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BOUNDARY VALUE PROBLEMS FOR NONCOMPACT BOUNDARIES
OF SPINc MANIFOLDS AND SPECTRAL ESTIMATES

NADINE GROSSE AND ROGER NAKAD

Abstract. We study boundary value problems for the Dirac operator on Riemannian Spinc

manifolds of bounded geometry and with noncompact boundary. This generalizes a part of
the theory of boundary value problems by C. Bär and W. Ballmann for complete manifolds
with closed boundary. As an application, we derive the lower bound of Hijazi-Montiel-Zhang,
involving the mean curvature of the boundary, for the spectrum of the Dirac operator on the
noncompact boundary of a Spinc manifold. The limiting case is then studied and examples
are then given.

1. Introduction

In the last years, the spectrum of the Dirac operator on hypersurfaces of a Spin manifold
has been intensively studied. Indeed, many extrinsic upper bounds have been obtained (see
[2, 3, 1, 5, 8, 9, 27] and references therein) and more recently in [22, 23, 24, 26, 20, 21, 45],
extrinsic lower bounds for the hypersurface Dirac operator are established. From these spec-
tral estimates and their limiting cases, many topological and geometric informations on the
hypersurface are derived.

In [22], O. Hijazi, S. Montiel and X. Zhang investigated the spectral properties of the Dirac
operator on a compact manifold with boundary for the Atiyah-Patodi-Singer type boundary
condition (or shortly APS-boundary condition) corresponding to the spectral resolution of
the classical Dirac operator of the boundary hypersurface. They proved that, on the compact
boundary Σ = ∂M of a compact Riemannian Spin manifold (Mn+1, g) of nonnegative scalar
curvature scalM , the first nonnegative eigenvalue of the Dirac operator on the boundary
satisfies

λ1 ≥
n

2
inf
Σ
H, (1)

where the mean curvature of the boundary H is calculated with respect to the inner normal
and assumed to be nonnegative. Equality holds in (1) if and only if H is constant and every
eigenspinor associated with the eigenvalue λ1 is the restriction to Σ of a parallel spinor field
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on M (and hence M is Ricci-flat). As application of the limiting case, they gave an elemen-
tary Spin proof of the famous Alexandrov theorem: The only closed embedded hypersurface
in Rn+1 of constant mean curvature is the sphere of dimension n.

Furthermore, Inequality (1) does not only give an extrinsic lower bound on the first nonneg-
ative eigenvalue but can also be seen as an obstruction to positive scalar curvature of the
interior given only in terms of a neighbourhood of the boundary. More precisely, let a neigh-
bourhood of the boundary Σ be equipped with a metric of nonnegative scalar curvature and
such that the boundary has nonnegative mean curvature. If the lowest positive eigenvalue
of the Dirac operator on the boundary is smaller than n

2
infΣ H, then the metric cannot be

extended to all of M such that the scalar curvature remains nonnegative.

Moreover, not just Spin geometry but especially Spinc geometry became recently a field of
active research with the advent of Seiberg-Witten theory whose applications to 4-dimensional
geometry and topology are already notorious, see [28, 43, 39, 29, 30, 19]. From an intrinsic
point of view, Spin, almost complex, complex, Kähler, Sasaki and some classes of CR mani-
folds have a canonical Spinc structure carrying natural spinors like parallel or Killing spinor
fields. Nowadays, and from the extrinsic point of view, it seems that it is more natural to
work with Spinc structures rather than Spin structures. Indeed, O. Hijazi, S. Montiel and F.
Urbano [25] constructed on Kähler-Einstein manifolds with positive scalar curvature, Spinc

structures carrying Kählerian Killing spinors. The restriction of these spinors to minimal
Lagrangian submanifolds provides topological and geometric restrictions on these submani-
folds. In [35, 36] and via Spinc spinors, hypersurfaces of some 3 and 4-dimensional manifolds
are characterised. From these characterisations, an elementary proof for a Lawson type
correspondence between constant mean curvature surfaces of 3-dimensional homogeneous
manifolds with 4-dimensional isometry group is derived. Moreover, necessary and sufficient
geometric conditions are given to immerse any 3-dimensional Sasaki manifold into the com-
plex projective space or the complex hyperbolic space [37].

In this paper, we extend the lower bound (1) to the infimum of the nonnegative part of
the Dirac spectrum of the noncompact boundary of a Riemannian Spinc manifold. When
shifting from the compact case to the noncompact case, many obstacles occur. Moreover,
when shifting from the classical Spin geometry to Spinc geometry, the situation is more
general since the spectrum of the Dirac operator will not only depend on the geometry of
the manifold but also on the geometry of the auxiliary line bundle associated with the fixed
Spinc structure.

When we consider a Riemannian Spin or Spinc manifold with noncompact boundary, the
main technical difference to the compact case is that we cannot restrict all our computations
to smooth spinors. For compact manifolds, this is possible by using the spectral decomposi-
tion of L2 by an eigenbasis. For complete manifolds, eigenspinors do not have to exist or even
if they do, in general they do not form an orthonormal basis of L2 since continuous spectrum
can occur. Additionally, the proof of Inequality (1) in the closed case uses the existence of a
solution of a boundary value problem defined under the APS-boundary condition. While for
noncompact boundaries the idea of APS-boundary conditions can be transferred by using
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the spectral theorem, it is not clear to us whether they still defines a nontrivial boundary
condition, see Example 3.14. Moreover, even if they give a nontrivial boundary condition,
there may occur problems due to continuous spectrum.

In order to circumvent all these problems, a large part of the paper is devoted to give a
generalization of the theory of boundary value problems for noncompact boundaries, see
Section 3. We stick to the part of the theory that gives existence of solutions of such bound-
ary value problem, cf. Remark 3.13. For complete manifolds with closed boundary, the
theory of boundary value problems is given in [7] by C. Bär and W. Ballmann. They did
not only restrict to the classical Dirac operator but they generalized the traditional theory
of elliptic boundary value problems to Dirac type operators. Additionally, they proved a de-
composition theorem for the essential spectrum, a general version of Gromov and Lawson’s
relative index theorem and a generalization of the cobordism theorem.

In Section 3, we will classify boundary conditions for a Riemannian Spinc manifold (Mn+1, g)
with noncompact boundary Σ := ∂M and of bounded geometry, see Definition 2.2. Indeed,
we prove in Section 3 that the trace map or the restriction map R : ϕ 7→ ϕ|Σ where ϕ is a
compactly supported smooth spinor on M can be extended to a bounded operator

R : domDmax → H− 1
2
(Σ,SM |Σ).

Here domDmax is the maximal domain of the Dirac operator on M , SM |Σ is the restric-
tion of the Spinc bundle SM to Σ and for the definition of H− 1

2
(Σ, SM |Σ) see the Appendix.

The map R is not surjective. But in Theorem 3.10, we show that the extension map – a
right inverse to R – can be extented to a bounded linear operator from R(domDmax) to
domDmax. This will allow to equip R(dom Dmax) with a norm ‖.‖R that turns it into a
Banach space. With these ingredients, we can then classify the closed extensions of the
Dirac operator Dcc acting on smooth compactly supported spinors on M : For every closed
extension of the Dirac operator acting on smooth compactly supported spinors on M the set
B := R(domD) ⊂ H− 1

2
(Σ,SM |Σ) is closed in (R(domDmax), ‖.‖R). Conversely, every closed

subset B ⊂ H− 1
2
(Σ,SM |Σ) gives the domain dom, DB of a closed extension. Such subsets B

are called a boundary conditions.

Then, we generalize the existence result for boundary value problems to our noncompact
setting. For this, we need the notion of B-coercivity at infinity, see Definition 3.1. This no-
tion generalizes the notion of coercivity at infinity for closed boundaries as used in [7], where
this assumption is also needed when characterising the Fredholmness of the Dirac operator.
The B-coercivity at infinity condition will in general depend on the boundary condition B
and under some additional assumptions, it coincides with the coercivity at infinity condition
used in [7].

Proposition 1.1. Let B be a boundary condition and the Dirac operator

DB : domDB ⊂ L2(M, SM)→ L2(M,SM)

be B-coercive at infinity. We consider PB⊥ := Id − PB : R(domDmax) → R(domDmax),
where PB is the projection from R(domDmax) to B. Then, for all ψ ∈ L2(M,SM) and
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ρ̃ ∈ domDmax where ψ −Dρ̃ ∈ (ker(DB)∗)⊥ the boundary value problem{
Dϕ = ψ on M,

PB⊥Rϕ = PB⊥Rρ̃ on Σ,

has a unique solution ϕ ∈ domDmax, up to elements of the kernel kerDB.

Proposition 1.1 will be one of the main ingredients to generalize Inequality (1) to our non-
compact setting. As boundary condition B we will not take the APS-boundary condition
as in the closed case but another one: B±, cf. Section 4. For closed boundaries, the B±
boundary condition was introduced in [24] to prove a conformal version of (1). Using Propo-
sition 1.1 for the boundary condition B± and the Spinc Reilly inequality on possibly open
boundary domains, we obtain

Theorem 1.2. Let (Mn+1, g) be a complete Riemannian Spinc manifold with boundary Σ
and L be the auxiliary line bundle associated to the Spinc-structure. Assume that (M,Σ) and
L are of bounded geometry, cf. Definition 2.2 and 2.3. Moreover, we assume that Σ has a
nonnegative mean curvature H with respect to its the inner unit normal field of Σ, the Dirac
operator D is (B+)- or (B−)-coercive at infinity and scalM + 2iΩ· is a nonnegative operator
where iΩ denotes the curvature 2-form of L. Then, the infimum λ1 of the nonnegative part
of the spectrum of the Dirac operator on Σ satisfies

λ1 ≥
n

2
inf
Σ
H. (2)

If λ1 ≥ 0 is an eigenvalue, equality holds if and only if H is constant and any eigenspinor
corresponding to λ1 is the restriction of a parallel Spinc spinor ϕ on M .

The paper is structured as follows: In Section 2, we give all the preliminaries as e.g. the Spinc

Dirac operator and the assumption on the bounded geometry. The theory of boundary values
will be generalized to our noncompact setting in Section 3. The special boundary condition
B± needed to proof the desired inequality is examined in Section 4. In Section 5, we study the
coercivity condition for the Dirac operator. Then, we review the spinorial Reilly inequality in
order to ready to proof the inequality in Section 7. In the remaining parts, we will compare
the extrinsic Inequality (1) with the intrinsic Friedrich’s inequality. Moreover, we will give
some examples of the limiting case where the equality case cannot occur if we consider the
Spin Dirac operator on these examples. Finally and in the appendix, we give a short proof
of the extension of the trace map to H1(M,SM) and its right inverse E .

2. Notations and preliminaries

In this section, we briefly review some basic facts about Spinc geometry. Then, we give
the necessary preliminaries on the Sobolev spaces on manifolds with boundary, the Trace
Theorem and its implications, some basics of spectral theory and we recall the closed range
theorem.

The Spinc Dirac operator. Let (Mn+1, g) be an (n + 1)-dimensional Riemannian Spinc

manifold with boundary. On such a manifold we have a Hermitian complex vector bundle
SM endowed with a natural scalar product 〈., .〉 and with a connection ∇ wich parallelizes
the metric. Moreover, the bundle SM , called the Spinc bundle, is endowed with a Clifford
multiplication denoted by “·”, · : TM −→ EndC(SM), such that at every point x ∈ M ,
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“·”defines an irreducible representation of the corresponding Clifford algebra. Hence, the
complex rank of SM is 2[n+1

2
]. Given a Spinc structure on (Mn+1, g), one can prove that the

determinant line bundle det SM , has a root of index 2[n+1
2

]−1, see [15, Section 2.5]. We denote
by L this root line bundle over M and call it the auxiliary line bundle associated with the
Spinc structure.
Locally, a Spin structure always exists. We denote by S′M the possibly (globally) non-existent
spinor bundle. Moreover, the square root of the auxiliary line bundle L always exists locally.
But, SM = S′M ⊗ L

1
2 , see [15, Appendix D] and [35]. This essentially means that, while

the spinor bundle and L
1
2 may not exist globally, their tensor product (the Spinc bundle) is

defined globally. Thus, the connection ∇ on SM is the twisted connection of the one on the
spinor bundle (coming from the Levi-Civita connection) and a fixed connection on L.

