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1. Introduction

Let us consider a unitary irreducible representation (7, H) of a sim-
ple, non-compact and connected Lie group GG. Let us denote by K a
maximal compact subgroup of G. According to Harish-Chandra, the
Lie algebra submodule Hx of K-finite vectors of 7 consists of analytic
vectors of the representation. We determine, and in full generality,
their natural domain of definition as holomorphic functions (see Theo-
rem 6.1 below):

Theorem 1.1. Let (m,H) be a unitary irreducible representation of G.
Let v € 'H be a non-zero K -finite vector and

fo:G—H, g—m(gv

the corresponding orbit map. Then there exists a mazximal G X Kc-
wmvariant domain D, C Gg¢, independent of v, to which f, extends
holomorphically. Fxplicitely:
(i) D, = Gg¢ if w is the trivial representation.
(i) D, = ET K¢ if G is Hermitian and w is a non-trivial highest
weight representation.
(i) D, = Z- K¢ if G is Hermitian and 7 is a non-trivial lowest
weight representation.
(iv) Dy = ZK¢ in all other cases.

Let us explain the objects Z, =+ and =~ in the statement. We form
X = G/K, the associated Riemann symmetric space, and view X as
a totally real submanifold of its affine complexification X¢ = G¢/Kc.
The natural G-invariant complexification of X, the crown domain, is
denoted by = (C X¢). For a domain D C X¢ we denote by DK its
preimage in G¢.

In [4] we observed that a G x Kc-invariant domain of definition of
fo, say D, C G¢, must be such that G acts properly on D, /K¢ C Xc.
By our work with Robert J. Stanton we know that we can choose D,
such that D, D ZK¢ (see [5], [6]). Therefore it is useful to classify
all G-domains = C D C X with proper action. As it turns out, they
allow a simple description. We extract from Theorem 4.1 and Theorem
5.2 below:

Theorem 1.2. Let = C D C X¢ be a G-tnvariant domain on which G
acts properly. Then:
(i) If G is not of Hermitian type, then D = =.
(i) If G is of Hermitian type, then either D C =% or D C =~
with =% and Z7 two explicite mazimal domains for proper
G-action.
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Finally, let us emphasize that proofs in this paper are modelled after
G = S1(2,R) which was dealt with earlier in [4].

Acknowledgment: T am happy to point out that this paper is part of an
ongoing project with Eric M. Opdam [4]. Also I would like to thank
Joseph Bernstein who, over the years, helped me with his comments to
understand the material much better.

2. Notation

Throughout this paper G shall denote a connected simple non-compact
Lie group. We denote by G¢ the universal complexfication of G and
request:

o G C Gg;
e (¢ is simply connected.

We fix a maximal compact subgroup K < G and form
X=G/K,

the associated Riemannian symmetric space of the non-compact type.
The universal complexification K¢ of K naturally realizes as a subgroup
of G¢. We set

and call X¢ the affine complexification of X. Note that

X — X¢, gK — gKc

defines a G-equivariant embedding which realizes X as a totally real
form of the Stein symmetric space X¢. We write g = K¢ € Xc¢ for
the standard base point in X¢ (obviously zp = K € X as well).
However, the natural complexification of X is not X¢, but the crown
domain = C X¢ whose definition we recall now.
We shall provide the standard definition of =, see [1]. To begin with
let us fix a choice of horospherical coordinates on X:

NxASX, (n,a)— na-.

Lie algebras of subgroups L < G will be denoted by the corresponding
lower case altdeutsche Frakturschrift, i.e. [ < g; complexifications of
Lie algebras are marked with a C-subscript. We write ¥ = ¥(g, a) for
the associated restricted root system, W for its Weyl group and let ¥ *
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be the choice of positive system associated to n. Within a we declare
a VW-invariant relative compact set

Q={YealalY) <n/2VackX}
and define the crown domain by
(2.1) == Gexp(iQ)) - xg.

As all flats a are conjugate under Ad(K), = is independent of the choice
of a and intrinsically attached to X.

3. Remarks on G-invariant domains in X¢ with proper
action

One defines elliptic elements in X¢ by
Xcen = Gexp(ia) -z .

