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o Introduction

One of the lnain goals of the intersection theory on a Sll100th algebraic variety
is to give a solution to the following two probleins. The first problein is to find a
possibly slnall faillily of subvarieties whose rational equivalence c1asses are ad­
ditive generators of the Chow group of the variety. Then, the second question is
to write down the 111ultiplieation table for the intersection product with respeet
to this set of generators. Usually, the first problein is easier than the seeond.

In the present papel' we in-vestigate the intersection rings of isotropie Grass­
lnannians. More preeisely, let V be a 2n~-elilnensional (resp. (2rn + 1)- ditnen­
sional) c0111plex vector space equipped with a nondegenerate synlplectic 01'

orthogonal fOfln </l t. If n ::; rn, then the set G of aU n-dilnensional sub­
spaces of V that are isotropie with respect to </l, is an interesting and worth
studying Sll100th algebraic variety. It is weIl known that (11 = Sp(2rn)/ Pu and
Gf! = SO(2rn +1)/ Pu where Pu is the lnaxilnal parabolic subgroup correspond­
ing to olnitting the n-th silllple root in the root syste111 of type Cm (resp. Bm )

(equal to eH - eu+1 if n < rn, or 2em (resp. em ) if n = ru).
The solution to the first questioll above is apart of a general theory of

cellular cleCOll1positions of the spaces of the farIn H / P whel'e H is a reductive
group anel P is a parabolic subgroup of H (this goes back to Schubert, Bruhat,
EhreSll1ann ... ). The resulting additive basis of the intersection ring is fOflned
by the generalized Schubert cycles.

MultiplicativeIy, this ring is generated by n Schubert cyc1es (callecl "spe­
cial") which (up to a scalar) are ehern classes of the ta,utological isotropie
bundle. Thus to describe 111ultiplication in the intersection ring it suffices to
express the intersection of an arbitrary Schubert cycle with a special Schubert
cyc1e as a cOll1bination of other Schubert eycles. These "Pieri-type-fofll1ulas"
(see Theorell1 2.2 and Theorenl 10.1) are the lnain subject of the presenL article.

The classical Schubert calculus for "usuaJ" Grassl1HLnnians was invented in
the end of the 19th century and the begining of the present one in the works
of Schubert, Pieri and Giatnbelli. To the best of our knowledge, the analogons
theory for the Lagraugiau and Orthogonal Grasslnannia,ns (apart frOlll SOlne
very particular cases of intersection fonnulas for the sets of linear spaces on
a quadric) was not treated by classics of enulnerative geotnetry. The techni­
cal difficulties (concerniug especially the llluitiplicities) which are transparent
in the present paper Gau serve for an explanation for a lack of a "synlplectic
and orthogonal" Sehubert calculus in the c1assical literature. It is the theory

IThese varieties are called respec.tively the Lagrangian and odd Orthogonal Grassmanni­
ans. In ac.cordance with a tradition we will refer ta these two cases as "type Cl} and ((type B"
respectively.
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developed in [B-G-G] and [02] in the seveuties which allows one to deal with
the Schubert Calculus for otber classical groups.

The strategy used here follows the lnethod invellted in our previous paper
[P-RI]. Let B be a Borel subgroup of H aud T- the lnaxilllal torus of H
contained in B. Üue has the Borel characteristic lnap S.(X(T)) -7 A*( H / B)
(X(T) is the group of characters of T), defiued by seuding a character X to
Cl (Lx)' where Lx is a line bundle with transition functions detennined by x.
Then we use a result (see [B-G-G] and [D2]) which asserts that the coeffi­
ciellts of the characteristic lnap in the basis of Schubert cycles are given by
the "divided differences operators". For instance, in [D2], this fact is deduced
frOln the geolnetry of Bott-SaInelson schenles. This infonnation allows us to
refonnulate problell1s frolll illtersectioll theory into sOInc questions of purely
aigebro-colllbinatoriainature.

The Inain technical task of this paper is to find an effieient way to calculate
with the orthogonal anel sytnplectic divided differences. We extensively use
a Leibniz-type fonllula (aneI, especially its iterations) ancl find SOl1le optilnal
reduced words of silnple reflections to work with. All of this reHes heavily on
a cOlnbillatorial technique of z- and v-l'ibbollS whieh is illvcllted and developed
in the present paper. A rather detailed analysis allows 118 to detennille "achnis­
sible" defonnatiolls of z- and v-ribbons anel, as a consequence, possible shapes
involved in our intersection fonnula (see Theorenl 8.1).

Finally, appropriate clividecl diffel'cnces aud synllnetrizations evaluated in
eleIllentary synulletrie POIYllOlllials give precise I1lultiplicities of Schubert cycles
appearing in the fonnula.

More precisely, the papel' is organized as folIows.
Section 1 contains sOlne general infonnation about G (e.g. a description of

its Chow ring A"'(C-n. In particular we introduce sOIne cOlnbinatorial objects
called "shapes" which label the Schubert subvarieties of G. (A shape is a pair
of strict partitions fulfilling certain conditiollS). We find this way of indexing
of Schubert varieties the best suited to the purposes of intersection theory. (It
geueralizes the "1n = n - case" fronl [H-B] and [P-RI].)

Section 2 contains a fonnulation of our fonnula aud SOlne corollaries. The
fonllulatioll uses properties of Ferrers' eliagralns of partitions of shapes. How­
ever, it is Inuch Inore subtle than the "171. = n - case" froln loc. eit. A clelicate
point which appears is an interplay betwet~n the connected cOlnponent8 of an
"ahnost horizontal strip" addecl to the bOttOlll part of a shape and the rows of
the top Olle.

In Section :3 we collect facts on clivided differences that we neecl. In par­
ticular we state a generalizatioll of a Leibniz-type fonnula in tenns of shapes,
which is a base-point of our calculations.

In Sectioll 4 we introcIuce the nation of a "lnark" of a box in a shape anel
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study its properties. Roughly speaking the lllark encocles tbe way in which an
eleillent passes to its place in the barrecl penllutation.

In Sectioll 5 we collect severallenullas wbicb are of constant use tbroughout
this paper.

In Section 6 anel 7, using properties of tbe Inarks of boxes in CL sbape we
establisb SOUle necessary conditions for a sUl1l1nancl in our generalized Leibniz­
type fonllula, to be non-zero.

Section 8 is devotecl to prove the key technical fact which says that there is
at 1110St one non-zero SUlll111and in the above generalized Leibniz-type fonllula.
We give also an explicit algoritlll11 for constructing tltis SUI1ullancl.

Finally, Section 9 contains the proof of our fonllulaj in partictllar we cal­
culate the l11ultiplicities of SUl1l111allcls involved, in tenllS of the original shape­
clata.

The Scbubert varieties in SO(27n)/ P, where P is a lllaxilllal parabolic sub­
group are labelIed by aposet which is different frOln the Pn 'so We plan to
clescribe a corresponding Pieri-type formula in a forthcollling paper.

Apart of results of this paper was announced in [P-R2]. We refer to this
note for a sketch of thc proof of the Inain result of the prescnt paper.
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1 Notation, conventions and preliminaries

We start with sOine recollection of Lie theory in the sYlnplectic case. A good
reference for this Inaterial is [F-H]. The usuat realization of the root systenl
of type Gm is the set of vectors

R = {±ei ± ej : 1 ::; i < j ::; rn} U {±2ei : 1 ::; i ::; rn}

n~

in the Euclidean space lRm = EB IRei. Let W denote the group generated by
i=l

the reflections 8ß, ß E R, where

anel ßV is the co-root 2(ß, ß)-l ß (( . , . ) denotes here the standard scalar prod­
llct in IRm). A set {al,"" a m } where ai = ei - ei+l, 1 :S i < rn and O'm = 2em

is the set of silnple roots for R. The grOllp W (called the sYlnplectic Weyl
group) is generated by the silnple reftections {Sdl ~i~m, ,si = SOj and is iS01110r­
phic to the selnidirect product Sm t>< Z2t where the synlInetrie group Sm acts on
Z2t in the obviollS way. We wl'ite a typical elelnent of W as w = (T, €) where
T E Sm and € E Z2t

; so that if w' = (T', E') is another elelnent, their product
in W is:

10 . w' = (T 0 T', 8),

where "0" denotes the cOlnposition of pennutations anel 8i = E,I(i) . E~.

Now fix n < 1n, and consider Wn a subgroup of W generated by {'~di=Fn'

We have Wn ~ Sn X (S'm-n t>< Z~t-7t). Then W(n)-the set of lnininlallength left
coset representatives of Wn in W ean be ielentified with the set of sequences of
the fonn:

in the standard "barred-pennlltation notation" (the bars indicate that Ei = -})
where Yl < ... < Yn-k; Zk > ... > Zl ancI Vl < ... < Vm - n (see [I-l]). w(n) is a
poset (with an order incIuceel fronl the Bruhat oreler in W). For the purposes
of this paper it will be convenient to llse the following presentation of w(n).

Definition 1.1 A pair A = (At // Ab) of strict partitions "V and "V is called a
shapc if ,,v C (rnm- n ), ).,b C (7nH

) and ).,:,~-n ~ [(Ab) + 1.

Denote the set of shapes by P n • It will be useful to visualize shapes with
the help of a set of boxes in the fourth quarter of the plane. Let Di and Di be
the Ferrers diagranls of At and ).,b (see [NI]; also the other teflllinology related
to the partitions, diagraIns etc. is borrowed frollI loc. eit. ). The diagrall1 D>.
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of a. shape (..\t // ..\b) is the juxtaposition of Di and D~ with rows of successive

lengths: ..\~ l' .. '..\~'l-nl..\~" .. l..\~ l [= [(..\b):

7n - n

,

I I I I ~
I I I I

I

top pa.rt I
I

1
bottom part I

I
1J,< f-- Db

1--- I ).

I I

I IL ~

Rows that are contained in the top (resp. bottOln) part of D). will be called
top (resp. bottOIll) rows. Note that the last condition of the definition of a
shape lneans that D). t1lust contain a triangular diagralll of boxes with the
row-Iengths: rn - n + [(..\b), 7n - n + [(..\b) - 1, ... ,2, 1.

For an eieillent W = (YI, ... , Yn-kj Zk, ... l Zl; VI, ••. ,Vm- n) of w(n) we de­
note

dr = dr(w) := card{J' : Zj < V r, j = 1, ... , k} l' = 1, ... , 1n - 11..

LernIna 1.2 With the ab07JC notatio 1J" the assign7nent W 1---+ ..\ = (..\ t / / ..\b) give.n
by

11"1, + 1 - Zj j = 1, ... , k

= 1}! + 1 - V r + dr 11 = 1, .... , rrt - 1t

. b .. t' b t w(n) d Pg'tves a 'tJCC 'ton e loccn an n'

(1)
(2)

Proof. Since the sequences (Zj) and (v r ) are increasillg anel (d r ) is nondecreas­
ing , Ab and ..\ t are strict partitions contained in (7nH

) and (7nm
-

n
) I'espectively.

The ineqllality ..\~u-n ~ l(..\b) + 1 is equivalent to Um-n :::; 1n - (k - dm - n )

because k = l(..\b). The latter inequality is c1ear since k - dm-n = card{zj :
Z j > V m - n , j = 1, ... , k}.

Conversely, suppose that a shape ..\ = (..\ t // ..\b) is given. Using (1) we
cOlnpute first Zj, j = 1, ... , k = 1(X,b).

Since ..\:,~-n ~ k + 1, we have ..\; ~ 7H - n - l' + k + 1 'and consequently
Pr := ..\~ - (rn - n + k - 1') > 0, 7' = 1, .. 'l1n - n. Then the recipe for (vr)
is as folIows. Vm-n is the Pm-n -th elelnellt (countillg frOlll the right) in the
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sequence (1,2, ... ,tn) with relnoved {Zj : j = 1, ... , k}. In general, Vr is the
Pr-th elelnent (counting frolll the right) in the sequence (1,2, ... , tn) with re­
1l10ved {Zj : j = 1, ... , k} and Vm - n , Vm-n-l , ... ,Vr +1. TheIl, the cardinali ty of
the elelnents in (1,2, ... , tn) appearing after V r can be expressed a.s

(Pr - 1) + card{ V m - n , ... ,Vr+1} + card{j : Zj > vr }

= (..\; - (tn - n + k - t·) - 1) + (7n - n - 7') + (k - dr ) = ..\; - dr - 1.