With these ingredients, we may define the Dirac operator D acting on the space of smooth
sections of SM – denoted by Γ∞(M,SM) – by the composition of the metric connection and
the Clifford multiplication. In local coordinates this reads

D =
n+1∑
j=1

ej · ∇ej

where {ej}j=1,··· ,n+1 is an orthonormal basis of TM . It is a first-order elliptic operator
satisfying for all smooth spinors ϕ, ψ on M at least one of them being compactly supported

(Dψ,ϕ)− (ψ,Dϕ) = −
∫
∂M

〈ν · ψ|∂M , ϕ|∂M〉ds, (3)

where (., .) is the L2-scalar product given by (ϕ, ψ) =
∫
M
〈ϕ, ψ〉dv, ∂M is the boundary of M ,

|∂M denotes the restriction to the boundary, ν the inner unit normal vector of the immersion
∂M ↪→M and dv (resp. ds) is the Riemannian volume form of M (resp. of ∂M). Hence, if
∂M = ∅, the Dirac operator is formally self-adjoint with respect to the L2-scalar product.

An important tool when examining the Dirac operator on Spinc manifolds is the Schrödinger-
Lichnerowicz formula:

D2 = ∇∗∇+
1

4
scalM IdΓ(SM ) +

i

2
Ω·, (4)

where ∇∗ is the adjoint of ∇ with respect to the L2-scalar product, iΩ is the curvature of
the auxiliary line bundle L associated with a fixed connection (Ω is a real 2-form on M) and
Ω· is the extension of the Clifford multiplication to differential forms.

Example 2.1. (i) A Spin structure can be seen as a Spinc structure with trivial auxiliary
line bundle L and trivial connection (and so iΩ = 0).
(ii) Every almost complex manifold (M2m=n+1, g, J) of complex dimension m has a canonical
Spinc structure. In fact, the complexified cotangent bundle T ∗M ⊗ C = Λ1,0M ⊕ Λ0,1M
decomposes into the±i-eigenbundles of the complex linear extension of the complex structure
J . Thus, the spinor bundle of the canonical Spinc structure is given by

SM = Λ0,∗M = ⊕mr=0Λ0,rM,

where Λ0,rM = Λr(Λ0,1M) is the bundle of r-forms of type (0, 1). The auxiliary line bundle
of this canonical Spinc structure is given by L = (KM)−1 = Λm(Λ0,1M), where KM is the
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canonical bundle of M [15, 32, 25, 35]. Let α be the Kähler form defined by the complex
structure J , i.e. α(X, Y ) = g(X, JY ) for all vector fields X, Y ∈ Γ(TM). The auxiliary line
bundle L = (KM)−1 has a canonical holomorphic connection induced from the Levi-Civita
connection whose curvature form is given by iΩ = iρ, where ρ is the Ricci 2-form given
by ρ(X, Y ) = Ric(X, JY ). Here Ric denotes the Ricci tensor of M . For any other Spinc

structure on M2m, the spinorial bundle can be written as [15, 25]:

SM = Λ0,∗M ⊗ L,
where L2 = KM ⊗ L and L is the auxiliary bundle associated with this Spinc structure. In
this case, the 2-form α can be considered as an endomorphism of SM via Clifford multiplica-
tion and we have the well-known orthogonal splitting SM = ⊕mr=0SrM , where SrM denotes the
eigensubbundle corresponding to the eigenvalue i(m−2r) of α, with complex rank

(
m
k

)
. The

bundle SrM corresponds to Λ0,rM⊗L. For the canonical Spinc structure, the subbundle S0
M is

trivial. Hence and when M is a Kähler manifold, this Spinc structure admits parallel spinors
(constant functions) lying in S0

M [32]. Of course, we can define another Spinc structure for
which the spinor bundle is given by Λ∗,0M = ⊕mr=0Λr(T ∗1,0M) and the auxiliary line bundle
by KM . This Spinc structure is called the anti-canonical Spinc structure.

Any Spinc structure on (Mn+1, g) induces a Spinc structure on its boundary Σ = ∂M and
we have {

SM |Σ ' SΣ if n is even,
S+
M |Σ ' SΣ if n is odd.

We recall that if n is odd, the spinor bundle SM splits into

SM = S+
M ⊕ S−M ,

by the action of the complex volume element. Moreover, Clifford multiplication with a vector
field X tangent to Σ is given by

X • ϕ = (X · ν · ψ)|Σ,
where ψ ∈ Γ∞(M,SM) (or ψ ∈ Γ∞(S+

M) if n is odd), ϕ is the restriction of ψ to Σ, ’•’ is the
Clifford multiplication on M . When n is odd we also get S−M ' SΣ. In this case, the Clifford
multiplication by a vector field X tangent to Σ is given by X •ϕ = −(X · ν ·ψ)|Σ and hence
we have SM |Σ ' SΣ ⊕ SΣ. Moreover, the corresponding auxiliary line bundle LΣ on Σ is
the restriction to Σ of the auxiliary line bundle L and iΩΣ = iΩ|Σ. We denote by ∇Σ the
spinorial Levi-Civita connection on SΣ. For all smooth vector fields X ∈ Γ∞(TΣ) and for
every smooth spinor field ψ ∈ Γ∞(M, SM), we consider ϕ = ψ|Σ and we have the following
Spinc Gauss formula [25, 35, 33]:

(∇Xψ)|Σ = ∇Σ
Xϕ+

1

2
II(X) • ϕ, (5)

where II denotes the Weingarten map with respect to ν. Moreover, let D and DΣ be the
Dirac operators on M and Σ. After denoting any smooth spinor and its restriction to Σ by
the same symbol, we have on Σ (see [25, 33, 35]) that

D̃ϕ =
n

2
Hϕ− ν ·Dϕ−∇νϕ, (6)

D̃(ν · ϕ) = −ν · D̃ϕ, (7)
6



where H = 1
n
tr(II) denotes the mean curvature and D̃ = DΣ if n is even and D̃ =

DΣ ⊕ (−DΣ) if n is odd. Note that σ(D̃) = {±λ | λ ∈ σ(DΣ)} where σ(A) denotes the
spectrum of an operator A.

Bounded geometry. In this paragraph, we recall the definition of manifolds of bounded
geometry.

Definition 2.2. [38, Definition 2.2] Let (Mn+1, g) be a complete Riemannian manifold with
boundary Σ. We say that (M,Σ) is of bounded geometry if the following is fulfilled

(i) The curvature tensor of M and all its covariant derivatives are bounded.
(ii) The injectivity radius of Σ is positive.

(iii) There is a collar around Σ, i.e: There is rΣ > 0 such that the geodesic collar

UΣ = [0, rΣ)× Σ→M, (t, x) 7→ expx(tν)

is a diffeomorphism onto its image where ν is the inner unit normal field on Σ. We
equip UΣ with the induced metric and will identify UΣ with its image.

(iv) There exists ε > 0 such that the injectivity radius of each point x ∈M \UΣ is greater
or equal than ε.

(v) The mean curvature of Σ and all its covariant derivatives are bounded.

Definition 2.3. (cp. [40, A.1.1] together with [13, Theorem B]) Let E be a hermitian vector
bundle over M where (M,Σ) is of bounded geometry. Then E is said to be of bounded
geometry if its curvature and all its covariant derivatives are bounded.

Remark 2.4. (1) Note that the above definition contains the usual definition of manifold
of bounded geometry without boundary. Moreover, if (M, g) is of bounded geometry,
then (Σ, g|Σ) is also of bounded geometry [38, Corollary 2.24].

(2) For the spinor bundle S′M associated with a Spin structure, the bounded geometry
follows automatically from the bounded geometry of M , [4, Section 3.1.3]. For a
Spinc manifold the situation is more general since the Spinc bundle SM does not only
depend on the geometry of the underlying manifold but also on the geometry of the
auxiliary line bundle L. But, SM = S′M ⊗ L

1
2 , where S′M is the locally defined spinor

bundle, L
1
2 is locally defined too and SM is globally defined. Thus, the assumption

that L is of bounded geometry assures that SM is also of bounded geometry.

Assumption for the rest of the paper: (M,Σ) and L are of bounded geometry.

Restriction of spinors to the boundary. We denote by Γ∞c (M,SM) all compactly sup-
ported smooth spinors on M . This allows boundary values if ∂M 6= ∅. The set of smooth
spinors that are compactly supported in the interior of M is denoted by Γ∞cc (M,SM). We
consider the restriction operator

R : Γ∞c (M, SM) → Γ∞c (M, SM)

ϕ 7→ ϕ|Σ.

By the Trace Theorem A.5, the operator R extends to a bounded operator

R : H1(M, SM)→ H 1
2
(Σ,SM |Σ).
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For the definition of these spaces see below and the appendix. If it is clear from the context
that Rϕ is considered instead of ϕ, we will sometimes abbreviate by using ϕ only. Note that
by Theorem A.6, the operator R has a bounded right inverse – an extension map E .

For abbreviation we set L2 = L2(M) = L2(M,SM) and L2(Σ) = L2(Σ,SM |Σ) and analo-
gously for other function spaces. Moreover, (., .) shall always denote the L2-scalar product
on M and (., .)Σ the one on Σ.

The Sobolev space H1 on manifolds with boundary. We define the H1 = H1(M,SM)-
norm on Γ∞c (M,SM) by

‖ϕ‖2
H1(M,SM ) = ‖ϕ‖2

L2(M,SM ) + ‖∇ϕ‖2
L2(M,SM ).

Finally, we define H1 = H1(M,SM) as the closure of Γ∞c (M, SM) with respect to the H1-norm
defined above. Note that

H1(M, SM) = {ϕ ∈ L2(M,SM) | ∃ϕ̃ ∈ L2(M, SM)∀ψ ∈ Γ∞cc (M, SM) : (ϕ̃, ψ) = (ϕ,∇ψ)}.

Using the Lichnerowicz formula (4), (3), the Gauß theorem (∇∗∇ϕ, ϕ) = ‖∇ϕ‖2
L2+

∫
Σ
〈∇νϕ, ϕ〉ds

and (6) we obtain another description of the H1-norm: For all ϕ ∈ Γ∞c (M,SM), we have

‖ϕ‖2
H1

= ‖ϕ‖2
L2 + ‖Dϕ‖2

L2 −
∫
M

scalM

4
|ϕ|2dv −

∫
M

i

2
〈Ω · ϕ, ϕ〉dv +

∫
Σ

〈ϕ|Σ, DW (ϕ|Σ)〉ds, (8)

where DW = D̃ − n
2
H is the so-called Dirac-Witten operator. Note that due to the local

expression of D and the Cauchy Schwarz inequality, we always have

‖Dϕ‖2
L2 ≤

n+1∑
i=1

∫
M

|∇eiϕ|2dv ≤ (n+ 1)‖∇ϕ‖2
L2 , (9)

for all ϕ ∈ H1(M, SM).

Lemma 2.5. For all ϕ, ψ ∈ H1(M, SM), Equalities (8) and (3) hold.

Proof. The proof is a more or less straightforward usage of the Trace Theorem A.5 and the
corresponding equalities on Γ∞c (M,SM). Indeed, let ϕi be a sequence in Γ∞c (M,SM) with
ϕi → ϕ in H1(M, SM). The Trace Theorem A.5 gives Rϕi → Rϕ in H 1

2
(Σ,SM |Σ) and, hence,

D̃Rϕi → D̃Rϕ in H− 1
2
(Σ,SM |Σ), cf. Remark A.4.iii. Clearly, ‖ϕi‖2

H1
→ ‖ϕ‖2

H1
and with (9),

this implies ‖ϕi‖2
D → ‖ϕ‖2

D. Moreover, the bounded geometry of (M,Σ) implies∫
M

scalM |ϕi|2dv →
∫
M

scalM |ϕ|2dv,
∫

Σ

H|ϕi|2ds→
∫

Σ

H|ϕ|2ds and

∣∣∣∣∫
M

〈Ω · ϕi, ϕi〉dv −
∫
M

〈Ω · ϕ, ϕ〉dv
∣∣∣∣ ≤ (‖ϕi − ϕ‖L2‖ϕ‖L2 + ‖ϕi‖L2‖ϕi − ϕ‖L2) sup

M
|Ω| → 0.

