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0 Introduction

One of the main goals of the intersection theory on a smooth algebraic variety
is to give a solution to the following two problems. The first problem is to find a
possibly small family of subvarieties whose rational equivalence classes are ad-
ditive generators of the Chow group of the variety. Then, the second question is
to write down the multiplication table for the intersection product with respect
to this set of generators. Usually, the first problem is easier than the second.

In the present paper we investigate the intersection rings of isotropic Grass-
mannians. More precisely, let V be a 2m-dimensional (resp. (2 + 1)- dimen-
sional) complex vector space equipped with a nondegenerate symplectic or
orthogonal form ¢ '. If n < m, then the set G of all n-dimensional sub-
spaces of V that are isotropic with respect to ¢, is an interesting and worth
studying smooth algebraic variety. It is well known that G = Sp(2m)/P, and
G" = SO{2m+1)/P, where P, is the maximal parabolic subgroup correspond-
ing to omitting the n-th simple root in the root system of type C,, (resp. B,,)
(equal to e, — e, 4 if n < m, or 2e,, (resp. e,,) if n = m).

The solution to the first question above is a part of a general theory of
cellular decompositions of the spaces of the form H/P where H is a reductive
group and P is a parabolic subgroup of H (this goes back to Schubert, Bruhat,
Ehresmann ... ). The resulting additive basis of the intersection ring is formed
by the generalized Schubert cycles.

Multiplicatively, this ring is generated by n Schubert cycles (called “spe-
cial”) which (up to a scalar) are Chern classes of the tautological isotropic
bundle. Thus to describe multiplication in the intersection ring it suffices to
express the intersection of an arbitrary Schubert cycle with a special Schubert
cycle as a combination of other Schubert cycles. These “Pieri-type-formulas”
(see Theorem 2.2 and Theorem 10.1) are the main subject of the present article.

The classical Schubert calculus for ”usual” Grassmannians was invented in
the end of the 19th century and the begining of the present one in the works
of Schubert, Pieri and Giambelli. To the best of our knowledge, the analogous
theory for the Lagrangian and Orthogonal Grassmannians (apart from some
very particular cases of intersection formulas for the sets of linear spaces on
a quadric) was not treated by classics of enumerative geometry. The techni-
cal difficulties (concerning especially the multiplicities) which are transparent
in the present paper can serve for an explanation for a lack of a “symplectic
and orthogonal” Schubert calculus in the classical literature. It is the theory

IThese varieties are called respectively the Lagrangian and odd Orthogonal Grassmanni-
ans. In accordance with a tradition we will refer to these two cases as “itype C” and “type B”
respectively.



developed in [B-G-G] and [D2] in the seventies which allows one to deal with
the Schubert Calculus for other classical groups.

The strategy used here follows the method invented in our previous paper
[P-R1]. Let B be a Borel subgroup of H and T the maximal torus of H
contained in B. One has the Borel characteristic map S, (X (T)) — A*(H/B)
(X(T) is the group of characters of T'), defined by sending a character x to
c1{Ly), where L, is a line bundle with transition functions determined by y.
Then we use a result (see [B-G-G] and [D2]) which asserts that the coeffi-
cients of the characteristic map in the basis of Schubert cycles are given by
the “divided differences operators”. For instance, in [D2], this fact is deduced
from the geometry of Bott-Samelson schemes. This information allows us to
reformulate problems from intersection theory into some questions of purely
algebro-combinatorial nature.

The main technical task of this paper is to find an efficient way to calculate
with the orthogonal and symplectic divided differences. We extensively use
a Leibniz-type formula (and, especially its iterations) and find some optimal
reduced words of simple reflections to work with. All of this relies heavily on
a combinatorial technique of z- and v-ribbons which is invented and developed
in the present paper. A rather detailed analysis allows us to determine “admis-
sible” deformations of z- and v-ribbons and, as a consequence, possible shapes
involved in our intersection formula (see Theorem 8.1).

Finally, appropriate divided differences and symmetrizations evaluated in
elementary symmetric polynomials give precise multiplicities of Schubert cycles
appearing in the formula.

More precisely, the paper is organized as follows.

Section | contains some general information about G (e.g. a description of
its Chow ring A*(G). In particular we introduce some combinatorial objects
called “shapes” which label the Schubert subvarieties of (. (A shape is a pair
of strict partitions fulfilling certain conditions). We find this way of indexing
of Schubert varieties the best suited to the purposes of intersection theory. (It
generalizes the “m = n - case” from [H-B] and [P-R1].)

Section 2 contains a formulation of our formula and some corollaries. The
formulation uses properties of Ferrers’ diagrams of partitions of shapes. How-
ever, 1t is much more subtle than the “m = n-case” from loc. cit. A delicate
point which appears is an interplay between the connected components of an
“almost horizontal strip” added to the bottom part of a shape and the rows of
the top one.

In Section 3 we collect facts on divided differences that we need. In par-
ticular we state a generalization of a Leibniz-type formula in terms of shapes,
which is a base-point of our calculations.

In Section 4 we introduce the notion of a “mark” of a box in a shape and



study its properties. Roughly speaking the mark encodes the way in which an
element passes to its place in the barred permutation.

In Section 5 we collect several lemmas which are of constant use throughout
this paper.

In Section 6 and 7, using properties of the marks of boxes in a shape we
establish some necessary conditions for a summand in our generalized Leibniz-
type formula, to be non-zero.

Section 8 is devoted to prove the key technical fact which says that there is
at most one non-zero summand in the above generalized Leibniz-type formula.
We give also an explicit algorithm for constructing this summand.

Finally, Section 9 contains the proof of our formula; in particular we cal-
culate the multiplicities of summands involved, in terms of the original shape-
data.

The Schubert varieties in SO(2m)/ P, where P is a maximal parabolic sub-
group are labelled by a poset which is different from the P,’s. We plan to
describe a corresponding Pieri-type formula in a forthcoming paper.

A part of results of this paper was announced in [P-R2]. We refer to this
note for a sketch of the proof of the main result of the present paper.



1 Notation, conventions and preliminaries

We start with some recollection of Lie theory in the symplectic case. A good
reference for this material is [F-H]. The usual realization of the root system
of type C,, is the set of vectors

R={teite;:1 <i<j<m}U{£2e:1<i<m}

"

in the Euclidean space R™ = €P Re;. Let W denote the group generated by
i=1

the reflections sg, A € R, where

sp(z) == = (z,6")8

and Y is the co-root 2(8,4)718 ((-, - ) denotes here the standard scalar prod-
uct in R™). A set {ay,...,q,,} where o; = ¢; — €;41, | <7< m and a,, = 2e,,
is the set of simple roots for R. The group W (called the symplectic Weyl
group) is generated by the simple reflections {s;}1<i<m, 5i = Sq; and is isomor-
phic to the semidirect product 5,, x Z3' where the symmetric group S,, acts on

3t in the obvious way. We write a typical element of W as w = (7,¢) where
T € S, and ¢ € ZY; so that if w' = (7/,€’) is another element, their product

in W is:

w-w' = (ro7,8),

where “0” denotes the composition of permutations and é; = €, - €]

Now fix n < m, and consider W, a subgroup of W generated by {s;}istn.
We have W, ~ S, X (Sp—n X Z3'™"). Then W) —the set of minimal length left
coset representatives of W, in W can be identified with the set of sequences of
the form:

(yh- . -:yvl—k;zkgfk—1;~ .- ;El;vla .. -;Um-—n)

in the standard “barred-permutation notation” (the bars indicate that e; = —1)
where y1 < ... < Ynok; 2k > ... > 21 and vy < ... < Uy (see [H)). W is a
poset (with an order induced from the Bruhat order in W). For the purposes
of this paper it will be convenient to use the following presentation of W

Definition 1.1 A pair A = (A!//)*) of strict partitions A* and A is called a
shape if A C (m™™™), A C (m™) and X, _, > (M) + 1.

Denote the set of shapes by P,,. It will be useful to visualize shapes with
the help of a set of boxes in the fourth quarter of the plane. Let D and D} be
the Ferrers diagrams of A! and A® (see [M]; also the other terminology related
to the partitions, diagrams etc. is borrowed from loc. cit. ). The diagram D)



of a shape (A//A®) is the juxtaposition of D4 and D% with rows of successive
lengths: AL, . A8 L A8 L AL T=10(00):

Pt mens

(

m-—-n

<—D3

top part

bottom part

7 X <—Dg

m

Rows that are contained in the top (resp. bottom) part of D, will be called
top (resp. bottom) rows. Note that the last condition of the definition of a
shape means that Dy must contain a triangular diagram of boxes with the
row-lengths: m —n+1(A%), m —n 4+ I(X%) —1,...,2,1.

For an element w = (Y1, .., YnkZky+ 221} Vs« ++, Umen) of W we de-
note

dy =d(w):=card{j: z; < v,, 7=1,...,k} r=1,...,m—mn.

Lemma 1.2 With the above notation, the assignment w — A = (A//A) given
by

/\? = m+1 -z 7=1,...,k (1)
M = m+1l—v +d, r=1,...,m—-n (2)

gives a bijection between W™ and P,,.

Proof. Since the sequences (z;) and (v,) are increasing and (d,) is nondecreas-
ing, A’ and A* are strict partitions contained in (m™) and (m™™") respectively.

The inequality AL, _, > (A%} + 1 is equivalent to v,,_,, < m — (k — dp-y)
because k = I(A*). The latter inequality is clear since k — d,,_, = card{z; :
Z; > Vmen, J = 1,...,k}.

Conversely, suppose that a shape A = (A'//A’) is given. Using (1) we
compute first z;, 7 = 1,..., k= {(A}).

