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Introduction

Weighted orbital integrals are distributions on reductive groups over a local
field or an adele ring, they arose in the Selberg-Arthur trace formula for non-
compact quotients as a result of a truncation process. Unlike the usual orbital
integrals they are not invariant under inner automorphisms of the group. Using
weighted orbital integrals and their dual analogues, the weighted characters,
J. Arthur has constructed invariant distributions Ips and proved an invariant
trace formula, which is an identity beetween them. Under Fourier transform,
invariant distributions on the group map to scalar-valued distributions on the
unitary dual of the group, whereas non-invariant distributions yield operator-
valued Fourier transforms. If one were able to calculate the Fourier transforms
of the invariant distributions fas, then the invariant trace formula could be
written as an identity between distributions on the unitary dual just as in the
classical case of SL(2,R). Since the definition of Iy is rather involved, this is
apparently too much to hope for in general. In fact, many applications of the
trace formula have been carried out without this precise information.

However, as we shall see in the present paper, the Fourier transforms of the
distributions /ps can be explicitly calculated in the case when we consider a
semisimple Lie group of real rank one. A good deal of work in this direction
has been done by R. Herb et al. in [6] and G. Warner in [17], and we shall
make use of it. As indicated in the introduction to [1], there is also unpublished
work of J. Arthur on this question, although to my knowledge he did not obtain
an explicit formula either. Our approach is to utilize the differential equations
satisfled by weighted orbital integrals together with information about their
asymptotic behaviour and their jumps at the singular set. This certainly re-
stricts the method to the case of real groups. Recently, J. Arthur has shown in
[4] with the help of his local trace formula that, for reductive groups over any
local field of characteristic zero, the Fourier transforms of the Ips are distribu-
tions represented by smooth functions on a parameter space for the tempered
dual.

We shall also express the distribution /s as an integral transform (on certain
subtori) of ordinary orbital integrals. Surprisingly, it turns out that the kernel
of this integral transform is a rational expression in characters of the tori. It
would be interesting to know whether this fact follows from a general principle.
We remark that in the present case [js is thereby explicitly calculated as a
distribution on the group.

The paper is organized as follows. In the first section, we shall give the
basic definitions and state our main resull, a formula for the Fourier transform
(p of a distribution fp, whose study is equivalent to thai of Iys. For the time
being, we shall restrict ourselves to regular orbits. The proof occupies sections
2-4. Namely, in section 2 we shall collect the properties of Qp, in particular,
a differential equation it satisfies. In section 3, we shall find and investigate
a particular solution {2p of this differential equation, and it will be shown in



section 4 that Qp = (p. The distribution Ip will be expressed as an integral
transform of ordinary orbital integrals in section 5, and in section 6 the main
result will be extended to any orbit for which Iny may be defined.

1 The main result

Suppose G is a connected semisimple Lie group of real rank one contained in its
simply connected complexification Gg¢ with Lie algebra gc = g @ C. We denole
by G’ the set of regular semisimple elements. This means that g € G’ iff the
centralizer G, of g is a Cartan subgroup of G. The Weyl discriminant of ¢ € G
is

Dg(g) = det(Id — Ad(¢))g/q,-

Given g € (' and a function f in the Schwartz space C(G) (see [9], p, 19), the
orbital integral 1s defined as

Jea, f) = IDa(g)]"? jG Cer ()

It depends on the choice of the Haar measures on G and G,. One knows that
the integral is absolutely convergent. The distribution J¢(g) is invariant, which
means that Jg(g, f¥) = Je(g, f) for y € G, where f¥(z) = f(yzy™!). Moreover,
it is tempered, i. e., a continuous linear functional on C(G).

In order to define the weighted orbital integral, we need some preparation.
Let M be a Levi subgroup of G, i. e., a Levi component of a parabolic subgroup
P of G, and suppose that M # G. Then M is the centralizer in G of a unique
maximal (i. e., one-dimensional) R-split torus Ag = expap, and M = M; AR,
where M is a compact subgroup. In fact, M is a Levi component of two different
parabolic subgroups P = MN and P = M N, whose unipotent radicals are N
and N. The roots of ag in n determine a positive chamber (half-line) Cp in
ar, and we fix some Ap € a}; with positive values on Cp to normalize the Haar
measure on Ag = expag. Of course, Apg = —Ap. If m € M N G’, we shall
assume that the Haar measure on the Cartan subgroup A = (G, C M used in
the definition of Jg(m, f) is the product of the measure on Agp determined by
Ap and the measure on A; = AN M; of total mass one.

Fix now a maximal compact subgroup K of G. We mention in passing that
the symmetric space K\G is a hyperbolic space over either the real numbers,
the complex numbers, the quaternions or the octonions. Due to the Iwasawa
decomposition one can define maps Hp, Hp : G — ag by

Hp(kan) = loga, Hp(kan) =loga forallk € K,a€ Ag,n€ N and n € N.

The function v(z) = Ap(Hp(z)— Hp(z)) is positive-valued and has the property
v(zm) = v(z) for m € M. Given m € M NG’ and f € C(G), in our particular



case the weighted orbital integral is defined as
Tn(m, 1) = 1Da(m)/* [ fama™")o(a) d. @)
G/Gm

The integral is absolutely convergent and defines a noninvariant tempered dis-
tribution (see [1]). Note that it is independent of Ap and proportional to the
Haar measure on G.

While (weighted) orbital integrals appear on the geometric side of the trace
formula, the corresponding objects on the spectral side are (weighted) char-
acters. Let Gtemp denote the set of equivalence classes of irreducible tem-
pered (hence unitary) representations of G. For any 7 € G’;emp, its character
O4(f) = Tr(x(f)) is an invariant tempered distribution, which is proportional
to the Haar measure on G. (For the definition and traceability of x(f) for
f € C(G), see [17], Lemma 11.1.) To stress the analogy with the geometric
side, one sometimes writes Jg(7, f) = ©.(f). By Harish-Chandra’s regularity
theorem, ©, 1is represented by an analytic function on &/, which is usually de-
noted by O, too. For any representation =, we shall denote the contragredient
representation by #. If 7 is unitary, then ©; = 6,.

Let us fix notations concerning the principal series of G. Let M denote
the set of equivalence classes of irreducible (thus finite-dimensional) unitary
representations of M = M;Ap. Any o € M may be twisted by A € Orc =
a%, ® C according to o5(ma) = o(ma)a’, where (exp(H))* = e*H) for H € ag.
If we consider M as a subset of M in the obvious way, we get a bijection
M x ia% — M. The induced representation 7p , := lndg(é},‘/zo',\) acts on the
space Hp o, of classes of measurable functions ¢ : ¢ — V, satisfying ¢|K €
L*(K,V,) and ¢(amn) = ép(m)~20)\(m)"'é(z) for m € M, n € N and
a.e. r € G. Here 6p(m) = | det Ad,(m)|.