The main result of [1] was to show that = is a maximal domain in X¢ o
with G-action proper. In particular G acts properly on =.

In [4] it was found that = in general is not a maximal domain in X¢
for proper G-action. To know all maximal domains is important for
the theory of representations [4], Sect. 4.

That Z in general is not maximal for proper action is related to the
unipotent model for the crown which was discovered in [4]. To be more
precise, we showed that there exists a domain A C n containing 0 such
that

(3.1) = =Gexp(iA) - g .

Now there is a big difference between the unipotent parametrization
(3.1) and the elliptic parametrization (2.1): If we enlarge € the result is
no longer open; in particular, Xc¢ ¢ is not a domain. On the other hand,
if we enlarge the open set A the resulting set is still open; in particular
Xcu = Gexp(in) - 2o is a domain. Thus, if there to exist a bigger
domain than = with proper action, then it is likely by enlargement of
A.

We need some facts on the boundary of =.

3.1. Boundary of =

Let us denote by d= the topological boundary of = in X¢. One shows
that

aenE = Gexp(z@Q) + o Q 0=
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(cf. [6]) and calls 0= the elliptic part of O=. We define the unipotent
part 0,= of 0= to be the complement to the elliptic part:

8= = 02\ Bui=.

The relevance of 0,= is as follows. Let = C D C X¢ denote a G-domain
with proper G-action. Then D N 0g1Z = () by the above cited result of
[1]. Thus if D 2 = one has

DNOE#0.
We need to describe 0,Z. Results of Matsuki (exploited in [2]) give the
following simple characterization of Jg= and 0,Z=:
e 0= ={2€0=| G- zis closed},
e 0,=2={2z€ 0= |G-z is non-closed }.
Let us now describe 9,= in more detail. Let Y € Q and set ¢ :=
exp(iY’). Define a reductive subalgebra of g¢ by

g(c[t] = {Z € gc | Ad(t_2) o U(Z) = Z}

with o the Cartan involution on g¢ which fixes £ 4 ip. Then there is a
partial result on 0,=, for instance stated in [2],

(3.2) 0uZ C {Gexp(e)exp(iY) -z | Y € 01,
(3.3) 0 # e € gc[t] Nig nilpotent }
If Y is such that only one root, say «, attains the value 7 /2, then we

call Y and as well the elements in the boundary orbit G exp(e) exp(iY')-
xo reqular. Define the reqular unipotent boundary by

Oures= = {2z € 0= | z regular}.

Note that gclt] is of especially simple form for regular Y, namely

aclt] = ia+m+ gla]™? +iglal’
where gla] = g* + g~* and m = 3¢(a) as usual.

Hence, in the regular situation, one can choose e above to be in
igla]’ +ia. By sl(2)-reduction one can show that for 0 # ¢’ € ig[a]’ =
ia that exp(ee’) exp(iY') - xg € 0,= for e =1 or € = —1 (see [4]).

We thus proved:

Proposition 3.1. Let = C D C X¢ be a G-invariant domain with
proper G-action. Then:

(i) DN Oyreg= # 0.
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(i) LetY € 09 be reqular and o € ¥ the unique root with a(Y') =
7/2. Then there exists 0 # e € igla]? +ia, nilpotent such that

exp(e) exp(1Y) - xg € Oy reg™ -

4. Complex crowns which are maximal for proper
action

The aim of this section is to prove the following theorem:

Theorem 4.1. Suppose that G is not of Hermitian type. Then = is a
mazimal G-invariant domain with proper G-action.

Remark 4.2. If G is not of Hermitian type, then the nature of the
action of M = Zx(A) on the various root spaces is different in nature.
This will be exploited in the sequel. For the mecessary information on
M -groups one may consult Appendiz C of the monography [3].