Since AL _ > k41, we have Ml > m —n —r 4+ k+ 1 and consequently
pri=A—(m-n+k-r)>0r=1,...,m—n. Then the recipe for (v,)
is as follows. v,,_, is the p,,_,-th element (counting from the right) in the
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sequence (1,2,...,m) with removed {z; : j = 1,...,k}. In general, v, is the
p--th element (counting from the right) in the sequence (1,2,...,m) with re-
moved {z; : 7 =1,...,k} and vp_p, Vmen-1,---,0r41. Then, the cardinality of
the elements in (1,2,...,m) appearing after v, can be expressed as

(pr — 1) + card{vmn, .. -, Vrg1} + card{j : z; > v, }
M -—(m-n+k-—1)=-1)+(m=-n—=-r)+(k=d,) =X —d, - 1.
Equating this with m — v, we get \! =m +1 — v, + d,, as desired. O

Denote by wy the element of W associated by the lemma with a shape
A = (AY//A8). 1t follows from [H-B, Lemma 2.2] that

n—k

H{wy) = Z (m—i—l—z)—i—Zc,-l—Z yn — 1),

t=n—hk+1 i=1

where ¢; = card{r : v, > z; » = 1,...,m — n}. By using the equations
m-—n

Z c;= > drand Yy + Y 2;+ >, v, =1+2+...4m, one can rewrite this

i=1 r=1
in the form

m—k
H(wy) = Z(m+1 —z)+ > (ntr—v, +d,)
=1 r=1

m-—n-+1 ,
- (70, 3

Note a particular reduced decomposition of wy:

wy = (Sm—,\:+1 ' Sm—/\z+‘2 Ceeet Sl Sm) '
‘(Sm—/\?-ﬂ : 3";_,\?.;.2 MITIRIR- Y ~m) (Sm—A:n D IR Sm—2" m-—])
(Smore 417 Smea Smez) oo (Saoatgr e Suct t Sp

Example 1.3 A= (m—-n+pm—-n—1,. l)//@), p=1,...,n <m. Then
Wy = Spyepit -5y = (1,. n—-p,n—p-{-z ant+LGn—-p+l,nt2,... m)
Note that the dlagram of /\ 1s

m—n P
. A
I

m-—=mn




Let ¢ denote the Grassmannian of n-dimensional isotropic subspaces in
C?™ with respect to a nondegenerate symplectic form on €C*™. It is known that
G = Sp(2m)/ P, where P, is the maximal parabolic corresponding to omitting
the n-th simple root system of type C,,,. Let B be the Borel subgroup contained
in P, (i.e. corresponding to the empty subset of the set of simple roots) and B~
its opposite. Then the homogeneous space Sp(2m)/ B is identified with the flag
variety I of (total) isotropic flags in C*™ (with respect to the same symplec-
tic form). The canonical projection p : Sp(2m)/B — Sp(2m)/P, induces the
injection p* : A*(G) & A*(F). Let Xy, € AN(F), |A] = [M] 4 |A¥| = ("73F),
be the rational equivalence class of the closure of B-wyB/B is Sp(2m)}/B.
Let o(}) € ARI(G) denote the rational equivalence class of the closure of
B~wy P,/ P, in Sp(2m)/P,. Note that p*(o())) = X,,.

More precise information on A*(G) is contained in the following theorem
and its proof.

Theorem 1.4 A*(G) is isomorphic with:
Sym{zy,...,z.)/(hi{z?, .., 22) im—n+1 <5 <m),

where Sym|[ | means the ring of symmetric polynomials in the indicated vari-
ables, and h;j( } denotes the j-th complete homogeneous polynomial in the in-
dicated elements.

Proof. Let ¢ : S(X(T)) = Zlz,...,z.,] — A*(Sp(2m,C)/B) = A*(F) be
the Borel characteristic map mentioned in Introduction. (Here, z4,...,,, are
independent variables). By [D1] we know that ¢ is surjective and ker ¢ is the
ideal generated by symmetric polynomialsin z%,..., 2% without constant term.
It follows from the comparison of the proof of [B-G~G, Theorem 5.5], with the
proof of [D1, Proposition 5] that ¢ induces a surjective map

¢ Ly, .. .,:z:,,l]w“ — AY(G)

Consequently ker cg = ker cNZ[zy,...,z,])"". Recall that W, ~ S, x (Sp_n X
Zy'™™) and S, acts on x,...,z, via permutations, S,,_, x Z}'™"
Zptiy- .- &yy Via barred permutations. Of course

acts on

Zlz1,. .. 20" = Symlxy,...,z,] @ Sym{zZ,,, ..., 22

Y¥mle

Denoting by e;( ) the i-th elementary symmetric polynomial in the indicated

elements, we have ker ¢ = (e;{(«¥,...,22): 1 <i<m). Since for every ¢
2 2y Z .2 P2\ (2 2
6,‘(.1.1, e ”Em) - ek(‘El! v 3£11)e!(*rn+1$ e "Bm)

k+i=1



and in each summand, the first factor is .S, -invariant and the second is .5,,_, X
Zy ""-invariant, we infer ker cq = (e;(zi,...,22) : | <i < m). Consequently

AY(G) ~ Sym[zy, ..., 2,) @ Sym[z2 ..., 22 /(ei(=},. .. 25) 1 1 <i<m).

>

We will need the following lemma.

Lemma 1.5 Let yq,...,y,, be independent variables. The following equality
of ideals holds in Sym[yy,...,yu] ® Sym[ynsty. . yml:
(e,-(y,, e 7ym) 1 S 1 S m) =

(ei(Yng1y- -y Um) + (—1){11.;(y1, eyl << m—n;
hi(yiy- o ytn)y, m—un+1<7i<m)

Proof. Denote the former ideal by [ and the latter by .J. We first show that
J C I. It follows from the relations:

ei(yrhl-l gre ey ym) = Z(_l)jei—j(yla ceey ym)h‘j(yl ‘o 3yﬂ)
i
that e;(Yns1s- - ¥m) (=1 "Thi(y1,. .., yn) € I. Also it follows from the latter
relations that
ei(yl g ey ym) = Z (—1)"6.1.-(3,’1, ey y11)cl(yﬂ+la ey ym)
h+i=1

Z ﬂk(yl e ,yn)hi(yl, BN y,l) mod |
k=4 I<m—-n

Hence for every i we get 3, o icn(=De(y1, - vy, ., 4n) € 1.
Combining this with standard relations between the e's and h’s we infer suc-
cesively Moyns1 (Y155 ¥n) €1, oo s h(yr, .. yn) € 1.

Now we show I C J. We havefor | <:<m —n

ei(ylz “os )ym) = Z ek(yl: s :y:;)ef(yn-i-l: “e )ym)
k+i=1
= Z ex(vr, . - ,y,;)(—l)rh;(yl, ey Yn) O ]
kgl=1

But the latter expression is tautologically zero because of standard relations
between e’s and the h’s. Therefore e;(y1,...,ym) € J. Form —n <1 < m we
have

e;(y1,---,ym) = z ek(yh'--ayn)(_l)lh!(yla---ayn)

k+i=1,l<m-n

Z (=D)'ex(y1y .. yndbiltn, - - -, ¥n) mod J

k=t



because h;(y1,...,yn € J for m —n + 1 < j < m. Since the latter expression
is tautologically zero, e;(y1,...,ym) € J. This proves the Lemma. O
The end of the proof of Theorem 1.4:

Use the Lemma with y; = z#,7 = 1,...,m. The first set of relations in the
second presentation J of the above ideal shows that the natural map:

Sym{z1, ..., 2z, — Sym[zq,...,2,] ® Sym[:ciﬂ, . ,:ci‘]/(e,-(:cf, N-))

is surjective. Then the second set of relations generates the kernel of this map.
Thus the theorem has been proved. [J

Lemma 1.6 Assume that zy,...,2, are algebraically independent over Z.
Then, for m 2 n, bp_npr(@, o 20)y ooy bz, .0 20) are algebraically in-
dependent over Z.

Proof. The assertion follows immediately from an isomorphism

Sym[zy, ..., Zu] @ Sym[Zptt, .. 2] /(€1 oy zm) 1 1 <7< m)
~ Sym[zq,...,zu}/(hj(z1,...yz0) m—n+1< 7 <m)
induced by the identity on Sym[zq,...,%.]; Zut1,. . ., Zm are independent vari-
ables transcendental over xy,...,z,. (c[. Lemma 1.5). O

Theorem 1.4 and Lemma 1.6 imply the following

Corollary 1.7 Let P(t) = Y rky AY(G)T"® be the Poincaré series of G. Then

1

(l _ T'Zm)(l _ T2(m—])) L (1 . T‘)(m—-n+1))
=T =T (1=1)

P(t) =

Moreover we have obviously

Corollary 1.8 The elements c(ei(xr,...,2s)), | £ 1 < n, generale alge-
braically the ring A*(G) over Z.

10



2 Statement of the main result for type C

We assume here n < m; the case m = n was treated in [H-B] (see also [P-R1]).

For p = 1,...,n denote 0, 1= o((m —n+p,m—n—1,...,2,1)//8).
It turns out (see Lemma 3.2) that o, corresponds to e,(z1,...,z,) via the
isomorphism from Theorem 1.4. By Corollary 1.8, A*(G) = Zloy,...,0.].
The main theorem of this paper gives an explicit formula for intersecting a
general Schubert cycle o(A), A € P,, with o,. This Pieri-type formula is,
however, more subtle than the other formulas of this type known to the au-
thors. Let, for the moment, g be a shape appearing nontrivially in the right
hand side of o(A) -0, = .... First “surprise” is that it can happen that
D} 7 Dj. The second one is that D%\ D{ can be a non-horizontal strip.
Finally, the formula involves some nontrivial multiplicities (which are powers
of 2).

To formulate the theorem we need several notions. Recall that we follow [M]
for conventions and terminology concerning partitions, diagrams, shifted dia-
grams etc.

A skew diagram D (i.e. a difference of two Ferrers diagrams) is connected
if each of the sets {¢ : 3; (¢,7) € D} and {j : 3; (:,7) € D} is an interval in
the set of positive integers. (In this work we will deal exclusively with skew
diagrams which are differences of two strict diagrams i.e. diagrams of strict
partitions.)

By an almost horizontal strip we mean a (possibly disconnected) skew dia-
gram with at most two boxes in each column such that the set of the highest
boxes in columns forms a horizontal strip, and the remaining boxes form a
horizontal strip with pairwise disconnected rows.

Every almost horizontal strip has a decomposition | JC; into connected
components; we will denote by C',-“) the set of highest boxes in columns and
write Ci(z) = Ci \ Cfl). Pictorially

Y77\
2227\
Y/ N\

000 ;

Ci

11



(EA—visualizes boxes in C‘-(l), N—boxes in C¥). Note that two boxes will
appear neither in the leftmost nor in the rightmost column of the component
in the situation of Definition 2.1 below. In other words a component of an
almost horizontal strip which satisfies this definition can be depicted as

The set of boxes C‘-m will be called the exerescence of C;.

Now suppose that two shapes A and g are given. In what follows, by a row
without further indications we will mean a row in the top part; by A- (resp. p-)
part of a row we understand its restriction to Dj resp. DL.

A row is called exceptional if its A-part contains strictly its p-part.

By a component we understand a shifted connected component of Dﬁ \
D%, A component is called extremal if, before a shift, it meets the leftmost
column.(Note that there exist at most one extremal component).