In order to define weighted characters, we need the intertwining operators
Jpip(0x) 1 Hpoy = Hp 5, defined for o € M7 and Re ) positive on Cp by

(Ipip(on)$) (z) = /N ¢(xn)di

and satisfying
JP|P(°'/\)7"P,M(£) = TP o (m)-fﬁm(f’«\)-

Note that restricting functions to K defines an isomorphism up{o,) : Hpo, —
H,, where the space M, is independent of A. If we consider Jpp(oa) as an
operator in M, via up(os) and up(oy), its restriction to K-finite vectors admits
a meromorphic continuation to A € ap¢. If A € 1oy, A # 0, then 7p,, is
irreducible and Jp p(0a) is invertible. The Plancherel density u(oy} is defined
by

#(oa)pip(ea)dp)p(or) = 1d. (3)



[t is known that xp , is reducible iff o is W(G, Ar)-stable and p(o) # 0 (see [14],
Theorem 5).
If ¢ is a function of o) meromorphic in A we shall use the abbreviation

Let ¢ € M with u(c) # 0 and f € C(G). Then in our particular case the
weighted character is defined as

Jp(o, f) = = Tr (wpo(f)Ipp(0) " 0pJIpip (),

where the derivative is defined for the operator in H,. Jp(¢) is a noninvariant
tempered distribution, which is proportional to the Haar measure on G and
inversely proportional to Ap. It does not depend on the Haar measure on N
used to define Jp|p(c).

In (3], J. Arthur actually defines a slightly different distribution Jas(o, f)
using normalized intertwining operators Rpp(0) = rpp(0)~'Jp;p(0) instead
of Jp|p(o), where the functions rp p(0) satisfly the analogue of (3). However,
the obvious relation

Op P|P( o)
Im(o, f) = Jp(o, ) + m— — 9., (f)

allows one to pass back and forth. Here, we have denoted the equivalence class
of rp s by 7,. Unlike Ju (o), Jp(o) is sensitive to the permutation of P and P:

Opu(o)
p(o)

Also, the distribution Jas(c) has the advantage of being defined for all & € M,
but it depends on the possible choices of rp|p. Nevertheless, for reasons which
will become clear later we prefer to work with Jp(o).

If f € C3°(G), then 7p,,,(f) is an entire function in A. In section 2 we shall
see that, for o € M;,

Ip(e, f)=Jp(o, f) - Ox, (f). (4)

Res Jo(012,, ) = n(0)0n, (1), 6)

where 2n(0) i8 the order of the zero of u(oy) at A = 0.

Now we are going to recall the notion of invariant Fourier transform. Remem-
ber that Gtemp is the union of three disjoint sets: the discrete series G, the
set, of the irreducible components of all reducible 7p, (two per each, which are
called limits of discrete series), and the pr1nc1pal sertes, which is parametrlzed
by the set W (G, Ar)\M from which the o’s with reducible Tp,s have been re-
moved. If f € C(G), then 7 — B, (f) is a function on Gtemp. In this way one



gets a map ¢g from C(G) into the space of functions on G;emp. It is the content
of the trace Payley-Wiener theorem ([4], appendix) to describe the image Z(G)
of ¢ and the finest topology on it such that ¢5 will be continuous.

Let I be an invariant distribution on C(G). If I is “supported on characters”,
1. e., if it vanishes on the kernel of ¢ (which is likely to be always true),
it determines a distribution [ on Z(G) by {(dc(f)) = I(f). One calls [ the
(invariant) Fourier transform of I. To calculate it, one has thus to exhibit 7{f)
in terms of the characters ©,(f), 7 € C;'temp.

E. g., the Fourier transform of the §-distribution at 1g is the Plancherel
measure. The Fourier transform of the orbital integral Jg(m) for me M NG’
is also well known ([15}], p. 16):

Jo(m, ) = Dy (m)/? 3 5 / Os_, (), (f)dA,

oEM;

where ia}, is oriented by iAp and d) is defined by d(zAp) = dz. Here O, is
the character of the finite-dimensional representation o, and Dps is defined by
analogy to Dg. In the sequel it will be convenient to combine the sum over M;
and the integral over iaf into an integral over M as

To(m, 1) = 1D ()5 [ ©3(m)0x, (1) do ©)

with the obvious interpretation. Sometimes we shall indicate the dependance
on the ambient group by an upper index like Jg = Jg, Ju = Jﬁ etc. One
may similarly define the orbital integral on M (the Haar measures on compact
groups being normalized to total mass one) by

T (m, ) = |DM(m)|1/2/ h(mymm:) dim,
M

™

for m € M’ and h € C(M). lts Fourier transform can be read off from the
well-known identity

TH (m ) = Dy (m) /7 ! /e,, 10, () de. (7)

In (3], section 10, J. Arthur has defined invariant distributions Iy (m), m €
M N G'. The general procedure simplifies considerably in our real rank one
sitnation. Let ¢ps be the map which assigns to eack f € C(G) the function
o +— Jar(o, f) on M. Due to th simple structure of M it is clear that (M) is
the Schwartz space on M in the obvious sense. It follows from [17], p. 99, that
¢ar is a continuous map from C(G) to Z(M). Denoting the invariant Fourier
transform of J(m) by JM (m), one then defines the tempered distribution

[M(m!f) = JM(m!f) - jﬂ(m:¢ﬂf(f))



Note that ¢a(f) is proportional to the Haar measure on G, as is Jpy(mn, f).
Using (7), this can be written as

Ig(m, ) = Ju(m, [) - |DM(m)|1/2§]-, / 0s(m)Ju(o, f)do.
m2 Jay

As noted earlier, instead of Jps(o) we use Jp(o), which is constiructed {rom
unnormalized intertwining operators. However, the latter have poles on the set
M = M; x ia% C M; x apc. Let thus Dp, be a contour in af ¢ which goes
along iay in the direction u\p but evades zero to the side of /\p if JPlP(O',\)
hasa poleat A = 0. Put Dp = {0y : 0 € M;, A € Dpo} with the inherited
orientation. If f € C(G), then Jp(oy, f) is meromorphic in A, and we may
define the distribution

Lo(m, ) = Jas(m 1) = D2 [ 00(m) (e, o

for m € M NG'. The contour integral can be written as a Cauchy principal
value plus half a residue:

Ip(m, 1) = J(m, ) = [Dag (W5 pv. | ©a(m) (o, 1) do
M
o2 Y XD oy men, (., ®
UEM]

where n(o) are the integrers from (5). The distributions Ip(m) differ from
Ins(m) by a term which is already expressed in terms of characters:

_ 1 1 3Pr‘13| (O’)
Ip(m,£) = T (m, 1) + IDas (5. | 00m) T
1w ()2 3 2 o, (mye, (1)

OEMl

Ox, (f)do

It is esy to check that the logarithmic derivative of rp|p(c) is slowly increasing

on M (see [17], p. 99). Since Arthur’s distributions I3s(m) are tempered and
invariant, so are the Ip(m), and it suffices to calculate the invariant Fourier
transform of the latter.

