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BRACKET WIDTH OF CURRENT LIE ALGEBRAS

BORIS KUNYAVSKII, IEVGEN MAKEDONSKYI AND ANDRIY REGETA

Abstract. The length of an element z of a Lie algebra L is defined as the smallest number
s needed to represent z as a sum of s brackets. The bracket width of L is defined as
supremum of the lengths of its elements. Given a finite-dimensional simple Lie algebra g
over an algebraically closed field k of characteristic zero, we study the bracket width of
current Lie algebras L = g ⊗ A. We show that for an arbitrary A the width is at most 2.
For A = k[[t]] and A = k[t] we compute the width for algebras of types A and C.

1. Introduction

Given a Lie algebra L over an infinite field k, we define its bracket width as the supremum
of lengths ℓ(z), where z runs over the derived algebra [L,L] and ℓ(z) is defined as the smallest
number n of Lie brackets [xi, yi] needed to represent z in the form z =

∑n
i=1[xi, yi].

There are many examples of Lie algebras of bracket width strictly bigger than one, see,
e.g., [Rom16]. However, the width of any finite-dimensional complex simple Lie algebras is
equal to one [Br63]. For finite-dimensional simple real Lie algebras the problem of existence
of an algebra of width greater than one is still wide open, see [Ak15].

The first examples of simple Lie algebras of bracket width greater than one were found
only recently in [DKR21, Theorem A] among complex infinite-dimensional algebras. Namely,
they appeared among Lie algebras of vector fields Vec(C) on smooth affine curves C with
trivial tangent bundle, which are simple by [Jo86] and [Si96, Proposition 1]. More recently,
it was proved in [MR23] that the bracket width of such Lie algebras is less than or equal
to three, and if in addition C is a plane curve with the unique place at infinity, the bracket
width of Vec(C) equals two.
In the present paper, we study the bracket width of another class of infinite-dimensional

Lie algebras, namely current Lie algebras.
Let k be an algebraically closed field of characteristic zero, g be a finite-dimensional simple

Lie k-algebra, A be a commutative associative k-algebra with the identity. The current
algebra corresponding to g and A is defined as the tensor product g⊗k A with the bracket

[x⊗ a, y ⊗ b] := [x, y]⊗ ab.

With respect to this bracket g⊗k A is a Lie algebra.
Our first result provides an upper estimate for the bracket width of an arbitrary current

algebra.
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Theorem 1. The bracket width of g⊗k A is less than or equal to 2.

The main object of our interest is the Lie algebra g ⊗k A where A = k[[t]] is the algebra
of formal power series. In this case we expect a more precise statement.

Conjecture 2. Let g be a finite-dimensional simple Lie algebra. Then the bracket width of
g⊗k k[[t]] is equal to 2 if g is of type An or Cn (n ≥ 2) and to 1 otherwise.

Our results partially confirm this expectation.

Theorem 3.
(i) The bracket width of sl2 ⊗ k[[t]] is equal to 1.
(ii) If g is of type An or Cn (n ≥ 2), the bracket width of g⊗ k[[t]] is equal to 2.

Some arguments supporting the conjecture for the types other than An or Cn will be given
later, in Section 3.

We deduce from (the proof of) Theorem 3 some results on other current algebras.

Corollary 4. Let g = sln or sp2n (n ≥ 2). Then for A = k[t] the width of g ⊗k A is equal
to 2.

This statement can be generalized to a wider class of rings A as follows.

Corollary 5. Let g = sln or sp2n (n ≥ 2). Let A be a ring containing an ideal a such that
the quotient Ā = A/a is a two-dimensional k-algebra. Then the width of g⊗k A is equal to
2.

2. Proofs

We begin with the following general statement on finite-dimensional simple Lie algebras
[BN11, Theorem 26].

Proposition 6. Let g be a simple finite-dimensional Lie algebra defined over an arbitrary
infinite field of characteristic not 2 or 3. Then there exist w1, w2 ∈ g such that

g = [w1, g] + [w2, g].

This immediately implies Theorem 1.

Proof of Theorem 1. Consider a linear basis of A, A = ⟨1 = a0, a1, a2, . . . ⟩. We have

g⊗ A = g⊗ 1⊕ g⊗ a1 ⊕ g⊗ a2 ⊕ . . .

Any element z of g⊗A can be written in the form z =
∑k

i=0 zi ⊗αiai with zi ∈ g, αi ∈ k.
By Proposition 6, for every zi there exist xi, yi ∈ g such that

zi = [w1, xi] + [w2, yi].