Since some combinatorics of shifted tableaux will emerge naturally, we will
use the following conventions. We say that a box t € D§ U D}, lies over a box
b € D’ if t and the shifted b are in the same column. We will also say in this
situation that b lies under t. A subset T of D{ U D}, lies over a subset B of
Df‘ if every box from 7' lies over some box of B. We will also say that B lies
under T if every box b from B lies under some box t from T'. If T is contained
in a row then we say that T' ends over B if the rightmost box of T (called
sometimes the end of T') lies over B.

Similarly for boxes b; and b, from Dﬁ, we will say that by lies over (resp.
lies under) by if the column of the shifted by is equal to the column of the
shifted b, and the row number of by is smaller (resp. bigger) than the row
number of by

Finally, a box in Dj \ D} will be called a (g — A)-boz.

Definition 2.1 u = (u!//p) is compatible with A = (A*//X8) if
1) D% > D} and D%\ D is an almost horizontal strip and the extremal
component is an (ordinary) horizontal strip.
Dj, \ Dj is a horizontal strip with pairwise disconnected rows.
2) The A-part of at most one row ends over a component but none over
the extremal one. If a row ends over a component we say that they are

related. A component which is related to some row will be called related.
Similarly a row which is related to some component will be called related.

12



3) Each exceptional row is related to a component, over which the u-part
of this row ends.

4) If a (p — A)-box lies over a component then this component is neither
extremal nor related and this box lies over the leftmost box of the com-
pouent.

5) An excrescence can appear only in a related component under the A-part
of the related row; no box from the p-part of the related row lies over
_ the excrescence.

(In particular, an excrescence can appear only in a component related to an
exceptional row.)
The main result of the present paper is:

Theorem 2.2 for every A€ P, andp=1,...,n

o(A) oy = > 2CHo(n),

where the sum is over all j compatible with A, |p] = |A| + p and e(A, p) is the
cardinality of the set of components that are not extremal, not related and have
no (g — A)-bozes over them.

Example 2.3 m=6,n=25
o(5//3,1) 03 = a(6//5,1) + 2%0(6//4,2) + o(6//3,2,1) +
a(5//6,1) + 20(5//5,2) + 20(5//4,3) +
20(5//4,2,1) + 20(4//6,2) + o(4//5,3) +
o(4//5,2,1) + o(3//6,3) + o(3//5,4)

» LEE N NN ] s o || .I ] sle| e .l.l I

. a|le | .l e |8 ||| e L AR B BERRE]

sje |0 o |o | i | sle e ]
L

LER NN ] . . : - —l_l | e |0

13



The nonshifted version is:

.....I .....Ij ....I.]I
sl |s |0 |e s |0 |o |0 |e .....I
o|afe | elefe e|eo]e

.....] ejoeite|e|e *o|eje|w |0
ale]e ele|e 1] oo |
T T T GRLETT

We now consider some special cases of the theorem. We write for partitions
Fand K, oy =0t +m—mn,.. . ip_n + 1//K), 01 :=018.

Assume {(/) < m —n — 1. Then it follows from the theorem that

o) 0p = E oy,

sum over J O [ such that |J| = |I|4+p and J\[ is a horizontal strip. Arguing as
in in [P, Section 6], we deduce from it and Pieri’s and determinantal formulas
for S-functions:

Corollary 2.4 For cvery partition | C (n™™),
o'l = Det[o'ih-h+q]15hrqsl(”'
In particula’f‘ O(ym=n) = (o'")m—ﬂ .

Assume now [(/) = m — n. Then the theorem gives

ooy = D DT

0<hSiman Jn

where the sum is over J, D I, |Ji| = |/|+p—h and J, \ I is a horizontal strip.
Here is another special case. Let I be a partition with 7 = n. Then

O(um=ny/1 * Op = Z 2'{(]'1]"])0'(,,'"*")//1;.] + Z 2'{“'(’”.1)J)U(n'"—")//(n-[-l)J:
J J

14



where the first sum is over (strict) partitions J O (i2,...), 11 < n, |J| =
|I| — n + p; the second is over (strict) partitions J D (43,...), ;1 < n + 1,
|J|=|Il=n+4p—1; and nJ \ I (resp. (n + 1)J \ 1) is a horizontal strip. In
the both sums f(/, L) means the number of components of L\ I not meeting
the leftmost column, and—after shifting—not meeting the m — n rightmost
columns of the (basic) m x m square.

[n particular,

Onm=n)//(nn—1,..,1}) " Op = T(nm=n)/f(n41n,..,n=p+2n=p,.,1)
The latter equality is also a particular case of the following formula. Assume

ID>(nyn—1,...,1). Then

Omm=m)ff1 = Op = Za(u"‘—")//h
J
the sum over (strict) partitions J O [ such that |J| = [I|+pand J\ [ isa
horizontal and vertical strip.
We deduce from it and Pieri’s and determinantal formulas for S-functions:

Corollary 2.5 Let I be a partition contained in (n™). Then for the conjugate
partition J of [ one has:

Onm=n)/l(nn=-1,. )+ = Tnm-n}f/(nn-1,..,1) " Det[ajh-h—i-q]lSh,q_(_n-

It would be interesting to give an explicit formula expressing o,y as a
polynomial in the o,’s. For n = m such a Giambelli-type formula was given in
[P, Section 6] with the help of Schur’s Q-polynomials.



3 Calculus of divided differences

Let z = (z1,...,Zm) be a sequence of independent variables.
We have “symplectic divided differences”:
d; : Z[z]) — Z[z] (of degree —1) i =1,...,m, defined by

o(f) = (f=sifN)/(@i—2zn) i=1...,m—1
In(f) = (f = suf)/22m

(here, the s;, 7 < m, acts on Z[z| by transposing z; and x;41 and s, acts on
Z[z] by sending z,, to —z,,, the other variables remaining invariant).
For every 1 the following Leibniz-type formula holds for f, g € Z[z]:

9i(f-9) = J-(0ig) +(8:f) - (s19) (4)
We will need in the sequel the following formulas for generating functions.
Let a = (@m, @1, .-.,a2,a1) € {—1,0,1}™. Define

Ea = H(l - a,-:z,-).
i=1
For example for a = (0,...,0) we have g = 1; if a = (0,...,0,1,...,1)
amj ( ) a (

1

then Eq = [](1 + z;) =: E say, is the generating function for the elementary
f=1
symmetric polynomials in q,...,Z,.

Lemma 3.1 a) s;(£a) = Ea where
o — (@y e oy Qg2 iy Qi1 Qimyy .oy ) 2 <M
(= Cyry - ooy ) i=m
b} Fori=1,2,...,m—1
O0i(Fa)=d- Ew if a;i=ap41+d (d=-2,—-1,0,1,2)

where &' = (ap,...,0,0,...,a1) is the sequence a with a;y1, a; replaced
by zeros. In particular if A is a composition of some s- and J-operations
then for cvery a, A(Fy) = (scalar)- Ear, where &' is uniquely determined
if this scalar is not zero.

C) am(Ea) = Qyy E(O,am._l,...,al)' 0O
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Next, we recall that for any w € W and every reduced decomposition
w = 8 ... 8, one can define J,, := 0, o ... 0 Jd;—an operator on Z[z] of
degree — l(w). In fact d, does not depend on the reduced decomposition
chosen. There exists a surjective ring homomorphism

c: Zlz] = A™(F)

(called the characteristic map) whose value for a homogeneous f € Zlz] is

given by
N= Y )X
Hw)=deg f
(we refer to [B-G-G] and especially to [D2] for details concerning c).

Lemma 3.2 For every p = 1,...,n, denoting by ey(z1,...,z,) the p-th ele-
mentary symmetric polynomial in z,,...,x,, we have

clep(Z1y -3 Zn)) = Xonpyrorsnoran = 0p € AP(G).

Proof. It is sufficient to show that d,(ey(z1,...,2,)) = 0 unless w = w, :=
Sp—pdl * ov- " Suo1 v Sy oand Bw“,)(ep(:z:],... y2y)) = 1. This follows easily by
induction on n using the following properties of 0;:

Oi(eg(xry...,x1)) #0 only if h =1,
and
dieq(wr, ..., 7)) = eg_1{zy, ..., ximq). O

Note that the lemma says that the p-th Chern class of the tautological
isotropic n-bundle on G is equal to o,.

Let f\ € Z[z] be homogeneous such that ¢(fy) = o(A). Then for w € W,
l{w) = |A|, we have Oy(f)) # 0iff w = wy and 3, (f») = 1. Our goal is to find

the coefficients m,, in

c(fy-epfzyy. .. 2,)) = Em”a(p).
It is convenient to use the following coordinates for indexing boxes in shapes:

m m=-1 ... 2 1

m-—n tO])

1 bottom

17



(i.e. the leftmost column now has the number m and we use a separate num-
bering of the top and the bottom rows). Note that the first coordinate of a
given box will indicate the number of its row (it will be always clear whether
it is a top or bottom row) and the second—the number of its column.

For a shape yu we denote by D, the set of boxes obtained by removing from
D, the following set of boxes:

(1,m), ey (Ln+2), (Ln+1)
(2,m), vy (2,m42)

(m —n,m)

Consider now a subset D of b“. The boxes in :9# which belong to D will

be called D-bozes; the boxes in D, \ D will be called ~D-bozes. Denote by D*
(resp. D) the restriction of D to DY, (resp. D%). Now we associate with D an
operator 37 , and a word rp.

Definition 3.3 Read bu row by row left to right and from top to bottom.
Every D-box (resp. ~ D-box) in the i-th column gives us the s; (resp. ).
Then 92 is the composition of the resulting s;s and &;’s (the composition
written from right to left).

Definition 3.4 Read bu. Every D-box in the i-th column gives us the s;.
~ D-boxes give no contribution. Then rp is the word obtained by writing the
resulting s;’s from right to left.(In other words, one obtains rp by erasing all
the g;'s from 8f .

Example 3.5 (i) Note that for D = JDD,\, rp is the reduced decomposition of
wy given before Example 1.3.
()m=14 p=/(12,6,5//10,6,2)

1413 12 11 10 9 8 7 6 5 4 ¢
n7/W//8y/an
%,//4 /// (D-boxes are

% top shaded here)

%% %%%V l bottom




6‘? = 813061408906100811081206]308140850860.970380390319
0511 0012081305140 0805083100 817001300130 d503590 o
0811 0812007003083085005 0860870030890 Sg 081900,
YD = 51278148758 89 510" S11 0 513 7 S14 7 8117 890 St S12

*Sq " Sg ° 87 89 S10-

Proposition 3.6 [n the above notation,
muy =Y 0 (ep(z1,...,70)),

where the sum is over all D C D, such that rp € R(w,) *.