Let us fix the Cartan subgroup 4 = G, as above and study Ip(a) for
a € A = ANG’'. Choose a half-system X of positive roots for (mg, ac). The
union of ¥ with the set of roots of (g¢, ag) whose restrictions to C'p are positive-
valued gives a half-system Zp of positive roots for (ag, ac). We write Hy € a¢
for the coroot corresponding to o € £Xp, i. e, o'(Hg) € Z for all &' € Tp,
a(Hy)=2. Itisclearthat A’ = {e € A:a” # 1fora € Ep}. Let A" = {a €
A:a®# 1for a € L}, where B = Tp \ ¥ is the set of positive complex or



real roots. By [1], Lemma 1.1, the set ©p contains a real reot (which we denote
by 8) iff tk G = rk K ifl (by classification) K\G is not an odd-dimensional real
hyperbolic space. If @ exists, we introduce v = exp(miHg) € G¢. It lies in
the centre of M; and satisfies ¥2 = 1. It is known (see [8], §24) that 4; and
M are connected except for dim K\G = 2, i. e., except for G isomorphic to
SL(2,R) or a product of the latter with a compact group. If G = SL(2,R), then
A[ = MI = {],7}.

Let A4 C ia" be the set of A-integral weights, so that Ag = As, + iaj
with the obvious meaning. The expression a* makes sense for any a € A° and
A € Ag. Since G is simply connected by assumption, (7 is acceptable. Thus,

Py = %Zaeﬂa belongs to A4, , and

Ag(exp H) = H (eﬁ'(ﬁ)/2 - e-n(ll)/z)
agl

correctly defines a function Ay on A. One has Ag(a) = eg(a)|Dar(a)|*/? for
alla € AN M’, where € is locally constant and satisfies x(a)* = 1. Recall the
Weyl character formula

Ag(a)@,(a)= Y det(w)a*?,
weEW(M,A)

where A — pr, € A4 is the E-highest weight of ¢ € M. Incidentally, if o € M;
(and thus A — px € A4, ), then

1, il B exists and sgne = 1,

n(o) = %#({ae):;\{ﬂ};).(f[a)=0}) + { ‘
0 otherwise

(cf. [17], pp. 92-95), where sgn o = o(y) if dim K\G = 2, and sgno = —y* in all
other cases. We shall need the character ey (w) = (~1)##I0-%) of W(G, A),
which may not coincide with det(w) for w ¢ W(M, A) (see Lemma 1).

Now we are ready to state the main result, giving the Fourier transform of
Ip(a). Actually, we shall consider Ipx(a) = eg(a)Ip(a). Let us write Ag(a) =
Ax(a)| det(Id — Ad(a))g/m|'/?, then Ag(a) = ex(a)|Dg(a)|'/? for a € A".

Theorem 1 There ezists a function Qpyx on A’ x M which is W(G, Ar)-
invariant in the second argument and such, that

. 1 ]
Ipz(a, f) = _Az(a)xezc:.ﬂ. Ox ()0 (f) + %/M Qp.n(a, 5)0x, (f) do

foralla € A" and f € C(G), the sum and the integral being absolutely conver-
gent. Moreover, the function Qpx ertends real-analytically to A" x M\ Ay x My,



and for alAR # 1 1 equals

ot -
a~no

Zn— A(HL)'
L Z ear(w)a®? Z Ap(Ha) x { ™= wafa )

weW(G,A) aEE; (

if a*? > 1, else

SapTSEN O
“n+wA(Ha)  sinTwi(Hg) )’

where A — px is the B-highest weight of ¢, Ap is eclended to ag in the obvious
way, 7 = 3.14.. ., and 8,5 equals one if a = B and zero otherwise. If A is not
connected, then the character a® of A® has 1o be so eztended that v* = o(y). The
series are absolutely convergent and may be writlen as Gaussian hypergeometric
series.

The 1-form do introduced in (6) is inversely proportional to Ap, while Qp
is proportional to Ap, as it should be. Further, A(f{p) is purely imaginary, so
there is actually the hyperbolic sine of a real number in the denominator.

The contribution of Gajs to the Fourier transform of Ip(a) (or of Ja(a),
what amounts to the same) has been calculated in [1} and interpreted in the
form cited here in [2] (of course, in much greater generality). The reason for its
simple form has been elucidated in [5].

1t might seem that the function {2p 5 had already been calculated in [17].
The point, however, is not only that the result is stated there as an infinite
series of integrals which can hardly be computed explicitely, but that the proof
relies (on p. 70) on the evenness of Qp g in the variable ap € Ag, which is not
satisfied. Even if this were true, the conclusion drawn from it might be false, as
the function sinh on (0, 00) may very well be extended to an even function on
R\ {0}. Regardless of this mistake, we shall extract from [17] the existence and
smoothness of Qp 5 for a*? > 1 and its limit as a*® — +-00. The smoothness
on A’ alone has meanwhile been established for reductive groups of arbitrary
rank over local fields of characteristic zero in [4]. In the case G = SL(2,R),
a*? > 1, our result has been obtained in [6] up to the calculation of an integral.
In the present form it can be found in [12], Proposition 7.

2 Properties of the distributions
and their Fourier transforms

We shall now review some properties of the distributions defined in section 2,
First of all, the proof of Lemma 13.1 in [3] given for adelic groups can be
translated to real groups, showing that Ip(m, f} is independent of the choice of
K. More explicitly, if one defines analogous distributions J4,(m, f) and Jp(e, f)
using a different maximal compact subgroup K’ = y~' Ky of G, then

Jag(m, £) = Iu(m, f*) — v(y)Ja(m, f),
J;’(Ua fy= JP(al ) - v(y)@,' (f)



Inserting this into (8) and using (6) and the invariance of Ip(m) proved in [3]
one gets the assertion.

