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Abstract

We construct new examples of free curve arrangements in the complex projec-
tive plane using point-line operators recently defined by the second author. In
particular, we construct a new example of a conic-line arrangement with ordinary
quasi-homogeneous singularities that has non-trivial monodromy.
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1 Introduction

The main aim of this paper is to present a new idea of constructing curve arrange-
ments in the complex projective plane with particularly nice properties via the point-line
operators recently introduced by the second author in [10]. Our motivation comes from
several open questions in the theory of plane curves, namely problems devoted to the
construction of free plane curves, mostly in the context of the classical and Numerical
Terao’s freeness conjecture, and from a perspective of algebraic combinatorics where the
researchers try to construct arrangements of plane curves with many symmetries. We
decided to focus on both questions and to approach these problems using recent methods
and techniques studied and developed by the authors of the present paper. Our starting
point is the following construction of operators that are denoted by Λn,m.

Let us consider a line arrangement L = {`1, ..., `n} ⊂ P2
C and we fix D as the dual

operator between P2
C and P̌2

C, which to a given line arrangement L associates an arrange-
ment of points, or more concretely the normals of the lines in L. More precisely, for a
line ` : ax+ by + cz = 0 in L we have D(`) = (a : b : c) ∈ P̌2

C.
Fix a subset n ⊂ Z>2, we define the operator Dn(L) that sends the line arrangement

L to the line arrangement in the dual plane which is the union of the lines containing
exactly n points of D(L) for n ∈ n. We define our point-line operator as

Λn,m = Dn ◦Dm.

For instance, if we apply Λ{2},{k} to a line arrangement L, then the result is the union of
lines that contain exactly k double points of L. It is worth pointing out that the result
of applying Λn,m to C for some choice of n,m might be empty.
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Example 1.1. Let us consider an arrangement L ⊂ P2
C consisting of 5 generic lines in

the plane, i.e., this arrangement has only 10 double points as the intersections. If we now
apply Λ{2},{3} to L, then

Λ{2},{3}(L) = ∅,

and this follows from the genericity assumption, so except lines in the arrangement that
contain 4 points from D(L), other lines are ordinary, i.e., such an ordinary line contains
exactly 2 points from D(L).

For two integers m,n > 2, instead of Λ{n>0},{m>0}, we will use the notation Λn,m,
i.e., this is the operator that returns the line arrangement which is the union of the lines
containing at least m points of multiplicity at least n in a given line arrangement L.

For a line arrangement L and k ∈ Z>2 let us denote by nk = nk(L) the number of
k-fold intersection points, i.e., points where exactly k lines from the arrangement L meet,
and for a point configuration D(L) and r ∈ Z>2 we denote by lr the number of r-rich
lines, i.e., lines in the dual plane P̌2

C that contain exactly r points from D(L).
In particular, 2-rich lines are just ordinary lines. We should note that we will skip L

when talking about lr and nk if it does not cause confusion.
We want to say a few words about the freeness of curves. Let S := C[x, y, z] the

graded polynomial ring and for a homogeneous polynomial f ∈ S we define its Jacobian
ideal as

Jf = 〈∂x f, ∂y f, ∂z f〉.

Definition 1.2. Let C : f = 0 be a reduced curve in P2
C of degree d given by f ∈ S.

Denote by M(f) := S/Jf the associated Milnor algebra. We say that curve C is m-syzygy
if M(f) has the following minimal graded free resolution:

0→
m−2⊕
i=1

S(−ei)→
m⊕
i=1

S(1− d− di)→ S3(1− d)→ S →M(f)→ 0

with e1 6 e2 6 ... 6 em−2 and 1 6 d1 6 ... 6 dm. The m-tuple (d1, ..., dm) is called the
set of exponents of C.

Definition 1.3. We say that a reduced plane curve C is free if and only if C is 2-syzygy
and then we have d1 + d2 = d− 1.