Note that due to the bounded geometry of L, supM |Ω| is finite. It remains to consider

the term
∫

Σ
〈Rϕ, D̃Rϕ〉ds. First we note that due to the pairing in Lemma A.7, the Trace

Theorem A.5 and D̃ : H 1
2
(Σ, SM |Σ) → H− 1

2
(Σ,SM |Σ), this expression is finite for all ϕ ∈
8



H1(M,SM). Abbreviating Rϕ by ϕ, we have

|(D̃ϕi, ϕi)Σ − (D̃ϕ, ϕ)Σ| ≤ |(D̃ϕi, ϕ− ϕi)Σ|+ |(D̃ϕ− D̃ϕi, ϕ)Σ|

≤ ‖D̃ϕi‖H− 1
2

‖ϕ− ϕi‖H 1
2

+ ‖D̃ϕ− D̃ϕi‖H− 1
2

‖ϕ‖H 1
2

,

which gives the convergence of the last term. This proves Equality (8) for all ϕ ∈ H1(M,SM).
Now, let ϕi, ψj be sequences in Γ∞c (M, SM) with ϕi → ϕ and ψj → ψ in H1(M,SM). Then,

|(Dψj, ϕi)− (Dψ,ϕ)| ≤ |(Dψj, ϕi)− (Dψj, ϕ)|+ |(Dψj, ϕ)− (Dψ,ϕ)|
≤ ‖Dψj‖L2‖ϕi − ϕ‖L2 + ‖D(ψj − ψ)‖L2‖ϕ‖L2 .

Using (9) and that ϕi and ψj are uniformly bounded in H1, we get for a certain constant
C > 0 that

|(Dψj, ϕi)− (Dψ,ϕ)| ≤ C‖ϕi − ϕ‖L2 + C‖ψj − ψ‖H1 → 0.

Analogously, one obtains (ψj, Dϕi) → (ψ,Dϕ). Moreover, using again the Trace Theorem
A.5, we get ∣∣∣∣∫

Σ

〈ν ·Rψj, Rϕi〉 − 〈ν ·Rψj, Rϕ〉ds
∣∣∣∣ ≤ ‖Rψj‖L2(Σ)‖R(ϕi − ϕ)‖L2(Σ)

≤ C‖ψj‖H1‖ϕi − ϕ‖H1 → 0.

In the same way,
∣∣∫

Σ
〈ν ·Rψj, Rϕ〉 − 〈ν ·Rψ,Rϕ〉ds

∣∣→ 0.Hence,∣∣∣∣∫
Σ

〈ν ·Rψj, Rϕi〉 − 〈ν ·Rψ,Rϕ〉ds
∣∣∣∣→ 0.

�

Spectral theory. In this paragraph, we shortly review the spectral theory of the Dirac op-
erator D : H1(N, SN) ⊂ L2(N,SN)→ L2(N, SN) on a complete Riemannian Spinc manifold
N without boundary. Most of the follwing can be found in [6]. Then D is self-adjoint and
the spectrum is real. A real number λ is an eigenvalue of D if there exists a nonzero spinor
ϕ ∈ H1 with Dϕ = λϕ. Then ϕ is called an eigenspinor to the eigenvalue λ. Standard
local elliptic regularity theory gives that an eigenspinor is always smooth. The set of all
eigenvalues is denoted by σp(D

Σ) – the point spectrum. If N is closed, the Dirac operator
has a pure point spectrum. But on open manifolds, the spectrum might have a continuous
part. In general, the spectrum – denoted by σ(D) – is composed of the point, the continuous
and the residual spectrum. In case of a self-adjoint operator – as we have – there is no
residual spectrum. Often another decomposition of the spectrum is used – the one into dis-
crete spectrum σd(D) and essential spectrum σess(D). A real number λ lies in the essential
spectrum of D if there exists a sequence of smooth compactly supported spinors ϕi which
are orthonormal with respect to the L2-product and

‖(D − λ)ϕi‖L2 −→ 0.

The essential spectrum contains amongst other elements all eigenvalues of infinite multiplic-
ity. In contrast, the discrete spectrum σd(D) := σp(D) r σess(D) consists of all eigenvalues
of finite multiplicity.
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Closed Range Theorem. Next, we want to recall briefly (a part of) the Closed Range
Theorem for later use.

Theorem 2.6. [44, p.205] Let T : X → Y be a closed linear operator between Banach spaces
X, Y . Then the range ran(T ) of T is closed in Y if and only if ran(T ) = ker(T ∗)⊥ where T ∗

is the adjoint operator of T and ker(T ∗) is the kernel of T ∗.

A linear operator T : X → Y between Banach spaces is called Fredholm if its kernel is finite
dimensional and its image has finite codimension.

3. Boundary value problems

The general theory of boundary value problems for elliptic differential operators of order one
on complete manifolds with closed boundary can be found in [7]. The aim of this section
is to generalize a part of this theory to noncompact boundaries on manifolds of bounded
geometry. We restrict to the part that gives existence of solutions of boundary value prob-
lems as in Theorem 3.15. The property needed to assure a solution to such a problem is the
closedness of the range. For that we introduce a type of coercivity condition which in general
can depend on the boundary values (that is not the case for closed boundaries). Moreover,
we restrict to the classical Spinc Dirac operator.

In the first part, we first give some generalities on domains of the Dirac operator and intro-
duce a coercivity condition that implies closed range of the Dirac operator. Then, we extend
the trace map R to the whole maximal domain of the Dirac operator and give some exam-
ples and properties of boundary conditions. In particular, we will introduce two boundary
conditions B± which will be used to prove Theorem 1.2 in Section 7. At the end, we give an
existence result for boundary value problems in our context.

General domains and closed range. Let D be the Dirac operator acting on Γ∞cc (M, S)
on a manifold M with boundary Σ. If we want to emphasise that D acts on the domain
Γ∞cc (M,S), we shortly write Dcc. We denote the graph norm of D by

‖ϕ‖2
D = ‖ϕ‖2

L2 + ‖Dϕ‖2
L2 .

By Dmax := (Dcc)
∗ we denote the maximal extension of D. Here, A∗ denotes the adjoint

operator of A in the sense of functional analysis. Note that

domDmax = {ϕ ∈ L2(M, SM) | ∃ϕ̃ ∈ L2(M,SM)∀ψ ∈ Γ∞cc (M,SM) : (ϕ̃, ψ) = (ϕ,Dψ)}

and together with ‖.‖D, the space domDmax is a Hilbert space. Moreover, we denote by

Dmin := (Dcc)
∗∗ = Dcc

‖.‖D
the minimal extension of D. Here, A

‖.‖D
denotes the closure of

the set A w.r.t. the graph norm. Any closed subset of domDmax between domDmin and
domDmax gives the domain of a closed extension of D : Γ∞cc (M, SM) → Γ∞cc (M,SM). We
generalize the notion of coercivity at infinity [7, Definition 8.2.] to our noncompact setting:

Definition 3.1. A closed linear operator D : domD ⊂ L2(M, SM) → L2(M, SM) is said to
be (domD)-coercive at infinity if there is a c > 0 such that

∀ϕ ∈ domD ∩ (kerD)⊥ : ‖Dϕ‖L2 ≥ c‖ϕ‖L2 .
10



In Section 5, we will compare this coercivity condition with the originally one used in [7].
But first, we will see how this condition forces the range of the operator to be closed which is
crucial in order to show existence of preimages of linear operator as we will do in Proposition
3.15.

Lemma 3.2. If the closed linear operator D : domD ⊂ L2(M,SM) → L2(M, SM) is
(domD)-coercive at infinity, the range is closed.

Proof. Let ϕi be a sequence in domD with Dϕi → ψ in L2. We have to show that ψ is in the
image of D. W.l.o.g. we can assume that ϕi ⊥ kerD. Then (domD)-coercivity at infinity
gives that ϕi is bounded in L2 and also in the graph norm of D. Thus, ϕi → ϕ weakly in
‖.‖D. Closedness of domD then implies that Dϕ = ψ. �

Extension of the trace map. The Trace Theorem A.5 extends the trace map

R : Γ∞c (M, SM) → Γ∞c (Σ, SM |Σ)

ϕ 7→ ϕ|Σ.
Here, we will extend R further to domDmax. This will generalize the corresponding result
[7, Theorem 6.7.ii] for closed boundaries to noncompact boundaries. Moreover, we give some
auxiliary lemmata which are found in [7] for closed boundaries. Some of the proofs and the
order of obtaining them will be a little bit different since we do not use (and cannot use, cf.
Example 3.14.iv) the projection to the negative spectrum and we use an abstract extension
map as given by Theorem A.6.

Lemma 3.3. The space Γ∞c (M,SM) is dense in domDmax w.r.t. the graph norm.

Proof. For a closed boundary, this is done in [7, Theorem 6.7.i]. We use a different proof here.
Let ϕ ∈ domDmax. Let Ki be a compact exhaustion of M that comes together with smooth
cut-off functions ηi : M → [0, 1] such that ηi = 1 on Ki, ηi = 0 on Ki+1 and max |dηi| ≤ 2

i
.

Then, ϕi = ηiϕ are compactly supported sections in domDmax fulfilling

‖ϕi − ϕ‖2
D ≤ ‖ϕi − ϕ‖2

L2 + ‖Dϕi −Dϕ‖2
L2

≤ ‖(1− ηi)ϕ‖2
L2 +

(
‖(1− ηi)Dϕ‖L2 +

2

i
‖ϕ‖L2

)2

→ 0.

Each ϕi has now compact support in Ki+1. Thus, there is a sequence ϕij ∈ Γ∞c (M \Ki+1,SM)
with ϕij → ϕi in the graph norm on M \ Ki+1. Choose j = j(i) such that ‖ϕij − ϕ‖D ≤
‖ϕij − ϕi‖D + ‖ϕi − ϕ‖D ≤ i−1 and i ≤ j. Then

‖ηjϕij − ϕij‖2
D ≤ ‖(1− ηj)ϕij‖2

L2 + (‖(1− ηj)Dϕij‖‖L2 + ‖dηj · ϕij‖L2)2

≤ (‖(1− ηj)(ϕij − ϕi)‖L2 + ‖(1− ηj)ηiϕ‖L2)2 +
(
‖(1− ηi)D(ϕij − ϕi)‖L2

+‖(1− ηj)(ηiDϕ+ dηi · ϕ)‖L2 +
2

j
‖ϕij − ϕi‖L2 +

2

j
‖ϕ‖L2

)2

→ 0

for i→∞. Thus, we have a sequence ϕ̂i := ηj(i)ϕij(i) ∈ Γ∞c (M,SM) such that ϕ̂i → ϕ in the
graph norm as i→∞. �

Theorem 3.4. The trace map R : Γ∞cc (M, SM)→ Γ∞cc (Σ,SM |Σ) can be extended to a bounded
operator

R : domDmax → H− 1
2
(Σ,SM |Σ).
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Proof. Let ϕ ∈ Γ∞c (M, SM) and ψ ∈ H 1
2
(Σ,SM |Σ). Then by Theorem A.6, the spinor

Eψ ∈ H1(M,SM). Thus, we can use Lemma 2.5 and (9) to obtain

|(ν · ϕ|Σ, ψ)Σ| =|(Dϕ, Eψ)− (ϕ,DEψ)| ≤ ‖Dϕ‖L2‖Eψ‖L2 + ‖ϕ‖L2‖DEψ‖L2

≤2‖ϕ‖D‖Eψ‖D ≤ C‖ϕ‖D‖Eψ‖H1 ≤ C ′‖ϕ‖D‖ψ‖H 1
2

(Σ).