Fix a non-compact Cartan subgroup A of G as in Theorem 1. Since all such
A’s are conjugate, we may choose a maximal compact subgroup K of GG such
that A is stable under the corresponding Cartan involution §. This places us in
the situation of [1], where the distributions

Ty(a) = ﬂg(a)f f(zaz™Hu(z) dz
G/A
have been considered. Recall also that
Fy(a) = Z&z(a)/ f(zaz™')dz
G/A

is Harish-Chandra’s invariant integral with respect to A, which provides a con-
tinuous map C(G) — C(A). If a € A, then Ty(a) = ex(a)ip(a, f) and
Fy(a) = ex(a)Je(a, f). According to [1], Lemma 3.1, Ty(a) is a tempered distri-
bution for @ € A\ Ay under the assumption that rk G = rk K. This assumption
is, however, not used in the proof, which also applies if a € A”. Indeed, if there
is no real root, then n is abelian, and the invertibility of Id, — Ad,(fa) needed
in the proof is satisfied for a € A”. If f € C(G), then Ty is clearly smooth
on A, because it is then defined by an absolutely convergent integral. More-
over, it follows from [2], Lemma 8.1, that T} is smooth on A’ even for f € C(G),
and that the map f — Tf|n extends to a continuous linear map from C(G) to
C*(2) for any relatively compact open subset © of A’. (One could replace A’
by A” here, but this is of no great importance.)

Next we come to the differential equations. We choose a non-degenerate
Ad(Gg)-invariant symmetric bilinear form (., .} (e. g., the Killing form) on g¢
which restricts to a negative definite form on 2. Its restriction to ac gives
rise to a bijection a¢ — ag and a bilinear form on ag which we denote in
the same way. The latter is a W{(gc, ag)-invariant element of the symmetric
algebra of ac and defines a second-order differential operator D on A. Let
w be the element of the centre of the universal enveloping algebra of g¢ which
corresponds to D under the Harish-Chandra isomorphism. Then w —{ps,, px,)
is the Casimir element corresponding to {., .). Generalizing Harish-Chandra’s
formula F,f(a) = DF;(a), Theorem 5.1 of [1] asserts that, for a € A",

Tus(a) = DTy (a) — Q(a)Fy(a),

where

Q=2 Y

EE+(a°’ (1 —a=)’

If ¢ € M has T-highest weight A — px, then mp,(wf) = (A, N7po(f) and
thus Jp(o,wf) = (X, A)Jp(o, f). Weyl’s character formula implies D(Ag©,) =



(A, A)Ax0,, and from (8) one now easily deduces that
Ipx(a,wf) = Dipx(a, f) — Q(a)Fy(a). (9)

Similar differential equations associated with all elements of the centre of the
universal enveloping algebra are satisfied, but we shall not need them. No
general closed formula for the corresponding Q’s seems to be known.

Let us now consider the behaviour of our distributions under the action of
W(G,A) on a € A. For later use, we prove

Lemma 1 There is a direcl product decomposilion
W(GaA) = W(Ms A) x {l,wg}

with woX = L. Moreover,

detr(w), if B exists,
sM(w =
det(w)  otherwise,

where det; denoles the determinant in a;.
Proof. There is a natural exact sequence
1— W(M,A) = W(G,A) = W(G, Ar) — 1. (10)

The exactness in the term W(G, Agr) follows from the fact that all Cartan
subgroups of M are conjugate. Since W(M, A) acts transitively on the set of
bases for the root system X U —X, one can find an element wy € W(G, A) with
wpL = T which is mapped on the nontrivial element of W(G, Ag). Thus, the
sequence (10) splits. If there exists a real root § € Ep, then wp is, of course,
the simple reflection sg. Otherwise, wy depends on I.

As the formula for e (w) is obvious for w € W(M, A), it remains to prove
it for w = wg. If wy is trivial on gy, then it is a simple reflection in a;, and there
exists a real root. So we are in the first case, and there is nothing to prove. In
the second case, wg is nontrivial on a;. But an automorphism of order two of a
root system of type D, n > 2, preserving a set of positive roots has determinant
—1. Thus, detj(wo) = detp(wy) = —1, as asserted. (For n = 1, the assertion
can be checked immediately.) O

Let w € W(G, A) and choose a representative y € K for w. Then we have
Hyp(zy™!) = wHp(z), hence v(zy~!) = v(z), and the obvious substitution
yields

Ini(wa, f) = In(a, f). (11)
The analogous property of Jg(a, f) is well known. Now consider the map j :
Hpo — HuwpPwo O Ho — Huo given by (jo)(z) = é(zy). Of course, wP
and wo depend only on the image of w in W(G, Ar). We have

jﬂ'P.v(z) = ‘.'Twp’wg(x)j, J'JP|P(0-) = JwP}wP(wa)j-

10



Since 8y pé(weo) = Opd(c) and j commutes with up (o), we get

pr(wav f) = JP(U: f) (12)

Combining now the definition (8) with (11), (12) and the identity Oy, (wa) =
©,(a), we obtain :
pr(wa,f) = Ip(a,f). (13)

Let us tie up a loose end: the proof of equation (5). If a continuous represen-
tation m acts on a topological vector space, there is a representation 7* on the
space of continuous antilinear functionals. If 7 is unitary, #* = 7 in a natural
way. In our situation, 7p - = 7}, and Jp|p(0*) = Jp;p(0)* foro € M;@u;t’c.
On the other hand, if & € Mj,

. d
Res (Te1p(0:30) ™ SIp1p(0nnr) ) = np(o)id

for some np(¢) € C, since the left-hand side is an intertwining operator for
Tpo. As 0}y, = Ozp, We now see that np(c) = np(s). Taking logarithmic
derivatives and residues on both sides of (3), we obtain (5).

Now we shall recall one last property of T¢(a) in the case tkG = rk K,
namely, its behaviour as a approaches A;. For this purpose, we consider

Sy(a) = Ty(a) + Ap(Hp)log|a?/? — a=?/%| - Fy(a). (14)

Note that Sy(a) is independent of the choice of the Haar measure on A. This
definition is at slight variance with [1], p. 568, where Arthur uses log |l —a™#| =
log |af/? — a=#7%| — 1B(log ag), while it agrees with [2] and gives rise to the
simple property
Sy(wa) = epr(w)Sy(a)

for w € W(G, A). In particular, with w = sg we see that Sy(a) is even in ag.
Let A” ={a€ A: a®# 1 for o € 5\ {#}}. It has been proved in [1], p. 568,
that for a;y € A} = Ay N A" the limit as ar — 1 of Sy(araR) exists and is a
tempered distribution. Moreover, the derivative of S(asag) in ag has a jump
at ap = 1, which is an invariant tempered distribution. We shall now give the
details.