Proof. We know that m, = du,(fx - ey(z1,-..,z.)). Moreover we have
Ow, = Bﬁ. The multiplicity m, = 3ﬂ(f/\ - ep(z1,...,2,)) can be computed
by a consecutive applications of (4) used in this way: we apply only the 3;’s
(and the identity operators) to fy; and both the s;’s and 9's to ey(z1,...,,).
We get

my, = Zafo(f)‘) . af(ﬁp(ll:])-..,mn))’ .

the sum over all D C b,,. The summand corresponding to such a D is not zero
only if card D > deg f) and card(D,— D) > p. But card D, = deg fy+p. Thus
the above inequalites can be replaced by equalities. Consequently, it follows
from the properties of fi that d.,(fy) =0if rp ¢ R(w,) and 1 if rp € R(wy).
The assertion follows. O

2For a given w € W we denote by R{w) the set of its reduced decompositions.
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4 z- and v-ribbons

We treat a reduced decomposition wy = s; - 85, - ... - 8;, as a sequence of
“simple transposition—operations” s;,, A = 1,...,{, which produces w, from
the identity permutation (1,2,...,m):

(...(((1,2,...,77?,)-S,‘l)-S,'?)-...)-S,", =

(y13~ .- )yn—k;dfkyzk-—ls N LT )Um—n.)-

These “simple transposition-operations” will be called “s;, -operations” h =
L,..., I or simply “s; -operations”.

Assume that an element w = (wy,...,w,) € W is written in the “barred
permutation notation”. Recall that s;, 2 < m, acting from the right on W,
interchanges the :-th and (2 + 1)-th component of w. The s,, supplies the m-th
component of w with a bar, if this component is bar-free.

Proposition 4.1 Either ezactly one (bar-free) z, or exactly one v, is nontriv-
ially involved in a “s; -operation”. More precisely

a) Ifi, = m, then the operation is:

z — ...z
b) If iy, < m, then the operation is:
B B SR 7 2T (z#2z5,7=1,...,k)

or,
R P S SR 47 S

(t£z5,5=1,...,k; e #v,,r=1,...,m—n).

Proof. For every j = 1,...,k, we define O; to be the family of all “s; -
operations” which move z; forward, toward the m-th place or supply z; with a
bar.

For every » = 1,...,m — n we define O] to be the family of all “s;-
operations” which move v, forward. Obviously card O; > m—z;+41. Moreover,
cardO] > n+r —v, +d, where d, = card{j : z; < v, ,j = 1,...,k}. Indeed,
this is a minimal number of simple transpositions which transform v, from the
vr-place to the (n +r)-th place in wy. The summand “d,” comes from the fact
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that every z. goes under “s;-operations” to the m-th place; thus if z; < v,
then some “s; -operation” acts as

U L UpZ

It is clear that the sets O;, y = 1,...,kand O}, »r = 1,...,m — n are disjoint.
Therefore the cardinality of s;-operations needed to pass from (1,...,m) to
w) is at least equal to

k m—n
Z card O; + Z card O, > Z(m +1—z)+ Z(n +r—v, +d;)
J T =1 r=1

Comparing this with (1.3) we conclude that the sets O;, 7 = 1,...,k, O,
r = 1,...,m — n, exhaust all the “s;-operations” (and, consequently, the
above inequalities for card O; and card O can be replaced by equalities). This
implies the assertion. O

Corollary 4.2 No “; -opcration” as above can interchange z. and z, , v. and
V.. A “s; -operation” can only cause the following changes:

— move z. forward, toward the m-th place and v, backward toward the first
place.

— move z. forward, toward the m-th place with moving no v,.
— move v. forward with moving no z,.
— supply 2. (in the m-th place) with a bar.

Now invoking definitions and notation from Section 3 we introduce the
notion of a z- and v-mark of a D-box. Assume that rp € R(w,). Suppose that
a D-box appears in the i-th column (z = m,m—1,...,2,1). We associate with
it its mark (a,b) € {0,1,...,k} x {0,1,...,m — n} where

1) If 2 = m, we put b = 0 and a is the subscript in z. that is supplied with
a bar by the operation s; |

2) If © < m, we denote by a (resp. by b) the subscript of z. (resp. of v.)
that is moved by the operation s;. If no z. (resp. v.) is moved by the
operation s; , then we put a = 0 (resp. b = 0).

We will call a (resp. b) the 2- (resp. v-) mark of a D-box. A D-box with a
mark (a,bd), @ > | will be called a z-boz. A D-box with a mark (a,b), b > 1
will be called a v-box. A D-box with a mark (0,56), b > 1 will be called a pure
v-bor.
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Example 4.3 m =10, » =7, ¢ = (10,8,5//8,7,2,1), A = (10,8,5//7,4,1),
wy = (2,5,6,9;10,7,4;1,3,8). Two possible D C D, are depicted below
together with marks of their D-boxes (“CD” visualizes here a ~D-box)

10 9 8 7 6 5 4 3 2 1

(0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)
(0,3) (0,3) (0,3) (0,3) (0,3) (0,3)
(0,8) (0,8) (0,8) (0,8
@) (1,0) (1,0) (1,0) (L,8) (1,0) (1,0) O
(2,00 (2,0 (2,0) (28) O O O
(3,0) O

10 9 8 7 6 5 4 3 2 !

(0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)
(0,3) (0,3) (0,3) (0,3) ©O O
(0,8) (0,8 (0,8) (0,8)
00 (1,0) (1,0) (1,0) (1,8) O (0,3) (0,3)
(2,00 (2,0) (2,0) (2,8) O (1,0) (1,0)
o O
(3,0)

Let us record some properties of z- and v-boxes.

Proposition 4.4  a) z-boxes with a fized z-mark and pure v-bozes with a
fized v-mark form a connected set of bozes in each row.

b) (Separateness) In a fized row, any two sets of D-bozes are disconnected
(i.e. there is at least one ~D-box between them) provided:

— they are equipped with two different z-marks > 1,
— they are purc v-bozes and equipped with two diffcrent v-marks,

— one of them consists of z-bozes with a fized mark and the second—of
pure v-bozes with a fized mark.

c) The set of z-bozes with a mark (j,0) where j 2 1 is fized and b can vary,
s contained entirely in the bottom part and is of the form

(twym), (b1, m = 1), ., (tzj,Zj),

where t,, <ty <. <A
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d) The z-marks of bozes in a fized column (strictly) increase from top to

bottom.

e) In D' only pure v-bozes appear. Their v-marks in a fized column {strict!
vp prP Y

increase from top to boitom of D*.

Proof. The assertions a) and b) are obvious. As for ¢), the proof of the second
assertion is exactly the same as the one of Lemma 4.3c) in [P-R1]; then the
first assertion follows because the leftmost box in every z-ribbon must appear
in the m-th column. Finally, the proof of d) and €) is the same as the one of

Lemma 4.3d) in [P-R1]. O

Definition 4.5 A set of z-boxes with a mark (j,d) where j > 1 is fixed and b

can vary will be called a z-ribbon of z-mark j.

A set of v-boxes with a mark («,r) where » > 1 is fixed and « can vary will

be called a v-ribbon of v-mark r.

Remark 4.6 (i) A z-ribbon of mark j can be depicted as:

bottom

N,
.
%77 .
E 7

(1|n) (ZIJ)

(ii) In a similar way one can visualize the top part of a v-ribbon:
S?Il) :
I|m
m-—n{ r- -:r N
I:-- ; top
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The property depicted here is analogous to Proposition 4.4(c). Its proof is
mutatis mutandis the same as the one of Lemma 4.3¢) in [P-R1]. (Recall that
all top v-boxes are pure.)

Note that Proposition 4.4 admits the following obvious complement con-
cerning v-boxes in the bottom part of D,,.

Proposition 4.7 Read the bottom part of v-ribbon of mark ». Then the graph
of the function:

z = the number of a boz in y = the column number of
. [
the bottom part of the ribbon the boz

has properties:

1° It is a sum of sets of points of the form (which we will call a decreasing
and increasing part of the graph, respectively)

of cardinality > 1. (Note that a set consisting of a single point only can
be both an increasing or decreasing part of the graph).

2° No two decreasing (resp. increasing) parts of the graph can appear suc-
cessively.

3° The end and the beginning of two successive parts have the same y-
coordinate.

(Under this identification the function y(z) is decreasing over pure v-bozes and
increasing over non pure v-bozes).

Example 4.8
po= (23,11,9//21,19,15,12,10,8,2,1)
A o= (21,14,9//19,14,13,9,6,4, 1).

In the picture below “0O” visualizes ~D-boxes, z-ribbons are depicted with

“ ? and v-ribbons—with ¢ ",
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We end this Section with some information on deforming of z-ribbons, which
is the key technical tool of the present paper.

Fix 7 = 1,...,k and consider the z-ribbon of mark j. Choose a box in the
last row of the ribbon.

Lemma 4.9 Assume that the following configuration of D-boxzes appears (a
can be in the m-th column, b—if exists—is a ~D-boz).

? ;/f%////////////////////////*— the end of the ribbon

? Ib? }

|
~ [ boxes here

Such an a will be called a breaking box. Then the change of the configuration
to:

|

gives us a ' such that rpy € R(w)) and the z-ribbon with mark j in D' is
obtained through the same deformation from the z-ribbon in D.

Proof. Arguing by induction on the distance from a to the end of the ribbon,
it 1s sufficient to prove the assertion when a is the last box of the ribbon. The
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assertion for the change:

(unshaded boxes are not in D) follows from the relations s;s; = s;8;, [i— 7| > 1,
applied to all D-boxes appearing in reading between the initial and final place
of the deformed box. O

Now suppose that D} C Dz. We shall now describe a process of deforming
rows of D% inside of D%. The description is by descending induction on the
number of a row, starting from the last row.

1) If (I(A%),m) is a breaking box we apply the deformation from the lemma
so many times as it is possible. In other words we push down in a maximal
way the last row of D% in Db,

2) Pick a row in D} and suppose that lower rows in D4 have been already
deformed in Dﬂ. Let a be the first breaking box in the row, appearing
in reading. Apply the deformation from the lemma so many times as it
is possible. Assume that b is the first breaking box in the deformed part
of the row; apply to b the deformation from the lemma so many times
as it is possible. Then repeat the same with the first breaking box of the
resulting part of the row ete.