Equating this with tn - V r we get ..\~ = tn + ] - V r + dr, a.s desired. 0

Denote by w>. the elelnent of W associated by the lenllna with CL shape
..\ = (At // ..\b). It follows froll1 [H-B, LenlllHL 2.2] that

n k n-k

I(w>.) = L (tn + 1 - i) + L Cj + L (yh - 1),
i=n-k+I j=1 h=l

where Cj = card{7' : V r > Zj 7' = 1, ... , tn - n}. By llsing the equations
k m-n

l:: Cj = l:: dr anel l:: Yh + l:: Zj + l:: V r = 1+ 2 + ... + rn, one can rewrite this
j=1 r=l
in the fann

k m-k

l(w>.) L(tn + 1 - Zj) + L(n + 7' - Vr + dr )

j=1 r=l

= 1,\bl + 1,\ t I_ (m -;1+ 1).
Note a particular rechlced decolnposition of w>.:

w>. = (.5 m _>.b+1 . .5m _>.b+2 ..... .5 m -l . 8 m ) ....
I.: I.:

·(8m_>.b+1 . 8m_>.b+2 "m-l . sm) . (Sm_>.t +1'· 8 m -2 . $m-l)
I I m-n

·(8m _>.1 +1 ..... Sm-3' 8 m -2) ...•. (8m _>'1+1 ..... 8 n -l . .5 n ).
m-n-I I

Example 1.3 ..\ = ((7n - n+ p,7n - n - 1, ,1)//0), p = 1, ... , n < 71t. Then
w>. = '~n-p+1'" ··,sn = (1, ... , n- p, n-p+2, ,n+ 1; 0; 1t- p+ 1, n+2, ... , 7n)
Note that the diagranl of A is

1r/,-n p

trt -

,.. ..... ... ,... ,
I I I I I I I I I I
I

n~

I-- f--,

o
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Let C' dellote tbe Grasslnanllian of n-dilnensiollal isotropie subspaces in
C2

m with respeet to a nondegellerate sYlnpleetie fonn on C2m
• It is known that

G = Sp(2nl.)/Pn where Pn is the Inaxilnal parabolie eorresponding to onlitting
the n-th silnple root systenl of type Gm. Let B be the Borel subgroup eontained
in Pn (i.e. eorresponding to the clnpty subset of the set of silnple roots) a.nd 8­
its opposite. Then the hOlllogeneous spaee Sp(27n)/8 is identified with the flag
variety F of (total) isotropie flags in C2m (with respeet to the saUle sYlllplee­
tie fonn). The eanonieal projeetion p : Sp(21n)/8 --t Sp(2711,)/ Pn induces the
injeetion p- : A*(G) L-+ A*(F). Let X w >. E AIAI(F), 1.-\1 = I.-\tl + I.-\bl- (m-;L+I),
be the rational equivalenee dass of the dosure of 8-w).,8/8 is Sp(2rn)/8.
Let a(,,\) E A 1).,1 (Ci) denote the rational equivalence dass of the c10sure of
B-w).,Pn/Pn in Sp(27n)/Pu ' Note that P*(O"(.-\)) = Xw >.'

More preeise infonnation on A>I< (G) is eontained in the following theorenl
aud its proof.

Theorem 1.4 A*(G) is isornor'phic with:

'[ ] 2 2SY111 XI, . .. , X a / ( hj ( :c 1, ••• , x,J : rn - n + 1 ::; j ::; r11,),

whe1'C SYln[ ] 1neans the 1'ing 01 SY1n1nctrie polyn01nials in the indieatcd va1'i­
ablcs, and h j ( ) dcnotes the j -th c01nplete h01nogcneous polynomial in the in­

dieatcd elcl1u:nts.

Proof. Let c: 8.(X(T)) = Z[XI""'Xm ] -----t A*(Sp(21H,C)/B) = A"'(F) be
the Borel characteristic Inap Inentioned in Introduction, (Here, XI, .. . ,Xm are
independent variables). By [01] we know that c is surjective and ker' c is the
ideal generated by synllnetric polYI101nials in xi, ... ,X;'l without constant tenn.
It follows fr0l11 the eOll1parison of the proof of [B-G-G, Theorenl 5.5], with the
proof of [01, Proposition 5] that c induees a sllrjeetive Inap

Consequently ke1'cC; = ke1'CnZ[:l:I"" ,:r:m]Wn. Recall that Wn ~ Sn X(Sm-n ~

Z,n-n) I C' t . t t' c' r;u1ll-fl, t2 auc ,Ja ae s on x I, ... 'Xfl, VIa pernHl a Ions, ,Jm - n t>< 1LJ2 ac s on
Xn+l, ... ,Xm via barred pennu tations. Of course

z[' . ]wn - S [. ,] ~ S [. 2 , 2 ]Xl, • •. ,Xm - • ynl Xl,' .. , Xfl, 0. ynl xn +l ,· .. ,xm .

Oenoting by ei( ) the i-th elelnentary synulletrie polynOlnial in the indicated
elelllents, we have ke1' c = (ei (xi, .. , , x~.) : 1 ~ i ::; 111.). Si nee for every i

8



and in each SU111111and, the first faetor is Sn-invariant and the second is Sm-n ~

Z,,~-n . . t . f k ( ( :."! 2) 1 < . < ) C 12 -lnvaflan, we In er 'e1' Ce; = ei Xl' ... , Xm : _ 1, _ rn. ollsequent Y
-

A'" (G) ~ SYln[Xl, ... , xn ] 0 SYln[X~+l' ... , x;,~]f (ei( xi, ... ,x~J : I ::; i ::; 7n).

We will need the following lenulla.

Lemma 1.5 Let YI, . .. ,Ym bc independent variables. The Jollowing equality
0/ ideals holds in SYln[yt, ... , Yn] 0 Sytn[Yn+t, ... , Ym]:
(ei (YI, , Ym) : 1 :::; i ::; 7n) =

(ei(Yn+t, , Ym) + (-I)ih i (Yh"" Yn), I :::; i :::; rn - n;

hi(VI, ... , Yn), 7n - n + 1 :::; i :::; 7H)

Proof. Denote the {orIner ideal by 1 and the latter by J. We first show that
J Cl. I t follows frolll the relations:

ei(Yn+I,···,Ym) = L(-1)iei-i(YI, ... ,Ym)hi (Yl .. "Yn)
i

that ei(Yn+l, ... ,Ym) +(-1 )i-l hi(YI, ... ,Yn) EI. Also it follows fraIlI the latter
relations that

ei(yt, ... , Ym) = L (_I)f e,dVl, ... , Yn)el(Yn+l, ... , Ym)
k+l=i

k+l=i,l$m-n

Hence for every i we get L:k+f=i,l<m-n (-1 )lek(Yl' ... , Yn)h1(Yl, ... , Yn) E I.
COlllbining this with standard relations between the e's and h's we infel' suc-

cesively hm - n+1 (YI, ... ,Yn) EI, . .. , hm(Yl" .. , Yn) E I.
Now we show I C J. We have for 1 ::; i :::; rn - n

L ek(YI, ... , Yn)el(Yn+I, ... , Ym)
k+l=i

L ek(Yt,.··, Yn)( _])1 h l (YI, . , . , Yn) 711,od J.
k+l=i

But the latter expression is tautologically zero because of standard relations
between e's aud the h's. Therefore ei(Vl, ... , Ym) E .J. For 7n - n ::; i :::; 7H we
have

k+l=i,l$m-n

L (_])1 ek(Yl, ... , Yn)h1(Yl1 ... , Yn) 7nod J
k+l=i

9



because hj(yt, . .. , Yn E J for rn - n + 1 :::; j :::; rn. Since the latter expression
is tautologically zero, ei(Yt, ... , Ym) E J. This proves the Lenl1lla. 0
The end of the proof of Theorem 1.4:

Use the Letnlna with Yi = xi, i = 1, ... , rn. The first set of relations in the
seconcl presentation J of the above ideal shows that the natural lnap:

is surjective. Then the second set of relations generates the kernel of this lnap.
Thus the theorenl has been proved. 0

Lemlna 1.6 AsslLrnc that :[;1, , :[;n are algcbraically independent ove1' Z.
Then, /or17"L 2:: n, hm-n+l(XI, ,Xn), ... ,hm(Xl"",Xn) a1'e algebraically in-
dependent ove1' Z.

Proof. The assertion follows inunediately frolll an isolllorphislll

SYln[Xl, ... , x n ] 0 SYln[xn +l,"" x m ]J(ei(xl, ... ,x m ) : 1 :::; i :::; 1n)

~ SYln[Xl,"" :cn]/(hj(xl, . .. , x n ) : 1n - n + ] :::; j :::; 1n)

induced by the identity on Synl[xl, ... , x n ] j X n +l, ... 1 X m are independent vari­
ables transcendental over Xl, . , . , X". (cf. Lelllll1a. 1.5). 0

Theorell1 1.4 and Lenlll1a 1.6 ilnply the following

Corollary 1.7 Let P(t) = L: rkz Ai ( G)Ti be the Poincarc series 0/ G. Then
i

p (l - T 2m)(1 - T 2(m-l)) (1 - T 2(m-n+l))

(t) = (1 - T")( 1 - Tn-l ) (1 - T) .

Moreover we have obviously

Corollary 1.8 The ele1nents c( ei( :Cl, ... , :c,J),
braically th (; l'ing A * (C:) 0 ve1' Z.

10
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2 Statement üf the main result für type C

We assulne here n < tn; the case 1n = n was treated in [H-B] (see also [P-Rl]).
For p = 1, ... ,11, denote crp ;= cr((tn - 11, + ]1,111, - 11, - 1, ... ,2,1)//0).

It turns out (see Lenllna :3.2) that crp corresponds to ep(xl, ... , x n ) via the
isolllOrphis111 frOln TheorCl1l 1.4. ßy Corollary 1.8, A'" (Ci) = Z[crl, ... , (Tu].
The lllain theOre1l1 of this paper gives an explicit fonllula for intersecting a
general Schubert cycle O'(A), A E Pu, with O'p' This Pieri-type fornlula is,
however, lllore subtle thall the other fonllulas of this type knowll to tbe au­
thors. Let, for the 1110111ent, JL be a shape appearing nontrivially in the right
hand siele of O'(A) . O'p = .... First "surprise" is that it call happen that
D~ 1J Di. The second one is that D~l \ D~ call be a non-horizontal strip.
Finally, the fonllula involves SOUle nontrivial lllultiplicities (which are powers
of 2).

To fonllulate the theoreIll we need several notions. Recall that we follow [M]
for conventions and tenuinology concerning partitions, diagranls, shifted dia­
graIlls etc.

A skew diagra111 D (i.e. a difference of two Ferrers diagrains) is connected
if each of the sets {i : :lj (i, j) E D} and {j ; :li (i, j) E D} is an interval in
the set of positive integers. (In this work we will deal exclusively with skew
diagral11S which are differences of two striet diagra1ns i.e. diagrains of strict
partitions. )

By an alrnost h01'izontal sh'ip we Inean CL (possibly disconnected) skew dia­
grain with at Inost two boxes in each cohnnn such that the set of the highest
boxes in cohllnns fonns CL horizontal strip, alld the relnaining boxes fonn a
horizontal strip with pairwise disconnected rows.

Every ahnost horizontal strip has a deco1l1position UCi into cOllnected

COlllpOllents; we will denote by CP) the set of highest boxes in COIUUlllS anel

write C?) := Ci \ CP). Pictorially
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(~-visualizes boxes in CP), ~-boxes in Ci(2»). Note that two boxes will
appeal' neither in the leftn10st nor in the l'ightnlost colulnn of the cOlnponent
in the situation of Definition 2.1 below. Iu other words a cOlnponent of an
ahnost horizontal strip which satisfies this definition cau be depicted as

The set of boxes C?) will be called thc CXC1'csccnce. of Ci.
Now suppose that two shapes ..\ and J-L are given. In what folIows, by a 1'OW

without further iudications we will Inean a row in the top part; by A- (resp. J-L-)
part of a row we understalld its restrietion to Di resp. D:!.

A row is called cxccptional if its A-part contains strictly its Il-part.
By a componcnt we understand a shifted connected cOI11ponent of D~ \

Di. A C0111pOllent is called ext1'c1nal if, before a shift, it tl1eets the leftu10st
colun1u.(Note that there exist at most oue extrell1al cOll1ponent).

Since S0111e cOlnbinatorics of shifted tableaux will enlerge uaturally, we will
use the followillg conventions. We say that a box t E Di U D~ lies OVC7' a box
b E D~! if t and the shifted b are in the Satne cohunn. We will also say in this
situation that blies unde1' t. Asubset T of Di U D~ lies OV(T a subset B of
Dt if every box fr0l11 T lies over S0l11e box of B, We will also say that Blies
undel' T if every box b fro111 Blies lInder SOI11e box t froll1 T. If T is contained
in a row then we say that T cnds OVCl' B if the rightlnost box of T (calIed
SOI11et i111eS t he end of T) lies ave]' B.

Silnilarly for boxes b1 and b2 {rOln Dt, we will say that b1 lies OVC7' (resp.
lies undcl') b2 if the COIU11111 of the shifted b1 is equal to the colUllln of the
shifted b2 al1d the row nutnber of b1 is slnaller (resp. bigger) tban the row
nU111ber of b2

Finally, a box in D~ \ Di will be called a (J-L - A)-box.