If 7" is a compact Cartan subgroup of G containing Ay, then there are unique
root vectors X4g € g+p such that [Xg, X_g] = Hp and X — X_g € t. One
special choice is T C K, in which case X_g = 0Xg, # being the Cartan involu-
tion. Anyway, t = a5 + R(Xp — X_g}, and we put ty = exp8(Xp —~ X.p) for
0 € R. It is known that ¢, = 5. Let y = exp Z(Xp + X_p) € G¢. Then Ad(y)
leaves a; pointwise fixed and maps i(Xg — X_p) on Hg, thus Ad(y) is a Cayley
transform t¢ — ag. If we put o¥(X) = a(Ad(y)X) for a € £Zp, X € t¢, we
get a system X% of positive roots for (ge, tc), and the corresponding function

Ay (exp X) = H (et X)/2 e'“(x)ﬁ),
a€EL},
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is correctly defined on the connected group T'. Put
FT(t) =Azup(t)[ fate~")dz
G/T
for feC(G)andt € TNG". Il a; € AY and f € CP(G), then the limits
9%£Ss(ar)= lim iS (arexptHg)
CREASPANE TR e
. d
Troy — i T
Oy Fy (ar) = 32‘3 EFJ (arts)

exist, where t and @ are real variables. By [2], Lemmas 8.1 and 8.3, this is even
true for f € C(G). Aciually, 83 Sy (ar) + 05 Sy(ar) = 0 because Sy(a) is even
in ap. Lemma 4.1, Theorem 6.4 and Lemma 7.1 of [1] together yield

83 Sy(ar) — 85 Sylar) = —2i0pw Fy (ar) (15)

for a; € A} and f € CP(G). This is a special case of [2], Theorem 6.1,
which extends to f € C(G) by Corollary 8.4 of the same paper. Actually, the
assumptions of the latter result reqire, in addition, that Ag(a;) # 0, but this
is not important, because otherwise (15) reduces to 0 = 0. Consult [2], p. 260,
for a correction of the normalizing constants used in [1].

Our next task is to exploit the results of Warner in [17]. Since the results
of the previous section are known for dim K\G = 2 by Proposition 7 of [12],
we may exclude this case from now on, as Warner does. He uses the techniques
of wave packets. Given a unitary double representation r of K on a finite
dimensional Hilbert space V; such that each irreducible subrepresentation occurs
with multiplicity one, let L{r) be the finite-dimensional space of functions ¢ :
M; — V; such that $(mymm3) = r(m)¥(m)r(m,). Recall that L(r) is the
direct sum of all L(7,0) = L(7) N Ce(M;) ® V7, where Co(M;) is the space
spanned by the matrix coeflicients of ¢ € M;. Using the Eisenstein integral
associated to P and ¢ € L(r,0), and a Schwartz function o € C(ia}y), Harish-
Chandra has built the wave packet ¢, € C(G) ® V;. By Proposition 8.8 of [17],
if a € A with a*? > 1, the weighted orbital integral of ¢, can be evaluated as

Ts,(a) = %/ . a(AYP, H(a, A)dX + Ra(a), (16)
where

P,u=Lr(k)vr(k“l)dk

and H : {a € A :a*? > 1} x ia} — V; is a smooth function of polynomial
growth in A such, that H(a,A) — 0 for a*® — 400, uniformly on compacta
in (ar,A). Note that our A is Warner’s ivA*. He gives a formula for Ry(a) in
terms of Harish-Chandra’s c-functions in Lemma 8.8.
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Section 9 of [17] is an attempt to determine P H as
P.H =C(P,o) Pry(1) - Q, (17

where C(P, o) is a certain constant and € is a scalar function not depending
on 1, but only on &. Since this argument contains a mistake, we cannot use
the form of Pr H given in (17). We only know that, by construction, A depends
linearly on ¢ € L(7,0). Nevertheless, it will be convenient to apply sections
10-13 of [17] in order to interpret (16) in terms of Fourier transform.

Choose a finite subset I C K and denote by xp € C™(K) the associated
_idempotent. Put

C(G; F)={f€C(G): xr*x f*k xr = f}.

Recall the decomposition C(G) = C4ia(G) @ Ceon(G), where Cgis(G) is the space
of cusp forms and C.on(G) is the space spanned by wave packets. The associ-
ated projections f — fdis, f — feon leave C(G; F) invariant, thus C(G; F) =
Caia(G; F) ® Ceon(G; F).  f € C(G F'), then mp,, (f) actually acts in a finite-
dimensional subspace Ho f of H,, the projector pr on the latter being given
by

pré(k) = jK xr(kn)B(KT E) dby.

Note that H, r = {0} unless o occurs in 5|M; for some § € F.
Now let 7 be the double representation of K on C*°(K x K) given by
(r(kDvr(kg))(k1, k2) = v(kik], koks).

Then Vp = {v € C®(K x K) : 7(xr)vr(xr) = v} is stable under 7 and finite-
dimensional. Denote 0 = TlVP. Recall that the wave packet is bilinear in
Y € L(r,0) and o € C(ia}), hence may be defined on L(7,0) ® C(iay). Using
Harish-Chandra’s bijection T+ %7 from End(H,, r) to L(7p, o), one may build
a wave packet out of 1/’,,,.”(]); where f(z) = f(z~'), A € ia}. Summing up
these wave packets, suitably normalized, over all o € M; and applying the map

Ve — C, v — (1, 1), one recovers feo, (cf. [17], p. 86). If we insert this sum of
wave packets into (16), we obtain

Trn@= Y 50 [ he@omean(DdA+Ri(@),  (18)
UEM; or

where hp(a, o)) is defined by the commutative diagram of linear maps

hp(a,0x)

End(H, r) C Pu(1,1)
‘ lz [ I
H(a\)
L(rp,0) ——Vr v

13



Actually, we have absorbed into hp(a,e,) certain normalizing constants,
The term Rj(a) has been explicated in Theorem 12.8 of [17] as |A*| times

85(a) 3 Oo(@)gr;pv. [ 6T B Tpip(er) - Imnplon) M rn (1)
O'EM[ ia

—%Ar(a) > ea(ﬂ)Tf(?gg(aﬂpm(%\p)'Jp|p(0zap)_1)wp.o(f)) ;

O'EHI

if written in our notation. Indeed, for f € C°(G), both terms may be combined
into a sum of contour integrals over —D, with upward orientation similar to
(8). Since a contour integral of a (logarithmic) derivative is homogeneous of
degree zero under linear substitutions of the complex variable, we have simply
replaced Warner’s ivA™ by our A = zAp and his contour by our one. Note that
from p. 88 of {17) on, dv stands for the measure ];—;ldu.

