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1. Introduction

Let us consider a unitary irreducible representation (π,H) of a sim-
ple, non-compact and connected Lie group G. Let us denote by K a
maximal compact subgroup of G. According to Harish-Chandra, the
Lie algebra submodule HK of K-finite vectors of π consists of analytic
vectors of the representation. We determine, and in full generality,
their natural domain of definition as holomorphic functions (see Theo-
rem 6.1 below):

Theorem 1.1. Let (π,H) be a unitary irreducible representation of G.
Let v ∈ H be a non-zero K-finite vector and

fv : G → H, g 7→ π(g)v

the corresponding orbit map. Then there exists a maximal G × KC-
invariant domain Dπ ⊆ GC, independent of v, to which fv extends
holomorphically. Explicitely:

(i) Dπ = GC if π is the trivial representation.
(ii) Dπ = Ξ+KC if G is Hermitian and π is a non-trivial highest

weight representation.
(iii) Dπ = Ξ−KC if G is Hermitian and π is a non-trivial lowest

weight representation.
(iv) Dπ = ΞKC in all other cases.

Let us explain the objects Ξ, Ξ+ and Ξ− in the statement. We form
X = G/K, the associated Riemann symmetric space, and view X as
a totally real submanifold of its affine complexification XC = GC/KC.
The natural G-invariant complexification of X, the crown domain, is
denoted by Ξ (⊆ XC). For a domain D ⊆ XC we denote by DKC its
preimage in GC.

In [4] we observed that a G × KC-invariant domain of definition of
fv, say Dv ⊆ GC, must be such that G acts properly on Dv/KC ⊆ XC.
By our work with Robert J. Stanton we know that we can choose Dv

such that Dv ⊇ ΞKC (see [5], [6]). Therefore it is useful to classify
all G-domains Ξ ⊆ D ⊆ XC with proper action. As it turns out, they
allow a simple description. We extract from Theorem 4.1 and Theorem
5.2 below:

Theorem 1.2. Let Ξ ⊆ D ⊆ XC be a G-invariant domain on which G
acts properly. Then:

(i) If G is not of Hermitian type, then D = Ξ.
(ii) If G is of Hermitian type, then either D ⊆ Ξ+ or D ⊆ Ξ−

with Ξ+ and Ξ− two explicite maximal domains for proper
G-action.
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Finally, let us emphasize that proofs in this paper are modelled after
G = Sl(2, R) which was dealt with earlier in [4].

Acknowledgment: I am happy to point out that this paper is part of an
ongoing project with Eric M. Opdam [4]. Also I would like to thank
Joseph Bernstein who, over the years, helped me with his comments to
understand the material much better.

2. Notation

Throughout this paper G shall denote a connected simple non-compact
Lie group. We denote by GC the universal complexfication of G and
request:

• G ⊆ GC;
• GC is simply connected.

We fix a maximal compact subgroup K < G and form

X = G/K ,

the associated Riemannian symmetric space of the non-compact type.
The universal complexification KC of K naturally realizes as a subgroup
of GC. We set

XC = GC/KC

and call XC the affine complexification of X. Note that

X ↪→ XC, gK 7→ gKC

defines a G-equivariant embedding which realizes X as a totally real
form of the Stein symmetric space XC. We write x0 = KC ∈ XC for
the standard base point in XC (obviously x0 = K ∈ X as well).

However, the natural complexification of X is not XC, but the crown
domain Ξ ( XC whose definition we recall now.

We shall provide the standard definition of Ξ, see [1]. To begin with
let us fix a choice of horospherical coordinates on X:

N × A
'
→ X, (n, a) 7→ na · x0 .

Lie algebras of subgroups L < G will be denoted by the corresponding
lower case altdeutsche Frakturschrift, i.e. l < g; complexifications of
Lie algebras are marked with a C-subscript. We write Σ = Σ(g, a) for
the associated restricted root system, W for its Weyl group and let Σ+
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be the choice of positive system associated to n. Within a we declare
a W-invariant relative compact set

Ω = {Y ∈ a | α(Y ) < π/2 ∀α ∈ Σ}

and define the crown domain by

(2.1) Ξ = G exp(iΩ) · x0 .