It is clear that this procednre defines a certain subset D® in DZ such that
rpeupt, € R{w,), together with its decomposition into z-ribbons. We will call
this subset the mazimal deformation of DY in Df‘ and denote (D)™ (this
notation differs from the one in [P-Rl1]).

Example 4.10 The maximal deformation for

pb = (18,16,15,14,12,11,4,3,2,1)

A= (17,14,12,10,7,4,2,1).

(Boxes in D and their deformations are marked with dots. Deformed z-ribbons
are depicted with “_".)
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5 Some omnibus lemmas

Lemma 5.1 Assume that rp € R(wy). Then, the following configuration of
D-bozes cannot appear:

%

? ¢/ | ?

s

? a’ 7
Y.

where a is a pure v-box, b—~ D-boz, c—D-boz.

Proof. The s-operator of a changes (...,v.,z,...) = (...,z,v.,...), where
z # z.,v, (the pair (v.,z) occupies the A-th and (h + 1)-th places). The
existence of b implies that the s-operator of ¢ changes the position of z from
the A-th to the (h + 1)-th place. This contradicts Proposition 4.1. O

The next two lemmas can be proved by a direct calculation.

Lemma 5.2 The following configuration of ~D-bozes in Df‘ implies Bf(E) =0:

(%)

; :
7[] ?[ ?

and more generally (shaded bozes are D-bozes and marked unshaded bozes
are ~ D bozes):

()

28



and more generally (m)

(iii)

(iv)

a row of ~D boxes

|E| a is ~D bozx.

Lemma 5.3 The following configuration of ~ D-bozes in D}, implies BE(E) =0:
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Lemma 5.4 The top segment of each v-ribbon in D' C b“ such that D (E) #
0, is of the form (cf. Remark 4.5):

W |

i top

Proof. Suppose, conversely that the top segment of a v-ribbon contains a
configuration:

A\

N

"N

Since obviously a and b are ~ D-boxes, we get a contradiction with Lemma 5.3,
The assertion follows. O

Lemma 5.5 Let D C D,. Assume that for some 1 the following configuration
of D and ~D-bozes appears in the bottom part of D:

(m) 0 ("

7 of D-boxes

I t

| 1

t ' 7 al

| | /// - a staircase
1 I

1 |

T T

a~D-box b a~D-bhoxa
somewhere here
here
ifg<m

Let A be the “part” of the operator 01’? formed by the composition of s- and

d-operators of all D-bozes above the i-th row. Assume A(E) = (scalar) - Eq
where a;, = 0. Then ()f(E) = 0.
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This situation occurs—for example—if
e i =1; a row of D! ends in the A-th column.
¢ = |; a ~D-box appears in D} in the h-th column.

e : > | and the (z — 1)-th row consists of ~D-boxes only.

Proof. The s-operators of marked D-boxes from the staircase change succes-
sively the position of 0 in the sequence a from the A-th place to the g-th place.
Then the J-operator of a causes 37(E) = 0 in virtue of the existence of b. O

Lemma 5.6 Assume D C D, for a shape p, such that D' is a strict diagram
and D, \ D* is a horizontal strip with pairwise disconnected rows. Let A be the
“part” of OF formed by the composition of s- and d-operators of all D*-bozes.
Then A(E) =1 - Eq where the sequence a is built as follows:

0 if h is the column number of the end of a row of D
ar, =4 0 if his the column number of a boz in D, \ D
1 in the opposite case.

The proof is a straightforward calculation.
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6 Admissible deformations of z-ribbons

Assume that A, g € Pyyn=1,...,m,and D C D,.

Proposition 6.1 The conditions
rp € R(wy) and  O2(E)#0 (6)

hold only if the set of z-bozes of D is equal to the mazimal deformation of D}
in D,
it

A proof will be divided into several steps. We claim first that D§ C Di".
Indeed DY is obtained from the set of z-boxes of D by the operation reverse
to the maximal deformation (see Section 4). It is now clear from the form
of a z-ribbon (Proposition 4.4(¢c)) and the way of deforming, that this forces

DS c D},
We will now show that the maximal deformation of DY in Df‘ 1s necessary
in order to avoid the vanishing d7(E) = 0 (for short: “vanishing”). Fix

a row in D% and assume that the assertion has been proved for lower rows
(i.e. they have been maximally deformed to avoid the vanishing). Assume that
the maximal deformations have been performed in all preceding breaking boxes
of the row and fix the next free breaking box a. Our situation is depicted as
follows:

m > already deformed

N\
§
§

D75 777777

te 70T non z-boxes 4

(Note that a box b must exist because z° is strict.) We will show that to avoid
the vanishing, the maximal deformation of a together with its right-hand part
is necessary. If we do no changes at all, then after adding pure v-boxes we have

e b is a ~ D-box: this follows from the separateness property {Proposi-

tion 4.4(b))
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e ¢is a ~D-box: this follows from Lemma 5.1.

o in the row of e there exists a ~D-box left to ¢ (the only exception is that
¢ lies in the m-th column which can happen iff a is in the m-th column;
but this leads to a contradiction by Lemma 5.2(i1)). Indeed, if a lies in
the column with number < m, then regardless ¢ exists or not, a non z-box
? must be a ~D-box (use the separateness property or the fact that no
pure v-box appears in the m-th column).

But then, the configuration of boxes {0,¢, b} contradicts Lemma 5.2(i).
Now suppose that we can escape the vanishing by pushing down a final seg-
ment of the row starting after a. Pictorially, the effect of such a deformation is:

7222274257777, | 6 |
G777/

Here, f is not a pure v-box by the separateness property, and b is not a pure
v-box by Lemma 5.1. If a is in the m-th column, then g is not a pure v-box
and the configuration of ~ D-boxes {g,h,f} contradicts Lemma 5.2(i) or (ii).
If a is not in the m-th column then ? is not a pure v-box and the configuration
of ~D-boxes {0,h,f} contradicts Lemma 5.2(3).

The proposition has been proved. [

-]
Proposition 6.2 In D C D, satisfying (6), the z-bozes with the same z-mark
can appear in at most two succesive rows.

Proof. Assume first that some z-boxes with the same mark appear in three
different rows. We visualize the situation as follows (boxes which are not
depicted are irrelevant):

27777
AN\

I a [oroiiiiiiiiiniiiiiiiiiiiill e
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The existence of segments of z-boxes depicted here as and follows
from the construction of maximal deformation that is necessary by Proposi-
tion 6.1. 1t follows from Proposition 4.4(d) that the z-marks of §- and (-
boxes are equal (being both bigger by 1 than the z-mark of B3-boxes). Thus,
by Proposition 4.4(d), a is a ~ D-box. Since, by the separateness property b
and ¢ are also ~D-boxes, the configuration {a, b, ¢} contradicts Lemma 5.2(3).

Now suppose that some z-boxes with the same z-mark appear in two rows
that are not successive. We visualize the situation as follows (boxes which are
not depicted are irrelevant):

N I B N

|
%77

The existence of (nonempty) segments of z-boxes depicted here as and

[T follows from the construction of maximal deformation that is necessary
by Proposition 6.1. The non z-boxes a,0,e are ~ D-hoxes by the separateness
property. If ¢ (resp. b) is a D-box then its s-operator moves forward the
same element as the s-operator of f (resp. g). Hence ¢ and b are not pure v-
boxes. Moreover ¢ is not a z-box by Proposition 4.4(d), and b is not a z-box by
Proposition 4.4(c). Then the configuration of ~ D-boxes {a,b, ¢} contradicts
Lemma 5.2 (i).

The proposition has been proved. 0O

Lemma 6.3 In D C D, satisfying (6), no row with a ~ D-boz in the m-th
column contains a z-boz.

Proof. Assume conversely that there exists a row containing a z-box and a
~ D-box a in the m-th column. This cannot be the first row of the bottom
part, because the z-ribbon containing a z-box must contain a box in the m-th
column above this 2-box. Pick a leftmost z-box b in the row. Pictorially,

¢

] K177 Kl

Then ¢ must be a ~ D-box (in the opposite case the s-operator of ¢ will
move the z., that is pushed forward by the s-operator of b, backward—which
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is not possible (see Section 4). But the configuration of ~ D-boxes {a,?,c}
contradicts Lemma 5.2(i) or (ii). The assertion has been proved. O

Proposition 6.4 [n D C D, satisfying (6), there are no two rows with ~ D-
bozes in the m-th column. Consequently I(;®) < 1(A¥) + 1.

Proof. Suppose, conversely, that there exist two rows with ~ D-boxes in the
m-th column. Pick up a pair of such rows with the smallest row numbers i < j.
By the lemma both the z-th and j-th rows do not contain z-boxes. Thus by
the construction of maximal deformation that is necessary by Proposition 6.1,
the (2 — 1)-th bottom row must contain an initial segment of a z-ribbon (of
z-mark (2 — 1)) of length > A; + 1, similarly the (z — 2)-th row must contain an
initial segment of a z-ribbon {of z-mark (i — 2)) of length > A, +2, ..., finally
the first row must contain an initial segment of a z-ribbon (of z-mark 1) of
length > A; +1—1. A similar argument, if j > 24 1, shows that the rows with
numbers 3 —1,7—2,...,24 1 must contain similar initial segments of z-ribbons
of length > A; 4+ 1, 2 A; +2,...,2 A; + (7 — 1) — | respectively. Let a denote
the box (¢,m — (3 —1)). The following picture (where only those z-boxes which
are relevant for our purposes, are shaded) will be helpful to end the proof:

top 2| e I ?
bottow 1 i A AN i i
977777777 %
-
%Z/é%{/é{/ 4/%%% (shaded boxes
f/ﬁf/é@//%///ﬁf/ % belong to D)
UAZHL A%
(#) b a I |
977%
77%
%%

SN\
N

(7)

If ais a ~D-box, then Lemma 5.5 shows that the d-operator of § involved in
af} causes the vanishing. If a is a D-box (i.e. a pure v-box) then we pick the
leftmost pure v-box b in the row of a. The bottom part of the v-ribbon of b
above the z-th row consists of non pure v-boxes and i1s a “staircase” which ends
with a box ¢, say (see Proposition 4.7). Note that 0 and e belong to D, because

of the condition uf,_, > 1(¢®) + 1. If 9 is a ~D-box then we get immediately
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the vanishing by Lemmas 5.6 and 5.5. If 9 € D then ? is a pure v-box (with the
same mark as the v-mark of ¢). By the property of v-ribbons from Lemma 5.4,
© must be the rightmost box of the initial (horizontal) segment of the v-ribbon
of ¢. Then, obviously ¢ is a ~D box and applying Lemmas 5.6 and 5.5 we get
the vanishing,.