Together with Lemma A.7, this implies

‖ϕ‖H− 1
2

(Σ) ≤ C ′‖ϕ‖D.

Since Γ∞c (M,SM) is dense in domDmax w.r.t. the graph norm, cf. Lemma 3.3, the claim
follows. �

Remark 3.5. Note that R is not surjective here. For closed boundaries the image was
specified in [7, Theorems 1.7 and 6.7.ii]. For noncompact boundaries we still don’t have an
explicit description of the image. Abstractly it will be considered in Lemma 3.11.

Lemma 3.6. Equality (3) holds for all ϕ ∈ domDmax and ψ ∈ H1(M, SM).

Proof. The proof is done as the one of Lemma 2.5 starting with ψj, ϕi ∈ Γ∞c (M, SM) where
ψj → ψ in H1 and ϕi → ϕ in the graph norm of D and using the (extended) Trace Theorem
3.4. The only difference is seen in the estimate of the boundary integrals which now read
e.g.∣∣∣∣∫

Σ

〈ν ·Rψj, Rϕi −Rϕ〉ds
∣∣∣∣ ≤ ‖Rψj‖H 1

2
(Σ)‖R(ϕi − ϕ)‖H− 1

2
(Σ) ≤ C‖ψj‖H1‖ϕi − ϕ‖D → 0

where the last inequality uses both versions of the Trace Theorem A.5 and 3.4. �

The next Lemma gives a full description of domDmin:

Lemma 3.7. The H1-norm and the graph norm ‖.‖D are equivalent on

{ϕ ∈ domDmax | Rϕ = 0}.

In particular,

domDmin = Γ∞cc (M,SM)
‖.‖D

= Γ∞cc (M,SM)
‖.‖H1 = {ϕ ∈ domDmax | Rϕ = 0}

= {ϕ ∈ H1(M, SM) | Rϕ = 0}.

Proof. Firstly we show the equivalence on {ψ ∈ Γ∞c (M,SM) | Rψ = 0}: Let ϕ be in this set.
Then by (8) we have

‖ϕ‖2
H1

= ‖ϕ‖2
L2 + ‖Dϕ‖2

L2 −
∫
M

scalM

4
|ϕ|2dv −

∫
M

i

2
〈Ω · ϕ, ϕ〉dv ≤ C‖ϕ‖2

D,

where we used that M and L are of bounded geometry and, hence, |scalM | and |Ω| are
uniformly bounded on all of M . The reverse inequality was seen in (9). From the definition
of domDmin and the equivalence of the norms from above, we already have domDmin =

Γ∞cc
‖.‖D

= Γ∞cc
‖.‖H1 . From the Trace Theorem 3.4, we get

Γ∞cc
‖.‖D ⊂ {ϕ ∈ domDmax | Rϕ = 0}.
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Next we want to show that D : {ϕ ∈ domDmax | Rϕ = 0} → L2(M,SM) already equals
Dmin. First we note that by the Trace Theorem 3.4, D is a closed extension of Dcc. It suffices
to show that D∗ = Dmax. By definition, we have

domD∗ = {ϑ ∈ L2(M, SM) | ∃χ ∈ L2(M,SM)∀ψ ∈ domDmax, Rψ = 0 : (ϑ,Dψ) = (χ, ψ)}.
Let ϑ ∈ domDmax. By Lemma 3.3, there exists a sequence ϑi ∈ Γ∞c (M, SM) with ϑi →
ϑ in the graph norm. Hence, for all ψ ∈ domDmax with Rψ = 0 we have (ϑ,Dψ) =
limi→∞(ϑi, Dψ). Then by Lemma 3.6 and Rψ = 0, we obtain

(ϑ,Dψ) = lim
i→∞

(Dϑi, ψ) = (Dϑ,ψ),

which implies that ϑ ∈ domD∗. Together with

domDmin = Γ∞cc
‖.‖D ⊂ {ϕ ∈ H1(M,SM) | Rϕ = 0} ⊂ {ϕ ∈ domDmax | Rϕ = 0} = domDmin,

the rest of the Lemma follows. �

Now we can describe H1 in terms of its image under the trace map.

Lemma 3.8. We have H1(M, SM) = {ϕ ∈ domDmax | Rϕ ∈ H 1
2
(Σ, SM |Σ)}.

Proof. The inclusion ’⊂’ is clear from the Trace Theorem A.5. It remains to prove ’⊃’: Let
ϕ ∈ domDmax. Then with Theorem A.6, Rϕ ∈ H 1

2
(Σ,SM |Σ) implies that ψ := ERϕ ∈

H1(M,SM). Thus, ϕ− ψ ∈ domDmax and R(ϕ− ψ) = 0. But due to Lemma 3.7, ϕ− ψ ∈
H1(M,SM) and, hence, ϕ ∈ H1(M, SM). �

Let ν̃ be an extension of the unit inner normal vector field ν on Σ to a unit smooth vector
field on UΣ such that |∇ν̃| is uniformly bounded on UΣ. Such a ν̃ always exists since (M,Σ)
is of bounded geometry. Note that ν ·Rϕ = R(ν̃ · ϕ) for any ϕ with support in UΣ.

Lemma 3.9. On the set U := {ϕ ∈ Γ∞c (M, SM | supp ϕ ⊂ UΣ}, we have ‖ν̃ · ϕ‖D ∼ ‖ϕ‖D
and ‖ν̃ · ϕ‖H1 ∼ ‖ϕ‖H1 where ∼ denotes the equivalence of the norms. Moreover, there is a
constant C > 0 such that for all ϕ ∈ U , we have

‖ERϕ‖D ≤ C‖ϕ‖D.

Proof. Since ν̃ is a unit vector field, we get immediately ‖ν̃ · ϕ‖L2 = ‖ϕ‖L2 . Moreover,
D(ν̃ · ϕ) = ν̃ ·Dϕ+∇ν̃ · ϕ and the uniform bound on ∇ν̃ gives

‖D(ν̃ · ϕ)‖L2 ≤ ‖Dϕ‖L2 + C‖ϕ‖L2 .

Hence, ‖ν̃ · ϕ‖D ≤ C ′‖ϕ‖D. Using this inequality for ϕ = ν̃ · ψ we obtain the corresponding
converse inequality and, thus, the first claimed equivalence. Analogously one obtains the
equivalence for the H1-norms. By Inequality (9), Theorems A.5 and A.6 we get for certain
constants Ci that for all ϕ ∈ U

‖ERϕ‖2
D ≤ C1‖ERϕ‖2

H1
≤ C2‖Rϕ‖2

H 1
2

≤ C3‖ϕ‖2
H1
. (10)

Moreover, by (3) and the norm equivalences from above∫
Σ

|Rϕ|2ds =−
∫

Σ

〈ν ·R(ν̃ · ϕ), Rϕ〉ds = (D(ν̃ · ϕ), ϕ)− (Dϕ, ν̃ · ϕ)

≤‖D(ν̃ · ϕ)‖L2‖ϕ‖L2 + ‖Dϕ‖L2‖ν̃ · ϕ‖L2 ≤ C‖ϕ‖2
D. (11)
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Let us first consider those ϕ ∈ U with
∫

Σ
〈Rϕ, D̃Rϕ〉ds ≤ 0: Then by (10), (11), (8) and the

bounded geometry of (M,Σ) and L, we have

‖ERϕ‖2
D ≤C3‖ϕ‖2

H1

=C3

(
‖ϕ‖2

D −
∫
M

1

4
〈scalMϕ+ 2iΩ · ϕ, ϕ〉dv +

∫
Σ

〈
Rϕ,

(
D̃ − nH

2

)
Rϕ
〉
ds

)
≤C3‖ϕ‖2

D + C4‖ϕ‖2
L2 + C5

∫
Σ

|Rϕ|2ds ≤ C6‖ϕ‖2
D.

It remains to consider those ϕ ∈ U with
∫

Σ
〈Rϕ, D̃Rϕ〉ds > 0: Then by (7),∫

Σ

〈R(ν̃ · ϕ), D̃R(ν̃ · ϕ)〉ds =

∫
Σ

〈ν ·Rϕ,−ν · D̃Rϕ〉ds = −
∫

Σ

〈Rϕ, D̃Rϕ〉ds < 0.

Hence, together with the norm equivalences, we obtain similar as above that

‖ERϕ‖2
D ≤ C3‖ϕ‖2

H1
≤ C7‖ν̃ · ϕ‖2

D

= C7

(
‖ϕ‖2

D −
∫
M

1

4
〈(scalM + 2iΩ·)ν̃ · ϕ, ν̃ · ϕ〉dv

+

∫
Σ

〈
R(ν̃ · ϕ),

(
D̃ − nH

2

)
R(ν̃ · ϕ)

〉
ds
)

≤ C7‖ϕ‖2
D + C8‖ϕ‖2

L2 + C9

∫
Σ

|Rϕ|2ds ≤ C10‖ϕ‖2
D.

Setting C2 := max{C6, C10} we obtain the claim. �

Theorem 3.10. There is a constant C > 0 such that for all ϕ ∈ Γ∞c (M,SM)

‖ERϕ‖D ≤ C‖ϕ‖D.
In particular, the map ER : Γ∞c (M,SM) → Γ∞c (M,SM) extends to a bounded linear map
from domDmax to itself.

Proof. Let η : M → [0, 1] be a smooth cut-off function that is 1 on Σ× [0, r∂
2

] and 0 outside
UΣ. Moreover, let η be such that dη is uniformly bounded. Let ϕ ∈ Γ∞c (M,SM). Then, ηϕ
is a compactly supported smooth spinor with support in UΣ. Moreover, R(ηϕ) = Rϕ. Hence
by Lemma 3.9, we have

‖ERϕ‖D =‖ER(ηϕ)‖D ≤ C‖ηϕ‖D ≤ C‖ϕ‖L2 + C‖ηDϕ+ dη · ϕ‖L2

≤C‖ϕ‖L2 + C‖Dϕ‖L2 + C sup |dη|‖ϕ‖L2 ≤ C ′‖ϕ‖D.
�

The last theorem can be seen as a workaround against a lack of an explicit description of
R(domDmax). For closed boundaries, it is a consequence of [7, Lemmas 6.1 and 6.2]. For us,
it is enough to equip R(domDmax) with a norm. On R(domDmax), we set

‖ψ‖R := ‖ERϕ‖D,
where Rϕ = ψ. By Theorem 3.10, this is well defined.

Lemma 3.11. The space (R(domDmax), ‖.‖R) is a Banach space.
14



Proof. From the definition of ‖.‖R and the fact that ‖.‖D is a norm, we get immediately that
‖.‖R is a norm on R(domDmax). It remains to show completeness: For that we consider
a Cauchy sequence ψi in R(domDmax). Then, there is a sequence ϕi ∈ domDmax with
Rϕi = ψi. With the definition of the R-norm, we get that ERϕi is a Cauchy sequence in the
Banach space (domDmax, ‖.‖D) and, hence, there is a ϕ ∈ domDmax with ERϕi → ϕ w.r.t.
the graph norm. By Theorem 3.10, we get

‖ER(ϕi − ϕ)‖D ≤ C‖ERϕi − ϕ‖D → 0.

Thus, ERϕ = ϕ and ‖ψi−Rϕ‖R = ‖E(Rϕi−Rϕ)‖D → 0. Hence, ψi → ψ in the R-norm. �

Boundary conditions. In this part, we show that each closed extension of Dcc can be
realized by a closed subset of R(domDmax). We give some examples and comment on a
difference to the case of closed boundaries.

Lemma 3.12. Let D be a closed extension of Dcc with B := R(domD) ⊂ H− 1
2
(Σ,SM |Σ).

Then, its domain domD equals domDB := {ϕ ∈ domDmax | Rϕ ∈ B} and B is a closed
subset of (R(domDmax), ‖.‖R). Conversely, for every closed subset B ⊂ R(domDmax) the
operator DB : domDB → L2(M, SM) is a closed extension of Dcc.

Due to this Lemma, a closed subset B of R(domDmax) is called boundary condition.