Thus, we have:

z =
k∑

i=0

zi ⊗ αiai =

[
w1,

k∑
i=0

xi ⊗ αiai

]
+

[
w2,

k∑
i=0

yi ⊗ αiai

]
.

This completes the proof. □

Proof of Theorem 3. Our first step consists in reformulating the property of L := g ⊗ k[[t]]
to be of bracket width one as some condition on g.
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Proposition 7.
(i) The bracket width of L is equal to 1 if and only if g satisfies the following condition (∗):

every nonzero element c ∈ g can be represented as a bracket of elements without
common centralizer, i.e. there exist a, b ∈ g such that c = [a, b] and

(1) Cg(a) ∩ Cg(b) = (0).

(ii) Assume that A satisfies the conditions of Corollary 5. Then condition (∗) is necessary
for g⊗ A to be of bracket width 1.

The following simple lemma is needed for the proof of Proposition 7.

Lemma 8. Condition (1) is equivalent to the following one:

(2) im(ad a) + im(ad b) = g.

Proof of Lemma 8. Let (, ) denote the Killing form on g, and let V ⊂ g denote the orthogonal
complement to im(ad a) + im(ad b).

Suppose that condition (1) holds and prove (2). Assume to the contrary that (2) does not
hold, i.e. V ̸= (0). Let d be a nonzero element of V . Then for any e ∈ g we have ([e, a], d) =
([e, b], d) = 0. As the Killing form is invariant, this gives (e, [a, d]) = (e, [b, d]) = 0. Since e is
an arbitrary element of g and the Killing form is non-degenerate, we have [a, d] = [b, d] = 0,
i.e. d centralizes both a and b, contradiction.

Conversely, suppose that condition (2) holds and prove (1). Assume to the contrary that
Cg(a) ∩ Cg(b) ̸= (0). Let d ̸= 0 centralize both a and b. Then the same argument as above
shows that d ∈ V , contradiction. □

Proof of Proposition 7. (i) Suppose that g satisfies condition (∗) and show that the bracket
width of L = g⊗ k[[t]] is equal to 1. Let

z = z0 + z1 ⊗ t+ z2 ⊗ t2 + . . . , zi ∈ g,

be an arbitrary element of L. We want to represent it as z = [x, y] where

x = x0 + x1 ⊗ t+ x2 ⊗ t2 + . . . , y = y0 + y1 ⊗ t+ y2 ⊗ t2 + . . . , xi, yi ∈ g,

which gives the equation
∞∑
k=0

∑
i+j=k

[xi, yj]⊗ tk =
∞∑
k=0

zk ⊗ tk,

which, in turn, yields the system of equations

(3)

[x0, y0] = z0

[x0, y1] + [x1, y0] = z1

. . .

[x0, yk] + [xk, y0] = zk −
k−1∑
i=1

[xi, yk−i]

. . .

Without loss of generality we can assume z0 ̸= 0. Condition (∗) together with Lemma 8
allows one to find x0, y0 and then x1, y1. By induction, we find all other xk and yk.
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Conversely, assuming that the bracket width of L equals 1, looking at the zeroth and first
equations of the above system and applying Lemma 8 once again, we conclude that condition
(∗) holds in g.

(ii) Suppose that A satisfies the conditions of Corollary 5 and that the width of g⊗ A is
equal to 1. We have to show that condition (∗) holds. We argue as in the necessity part of
the proof of (i). Namely, let {1, t̄} be a linear basis of Ā = A/a, and fix a preimage t of t̄.
Let z = z0 ⊗ 1 + z1 ⊗ t be an element of g⊗ A with z0 ̸= 0. Any such z can be represented
in the form z = [x, y] with

x = x0 + x1 ⊗ t+
∑
i≥2

xi ⊗ ai, y = y0 + y1 ⊗ t+
∑
i≥2

yi ⊗ bi

with ai, bi ∈ a. We then arrive at the system consisting of the first two equations in (3). By
Lemma 8, condition (∗) holds in g. □

We now continue the proof of Theorem 3 using the criterion obtained in Proposition 7.

Proof of Theorem 3 (i). This case is easy because any element c of g = sl2 is either nilpotent
or semisimple.

First assume that c is nilpotent. We can use the natural representation of g and write c =

e =

(
0 1
0 0

)
. Take a = h/2 = diag(1/2,−1/2), b = c. We obtain [a, b] = c, Cg(a) = span(a),

Cg(b) = span(b), so that Cg(a) ∩ Cg(b) = (0).