The proposition has been proved. O

Proposition 6.5 For D C D, satisfying (6), if (i,m) ¢ D® then the i-th
bottom row consists entirely of ~ D bozes. Moreover, each bottom row with
number > 1 consists entirely of D-bozes. In particular, ppyy = Ay for b > 1.

Proof. By Lemma 6.3 the only D-box which can possibly appear in the i-th
bottom row is a pure v-box. Suppose that such a box appears and assume that
a is the leftmost pure v-box in the :-th row. By the construction of maximal
deformation that is necessary by Proposition 6.1, arguing as in the proof of
Proposition 6.4, we infer that the part of the v-ribbon of a above the -th
bottom row looks like (& denotes here z-boxes, B—uv-boxes);

r--
[}

l% :)le tom
%
(2) ~D-boxes a

(Note that the top segment of a v-ribbon is determined by Lemma 5.4). Now,

Lemma 5.5 applies and gives the vanishing. The resulting contradiction proves

the first assertion. The second assertion then follows from Lemma 5.2(iv). O
Note that from the above results of this section we infer:

Corollary 6.6 If (8) is salisfied then, under the mazimal deformation, every
z-boz can be moved doun by one row at most.

Proposition 6.7 The conditions (8) are satisfied only if D!\ DY is an almost

horizontal strip and its component meeting the leftmost column is an (ordinary)
horizontal strip.
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Proof. The latter assertion is a consequence of Proposition 6.5. To prove the
former we pick up a component of Df" \ D} not meeting the leftmost column.
Suppose first that there are 3 boxes of the component in one column. Pick up
the leftmost column with this property and the highest triple of boxes {a, b, ¢}
in it. Pictorially

0| a
e|ilb
|9bjc

The box 0 belongs to D§. Then ¢ € D} ; otherwise 3 can be deformed to the
place of § in contradiction with Corollary 6.6 (note that i,f,f ¢ D} because
A is strict). If g € Df'\ then neither ¢ nor ? can be moved down. So we have
z-boxes: 0, ¢, g and non z-boxes: a, b, ¢, i, f, h. The boxes q, i, h are ~ D-boxes
by the separateness property. Then the configuration: a z-box 9, a ~ D-box
a, a ~ D-box i implies that b is a ~ D-box. Also, the configuration: a z-box
e, a ~D-box i, a ~ D-box h implies that f is a ~ D-box. The configuration
of ~ D-boxes {b,f,h} contradicts Lemma 5.2(i). If g € D} then e (together
with the suitable part of its row in D% )} is moved down exactly by one row
(Corollary 6.6 ). Then d (together with the suitable part of its row in D}) is
moved down exactly by one row. So after the deformation, the former place of
i now is occupied by 9 and the former place of h now is occupied by e. Nothing
arrives to the places of b and f. By the separateness property b and f are
~ D-boxes. Since in the f-left part of the row of f there exists a ~D-box j (the
left-hand side neighbour of the breaking box pushed down ), the configuration
{j, b, f} contradicts Lemma 5.2 (i).

Now divide the boxes of the component of D%\ DY into the horizontal strip
of the highest boxes in columns and the set of remaining boxes. Decompose
this latter into different rows. Assume that there exists a pair of such rows
which are not disconnected. Let a be the rightmost box of the lower row and
b the leftmost box of the higher one: (¢,0 & D} as they are ~ D-boxes over a
and b, g & D% because X is strict)

e (D
flelb
DOk

The box ¢ belongs to Dy by the previous step of the proof. Then § € Dy;
otherwise e can be deformed to the place of a in contradiction with Corollary
6.6. Hence g ¢ D% and we have two possibilities for . Suppose first that
h € D,. Then neither f nor ¢ can be moved down. So we have z-boxes: e,
f, b and non z-boxes: a, b, ¢, 0, g. The boxes D, ¢, g are ~ D-boxes by the
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separateness property. The configuration: a z-box e, a ~D-box 0, a ~D-box ¢
implies that b is a ~D-box. Similarly, the configuration: a z-box f, a ~D-box
¢, a ~D-box g implies that ais a ~D-box. Then the configuration of ~D-boxes
{a,a,b} contradicts Lemma 5.2(i)

Now suppose f) € D5. Then f (together with a suitable part of its row in
D%) is moved down exactly by one row. Also, e (together with a suitable part
of its row in D%) is moved down exactly by one row. So after the deformation
the former place of g now is occupied by f and the former place of ¢ now is
occupied by e. Nothing arrives to the places of a and b. By the separateness
property a and b are ~D-boxes. Since in the a-left part of the row of a there
exists a ~ D-box i (the left-hand side neighbour of the breaking box pushed
down), the configuration {i,a, b} contradicts Lemma 5.2(3)

The proposition has been proved. [1

We end this Section with some definitions needed in the sequel. Suppose
that D’ \ D} is like in Proposition 6.7. Decompose D%\ D into its connected
components. Then use the maximal deformation procedure of Section 4. While
the extremal component deforms to a single row meeting the leftmost column, a
“typical” nonextremal component C; looks like after the maximal deformation:

highest staircase

staircase I roof |

b o

‘_"‘— excrescence

L
(™

Here the roof and the staircase are the result of the deformation of 01,(1) (we

use the notation before Definition 2.1). More precisely, the roof of a deformed
(nonextremal) component is the segment of a row consisting of the highest
boxes of the deformed component, without the leftmost box; the staircase of
such a component is its deformation without the roof. The excrescence is the
result of the deformation of C'-m which, in fact, remains unchanged under the
" deformation. The latter remark justifies a use here of the same name as the one
in Definition 2.1. We will use freely the names from the picture. The existence
of excrescences is the main difference between the case n = m (where they do
not appear) and the case n < m.

Let us record some properties of excrescences which are rather immediate
consequences of the maximal deformation procedure.
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Lemma 6.8 An ezcrescence can appear only under the roof of a deformed
component and there is no pair of bozes of excrescences lying one over the
other. (We follow the terminology before Definition 2.1). Moreover, a segment
of a row between the staircase boz and an excrescence box must contain a z-boz.

This means that an excrescence cannot be “too big”. We will see in Sec-
tion 9 that excrescences can only appear in components satisfying some rather
special properties.
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7 Admissible positions of pure v-boxes

Lemma 7.1 Let D C lo)ﬂ. Assume that for some 1 a segment of purc v-bozes
appears in the i-th bottom row of D,. Let A be the “part” of 65 formed by
the composition of s- and J-operators of all boxzes in D, above the i-th row. If
A(E) = (scalar) - Eqa, then a, = 0 where ¢ — 1 is the column number of the
leftmost boz of the segment,

Proof. If : = |, the assertion follows from Lemma 5.6. Now assume that
the highest segment of pure v-boxes appears in some later row. Consider a
“staircase” of boxes starting just over the leftmost box of the segment:

(9)

(1) segment of pure v-boxes
If ais a ~D-box then the d-operator of a gives ¢, = 0. If a € D then we have
three possibilities for b:

e 0 is a ~D-box; then the d-operator of b together with the s-operator of
a give a, = 0.

o b ¢ D,; this means that a lies in the first bottom row and the top part
of the v-ribbon containing the segment ends exactly over the pure v-box
a (which is the first box in the bottom part of the ribbon). Applying
Lemma 5.6 we get a,—y = 0; then the s-operator of a gives us ¢, = 0.

e b € D; then we have analogous three possibilities for ¢. Continuing this
way we prove the assertion for the highest segment of pure v-boxes.

For lower segments of pure v-boxes the reasoning is similar. Let A’ be the
“part” of t)f formed by the composition of s- and J-operators of all boxes
of D, above the row containing the preceding segment of pure v-boxes. If
A'(E) = (scalar) - Eq then (by induction) we can assume that e, = 0 where
q' — 1 is the column number of the leftmost box of this segment.

We can now apply—word by word—the previous reasoning to our segment
of pure v-boxes in question; the role of the top part of the v-ribbon is now
played by the preceding segment of pure v-boxes. O

40



Corollary 7.2 Let D C [o),,. Assume that for some i a segment of pure v-bozes
appears in the i1-th bottom row of D,,. If the column number of the leftmost boz
in the segment ism —1, or, it is <m —1 and two ~D-bozes appear lcft to the
segment (in the i-th row), then dP(E) = 0.

Proof. Combine Lemma 7.1 and Lemma 5.5.
-]

Let \,p € Ppym = 1,...,m, and D C D,. From now on we assume
rp € R(w,) and 82(E) # 0. In what follows by d.c. we will mean a deformed
component of Df \ D} in Df‘ through the maximal deformation process (see
the end of Section 6).

Proposition 7.3 Purc v-bozes can appear only in the roof of a d.c., and form
a segment starting from the leftmost boz of the roof. In particular, no two pure
v-bozes with different marks can appear in the same roof.

Proof. By the separateness property, it is clear that no pure v-box can appear
in the staircase of a d.c.. Suppose that a pure v-box appears in some excres-
cence of a d.c.. Pick such a leftmost box a. Then the row of the excrescence
looks like (see Lemma 6.8)

D-boxeslTV/////////% r Jefe]

> | z-boxes here

a stalrcase

~ D-box

The existence of a ~ D-box b follows from the separateness property for seg-
ments of z- and pure v-boxes. Applying Corollary 7.2 we get the vanishing—
contradiction.

It is clear from Corollary 7.2 again, that the leftmost box of the leftmost
segment of pure v-boxes in the roof must be the same as the leftmost box of
the roof. To show the last assertion, suppose conversely that pure v-boxes with
different mark also appear in the roof. Pictorially

D-boxes I'V///////////% NN

purc v-hoxes

the highest staircase
~ D-box

Since the marks of - and N-boxes are different, by the separateness property
there exists a ~ D-box in [_Z_1. Again, Corollary 7.2 now applied to the
N-ribbon implies the vanishing—contradiction.

The proposition has been proved. O
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Proposition 7.4 No two different roofs can contain pure v-bozes of the same
v-ribbon.

Proof. It follows from the construction of maximal deformation which is nec-
essary by Proposition 6.1, that the bottom part of D, over the roof of a d.c.
looks like {compare the proof of Proposition 6.4 for details):

/

the roof of a d.c.

where shaded boxes are D-boxes. Therefore, the bottom part of the v-ribbon
containing a segment of pure v-boxes from the roof of a d.c. above this roof
looks like (see Proposition 4.7):

7
% gy bottom
%
|i

7

#,
7

It is now clear that this v-ribbon cannot meet the roof of another d.c.. O
We end this Section with the following easy fact.