Definition 2.1 Jl = (Jlt//Jtb) is c07npatiblc with ..\ = (At//Ab) if

1) D~ J D~ and Dt \ D~ is an ahnost horizontal strip and the extrelnal
C0l11pOnent is an (ordinary) horizontal strip.

D:t \ Di is a horizontal strip with pairwise disconnected rows.

2) Tbe A-part of at Inost one row ends over a cOlnponent but none over
the extrelnal one. If a row ends over a cOl11ponent we say tbat they are
7'elatcd. A cOlllponent which is re1ated to sOine row will be called related.
Sil11ilarly a row wbich is related to S0111e cOI11ponent will be called l'elated.

12



:3) Each exceptional row is related to a C0l11pOnent, over which the f-L-part
of this row ends.

4) If a (J-i - A)-box lies over a cOlnponent then this cOlnponent is neither
extrel11al nor related and this box lies over the leftl110st box of the C0I11­
ponent.

5) An excresceuce cau appeal' only in a related COll1pOnent uuder the ..\-part
of the related row; no box fr0l11 the J-l-part of the related row lies over
the excrescence.

(In particular, an excrescence can appeal' only in a cOlnponent related to an
exceptional row.)

The Inain result of the present paper is:

TheorelTI 2.2 FOT' eve1'Y A E Pn and ]J = 1, ... ,11.

a(..\) . ap = L 2e(>',tJ)a(f-L),

where the Bum iB over all 11. c01npatiblc with A, 1/1.1 = lAI + p and e(..\, 11.) i..':; the
ca1'dinality of the Bcl of cOlnponcntB that are not extrclnal, not l'e1ated and have
no (Jl - A)-boxeB over thel1L

Example 2.3 7n = 6, 11. = 5

a(5//:3, ]) . a3 = a(6//5, 1) + 22 a(6//4, 2) + a(6//:3, 2, 1) +
a(5//6, 1) + 2a(5//5, 2) + 2a(5//4,:3) +
2a(5//4, 2, 1) + 2a(4//6,2) + a(4//5, :3) +
a(4//5, 2, 1) +a(:3//6, :3) +a(:3 //5, 4)

I- - - - -I
I- - -

-

I - - - - -
I - - - I

-



The noushifted version is:

• • • '1'1
• • • I
•

• • •
• • •

• • • • I •
• • • I I
•

• • • • •
• • •

• • • • •
• • • I I I
•

• • • • •
• • • I I
• 1

We now cOllsider SOUle special cases of the theorenl. We write for partitions

! ancl /(, U 1//K := U ( i 1 + 1H - n, ... , im- n + 1// !(), U I := U 1//0.

AssUlne /(1) ::; 1n - 11. - 1. Theu it follows froln the theorenl that

sunl over .J :) 1 such that IJI= 1I 1+p and .J \ / is a. horizontal stri p. Arguing as
in in [P, Sectiou 6], we deduce fronl it aud Pieri 's and detenllinantal fornlulas
for S-functious:

Corollary 2.4 For cvcry pa1,tition I C (nm-n),

I t · / . - ( )71~-nn par leu ar U(nm-n) - Un .

Assulne now l( /) = rn - n. Then the theorelll gives

UI . U p = L L UJ/.//I-.,

0ShSi",-n Jh

where the SUlll is over .Jh :) /, l.Jhl = II 1+p - h aud .Jh \ I is a horizontal strip.
Here is auother special case. Let I be a partition with i 1 = n. Then

14



where the first SUlll is over (strict) partitions J :> (i2, ...), )1 < n, IJI =
111 - n + pj the second is over (strict) partitions .J :> (i2, ...), )1 < n + 1,
IJI = 1/1- n + p - 1j and nJ \ 1 (resp. (n + l)J \ I) is a horizontal strip. In
tbe both SUlllS f( I, L) lneans the nUlnber of cOlllponents of L \ I not rneeting
tbe leftnlost colullln, and-aJter shifting-not llleeting the 171. - n rightInost
colllillns of the (basic) n~ x rn square.

In part icular,

O"(nm-n)//(n,n-l, ... ,l) . O"p = 0"(nm-n)//(n+1,n, ... ,n-p+2,n-p,... ,I)'

The latter equality is also a particular case of tbe following fonnula. Assulne
I:> (n,n -1, ... ,1). Then

O"(nm-n)//l . O"p = L O"(nm-n)//h

J

the SUlll over (strict) partitions .J :> 1 such that I.] I = IJI+ ]J anel .] \ I is a
horizontal and vertical strip.

We deduce frolll it and Pieri's and detenninantal fonnulas for S-functions:

Corollary 2.5 Let I be a partition coniained in (nn). Thcn f01' the conjugate
partition.] 0/ I one has:

It would be interesting to give an explicit fonnula exprPßsing O"I//J as a
polynolllial in the O"p's. For n = 171. such a Gianlbelli-type fonllula was given in
(P, Section 6] with the help of Schur's Q-polynollliais.
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3 Calculus of divided differences

Let x = (Xl, . .. , x m ) be a sequenee of independent variables.
We have "sYlnpleetie divided differenees":
ai : Z[x] ---+ Z[x] (of degree -1) i = 1, ... , rn, defined by

ch(/)
om(/)

= (I - 8i!)/(Xi - xi+d

(I - 8 m /)/2x m

i = 1, ... , 1n - 1

(here, the 8i, i < tn, aets on Z[:c] by trallsposing Xi and Xi+I and .5 m aets on
Z[x] by sellding X m to -Xm , the other variables relnaining invariant).

For every i the following Leibniz-type fonllula holds for I, 9 E Z[x]:

(4)

We will need in the sequel the following fonllttlas for generating funetions.
Let a = (am ,am -l, ... ,lL'l.,al) E {-1,0, 1}m. Define

Ea = rr (1 + aixi)'

i=l

For exalnple for a = (0, ... ,0) we have Ea = 1; if a = (~,~
7IL-H n

Tl

then Ea = n(1 + Xi) =: E say, is the generating fUl1etion for thc eleillentary
i=l

synunetl'ie polynOll1ials in :C1, .•. , X n .

i < 1n
Z = 1n

b) Fo r i = 1, 2, ... , tn - 1

(d = -2, -1,0, 1,2)

wlw1'r. a' = (lL m , ... , 0,0, ... ,aI) is the scq7tcncc a with lLi+I, (Li 1'cplaccd
by ze1'os. In pa1'ticula1' if ß is a c01nposition of sonte $- and D-opcrations
thcn JOT cve1'y a, ß( Eu) = (.sealar) . Ea" whcrc a' is uniqucly detc1'1nined
if tltis scala1' i8 not ZC1'O.
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Next, we recall that for any w E Wand every redllced deCOIl1position
W = Si l ••.•• Si l one can define Dw := (Al 0 ... 0 ail-an operator on Z[x) of
degree - l(w). In fact Gw does not depend on the rechlced decOInposition
chosen. There exists a surjective ring h01110I1l0rphisIll

c : Z[x] -+ A"'(F)

(calIed the characteristic lnap) whose value for a hOlllogeneous J E Z[x] 18

given by

c(J) = L Gw(f)Xw
l(w)=degJ

(we refer to [B-G-G] and especially to [02] for details cOllcerning c).

Lemnla 3.2 For cvcry p = 1, ... , 'n, denoting by ep (xl" .. , x n ) thr. p-th elr.­
rnentary syrnrnetric polynontial in Xl, ... , X n , 1l1e ha1.Jc

c(ep(Xl"'" :Cn )) = X6n_p+l ......!n_I.6n = Up E AP(G).

Proof. It is sufficient to show that aw ( ep(xl, ... , X,.)) = 0 unless w = W(p) :=
$n-p+1 ..... 8 n -1 . 8,. and Dw(p) (ep(xl, ... , X n )) = 1. This follows easily by
indllction on n using the following properties of Öi:

only if h = i,

aud
Di (e q (:r.l, ... ,xd) = eq-l(xl, ... ,Xi-l)' D

Note that the lenulla says that the p-th ehern dass of the tautological
isotropie n-bundle on G is equal to up '

Let J). E Z[x] be hOlllogeneous such that c(f).) = u(.-\). Then for 'W E W,
l(w) = 1"'1, we have ow(f).) f:. 0 itf W = w). and 8w >.(f).) = 1. Dur goal is to find
the coefficients 1nJ, in

lt is convenient to use the following coordinates for indexing hoxes in shapes:

m m-l ... :2 1

TU -n

17
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(i.e. the leftnlost cohllnn now has the nUlnber 1n anel we 11se aseparate nUlll­
bering of the top and the bottOill rows). Note that the first coordinate of a
given box will indicate the ntunber of its row (it will be always clear whether
it is a top or bOttOlll row) anel the secolld-the lltllnher of its colulnn.

o

For a shape Jl we denote by D JJ the set of hoxes obtainecl by reilloving frolll
D~ the following set of boxes:

(l,rn),
(2, rn),

(rn - H, 1n)

.,. 1

... ,
(l,n+2), (l,n+ I)
(2, n + 2)

(5)

o 0

Consider now a suhset D of D w The boxes in D JJ which belong to D will
o

be called D-boxes; the boxes in D JJ \ D will be called f"V D-boxes. Denote hy Dt

(resp. Db) the restrietion of D to D~ (resp, Dt). Now we associate with D an
operator ß~ , and a word 1'D'

o

Definition 3.3 [{ead DJJ raw by row left to right a.nd frolll top to bOttOIl1.
Every D-hox (resp. f"V D-box) in the i-th colullln gives llS the Si (resp. Oi)'

Then ß~ is the cOlnpositioll of the l'esulting s/s a.nel ß/s (the COlllposition
wri t tell frolll righ t to left).

o

Definition 3.4 Read Dw Every D-box in the i-th colull1n gives 11S the Si,

f"V D-hoxes give no contribution. Thell 1'D is the ward obtained by writing the
resulting s/s froln right to left.(ln other words, Olle obtaillS r'D by erasing all
the 8i 's frolil 8~.

o

Exalnple 3.5 (i) Note that for D = D." 1'D is the reduced decolllposition of
w). givell before Exalllpie 1.:3-

(i i) 1n = ]4 Jl = (] 2, 6, 5//] 0, 6 , 2)

14 13 12 11 10 9 8 7 6 5 4 3 2

]8

top

hottom

(D- boxes are
shaded here)



OD 013 0 014 0 09 0 alO 0 Oll 0 012 0 0130 014 0 05 0 a6 0 87 0 88 0 89 0 810
~

0811 0 012 0 813 0 814 0 89 0 810 0 811 0 812 0 013 0 08 0 89 0 010
0811 0 812 0 02 0 fh 0 83 0 84 0 85 0 86 0 87 0 88 0 S9 0 89 0 810 0 all 1

1'D = 812' 814 • 87 • 88 ' 89 • 810 ' 811 • 813 • 814 ...'111 • 89 ' 811 ' 812

Proposition 3.6 In thc above notation)

o

11Jherc thc SU1n is ovcr all D c D /.l such that 1'D E R(w).,) 2.

Proof. We know that rnlt = owJ.(I)., . ep(xl,' , ., xn )). Moreover we have
OWI-l = o~. The Il1l11tiplicity rn Jt = o~(I)., . ep(xl" .. , x n )) call be COlllputed
by a consecutive applications of (4) used in this way: we apply only the 8/s
(alld tbe identity operators) to I).,; anel both tbe 8/S anel Oi'S to ep ( XI, , , . , xn ).

We get

o

the SUlll over all D c Dw The sUllulland correspollding to such a D is not zero
only if card D 2:: deg J>. and card( D~l - D) 2:: p. But carcl D~t = deg Ix +p. Thus
the above inequalites can be replaced by equalities. Consequently, it follows
frOIll the properties of I>. that orD(I>.) = 0 if 1'D ~ R(w>.) and 1 if t'D E R(w).,).
The assertion follows. D

2 Für a gi ven tu E W we denote by R(w) t,he set of its red 1I ced decomposi tions.
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4 z- and v-ribbons

We treat a reduced deCOlllposition w>. = Sit • Si2 ••••• Bit as a sequence of
"siluple transposition-operations" Si h , h = 1, ... ,1, which produces 10>. froln
the identity penllutation (1, 2, ... , rn):

(... (( (1, 2, ... , m) , 8i1) . Si2 ) •• , .) • Bit =
(Yl" .. ,Yn-k; Zk, Zk-l, ... ,Zl; Vl, ... ,Vm-n).

These "silnpie transposition-operations" will be called "Si
h
-operations" h =

1, ... ,1; 01' sinlply "Si. -opera.tions".
ASSllIl1e that an elmnent w = (Wl" .. , 1LJm ) E W is written in the "barred

penllutation notation". Recall tha.t Si, i < 111., acting frOlll the right on W,
interchanges the i-tb and (i + 1)-th cOluponent of w. Thc Sm supplies the rn-th
cOlnponent of 1LJ with a bar, if this cOlllponent is bar-free.