Next, we need to recall the notion of the Alexander polynomial. Let C : f = 0 be a
reduced plane curve of degree d. Consider the complement U := P2

C \C and let F : f = 1
be the corresponding Milnor fibre in C3 with the usual monodromy action h : F → F .
We consider the characteristic polynomials of the monodromy, namely

4j
C(t) = det(t · Id− hj |Hj(F,C)}

for j ∈ {1, 2, 3}. When the curve C is reduced, then 40
C(t) = t − 1 and we have the

following identity
40
C(t)41

C(t)42
C(t) = (td − 1)χ(U). (1)

Here χ(U) is the Euler characteristic of the complement that can be computed as follows

χ(U) = (d− 1)(d− 2) + 1− µ(C),
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where µ(C) is the total Milnor number of C. The polynomial

4(t) := 41
C(t)

is called the Alexander polynomial of C.
Having our preparation done, we can sketch the main results of our paper, which are

devoted to the constructions of new free arrangements of rational curves. It is worth
recalling here that it is a notoriously difficult question to construct free arrangements,
and especially when the number of irreducible components is expected to be large. We
overcome this difficulty and show how to construct free arrangements consisting of many
curves as irreducible components. Our first construction is based on the classical Hesse
arrangement H consisting of 12 lines with n2(H) = 12 and n4(H) = 9. Applying the
operator Λ2,2, i.e., this operator returns the line arrangement, which is the union of the
lines containing at least two points of multiplicity at least two in a given arrangement L,
to the Hesse arrangement of lines we obtain the following.

Theorem A. There exists a rigid arrangement H57 in the complex projective plane con-
sisting of 57 lines such that

n2 = 252, n3 = 108, n4 = 72, n8 = 21.

The arrangement H57 is free with exponents (d1, d2) = (25, 31).
Moreover, the Alexander polynomial of H57 has the form

4(t) = (t− 1)56.

Here we say that a line arrangement is rigid if the moduli space of line arrangements
with the same incidences between the lines is zero-dimensional.

Next, we can apply our point-line operators to certain symmetric arrangements of
lines with only double points. Let C8 be the arrangements consisting of lines determined
by the sides of a regular octagon. Obviously our arrangement C8 consists of 8 lines and
28 double intersections. If we apply operator Λ{2},3 to arrangement C8, i.e., if we take the
union of the lines that are at least 3-rich of double points, we obtain the following line
arrangement O33.

Theorem B. There exists a rigid arrangement O33 in the real projective plane consisting
of 33 lines such that

n2 = 108, n3 = 40, n5 = 16, n8 = 5.

The arrangement O33 is free with exponents (d1, d2) = (15, 17).

Moreover, we explain how to use the geometry of regular n-gons to construct further
examples of free arrangements consisting of 49 and 61 lines. It is worth emphasizing that
in our constructions using regular n-gons we obtain rigid arrangements, which means that
the moduli spaces are zero dimensional.

In the next step we construct a conic-line arrangement in the real projective plane
by using the geometry of the indeterminacy locus of a certain point-line operator. As a
result we obtain the following.
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Theorem C. There exists an arrangement CL of 6 lines and 6 conics in the real projective
plane such that

n2 = 12, n6 = 9.

The arrangement CL is free with exponents (d1, d2) = (4, 13). Moreover, the Alexander
polynomial of CL is non-trivial, i.e.,

4(t) = (t3 + 1)4(t2 + t+ 1)2(t− 1)11.

We should also note here that we will discuss some additional interesting geometric
properties determined by our newly constructed line arrangements, namely we will explain
why point configurations dual to lines in arrangements H57 and O33 admit unexpected
curves, and we will study the Strong Lefschetz Property for algebras determined by these
arrangements.

2 Constructions of curve arrangements

Before we present proofs of our results, let us outline main techniques that we are
going to use here. Our constructions use symbolic computations that are performed in
SINGULAR, MAGMA and OSCAR. We provide calculation scripts in both programs in Ancil-
lary File to our paper that is available on arXiv. In order to check the freeness property,
we compute the minimal free resolutions of the associated Milnor algebras, and this can
be performed in any symbolic computations software. Now we would like to outline the
way to compute the Alexander polynomials, which is an involving procedure. Since our
arrangements are free, we can use SINGULAR script provided in [8]. Let us present a short
description of this procedure. Let

αq = exp(−2πιq/d)

be a root of unity of order d = deg(C) with 0 6 q 6 d, and let us denote by m(αq) the
multiplicity of αq as a root of the Alexander polynomial 41

C(t). One has α0 = αd = 1
and

m(1) = b1(U) = r − 1,

where r is equal to the number of irreducible components of C. Now, using script
monof3(q1, q2) provided in [8], we take q1 = 3, q2 = d, and as an output we get a ta-
ble, where in the first column we have values of q from 3 to d, and the third column
contains the data n2(q). Set n2(0) = n2(1) = n2(2) = 0, then we have the following
identity

m(αq) = n2(q) + n2(d− q) for any q ∈ {0, ..., d}. (2)

Using the above description, we can find our Alexander polynomial of C, and for more
details regarding such computations, we refer to [7].