As all flats a are conjugate under Ad(K), Ξ is independent of the choice
of a and intrinsically attached to X.

3. Remarks on G-invariant domains in XC with proper

action

One defines elliptic elements in XC by

XC,ell = G exp(ia) · x0 .

The main result of [1] was to show that Ξ is a maximal domain in XC,ell

with G-action proper. In particular G acts properly on Ξ.
In [4] it was found that Ξ in general is not a maximal domain in XC

for proper G-action. To know all maximal domains is important for
the theory of representations [4], Sect. 4.

That Ξ in general is not maximal for proper action is related to the
unipotent model for the crown which was discovered in [4]. To be more
precise, we showed that there exists a domain Λ ⊆ n containing 0 such
that

(3.1) Ξ = G exp(iΛ) · x0 .

Now there is a big difference between the unipotent parametrization
(3.1) and the elliptic parametrization (2.1): If we enlarge Ω the result is
no longer open; in particular, XC,ell is not a domain. On the other hand,
if we enlarge the open set Λ the resulting set is still open; in particular
XC,u := G exp(in) · x0 is a domain. Thus, if there to exist a bigger
domain than Ξ with proper action, then it is likely by enlargement of
Λ.

We need some facts on the boundary of Ξ.

3.1. Boundary of Ξ

Let us denote by ∂Ξ the topological boundary of Ξ in XC. One shows
that

∂ellΞ := G exp(i∂Ω) · x0 ⊆ ∂Ξ
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(cf. [6]) and calls ∂ellΞ the elliptic part of ∂Ξ. We define the unipotent
part ∂uΞ of ∂Ξ to be the complement to the elliptic part:

∂uΞ = ∂Ξ \ ∂ellΞ .

The relevance of ∂uΞ is as follows. Let Ξ ⊆ D ⊆ XC denote a G-domain
with proper G-action. Then D ∩ ∂ellΞ = ∅ by the above cited result of
[1]. Thus if D ) Ξ one has

D ∩ ∂uΞ 6= ∅ .

We need to describe ∂uΞ. Results of Matsuki (exploited in [2]) give the
following simple characterization of ∂ellΞ and ∂uΞ:

• ∂ellΞ = {z ∈ ∂Ξ | G · z is closed},
• ∂uΞ = {z ∈ ∂Ξ | G · z is non-closed}.

Let us now describe ∂uΞ in more detail. Let Y ∈ Ω and set t :=
exp(iY ). Define a reductive subalgebra of gC by

gC[t] = {Z ∈ gC | Ad(t−2) ◦ σ(Z) = Z}

with σ the Cartan involution on gC which fixes k + ip. Then there is a
partial result on ∂uΞ, for instance stated in [2],

∂uΞ ⊆ {G exp(e) exp(iY ) · x0 | Y ∈ ∂Ω,(3.2)

0 6= e ∈ gC[t] ∩ ig nilpotent}(3.3)

If Y is such that only one root, say α, attains the value π/2, then we
call Y and as well the elements in the boundary orbit G exp(e) exp(iY )·
x0 regular. Define the regular unipotent boundary by

∂u,regΞ = {z ∈ ∂uΞ | z regular} .

Note that gC[t] is of especially simple form for regular Y , namely

gC[t] = ia + m + g[α]−θ + ig[α]θ

where g[α] = gα + g−α and m = zk(a) as usual.
Hence, in the regular situation, one can choose e above to be in

ig[α]θ + ia. By sl(2)-reduction one can show that for 0 6= e′ ∈ ig[α]θ =
ia that exp(εe′) exp(iY ) · x0 ∈ ∂uΞ for ε = 1 or ε = −1 (see [4]).

We thus proved:

Proposition 3.1. Let Ξ ( D ⊆ XC be a G-invariant domain with
proper G-action. Then:

(i) D ∩ ∂u,regΞ 6= ∅.
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(ii) Let Y ∈ ∂Ω be regular and α ∈ Σ the unique root with α(Y ) =
π/2. Then there exists 0 6= e ∈ ig[α]θ + ia, nilpotent such that

exp(e) exp(iY ) · x0 ∈ ∂u,regΞ .