Proof. Suppose that G is not of Hermitian type. Let D 2 = be a G-
invariant Stein domain with proper G-action. We shall show that D
does not exist.
According to Proposition 3.1 we find a regular Y € 0f) and a nilpo-
tent e € gelexp(iY')] Nig such that
exp(e) exp(1Y) - 2y € Oy reg™ -
If o € ¥ is the root corresponding to Y | then sl(2)-reduction in con-
junction with Proposition 7.3 implies the existence of E, € g such
that:
o {E,,0(E,), |E.,0(E,)]} is an sl(2)-triplet,
o exp(iE,) exp(iY') - g € Oyreg= N D,
e Y’ € Q such that a(Y') = 0.
Now, as G is not of Hermitian type, there exists an element m € M
such that Ad(m)E, = —FE, (this can be extracted from App. C in [3]).
Hence
exp(—iE,) exp(iY’) - kg € Oyreg=
as well. But this, via sl(2)-reduction, contradicts Proposition 7.1(i)
below. 0

5. Groups of Hermitian type

The goal of this section is to give a classification of all maximal G-
domains = C D C X¢ with proper G-action under the assumption that
G is of Hermitian type.
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Let G C P~ K¢ Pt be a Harish-Chandra decomposition of G in Ge.

We define flag varieties
F* =Gc/KcPT and F~ =G¢/KceP~
and inside of them we declare the flag domains
Dt = GKcPT/KcPt and D™ = GKcP~ /KcP™.

Then
(5.1) Xc— Ftx F~, gKcw— (gKcP*, gKcP™)

identifies X¢ as a Zariski open affine piece of F* x F~. In more de-
tail: As G is of Hermitian type, there exist wy € Ng.(K¢) such that
woP*wy' = PF. In turn, this element induces a Ge-equivariant bi-
holomorphic map:

¢: Ft — F~, gKcPT — quoKcP~ .

With that the embedding (5.1) gives the following identification for
X@Z
(5.2) Xe={(z,w) e F*t x F~ | ¢(2) Tw},
where T stands for the transversality notion in the flag variety F'~.

The description of = is quite simple:

E=DtxD"

(see [6]).

We now define

+=(D+XF_)QX((;,
- (F* x D7) Xc.

(11 [1]

Proposition 5.1. The following assertions hold:

(i) G acts properly on =% and =~ ; moreover, both Z* and Z~ are
mazimal in Xc for proper G-action.
(ii) =% and =~ are Stein manifolds.

Proof. (i) As the G-action is proper on D and D™, it follows that G
acts properly on both Z* and Z~. That =" and =2~ are in fact maximal
domains in X¢ for proper G-action will be a consequence of Theorem
5.2 below.

(ii) Let us deal with the +-case only. By the definition of = and the
characterization of X¢ we conclude that 2t — D™ is a holomorphic
fiber bundle with fiber isomorphic to the complex vector space PT.
Now, a holomorphic fiber bundle is Stein if and only if base and fiber
are Stein. We conclude that =7 is Stein. O
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We state main result of the section.

Theorem 5.2. Suppose that G is of Hermitian type. If = C D C X¢ s

a G-invariant domain with proper G-action, then D C Z% or D C 2~

We postpone the proof of the theorem to the end of this section.

5.1. The structure of =% and =~

We now devote ourselves to the stucture theory of the domains =+

and =7.

If D C X¢ is a subset, then we write DK for its preimage in G¢
under the canonical projection G¢ — X¢. Standard reasoning yields
the following characterization of =+ and =~ in terms of the preimage.

Proposition 5.3. The following assertions hold:
(i) =2t K¢ = GKcPT,

—

—
—

—

(11) = Kc =GKcP.

Next we realize = and =~ as cone bundles over X. For that some
terminology is needed.

According to Harish-Chandra, ¥ is of type C,, or BC,. Hence we
find a subset {71,...,7,} of long strongly orthogonal roots. We fix
E; € g% such that

{E;,0(E)), [E;,0E;]}
becomes an sl(2)-triplet. Set T; := 1/2[E;,0E;] and note that

Q=115
j=1

We set V = P,_, R E; and declare a cube inside V' by

A=P-11E;.
j=1

In [4], Sect. 8, we have shown that
E=Gexp(iA) - .

In this parametrization of = the unipotent boundary piece has a simple
description:

(5.3) OWE = Gexp(i0OA) - xg .