In order to study moduli spaces, and their rigidity, we need to recall basic results on
matroids.

Definition 2.1. A matroid M consists of a finite set E and a non-empty collection
B ⊂ 2E that satisfies the Steinitz exchange axiom, namely for each pair A,B of distinct
elements B and x ∈ A \B there is an element y ∈ B \A such that (A \ {x}) ∪ {y} ∈ B.
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The elements in B are called bases and they have the same number r of elements.
Subsets of order r of E are called non-bases. Consider a vector configuration v1, . . . , vn
such that no two vectors are proportional, and consider the vectors as the columns of a
r×n matrix X – we suppose X has full-rank. The matroid for this configuration, denote
here by M [X], is the matroid whose ground set is {1, ..., n} and its bases are the sets of
r columns that are of full-rank. We may view the columns as points in the projective
space Pr−1, so X can be viewed as a geometric projective realization of M .

Definition 2.2. Let F be a field. A matroid M is F-realizable if there exists a matrix
X with entries in the field F such that M ∼= M [X]. If M is F-realizable for some field F,
then M is said to be realizable.

Determining whether a matroid can be realized geometrically over a given field F is a
very difficult problem. In this context, we can defined the following crucial object.

Definition 2.3. Given a field F and a matroid M , its realization space R(M ;F) is
a (possibly empty) algebraic variety (or scheme) defined over F, whose closed points
parametrize equivalence classes of point configurations in Pr−1F whose matroid is M , where
we say that two configurations are equivalent if one can be transformed to the other by an
element of PGLr(F). In particular, matroid M is F-realizable if and only if R(M,F) 6= ∅.

Now we explain how to construct the moduli spaces of line arrangements step by step.
For this purpose, let M = ({1, ..., n},B) be a simple matroid of rank 3. A realization of
M over a given field F is a matrix X ∈ F3×n such that for all subsets P ⊂ {1, ..., n} of
size 3 we have

(?) : detXP 6= 0 ⇐⇒ P ∈ B,

where XP is the 3 × 3 submatrix consisting of the columns indexed by P . The kernels
of the linear forms given by the columns of P define an arrangement L of n lines in P2

F
whose intersection lattice is isomorphic to the lattice of flats of M . Observe that the
condition (?) defines and ideal I ′ in the ring R = R[d], where

R = Z[xij : i ∈ {1, 2, 3}, j ∈ {1, ..., n}],

given by

I ′ = 〈det(XN) : N ⊂ E is not a basis, |N | = 3〉+

〈
1− d

∏
B∈B

detXB

〉
< R[d],

where X = (xij) ∈ F3×n is an 3× n matrix having the variables xij as the entries. Using
the scheme-theoretic language, the realization space is an affine scheme that is described
by

R(M ;F) := V (I ′) ⊂ A3n+1
F = SpecR[d]→ SpecZ.

This description explains, heuristically, how to find the realization space, but this proce-
dure, in practice, is rather involving. In order to find a realization space of a given line
arrangement, we will follow the lines in [2] and all the calculations can be done using
OSCAR. Using this approach, we are able to check that realization spaces of our line ar-
rangements are zero-dimensional, and all necessary details regarding implementation of
that procedure in our cases is described in the aforementioned Ancillary File.

After such a condense introduction, we present proofs of our results.
Let us start with Theorem A.
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Proof. Our starting point is the Hesse arrangement H consisting of 12 lines which has
n2 = 12 and n4 = 9 as the intersection points. Recall the defining equation of our
arrangement H:

Q(x, y, z) = xyz(x+ y+ z)(x+ y+ ez)(x+ y+ e2z)(x+ ey+ z)(x+ e2y+ z)(ex+ y+ z)

(e2x+ y + z)(ex+ e2y + z)(ex+ y + e2z)

where e2 + e+ 1 = 0. Now we apply the point-line operator Λ2,2 to H, i.e., this operator
returns the line arrangement which is the union of the lines containing at least two points
of multiplicity at least two in H, so this is the less demanding variant among point-line
operators. As a result of the action of this operator, we obtain a line arrangement H57

of 57 lines with the intersection points

n2 = 252, n3 = 108, n4 = 72, n8 = 21.