Proposition 4.1 Eilher exactly o11.c {hal'-fl'ce} z. 01' cxactly onc v. is nontriv­
ially involved in a '~5i. -opcl'ation" . More prcciscly

a) lf i h = 7/t J the11. ihe opcl'ation is:

.",,,Z --+ . ... Z

b) If i h < rn J thcn ihc operation is:

••. Z.X , •• ~ ••. XZ. ••• , (x I- zi, j = 1, ... , k)

•• • V.X .•• ~ •• . XV . .•. ,

(x =f=. Z j, j = 1, ... , k; :c =f=. V r , 7' = 1, ... , rn - n).

Proof. For every j = 1, ... , k, we define 0i to be the fanlily of aU "Si,­

operations" which 1110ve Zj forward, towal'd tbe nt-th place or supply Zj with a
bar,

For every l' = 1,.,., rn - 11, we define O~ to be tbe falnily of all "Si,­

operations" wbich lllove V r forward. Obviously card 0i 2:: 7/t - Zj + 1. Moreovel',
card O~ 2:: n +l' - V r +dr where dr = cal'd{j : Zj < V r ,j = 1, ... , k}. lndeed,
this is a 11linilllallHunber of siluple transpositions wbich trallsfonll V r frOlll the
vr-place to tbe (11, +l' )-th place in 1LJ>.. The SUlllJ1land "fir " eOllles frolll the fact
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that every z. goes under ",si. -operations" to the ln-th plaee; thus if Zj < V r
then S0l11e "-Si. -operation" aets a.s

... ZjVr ... ---+ ••. VrZj ....

It is deal' that the sets Oj, j = 1, ... ,k and O~, 7' = 1, ... ,7n - n are disjoint.
Therefore the eardinality of ,si.-operations needed to pass frolll (1, ... , Tn) to
w). is at least equal to

k m-n

L eard 0; +LeardO~ 2: L(rn+ I-zj)+ L(n+l'-Vr +dr)
; r ;=1 r=l

COluparing this with (1.:3) we conelude that the sets Oj, j = 1, ... , k, O~,

7' = 1, ... ,11"1. - n, exhaust all the ",si, -operations" (and, eonsequently, the
above inequalities for card 0; and card O~ can be replaeed by equalities). This
iluplies the assertion. 0

Corollary 4.2 No ".5i, -opcl'ation" as abovc can i7l.tcrchangc z. a1~d z. , v. and
v•. A (~5i. -operation" can only caUBe. ihe /ollowing changes:

7novc z. !onval'd) iO'l.LJard ihc 7n-ih place. and v. backwa7'd tO'ward the. fi7'St
place.

lnove. z, fOl'wal'd) towa7'd ihe ln-th place with lno'lJing 11.0 v•.

lnove. v, f07'wal'd with lnoving 11.0 z•.

supply z, (in the rn-th place) wiih a bU7'.

Now invoking definitions anel notation fronl Section :3 we introduce the
nation of a z- and v-Iuark of a D-box, AS81uue that 7'D E R( tu>.), Suppose that
a D-box appears in the i-th cohul1n (i = 111" 7n - 1, . , . , 2, 1). We associate witb
it it8 Ill<Lrk (a, b) E {O, 1,.,., k} x {O, 1,.,. ,nt - n} where

1) If i = 1n, we put b = 0 aud a 18 the s1.1bseript in z, that i8 supplied with
a bar by the operation ,si.,

2) If i < 7n, we denote by lL (resp. by b) the subscript of z, (resp. of v.)
that is llloved by the operation Si.. If no z. (resp, v.) i8 luoved by the
operation Si" then we put a = 0 (resp. b = 0).

We will caU a (resp, b) the z- (resp. v-) lnark of a D-box. A D-box with a
luark (a,b), a 2: 1 will be called a z-box. A D-box with a Illark (a,b), b 2: 1
will be called a v-box, A D-box with a tnark (0, b), b 2: 1 will be called a ]Jure
v-box,
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Example 4.3 tn = 10, n = 7, J1. = (10,8,5//8,7,2,1), ..\ = (10,8,5//7,4,1),
o

w). = (2,5,6,9; 10,7,4; 1, :3,8). Two possi ble D c Dj1. are depicted below
together with lnarks of their D-boxes ("0" visualizes here a ........ D-box)

10 9 8 7 6 5 4 ;} 2

(0,1) (0,1) (0,1) (0,1) (0, 1) (0, 1) (0, 1)
(0,3) (0, :3) (0, :3) (0,3) (0, :3) (O,;})

(0,8) (0,8) (0,8) (0,8)
(1,0) (1,0) (1,0) (1,0) (1,8) (1,0) (1,0) 0
(2,0) (2,0) (2,0) (2,8) 0 0 0
(:3,0) 0
0

10 9 8 7 6 5 4 :3 2

(0, 1) (0,1) (0,1) (0, 1) (0, 1) (0, I) (0, 1)
(0, :3) (O,:}) (0, ;3) (0, ;3) 0 0

(0,8) (0,8) (0,8) (0,8)
(1,0) (1,0) (1,0) (1,0) (1,8) 0 (0, :3) (0, :3)
(2,0) (2,0) (2,0) (2,8) 0 (1,0) (1,0)
0 0

(a,O)

Let us recOJ,d SOlne properties of z- and v-boxes.

Proposition 4.4 a) z-boxes 1l1ith a fixed z-tnark and pure v-boxes with a
fixed v-mark form, a connectcd set 0/ boxes in each 1'OW.

b) (Separatencss) In a fixed row, any two sets of D-boxcs are di..c:;connected
(i. e. therc is at Icast onc ........ D -box bet1l1een thern) P1'O vided:

- they at'e equipped with l'wo diffeTent z-tnarks ~ 1,

- thcy a1'C pure v-boxes and equipped with two dilJc1'cnt v-1na1'ks,

- one 0/ the1n consists 0/ z-boxes 1LJith a fixe.d 1na1'k and the second-ol
pure v-boxes with a fixed tnat'k.

c) Thc set 0/ z-boxcs with a tnark (j, b) whcrc j ~ I is fixed and b can va1'y,
is contained entirely in ihe bottom part and is of the form
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cl) The z-marks of boxes in a fixcd column (strictly) incrcasc front top to
bottoln.

e) In D t only pUl'e v-boxes appeal'. Thei7'v-lnarks in afixed colurnn (strictly)
incl'ca.."C froln top to bOttOl1t 01 Dt •

Proof. The assertions a) anel b) are obvious. As for c), the proof of the second
assertion is exactly the salne as the one of Lelnll1a 4.3c) in [P-Rl]j then the
first assertion follows because the leftnlost box in every z-ribbon lllust appear
in the ln-th colulnn. Finally, the proof of cl) and e) is the salne as the one of
Lenllua 4.:3d) in [P-RI]. 0

Definition 4.5 A set of z-boxes with a Illark (y', b) whel'e y' 2: 1 is Hxecl (Lnd b
can vary will be callecl a z-Tibbon of z-mark y'.

A set of v- boxes with a t11ark ((L, r) where l' 2: 1 is fixed ancl a can vary will
be calleel a v-ribbon of V-Illark 7'.

Relnark 4.6 (i) A z-ribbon of tllark y' can be depicted as:

bottolU

I
I
I
I

I
I

I

I
I

I

I

I
I

I
1
1

(ln)

I
1

(Zj)

,
I

r-..J
I

(ii) In a silnilar way one can visualize the top part of a v-ribbon:

(7n)

111- 11-
I

,_..J
I

,_..J
I

,_..J
I
I

top



The property depicted here is analogous to Proposition 4.4(c). Its proof is
lllutatis Inutandis the saille as the Olle of LenlIl1a 4.3c) in [P-Rl]. (Recall that
all top v-boxes are pure.)

Note that Proposition 4.4 achnits the following obvious cOlnplelnent con­
cerning v-Loxes in the bOttOtl1 part of Dw

Proposition 4.7 Read the bOttOl1~ part of v-l'ibbon of lnark 1'. Then the graph
of the funetion:

x = the number 01 a box in
the bottom part 01 the ribbon

has propel'lies:

y = the column nU1nber 01
ihe box

1° It is a SUln of set" of points of the fonn (which we will call a decl'casing
and increasing pal't of the graph) 1'espcctivcly)

•

x

•
•

•
•

01'

•
•

•
•

of ca1'dinality ~ 1. (Note that a set consi.sting 01 a .single point only can
be bolh an inc1'casing 01' dC(Teasing part of the graph).

2° No i7.oo dec1'casing (1'CSP. i1HTeasing) parts 01 the graph ran appca1' SUC­
cessi7.Jely.

:3° The end and the beginning of two succeSSlve parts have the san~e y­

coordinate.

(Under this identification the function y(:"C) is decreasing ove1' pure v-hoxes and
inc1'ea.sing O7.Jer non pure v-boxes).

Exanlple 4.8

IL = (2:3,11,9//21,19,15,12,10,8,2,1)

A = (21, 14, 9//19, 14, 1:3, 9, 6, 4, 1).

In the picture below "0" visualizes '" D- boxes, z-ribbons are depictecl with
"_" and v-ribbons-with " ".
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: : : : : :: : : l : : : ~~ O__ m'm'mOmmO

: : : .~ L:m~mo 0

:::~oo
o 0

We end this Sectioll with SOllle infonnation Oll defonning öf z-ribbous, which
is the key technical tool of the present paper.

Fix j = 1,.,., k aud consider the z-ribbon of Inark j. Choose a box in the
last row üf the ribbon.

Lemma 4.9 Assumc that the Jollowing configuration oJ D-boxes appea1's (0
can bc in the 1l1,·th cohl1nnJ b-iJ cXk"ts-is a "" D-box).

__?_?_~the end of the ribbon

,...., D boxes here

Such an 0 will bc called a breaking box. Thcn the change oJ the configuration
to:

-??~

gives us a D' such that 7'DJ E R(w).,) and the z-l'ibbon with lnark j zn D' z...c;

obtained through the sal1~e defonnation Jl'o1n the z-ribbon in D.

Prüüf. Arguing by induction on the distance frolll a to the end of the ribbon,
it is sufficient to prove the assertion when a is the last büX of thc ribbon. The
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assertion for the change:

... trfj ... -4 ... Etffj ...

(unshaded boxes are not in D) follows frolll the relations Si.'3j = SjSj, li - j I > 1,
applied to all D-boxes appearing in reading betwecn the initial and final place
of the defonned box. D

Now suppose that D1 c Dt. We shall now describe a process of defonuing
rows of D~ inside of Dt. The description is by descending inductioll on the
nUluber of a row, starting frOlll the last row.

1) lf (l(.,V), 1H) is a breaking box we apply the defonuation frolll the lelluna
so luany tilues as it is possible. In other words we push down in a ll1axilnal
way the last row of D~ in Dt.

2) Pick a row in D~ and suppose that lower rows in D~ have been already
defonned in Dt. Let a be the first breaking box in the 1'0W, appearing
in rearling. Apply the defonnation froll1 the lelluna so Inany tilnes as it
is possible. Assulne that b is the first breaking box in the deforIned part
of the row; apply to b the defonnatioll frOln the lelluna so Inany tinles
as it is possible. Then repeat the saille witb tbe first breaking box of the
resultillg part of the row etc.

It is elear that this procedure defines a certain subset Db in D~ such that
1'DbuDt E R(W>,,), together with its decOlnposition into z-ribbons. We will call

.\,

this subset the 1naximal dcfo1'1nation of D~ in Dt and denote (Db)>",~ (this
notation differs frOln the one in [P-Rl]).

Exalnple 4.10 The 111axilnal defonnation for
J-l b = (1 8, 16, 15, 14, 12, 11, 4, :3, 2, 1)
/V = (17,14,12,10,7,4,2,1).
(Boxes in D~ anel their defol'matiolls are IlHtrked with dots. Defol'llled z-l'ibboilS
are depicted with "_".)
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5 Some omnibus lemmas

Lemma 5.1 Assume that 7'D E R(w)..). Thel1, thr, jollowing conjigu7'ation oj
D-boxes cannot appear:

? EP ?

'! ?

(h)

whe7'C a is a pure v-box, b-rv D-box, c-D-box.

Proof. The oS-operator of Cl cllanges (... ,v.,x, ... ) -+ ( ... ,x,v., ... ), where
x =J z., v.. (the pair (v.,:z;) occupies the h-th and (h + 1)-th places). The
existence of b ilnplies that the oS-operator of c changes the position of :1; {rOin
the h-th to the (h + 1)-th place. This contradicts Proposition 4.1. 0

The next two lenllnas can be proved by a direct calculation.