4. Complex crowns which are maximal for proper

action

The aim of this section is to prove the following theorem:

Theorem 4.1. Suppose that G is not of Hermitian type. Then Ξ is a
maximal G-invariant domain with proper G-action.

Remark 4.2. If G is not of Hermitian type, then the nature of the
action of M = ZK(A) on the various root spaces is different in nature.
This will be exploited in the sequel. For the necessary information on
M-groups one may consult Appendix C of the monography [3].

Proof. Suppose that G is not of Hermitian type. Let D ) Ξ be a G-
invariant Stein domain with proper G-action. We shall show that D
does not exist.

According to Proposition 3.1 we find a regular Y ∈ ∂Ω and a nilpo-
tent e ∈ gC[exp(iY )] ∩ ig such that

exp(e) exp(iY ) · x0 ∈ ∂u,regΞ .

If α ∈ Σ is the root corresponding to Y , then sl(2)-reduction in con-
junction with Proposition 7.3 implies the existence of Eα ∈ gα such
that:

• {Eα, θ(Eα), [Eα, θ(Eα)]} is an sl(2)-triplet,
• exp(iEα) exp(iY ′) · x0 ∈ ∂u,regΞ ∩ D,
• Y ′ ∈ Ω such that α(Y ′) = 0.

Now, as G is not of Hermitian type, there exists an element m ∈ M
such that Ad(m)Eα = −Eα (this can be extracted from App. C in [3]).
Hence

exp(−iEα) exp(iY ′) · x0 ∈ ∂u,regΞ

as well. But this, via sl(2)-reduction, contradicts Proposition 7.1(i)
below. �

5. Groups of Hermitian type

The goal of this section is to give a classification of all maximal G-
domains Ξ ⊆ D ⊆ XC with proper G-action under the assumption that
G is of Hermitian type.
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Let G ⊆ P−KCP+ be a Harish-Chandra decomposition of G in GC.
We define flag varieties

F+ = GC/KCP+ and F− = GC/KCP−

and inside of them we declare the flag domains

D+ = GKCP+/KCP+ and D− = GKCP−/KCP− .

Then

(5.1) XC ↪→ F+ × F−, gKC 7→ (gKCP+, gKCP−)

identifies XC as a Zariski open affine piece of F + × F−. In more de-
tail: As G is of Hermitian type, there exist w0 ∈ NGC

(KC) such that
w0P

±w−1
0 = P∓. In turn, this element induces a GC-equivariant bi-

holomorphic map:

φ : F+ → F−, gKCP+ 7→ gw0KCP− .

With that the embedding (5.1) gives the following identification for
XC:

(5.2) XC = {(z, w) ∈ F + × F− | φ(z) ᵀ w} ,

where ᵀ stands for the transversality notion in the flag variety F−.
The description of Ξ is quite simple:

Ξ = D+ × D−

(see [6]).
We now define

Ξ+ = (D+ × F−) ∩ XC ,

Ξ− = (F+ × D−) ∩ XC .

Proposition 5.1. The following assertions hold:

(i) G acts properly on Ξ+ and Ξ−; moreover, both Ξ+ and Ξ− are
maximal in XC for proper G-action.

(ii) Ξ+ and Ξ− are Stein manifolds.

Proof. (i) As the G-action is proper on D+ and D−, it follows that G
acts properly on both Ξ+ and Ξ−. That Ξ+ and Ξ− are in fact maximal
domains in XC for proper G-action will be a consequence of Theorem
5.2 below.
(ii) Let us deal with the +-case only. By the definition of Ξ+ and the
characterization of XC we conclude that Ξ+ → D+ is a holomorphic
fiber bundle with fiber isomorphic to the complex vector space P +.
Now, a holomorphic fiber bundle is Stein if and only if base and fiber
are Stein. We conclude that Ξ+ is Stein. �
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We state main result of the section.

Theorem 5.2. Suppose that G is of Hermitian type. If Ξ ⊆ D ⊆ XC is
a G-invariant domain with proper G-action, then D ⊆ Ξ+ or D ⊆ Ξ−.