For the completeness of the paper, let us present the resulting line arrangement by pro-
viding the equations of lines:

`1 : x+ (−e− 1)y + ez = 0, `2 : y + z = 0,
`3 : x− 2ey + ez = 0, `4 : x+ ey − 2ez = 0,
`5 : x+ ey + (2e+ 2)z = 0, `6 : x+ (−e− 1)z = 0,
`7 : x+ ey − 2z = 0, `8 : x− 1

2
ey − 1

2
ez = 0,

`9 : x+ y − 2z = 0, `10 : x− 1
2
y − 1

2
z = 0,

`11 : y + ez = 0, `12 : x+ (e+ 1)y = 0,
`13 : x+ 1

2
(e+ 1)y − 1

2
ez = 0, `14 : x+ (2e+ 2)y + ez = 0,

`15 : x+ (2e+ 2)y + (−e− 1)z = 0, `16 : x+ ey = 0,
`17 : x− 1

2
y + 1

2
(e+ 1)z = 0, `18 : z = 0,

`19 : x+ y + z = 0, `20 : x+ y + ez = 0,
`21 : x− ez = 0, `22 : x+ ey + ez = 0,
`23 : x− y = 0, `24 : x+ ey + z = 0,
`25 : x+ (−e− 1)y − 2ez = 0, `26 : x+ ey + (−e− 1)z = 0,
`27 : x+ (−e− 1)y + z = 0, `28 : x− 2y + ez = 0,
`29 : x+ (−e− 1)y + (−e− 1)z = 0, `30 : x+ y + (−e− 1)z = 0,
`31 : x− ey = 0, `32 : y = 0,
`33 : y + (e+ 1)z = 0, `34 : x+ (e+ 1)z = 0,
`35 : x+ y + (2e+ 2)z = 0, `36 : x+ 1

2
(e+ 1)y − 1

2
z = 0,

`37 : x− 1
2
ey + 1

2
(e+ 1)z = 0, `38 : y − ez = 0,

`39 : x− 2y + z = 0, `40 : x = 0,
`41 : y − z = 0, `42 : x− z = 0,
`43 : x+ y = 0, `44 : x− 2ey + z = 0,
`45 : x− 2y + (−e− 1)z = 0, `46 : x− 2ey + (−e− 1)z = 0,
`47 : y + (−e− 1)z = 0, `48 : x+ ez = 0,
`49 : x+ (2e+ 2)y + z = 0, `50 : x+ (−e− 1)y − 2z = 0,
`51 : x+ (−e− 1)y = 0, `52 : x+ y − 2ez = 0,
`53 : x+ z = 0, `54 : x− 1

2
y − 1

2
ez = 0,

`55 : x+ (−e− 1)y + (2e+ 2)z = 0, `56 : x+ 1
2
(e+ 1)y + 1

2
(e+ 1)z = 0,

`57 : x− 1
2
ey − 1

2
z = 0.

Using the strategy presented above and symbolic computations in OSCAR, we can check
that the realization space of H57 is zero-dimensional, so our arrangement is rigid.
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We verify the freeness of the arrangement. Using SINGULAR, we can compute the
minimal free resolution of the associated Milnor algebra, which is of the following form:

0→ S(−87)⊕ S(−81)→ S3(−56)→ S,

and hence H57 is free with the exponents (25, 31).
Using script mono3f described in [8], we can compute the Alexander polynomial of

CL, namely
4(t) = (t− 1)56,

which means that the monodromy is trivial.

Remark 2.4. It is worth recalling here that the Alexander polynomial of the Hesse
arrangement H of 12 lines has the form

4(t) = (t− 1)9(t4 − 1)2,

see [3, Theorem 1.7]. This means that point-line operators do not automatically produce
new line arrangements with non-trivial monodromy once we obviously start with arrange-
ments with non-trivial monodromy. We should emphasize that line arrangements with
non-trivial monodromy are very rare, and we have no global methods or simple criteria
that can detect potential candidates for such line arrangements.

Now we focus on arrangements that can be defined over the real numbers. Arrange-
ments of lines defined over the reals attract the attention of many researchers working
on combinatorial problems involving matroids and configurations. Here we focus only on
the freeness property and present a construction based on a regular octagon. However,
this idea can be further extended to regular decagons and dodecagons, see Remark 2.5
below.

