2 n}$, identify $S^{2}\left(\mathbb{C}^{2 n}\right)$ with $\mathfrak{s p}_{2 n}$ and thus view $i^{2} \in S^{2}\left(\mathbb{C}^{2 n}\right)$ as an element of $\mathfrak{s p}_{2 n}$. The almost commuting scheme
X_{n} of $\mathfrak{s p}_{2 n}$ is then defined similarly to (4):

$$
\begin{equation*}
\left.X_{n}:=\{(x, y, i)\} \in \mathfrak{s p}_{2 n}^{\oplus 2} \oplus \mathbb{C}^{2 n} \mid[x, y]+i^{2}=0\right\} \tag{5}
\end{equation*}
$$

Note that both varieties carry a natural action of $G=\mathrm{SL}_{n}$ or $\mathrm{Sp}_{2 n}$, respectively. Say, $G=\mathrm{SL}_{n}$ acts on M_{n} by the formula

$$
g(x, y, i, j)=\left(g x g^{-1}, g y g^{-1}, g i, j g^{-1}\right)
$$

Note that such an action on M_{n} is well-defined since $\left(g x g^{-1}, g y g^{-1}, g i, j g^{-1}\right) \in M_{n}$ whenever $(x, y, i, j) \in M_{n}$ as the following computations show:

$$
\left[g x g^{-1}, g y g^{-1}\right]+g i j g^{-1}=g[x, y] g^{-1}+g i j g^{-1}=g(-i j) g^{-1}+g i j g^{-1}=0 .
$$

We have the following generalization of Guralnick's lemma, see [EG02, Lemma 12.7] and [Lo21, Lemma 2.1].
Lemma 11. Let $(x, y, i, j) \in M_{n}$ (resp. $\left.(x, y, i) \in X_{n}\right)$. Then there is a Borel subalgebra \mathfrak{b} of \mathfrak{g} that contains both x and y.

We continue the proof of Theorem 3(ii). In our new notation, we have to prove that given any $(a, b, i, j) \in M_{n}$ (resp. $\left.(a, b, i) \in X_{n}\right)$, the elements a and b have nonzero common centralizer in \mathfrak{g}.

First suppose that both a and b are nilpotent. Then they are both contained in the nilradical \mathfrak{n} of \mathfrak{b}. Since \mathfrak{n} is nilpotent, its centre is nontrivial, and any its element is a common centralizer of a and b.

So assume that at least one of a and b is not nilpotent and consider the orbit $O=$ $G(a, b, i, j)$ (resp. $G(a, b, i))$. For the sake of brevity, in both cases we denote it by $O_{a, b}$.

In the sequel, we shall use $Q_{\mathfrak{g}}$ as a common notation for M_{n} and X_{n}. Lemma 11 implies the following description of closed orbits in $Q_{\mathfrak{g}}$.
Lemma 12. The orbit $O_{a, b}$ is closed if and only if a and b are commuting semisimple elements.

Proof. Case A: By Guralnick's Lemma, it is sufficient to consider the case of upper triangular matrices. But then the orbit of a one-parameter group of matrices (the one-parameter torus corresponding to the coweight $2 \rho^{\vee}$)

$$
\left\{T_{t}:=\operatorname{diag}\left(t^{n-1}, t^{n-3}, \ldots, t^{-n+1}\right) \mid t \in \mathbb{k}^{*}\right\}
$$

is a quasi-affine subvariety

$$
\left\{\left(T_{t} a T_{t}^{-1}, T_{t} b T_{t}^{-1}, T_{t} i, j T_{t}^{-1}\right) \mid t \in \mathbb{k}^{*}\right\} \subset Q_{\mathfrak{g}}
$$

which contains $\left(a_{s}, b_{s}, 0,0\right)$ in its closure. This proves the statement for $\mathfrak{g}=\mathfrak{s l}_{n}$.
Case C: A similar argument works in the case of $\mathfrak{g}=\mathfrak{s p}_{2 n}$ (see also [Lo21, Corollary 2.2]).

By Lemmas 11 and 12, we may assume that the closure of $O_{a, b}$ contains the closed orbit $O_{a_{s}, b_{s}}$ where a_{s} and b_{s} are commuting diagonal matrices.

Following [Lo21, Section 2.2], denote by \mathfrak{l} the common centralizer in \mathfrak{g} of the (commuting) elements a_{s} and b_{s}, it is a Levi subalgebra of \mathfrak{g}. Denote by L the corresponding Levi subgroup of G.