We postpone the proof of the theorem to the end of this section.

5.1. The structure of Ξ+ and Ξ−

We now devote ourselves to the stucture theory of the domains Ξ+

and Ξ−.
If D ⊆ XC is a subset, then we write DKC for its preimage in GC

under the canonical projection GC → XC. Standard reasoning yields
the following characterization of Ξ+ and Ξ− in terms of the preimage.

Proposition 5.3. The following assertions hold:

(i) Ξ+KC = GKCP+,
(ii) Ξ−KC = GKCP−.

Next we realize Ξ+ and Ξ− as cone bundles over X. For that some
terminology is needed.

According to Harish-Chandra, Σ is of type Cn or BCn. Hence we
find a subset {γ1, . . . , γn} of long strongly orthogonal roots. We fix
Ej ∈ gγj such that

{Ej, θ(Ej), [Ej, θEj]}

becomes an sl(2)-triplet. Set Tj := 1/2[Ej, θEj] and note that

Ω =
n⊕

j=1

(−1, 1)Tj .

We set V =
⊕n

j=1 R · Ej and declare a cube inside V by

Λ =

n⊕

j=1

(−1, 1)Ej .

In [4], Sect. 8, we have shown that

Ξ = G exp(iΛ) · x0 .

In this parametrization of Ξ the unipotent boundary piece has a simple
description:

(5.3) ∂uΞ = G exp(i∂Λ) · x0 .

The strategy now is to enlarge Ξ by enlarging Λ hereby maintaining
that the object stays a domain on which G acts properly. But now
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we have to be a little bit careful with our choice of Ej. Replacing Ej

by −Ej has no effect for the matters cited above. But for the sequel.
Notice that V ⊆ p+ = log P + and we request that Ej lies in the closure
of the positive cone of the associated Jordan algebra (this makes the
sign unique). We set

Λ+ =
n⊕

j=1

(−1,∞)Ej and Λ− =
n⊕

j=1

(−∞, 1)Ej .

Then, generalizing [4], Prop. 4.5, we immediately get:

Proposition 5.4. The following assertions hold:

(i) Ξ+ = G exp(iΛ+) · x0,
(ii) Ξ− = G exp(iΛ−) · x0.

Write N ⊆ g for the nilcone and note that

N = Ad(G)n = Ad(K)n .

Set

Λ++ =

n⊕

j=1

[0,∞)Ej and Λ−− =

n⊕

j=1

(−∞, 0]Ej

and define cones in N by

N+ = Ad(K)Λ++ and N− = Ad(K)Λ−− .

Theorem 5.5. The maps

G ×K N± → Ξ±, [g, Y ] 7→ g exp(iY ) · x0

are homeomorphism. In particular,

(i) G acts properly on Ξ±.
(ii) Ξ± is contractible.

Proof. We may restrict ourselves to the +-case.
A simple induction on the rank shows that the map

G × V → XC, (g, Y ) 7→ g exp(iY ) · x0

is open. This and Proposition 5.4 imply that it is sufficient to show
that the map

G ×K N+ → Ξ+, [g, Y ] 7→ g exp(iY ) · x0

is injective. In other words: for Y, Y ′ ∈ Λ+ and g ∈ G we have to show
that
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(5.4) exp(iY ) · x0 = g exp(iY ′) · x0

implies g = k ∈ K and Ad(k)Y ′ = Y .
We first show that Y equals Y ′, up to a permutation of coordinates.

For that consider a finite dimensional representations (π, W ) of GC (as
a real group) which is both G and KC-spherical. We let vG and vKC

be
vectors in W fixed under G, resp. KC. We form the real polynomial
functions on GC

fπ(g) = 〈π(g)vKC
, vG〉 (g ∈ GC)

and with that the functions

Fπ(s1, . . . , sn) = fπ(exp(i
n∑

j=1

sjEj)) .

It follows from finite dimensional representation theory in conjunction
with (7.1) below that

〈Fπ | π is (G, KC) − spherical〉 = C[s2
1, . . . , s

2
n]

Sn .