Proof. Let D be a closed extension of Dcc with domain domD and B := R(domD). Clearly,
domD ⊂ domDB. We have to show that also the converse is true: Let ϕ ∈ domDB. Then,
there exists ψ ∈ domD with Rϕ = Rψ. By Lemma 3.7, ϕ − ψ ∈ domDmin ⊂ domD and,
hence, ϕ ∈ domD. This implies that domD = domDB. Next, we show that B is closed. For
that let ρi ∈ B such that ρi → ρ ∈ R(domDmax) w.r.t. ‖.‖R. By definition of the R-norm,
we get E(ρi − ρ) → 0 in the graph norm. Together with Eρi ∈ domDB = domD and the
closedness of D, we get Eρ ∈ domD and, thus, ρ ∈ B. Hence, B ⊂ R(domDmax) is closed.
Let now B ⊂ R(domDmax) be a closed subset. Then, domDmin ⊂ domDB ⊂ domDmax.
Let ϕi ∈ domDB → ϕ ∈ domDmax in the graph norm. Then, Theorem 3.10 gives

‖Rϕi −Rϕ‖R = ‖ER(ϕi − ϕ)‖D ≤ C‖ϕi − ϕ‖D → 0.

By the closedness of B, this implies Rϕ ∈ B and, hence, ϕ ∈ domDB. Thus, DB is
closed. �

Remark 3.13. The definition of domDB in [7, Section 7] uses the spaceHD
1 := Γ∞c (M, SM)

‖.‖
HD1

instead of H1 where the HD
1 -norm is given by

‖ϕ‖2
HD

1
= ‖χϕ‖2

H1
+ ‖ϕ‖2

L2 + ‖Dϕ‖2
L2 .

Here χ denotes an appropriate cut-off function such that χϕ only lives on a small collar
of the boundary. Since we work with the classical Dirac operator on Spinc manifolds and
assume (M,Σ) and L being of bounded geometry, both norms coincide. C. Bär and W.
Ballmann consider a more general situation where it suffices that M is only complete but
not necessarily of bounded geometry. Then the HD

1 -norm is needed. We could also switch
to this more general setup when dropping the condition (i) and (iii) in the Definition 2.2
while still assuming that (Σ, g|Σ) is of bounded geometry and that the curvature tensor and
its derivatives are bounded on UΣ. For that situation, we would also obtain Theorem 1.2.
But in order to simplify notation we stick to the bounded geometry of (M,Σ).
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Example 3.14. (1) Minimal and maximal extension. B = 0 gives the minimal
extension DB=0 = Dmin, cf. Lemma 3.7. The maximal extension is obtained with
B = R(domDmax).

(2) DB=H 1
2

: H1(M, SM) → L2(M, SM) is an extension of Dcc but not closed (if the

boundary is nonempty): Since Γ∞c (M,SM) ⊂ H1 and Γ∞c (M,SM) dense in domDmax,
the closure of DB=H 1

2

is Dmax.

(3) [24, Section 6] Let P± : L2(Σ,SM |Σ)→ L2(Σ,SM |Σ), ϕ 7→ 1
2
(ϕ± ν · ϕ) and

D± : domD± := {ϕ ∈ domDmax | P±Rϕ = 0} → L2(M, SM).

In Section 4, we will show that D± is a closed extension and that D± = DB± where

B± = {ϕ ∈ H 1
2
(Σ,SM |Σ) | P±ϕ = 0}.

Each ϕ decomposes uniquely into ϕ = P+ϕ+P−ϕ and if ϕ ∈ H 1
2
(Σ,SM |Σ), P±ϕ ∈

H 1
2
(Σ,SM |Σ), too. This assures that the B±’s are honestly larger than the trivial

boundary condition B = {0}. More properties of this boundary condition can be
found in Section 4.

(4) APS boundary conditions. An obvious way to generalize the APS boundary
conditions for a closed boundary to our situation is given by the following: Let
{EI}I⊂R be the family of projector-valued measures belonging to the self-adjoint
operator

D̃ : H1(Σ,SM |Σ) ⊂ L2(Σ,SM |Σ)→ L2(Σ, SM |Σ).

Define for a ∈ R

π≥a (≤a) : L2(Σ,SM |Σ)→ L2(Σ,SM |Σ), ϕ 7→ E[a,∞)ϕ (E(−∞,a]ϕ)

and the spaces

ΓAPS
≥a (≤a) = {ϕ ∈ L2(Σ, SM |Σ) | ϕ = π≥a (≤a)ϕ}.

We set BAPS
≥a (≤a) = R(domDmax) ∩ ΓAPS

≥a(≤a). Up to now, we have still the following

question: When is π≥a(≤a)H 1
2
(Σ, SM |Σ) ⊂ H 1

2
(Σ, SM |Σ) as for closed manifolds or can

it even happen thatBAPS
≥a (≤a) = {0}? In case of a closed boundary Σ (or more generally

in case that L2(Σ,SM |Σ) has an orthonormal basis of eigenspinors) π≥a(≤a)H 1
2
⊂ H 1

2

is trivially fulfilled. Then, BAPS
≥a (≤a) really define nontrivial boundary conditions with

BAPS
≥a ∪ BAPS

≤a = H 1
2
(Σ,SM |Σ). Even if this is still true in general, BAPS

≥a ∪ BAPS
≤a is a

disjoint union only if a 6∈ σ(D̃). One could make this disjoint by using BAPS
≥a ∪BAPS

<a

but then BAPS
<a may not be closed.

Boundary value problems. Now we can just collect all preliminary work to obtain

Proposition 3.15. Let B be a boundary condition and the Dirac operator

DB : domDB ⊂ L2(M, SM)→ L2(M,SM)

be B-coercive at infinity. Let PB⊥ := Id − PB : R(domDmax) → R(domDmax) where PB is
the projection from R(domDmax) to B. Then, for all ψ ∈ L2(M, SM) and ρ̃ ∈ domDmax
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where ψ −Dρ̃ ∈ (ker(DB)∗)⊥, the boundary value problem{
Dϕ = ψ on M,

PB⊥Rϕ = PB⊥Rρ̃ on Σ

has a unique solution ϕ ∈ domDmax up to elements of the kernel kerDB.

Proof. Since D is B-coercive at infinity, its range is closed by Lemma 3.2. Thus, due to the
Closed Range Theorem 2.6, the spinor ψ − Dρ̃ ∈ ranDB. Hence, there exists ϕ̂ ∈ domDB

with Dϕ̂ = ψ − Dρ̃. Setting ϕ = ϕ̂ + ρ̃, we get ϕ ∈ domDmax, Dϕ = ψ and PB⊥ϕ =
PB⊥ϕ̂+ PB⊥Rρ̃ = PB⊥Rρ̃. �

Corollary 3.16. Let B be a boundary condition such that B ⊂ H 1
2
(Σ,SM |Σ). We assume

that the Dirac operator D : domDB ⊂ L2(M,SM)→ L2(M, SM) is B-coercive at infinity and
we consider PB⊥ := Id−PB be as above. Then, for all ψ ∈ L2(M, SM) and ρ ∈ H 1

2
(Σ,SM |Σ)

where for all χ ∈ ker(DB)∗

(ψ, χ) + (ν · ρ,Rχ) = 0 (12)

the boundary value problem {
Dϕ = ψ on M,

PB⊥Rϕ = PB⊥ρ on Σ

has a unique solution ϕ ∈ H1(M, SM) up to elements of the kernel kerDB.

Proof. By Lemma 3.8, B ⊂ H 1
2
(Σ,SM |Σ) implies domDB ⊂ H1(M, SM). We set ρ̃ = Eρ.

By the Trace Theorem A.5, ρ̃ ∈ H1(M,SM). Moreover, by Lemma 3.6 the integrability
condition (12) implies this ψ − Dρ̃ ∈ (ker(DB)∗)⊥. Hence, as in Proposition 3.15, we get
ϕ̂ ∈ domDB ⊂ H1(M, SM) and the solution ϕ = ϕ̂+ ρ̃ ∈ H1(M, SM).

�

Remark 3.17. In order to give a full generalization of the theory given in [7] it would be
interesting to examine the following questions:
- Consider general boundary condition, in particular we would like to identify the image of
the extended trace map in Theorem 3.4.
- Give a generalization of the definition for elliptic boundary conditions for noncompact
boundaries (of bounded geometry) and study them.
- Consider more generally complete Dirac-type operators as in [7].

4. On the boundary condition B±

In this section, we briefly recall and give some basic facts on P±. Some of them can be found
in [24, Section 6]. Moreover, we prove the claims of Example 3.14.(3).

Lemma 4.1. Let P± : L2(Σ,SM |Σ)→ L2(Σ,SM |Σ) be the map ϕ 7→ 1
2
(ϕ±iν ·ϕ) and consider

B± := {ϕ ∈ H 1
2
(Σ,SM |Σ) | P±ϕ = 0}. Then, the following hold

(i) P± are self-adjoint projections, orthogonal to each other and νP± = P±ν = ∓iP±.
(ii) For all s ∈ R P±(ϕ) = 1

2
(ϕ± iν ·ϕ) gives an operator from Hs(Σ,SM |Σ) to itself such

that for all ϕ ∈ Hs(Σ,SM |Σ) and ψ ∈ H−s(Σ,SM |Σ) we have (P+ϕ, P−ψ)Σ = 0 and
(P±ϕ, ψ)Σ = (ϕ, P±ψ)Σ.

(iii) D̃P± = P∓D̃.
17



(iv) D± is a closed extension of Dcc.
(v) D± = DB±.

(vi) (DB±)∗ = DB∓.
(vii) kerDB± = 0.

Proof. Assertions (i) and (ii) follow directly by simple calculation and (iii) follows directly
from (7). For (iv) we have by definition of D± (see Example 3.14.iii) that D± = DB̃±

where

B̃± = {ϕ ∈ R(domDmax) | P±ϕ = 0}. In order to show the closedness of D± we want to
apply Lemma 3.12. For that, we have to have w that B̃± is closed in R(domDmax): Let
ϕi ∈ B̃± with ϕi → ϕ in R(domDmax). Then,

‖P±ϕ‖R = ‖P±(ϕ− ϕi)‖R ≤ ‖ϕ− ϕi‖R → 0.

Hence, P±ϕ = 0 and ϕ ∈ B̃±. For (v), we have clearly that domDB± ⊂ domD±. It remains
to show that any ϕ ∈ domD± is already in H1(M,SM). By Lemma 3.3, there is a sequence
ϕi ∈ Γ∞c (M,SM) with ϕi → ϕ in the graph norm. Consider EP±Rϕi. By Theorem 3.10 and
using η and ν̃ from Lemma 3.9, we have

‖EP±Rϕi‖D =‖EP±Rη(ϕi − ϕ)‖D =
1

2
‖ERη((ϕi − ϕ)± iν̃ · (ϕi − ϕ))‖D

≤1

2
(‖η(ϕi − ϕ)‖D + ‖ν̃ · η(ϕi − ϕ)‖D) ≤ C‖ϕi − ϕ‖D → 0.

Hence, ψi := ϕi − EP±Rϕi ∈ domD± and ψi → ϕ in the graph norm. This implies that
domDB± is dense in domD±. Moreover, note that with (iii) we have∫

Σ

〈Rψi, D̃Rψi〉ds =

∫
Σ

〈P∓Rψi, D̃P∓Rψi〉ds =

∫
Σ

〈P∓Rψi, P±D̃Rψi〉ds = 0.

Hence, together with the Lichnerowicz formula in Lemma 2.5, the bounded geometry and
an estimate as in (11), we get

‖ψi − ψj‖2
H1

=‖ψi − ψj‖2
D −

1

4

∫
M

〈(scalM + 2iΩ·)(ψi − ψj), (ψi − ψj)〉dv −
n

2

∫
Σ

H|ψi − ψj|2ds

≤C‖ψi − ψj‖2
D.

Thus, ψi is even a Cauchy sequence in H1 which implies that ϕ is already in H1(M,SM).
For (vi), the domain of the adjoint is defined by

dom (D+)∗ = {ϑ ∈ L2(M, SM) | ∃χ ∈ L2(M,SM)∀ψ ∈ domD+ : (χ, ψ) = (η,Dψ)}.