N

a4

7N

Lemma 7.5 The lengths of rows in D' form a decreasing sequence (i.e. D' is
a strict diagram).

Proof. Note first that such a formulation makes sense by Lemma 5.4. In w,
we have v; < ... < vp_y. Since in the process of moving the v,’s, which is
coded by boxes of D, there is no change ...v.v.... — ... v,.v. ..., the order of
the v,’s before performing “s; -operations” of the boxes of D! is the same. But
this 1s a restatement of the assertion. O

Thus the proof of the proposition gives as a by-product the following:

Corollary 7.6 The marks of segments of pure v-bozes in the roofs of consec-
utive deformed components, increase from top to bottom.
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8 When are rp € R(w,) and 9)(E) #0?

In this Section we will prove the following theorem.

Theorem 8.1 Assume that A € P, n = 1,...,m. Then for every p € P,

there exists at most one D C D, such that

rp € R{w)) and 6£(E) # 0 (8)

Let D C b“. Assume, from now on, that D satisfies (8).

By Section 6 we know that the connected components of D,?; \ Db are de-
termined uniquely and the columns of their appearance form pairwise disjoint
sets a.s. .

For a given D C D, D will denote the set D with the added set (5).

We will say for a given component that a top row of D is associated with the
component if the row ends in the leftmost column of the shifted component.

Assume for the moment that this is the »-th top row. Then by properties
of v-ribbons (Section 7) pure v-boxes with mark r can appear in the bottom
part only in the roof of precisely one (associated) component, where they form
a segment starting in the leftmost box of the roof. Moreover the following
equality holds

AL = (length of the r-th row in 5‘) + (length of the segment) (9)

We record the following property of D satisfying (8). (From now on we
follow the terminology before Definition 2.1)

Lemma 8.2 No top row of D satisfying (8) can end over the roof of a deformed
component.

Proof. Suppose, conversely, that there exists a top row which ends over the
roof of a deformed component. Pictorially

(as.)

3The abbreviation “a.s.” means here and in the sequel “after shifting”(of the bottom
part of the diagram)
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Then the configuration of ~D-boxes {a, b, ¢} causes the vanishing because
of Lemmas 5.5 and 5.6—contradiction. O

Lemma 8.3 If for some D C D, satisfying (8) a certain component is as-

soctated with the r-th top row, say, then the same is true for any D' C D,
satisfying (8).

Proof. Consider the »-th top row in D'. If it is not associated with the
component, then using the previous lemma we conclude that it ends in the
column which is, either

1) left to the leftmost column of the shifted component, or
2} right to the rightmost column of the shifted component.

Case 1) cannot occur because otherwise AL would be bigger than it actually
is by (9).

In case 2), by properties of v-ribbons (Section 7) an eventual bottom seg-
ment of pure v-boxes with a mark r should occupy—a.s.—columns left to the
leftmost column of the component. In virtue of (9) and remarks preceding (9),
this would imply that A! is smaller than it actually is—contradiction. The
lemma is proved. O

Proof of Theorem 8.1

It is sufficient to show that D' is determined uniquely by conditions (8).
By the lemma we know the rows in D' that are associated, are determined
uniquely. In virtue of remarks preceding the lemma and by (9), we know that
the lengths of the remaining i.e. non-associated rows are the same as in Di.
Since, by Lemma 7.5, D' is a strict diagram, we conclude that the decreasing
sequence of the row lengths in D'is uniquely determined. But this means that
D'is uniquely determined.

The theorem has been proved. O

As a corollary we get an explicit recipe to construct D satisfying (8) for
given A, p (for which such a D exists).

Recipe 8.4 Assume that A and p are two shapes salisfying the conditions:

1) Df‘ > D} and Df‘ \ D} is an almost horizontal strip whose extremal
component is a horizontal strip.

2) At most one row from D) ends over a component but none over the
extremal component.
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The recipe says:

(1) Perform the mazimal deformation of DS in D to get (D*)** C D%, say,
as described in Section 4. The connected components of Di \ D% deform
to a family of subsets of Df‘ \(D"YM# (called deformed components) of the
form (7). Different deformed components occur in pairwise disjoint sets
of columns a.s..

(2) Shift the bottom part from now on. For every component pick a row which
ends over the component. Subtract the segment of the row which lies over
the roof of the deformed component and push it down to the roof.

Recall that the necessity of the condition 1) above to obtain D fulfilling (8)
follows from Proposition 6.7. Similarly, the necessity of the condition 2) above
follows {from Lemma 8.2 combined with Proposition 7.3; the assertion about
the extremal component being a consequence of Lemma 8.2 combined with
Proposition 6.5. Moreover, note that pushing down of segments of top rows
can be performed in an arbitrary order, as this takes place in disjoint sets of
columns.

Lemma 8.5 The conditions (8) for D from the recipe hold only if
(1) D\ D is a horizontal strip with pairwise disconnected rows.

(ii) No (p — A)-boz lies over the staircase of a related component.

Proof.
(i) Regardless of the deforming or not deforming of some boxes in D}, the
assertion follows from Lemma 5.3.
(ii) An eventual box a lying over the staircase of a related component, can
appear only in the row situated just below the related one. Then the box b
in the related row and in the column next right to the column of ais a ~ D-
box (because D/ is a strict diagram). Since the configuration a,b contradicts
Lemma 5.3, the box a cannot exist. O

Observe that the conditions (i) and (ii) from the lemma imply that D\ D'
18 a horizontal strip with pairwise disconnected rows.

Example 8.6
po= (23,11,9//21,19,15,12,10,8,2, 1),
A = (21,14,9//19,14,13,9,6,4,1).



In the picture below “0” visualizes ~ D-boxes, z-ribbons are depicted with

“__ 7 and v-ribbons—with .7,

o 0O O 0 OO0 byA b
N\ DYy C D
o ( ) i

O »» O O
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2) Finally we get the following set depicted with “.”:

.................‘....4...--».............-...4...0....,...-......4..4.»...‘.......g.......‘.......q.. O O O O O O O

Example 8.7 We show here, how the summands in Example 2.3 are obtained
using the algorithm described in this Section.

X o o o 1)(00-0 2)(00- ,3)(00000
« ¢« o OO T +« e« + 00O T e e s Qe T s e v O e
] . . .

X o o 2 » lXooon 2)(.... ax..loo
s o ¢ O — 4« e ¢ O 7 ¢ ¢ ¢ O — & ¢ ¢ O

e O s O « O [ o]

X o o v » ]x‘.‘. 2)(-000 3)(.o.l0
. e s e e = s e s A ST

e O o 0 o 0 o 0

) . . .

X o s e a ])(.coo _2)(000 3 *» o + O
e 0 s 000 T 4 e s 000 T e e s 0 e T o s s 00O
. . . .

X o s o o ]Xcooo 2)(... ,SXoooO
e s e OO0 — s e e OO0 — e s e O e — e e s O
¢« O « O ¢« O ¢« O
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We start with Dy with added an almost horizontal strip to D}; then we
perform a maximal deformation of the bottom part (l>), then we perform the
deformation from Recipe 2) (=); finally we add additional g-boxes to the top
part, if possible (-L))
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Remark 8.8 A pushing down of a segment of a top row to the roof of a
deformed component can be presented as a composition of the following oper-
ations:

7k ZE
% %
/ — 7

/i

L L]

(unshaded boxes are not in D). This operation can be justified with the help of
Coxeter relations. The following example allows one to understand the general
case. The change

5

7

7
%

3 2 1
7 7
74 — 757
2% %777
% 7

3 2 1

7

N

N g

N

NNNE

corresponds to the sequence of equalities:

5554838255848382815554538283
(commutativity relations)
= 55848355584 (3_23352)31 85848389283
(longer relations)

= 8584838554 (.9352@31.‘3534338253

(commutativity relations)
= 858483558483828185 (5_38483).8283

(longer relations)
¥

= $55483555453525155(845354)5253

(commutativity relations)
= S85548355545835281855453528453
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9 Computation of multiplicities

In this Section we follow the terminology before or in Definition 2.1. Let us fix
two shapes A and p satisfying the following properties:

1) D% > D} and D%\ D} is an almost horizontal strip such that the extremal
component is a horizontal strip.

2) D; \ Dj is a horizontal strip with pairwise disconnected rows.

3) The A-part of at most one row from D} ends over a component but none
over the extremal one.

4) No (p — A)-box lies over the staircase of a related component.

For such A and g we define a subset D** C bu to be the result of applying
Recipe 8.4 to the Dy and D,. Let us write D = DM for brevity. We know
by Sections 6-8 that the above conditions are necessary for the conditions:
Bf(E) # 0 and rp € R(w,) to be satisfied. Note the following consequences
of Recipe 8.4(2)

i) D C D, satisfies the hypothesis of Lemma 5.6 (see the remark after
Lemma 8.5).

i1) The end of no row in D' lies either over an extremal component or over the
roof of a nonextremal one (in particular the end of no row in D* lies over
an excrescence).

Lemma 9.1 Let A be the part of 6‘? formed by the composition of s- and 0-
operators of bozes in D'. Then A(E) = Eq withay, = @y = ... = Uy (g=1) =
1 where ¢ = I(1}) if no extremal component appears and, in the opposite case,
q is the row number of the deformed extremal component.

Proof. Assume first that {(p®) = (M) = k. Then A\, > 1, AL, > 2, ...
M >k A, >k+1,.... Wesee that no box from the segment of the & + 1
leftmost boxes in the (m — n)-th row of DY is moved down by Recipe 8.4(2).
The assertions follows from Lemma 5.6.

We now assume that {(u®) = [(A*) + 1. Assume that the deformed extremal
component lies in the g-th row where 1 < ¢ < I(g%). Since the boxes from Dﬁ
that lie above this component belong to D} (because of the construction of the
maximal deformation from Section 4), we get A! > ¢ (by the definition of

m—n —

a shape). We claim that A} > g+ 1. Indeed, otherwise the A-part of the

m—1n -—



(m —n)-th row in the top part would end over the extremal component, which
is impossible. The assertion now follows from Lemma 5.6.

The Lemma has been proved. O

For a given box a € D, \ D define Aq to be the “ part” of E)f formed
by the s- and @-operators of boxes read before a. Define a by the equation
AG(E) = (scalar) - Eq with the help of Lemma 3.1. Note that this definition
of a makes sense if the lefthand side is nonzero. So, whenever we will have a
associated with a via the above equation, we will tacitly assume A (F) # 0.
Moreover, let h be the column number of a.