Let now c be semisimple, write c = h =

(
1 0
0 −1

)
. Take a = e =

(
0 1
0 0

)
, b =

(
0 0
1 0

)
.

We obtain [a, b] = c, Cg(a) = span(a), Cg(b) = span(b), so that Cg(a) ∩ Cg(b) = (0), as
above. Condition (∗) is satisfied, hence the bracket width of L is equal to 1, as claimed.

Proof of Theorem 3 (ii). We have to prove that for g = sln (n ≥ 3) and g = sp2n (n ≥ 2)
the bracket width of L is greater than 1. Together with the upper estimate from Theorem
1 this will imply that the width is equal to 2.

We thus have to prove that g does not satisfy condition (∗). This means that we have to
exhibit an element c such that any a, b with [a, b] = c have a nonzero common centralizer.
We shall choose c to be a rank 1 matrix in the natural representation of g. This will allow
us to apply the following general lemma from linear algebra.

Lemma 9. [Gu79] Let A,B be square matrices such that rk(AB −BA) ≤ 1. Then one can
simultaneously conjugate A and B to upper triangular form.

Remark 10. See [EG02, Lemma 12.7] for an alternative proof of Guralnick’s lemma (at-
tributed to Rudakov).

We now go over to a more general set-up, using the notion of almost commuting scheme
of g, see [GG06], [Lo21]. First, let us define it for g = sln.
Let R denote the vector space sl⊕2

n ⊕ Cn ⊕ (Cn)∗. The subscheme Mn ⊂ R is defined as

(4) {(x, y, i, j) ∈ sl⊕2
n ⊕ Cn ⊕ (Cn)∗ | [x, y] + ij = 0}

and is called the almost commuting scheme of sln.
In a similar way, for g = sp2n we consider its natural representation C2n, identify S2(C2n)

with sp2n and thus view i2 ∈ S2(C2n) as an element of sp2n. The almost commuting scheme
4



Xn of sp2n is then defined similarly to (4):

(5) Xn := {(x, y, i)} ∈ sp⊕2
2n ⊕ C2n | [x, y] + i2 = 0}.

Note that both varieties carry a natural action of G = SLn or Sp2n, respectively. Say,
G = SLn acts on Mn by the formula

g(x, y, i, j) = (gxg−1, gyg−1, gi, jg−1).

Note that such an action on Mn is well-defined since (gxg−1, gyg−1, gi, jg−1) ∈Mn whenever
(x, y, i, j) ∈Mn as the following computations show:

[gxg−1, gyg−1] + gijg−1 = g[x, y]g−1 + gijg−1 = g(−ij)g−1 + gijg−1 = 0.

We have the following generalization of Guralnick’s lemma, see [EG02, Lemma 12.7] and
[Lo21, Lemma 2.1].

Lemma 11. Let (x, y, i, j) ∈ Mn (resp. (x, y, i) ∈ Xn). Then there is a Borel subalgebra b
of g that contains both x and y. □

We continue the proof of Theorem 3(ii). In our new notation, we have to prove that
given any (a, b, i, j) ∈ Mn (resp. (a, b, i) ∈ Xn), the elements a and b have nonzero common
centralizer in g.

First suppose that both a and b are nilpotent. Then they are both contained in the
nilradical n of b. Since n is nilpotent, its centre is nontrivial, and any its element is a
common centralizer of a and b.

So assume that at least one of a and b is not nilpotent and consider the orbit O =
G(a, b, i, j) (resp. G(a, b, i)). For the sake of brevity, in both cases we denote it by Oa,b.

In the sequel, we shall use Qg as a common notation for Mn and Xn. Lemma 11 implies
the following description of closed orbits in Qg.

Lemma 12. The orbit Oa,b is closed if and only if a and b are commuting semisimple
elements.

Proof. Case A: By Guralnick’s Lemma, it is sufficient to consider the case of upper triangular
matrices. But then the orbit of a one-parameter group of matrices (the one-parameter torus
corresponding to the coweight 2ρ∨)

{Tt := diag(tn−1, tn−3, . . . , t−n+1) | t ∈ k∗}
is a quasi-affine subvariety

{(TtaT−1
t , TtbT

−1
t , Tti, jT

−1
t ) | t ∈ k∗} ⊂ Qg

which contains (as, bs, 0, 0) in its closure. This proves the statement for g = sln.
Case C: A similar argument works in the case of g = sp2n (see also [Lo21, Corollary 2.2]).