Since, Γ∞cc (M, SM) ⊂ domD+, we get dom (D+)∗ ⊂ domDmax. Thus,

dom (D+)∗ = {ϑ ∈ domDmax | ∀ψ ∈ domD+ : (Dϑ,ψ) = (ϑ,Dψ)}.

Due to Lemma 3.6, the definition of domD+ and (i), we get

dom (D+)∗ =
{
ϑ ∈ domDmax | ∀ψ ∈ H1(M,SM) :

∫
Σ

〈Rϑ, ν · P−Rψ〉ds = 0
}
.

By (i) and (ii), we have∫
Σ

〈Rϑ, ν · P−Rψ〉ds = −i
∫

Σ

〈Rϑ, P−Rψ〉ds = −i
∫

Σ

〈R−Rϑ, P−Rψ〉ds
18



and P−Rϑ ∈ H− 1
2
(Σ,SM |Σ). Hence, together with Lemma A.7,

dom (D+)∗ =
{
ϑ ∈ domDmax | ∀ψ̂ ∈ H 1

2
(Σ,SM |Σ) :

∫
Σ

〈P−Rϑ, ψ̂〉ds = 0
}

={ϑ ∈ domDmax | P−Rϑ = 0} = dom D−.

The assertion (vii) is proven as in the closed case [24, Corollary]: Let ϕ ∈ kerD±, i.e. Dϕ = 0
on M and P±Rϕ = 0 on Σ. Using this, (3), Lemma 3.6 and (i), we compute

0 =

∫
M

〈Dϕ, iϕ〉dv −
∫
M

〈ϕ, iDϕ〉dv =

∫
Σ

〈ν ·Rϕ, iRϕ〉ds

=

∫
Σ

〈ν · P∓Rϕ, iP∓Rϕ〉ds = ∓
∫

Σ

|Rϕ|2ds.

Hence, Rϕ = 0 and ϕ ∈ domDmin, cf. Lemma 3.7. But due to the unique continuation
property of the Dirac operator, Dminϕ = 0 implies ϕ = 0.

�

5. Examples and the coercivity condition

In Definition 3.1, we defined when an operator DB is (domDB)-coercive at infinity. When
working with B, we will also use the short version – B-coercive at infinity. In this passage,
we will compare this notion with the one of coercivity at infinity given in [7, Definition 8.2]
as cited below and give some examples.

Definition 5.1. [7, Definition 8.2] D : domDmax ⊂ L2(M, SM)→ L2(M,SM) is coercive at
infinity if there is a compact subset K ⊂M and a constant c > 0 such that

‖Dϕ‖L2 ≥ c‖ϕ‖L2 ,

for all ϕ ∈ Γ∞c (M \K, SM).

By Lemma [7, 8.4], D is coercive at infinity for a closed boundary Σ if and only if there is a
compact subset K ⊂M and a constant c > 0 such that for all ϕ ∈ Γ∞cc (M \K, SM) we have
‖Dϕ‖L2 ≥ c‖ϕ‖L2 . For noncompact boundaries, just the ’only if’-direction survives since in
contrast to closed boundaries there is no compact K such that Γ∞c (M \K, SM) ⊂ Γ∞cc (M,SM).

Before we compare those different coercivity conditions we give some examples:

Example 5.2. (i) By the unique continuation property, the kernel of Dmin is trivial.
Thus, together with Lemma 3.7, we have that D is (B = 0)–coercive at infinity if
and only if there is a constant c > 0 such that for all ϕ ∈ Γ∞cc (M,SM)

‖Dϕ‖L2 ≥ c‖ϕ‖L2 .

For closed boundaries, this implies coercivity at infinity by Lemma [7, 8.4] which
was cited above. We will see that for closed boundaries also the converse is true, cf.
Corollary 5.6.

(ii) By Lemma 4.1, kerDB± = {0}. Thus, D is B±-coercive at infinity if and only if there
is a constant c > 0 such that

‖Dψ‖L2 ≥ c‖ψ‖L2
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for all ψ ∈ H1(M,SM) with P±Rψ = 0. In particular, this implies (B = 0)-coercivity
at infinity. More generally, if B1 ⊂ B2 and kerDB1 = kerDB2 , then B2-coercivity at
infinity implies B1-coercivity at infinity.

Lemma 5.3. Let D be coercive at infinity and B be a boundary condition. Assume that
domDB ∩ (kerDB)⊥ ⊂ H1(M,SM) and that the H1-norm and the graph norm are equivalent
on domDB ∩ (kerDB)⊥. Then, D is B-coercive at infinity.

Proof. Since D is coercive at infinity, there is a compact subset K ⊂ M and a constant
c > 0 such that ‖Dϕ‖L2 ≥ c‖ϕ‖L2 for all ϕ ∈ Γ∞c (M \ K, SM). Assume that D is not
B-coercive at infinity. Then, there is a sequence ϕi ∈ domDB ∩ (kerDB)⊥ with ‖ϕi‖L2 = 1
and ‖Dϕi‖L2 → 0. By equivalence of the norms, ϕi is also bounded in H1. This implies
ϕi → ϕ weakly in H1 and, thus, locally strongly in L2. Moreover, Dϕ = 0. Together
with ϕi ⊥ kerDB, this implies ϕ = 0. Thus, for each compact subset K ′ ⊂ M we have∫
K′
|ϕi|2dv → 0 as i → ∞. Let η : M → [0, 1] be a cut-off function and K ′ be a compact

subset such that K ⊂ K ′ ⊂M and η = 0 on K, η = 1 on M \K ′ and |dη| ≤ a for a constant
a > 0 big enough. Then, supp(ηϕi) ⊂M \K, ‖D(ηϕi)‖L2 ≤ a‖ϕi‖L2(K′) +‖Dϕi‖L2 → 0 and

1 ≥ ‖ηϕi‖L2 ≥ ‖ϕ‖L2 − ‖(1− η)ϕi‖L2 ≥ 1− ‖ϕi‖L2(K′) → 1.

By Lemma 3.3, we can choose a sequence (ϕij)j ⊂ Γ∞c (M, SM) with ϕij → ϕi in the graph
norm as j → ∞. Then, ηϕij → ηϕi in the graph norm and supp ηϕij ∈ M \K. Thus, we
can find j = j(i) such that ‖D(ηϕij(i))‖L2 → 0 and ‖ηϕij(i)‖L2 → 1 as i → ∞. But this
contradicts the assumption that D is coercive at infinity. �

Corollary 5.4. If D is coercive at infinity, then D is (B = 0)-coercive at infinity and
(B±)-coercive at infinity.

Proof. By Lemma 3.7, the H1-norm and the graph norm are equivalent on domDmin =
domDB=0. The unique continuation property of D gives kerDB=0 = {0}. Thus, the above
Lemma gives immediately the (B = 0)-coercivity at infinity. Now we consider D±. By
Lemma 4.1, ker D± = {0}. Thus, in order to apply Lemma 5.3, it is enough to show that
the H1-norm and the graph norm are equivalent on domDB± : Let ϕ ∈ domDB± . Then,
ϕ ∈ H1(M,SM) with P±Rϕ = 0. By (8), we have

‖ϕ‖2
H1

= ‖ϕ‖2
D −

∫
M

scalM

4
|ϕ|2dv −

∫
M

i

2
〈Ω · ϕ, ϕ〉dv +

∫
Σ

〈Rϕ, D̃Rϕ〉ds− n

2

∫
Σ

H|Rϕ|2ds.

From P±Rϕ = 0 and Lemma 4.1.(iii) we see that∫
Σ

〈Rϕ, D̃Rϕ〉ds =

∫
Σ

〈P∓Rϕ, D̃P∓Rϕ〉ds =

∫
Σ

〈P∓Rϕ,P±D̃Rϕ〉ds = 0.

Together with the bounded geometry and the estimate (11), we obtain for a certain constant
c > 0 that

‖ϕ‖2
H1
≤ ‖ϕ‖2

D + c‖ϕ‖2
D ≤ (c+ 1)‖ϕ‖2

D.

The corresponding inequality for the converse direction holds for all ϕ ∈ H1(M,SM), cf.
(9). �

Next we give some (very restrictive) conditions that are sufficient to prove that B-coercivity
at infinity implies coercivity at infinity. Those additional assumptions are needed to make
sure that the ϕi appearing in Definition 5.1 are in domDB.
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Lemma 5.5. Let B be a boundary condition with B ⊂ H 1
2
(Σ,SM |Σ). Assume that there

exists a compact subset K ′ ⊂ M with Γ∞c (M \ K ′,SM) ⊂ domDB. If D : dom(DB) ⊂
L2(Σ, SM |Σ)→ L2(Σ,SM |Σ) has a finite dimensional kernel and D is B-coercive at infinity,
then D is coercive at infinity.

Proof. Assume that D is not coercive at infinity. Then, for all compact subsets K ⊂ M
there exists a sequence ϕi ∈ Γ∞c (M \K, S) with ‖ϕi‖L2 = 1 and ‖Dϕi‖L2 → 0. We choose
K such that K ′ ⊂ K. Then, all those ϕi ∈ domDB. Thus, ϕi → ϕ ∈ domDB weakly in
the graph norm of D, ϕ ∈ ker DB and ϕ = 0 on K. We decompose ϕi = ϕki + ϕ⊥i where

ϕki ∈ ker DB and ϕ⊥i ∈ (kerDB)⊥. Then ‖Dϕ⊥i ‖L2 → 0. Moreover, we assume that the

kernel is finite dimensional, i.e. ϕki =
∑l

j=1 aijψj where the ψj’s form an orthonormal basis

of kerDB. Thus, ‖ϕki ‖2
L2 =

∑l
j=1 |aij|2. If ‖ϕ⊥i ‖L2 → 0, then ϕ⊥i → 0 in the graph norm.

But ‖ϕi‖L2 = 1. This implies that there is at least one j ∈ {1, . . . , l} with |aij| is bounded
away from zero for almost all i, i.e. ϕ cannot be zero everywhere. Since ϕ is zero on K,
this is a contradiction to the unique continuation principle. Thus, there exists c > 0 with
‖ϕ⊥i ‖L2 > c and D is not B-coercive at infinity. �

Note that the assumption on the existence of K ′ is very restrictive. If the boundary is closed,
it is automatically satisfied and we get the corollary below. If the boundary is noncompact,
for a general domD e.g. for the minimal domain of D, it is not true. For domD = H1, this
is true since we can choose K ′ = ∅, but then the kernel might be infinite dimensional.

Corollary 5.6. Let the boundary Σ be closed. If B is an elliptic boundary condition as de-
fined in [7, Definition 7.5], B-coercivity at infinity implies coercivity at infinity. In particular,
D is (B = 0)-coercive at infinity if and only if it is coercive at infinity.

Proof. If the boundary is closed and B is elliptic, DB has a finite kernel [7, Theorem 8.5].
The rest of the assumption in Lemma 5.5 is trivially fulfilled which gives the first claim .
The rest follows with Corollary 5.4. �

For closed boundaries, assuming uniformly positive scalar curvature at infinity is a sufficient
condition to have that D is coercive at infinity, see [7, Example 8.3]. For noncompact
boundaries, we obtain the following

Lemma 5.7. (i) If 1
2
scalM+iΩ· is a positive operator, the Dirac operator D is domDmin-

coercive at infinity.
(ii) If 1

2
scalM + iΩ· is a positive operator and H ≥ 0, the Dirac operator D is B±-coercive

at infinity.