Corollary 9.2 i) If h < m then one has either apyy =0 or apyy = —1. The
both corresponding cases hold iff there is a ~ D-boz in the a-left part of
the row of a (resp. there is not).

i) Ifh=m then a,, = 1.

Let h < m. We say that a box a € D, \ D is bad if apyy = a5 = 0. We say
that a box a is essential if apyy = —1, a; = 1. (It follows from Lemma 5.6 that
both bad and essential boxes lie in D%).

Proposition 9.3 The multiplicity m,, (see Section 3 ) is not zero if no bad
bozes appear.

Proof. For a € D, \ D define an integer mg by the equality 9,(Eqg) = mq - Eq
from Lemma 3.1(b). Then 82(£) =[], ma, the product taken over a € D, \ D
(by Lemma 5.6 it suffices to take this product over a € D%\ D). Therefore
OP(E) # 0 iff mg % 0 for every a € D} \ D. Thus we have reduced to showing
me=01ifface Dz \ D is bad. It follows from the corollary that m, = 0 only
if h < m. Then by Lemma 3.1 one has mq = 0 iff @y = ap(= —1,00r 1).
The third possibility is ruled out by Corollary 9.2(i).We claim that a; # —1.
Indeed, a; = —1 only if A is the column number of the end of some row in in
Dz above a; since DZ is strict, this is not possible. The proposition has been
proved. O

Proposition 9.4 [f there are no bad bozes then m, = 2° where e is the number
of essential bozes.

Proof. In the above notation we have m, = [], ma, the product taken over
a € D2\ D. It suffices to show that |mg| > 1iff a is essential and if this happens
then mq = 2. It follows from Corollary 9.2(i) that |mg| > 1 only if A < m.
Then Lemma 3.1 and Corollary 9.2(1) imply |mq| > | iff apqq = =1,a, = 1
(i.e. ais essential). Moreover in that case my = 2. O

We will give a diagrammatic answer to the following question:
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When a box can be bad?

By definition a is bad iff A < m and apy = ap = 0. We get by Corollary
9.2(i) that app1 = 0 iff there is a ~ D-box in the a-left part of the row of a.
It follows from the form of a deformed component (see the end of Section 6
) that a bad box can appear either as a non leftmost box of the deformed
extremal component or in the roof or in the excrescence of the deformation
of a nonextremal one. Let A’ be the column number of a after shift. Let
A(E) = Ea. By Lemma 5.6 we have a}, = 0 (resp. a}, = 1) iff a ~ D-box
in D! lies over a (resp. no ~ D-box in D), lies over a). If a appears either in
the deformed extremal component or in the roof of a nonextremal one then
ap = a}, (@, is moved down to the h-th place in a by successive transpositions
of adjacent places). For a lying in the excrescence of a component with «, =1
one has a; = 0 iff there is a ~ D-box which lies over a and is situated in the
roof of the component. This exhausts all the possibilities.

We can summarize this discussion in:

Lemma 9.5 A bozx a is bad iff there exzist a ~ D-boz in the a-left part of a
and there is a ~ D-boz from D, which lies over a (Recall that we are in the
situation when the property (ii) before Lemma 9.1 holds.)

The above discussion gives the following criterion for the absence of bad
boxes.

Proposition 9.6 The set of bad bozes is empty iff the following conditions are
satisfied:

1) No ~D-boz lies over the deformed extremal component.

2) No ~D-boz (in D!) lics over a ~D-boz situated in the roof of a deformed
component.

3) Qwer each boz of the excrescence of a component there cxists a D-box in the
roof of the component. No ~D-box in Dj, lics over the cxcrescence.

Now we pass to a diagrammatic answer to the following question:
Wlen a box a can be essential?

Here we assume h < m. We know from Corollary 9.2(i) that app; = —1
iff all a-left boxes in the roof of a are D-boxes. Thus an essential box cannot
appear in the deformed extremal component, and it can lie only in the staircase
of the deformation of a nonextremal one. The condition ¢, = | holds only if a
is situated in the highest staircase. Using Lemma 5.6 and arguing like in the
above analysis of bad boxes we see that the highest staircase can support an
essential box a iff neither a ~D-box (in D},) nor the end of of a row in D* lies
over a. We can summarize this in:
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Lemma 9.7 A bozx a is essential iff all a-left bozes of a of the row of a are
D-bozes and neither a ~D-box nor the end of a row in D' lies over a.

We also get:

Proposition 9.8 The number of essential bozes is the cardinality of the set of
noneztremal components whose staircase lies under neither a ~ D-boz nor the
end of a row in D*,

We will now translate the content of Proposition 9.6 to our initial shape
data.

We will first show that for given two shapes A and g satisfying the condition
1)—4) from the begining of this Section plus an obvious condition: DM C D,,,
the absence of bad boxes is equivalent to the compatibility of g with A (see
Definition 2.1). Suppose first that 2.1(1) and 2.1(2) hold, no p\ A-box lies over
the staircase of a related component and bad boxes do not exist. Then

e Both assertions of 2.1(3) follow from D** C D, and Recipe 8.4(2)

e The assertion of 2.1(4) saying that no (¢ — A)-box lies over an extremal
component is a consequence of 9.6(1) combined with the fact that the
extremal component is not related (2.1(2)). The assertion of 2.1(4) saying
that no (u — A)-box lies over the roof of a component follows from 9.6(2)
combined with Recipe 8.4(2) regardless the component is related or not.

e 2.1(5) follows from 9.6(3) combined with Recipe 8.4(2).

Conversely, we now prove that if g is compatible with A then bad boxes do not
exist. Indeed:

e 9.6(1) holds because the extremal component is not related and no (u—A)-
box lies over it.

¢ An eventual ~D-box (in Dj,) lying over a ~ D-box situated in the roof of
a deformed component must be a (i — A)-box regardless the component
is related or not. Hence the assertion of 9.6(2) follows immediately from

2.1(4).
e 9.6(3) follows from 2.1(5) in virtue of Recipe 8.4(2).

Now assume that p is compatible with A.
The next proposition enumerates essential boxes.

Proposition 9.9 The number of essential bozes is equal to the number of com-
ponets that are not extremal, not related and no ( — A)-bozes lie over them.
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Proof. Using Proposition 9.8 we must show that that for extremal component
C the following conditions are equivalent:

1) Neither a ~D-box nor the end of a row in D! lies over the staircase of C.
2} C is not related and no (g — A)-box appears over C.

1) = 2) Since the end of no row in D' lies over the highest staircase
then by Recipe 8.4(2), C is not related. Then the absence of ~ D-boxes over
the staircase implies that no (g — A)-box lies over this staircase. The latter
statement is equivalent to saying that no (z— A)-box appears over C ( by 2.1(4)
)-
2)=1) If C is not related then the A-part of every row ends either left
or right to C. This implies, by Recipe 8.4(2) that the staircase of C does not
lie under the end of a row in D*'. Finally, an eventual ~ D-box lying over the
staircase must be a (g — A)-box and its appearance would contradict 2).

The proposition has been proved. O

We have translated informations about the existence and absence of a sub-
set D C D, such that 2(F) # 0 and rp € R(w,) into initial shape-data
modulo the following fact. Note that the set of columns of the shifted ex-
tremal component is, in general, different from the set of columns of the first
deformed and then shifted extremal component. Hence to complete the proof
of Theorem 2.2 we only need:

Lemma 9.10 (i) The end of the A-part of a top row lies over the extremal com-
ponent iff it lies over the deformation of this component.

(1) A (g — A)-boz lies over the extremal component iff it lies over the defor-
mation of this component.

Proof. Both assertions follow easily from the fact that the A-part of every top
row ends right to the I(A*)-th column, in the numbering from left to right (cf.
Definition 1.1). O

This finishes the proof of Theorem 2.2.

Remark 9.11 The method of bad and essential boxes used here, gives a sim-
plification of calculations in [P~R1, Section 6.
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10 The main result for type B

Let now G’ be the Grassmannian of isotropic n-subspaces of a (2m + 1)-
dimensional complex vector space equipped with an orthogonal nondegener-
ate form. Then the Schubert subvarietes of G’ are labelled by the same poset
P, as above. The divided differences d;, + < m are the same as in the sym-
plectic case but 8,,(f} = (f — smf)/zm- We have c(ey(z1,...,3,)) = oy,
p=1,...,n <m (this is in contrast to the “m = n-case” where c(e,) = 20,).
With these divided differences, Lemma 3.1 a), b) goes through without changes,
but am(Ea) = 2a,, - E(O.am_l.....al)-
Consequently an analog of Theorem 2.2 for type B reads as follows:

Theorem 10.1 For every A € P, and p=1,...,n, one has in A*(G"),

o(A) o, =Y 2 o),

where the sum is over all j compatible with A, || = |A| + p and €'(A, p) is the
cardinality of the set of components that are not related and have no (p — A)-
bozes over them. (Note that A*(G') as a ring admils the same description as
A*(G) in Theorem [.4; however, the o,’s generale it algebraically only after
tensoring by Z[1/2]).

Remark 10.2 In a recent paper [S], the author gives a "triple intersection
theorem” for GG'. The result gives a necessary condition for a nontrivial inter-
section of two arbitrary Schubert cycles and a "special” Schubert cycle.( Note
that unlike to the present paper, where the special Schubert cycles are (up to
a scalar) the Chern classes of the tautological subbundle on G, the "special”
cycles in [S] are (up to a scalar) the Chern classes of the tautological quotient
bundle on G’.) However, the main theorem of [S] gives only a partial insight in
the intersection theory on G’. Firstly, the condition given is not sufficient for
the nontrivial intersection which obstructs a deduction of a Pieri-type formula
from it ( Recall that one possible approach to the classical Schubert calculus,
used for instance by Hodge and Pedoe, derives the Pieri formula from an ap-
propriate triple intersection theorem). Moreover, the approach used gives no
information about the multiplicities occuring in the intersection of Schubert
cycles.

Note added in proof. After the first version of this paper was written,
S.Kumar has informed us that a result similar to our Proposition 3.6 was given
quite independently in [K-K, Proposition 4.31]. Note, however, that [K-K]
gives no sufficient condition for the intersection multiplicities, denoted by pj; ,,
in loc.cit., to be nonzero, in terms of v, w and u (of course we speak here about

55



the case I(w) = I(v) + I(w)). Moreover, [K-K] gives no expression for p}  as
a cardinality of an explicitly given set (again when [(u) = [(v) + I(w)). As
a matter of fact, the algebro-combinatorial methods invented and developed
in the present paper are a result of our attempt to solve these two problems
mentioned above which were not treated in [K-K].
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