We are going to apply Luna's slice theorem [Lu73]. We will use the exposition of the slice method from lecture notes by Kraft $[\mathrm{Kr} 15]$. So let $X=Q_{\mathfrak{g}}, O=O_{a_{s}, b_{s}}$, then the almost
commuting scheme $Q_{\mathfrak{l}}$ of \mathfrak{l} is the required étale slice S (see [Lo21, Lemma 2.4]), so that in an étale neighbourhood of O we have an excellent morphism

$$
\begin{equation*}
\varphi: G \times{ }^{L} S \rightarrow X \tag{6}
\end{equation*}
$$

taking the image $[g, s] \in G \times{ }^{L} S$ of the pair $(g, s) \in G \times S$ to $g s$; in particular, φ is étale, and its image is affine and open in X, see [Kr 15 , Theorem 4.3.2].

Since L is a reductive group of the form $\prod_{i=1}^{k} \mathrm{GL}_{n_{i}} \times \mathrm{Sp}_{2 n_{0}}$ where each of the first k factors necessarily has a nontrivial centre, $S=Q_{\mathrm{l}}$ is of the form

$$
\begin{equation*}
\mathbb{C}^{2 k} \times \prod_{i=1}^{k} M_{n_{i}} \times X_{n_{0}} \tag{7}
\end{equation*}
$$

where the n_{i} correspond to the partition rk $L=n_{0}+n_{1}+\cdots+n_{k}$ with $n_{0} \geq 0, n_{i}>0$ $(i=1, \ldots, k)$, and $\mathbb{C}^{2 k}$ is identified with $\mathfrak{z}(\mathfrak{l})^{\oplus 2}$, see [Lo21, 2.2].

The presence of the nontrivial $\mathfrak{z}(\mathfrak{l})$ is of critical importance: it guarantees the existence of a pair $\left(z, z^{\prime}\right) \in \mathfrak{z}(\mathfrak{l})^{\oplus 2}$ with nonzero components each of those centralizes both x_{s} and y_{s} (of course, the simplest choice is $z=x_{s}, z^{\prime}=y_{s}$).

Thus for any element of

$$
Q_{\mathfrak{l}} \subset \oplus_{i=1}^{k}\left(\mathfrak{g l}_{n_{i}}^{\oplus 2} \oplus \mathbb{C}^{2 n_{i}} \oplus\left(\mathbb{C}^{*}\right)^{2 n_{i}}\right) \oplus \mathfrak{s p}_{2 n_{0}}^{\oplus 2} \oplus \mathbb{C}^{2 n_{0}}
$$

of the form

$$
\left(x_{n_{1}}, y_{n_{1}}, i_{n_{1}}, j_{n_{1}}, \ldots, x_{n_{k}}, y_{n_{k}}, i_{n_{k}}, j_{n_{k}}, x_{n_{0}}, y_{n_{0}}, i_{n_{0}}\right)
$$

the elements $x=\left(x_{n_{1}}, \ldots, x_{n_{k}}, x_{n_{0}}\right), y=\left(y_{n_{1}}, \ldots, y_{n_{k}}, y_{n_{0}}\right) \in \oplus_{i=1}^{k} \mathfrak{g l}_{n_{i}} \oplus \mathfrak{s p}_{2 n_{0}}$ have a nonzero common centralizer.

Given any finite-dimensional simple Lie algebra \mathfrak{g}, denote by $F_{\mathfrak{g}}$ the set of pairs $(x, y) \in \mathfrak{g}^{\oplus 2}$ such that x and y have a nonzero common centralizer, and let $U_{\mathfrak{g}}:=\mathfrak{g}^{\oplus 2} \backslash F_{\mathfrak{g}}$ denote its complement.

The following lemma is a variation on a theme of Arzhantsev [Ar24, Section 5].
Lemma 13. The set $U_{\mathfrak{g}}$ is open and Zariski dense in $\mathfrak{g}^{\oplus 2}$.
Proof. First fix a pair $(a, b) \in \mathfrak{g} \oplus \mathfrak{g}$ and define a linear map $T_{a, b}: \mathfrak{g} \rightarrow \mathfrak{g} \oplus \mathfrak{g}$ by

$$
T_{a, b}(x)=([a, x],[b, x])
$$

Let now V denote the vector space of linear maps $\mathfrak{g} \rightarrow \mathfrak{g} \oplus \mathfrak{g}$. Define $\psi: \mathfrak{g} \oplus \mathfrak{g} \rightarrow V$ by $\psi(a, b)=T_{a, b}$, it is a linear map. Let $W \subset V$ denote the set of maps of maximal rank, it is open in V. Consider the preimage $\psi^{-1}(W)$. Note that

$$
\operatorname{ker} T_{a, b}=C_{\mathfrak{g}}(a) \cap C_{\mathfrak{g}}(b)
$$

Hence we have $\psi^{-1}(W)=U_{\mathfrak{g}}$ because if a and b have a non-zero common centralizer, then $\operatorname{ker} T_{a, b} \neq 0$ and therefore the rank of $T_{a, b}$ is strictly less than $\operatorname{dim} \mathfrak{g}$. Thus $U_{\mathfrak{g}}$ is open in $\mathfrak{g} \oplus \mathfrak{g}$ as the preimage of an open set. It remains to note that $U_{\mathfrak{g}}$ is non-empty. Indeed (see [Ar24, Remark 3]), any simple finite-dimensional Lie algebra \mathfrak{g} is two-generated and centreless, so that any pair of generators (a, b) belongs to $U_{\mathfrak{g}}$. The lemma is proven.