We present here our proof of Theorem B.

Proof. This construction uses the geometric properties of regular n-gons. We start with
the following regular octagon C8 which is given by the following defining equation:

Q(x, y, z) =

(
x+ (r− 1)y− z

)(
x+ (r+ 1)y+ (−r− 1)z

)(
x+ (−r− 1)y+ (r+ 1)z

)
(
x+ (−r + 1)y + z

)(
x+ (r − 1)y + z

)(
x+ (r + 1)y + (r + 1)z

)
(
x+ (−r − 1)y + (−r − 1)z

)(
x+ (−r + 1)y − z

)
.

where r2− 2 = 0. When we say that our arrangement is a regular octagon, we mean that
the lines are extensions of the sides of a regular octagon; all intersections are just double
points and we have exactly 28 such intersections. We apply Λ{2},3 to arrangement C8,
i.e., we take the union of the lines that are at least 3-rich. As a result of this operation,
we get the arrangement O33 consisting of 33 lines and

n2 = 108, n3 = 40, n5 = 16, n8 = 5,

which can be verified by SINGULAR.
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We present below all the equations of 33 lines building the arrangement O33.

`1 : x + (−r + 1)y − z = 0, `2 : x + (r + 1)y + (−2r − 3)z = 0,
`3 : x + y = 0, `4 : x + (−r − 1)y = 0,
`5 : x + (−r + 1)y = 0, `6 : x + (r − 1)y + (r + 1)z = 0,
`7 : y = 0, `8 : x + (−r + 1)y + (−r − 1)z = 0,
`9 : x + (r − 1)y + (r − 1)z = 0, `10 : x + (r + 1)y − z = 0,
`11 : x + (r + 1)y + z = 0, `12 : x + (r + 1)y + (−r − 1)z = 0,
`13 : x + (r − 1)y − z = 0, `14 : x + (−r − 1)y + (−r − 1)z = 0,
`15 : x + (r + 1)y + (2r + 3)z = 0, `16 : x + (r − 1)y + (−r − 1)z = 0,
`17 : x + (−r − 1)y + (−2r − 3)z = 0, `18 : x + (−r − 1)y + z = 0,
`19 : x + (−r + 1)y + (r − 1)z = 0, `20 : x + (−r − 1)y + (r + 1)z = 0,
`21 : x + (r − 1)y + z = 0, `22 : x + (−r + 1)y + z = 0,
`23 : x = 0, `24 : x + (r + 1)y + (r + 1)z = 0,
`25 : x + (r − 1)y = 0, `26 : x + (r + 1)y = 0,
`27 : x + (−r + 1)y + (−r + 1)z = 0, `28 : x + (−r − 1)y − z = 0,
`29 : x− y = 0, `30 : x + (r − 1)y + (−r + 1)z = 0,
`31 : z = 0, `32 : x + (−r + 1)y + (r + 1)z = 0,
`33 : x + (−r − 1)y + (2r + 3)z = 0.

Having equations in hand, we can verify using OSCAR that our arrangement is rigid, i.e.,
the realization space is zero-dimensional, and in the next step we can check the freeness
property. Using SINGULAR, we can compute the minimal free resolution of the associated
Milnor algebra, which is of the following form:

0→ S(−49)⊕ S(−47)→ S3(−32)→ S,

and hence O33 is free with the exponents (15, 17).

Remark 2.5. We can construct more free line arrangements using point-line operators
as follows. For n > 9, consider a regular n-gon arrangement Cn which is the union of the
lines determined by sides of a regular n-gon. Define k = n/2 if n is even and k = (n−1)/2
if n is odd. As it was explained in [9], the line arrangement C = Λ{2}, k−1(Cn) is the union
of lines Cn, its n lines of symmetries and the line at infinity. It is well-known that C is
a free simplicial line arrangement. In the light of our discussion here, we get the line
arrangement O33 as O33 = Λ{2}, k−1(C8), where k = 8/2 = 4. Using the same arguments
as in Theorem B, we can show that the following line arrangements are also free:

O61 = Λ{2}, 3(C10), O49 = Λ{2}, 4(C12),

where the lower index m in Om is the number of lines in our arrangement.
Now we list singularities of these arrangements: for O61 we have

n2 = 335, n3 = 140, n5 = 70, n10 = 1, n15 = 5,

and for O49 we have

n2 = 204, n3 = 96, n4 = 6, n5 = 24, , n6 = 6, n7 = 12, n12 = 1.