In the definition of T} (a), Warner uses A* to define the weighting function
v(z), and he normalizes the Haar measure on Ap with the help of the Killing
form. Since we use Ap for both purposes, we may omit the prefacing factor |A*].
We would like to have an expression in terms of f instead of f. Given a linear
operator B in a Hilbert space H, let B denote the transposed operator acting
in the dual space of H. If B is of trace class, so is B, and 1t B = Tr B. If 7 is
a representation of G in H, then #(f) = =(f). In our situation, Tpo X Tpo
and Jpp(o)” = Jp|p(F). Therefore,

Tr (8pdpip(0) - Jpip(0) mpo(f)) = Tr (7ps(£)Ip1p(5) ' 0pTp1p(5)) -

Inserting this and substituting o, for (o))" = -5, we obtain a sum of contour
integrals over D, with downward orientation. Thus R(a) equals

— Ag(a) Z Ga(a)ﬁ p.v./ a_‘\r[\‘(Tp’gl(f)Jp]P(U,\)_la‘DJp]p(O'A)) d

oMy io},
= 3850) 32 0s(@)Tr (2o (/) Reg (pp (0as) 0pTpip(0ers) )
cEM;
Due to (5),

Rj(ﬂ):Az(a)—z—:;p.v. fM ©s(a)Jp(a, f)do + Ap(a) S "(2") 04s(a)0r, (f).

O‘EM[

If we multiply (8) through with ex(a), we get

chon(a) = IP,S(a:fcon) + Rf(ﬂ),

14



and a glance at (18) shows that

Ipx(a, feon) = Z E:r_z/. he(a,00)7p 0, (f) dA.

oceEM;

It is clear that hp(a, o) uniquely determines hp(a,(0)") € End(Hs ) such
that

hi(a,02)(B) = Tt (hr(s, (02))B)
for all B € End(H, r). Thus, in the simplified notation of (6),

IP,E(asfcon) = 2_1m-jﬂ TI‘(BF(G,U)ﬂ'P,g(f)) do (19)

for all f € C(G; F) and a € A’ with a*» > 1. Note that we have defined Ip 5(a)
for a € A’ only. Of course, it can be smoothly extended to A”. However, we
shall define it on the singular set 4 \ A’ in another, more significant way in
section 6.

Let @ be a smooth function on M whose values on {oy : A € ia}} are in
End(H, r) for each ¢ € M. We call @ Weyl-invariant if

iJpp(o)®(0) = @(woa)jJpp(o)

for all ¢ € M, where j is as in the proof of (12). Inserting for f varying wave
packets, one sees that mp,(f) runs through all Weyl-invariant Schwartz func-
tions on M in the sense described above. Thus, replacing hr by its W(G, Ar)-
average if necessary, we may assume that that it is Weyl-invariant in the second
variable, and with this property hg is uniquely determined by (19). In partic-
ular, if # ¢ F' C K, then

hr(a,01) = prhri(a,04)],,

hence the kp’s fit togehter and form a homomorphism i)(a, o)) from the K-finite
subspace of H, into H,.

We already know that /p(a) is an invariant distribution, thus Ip(a, f*xg) =
Ip(a,g* f) for all f, g € C(G). If f and ¢ run through all K-finite elements of
C(G), then (19) implies that A(a, o) commutes with all Tpo(g), and from the
irreducibility of 7p, for generic o we see that

h(a,0) = Qpx(a,d)ld

for some scalar function Qp x. Thereby we have recovered (17), and one may
check that Qpx = Q. However, we shall henceforth use the language of invariant
Fourier transform instead of working with wave packets. Let us restate what
we have extracted from [17].
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Proposition 2 There ezists a smooth function Qpg on {a € A:a*? > 1} x M
of polynomial growth in the second variable and such, tha!

Ipz(a,f) = —Og(a) Y Ox(a)Os 2m] Qp 5(a,5)0y, (f) do

'Eédh

for all f € C(G) and a € A" with a*7 > 1. Moreover, Qpx(a, wo) = Qpx(a, o)
for w € W(G, AR), and Qpx(a,o) — 0 for a** — 400 uniformly on compacta
in (a7, 0).

Note that the contribution of fqis has been determined in [1], [2]. The K-
finiteness assumption on f has been removed in section 13 of [17].

We have indicated the dependence of 2p 5 on P in the notation not without
reason. Equations (4) and (8) imply

3p,u(0)
(&)

= Ip,5(0, 1) + Axla) gz [ (©0(0) = Ouno(a)

Bx (f)do

Opu(5)
#(3)
Here we have used that (&) = p(0) = p(woe) and 8p = —8p. The logarithmic
derivative of i has a simple pole at & € My if u(s)} = 0. But, in this case,
woo = o (see [10], p. 195), and the difference of characters makes the last

integrand smooth on M. We may now extend Proposition 2 to all a € A,
a & A;, by putting

Tos(a,£) = 1p,5(0. /) + Ax(@z-pv. [ Gola)

x (f)do.

6}3#(0’)

0r,(8,0) = Rp,5(0,0) + 5 A5(0)(O0 (8) = Bupo(a)) 22

(20)
for a*f < 1. Of course, Q1p x remains wo-invariant in o.

The notation Qp x(a,s) has its final meaning only for a € A’. It will be
redefined on the singular set in section 6.

We come now to the last part of this section. If f is in the K-finite subspace
of C(G), then ©,_(f) is a wy-invariant Schwartz function of o € M supported
on finitely many connected components of M = M x io}. Again using wave
packets, one proves that this map f — O, _(f) is surjective. (This is the easiest
part of the trace Payley-Wiener theotem of [4).) Thus, Proposition 2 allows
us to translate the properties of /p(a) collected before into properties of Qp 5.
E. g., (13) implies

Qupz(wa, o) = epm(w)ps(a, o) (21)
for w € W(G,A). In order to derive the differential equation for 2px, we
rewrite (6) as

F/(@) = Ax@) g [ (©(6) + Buya(@)0r, (1) do
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As we do not insist that tk G = rk K, the slight simplification provided by
Lemma 9.1 of [17] is not available. Inserting the last equation and the formula
from Proposition 2 into (9) and varying f € Ceon((), we obtain in view of
Ox, (wf) = (A, N0y, ([) the differential equation

DQpx(a,0) = (A, A)pz(a,0) + %Q(G)AS(G)(@a(a) +Ouoola)),  (22)

where A — py is the E-highest weight of o.

Finally, we study the behaviour of Qp 5 as a approaches the singular set A;.
By Proposition 2, Qp 5 extends to a smooth function on A” with values in the
space of wg-invariant distributions on M which are tempered on each connected
component.

This yields nothing new in the case rk G = rk K, to which we now turn. In
view of the definition (14), let us put

Wp2(0,0) = Qpn(a,0)+ 3 Ap(Hy) log1a?/?~a=/2| An(a) (O (c) +Buy (4)).