□

By Lemmas 11 and 12, we may assume that the closure of Oa,b contains the closed orbit
Oas,bs where as and bs are commuting diagonal matrices.
Following [Lo21, Section 2.2], denote by l the common centralizer in g of the (commuting)

elements as and bs, it is a Levi subalgebra of g. Denote by L the corresponding Levi subgroup
of G.

We are going to apply Luna’s slice theorem [Lu73]. We will use the exposition of the slice
method from lecture notes by Kraft [Kr15]. So let X = Qg, O = Oas,bs , then the almost
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commuting scheme Ql of l is the required étale slice S (see [Lo21, Lemma 2.4]), so that in
an étale neighbourhood of O we have an excellent morphism

(6) φ : G×L S → X

taking the image [g, s] ∈ G ×L S of the pair (g, s) ∈ G × S to gs; in particular, φ is étale,
and its image is affine and open in X, see [Kr15, Theorem 4.3.2].

Since L is a reductive group of the form
∏k

i=1 GLni
× Sp2n0

where each of the first k factors
necessarily has a nontrivial centre, S = Ql is of the form

(7) C2k ×
k∏

i=1

Mni
×Xn0 ,

where the ni correspond to the partition rkL = n0 + n1 + · · · + nk with n0 ≥ 0, ni > 0
(i = 1, . . . , k), and C2k is identified with z(l)⊕2, see [Lo21, 2.2].

The presence of the nontrivial z(l) is of critical importance: it guarantees the existence of
a pair (z, z′) ∈ z(l)⊕2 with nonzero components each of those centralizes both xs and ys (of
course, the simplest choice is z = xs, z

′ = ys).
Thus for any element of

Ql ⊂ ⊕k
i=1(gl

⊕2
ni

⊕ C2ni ⊕ (C∗)2ni)⊕ sp⊕2
2n0

⊕ C2n0

of the form
(xn1 , yn1 , in1 , jn1 , . . . , xnk

, ynk
, ink

, jnk
, xn0 , yn0 , in0)

the elements x = (xn1 , . . . , xnk
, xn0), y = (yn1 , . . . , ynk

, yn0) ∈ ⊕k
i=1glni

⊕sp2n0
have a nonzero

common centralizer.
Given any finite-dimensional simple Lie algebra g, denote by Fg the set of pairs (x, y) ∈ g⊕2

such that x and y have a nonzero common centralizer, and let Ug := g⊕2 \ Fg denote its
complement.

The following lemma is a variation on a theme of Arzhantsev [Ar24, Section 5].

Lemma 13. The set Ug is open and Zariski dense in g⊕2.

Proof. First fix a pair (a, b) ∈ g⊕ g and define a linear map Ta,b : g → g⊕ g by

Ta,b(x) = ([a, x], [b, x]).

Let now V denote the vector space of linear maps g → g ⊕ g. Define ψ : g ⊕ g → V by
ψ(a, b) = Ta,b, it is a linear map. Let W ⊂ V denote the set of maps of maximal rank, it is
open in V . Consider the preimage ψ−1(W ). Note that

kerTa,b = Cg(a) ∩ Cg(b).

Hence we have ψ−1(W ) = Ug because if a and b have a non-zero common centralizer, then
kerTa,b ̸= 0 and therefore the rank of Ta,b is strictly less than dim g. Thus Ug is open in g⊕g
as the preimage of an open set. It remains to note that Ug is non-empty. Indeed (see [Ar24,
Remark 3]), any simple finite-dimensional Lie algebra g is two-generated and centreless, so
that any pair of generators (a, b) belongs to Ug. The lemma is proven. □

Let F ′
g := Fg ⊕ C2n, embed it into g⊕2 ⊕ C2n and define F ′′

g := F ′
g ∩Qg.

By Lemma 13, Ug is open and Zariski dense in g⊕2. Hence U ′
g := Ug⊕C2n, embedded into

g⊕2 ⊕ C2n, is also open. Therefore F ′
g is closed in g⊕2 ⊕ C2n, and thus F ′′

g is closed in Qg.
We wish to prove that F ′′

g = Cg. This will establish the statement (ii) of the theorem.
6



Assume to the contrary that there exists a quadruple (x, y, i, j) ∈ Mn (resp. a triple
(x, y, i) ∈ Xn) such that (x, y) /∈ Fg. Consider the morphism φ defined in (6). As said, its
image is open. On the other hand, for all elements (x, y, i, j) (resp. (x, y, i)) lying in this
image we have (x, y) ∈ F ′′

g because the corresponding property to have a nonzero common
centralizer holds in S = Ql, as said above. Since the image of φ is open, the closure of F ′′

g is
X = Qg, contradiction. This proves the statement. □

Corollary 5 now follows from Theorem 1, the proof of Theorem 3(ii) and Proposition 7(ii).
Since A = k[t] satisfies the conditions of Corollary 5 with a = t2k[t], Corollary 4 follows as
well.