Moreover, similarly as in the case of O33, the line arrangements O49 and O61 are rigid.
These arrangements can be defined over Q(

√
3), Q(

√
5), respectively. While regular a

12-gon can be defined over Q(
√

3), a regular 10-gon is defined over a quadratic extension
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of Q(
√

5). However, and somehow surprisingly, it is possible to find a projective trans-
formation that sends it to a line arrangement defined over Q(

√
5), and due to this reason

O61 can also be defined over Q(
√

5).
We tried to obtain other free line arrangements as images via point-line operators

applied to regular n-gons Cn with n 6 22, but we could not find further examples.

Now we can pass to Theorem C.

Proof. In [9], Kühne and the second author construct moduli spaces R of line arrange-
ments L that are stable under some line operator Λ, i.e., if L is such a line arrangement,
then Λ(L) is a line arrangement with the same combinatorics as L, therefore there is an
action of Λ on R. Among these moduli spaces, one is such that R is (birational to) P2,
and then the action of Λ on P2 is by a rational self-map Λ : P2 99K P2 given by

Λ(x : y : z) =

(
− x6 − 4x5y − 6x4y2 − x4yz − 4x3y3 − 2x3y2z − 2x3yz2 − x2y4 − x2y3z − 3x2y2z2

−x2yz3 + x2z4 − xy3z2 − xy2z3 : x6 + 4x5y − 2x5z + 6x4y2 − 4x4yz + 4x3y3 − 2x3y2z
−4x3yz2 + 2x3z3 + x2y4 − 6x2y2z2 + 4x2yz3 − x2z4 − 4xy3z2 + 2xy2z3 − y4z2 :

x6 + 2x5y + x4y2 + x4yz + 2x3y2z − 2x3yz2 + x2y3z − 3x2y2z2

+x2yz3 − x2z4 − xy3z2 + xy2z3 − 2xyz4 − y2z4
)
.

(3)

The indeterminacy points of Λ are the following 9 points

B = {(0 : 0 : 1), (−1 : 0 : 1), (−1 : 2 : 1), (1 : 0 : 1), (1 : −2 : 1), (0 : 1 : 0),

(−1 : 1 : 0), (e2 : 1 : 1), (e : 1 : 1)},

where e2 + e+ 1 = 0.
There exists a unique pencil of cubics through these 9 points, with 6 degenerate fibers,

each of which is the union of a conic and a line. The arrangement CL ⊂ P2
C that we are

considering is the union of these lines and conics, and it is given by the following defining
polynomial:

Q(x, y, z) = (x2 + 2xy + y2 − xz)(x2 + xy + 2yz − z2)(x2 + xz + yz)(x2 + xy + z2)·
(x2 + 2xy− xz + yz)(x2 − y2 + xz + 2yz)(x+ z)(2x+ y)(x+ y− z)y(x+ y + z)(x− z).

The aforementioned pencil is generated by cubics and each cubic is the union of the kth

line and the kth conic with k ∈ {1, . . . , 6}.
By the construction, the arrangement CL has the following intersection points

n2 = 12, t6 = 9.

Our arrangement is of a pencil-type and all singularities of the arrangement are quasi-
homogeneous, which follows from [5]. Having the defining polynomial of CL, we can
compute the minimal free resolution of the associated Milnor algebra, namely

0→ S(−30)⊕ S(−21)→ S(−17)3 → S,

and hence CL is free with exponents (d1, d2) = (4, 13).
Using script mono3f described in [8], we can compute the Alexander polynomial of

CL. The output of the script is as follows (here we present only the information necessary
for further calculations).
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===============================

q n_2(q)

-------------------------------

3 0

4 0

5 0

6 1

7 0

8 0

9 2

10 0

11 0

12 3

13 0

14 0

15 4

16 0

17 0

18 11

Based on the above table and using formula (2), we can compute the Alexander polyno-
mial, which has the form

4(t) = (t3 + 1)4(t2 + t+ 1)2(t− 1)11,

and this shows that 4(t) admits roots of unity of order 6.