The strategy now is to enlarge = by enlarging A hereby maintaining
that the object stays a domain on which G acts properly. But now
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we have to be a little bit careful with our choice of E;. Replacing £}
by —FE; has no effect for the matters cited above. But for the sequel.
Notice that V' C p™ = log P and we request that Ej; lies in the closure
of the positive cone of the associated Jordan algebra (this makes the
sign unique). We set

n n

AT = @(—1, oo)E; and AT = @(—oo, 1)E;.

j=1 j=1
Then, generalizing [4], Prop. 4.5, we immediately get:
Proposition 5.4. The following assertions hold:
(i) =t = Gexp(iA™) - xy,
(i) =27 = Gexp(iA™) - xo.
Write A/ C g for the nilcone and note that
N =Ad(G)n = Ad(K)n.
Set

n n

A =P[0,00)E; and AT = H(—o0,0]E;

j=1 j=1
and define cones in N by

Nt =Ad(K)A™" and N~ =Ad(K)A~.
Theorem 5.5. The maps
Gxxg NE—=E% [g9,Y]— gexp(iY) - o

are homeomorphism. In particular,

(i) G acts properly on Z*.

(i) E* is contractible.

Proof. We may restrict ourselves to the +-case.
A simple induction on the rank shows that the map

GxV —Xe, (9,Y)— gexp(iY) - g

is open. This and Proposition 5.4 imply that it is sufficient to show
that the map

Gxg NT—=Z% [9,Y] — gexp(iY) - xg

is injective. In other words: for Y, Y’ € AT and g € G we have to show
that
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(5.4) exp(1Y) - xg = gexp(iY') - xg

implies g = k € K and Ad(k)Y' =Y.

We first show that Y equals Y/, up to a permutation of coordinates.
For that consider a finite dimensional representations (7w, W) of G¢ (as
a real group) which is both G and Kc¢-spherical. We let vg and vy, be
vectors in W fixed under G, resp. Kc. We form the real polynomial
functions on G¢

fx(9) = (7(9)vke,va) (9 € Ge)
and with that the functions

Fﬂ(sb ceey Sn) = fw(exp(iZSjEj)) .

It follows from finite dimensional representation theory in conjunction
with (7.1) below that

(F, | mis (G, K¢) — spherical) = C[s?, ..., s2]%".

We conclude from (5.4) that there is no loss of generality to assume
that Y = Y’. Set n = exp(iY). It remains to show that n = gnk
for some k € K¢ implies g € Zx(n) < K. We look at the equivalent
identity

(5.5) ngn ' =k
for g € G, n € exp(iV) and k € K¢ and show that (5.5) forces
(RS ZK(TL)

Matters can be embedded into the symplectic group and hence it is
sufficient to deal with this case. For G = Sp(n,R) we have

—v

Kc = {(u Z) |u,vEM(n,(C);uut—vvt:1,uvt—vtu:0} .

u v
—v u/

So let g = (CCL Z) eG,n= (é 218) € exp(iV), and k = (

Note that the n X n-matrices a, b, ¢, d, s are all real. We write (5.5) out

and get that
1 s\ f(a b\ (1 —is\ _[u w
0 1 c d 0 1) \-v u

which is
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c —ics +d —v U

(a+isc (a + isc)(—is) + (b+isd)) _ (u v)

As a,b, c,d, s are all real, we arrive at the following conditions

(5.6) a=d,

(5.7) sc = —cs,
(5.8) as = sa,

(5.9) c=—scs —b.

Up to this point we have not used the fact at all that Y is ”positive”.
This will come now. Notice that s = diag(sy,...,s,) with all s; > 0.
We may assume that there is j such that s; > 0 for i« < j and s; = 0
for ¢ > j. From (5.7) we now conclude that sc = ¢s = 0. Hence (5.9)

implies that b = —c. As a result g = (_ab Z € G which means that

g € K. Also we have shown that g commutes with n. This completes
the proof of the theorem. O

Remark 5.6. For the above proof our uniform choice of the signs of
E; mattered. Otherwise the theorem would not be true. It is sufficient
to consider the smallest example in rank 2, namely G = Sp(2,R). Set

AT =10,00)E; x (—00,0]E,
and set
=T =Gexp(iAtT) - 2.
Then 27~ is a G-domain in X¢ but the action fails to be proper. In

fact, let s = ((8] 2), for s > 1, a= (g 2) and set ¢ = (2 8)

Assume that

(5.10) a?—(s*=1) =1
is fullfilled and let
_(a (s*—1)c
o-(c )

Then g € G and conditions (5.6) - (5.9) are satisfied in addition. Hence

gn-Tog =n-xg forn = 1 ZS). Now for s > 1 equation (5.10) has

0 1
non-bounded solutions a,c and hence the stabilizer in G of n - xq is not
compact.
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5.2. Proof of Theorem 5.2

It remains to prove the main rersult of the section. We begin with a
weaker statement which is actually sufficient for the application in this

paper.