We conclude from (5.4) that there is no loss of generality to assume
that Y = Y ′. Set n = exp(iY ). It remains to show that n = gnk
for some k ∈ KC implies g ∈ ZK(n) < K. We look at the equivalent
identity

(5.5) ngn−1 = k

for g ∈ G , n ∈ exp(iV ) and k ∈ KC and show that (5.5) forces
g ∈ ZK(n).

Matters can be embedded into the symplectic group and hence it is
sufficient to deal with this case. For G = Sp(n, R) we have

KC =

{(
u v
−v u

)

| u, v ∈ M(n, C); uut − vvt = 1, uvt − vtu = 0

}

.

So let g =

(
a b
c d

)

∈ G, n =

(
1 is
0 1

)

∈ exp(iV ), and k =

(
u v
−v u

)

.

Note that the n×n-matrices a, b, c, d, s are all real. We write (5.5) out
and get that

(
1 is
0 1

)

·

(
a b
c d

)

·

(
1 −is
0 1

)

=

(
u v
−v u

)

which is
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(
a + isc (a + isc)(−is) + (b + isd)

c −ics + d

)

=

(
u v
−v u

)

As a, b, c, d, s are all real, we arrive at the following conditions

a = d ,(5.6)

sc = −cs ,(5.7)

as = sa ,(5.8)

c = −scs − b .(5.9)

Up to this point we have not used the fact at all that Y is ”positive”.
This will come now. Notice that s = diag(s1, . . . , sn) with all si ≥ 0.
We may assume that there is j such that si > 0 for i ≤ j and si = 0
for i > j. From (5.7) we now conclude that sc = cs = 0. Hence (5.9)

implies that b = −c. As a result g =

(
a b
−b a

)

∈ G which means that

g ∈ K. Also we have shown that g commutes with n. This completes
the proof of the theorem. �

Remark 5.6. For the above proof our uniform choice of the signs of
Ej mattered. Otherwise the theorem would not be true. It is sufficient
to consider the smallest example in rank 2, namely G = Sp(2, R). Set

Λ+− = [0,∞)E1 × (−∞, 0]E2

and set

Ξ+− = G exp(iΛ+−) · x0 .

Then Ξ+− is a G-domain in XC but the action fails to be proper. In

fact, let s =

(
s 0
0 s

)

, for s > 1, a =

(
a 0
0 a

)

and set c =

(
0 c
c 0

)

.

Assume that

(5.10) a2 − (s2 − 1)c2 = 1

is fullfilled and let

g =

(
a (s2 − 1)c
c a

)

.

Then g ∈ G and conditions (5.6) - (5.9) are satisfied in addition. Hence

gn · x0 = n · x0 for n =

(
1 is
0 1

)

. Now for s > 1 equation (5.10) has

non-bounded solutions a, c and hence the stabilizer in G of n · x0 is not
compact.



12 BERNHARD KRÖTZ

5.2. Proof of Theorem 5.2

It remains to prove the main rersult of the section. We begin with a
weaker statement which is actually sufficient for the application in this
paper.

Lemma 5.7. Let Ξ ( D ⊂ XC be a G-invariant domain with proper
G-action. Then we either have D ∩ ∂Ξ ⊂ Ξ+ or D ∩ ∂Ξ ⊂ Ξ−, but not
both.

Proof. As D ) Ξ, it follows that D ∩ ∂Ξ 6= ∅. Moreover, as G acts
properly, it follows that

D ∩ ∂Ξ = D ∩ ∂uΞ .

We recall from (5.3) that

∂uΞ = G exp(i∂Λ) · x0 .

Thus if D ∩ ∂Ξ 6⊆ Ξ+ nor D ∩ ∂Ξ 6⊆ Ξ−, then there exists an element
e =

∑n
j=1 xjEj ∈ Λ with xi = 1 and xk = −1 for some 1 ≤ i 6= k ≤ n

and such that exp(ie) ·x0 ∈ D∩ ∂uΞ. We are allowed to permute i and
k and, via sl(2)-reduction, obtain a contradiction to Proposition 7.1(i)
in the Appendix. By the same reason the alternative is exclusive. �

Proof. (of Theorem 5.2) Let D ( Ξ be a domain with proper G-action.
In view of the preceeding lemma, we have Ξ ( D ∩Ξ+ or Ξ ( D ∩Ξ−.
We may assume that we are in the situation of ”+”. The theorem will
be proved, if we can show that D ⊆ Ξ+.