Lemma 5.2 Thcfollowing conjigu:l'ation 01 rvD-boxcs in D~l il1~plie8 a~(E) = 0:

(i)

and 711,07'C gencrally (shaded boxes are D-boxes and 711,arked unshaded boxcs
a7'C "" D boxes) :

(ii)
(111,)

g=------.---
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and 1n07'C generally
( 1n)

I

I

I
I

I
I
I
I

I

I

~
(iii)

(iv)

I I
I

r-..J
I

r-..J
? ? I '!

r-..J
t

r-..J
I

I I I I

a row of r'V D boxes

a is f"V D box.

?

Lenllna 5.3 Thc/ollo111ing configu1"ation 0/ f"VD-boxcs in D:, irnplies a~(E) = 0;

rr 7---'I ?
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Lemma 5.4 The top seg11u:nt 0/ each v -1'ibbon in Dt C bJ-' such that a~ (E) =1=

0) is 0/ the fOl'm (cf. Relnal'k 4.5):
r--
I

r-
I

r--l,
r- J

I,
top

Proof. Suppose, conversely that the top seglllent of a v-ribbon contains a
cOllfiguration:

Since obviously a and bare""" D-boxes, we get a contradictioll with Lenuna 5.3.
The assertion folIows. 0

Lemma 5.5 Let D c Dw Assulne that f07' SOl1lC i the jollowing configu1'ation
0/ D and '" D-boxes appeal'S in t!tc bott017~ part 0/ D:

___ astairease
of D-hoxes

(ln) (q) (h)
I I I

I I I
I I I
1 I I

(i) - - ~ - - - - - - - - - - - - - ~ - - - - - -
I f rrT?-Jf.-4":..L>

I I
t I
I I

I I

I I

a. ",-,D-box b
somewhere

here
if q < rn

a "'-'D-box a
here

Let L\ bc thc "part" 0/ ihe operato1' al~ /ol'med by thc cOlnposition 0/8- and
8-opc1'atol'S 0/ aU D-boxcs abo'lJc thc i-th 1'01.0. ASSUlne L\(E) = (scalal') . Ea

WhC1'C ah = O. Then a~(E) = O.
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This situation occurs-for exalnple-if

• i = 1; a row of D t ends in the h-th colullln.

• i = 1; a I"V D-box appears in D~ in the h-th colulnn.

• i > 1 and the (i - 1)-th row consists of I"V D-boxes only.

Proof. The 8-0perators of Inarked D-boxes fronl the staircase change succes­
sively the position of 0 in the sequellce a fronl the h-th place to the q-th place.
Then the o-operator of a causes 8~(E) = 0 in virtue of the existence of b. 0

Lemnla 5.6 ABsu1nc D C D~l J01' a shapc JL J such that D t is a stnd diag7'a1n
and D~ \ Dt is a horizontal st1'ip with pai1'1lJise disconnected 1'07.lJS. Let L1 be the
"part" of o~ f01mcd by the composition oJ 8- and 8-opcl'atol's 0/ all Dt-boxcs.
Then d(E) = 1 . Ea where the scquence a is buill as jollows:

iJ h is the colu1rl,n nU1nbcr oJ the end 0/ a 1'ow oJ D t

if h is the colul1~n nurnbc1' 0/ a box in D~l \ D
in the oppositc case.

Tbe proof is a straightforward calculation.
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6 Admissible deformations of z-ribbons
o

ASSUlne that A, J1. E 'Pn , n = I, ... , ~,.n, and D c Dw

Proposition 6.1 The conditions

and (6)

hold only i/ the set 0/ z-boxes 0/ D is equal to the maxi1nal de/01'1nation 0/ Di
. Dbzn Il '

A proof will be dividecl into several steps. We c1ailn first that D~ c Dt.
lndeed D~ is obtained froll) the set of z-boxes of D by the operation reverse
ta the Inaxilnal defarInatian (see Sectian 4). It is naw deal' fraln the fann
of a z-ribbon (Proposition 4.4(c)) and the way of deforIning, that this {orces

D~ C D~t'
We will now show that the InaxiIl1al deforillation of Di in D~t is necessary

in order to avoid the vanishing a~(E) = 0 (for short: "vanishing" ). Fix
a row in Di aud assuIlle that the assertion has beeIl proved for lower rows
(i.e. they have been Inaxilually defonned to avoid the vauishing). Assulue that
the Iuaxilual defonuatiol1s have beeIl perfonned in all preceding breaking boxes
of the row and fix the next free bfeakillg box a. Dur situation is depicted as
foUows:

already deformed

...~
(Note that Cl box b IUUSt exist because p,b is strict.) We will show that to avoid
the vauishing, the luaxilllal defonuation of a together with its fight-hand part
is necessary. If we da uo clH~nges at aU, then after adding pure v-boxes we have

• b is Cl ,....., D-box: this follows froIll the separateness property (Proposi­
tion 4.4(b))



• c is a ,...., D-box: this follows frolll Lenll11a 5.1 .

• in the row of c there exists a "" D-box left to c (the only exception is that
e lies in the rn-th colullln which can happen iff a is in the ln-th cohulln;
hut this leads to a contradiction by Lenll11a 5.2(ii)). Indeed, if a lies in
the cohulln with ntllllber < 1n, then regardless c exists 01' not, a non z-box
D lllust be a "" D-box (use the separateness property 01' tbe fact tbat no
pure v-box appears in the ln-th COIUlllU).

Hut thell, the configuration of boxes {D, c, b} contradicts LelllIna 5.2(i).
Now suppose that we can escape the vallishing by pushing down a final seg­

111ent of tbe row starting after o. Pictorially, the effect of such a defornlation is:

Here, f is not a pure v-box by the separateness property, anel ~ is not a pure
v- box by Lenll11a 5.1. lf a is in the nt-tb COIUl1111, then g is not a pure v-box
anel the configuratioll of "" D-boxes {g,~, f} contradicts Lenll11a 5.2(i) 01' (ii).
If a is not in tbe 1n-th cohlllln then D is not a pure v-box aud the configuration
of ,....,D-boxes {D,~, f} contradicts Lenll11a 5.2(i).

The proposition has been proved. 0

o

Proposition 6.2 In D C D/l satü;fying (6), thc z-boxcs with thc same z-7nark
can appeal' in at 1nost two succcsivc 7'OWS.

Proof. AssllIlle first that SOll1e z-boxes with the saIne nlark appeal' in three
different rows. We visualize the situation as follows (boxes which are not
depicted are irrelevant):

~a =:::==:=b~. ~~~+ .~~~+ .. '0+" +. +~. +. +.+.... ~ ~ ~ .. ~.~ .



The existence of seglnents of z-boxes depicted here as ~""""""\Iand I: : ::::: :1 follows
{roln thc construction of InaxiInal defortnation that is necessary by Proposi­
tion 6.1. It fol)ows frolll Proposition 4.4(cl) tbat the z-lnarks of ~- allel 0­
boxes are equal (being both bigger by 1 than the z-lnark of ~-boxes). Thus,
by Proposition 4.4(d), Cl is a '" D-box. Since, hy the separateness property b
and c are also", D-boxes, the configuration {Cl, b, c} contradicts LelllIna 5.2(i).

Now suppose that SOllle z-boxes with the sanle z-nlark appeal' in two rows
that are not successive. We visualize the situation as follows (boxes which are
not depicted are irrelevant):

~fI tl c==Ob• + • + + • + • + • + • + • • + • + • • ~ • • • • ~ • •

• • • ~ • • + • ~ • • • • • • ~ • r • • • • • • • • • •

Thc existence of (nollelllpty) segll1ents of z- boxes depicted here as ~"""",,"\I aud
I: : : : : : : :1 follows frolll the constructioll of Inaxitllal defoflllatioll that is necessary
by Proposition 6.1. The non z-boxes a,l),c are'" D-boxes by thc separateness
property. If c (resp. b) is a D-box then its s-operator Ill0VeS forward the
sallle elelnent as the oS-operator of f (resp. g). Hence c anel b are not pure v­

boxes. Moreover c is not a z-box by Proposition 4.4(cl), alld b is not a z-box by
Proposi tion 4.4(c). Then the configuration of '" D-boxes {Cl, b, c} contradicts
Lelllllla 5.2 (i).

The proposition has been proved. 0

o

Lemlna 6.3 In D c DJ1 satisfying (6), no 1'OtLJ 1.oith a '" D-box zn the nt-th
co/unu1- contains a z-box.

Prüüf. ASSllille conversely that there exists a row containing a z-box and a
'" D-box Cl in the rn-th COltllllll. This canllot be the first row of the bottOln
part, because the z-ribbon containing a z-box Illust contain a box in the nt-th
C01UI1l1l above this z-box. Pick a leftnlost z- box b in tbc row. Pictorially,

Then C Inust be a '" D-box (in the opposite case the .s-operator of C will
lllove the z., that is pushed forward by the .s-operator of b, backward-which



is not possible (see Section 4). Hut the configuration of ,....., D-boxes {a, '0, c}
contradicts Lenlllla 5.2(i) or (ii). The assertion has been proved. 0

o

Proposition 6.4 In D C D IJ satisfying (6)J there are no two 1'0108 with ,....., D-
boxes in thc 'rn-th column. Conscq1lcntly l(ltb ) ::; l(Ab) + 1.

Proof. Suppose, conversely, that there exist two rows with ,....., D-boxes in the
rn-th colullln. Pick up a pair of such rows wi th the slnallest row nUlnbers ·i < j.
By the lenulla both the i-th and j-th rows do not contain z-boxes. Thus by
the constructioll of Illaxitnal defonnation that is necessary by Proposition 6.1,
the (i - 1)-th bOttOIll row lllust contaill an ini tial segnlent of a z-ribbon (of
z-Illark (i - 1)) of length ~ Ai + 1, silllilarly the (i - 2)-th row 1l1ust contain an
initial seglnent of a z-ribbon (of z-luark (i - 2)) of length ~ Ai +2, ... , finally
the first row lllust contain an initial seglnent of a z-ribbon (of z-Inark 1) of
length 2:: Ai +i-I. A sitnilar argument, if j > i + 1, shows that the rows with
nUlnbers j - 1, j - 2, ... , i +1 lllust contain sitnilar initial seglllents of z-l'i bbons
of length 2:: Ai + 1, ~ Ai + 2, ... , ~ Ai + (j - i) - 1 l'espectively. Let adenote
the box (i, 'r11. - (j - i)). The followillg picture (where only those z-boxes which
are relevant for our purposes, are shaded) will be helpful to end the pl'oof:

top

bOttOlll

(i)

(j)

?

(sh aded boxes
belong to D)

lf a is a ,....., fJ-box, then Lenllna 5.5 shows that the ä-operator of f illvolved in
ai! canses the vallishing. If a is Cl. D-box (i.e. Cl. pure v-box) then we pick the
leftnlost pure v-box b in the row of a. The bottOlll part of the v-ribbon of b
above the i-th row consists of non pure v-boxes anel i8 a "staircase" which ends
with a box c, say (see Proposition 4.7). Note that '0 anel e belong to D,t because
of the condition JL:n - n ~ l(p,b) + 1. If '0 i8 a. ,....., D-box then we get inunediately
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the vanishing by Lenllllas 5.6 and 5.5. If '0 E D then '0 is a pure v-box (with the
saUle lllark as the v-lllark of c). By the property of v-ribbons fronl Lenlllla 5.4,
'Olllust be the rightillost box of the initial (horizontal) segillent of the v-ribbon
of c. Then, obviously e is a f'V D box alld applying Lenllllas 5.6 and 5.5 we get
the vanishing.

The proposition has been proved. D

Proposition 6.5 For D C b~ satisfyiug (6)) if (i, nt) rf- Db theu the i-th
bottorn ro'w consisL" entirely of f'V D boxes. Moreovcr') each bottorn rotlJ with
u'll.mber' > i consists entirely of D-boxes. In particula1') /-Lh+l = Ah for' h :2: i.

Proof. By Lell1111a 6.:3 the ollly D-box which cau possibly appeal' in the i-tb
bOttOIll row is a pure v-box. Suppose that sucb a box appears and assU111e that
n is the leftnlost pure v-box in the i-th row. By the construction of lllaxinlal
defoflllation that is necessary by Proposition 6.1, arglling as in the proof of
Proposition 6.4, we infel' that the part of tbe v-ribboll of n above the i-tb
bOttOlll row looks like ~ denotes here z-boxes, ~-v-boxes);

r-

(i)

top

bottom

(Note that the top segnlcllt of a v-ribbon is detennilled by Lenlllla 5.4). Now,
Leuuna 5.5 applies and gives the vanishing. The resulting contradiction proves
the first assertion. The second assertion then follows frolll Lenlllla 5.2(iv). D

Note that frolll the above results of this sectiOII we infel':

Corollary 6.6 If (8) is satisfied theu) unde1' the rnaxirnal deforrnation, ever'y
z-box can bc rnoved down by one l'OW at nwst.