Let $F_{\mathfrak{g}}^{\prime}:=F_{\mathfrak{g}} \oplus \mathbb{C}^{2 n}$, embed it into $\mathfrak{g}^{\oplus 2} \oplus \mathbb{C}^{2 n}$ and define $F_{\mathfrak{g}}^{\prime \prime}:=F_{\mathfrak{g}}^{\prime} \cap Q_{\mathfrak{g}}$.
By Lemma 13, $U_{\mathfrak{g}}$ is open and Zariski dense in $\mathfrak{g}^{\oplus 2}$. Hence $U_{\mathfrak{g}}^{\prime}:=U_{\mathfrak{g}} \oplus \mathbb{C}^{2 n}$, embedded into $\mathfrak{g}^{\oplus 2} \oplus \mathbb{C}^{2 n}$, is also open. Therefore $F_{\mathfrak{g}}^{\prime}$ is closed in $\mathfrak{g}^{\oplus 2} \oplus \mathbb{C}^{2 n}$, and thus $F_{\mathfrak{g}}^{\prime \prime}$ is closed in $Q_{\mathfrak{g}}$.

We wish to prove that $F_{\mathfrak{g}}^{\prime \prime}=C_{\mathfrak{g}}$. This will establish the statement (ii) of the theorem.

Assume to the contrary that there exists a quadruple $(x, y, i, j) \in M_{n}$ (resp. a triple $\left.(x, y, i) \in X_{n}\right)$ such that $(x, y) \notin F_{\mathfrak{g}}$. Consider the morphism φ defined in (6). As said, its image is open. On the other hand, for all elements (x, y, i, j) (resp. (x, y, i)) lying in this image we have $(x, y) \in F_{\mathfrak{g}}^{\prime \prime}$ because the corresponding property to have a nonzero common centralizer holds in $S=Q_{\mathrm{l}}$, as said above. Since the image of φ is open, the closure of $F_{\mathfrak{g}}^{\prime \prime}$ is $X=Q_{\mathfrak{g}}$, contradiction. This proves the statement.

Corollary 5 now follows from Theorem 1, the proof of Theorem 3(ii) and Proposition 7(ii). Since $A=\mathbb{k}[t]$ satisfies the conditions of Corollary 5 with $\mathfrak{a}=t^{2} \mathbb{k}[t]$, Corollary 4 follows as well.

3. Concluding Remarks

We finish with some remarks on what was not done and what should (and hopefully will) be done in the near future.

- The first tempting goal is to settle the remaining cases of Conjecture 2. By Theorem 1 , the width of $\mathfrak{g} \otimes \mathbb{k}[t]]]$ is at most 2 . To prove that it is equal to 2 , we have to exhibit an element of $c \in \mathfrak{g}$ such that for every representation $c=[a, b]$ the elements a and b have a nonzero common centralizer, as in the proof of Theorem 3(ii). There we took an element c of the minimal nonzero nilpotent orbit $\mathbb{O}_{\text {min }}$ (it is well known that there exists a unique such orbit [CM93, Theorem 4.3.3 and Remark 4.3.4]) and used simultaneous triangularization of a and b. However, this method breaks down for all types other than A_{n} and C_{n} as shown by Losev in [Lo21, Remark 2.3]: in simple algebras of all those types there are elements $c=[a, b] \in \mathbb{O}_{\text {min }}$ such that a and b do not lie in a common Borel subalgebra. This gives a certain evidence that these algebras are of width 1.
- It would be interesting to look at other current algebras. Say, by Theorem 1 it is known that the bracket width of $\mathfrak{s l}_{2} \otimes \mathbb{k}[t]$ is less than or equal to 2 . Although we know that $\mathfrak{s l}_{2} \otimes \mathbb{k}[[t]]$ has bracket width 1 , we still do not know the bracket width of $\mathfrak{s l}_{2} \otimes \mathbb{k}[t]$.
- In a similar vein, it would be interesting to compute the width of the loop algebras $\mathfrak{g} \otimes \mathbb{k}\left[t, t^{-1}\right]$.
- Our final remark concerns the parallel results on the width of the finite-dimensional Lie R-algebras $\mathfrak{g l}_{n}(R)$ obtained for various rings R in a slightly different context. Namely, it is known that the width of such a Lie algebra is at most 2. This was first proved by Amitsur and Rowen [AR94] for division rings R and then generalized to arbitrary commutative rings [Ros97] (and even to non-commutative rings [Me06]). This looks like an almost full analogue of our Theorem 1, modulo the transition from $\mathfrak{g l}_{n}$ to $\mathfrak{s l}_{n}$, which may be a non-trivial task, see [St18] (in the latter paper it is also shown that the width of $\mathfrak{s l}_{n}(R)$ is equal to 1 if R is a principal ideal domain).