(23)
Just as we constructed the invariant distribution Ip from Jy in (8), we may
construct an invariant distribution from Sy, for which the analogue of Lemma 2
will be true with Qp 5 replaced by ¥ p 5. The last terms in (8) are smooth, hence
the behaviour of Sy at the singular set will be inherited by the corresponding
invariant distribution. In particular,

GEIBI(‘PP,E(GIGR,U) - ‘I’P'E(GJGBI,U)) =0 (24)

for a; € A/ as a distribution on M. We shall now translaie (15) into a condition
on ¥p ¢. The Fourier transform ofFfT has been calculated in [15}. 1f f € Ceon(G)
then, in our notation,

F}"(t):m /M S det(w)ds(ut,)0n, (f)do,  (25)

weW(G,T)
where the function ®x is given by

Ap(Hpg)

Dr(arts, o0) = _4_Az(a1)60(a.r)sm((g — msgn )M Hp)) —sin 0A(Hp)

sinTA(Hp)

for a; € A7, 0 < |8| < m, o € My and X € ia%. Note that our A(Hg) equals v
in the notation of [15]. Inserting (25) and the analoguc of Lemma 2 for Sy into
the identity (15), we deduce that

6;‘1'}9'}3(0[,0')—BE‘PP.E(GI,O') = WL—'W Z det(w)@wgrtbg(wa;,a),
weW(G,T)
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for a; € AY, 0 € M. Here we have put Oypgy f(t) = limg_o £ f(t - wtp). The
limits 8 ¥ p 5. are understood in the sense of distributions on M.
B )

It is clear that yW (gg, tc)y~' = W(ac, ac) and that W(M, A) = W (M, Ar)
via restriction to ay.

Lemma 2 Let W(G,T,A;) = {w € W(G,T) : wA; = A;}. Then the map
w s w|q, is an isomorphism W(G, T, A;) — W(M;, Af).

Proof. First we show that the image is contained in W (M;, Af). Given w €
W(G,T, Ar), ywy™ ' £ is a system of positive roots for (mg, ag), thus ywy™'E =
w ¥ for some wy € W(M, A). Now s::}tul'lytug,f‘1 must stabilize Xp for some
k € {0,1}, hence ywy™! = w;s'gk, and w|g, = wi|q,, because Ad(y) is trivial
on ay.

Next we check injectivity. If w is as above with w|,, = 1d, then w = sg, with
k € {0,1}. But ¥ is a noncompact root, as one easily sees by a calculation in
the centralizer G(8) of A;, thus w = 1. (Note that the complexified Lie algebra
of G(f) is gc(B) = ac + 8c,s + 0¢,-5-)

Since W (M, Ar) is generated by simple reflections, it remains to show that
55|a; = 86v|a, is in the image for any § € L. If é is strongly orthogonal to
B e, ifa=p+6¢ Ep), then ggs commutes with X4g, hence with y.
So gc,sv = gc,s, and &7 is a compact root. Otherwise, Lp = {a,a, 3,6}, and a
calculation in Sp(1, 1) shows that, although 8 is a noncompact root, the roots a
and & are compact. Clearly, sqvssy leaves a; invariant, and sev 85y |a, = S5v|q; -
As W(G,T) = W(K,T) is generated by the simple reflections in the compact
roots, we are done. DO

Since ®x(wt, o) = det(w)dx(t, o) for w € W(G, T, Af), the Lemma allows
us to write

83 Vps(ar,0)-0; Vps(ar, o) = 4r > det(w)y gy Pr(way, o).
weW (G, T A \W(GT)
(26)

The term for w = 1 has a simple expression:

cosTA(Hg) —sgno
sinTA(Hg)

Opy Ox(ar, o)) = Ap—g{jﬂﬂz(flr)ea(ﬂfﬂ(ffﬂ)

3 A particular solution of the differential equa-
tion

In order to determine 2px, we shall first find some solution QP,D of the in-
homogeneous differential equation (22), which leaves us with the associated
homogeneous equation. We shall check that Qpy has basically all properties
established in the previous section for 2p 5, which will finally allow us to con-
clude that both functions are equal.
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First of all, we want to explicate the last term of (22). If o € M has E-
highest weight A—pg, then woo has Z-highest weight woA—px. Weyl’s character
formula and Lemma 1 now imply

As(a)(00(a) +Oueo(a)) = Y eamr(w)a*™. (27)
weW(G,4)

It 1s therefore natural to look for a solution of the differential equation

Dé(a, ) = (X, N é(a, ) + Q(a)a’
first, where A € A 4. The expansion
Qa)=2 Y (p,a) (_ —2Z(AP, Z —ne
CIGB+ CtEE+ n=1

which is convergent for a*? > 1, suggests to look for ¢ in the form

$la,))=a* D" (Ap,a) Y ea(e, A)a™"e,
agLT} n=1

Inserting this and remembering that Da* = (X, A)a*, we get

> (Apa) Y enlo, M)A = na, A = na) — (A, A))a e

nEE; n=1
=2 Z Ap,a)Zna ne,
aEE"’

As the characters of A are linearely independent, this implies that
2
(na = 2X,a)’

The resulting function ¢ is independent of the choice of the form (., .}. Using
the fact that 2{}, o)} = (o, a}A(H,), ¢ can be written as

¢(a, ) =a* Y AP(HQ)Z ,\(H 7

QEE+

en(a,A) =

which is absolutely convergent for a*# > 1 provided A(H,) is not a positive
integer for any o € £}. If we exclude, for the time being, these values of w),
the function

Q@)= > ewlw) ‘""ZMH«JZ o

wEW(G,A) a€2+

19



is a solution of (22) for a*® > 1. Note that L} is independent of the choice
of L. If ¢ € M with X-highest weight A — pg, then Qps(a,0) := Qp(a,X) is
our candidate for 2p 5.

We can apply (28) to Qu/p(w'a, ) for any w' € W(G, A). Using &}, =
w'E}, we may substitute o = w'a’. The obvious substitution in the sum over
w now yields

Quip(w'a, A) = e (w)Qp(a, ), (29)
which should be compared with (21). On the other hand, £f = —Zf, thus
Qp(a A): -1— Z EM(w)awA Z Ap(Ha)i——L
! 2 n+ wi(Hg)
weW(G,A) | ae}_‘“‘t n=1

for a*? < 1. In view of (20) it is natural to extend ép,z toalla€ A, a g A;,
by putting

dpu(a)
p(o)
for a*® < 1. Since ﬁp'}g - QP,E = Qpy — OQp 5, equations (22) and (29} are

satisfied by the function so extended. Let us calculate it explicitly. By (8], [10]
or {15],

p,5(3,0) = p,2(0,9) + 5A5()(@s () ~ Oueo (@) (50)

tan(wA(Hg)/2), if B exists and sgno =1,
(o) = const H A(Ha) x 4 cot(xA(Hg)/2), if B exists and sgno = —1,