Remark 2.6. The first example of a conic-line arrangement such that its Alexander
polynomial admits 6th roots of unity was presented in [6], and that example is constructed
by using an Halphen pencil of index 2. Our example fits into that picture, since CL is a
pencil-type conic-line arrangement, but it has completely different geometric origins since
in our case we have a pencil of cubics and the used Halphen pencil of index 2 is generated
by sextics. It is worth noticing that all known examples of conic-line arrangements with
Alexander polynomials having roots of unity of order 6, 7, 8 are constructed using suitable
pencils of plane curves.

3 Unexpected curves and the Strong Lefschetz Property

Now we would like to study some properties of point configurations determined by
the duals of lines in arrangements H57 and O33. We start with the notion of unexpected
curves that was introduced in [1].

Definition 3.1. Let Z = {p1, ..., pd} ⊂ P2
C be a finite set of mutually distinct points. We

say that the set Z admits an unexpected curve C of degree j > 2 if

h0(P2
C,OP2

C
(j)⊗ I(Z + (j − 1)q)) > max

(
0, h0(P2

C(j)⊗ I(Z))−
(
j

2

))
,

where q is a generic point and I(Z + (j − 1)q) is the ideal sheaf of functions vanishing
along Z and vanishing of order j − 1 at q.
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Let us denote by AZ : fZ = 0 the line arrangement determined by the duals to points
Z and we define by m(AZ) the maximal multiplicity of an intersection point in AZ . In
order to check whether our set of points Z admits an unexpected curve, we can use the
following result due to Dimca [4].

Theorem 3.2. The set of points Z admits an unexpected curve if and only if

m(AZ) 6 d1 + 1 <
d

2
,

where d1 denotes the first exponent in the minimal resolution of the Milnor algebra as-
sociated with AZ. If these conditions are fulfilled, then Z admits an unexpected curve of
degree j if and only if

d1 < j 6 d− d1 − 2.

Using the above result, we deduce the following corollary.

Corollary 3.3. a) Let Z57 be the set of points determined by the duals to lines in H57.
Then Z57 admits unexpected curves of degrees j ∈ {26, 27, 28, 29, 30}.

b) Let Z33 be the set of points determined by the duals to lines in O33. Then Z33 admits
an unexpected curve of degree j = 16.

Proof. Recall that the arrangement H57 is free with exponents (d1, d2) = (25, 31) and
m(H57) = 8. Using our criterion, the set of points Z57 admits an unexpected curve since

8 = m(H57) 6 26 <
d

2
=

57

2
.

Moreover, we can find admissible degrees of unexpected curves determined by Z57, namely
j ∈ {26, 27, 28, 29, 30}.

Recall also that the arrangement O33 is free with exponents (d1, d2) = (15, 17) and
m(O33) = 8. Using our criterion, the set of points Z33 admits an unexpected curve since

8 = m(O33) 6 16 <
d

2
=

33

2
.

Moreover, the only admissible degree of an unexpected curve determined by Z33 is j =
16.

Now we pass to the Strong Lefschetz property.

Definition 3.4. An artinian algebra A = S/I satisfies the strong Lefschetz property
(SLP) at range k in degree d if, for a general linear form L, the homomorphism

×Lk : [A]d → [A]d+k

has maximal rank. Otherwise, we say that A fails the SLP at range k in degree d.

In that context, we have the following result [1, Theorem 7.5].

Theorem 3.5. Let AZ : fZ = 0 be a line arrangement in P2
C, where fZ = `1 · · · `d, and

let Z be the set of points in P2
C dual to these lines. Then Z admits an unexpected curve

of degree j + 1 if and only if S/(`j+1
1 , . . . `j+1

d ) fails the SLP in range 2 and degree j − 1.

From that perspective, we have the following corollary.

Corollary 3.6. a) The algebra A = S/(`j+1
1 , . . . , `j+1

57 ) associated with the arrange-
ment H57 fails the SLP in range 2 and degree j − 1 with j ∈ {25, 26, 27, 28, 29}.

b) The algebra A = S/(`161 , . . . , `
16
33) associated with the arrangement O33 fails the SLP

in range 2 and degree 14.
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Xavier Roulleau, Université d’Angers, CNRS, LAREMA, SFR MATHSTIC, F-49000
Angers, France.
E-mail address: xavier.roulleau@univ-angers.fr

https://math.univ-cotedazur.fr/~dimca/monoFREE3.pdf

	8_Pokora_cover