However, none of these results implies the other: the bracket width of the infinitedimensional Lie \mathbb{k}-algebra $\mathfrak{s l}_{n} \otimes_{\mathbb{k}} R$ is a priori unrelated to the bracket width of the finitedimensional R-algebra $\mathfrak{s l}_{n}(R)$. In light of the existing parallels, it would be interesting to compute the bracket width of the finite-dimensional simple Lie R-algebras $\mathfrak{g}(R)$.

Acknowledgements. We thank Alexander Elashvili, Alexander Premet, and Oksana Yakimova for helpful discussions. Our special thanks go to Ivan Losev who suggested the idea of applying the slice method to almost commuting varieties.

References

[Ak15] D. Akhiezer, On the commutator map for real semisimple Lie algebras, Moscow Math. J. 15 (2015), 609-613.
[AR94] S. A. Amitsur, L. H. Rowen, Elements of reduced trace 0, Israel J. Math. 87 (1994), 161-179.
[Ar24] I. Arzhantsev, Uniqueness of addition in Lie algebras revisited, arXiv:2401.06241.
[BN11] G. M. Bergman, N. Nahlus, Homomorphisms on infinite direct product algebras, especially Lie algebras, J. Algebra 333 (2011), 67-104.
[Br63] G. Brown, On commutators in a simple Lie algebra, Proc. Amer. Math. Soc. 14 (1963), 763-767.
[CM93] D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold Math. Series, New York, 1993.
[DKR21] A. Dubouloz, B. Kunyavskii, A. Regeta, Bracket width of simple Lie algebras, Doc. Math. 26 (2021), 1601-1627.
[EG02] P. Etingof, V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), 243-348.
[GG06] W. L. Gan, V. Ginzburg, Almost-commuting variety, D-modules, and Cherednik algebras, IMRP Int. Math. Res. Pap. 2006, 26439, 1-54.
[Gu79] R. M. Guralnick, A note on pairs of matrices with rank 1 commutator, Linear and Multilinear Algebra 8 (1979), 97-99.
[Jo86] D. A. Jordan, On the ideals of a Lie algebra of derivations, J. London Math. Soc. 33 (1986), 33-39.
[Kr15] H. Kraft, Fiber bundles, slice theorem and applications, Lecture notes, kraftadmin.wixsite.com/ hpkraft.
[Lo21] I. Losev, Almost commuting varieties for the symplectic Lie algebras, arXiv:2104.11000.
[Lu73] D. Luna, Slices étales, in: "Sur les groupes algébriques", Suppl. au Bull. Soc. Math. France, tome 101, Soc. Math. France, Paris, 1973, pp. 81-105.
[MR23] I. Makedonskyi, A. Regeta, Bracket width of the Lie algebra of vector fields on a smooth affine curve, J. Lie Theory 33 (2023), 919-923.
[Me06] Z. Mesyan, Commutator rings, Bull. Austral. Math. Soc. 74 (2006), 279-288.
[Rom16] V. A. Roman'kov, The commutator width of some relatively free Lie algebras and nilpotent groups, Sibirsk. Mat. Zh. 57 (2016), 866-888; English transl. Sib. Math. J. 57 (2016), 679-695.
[Ros97] M. Rosset, Elements of trace zero and commutators, Ph.D. Thesis, Bar-Ilan Univ., 1997.
[Si96] T. Siebert, Lie algebras of derivations and affine algebraic geometry over fields of characteristic 0, Math. Ann. 305 (1996), 271-286.
[St18] A. Stasinski, Commutators of trace zero matrices over principal ideal rings, Israel J. Math. 228 (2018), 211-227.

Department of Mathematics, Bar-Ilan University,
Ramat Gan, Israel
Email address: kunyav@gmail.com
Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, China
Email address: makedonskyi.e@gmail.com
Institut für Mathematik, Friedrich-Schiller-Universität Jena,
Germany
Email address: andriyregeta@gmail.com

[^0]: 2020 Mathematics Subject Classification. 14L30, 14R20, 17B20, 17B65.
 Key words and phrases. Lie algebra; bracket width; almost commuting variety; slice theorem.
 Research of the first author was supported by the ISF grant 1994/20. The third author is supported by DFG, project number 509752046. Part of this research was accomplished when the authors were visiting the Max-Planck-Institut for Mathematics (Bonn) and the second author was visiting Bar-Ilan University. Support of these institutions is gratefully acknowledged.