Proposition 6.7 Thc conditions (8) an~ satisfied only if D~l \ D~ is an almost
horizontal slr'ip and its cornponent meeting the leftrnost COlUl1l,n is an (01'dina1'Y)
horizontal strip.



Proof. The latter assertion is a consequence of Proposition 6.5. 1'0 prove the
fonner we pick up a cotnponent of D~l \ D~ not lneeting the leftlllost colulnn.
Suppose first that there are :3 boxes of the COlllpouent in oue cohllnn. Pick up
the leftnlost colulnn with this property aud the highest tripIe of boxes {o, b, c}
in it. Pictorially

1) a

t i b

Ip ~ t c

The box D belongs to D~. Then ( E D~ ; otherwise b cau be defonned to the
place of f in contradictioll with Corollary 6.6 (note that i, f, ~ rt D~ because
,,\ is strict). If 9 E Di then neither c uor D can be tnoved down. So we have
z-boxes: D, c, 9 auel non z-boxes: 0, b, c, i, f, ~' The boxes 0, i, ~ are ",-,D-boxes
by the separateness property. Then the configuration: a z-box D, a "'-' D-box
0, a "'-' D-box i ilnplies that b is a "'-' D-box. Also, the configuration: a z-box
(, a r"V D-box i, a r"V D-box f) itnplies that f is a "'-' D-box. The configuratioll
of "'-' D-Loxes {b, f, I)} contradicts Lellltna 5.2(i). Ir 9 rt D~ then ( (together
with the suitable part of its row in D~ ) is 1110ved down exactly by oue row
(Corollary 6.6 ). Thell D (together with the suitable part of its row in D~) is
1110ved down exactly by one row. So a.fter the defonnatioIl, the fonner place of
i now is occupied by Danel the fOrIner place of f) now is occupied by c. Nothing
arrives to the places of band f. By tbe separateness property b auel f are
"'-' D-boxes. Since in the f-Ieft part of the row of f there exists a r"V D- box j (the
left-hand side neighbour of the breaking box pushed down ), the configuration
{j, b, f} contradicts Lenltna ,5.2 (i).

Now eliviele tbe boxes of the C0I11pOnent of Dt \ D~ into the horizontal strip
of tbe highest boxes in colullllls and the set of relnailling boxes. DecOlnpose
this latter into different rows. ASSIlIlle that there exists a pair of such rows
which are not disconnectecl. Let 0 be the rigbttllost box of the tower row anel
b the leftI110st box of the higher one: (c, D rt D~ as they are "'-' D- Loxes over °
and b, 9 rt D~ because ,,\ is strict)

The box c belongs to D).. by the previous step of the proof. Then f E D)..;
otherwise ( can be defonned to the place of ° in contradiction with Corollary
6.6. Hence g rt D~ and we have two possibilities for 1). Suppose first that
I) E D)... Then neither f 110r C cau be Inoved dowll. So we have z-boxes: (,
f, f) and non z-boxes: 0, b, c, D, g. The boxes tt, c, gare "'-' D-boxes by the



separateness property. The configuration: a z-box c, a rv D-box D, a rv D- box C

ilnplies that b is a rv D- box. Silnilarly, the configuration: a z-Lox f, a rv D-box
C, a rv D- box g ilnplies that II is a rv D-box. Then the configuration of rv D-Loxes
{g, n, b} contradicts Lenuna 5.2(i)

Now suppose ~ rt Di. Then f (together with a suitable part of its row in
D~) is Inoved down exactly by one row. Also, e (together with a suitable part
of its row in Di) is rnoved down exactly by one row. So after the defonnatioll
the {onner place of 9 now is occupied by f anel the {onner place of c now is
occupied by e. Nothing arrives to the places of a anel b. By the sepal'ateness
property a anel bare rv D- Loxes. Since in the n-left part of the row of II there
exists a rv D-box i (thc left-hand side neighbol.lr of the breaking box pushed
down), the cOllfiguration {i, ll, b} contradicts LeHl11la 5.2(i)

The proposition has been proved. 0
We end this Section with SOHle definitions needed in the sequel. Suppose

that Dt \ D~ is like in Proposition 6.7. Decolllpose Dt \ D~ into its connected
cOlnponents. Tben use the Inaxilnal defonnation procedure of Section 4. While
the extrelnal COlllpollent defoflns to a single row I1leeting the leftInost colulnn, a
"typical" nonextrelnal COlnponent Ci looks like after the Inaxilnal defol'lnation:

tairc.a.'ie I roof I

~

9
I I· excrescence

L

s

highest staircase

'"

(7)
Here the roof and the staircase are the result of the defonnatioll of CP) (we

llse the notation before Definition 2.1). More precisely, the roof of a defonned
(nollextrenlal) COIl1pOllent is thc seglnent of a row consisting of thc lüghest
boxes of the defonned cOlnponent, without the leftInost box; the staircase of
such a conlponent is its defonnation without the roof. The excrescence is the
result of the defonnation of Ci(2) which, in fact, rClnains ullchanged under the
defofll1ation. The latter renlark justifies a llse here of the salne nallle as the one
in Definition 2.1. We will use freely the nalnes frolll the picture. T'he existence
of excrescences is the tnaill difference between the case n = 1n (where they do
not appeal') and the case n < rn.

Let us record SOIlle properties of excrescences which are rather inl11lediate
consequences of the Inaxinud defoflnation procedure.
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Lemlna 6.8 An eXC1'csccnce can appeal' only under thc roof of a dcfonned
component and therc is no pair 0/ boxcs 0/ excrescenccs lying one ovcr thc
other. (We follo11l thc tClIninology be/ol'e Definition 2.1). M or'COVC1', a segrnent
0/ a row bctween the staircasc box and an cxcrcscence box rnust contain a z-box.

This 111eanS that an excrescence cannot be "too big", We will see in Sec­
tion 9 that excrescences can only appear in conlponents satisfying sallle rather
special praperties.



7 Admissible positions of pure v-boxes

o

Lemlna 7.1 Let D C Dj..l' ASSUl1lC that J01' some i a segment oJ pure v-boxes
appears in the i-th bottom rotLJ oJ Dj..l' Let.1 be the "part" 0/ o~ f01'1ned by
the COl11,position 0/ s- and 8-operators oJ all boxes in D/-l above ihe i-fh r01lJ. //
.1(E) = (scala1') . ER, then aq = 0 where q - 1 is the colurnn numbe1' 01 the
leftmost box 0/ the segment.

Proof. lf i = 1, the assertion foUows frolll Lelnnla 5.6. Now asstune that
the highest segluent of pure v-boxes appears in sonle later row, Consicler a
"staircase" of boxes starting just over the lefttnost box of thc seglnent:

(q)

,
b

If a is a "....., D-box then thc o-operator of a gives llq = O. If a E D then we have
three possibilitie:s for b:

(i)

a

segment of pure v-boxes

• b is Cl "....., D-box; then the o-operator of b together with the oS-operator of
a give aq = O.

• b ~ D1J; this lueans that a lies in the first bottOIn row and the top part
of the v-ribbon containing the seglnent encls exactly over the pure v-box
a (which is the first box in the bOttOlll part of the ribbon). Applyillg
Lenll1Ul 5.6 we get Uq-l = 0; then the 8-operator of a gives HS fLq = O.

• h E D; tben we have analogous three possibilities for c. Continuing this
way we prove the assertion for tbe highest segnlent of pure v-boxes,

For lower segnlents of pure v-boxes the reasoning is siInilar. Let ß' be the
"part" of aJ; fonned by the cOl1lpositioll of 8- aud CI-operators of aU boxes
of DJ.1 above the row containing the preceding segillent of pure v-boxes. If
.1'(E) = (8calcu') , ER then (by incluction) we call aS8Ulne that CLql = 0 where
q' - 1 is the colullln nUlllber of the leftnlost box of tbis segnlent.

We can now apply-word by word-the previous reasoning to our seglnent
of pure v-boxes in question; the role of tbe top part of the v-ribbon i8 now
played by the preceding segl11ent of pure v-boxes. 0
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Corollary 7.2 Let D c DwAssurne that for SOlne i a segrnent 0/ pure v-boxes
appears in the i-th bottorn row of DJl • If the column number of the leftm.ost box
in ihe segutent is rn - 1, 07', it is < rn - 1 and two "" D-boxes appear' Icft to the
seg17tcnt (in the i-th row), then a~(E) = O.

Proof. COll1bine Lenllna 7.1 anel Lelnlna 5.5. 0
o

Let A, f.l E Pn , n = 1, ... ,rn, and D c Dw Fron1 now on we aSSUlne
r'D E R(w).) and a~(E) i= O. In what follows by cl.c. we will tnean a defoflned
cOlnponent of Dt \ D~ in D;t through the Inaxitnal defortl1atioll process (see
the end of Sectiol1 6).

Proposition 7.3 Pure v-boxes can appear only in the 1'oof 0/ a d.e., and fo7'1n
a segm,ent stal,ting frol1t the Irft1nost box of the 1'OOf. In partiell/al', 71.0 I,wo pure
v-boxcs with diffcl'ent lnal'ks can appeal' in the same 1'OOf.

Proof. By the separateness property, it is c1ear that no pure v-box can appear
in the staircase of a cl.c.. Sllppose that a pure v-box appears in S0l11e excres­
eenee of a d.c .. Pick such a leftInost box a. Then the row of the excrescence
looks like (see Lel111na 6.8)

D-boxes~ ? rn,---'!_
. ~ z-boxcs here

a staucase -
,....,D-box

The existellce of a "" D-box b follows frOlll the separateness property for seg­
Inents of z- and pure v-boxes. Applying Corollary 7.2 we get the vanishing­
contradiction.

It Is clear frolll Corollary 7.2 again, that tbe leftl110st box of the leftInost
segtnent of pure v-boxes in the roof lllUSt be the salne as the leftlllost box of
the roof. 1"0 show the last assertion, suppose conversely that pure v-boxes with
different Inark also appeal' in the roof. Pictorially

D-boxes ~urc:-bOX~
the lughest staucase

,....,D-box

Since the ll1arks of ~- and ~-boxes are different, by the sepal'ateness pl'operty
there exists a "" D-box in I ? I. Again, Corollary 7.2 now applied to the
~-ribboll itnplies the vanishillg-colltradiction.

The proposition ha..,;; been proved. 0
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Proposition 7.4 No two different 1'00[-; can contain PU1'C v-boxes of thc sa1ne
v-ribbon.

Proof. It follows froill the construction of InaxiInal defonnation which is nec­
essary by Proposition 6.1, that the bOttOill part of D JJ ovel' the roof of a d.c.
looks like (cOlnpare the proof of Proposition 6.4 for details):

bottom

where shaded boxes are D-boxes. Therefore, the bottOIll part of the v-ribbon
containing a segll1ent of pure v-boxes froln the roof of a cl.c. above this roof
looks like (see Proposition 4.7):

bottOlll

It is now deal' that this v-ribbon cannot lneet the roof of another d.c.. 0
Wc end this Section with thc following easy fact.

Lemnla 7.5 The. lcngths of 1'01OS in D t f01'n~ a dccreasing sequcnce (i.c. D t
'lS

astriet diagra1n).

Praaf. Note first that such a foI'tl1ulation l11akes sense by LenlIna ,5.4. In w).,

we have Vl < ... < Vm-n' Since in the proceS5 of Illoving the V r '5, which is
coded by boxes of Dt, there is llO change ... V. v• ... ~ ... v* V • ..• , the order of
tbe V r 's before perfofllling "8i.-operations" of the boxes of D t is the salne. But
this is a restateInent of the assertion. D

Thus the proof of the proposition gives a...(;j a by-product the following:

Corollary 7.6 Thc 1narks of scg1ncnts 01 pure v-boxes in thc 1'oofs of consec­
utivc dcfo1'1ncd c01nponcnts, incrcasc front top to botton!.
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8 When are TD E R(w)J and 8ff(E) =I- 0 ?

In this Section we will prove the following theoretn.

Theorelu 8.1 AsslLl1~e that ,\ E Pn J 11. = 1, ... , tu. Tlten fOT cve7'Y f-L E Pn
o

there cxists at most one D C DJi such that

7'D E R(w).) and (8)
o

Let D C Dw AssuIne, frolll now Oll, that D satisfies (8).
By Section 6 we know that the cOllnected components of D~t \ Db are de­

tennined uniquely and the COlU111nS of their appearance fonn pairwise disjoint
sets a.s. 3 o _

For a given D C DIl , D will denote the set D with the added set (5).
We will say for a given cOlnponent that a top row of D is associated with the

cOlllponent if the row ends in the leftnl0st cohunll of the shifted COll1pOnent.
ASSUll1e for the 1110111ent that this is the J·-th top row. Then by properties

of v-ribbons (Section 7) pure v-boxes with 111ark l' can appeal' in the bOtt0l11
part only in the roof of precisely one (associated) cOlnponent, where they fann
a segInent starting in the lefttnost box of the roof. Moreover the following
equality holds

,\~ = (length of the J·-th row in D') + (length of the segnlent) (9)

We record the following property of D satisfying (8). (Fronl now on we
follow the tenninology before Definition 2.1)

Lemlna 8.2 No top ro'W of D satisfying (8) can end OVC1' the 1'oof of a defonned
component.