Proof. Let c > 0 such that 1
2
scalM + iΩ· ≥ 2c. The Lichnerowicz formula (8) and Lemma

2.5 give

‖Dϕ‖2
L2 = ‖∇ϕ‖2

L2 +

∫
M

scalM

4
|ϕ|2dv +

∫
M

i

2
< Ω · ϕ, ϕ > dv −

∫
Σ

〈Rϕ, D̃(Rϕ)〉ds

+
n

2

∫
Σ

H|Rϕ|2ds ≥ c‖ϕ‖2
L2 −

∫
Σ

〈Rϕ, D̃(Rϕ)〉ds+
n

2

∫
Σ

H|Rϕ|2ds,
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for all ϕ ∈ H1(M,SM). Then (i) follows directly with Lemma 3.7. For (ii), let now H ≥ 0
and Rϕ ∈ B±. Then, together with Lemma 4.1, it implies

‖Dϕ‖2
L2 ≥ c‖ϕ‖2

L2 −
∫

Σ

〈Rϕ, D̃(Rϕ)〉ds = c‖ϕ‖2
L2 −

∫
Σ

〈P±Rϕ, D̃(P±Rϕ)〉

= c‖ϕ‖2
L2 −

∫
Σ

〈P±Rϕ,P∓D̃(Rϕ)〉 = c‖ϕ‖2
L2 .

�

6. Spinc Reilly inequality on possibly open boundary domains

In this section, we shortly review the spinorial Reilly inequality. This inequality together
with those boundary value problems discussed in Section 3 will be the main ingredient in
the proof of Theorem 1.2.

Theorem 6.1. Spinc Reilly inequality. For all ψ ∈ H1(M,SM), we have∫
Σ

(
〈D̃ψ, ψ〉 − n

2
H|ψ|2

)
ds ≥

∫
M

(1

4
scalM |ψ|2 +

1

2
〈iΩ · ψ, ψ〉 − n

n+ 1
|Dψ|2

)
dv, (13)

where dv (resp. ds) is the Riemannian volume form of M (resp. Σ). Moreover, equality
occurs if and only if the spinor field ψ is a twistor-spinor, i.e. if and only if Pψ = 0, where
P is the twistor operator acting on SM locally given by PXψ = ∇Xψ + 1

n+1
X · Dψ for all

X ∈ Γ(TM).

Proof. The inequality is proved for ψ ∈ Γ∞c (M, SM) analogously as in the compact Spin
case [22, (17)]. For the convenience of the reader, we will shortly recall it here. For all
ψ ∈ H1(M, SM) the claim follows using the Trace Theorem A.5 in the same way as in
Lemma 2.5: We define 1-forms α and β on M by α(X) = 〈X ·Dψ,ψ〉 and β(X) = 〈∇Xψ, ψ〉
for all X ∈ Γ∞(TM). Then α and β satisfy

δα = 〈D2ψ, ψ〉 − |Dψ|2, δβ = −〈∇∗∇ψ, ψ〉+ |∇ψ|2.

Applying the divergence theorem with (4) and (6), we get∫
Σ

(
〈D̃ψ, ψ〉 − n

2
H|ψ|2

)
ds =

∫
M

(
|∇ψ|2 − |Dψ|2 +

1

4
scalM |ψ|2 +

i

2
〈Ω · ψ, ψ〉

)
dv. (14)

On the other hand, for any spinor field ψ we have

|∇ψ|2 = |Pψ|2 +
1

n+ 1
|Dψ|2. (15)

Combining the identities (15), and (14) and |Pψ|2 ≥ 0, the result follows. Equality holds if
and only if |Pψ|2 = 0, i.e. the spinor ψ is a twistor spinor. �

7. A lower bound for the first nonnegative eigenvalue of the Dirac
operator on the boundary

In this section, we prove our main theorem. For that we won’t follow the original proof given
in [22] due to our problems concerning the APS-boundary conditions as remarked at the end
of Example 3.14.iv. But we will use B± as given in Example 3.14.iii.
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Proof of Theorem 1.2. Since Σ is complete, D̃ : H1(Σ,SM |Σ) → L2(Σ,SM |Σ) is self-adjoint
and, hence, λ1 is an eigenvalue or in the essential spectrum of D̃. In both cases, there is a

sequence ϕi ∈ H1(Σ,SM |Σ) with ‖ϕi‖L2(Σ) = 1 and ‖(D̃ − λ1)ϕi‖L2(Σ) → 0. Then, ϕi → ϕ

weakly in L2(Σ,SM |Σ) (In case that ϕ 6= 0, ϕ is an eigenspinor of D̃ to the eigenvalue

λ1 otherwise λ1 is in the essential spectrum of D̃). We assumed that D is B−-coercive at
infinity (everything which follows is also true when assuming B+-coercivity at infinity when
switching the signs). Then by Lemma 3.2, the range of DB− is closed. Moreover, from
Lemma 4.1 we have ker (DB−)∗ = ker DB+ = {0}. Thus, due to Proposition 3.15 for each i
there exists a unique Ψi ∈ H1(M,SM) with DΨi = 0 and P+RΨi = P+ϕi. Using Theorem
6.1 and scalM + 2iΩ ≥ 0, we obtain

0 ≤
∫

Σ

(
〈D̃RΨi, RΨi〉 −

n

2
H|RΨi|2

)
ds.

Moreover,

(D̃(P+RΨi + P−RΨi), P+RΨi + P−RΨi) = (D̃P+RΨi, P−RΨi) + (D̃P−RΨi, P+RΨi)

= (D̃P+RΨi, P−RΨi) + (P−RΨi, D̃RP+Ψi),

where we used that D̃ is self-adjoint on H1(Σ,SM |Σ) and Lemma 4.1. Hence, summarizing
we get that

n

2

∫
Σ

H|RΨi|2ds ≤ 2<
∫

Σ

〈D̃P+RΨi, P−RΨi〉ds = 2<
∫

Σ

〈P−D̃ϕi, P−RΨi〉ds

≤ 2<
∫

Σ

〈P−(D̃ − λ1)ϕi, P−RΨi〉ds+ 2<λ1

∫
Σ

〈P−ϕi, P−RΨi〉ds.

Using 2<
∫

Σ
〈P−ϕi, P−RΨi〉ds ≤ ‖P−ϕi‖2

L2(Σ) + ‖P−RΨi‖2
L2(Σ) and λ1 ≥ 0, we obtain

n

2
inf
Σ
H‖RΨi‖2

L2(Σ) ≤ 2‖(D̃ − λ1)ϕi‖L2‖RΨi‖L2 + λ1(‖P−ϕi‖2
L2(Σ) + ‖P−RΨi‖2

L2(Σ)).

Moreover, (D̃P±ϕi, P∓ϕi) = (P∓(D̃ − λ1)ϕi, P∓ϕi) + λ1‖P∓ϕi‖2
L2 . Since D̃ is self-adjoint,

<(D̃P+ϕi.P−ϕi) = <(D̃P−ϕi.P+ϕ). Together with |(P∓(D̃ − λ1)ϕi, P∓ϕi)| → 0 as i → ∞,
we have that limi→∞ ‖P−ϕi‖L2 = limi→∞ ‖P+ϕi‖L2 = 1

2
for λ1 > 0. Hence, for certain εi

with εi → 0 as i→∞
n

2
inf
Σ
H‖RΨi‖2

L2(Σ) ≤ 2‖(D̃ − λ1)ϕi‖L2‖RΨi‖L2 + λ1(‖P+ϕi‖2
L2(Σ) + εi + ‖P−RΨi‖2

L2(Σ))

≤ 2‖(D̃ − λ1)ϕi‖L2‖RΨi‖L2 + λ1(‖P+RΨi‖2
L2(Σ) + εi + ‖P−RΨi‖2

L2(Σ))

≤ 2‖(D̃ − λ1)ϕi‖L2‖RΨi‖L2 + λ1(‖RΨi‖2
L2(Σ) + εi).

Hence,
n

2
inf
Σ
H ≤ 2‖(D̃ − λ1)ϕi‖L2‖RΨi‖−1

L2 + λ1(1 + εi‖RΨi‖−2
L2 ).

With ‖RΨi‖L2 ≥ ‖P+RΨi‖L2 = ‖P+ϕi‖L2 → 1
2
, we finally get

n

2
inf
Σ
H ≤ λ1.

Next we collect all conditions that have to be fulfilled to obtain the equality n
2

infΣH = λ1:
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(1) From the spinorial Reilly Inequality (13),
∫
M
|PΨi|2dv → 0 which implies together

with DΨi = 0 that
∫
M
|∇Ψi|2dv → 0.

(2)
∫
M

scalM |Ψi|2 + 2i〈Ω ·Ψi,Ψi〉dv → 0
(3) ‖ϕi −RΨi‖L2(Σ) → 0
(4)

∫
Σ

(H − infΣ H)|RΨi|2ds→ 0.

In case that λ1 is an eigenvalue of D̃ with eigenspinor ϕ, one can choose ϕi = ϕ for all i.
Then Ψi =: Ψ for all i and those equality conditions reduce to ϕ = RΨ, Ψ is a parallel spinor
on M , H is constant and

∫
M

scalM |Ψ|2 + 2i〈Ω ·Ψ,Ψ〉dv = 0. �

8. Dirac spectrum of product manifolds

As an example we give special cases of product manifolds where the Inequality (2) follows
directly from the Inequality (1) for the closed case. This also serves as an example that in (2)
equality can also occur for noncompact manifolds. That is different to Friedrich’s inequality
where equality already implies that the manifold is closed, see the next Section.

Assume that Σ
′
is a closed embedded hypersurface in a Riemannian Spinc manifold (Nn+1, h)

with mean curvature H
′
. If we assume that H

′
is nonnegative and 1

2
scalN + iΩN · is nonneg-

ative, then the first positive eigenvalue λ1 of the Dirac operator (D̃)
′

on Σ′ satisfies [35, 37]

λ
′

1 ≥
n

2
inf
Σ′
H
′
. (16)

Equality holds if and only if H
′

is constant and every eigenspinor corresponding to λ
′
1 is the

restriction to Σ
′

of a parallel spinor on N .

We recall that since the hypersurface Σ
′

is closed, the Dirac operator (D̃)
′

has a discrete
spectrum

· · · ≤ λ′−l ≤ · · · ≤ λ′−1 ≤ 0 ≤ λ′1 · · · ≤ λ′l . . . .

But from (7), we have λ′−l = −λ′l for all l ∈ Z. Then, the spectrum of (D̃)
′
is symmetric. Let

(M = N ×M ′, g = h+ g′) be the Riemannian product of (N, h) and (M ′, g′) where (M ′, g′)
is any complete Riemannian Spinc k-manifold without boundary. Then, Σ = Σ

′ ×M ′ is a
complete embedded hypersurface of M with mean curvature H((ξ, x) ∈ Σ′×M ′) = n

n+k
H ′(ξ).

We recall that if λ
′
1 ≥ 0 is the first nonnegative eigenvalue of (D̃)

′
defined on Σ

′
, then we

have

λ2
1 = (λ

′

1)2 + µ2
1

where µ2
1 is the infimum of the spectrum of (DM

′
)2 and λ2

1 is the infimum of the spectrum

of D̃2 on Σ (See [11] for M ′ = Rk, [12, Chapter 3] for M ′ compact. The general result is
seen analogously using the spectral theorem for self-adjoint operators). Note that due to

the symmetry of the spectrum of D̃, λ1 is already the first nonnegative eigenvalue of D̃.
Together with (16) we have,

λ2
1 = (λ′1)2 + µ2

1 ≥
(n

2

)2

inf
Σ′

(H
′
)2 =

(
n+ k

2

)2

inf
Σ
H2.

24



Equality holds if and only if it holds in (16) and µ1 = 0. Moreover, µ1 = 0 is an eigenvalue
if and only if λ1 is an eigenvalue, cf. [12, Section 3.2]. Summarizing we get the following
proposition:

Proposition 8.1. Let Σ
′

be a compact embedded hypersurface in a Riemannian Spinc man-
ifold (Nn+1, h). Let (M ′, g′) be a complete Riemannian Spinc k-manifold. Moreover, let
(M = N ×M ′, g = h+ g′). Then, Σ := Σ

′ ×M ′ is a complete embedded hypersurface of M .
Assume that the mean curvature H of Σ is nonnegative and that N satisfies scalN+2iΩN ≥ 0.