Lemma 5.7. Let = C D C X¢ be a G-invariant domain with proper
G-action. Then we either have DNO= C 2T or DNO= C 2, but not
both.

Proof. As D D =, it follows that D N d= # (). Moreover, as G acts
properly, it follows that
DNIO=Z=DNoZE.
We recall from (5.3) that
OWZE = Gexp(ioA) - xg .

Thus if DNJ= € EF nor DNOJZ € =7, then there exists an element
e:Z?:IxJEjeAwithxizlandxk:—lforsomelgi#kgn
and such that exp(ie) - zo € DNJ,E. We are allowed to permute i and

k and, via sl(2)-reduction, obtain a contradiction to Proposition 7.1(i)
in the Appendix. By the same reason the alternative is exclusive. [

Proof. (of Theorem 5.2) Let D C = be a domain with proper G-action.
In view of the preceeding lemma, we have = C DNET or = C DNZE".
We may assume that we are in the situation of ”+”. The theorem will
be proved, if we can show that D C =7,

If DZZ=", then DNOJ=" # (). Observe that

Et=(0D"x F7)n Xc.
We decompose this boundary into three pieces:
0=t =(0D* x D" )N Xc I (0D x D7) N X¢
= :115 :85‘65*

(0Dt x F-\D~)N Xc.

As G acts properly, the first two components are not allowed to con-
tribute to D N J=" (cf. Lemma 5.7 and Subsection 3.1). Therefore

DN (DT x F~\D~) #0.

But this contradicts the fact that G' acts properly. In order to see this
we allow ourselves to suppress standard technicalities and focus on the
essential case of G = S1(2,R). We use the terminolgy of the appendix,
ie. F* = F~ =PYC) and D", resp. D™, the upper, resp. lower, half
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plane. It is no loss of generality to assume that (i,0) € DNOI=". Now,
define an anti-holomorphic, G-equivariant automorphism

7: PY(C) x P}(C) — P}(C) x PY(C), (z,w) > (2, ).

Then consider D' = 7(D) which again is a G-domain with proper
action. But D’ has now the property that it intersects both 0= N ="
and 0=NE" (use that 7 fixes (¢,0)). This contradicts Proposition 7.1(i)

from below. O

6. Application to representation theory

Let (7, H) be a unitary representation of G and Hy the underlying
Harish-Chandra module of K-finite vectors. Notice that Hx is natu-
rally a module for Kc.

We say that (7, H) is a highest, resp. lowest, weight representation
if G is of Hermitian type and p™ = Lie(P"), resp. p~, acts on Hx in
a finite manner.

We turn to the main result of this paper.

Theorem 6.1. Let (7, H) be a unitary irreducible representation of G.
Let v € H be a non-zero K -finite vector and

fo:G—H, g—7(gv

the corresponding orbit map. Then there exists a mazximal G X Kc-
invariant domain D, C Gc, independent of v, to which f, extends
holomorphically. Fxplicitely:

(i) D, = Gg¢ if 7w is the trivial representation.
(ii) D, = Z" K¢ if G is Hermitian and w is a non-trivial highest
weight representation.
(i) D, = Z- K¢ if G is Hermitian and 7 is a non-trivial lowest
weight representation.
(iv) Dy = ZK¢ in all other cases.

Proof. If 7 is trivial, then the assertion is clear. So let us assume that
7 is non-trivial in the sequel. Fix a nonzero K-finite vector v and
consider the orbit map f, : G — H. We recall the following two facts:

e f, extends to a holomorphic G-equivariant map f, : =K¢ — H
(see [6], Th. 1.1).

o If D, C G¢ is a G x K¢-invariant domain to which f, extends
holomorphically, then G acts properly on D, /K¢ (see [4], Th.
4.3)
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We begin with the case where G is not of Hermitian type. Here
the assertion follows from the bulleted items above in conjunction with
Theorem 4.1.