Proof. Suppose, conversely, that there exists a top row which ends over the
roof of a defoflned cOlnponent. Pictorially

_____---'0
(a.8.)

b I

3The abbreviation "a.8." means here and in the sequel "after sh ifting" (of the bottom
part of t,he diagram)



Then the configuration of ....... D- boxes {a, b, c} causes the vanishing because
of Lenllnas 5.5 and 5.6-contradiction. 0

o

Lemlna 8.3 11 101' some D C DIA satisfying (8) a ce1'tain c01nponent is as-
o

sociated milh the 1'-lh top ro'W, say, then the same is t1'1tC f01' any D' C DJ.l

sat"'-~/ying (8).

Proof. COl1sider the ,·-th top row in D' . If it is not associated with the
cOlnponent, then using the previous lellul1a we conclude that it ends in the
COlUlllll which is, either

1) left to the lefttnost COlUIl1ll of tbe sbifted cOlnponent, 01"

2) right to the righttnost COI1111111 of the shifted cOInpOl1ent.

Case 1) cannot oeeur beca1.1se otherwise A~ wOllld be bigger than it actually
is by (9).

In case 2), by properties of v-ribbons (Section 7) an eventual bOttOIll seg­
lnent of pure v-baxes with a Inark l' should occupy-a.s.-coIUll1llS left to the
leftll10st colul11n of tbe cOll1ponent. In virtue of (9) and reillarks preceding (9),
this would illlply that A~ is sIllaller than it actually is-colltradictioll. The
lell1l11a is proved. 0

Proof of Theorem 8.1
It is sufficient to show that D

t
is detennined uniquely by conditions (8).

By the lenllna we know the I"OWS in D
t

that are associated, are detefluined
uniquely. In virtue of relnarks preceding the lell1Il1a and by (9), we kllOW that
the lengths of the relnainillg i.e. llon-associated rows are the sallle as in Di.
Since, by Lellllna 7.5, D

t
is astriet diagraIn, WB conelnde that the decreasing

sequence of the row lellgths in D
t

is uniquely detennined. But this Illeans that

D
t

is uniquely detennined.
The theoren1 has been proved. 0

As a corollary WB get an explicit recipe to construct D satisfyillg (8) for
given A, J-L (for which such a D exists).

Recipe 8.4 Assu1nc that A and Il a1'C two shapcs satisfying thc conditions:

1) D~! ::> D~ and D~! \ D~ is an a17nost horizontal strip whosc ex17'c1nal
component is a h01'izontal st1'ip.

2) At most onc 1'0111 from Di cnds ove1' a component but none over the
extrf.1nal c01nponent.
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The r'ecipe says:

(1) Pe1foTin the 1naxi1nal deformation of Di in Dt to get (D b
))"IJ C D;lJ say)

{L-; desc1'ibed in Scction 4. Thc conncctcd components 0/ Dt \ Di def07'7n
to a fa1nily 01 subseL-; 01 Dt \ (Db ) .. ,IJ (eal/cd defoTined c01nponents) of the
f01'112 (7). Different deJoTined c01nponents occur in pairwiBe disjoint sets
of col1unns a.s..

(2) Shijt the bottom part f1'om now on. For every component pick a rom which
ends over the componcnt. Sub17'act the segment of the rOllJ which lies over
the 1'oof of ihe defonncd com.ponent and push it down to the roof.

Recall that the necessity of the condition 1) above to obtain 0 fulfilling (8)
follows frolll Proposition 6.7. Sillülarly, the necessity of the condition 2) above
follows [1'0111 Lenuna 8.2 cOlnbined with Proposition 7.:3; the assertion about
the extrelnal cOlllponent being a conseqllence of Lenl111<L 8.2 cOlnbined with
Proposition 6.5. Moreover, note that pushing down of seglnents of top rows
can be perfonned in an arbitrary order, a.,;; this takes place in disjoillt sets of
colull1ns.

Lemma 8.5 The conditions (8) for D fr'oru the recipe hold 'only if

(i) D:
l

\ Di is a h01-izontal strip with pairwise disconnectcd r01118.

(ii) No (/l - A)-box lies 011C1' the stai,'casc of a rclated c077~ponent.

Proof.
(i) Regardless of the defonnillg or not defoftlling of SOHle boxes In Vi, the
assertion follows frolll Letlllna 5.;3.
(ii) An eventual box a Iying over the staircase of a relatecl cOlllponent, cau
appear only in the row situated just below the related one. Thell the box b
iu the related row aud in the colull1n next right to the COIUtllU of a is a ,....., D­
box (because D~ is a strict diagrain ). Since the configuration a,b contradicts
Lenllna 5.;3, the box a cannot exist. 0

Observe that the conditions (i) and (ii) [rolll the lelluna ilnply that D~ \ Di

is a horizontal strip with pairwise disconnected rows.

Example 8.6

JL (2:3, 11 , 9//21, 19, 15, 12, 10, 8, 2, 1),

A (21,14,9//19,14,13,9,6,4,1).
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In the picture below "0" visualizes ........ D-boxes, z-ribbons are depicted with
"_" anel v-ribbons-with " " .

•.._....•........•.._ __ .•-......•.......•....... '•.......'•........•.......•.....-.' '............... 0 0

e- e- _.•'._ _, _ _ _..•

e-., ,.. ,' •.... ,...... ,,.. ,'•._, ,.. '.', ,.. '.... -, ... ,... ,... - ~

• 0 0
_.' 0 0 0

.'.' .'.' .. • 0 0

....•. 0 0 0

.- 0 0 0 0
.'

0 0 0 0..

o 0

• 0
o

1) After the first step of the recipe,we obtain:

• 0 0

: : : : : : : : : : : : : ~~~O~O0 0 0

: : : : ~~ : ~ ~ 0 0

o 0
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2) Finally we get the following set depicted with " ".. .

...............- - - , _.............. 0 0 0 0 0 0 0

•._..-.-.._..•._.._ -.-.._.•.._.- •..._..r
"""'-;---'

....................._ _..-- ~

.i

..'

_..... 0

•.,

~"

.................. o
o

o

o .- - .

o 0

.- 0 0
,"

..

• 0 0 0

Example 8.7 We show hefe, how tbe sUllunands In EXiunple 2.:3 are obtained
using the algoritlun descl'ibed in this Section.

x •

x •
• 0

x •

• 0

o

x •

x •

• 0

• 0 0

• 0

• 000

·00

1
--+

1
--+

1
--+

1
--+

1
--+

x •

x •

• 0

x •

o 0

x •

x •

• 0

• 0 0

• 0

• 000

• 0 0

:2
--+

:2
--+

:2
--+
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x •

x •

• 0

x •

o 0

x •

x •

• 0

• 0 •

• 0

·0·

3
--+

3
--+

:~
--+

x •

x

• 0

x •

o 0

x •

x •

• 0

·00

• 0 •

• 0

• 0

• 0

• 0

• 0
• 0 •



·00

x •
• • • 0

1
------fo

x •
• 0 0

·0·
2

------fo
x •

• 0 0

• 0 •

3
------fo

x •
• 0 0

·0.

x •
• 0

• 0
o

x •
• 000

• 0

x •
• • • 0 0
·00

x •
• 0 0

• 0
o

1
------fo

1
------fo

1
------fo

1
------fo

x •
• 0

o 0

x •
• 000

• 0

x •
• 0 • 0 0

• 0 •

x •
• 0 0

o 0

2
------fo

2
---1-

2
------fo

2
------fo

x •
• 0

o 0

x •
• 0 • 0

• 0

x •
• 0 •

• 0 •

x • ·0·
o 0

3
------fo

3
---1-

3
------fo

3
---1-

x •
• 0

o 0

x •
• 0 • 0

• 0

X·. 0

• 0 •
·0.

x •
• 0 •

o 0

x •
• 000

·00

x •
• 0 0

• 000

I
------fo

1
--+

x •
• 000 0

• 0 •

x •
.00 0

• 0 • 0

2
---1-

2
---1-

x •
• 0 •

·0·

x •
• 0 •

• 0 • 0

• 0

:3
---1-

3
---1-

x •
• 0 •

• 0 •

x •
• 0 •

• 0 • 0

• 0

We start with D>. with added an aln10st horizontal strip to D~; then we

perfonn Cl Inaxilnal defonnation of the bOttOll1 part (~); then we perfonn the

defonnatioll frolll Recipe 2) (~); finally we add additional J-t-boxes to the top

part, if possible (~).)
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Remark 8.8 A pllshing down of a segnlent of a top row to the roof of a
defofllled cOInponent can be presented as a cOlllposition of the following oper­
ations:

?

(unshaded boxes are not in D). This operation can be justified with the help of
Coxeter relations. The following exanlple allows one to understand the general
case. The change

54:} 2

corresponds to the sequence of equalities:

I +
= 858 4 B3 8 58 4 (8:382~818584838283

~

= 858483858483828185 (84 8 3 8 4 ).S2 8 3
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(COlllllluta.tivity relations)

(longer relations)

(conl11lutativity rela.tions)

(longer relations)

(COllllllutativity relations)



9 Computation of multiplicities

In this Section we follow the tenninology befare 01' in Definition 2.1. Let us fix
two shapes A and p satisfying the following properties:

1) Dt J D~ and D~! \ D~ is a.n ahnost horizontal strip such that the extrell1al
conlponent is a horizontal strip.

2) D~ \ D~ is a horizontal strip with pairwise disconnected rows.

3) The A-part of at Illost one row frolll Di ends over a cornponent hut none
over the extrelnal one.

4) No (I-l - ..\)-box lies over the staircase of a related cOlnponellt.

For such ..\ and Jl we define a subset D)..,J1 C bJ1 to be the result of applying
Recipe 8.4 to the D).. anel Dw Let us write D = D)..,IJ for brevity. We know
by Sections 6-8 that the above conditions are necessary for the conditions:
a~(E) #- 0 aud 7'D E R(w)..) to be sa.tisfied. Note the following consequences
of Recipe 8.4(2)

i) D C DJ1 satisfies the hypothesis of Lenllna. 5.6 (see the relnark after
Lenlnla 8.5).

ii) The end of no row in D t lies either over an extrelnal cOlnponent 01' over the
roof of a nonextrelnal one (in particular the end of no row in D t lies over
an excrescence).

Lemlna 9.1 Let ~ be the part 01 a~ lonned by the c07nposition 018- and 8­
operators 0/ boxes in Dt

. Then .6.(E) = ER with am = am -l = ... = (tm-(q-l) =
1 whc7'e q = l(pb) il no extrel1~al c01nponcnt appeal'S and, in the opposite case,
q is ihe 1'OW nU7nbeT' 01 the delo1'1ncd cxtl'cl1~al cOlnponent.

Proof. Asslllne first that l(Jlb) = l(Ab) = k. Tlten At 2:: 1, ..\t-l 2:: 2, ...
A~ 2:: k, A:l~-n 2:: k + 1, .... We see that BO box frOln the seglnent of the k + 1
leftnlost baxes in the (7n - n)-th row of Di is Inoved down by Recipe 8.4(2).
The assertians fallows fronl Lenlllla 5.6.

We now asslline that l(J}) = l("V) + 1. Ass1.une that the defonned extrelnal
cOlllponent lies in the q-th row where 1 ::; q ::; l(pb). Since the boxes frolll D~J

that He above this cOlllponent belong to D~ (because of the cOllstl'uction of the
Inaxilnal defornlation fronl Section 4), we get "\:11-14 2:: q (by the deflnition of
a shape). We clainl that ..\~,~-n 2:: q + 1. lndeed, othel'wise the ..\-part of the
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(11~ - n)-th row in tbe top part would end over the extrellHtl cOlnponent, which
is ilnpossible. The assertion now follows frolll LelllIna 5.6.

The Lellllna has been proved. D
For a given box a E DIJ \ D define ~o to be the " part" of u~ fonned

by the s- and u-operators of boxes read before a. Den.ne a by the equation
~o(E) = (scala1') . Ea with the help of Lelllilla 3.1. Note that this definition
of a lllakes sense if the lefthand siele is nonzero. So, whenever we will have a
associated with a via the above equation, we will tacitly aSSUllle ~o(E) =J. o.
Moreover, let h be the cohlllln nlllllber of a.

Corollary 9.2 i) If h < 'In thcn o11,c has either ah+l = 0 01' ah+l = -1. Thc
both correspo11,ding caSfS hold iff the'l'f is a I"V D·box in the a-lejt part 0/
the ro'llJ 0/ a (1'esp. thc'I'c is not).

ii) If h = 'In then am = 1.