Then, the infimum λ1 of the nonnegative part of the spectrum of D̃ on Σ satisfies

λ1 ≥
n+ k

2
inf
Σ
H. (17)

Equality holds in (17) if and only if equality holds in (16) and 0 ∈ σ(DM ′). In this case, λ1

is an eigenvalue of D̃ if and only if 0 is an eigenvalue of DM
′
.

Example 8.2. (1) M
′

= K × S where K is a complete Kähler manifold endowed with
the canonical Spinc structure and S is any Spin complete manifold with a parallel
spinor. Then M

′
is a complete Spinc manifold with a parallel spinor [32] and hence

0 ∈ σ(DM
′
). Thus, equality holds in (17) if and only if equality holds in (16).

Examples of compact embedding hypersurfaces satisfying the equality case in (16)
are given in [22, 23, 24].

(2) Let M ′ be Rp or Hp and N a closed Spinc manifold of dimension n + 1. Let M =
N ×M ′ be of positive scalar curvature. We have σess(D

M ′) = σ(DM ′) = (−∞,∞)
and, hence, any embedding Σ ↪→ N that gives equality in (16) gives equality in (17).

9. The intrinsic Friedrich lower bound

In this part, we shortly want to compare the extrinsic Inequality (2) with the intrinsic
Friedrich’s inequality: Let Σn be a complete Riemannian Spinc manifold. If scalΣ denotes
the scalar curvature of the metric on Σ, we have the intrinsic Friedrich Spinc inequality, see
[14] for the closed Spin case, [16] for the complete Spin case and [35, 34] for the Spinc case:

(λ+
1 )2 >

n

4(n− 1)
inf
Σ

(scalΣ − cn|ΩΣ|) (18)

where λ+
1 denotes the infimum of the nonnegative part of the spectrum of DΣ.

Let now Σ be additionally the boundary of a Riemannian Spinc manifold Mn+1 of bounded
geometry such that the induced metric and Spinc-connection on Σ are the original ones. A
consequence from the Gauss formula for the embedding, see [10], is that

scalΣ = scalM − 2RicM(ν, ν) + n2H2 − |II|2, (19)

From that, it is clear that in general we cannot hope getting a relation between scalΣ and H
allowing us to compare the Friedrich inequality (18) and the inequality

λ1 ≥
n

2
inf
Σ
H, (20)

where λ1 is the infimum of the nonnegative spectrum of D̃. Note that always, λ+
1 ≥ λ1 and

in case the spectrum of DΣ is symmetric they already coincide. But in special cases, we can
compare them as in the closed case [22]:
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Proposition 9.1. Let (M,Σ) and L be of bounded geometry. Let Σ be an embedded complete

hypersurface on a Riemannian Spinc manifold M . Let the Einstein tensor RicM − scalM

2
g of

M be positive semidefinite. Then the extrinsic lower bound (20) for the infimum of the

nonnegative spectrum of the Dirac operator D̃ of Σ is sharper than the Friedrich inequality
(18). The two lower bounds coincide if and only if the embedding is totally umbilical and the
restricted Spinc structure has a flat line bundle.

Proof. Since the Einstein tensor RicM − scalM

2
g is positive semidefinite, we get by (19) that

scalΣ − cn|ΩΣ| ≤ n2H2 − |II|2 − cn|ΩΣ|.
Using the Cauchy-Schwarz inequality on II and |ΩΣ| ≥ 0, we get

scalΣ − cn|ΩΣ| ≤ n(n− 1)H2,

and the result follows. Moreover, the two lower bounds coincide if and only if ΩΣ = 0,
λ1 = λ+

1 and II(X) = H X for all X ∈ Γ(TΣ). �

Example 9.2. Recall an example from the compact case, cf. [22, p. 11]: When the ambient
space is the Euclidean space with a closed hypersurface Σ. If scalΣ > 0, then H w.r.t.
the normal pointing into the interior of Σ is positive too (see [31, Lemma 1]), but it is
possible for an embedded closed hypersurface to have everywhere positive mean curvature
and somewhere negative scalar curvature (for example, consider the compact revolution tori
T 2 in R3). So there are situations in which only inequality (2) will be significant.
From this example one can easily construct noncompact ones, e.g. T 2 × Rn embedded in
R3 × Rn. From Proposition 8.1, it is clear that the lower bound (17) still holds but the
Friedrich inequality is still trivial.

Appendix A. Trace theorem

The goal is to sketch briefly the Trace and Extension Theorem on manifolds of bounded
geometry and review the basic definitions that are involved. For more details on the defini-
tion of bounded geometry on manifolds with boundary see [38]. For the equivalence of all
those different definitions of Sobolev-norms involved here and the corresponding theorems
for submanifolds (not necessarily hypersurfaces) see [18]. For the convenience of the reader,
we start by briefly recalling the definition of fractional Sobolev spaces for functions on Rn

with values in a trivial hermitian Cr-bundle:

Definition A.1. [41, Definition 3.1] Let s ∈ R. The Hs := H2
s -norm of a compactly

supported f : Rn → Cr is defined as

‖f‖2
Hs(Rn,Cr) :=

∫
Rn

∣∣∣f̂(ξ)
∣∣∣2 (1 + |ξ|)sdξ

where f̂(x) := (2π)−
n
2

∫
Rn e

−ix·ξf(ξ)dξ denotes the Fourier transform of f . The space
Hs(Rn,Cr) is then defined as the completion of Γ∞c (Rn,Cr), the space of smooth compactly
supported functions on Rn with values in Cr, with respect to the Hs-norm.

From now on, let M be a Riemannian manifold possibly with boundary and of bounded
geometry, as in Definition 2.2. Moreover, let E be a hermitian vector bundle over M . We
assume that E is also of bounded geometry, see Definition 2.3. Before we use the above
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definition to define Sobolev spaces for sections of E, we define when we call a trivialization
of E synchronous:

Definition A.2. [38, Definition 2.3] Let (Mn,Σ) be of bounded geometry, see Definition 2.2
and the notions defined therein. Let r = min{rΣ, rM , r∂} where rΣ is the injectivity radius
of Σ and rM the one of M . Let pΣ

α ∈ Σ and pβ ∈M be points such that

• the metric balls BΣ
r (pΣ

α) in Σ (i.e. w.r.t. the metric g|Σ) give a locally finite cover of
Σ
• the metric balls Br(pβ) in M cover M \ UΣ and are locally finite on all of M .

Let (Vγ)γ be a locally finite covering of M where each Vγ is of the form Br(pβ) or UΣ
pΣ
α

=

F (Bm−k
r × BΣ

r (pΣ
α)). By construction the covering (Vγ)γ is locally finite. Coordinates on Vγ

are chosen to be geodesic normal coordinates around pβ in case Vγ = Br(pβ). Otherwise
coordinates are given by Fermi coordinates

κα : V Σ
pΣ
α

:= [0, rΣ)×Br(0) ⊂ Rn → UΣ
pΣ
α
, (t, x) 7→ expexpΣ

pΣα
(x)(tν)

where ν is the inner normal field of Σ and expΣ is the exponential map on Σ w.r.t. the induced
metric. We call such coordinates (Vγ, κγ)γ Fermi coordinates for (M,Σ). If Vγ = Br(pγ), E
is trivialized via parallel transport along radial geodesic and identify E with Cr. Otherwise,
E is trivialized via parallel transport along radial geodesic of the boundary and along the
normal direction. The obtained trivialization is denoted by (ξγ)γ.

In case of manifolds without boundary, the Definition of ξγ in A.2 is the usual definition
of synchronous trivialization as found in [4, Section 3.1.3]. Note that by construction the
restriction of a synchronous trivialization of E over a manifold M to its boundary Σ gives a
synchronous trivialization of E|Σ.

Definition A.3. [18] Let s ∈ R. Let (Vα)α be a covering of M together with a synchronous
trivialization ξα of E as defined above. Moreover, let the covering be locally finite and hα a
partition of unity subordinated to Vα. Then

‖ϕ‖Hs(M,E) :=
∑
α

‖ξα∗(hαϕ)‖Hs(Rn+,Cr).

Remark A.4. (i) For s ∈ N the definition of Hs(M,E) from above coincides with the
usual definition given by

‖ϕ‖Hs(M,E) :=
s∑
i=0

‖∇E · · · ∇E︸ ︷︷ ︸
i times

ϕ‖L2(M,E),

cp. [38], [18].
(ii) [17, Lemma 26] Let f = (f1, . . . , fr) : Rn → Cr. Then the norms ‖f‖Hs(Rn,Cr) and∑r

i=1 ‖fi‖Hs(Rn,C) are equivalent.
(iii) For s ≤ t we have ‖ϕ‖Hs(M,E) ≤ ‖ϕ‖Ht(M,E). That is seen for M = Rn

+ immediately
using (1 + |ξ|)s ≤ (1 + |ξ|)t. For general M , one just lifts this result by using a
partition of unity and a synchronous trivialization.

(iv) Let DΣ : Γ∞c (Σ,SΣ)→ Γ∞c (Σ,SΣ) be a Dirac operator on Σ. For any s ∈ R, there is
closed extension of DΣ from Hs(Σ,SΣ)→ Hs−1(Σ,SΣ).
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Theorem A.5. Let Mn be a Riemannian manifolds with boundary Σ. Assume that (M,Σ)
is of bounded geometry and that E is an hermitian vector bundle over M that is also of
bounded geometry. Then, for all s ∈ R with s > 1

2
the operator R : Γ∞c (M,E)→ Γ∞c (Σ, E|Σ)

with ϕ 7→ ϕ|Σ extends to a bounded linear operator from Hs(M,E) to Hs− 1
2
(Σ, E|Σ).

Proof. First we note that in case of real valued Sobolev spaces on M = Rn
+ with Σ := ∂M =

Rn−1 the trace theorem is the one in the original formulation and can be found in [41, The-
orem I.3.4]. As a next step we consider Sobolev spaces on M = Rn

+ with values in a trivial
Cr-bundle E over M . Thus, ϕ = (ϕ1, . . . , ϕr) and the Trace Theorem holds for each compo-
nent separately. Using Remark A.4.ii the trace theorem for the trivial Cr follows immediately.
Let now M be arbitrary. We choose a covering Vα together with a synchronous trivialization
ξα of E and a subordinated partition of unity hα. Moreover, we choose the covering such
that each point in M is covered by at most L charts (for a big enough L). The restric-
tions Vα ∩ Σ cover Σ. Let ϕ ∈ Hs(M,E). Then, for all α we have ξα∗(hαϕ) ∈ Hs(Rn

+,Cr).
Thus, there exists a C > 0 with ‖R(ξα∗(hαϕ))‖Hs−1(Rn−1,Cr) ≤ C‖ξα∗(hαϕ)‖H

s− 1
2

(Rn+,Cr). With

R(ξα∗(hαϕ)) = ξα∗(hαRϕ) we get after summing up ‖Rϕ‖Hs−1(Σ,E|Σ) ≤ C‖ϕ‖H
s− 1

2
(M,E) since

ξα is still a synchronous trivialization for E|Σ. �

Theorem A.6. Let the assumptions of Theorem A.5 be satisfied. Then, for all s > 1
2

there
is a bounded right inverse E : Hs− 1

2
(Σ, EΣ) → Hs(M,E) of the trace map R : Hs(M,E) →

Hs− 1
2
(Σ, EΣ). In particular, E(Γ∞c (Σ, EΣ)) ⊂ Γ∞c (M,EM))

Proof. This is proven analogously as the Trace Theorem using the original Euclidean version
E : Hs− 1

2
(Rn−1)→ Hs(Rn) which can be found in [42, 4.4.1(4)]. The last inclusion follows in

immediately from E(Γ∞c (Rn−1)) ⊂ Γ∞c (Rn). �

Lemma A.7. The L2-product (ϕ, ψ) =
∫

Σ
〈ϕ, ψ〉dv for ϕ, ψ ∈ Γ∞c (Σ, E|Σ) extends to a

perfect pairing Hs(Σ, E|Σ)×H−s(Σ, E|Σ)→ C for all s ∈ R.

Proof. This is also proven in the same way as above – by lifting the corresponding result
from the Euclidean case [41, Section I.3]. �
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