So we may assume for the remainder that G is of Hermitian type. If
7 is a highest weight representation, then it is clear that f, extends to a
holomorphic map GK¢cP* — H. Thus, in this case 2" K¢ = GKcP™
(cf. Proposition 5.3 ) is a maximal domain of definition for f, by
Proposition 5.1 and the second bulleted item form above. Likewise,
if (m,’H) is a lowest weight representation, then =~ K¢ is a maximal
domain of definition of f,. In view of Theorem 5.2 it remains to show:

o If f, extends to a holomorphic map on a domain D such that

= C D C =", then (m, H) is a highest weight representation.
o If f, extends to a holomorphic map on a domain D such that

= C D CEZ7, then (m,H) is a lowest weight representation.

It is sufficient to deal with the first case. So suppose that f, extends
to a bigger domain = C D C =1, Taking derivatives and applying the
fact that dm(U(gc))v = Hik, we see that f, extends to D for all u € H.
Let 1 < j < n be such that exp(iE;) exp(iY) - 2o € D for some Y € Q
with 7;(Y) = 0. Let G; < G be the analytic subgroup corresponding to
the sl(2)-triplet { £}, (E}), [E;,0(E;)]}. Basic representation theory of
type I-groups in conjunction with [4], Th. 4.7, yields that 7r‘ o, breaks
into a direct sum of highest weight representations. Applying the Weyl
group, this holds for any other Gy as well. But this means that 7 is a

highest weight representation and completes the proof of the theorem.
O

Remark 6.2. The domains 2, 27 and 2~ are independent of the choice
of the connected group G. Accordingly, the above theorem holds for
all simple connected non-compact Lie groups G, i.e. we can drop the
assumption that G C G¢ and G¢ simply connected.

7. Appendix on SI(2,R)

In this section we summarize our results from [4] for G = SI(2, R).

K = SO(2,R) is the standard choice for the maximal compact and
X = G/K naturally identifies with the upper half plane Dt := {z €
C|Imz > 0}. Further

Xc =P'(C) x PY(C) \ diag[P*(C)]
with G¢ acting diagonally by fractional linear transformations and
E=D"xD C X¢.
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The G-embedding of X = D" into X¢ is given by

2z (2,Z) € E.
Furthermore
=t = Dt x PY(C) \ diag[P'(C)],
=- =PYC) x D™\ diag[P'(C)].

With F = (8 (1]) and T = ((1) _01) our choices for a and n are

a=R-T and n=R-F.
In [4], Sect. 3 and 4, it was established:
Proposition 7.1. Let —oo < a < b < oo with —a,b > 0. Then
Eap = Gexp(i(a,b)E) - xg
is a G-domain in X¢ and the following holds:
(i) G acts properly on =, if and only if min{—a, b} < 1.

(11) S =011
(i) ZF =21 0.

The relationship between elliptic and unipotent parametrization is
as follows (sse [4], Lemma 3.3):

Proposition 7.2. For —m/4 < ¢ < /4 one has
(7.1) Gexp(ipT) - xg = Gexp(isin(2p)E) - g .

Finally we recall the description of 0= as a fiber bundle over the
affine symmetric space G/H where H = SO.(1,1). Notice that H is
the stabilizer of the boundary point

ZH ‘= (1, —1) €0=.
Write 7 for the involution on G, resp. g, fixing H, resp. b, and
denote by g = h + q the corresponding eigenspace decomposition. The
h-module q breaks into two eigenspaces ¢ = q+ @ q~ with

1 =F1
+_ ot £ _
g-=R-e* where e (il _1).

Finally write

C:R20'6+UR20'6_
and C* = C\ {0}. Note that both C and C* are H-stable. We cite [4],
Th. 3.1:
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Proposition 7.3. The map
G xyC— 0=, [g,€] > gexp(ie) - zy
1s a G-equivariant homeomorphism. Moreover,
(1) aeuE =G- g = G/H,
(i) 0,2 = Gexp(iC*) - zg ~ G xy C*,
(ili) 04= = Gexp(iE) - 2o L1 G exp(—iFE) - p.
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