If D 6⊆ Ξ+, then D ∩ ∂Ξ+ 6= ∅. Observe that

∂Ξ+ = (∂D+ × F−) ∩ XC .

We decompose this boundary into three pieces:

∂Ξ+ =(∂D+ × ∂D−) ∩ XC
︸ ︷︷ ︸

=∂ellΞ

q (∂D+ × D−) ∩ XC
︸ ︷︷ ︸

=∂Ξ∩Ξ−

q (∂D+ × F− \ D−) ∩ XC .

As G acts properly, the first two components are not allowed to con-
tribute to D ∩ ∂Ξ+ (cf. Lemma 5.7 and Subsection 3.1). Therefore

D ∩ (∂D+ × F− \ D−) 6= ∅ .

But this contradicts the fact that G acts properly. In order to see this
we allow ourselves to suppress standard technicalities and focus on the
essential case of G = Sl(2, R). We use the terminolgy of the appendix,
i.e. F+ = F− = P1(C) and D+, resp. D−, the upper, resp. lower, half
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plane. It is no loss of generality to assume that (i, 0) ∈ D∩∂Ξ+. Now,
define an anti-holomorphic, G-equivariant automorphism

τ : P1(C) × P1(C) → P1(C) × P1(C), (z, w) 7→ (z, w) .

Then consider D′ = τ(D) which again is a G-domain with proper
action. But D′ has now the property that it intersects both ∂Ξ ∩ Ξ+

and ∂Ξ∩Ξ− (use that τ fixes (i, 0)). This contradicts Proposition 7.1(i)
from below. �

6. Application to representation theory

Let (π,H) be a unitary representation of G and HK the underlying
Harish-Chandra module of K-finite vectors. Notice that HK is natu-
rally a module for KC.

We say that (π,H) is a highest, resp. lowest, weight representation
if G is of Hermitian type and p+ = Lie(P +), resp. p−, acts on HK in
a finite manner.

We turn to the main result of this paper.

Theorem 6.1. Let (π,H) be a unitary irreducible representation of G.
Let v ∈ H be a non-zero K-finite vector and

fv : G → H, g 7→ π(g)v

the corresponding orbit map. Then there exists a maximal G × KC-
invariant domain Dπ ⊆ GC, independent of v, to which fv extends
holomorphically. Explicitely:

(i) Dπ = GC if π is the trivial representation.
(ii) Dπ = Ξ+KC if G is Hermitian and π is a non-trivial highest

weight representation.
(iii) Dπ = Ξ−KC if G is Hermitian and π is a non-trivial lowest

weight representation.
(iv) Dπ = ΞKC in all other cases.

Proof. If π is trivial, then the assertion is clear. So let us assume that
π is non-trivial in the sequel. Fix a nonzero K-finite vector v and
consider the orbit map fv : G → H. We recall the following two facts:

• fv extends to a holomorphic G-equivariant map fv : ΞKC → H
(see [6], Th. 1.1).

• If Dv ⊆ GC is a G×KC-invariant domain to which fv extends
holomorphically, then G acts properly on Dv/KC (see [4], Th.
4.3)
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We begin with the case where G is not of Hermitian type. Here
the assertion follows from the bulleted items above in conjunction with
Theorem 4.1.

So we may assume for the remainder that G is of Hermitian type. If
π is a highest weight representation, then it is clear that fv extends to a
holomorphic map GKCP+ → H. Thus, in this case Ξ+KC = GKCP+

(cf. Proposition 5.3 ) is a maximal domain of definition for fv by
Proposition 5.1 and the second bulleted item form above. Likewise,
if (π,H) is a lowest weight representation, then Ξ−KC is a maximal
domain of definition of fv. In view of Theorem 5.2 it remains to show:

• If fv extends to a holomorphic map on a domain D such that
Ξ ( D ⊆ Ξ+, then (π,H) is a highest weight representation.