3. Concluding remarks

We finish with some remarks on what was not done and what should (and hopefully will)
be done in the near future.

• The first tempting goal is to settle the remaining cases of Conjecture 2. By Theorem
1, the width of g⊗ k[[t]] is at most 2. To prove that it is equal to 2, we have to exhibit an
element of c ∈ g such that for every representation c = [a, b] the elements a and b have a
nonzero common centralizer, as in the proof of Theorem 3(ii). There we took an element c
of the minimal nonzero nilpotent orbit Omin (it is well known that there exists a unique such
orbit [CM93, Theorem 4.3.3 and Remark 4.3.4]) and used simultaneous triangularization of
a and b. However, this method breaks down for all types other than An and Cn as shown
by Losev in [Lo21, Remark 2.3]: in simple algebras of all those types there are elements
c = [a, b] ∈ Omin such that a and b do not lie in a common Borel subalgebra. This gives a
certain evidence that these algebras are of width 1.

• It would be interesting to look at other current algebras. Say, by Theorem 1 it is known
that the bracket width of sl2 ⊗ k[t] is less than or equal to 2. Although we know that
sl2 ⊗ k[[t]] has bracket width 1, we still do not know the bracket width of sl2 ⊗ k[t].

• In a similar vein, it would be interesting to compute the width of the loop algebras
g⊗ k[t, t−1].

• Our final remark concerns the parallel results on the width of the finite-dimensional Lie
R-algebras gln(R) obtained for various rings R in a slightly different context. Namely, it is
known that the width of such a Lie algebra is at most 2. This was first proved by Amitsur
and Rowen [AR94] for division rings R and then generalized to arbitrary commutative rings
[Ros97] (and even to non-commutative rings [Me06]). This looks like an almost full analogue
of our Theorem 1, modulo the transition from gln to sln, which may be a non-trivial task,
see [St18] (in the latter paper it is also shown that the width of sln(R) is equal to 1 if R is
a principal ideal domain).

However, none of these results implies the other: the bracket width of the infinite-
dimensional Lie k-algebra sln ⊗k R is a priori unrelated to the bracket width of the finite-
dimensional R-algebra sln(R). In light of the existing parallels, it would be interesting to
compute the bracket width of the finite-dimensional simple Lie R-algebras g(R).

Acknowledgements. We thank Alexander Elashvili, Alexander Premet, and Ok-
sana Yakimova for helpful discussions. Our special thanks go to Ivan Losev who sug-
gested the idea of applying the slice method to almost commuting varieties.
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tome 101, Soc. Math. France, Paris, 1973, pp. 81–105.
[MR23] I. Makedonskyi, A. Regeta, Bracket width of the Lie algebra of vector fields on a smooth affine

curve, J. Lie Theory 33 (2023), 919–923.
[Me06] Z. Mesyan, Commutator rings, Bull. Austral. Math. Soc. 74 (2006), 279–288.
[Rom16] V. A. Roman′kov, The commutator width of some relatively free Lie algebras and nilpotent groups,

Sibirsk. Mat. Zh. 57 (2016), 866–888; English transl. Sib. Math. J. 57 (2016), 679–695.
[Ros97] M. Rosset, Elements of trace zero and commutators, Ph.D. Thesis, Bar-Ilan Univ., 1997.
[Si96] T. Siebert, Lie algebras of derivations and affine algebraic geometry over fields of characteristic 0,

Math. Ann. 305 (1996), 271–286.
[St18] A. Stasinski, Commutators of trace zero matrices over principal ideal rings, Israel J. Math. 228

(2018), 211–227.

Department of Mathematics, Bar-Ilan University,
Ramat Gan, Israel
Email address: kunyav@gmail.com

Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA),
Beijing, China
Email address: makedonskyi.e@gmail.com

Institut für Mathematik, Friedrich-Schiller-Universität Jena,
Germany
Email address: andriyregeta@gmail.com

8

arXiv:2401.06241
kraftadmin.wixsite.com/hpkraft
kraftadmin.wixsite.com/hpkraft
arXiv:2104.11000

	9_Kunyavskii_cover