Let h < 'In. We say that a box a E DJj \ D is bad if Uh+l = ah = O. We say
that a box a is essential if rLh+l = -1, ah = 1. (It follows fronl Lenllna 5.6 tbat
both bad and essential Loxes lie in Dt).

Proposition 9.3 The multiplicity 11~1! (sec Section 3 ) is not zero i/ uo bad
boxes appea'l'.

Proof. For a E DJj \ D define an integer n~a by the equality öh(Ea ) = 1no· Eal
frolll Lenllna :3.1 (b). Then a~(E) = Ila Hta, the prodllct taken over a E DJL \ D
(hy Lelllllla 5.6 it suffices to take this product over a E D~L \ D). Therefore
a~(E) =J. 0 iff 11~a =J. 0 for every a E Dt \ D. Thus we have reduced to showing
1no = 0 iff a E Dt \ D is bad. It follows fr0111 the corollary that 11~o = 0 only
if h < 171.. Thell by Lenll11a :3.1 oue has nto = 0 iff ah+l = ah(= -1,00'/' 1).
The third possibility is ruled out by Corollary 9.2(i). We c1ainl that (Lh =J. -1.
Illdeed, ah = -1 only if h is the COhllllll nUlnber of the end of SOIlle row in in
Dt above aj since D~L is strict, this is not possible. The proposition has been
proved. D

Proposition 9.4 If thcrc are no bad boxes thcn 1nJj = 2e. whcre e is the nU1nber
0/ essential boxes.

Proof. In the above notation we have ntJ.! = Ila nto, the product taken over
a E D~ \ D. It suffices to show that In~a I> 1 iff a is essential and if this happens
theu tno = 2. 1t follows frolll Corollary 9.2(i) that lntal > 1 only if h < 1n.
Then Lenlllla :3.1 anel COl'ollary 9.2(i) il11ply !1nol > I iff (Lh+l = -1, alt = 1
(i.e. a is essential). Moreover in that case 17t a = 2. D

We will give a diagrallunatic answer to the following question:
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When a box can be bad?
Ey definition 0 ~s bad iff h < 7U and Uh+l = ah = O. We get by Corollary

9.2(i) that Uh+l = 0 iff there is a '" D-box in the o-left part of the row of o.
It fo11ows froll1 the fOrIn of a defoflned con1ponent (see the end of Section 6
) that a bad box can appear either as a non lefttllost box of the deforIned
extrelllal cOll1ponent or in the roof or in the excrescence o'f the defoflllation
of a nonextreillal one. Let hl be tbe collllnn IHl111ber of 0 after shift. Let
Ll(E) = E a,. Ey Lelluna 5.6 we have u~, = 0 (resp. a~~, = 1) iff a ,....., D-box
in D~ lies over 0 (resp. no ,....., D-box in D~ lies over a). If a appears either in
the defofllled extrelnal cOlllponent 01' in the roof of a nonextrell1al one then
ah = a~, (a~l' is 1110ved down to the h-th place in a by successive transpositions
of adjacent places). For a lying in the excrescence of a C0111pOnent witb (L~LI = 1
one ha..c;; ah = 0 iff there is a ,....., D-box which lies aver a and is situated in the
roof of the C0111pOnent. This exhausts all the possibilities.

We cau SUl1ullarize this discussion in:

Lemma 9.5 A box a is bad iff there exist a '" D-box in the a-left pa7't of a
and there is a ,....., D-box fl'om D1-' which lies ouer a (Recall that we are in the
situation when the property (ii) be/ore LC7nm,a 9.1 hold..,;.)

The above discussion gives tbe following criterion for the absence of bad
Laxes.

Proposition 9.6 The set 0/ bad boxes is C7npty iff the /ollowing conditions are
satisfie.d:

1) No ,.....,D-box lies ove1' the dc/onned cxtrclnal component.

2) No '" D-box (in D~) lies over a ,....., D-box situated in the roof 0/ a def01'1ned
c07nponent.

3) Ove7' each box 0/ the CXC7'escencc 0/ a c07nponcnt therc cxists a D-box in the
roof of the c01nponcnt. No ,....., D-box in D~ lies ove7' ihe excrescencc.

Now we pass to a diagran1111atic answer to the following question:
When a box a can be essential?

Here we assUl11e h < 171,. We know froll1 Corollary 9.2(i) that (lh+l = -1
iff a11 a-left boxes in the roof of aare D-boxes. Thus an essential box cannot
appeal' in the defofllled extrenlal c0111ponent, and it can lie only in the staircase
of the defoflnation of a nonextrel11al one. The conditiol1 (lh = 1 holds anly if a
is situated in the highest staircase. Using LeUlIlla 5.6 and arguing like in the
above analysis of bad Loxes we see that the highest staircase cal1 support an
essential box a iff neither a '" D-box (in D~) nor the end of of a row in Dt lies
Qver a. We can SUIlll11arize this in:
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Lemnla 9.7 A box a iB essential iff all a-left boxes of a of the 1'0111 of a a1'e
D·boxes and neither a r.J D-box nor the end of a ro'W in D t lies over a.

We also get:

Proposition 9.8 The nU1nbe1' 01 essential boxes is the ca1'dinality 01 the set of
nonext1'emal corllponcnts whosc staircasc lies under neither a r.J D-box nor the
end 01 a ro'W in Dt .

We will now translate the content of Proposition 9.6 to our initial shape
data,

We will first show that for given two shapes A anel p satisfying the conelition
1)-4) frOlll the begining of this Section plus an obvious condition: D'\'J-' C DJ-'l
the absence of bael boxes is equivalent to the cOlllpatibility of p. with A (see
Definition 2,1), Suppose first that 2.1 (1) aud 2.1 (2) hold, no p \ A- box lies over
the staircase of a relateel conlpollent and bad boxes do not exist. Then

• Both assertions of 2.1 un follow frOln D).,Jj C D1L and Recipe 8.4(2)

• The assertion of 2.1 (4) saying that uo (,t - A)-box lies over an extrelnal
cOlnponeut is a consequence of 9.6(1) cOlnbined with the fact that the
extrelnal cOlnponent is not rel<Lted (2.1 (2)). The assertion of 2.1 (4) saying
that 110 (jl- A)-box lies over the roof of a cOlllponent follows frolll 9.6(2)
cOlnblned with Recipe 8.4(2) regarclless the cOlllponent is related 01' not.

• 2.1 (5) follows frolll 9.6(3) cotnbined with Recipe 8.4(2).

Conversely, we now prove that if p is cOlnpatible with Athen bad boxes do not
exist. Ineleeel:

• 9.6(1) holels because the extretnal cOlllponent is not related aud uo (p-A)­
box lies over it.

• An eventual r.J D- box (in D~) lying over a r.J D- box situated in the roof of
a defonned cotnponent Inllst be a (,L - A)-box l'egardless the cOlllponent
is l'elated 01' not. Hence the a...qsertion of 9.6(2) follows illllnediately fronl
2.1(4).

• 9.6(:3) follows frolll 2.1 (5) in virtuc of Recipe 8.4(2).

Now asslllne that jl is cOtnpatlble with A.
The next proposition enUlnerates essential boxes.

Proposition 9.9 The nU1nbe7' of essential boxes is cqual to the nun~ber 01 C07n­
poneL,; that are not ext1'c1naIJ not 7'datcd and no (p - A) -boxcs lie ove1' thnn.



Proof. Using Proposition 9.8 we l1lust show that that for extretnal cotnponent
C the following conditions are equivalent:

1) Neither a "'" D-box nor the end of a row in Dt lies over the staircase of C.

2) C is not related and no (J-l - ,,\)-box appears over C.

1) =} 2) Since the end of 110 row in D t lies over tbe highest stail'case
then by Recipe 8.4(2), C is not related. Then tbe absence of "'" D-boxes over
the staircase itnplies that no (,l - ,,\)-box lies over this staircase. Tbe latter
statelnent is equivalent to saying tbat no (J-l-,\ )-box appears over C ( by 2.1 (4)
).
2)=} 1) lf C is not related then the A-part of every row ends ei tber left
01' right to C. This illlplies, by Recipe 8.4(2) that the staircase of C does not
lie uuder the end of a row in D t • Finally, an eventual"", D-box lying over the
staircase 11111st be a (Jl - 'x)-box and its appeal'ance would contl'adict 2).

The proposition bas been proved. 0
We have translated illfonnatiollS about the existence and absence of a. sub­

set D C DJ1. such that a~(E) =J. 0 and 7'D E R(w:\) into initial shape-data
l1lodulo the following fact. Note that tbe set of COllllllllS of the shifted ex­
trelnal cOlnpollent is, in general, different frolll the set of colulllns of the first
defonned aud then shifted extreInal cOlllponent. Hence to cOlllplete the proof
of Theorelll 2.2 we only need:

Lelnnla 9.10 (i) Thc end of the "\-pa7·t of a top r01lJ lies over the cxtrc7rLal eom,·
poncnt iff it lies over the defonnation of th~'i c07nponent.
(ii) A (11 - "\)-box lies OVC7' thc ext1'cmal c01nponent iff it lies o'Oe1' ihe def01'­
mation ofthis c01nponcnt.

Proof. 80th assertiolls follow easily frOln the fact that the "\-part of every top
row ends right to tbe l(,,\b)-th cohllnn, in tbe nunlbering froll1 left to right (cf.
Definition 1.1). 0

This finishes the proof of Theorelll 2.2.

Remark 9.11 The 111ethod of bad and essential boxes llsed here, gives a Silll­
plification of calculations in [P-Rl, Section 6].
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10 The main result für type B

Let now G' be the Grassillanuian of isotropie n-subspaees of a (2n~ + 1)­
dilllensional e0l11plex veetor spaee equipped with an orthogonal nondegener­
ate fOrIn. Then the 8ehubert subvarietes of G' are labelIed by the sanle poset
Pu as above. The divided differenees 8i , i < 711, are the sanll~ as in the synl­
pleetie ease but 8m (f) = (/ - .smf)Jx m· We have c(ep ( Xl, ... , X u)) = U p ,

P = 1, ... ,n < 771 (this is in contrast to the "rn = n - case" where c(ep) = 20'p).
With these divided differences, Lenllna. :3.1 a), b) goes through wi thout changes,

but 8m (Ea ) = 2am . E(O,(lm_l, ... ,at}.

Consequently an analog of Theorenl 2.2 for type B reads as folIows:

TheorelTI 10.1 FOl' C1JC1'Y·"\ E Pu and]J = 1, ... 1 n J one has in A"'(C-J'),

where the SU1n is ovcr all Jl c01npatible with "\, I/t I = 1,,\ I + p and e' (.x, J-t) is the
cardinality 0/ the set of cOlnponents that are not relatcd and ha1Jc uo (J-t - ,,\)­
boxes ovcr thern. (Note that A*(Ct) as a ring ad1nits the san~c dcscription as
A*(G) in Thcore7n 1.4; h07J.Jc1Jf'-1'J the O'p 's generate it algeb1'aically only after
tens01'ing by Z[lJ2]).

Remark 10.2 In arecent paper [8], the author gives a"tripie intersection
theoreln" for G". The result gives a necessary condition for a nontrivial inter­
seetion of two arbitrary Schubert cyc1es and a "special" Schubert cycle.( Note
that llnlike to the present paper, where tbe special Schubet·t cycles are (up to
a scalar) the ehern classes of the tau tological sllbbundle on Gf', the "special"
cycles in [8] are (up to a scalar) the ehern classes of the tautologieal quotient
bundle on C;'.) However, the lnain theorenl of [8] gives only a partial insight in
the interseetion theory on Gf

• FirstlYl the condition given is not sufficient for
the nontrivial interseetion which obstruets a deduction of a Pieri-type fOl'll1Ula
fronl it ( Recall that one possible approach to the classical Schubert ca1culus,
used for instance by Hodge and Pedoe, derives the Pieri fonnula. frolll an ap­
propriate tri pIe interseetion theorelll). Moreover, the approa.ch used gives no
infornlation about the Inultiplicities occuring in thc intersectioll of Schubert
cycles.

Note added in proof. After the first version of this paper was written,
S.Kulllar has infonlled 11S that a result silnilar to our Proposition :3.6 was given
quite independelltly in [K-K, Proposition 4,:31]. Note, however, that [K-K]
gives no sufficient condition for the intersection nlultiplicities, denoted by ]J~ w

in loe.eiL, to be nOllzero, in tenns of v, w anel 1t (of course we speak here abo~lt
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the case l(u) = l(v) + 1(10)). Moreover, [K-K] gives HO expression fol' p~w as
a cardinality of an explicitly given set (again when l(u) = [(v) + [(10)): As
a nlatter of fact, the algebro-coll1binatorial 111ethods invel1ted anel developed
in the present paper are a result of our attenlpt to solve these two problenls
111entioned above which were not treated in [K-K].
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