• If fv extends to a holomorphic map on a domain D such that
Ξ ( D ⊆ Ξ−, then (π,H) is a lowest weight representation.

It is sufficient to deal with the first case. So suppose that fv extends
to a bigger domain Ξ ( D ⊆ Ξ+. Taking derivatives and applying the
fact that dπ(U(gC))v = HK, we see that fu extends to D for all u ∈ HK.
Let 1 ≤ j ≤ n be such that exp(iEj) exp(iY ) · x0 ∈ D for some Y ∈ Ω
with γj(Y ) = 0. Let Gj < G be the analytic subgroup corresponding to
the sl(2)-triplet {Ej, θ(Ej), [Ej, θ(Ej)]}. Basic representation theory of
type I-groups in conjunction with [4], Th. 4.7, yields that π

∣
∣
Gj

breaks

into a direct sum of highest weight representations. Applying the Weyl
group, this holds for any other Gk as well. But this means that π is a
highest weight representation and completes the proof of the theorem.
�

Remark 6.2. The domains Ξ, Ξ+ and Ξ− are independent of the choice
of the connected group G. Accordingly, the above theorem holds for
all simple connected non-compact Lie groups G, i.e. we can drop the
assumption that G ⊆ GC and GC simply connected.

7. Appendix on Sl(2, R)

In this section we summarize our results from [4] for G = Sl(2, R).
K = SO(2, R) is the standard choice for the maximal compact and

X = G/K naturally identifies with the upper half plane D+ := {z ∈
C | Im z > 0}. Further

XC = P1(C) × P1(C) \ diag[P1(C)]

with GC acting diagonally by fractional linear transformations and

Ξ = D+ × D− ⊆ XC .
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The G-embedding of X = D+ into XC is given by

z 7→ (z, z) ∈ Ξ .

Furthermore

Ξ+ = D+ × P1(C) \ diag[P1(C)] ,

Ξ− = P1(C) × D− \ diag[P1(C)] .

With E =

(
0 1
0 0

)

and T =

(
1 0
0 −1

)

our choices for a and n are

a = R · T and n = R · E .

In [4], Sect. 3 and 4, it was established:

Proposition 7.1. Let −∞ ≤ a < b ≤ ∞ with −a, b ≥ 0. Then

Ξa,b := G exp(i(a, b)E) · x0

is a G-domain in XC and the following holds:

(i) G acts properly on Ξa,b if and only if min{−a, b} ≤ 1.
(ii) Ξ = Ξ−1,1.
(iii) Ξ+ = Ξ−1,∞.
(iv) Ξ− = Ξ−∞,1.

The relationship between elliptic and unipotent parametrization is
as follows (sse [4], Lemma 3.3):

Proposition 7.2. For −π/4 < ϕ < π/4 one has

(7.1) G exp(iϕT ) · x0 = G exp(i sin(2ϕ)E) · x0 .

Finally we recall the description of ∂Ξ as a fiber bundle over the
affine symmetric space G/H where H = SOe(1, 1). Notice that H is
the stabilizer of the boundary point

zH := (1,−1) ∈ ∂Ξ .

Write τ for the involution on G, resp. g, fixing H, resp. h, and
denote by g = h + q the corresponding eigenspace decomposition. The
h-module q breaks into two eigenspaces q = q+ ⊕ q− with

q± = R · e± where e± =

(
1 ∓1
±1 −1

)

.

Finally write
C = R≥0 · e

+ ∪ R≥0 · e
−

and C× = C \ {0}. Note that both C and C× are H-stable. We cite [4],
Th. 3.1:
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Proposition 7.3. The map

G ×H C → ∂Ξ, [g, e] 7→ g exp(ie) · zH

is a G-equivariant homeomorphism. Moreover,

(i) ∂ellΞ = G · zH ' G/H,
(ii) ∂uΞ = G exp(iC×) · zH ' G ×H C×,
(iii) ∂uΞ = G exp(iE) · x0 q G exp(−iE) · x0.
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