+
*€5p 1 otherwise,

where o and A are connected as before. Thus,

dpu(o) - 1 bopTsgno
oy = 2 M (s * =ity

Similarly to how we got (27), we see that
As(a)(0s(a) — Ougola)) = Y detr(w)es (w)a®,
weW(G,A)

detr denoting the determinant in ag. Multiplying the last two formulas and
substituting detgr(w)wa for o in the (now inner) sum over £}, we finally get
that Qp(a, A, sgno) = Qp x(a, o) equals

w s ah? bugm
2 Z ex (w)a®? Z Ap(Ha) (Z n + wA(Hg) * o iwig(t;;))

wEW(G,A) uez'}t n=0

B[ —

(31)
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for a*® < 1 and A € Ay with A(H,) ¢ Z for any « € £}. Thus, we have
obtained a function Qp(a, A, €) which is defined for € = 1 and A not necessarily
¥-dominant and which satisfies

Qp(a, wh e) = e (w)p(a, ), €) (32)

for w € W(G, A). If dimK\G > 2, then sgno = —+*, and we need only the
simplified form Qp(a, A} = Qp(a, A, —7*).

Lemma 3 The function Qp eztends to a real-analytic function on A” x Ay \
A[ x AA,.

Proof for kG =tk K. We rewrite the formula (28) for {1p(a, ) as

1 awA—na

[="] awwn,\—nﬂ
5 Z em(w) Z )\P(Ha)z (II—WI\(Ha) + 7z—wwoA(Ha)) '

wEW(M,A) aesh n=1

Singularities cannot occur in the terms belonging to the real root 3, because
wA(Hg) € iR. Thus, we fix a complex root o € £} and write A = Ay + Ag in
the obvious meaning. Then wA;(Hy) € R and wAp(H,) € iR. (It will be clear
from the last assertion of Lemma 4 below that wA;(H) € $Z.) Consequently,
the n-th term in the above sum is smooth unless wA;(H,) = n, in which case
it becomes

wi—-na wwpr—na -wAR wAp
a a GR nad aR wiy

—w)\R(HQ) * -wT.U()a\R(fIG) - wx\R(HQ) al

—-no

a s

because wgo = sg acts trivially on a;. This is an analytic function on {a € A :

a*? > 1} x ia}, and so is therefore {2p. In connection with (20) we remarked
that

Opp(o)
Ag(a)(eo(a) ewud(a)) P(U)

is also analytic. This proves the lemmain the present case, since A” = A\ Ay =
{agA:a*" #1}. O

The proof for the case tk G # rk K will be given in short. For this purpose,
we have to look more closely at the structure of G. Given a € E;’;, put C(a) =
{a € A :a® = 1}. The complexified Lie algebra cg¢(a) of this group is the
common kernel of o and & in ag, and we have C(a) = C(@) C Ay with equality
iff @ = 8. Of course, A” = A\ Uaez; C(a). Let G(a) denote the centralizer of
C(w) in G. Then A is a Cartan subgroup of G(a), and if 8 exists, then G(8) is
contained in all the other G(o).

Lemma 4 The group G(a) is connected and reductive with centre Ca). The
derived subgroup G(a)' of G{a) satisfies the same assumplions as G, its absolute
rank is one if @ = § and two otherwise. Moreover, v = expwi(Hy — Hg) for

aZp.
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Proof. Let Ge(a) be the centralizer of C{a) in Ge. Its Lie algebra is

gcla)=ac+ . e
$€LTp(a)

where £p(a) is the intersection of £p with the subspace spanned by o and &.
Hence g¢(a) is reductive, and its derived subalgebra has rank equal to dim(Ca +
Ca). The algebraic group Gg(«) is defined over R and may thus serve as a
complexification of G(a). The real rank of G(«) is one, because A C G(a) C G.
The centre of G(«) is contained in C(a) as it must centralize gg,q, o it equals
C(a).

We assert that G(a) = G(a)’A. (For the case a = 8, see [1], Lemma 1.3.)
Thus, let z € G(a). Since any two noncompact Cartan subalgebras of g{«) are
G(«)%-conjugate, we have z = ym, where y € G(«)? and m € G(«) normalizes
A. Moreover, there exists the analogue wo(a) of wy in W(G(a)%, A). Thus we
may assume that m centralizes Ag, which means that m € M NG(a) = M ().
Observe that Adg.(m) fixes both ap ¢ and cg(a), which span a hyperplane, so
it is trivial or a simple reflection 8 € W (M, A). In the latter case, there exists
an imaginary root § € Xp with s5 = 5. Obviously, é is a root of M(«), a group
compact mod A, and 5 has a representative in M(«)?. In each case we may
thus assume that m centralizes ac, which proves our assertion. [f (G contains no
simple factor isomorphic to SL(2,R), then A is connected, but in the remaining
case we have A = A°U 4%, v € G(B)°. Thus we see that G(a) is connected,
and so is therefore G(a)!.

Now denote by L the kernel of the map exp : ag — Ag¢ and by L(«) its
intersection with the subspace spanned by H, and Hg. Since G is simply
connected, L is generated by the root system R = {2xiHs : § € £¥p}. In
order to prove that Ge(a)! is simply connected, we have to show that L({«) is
spanned by the root system R(«) = {27iH; : 8§ € £Zp(a)}. For this purpose,
choose a real linear functional Ag on ar + fagr such, that ker Ag N R = R{a), and
introduce a linear order on a; + tag which satisfies Ag(H) > 0= H > 0. Then
the basis of R determined by this order must contain a basis of R{«), and our
assertion follows.

Let us prove the equality ¥ = exp mi(H,—Hg). If @ and @ are not orthogonal,
then, by classification, G(a)! =2 SU(2,1), § = a+ &, and Hg = Hy + Hs. On
the other hand, if & and & are orthogonal, then G(a)! = Sp(1,1), 8 = (a+&)/2,
and again g = H, + Hs. Thus, we have to prove that exp 7i(H, + Hs) =
exp mi(H, — Hy), which is equivalent to the obvious equality exp 2mif s = 1.
0

If the absolute rank of G is greater than one, we shall denote the coniribution
of the complex roots to Q2p by 2%. Thus,

Qg}(ﬂw\)=% Yo em(war Y )‘P(Ha)z_na—a~

weW(G,4) acxi\{8} n={
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In the rank one case, we simply put QOP = Qp. 1t is clear that our whole
discussion would remain true if we considered instead of & the almost direct
product of G with some compact connected abelian group C. In particular,
we may replace G, A, M and E by G(a) = G(a)'C(w), 4, M(a) = M NG(a)
and I(a) = EN(Ra+Ra). We can then define functions Q?,(a) on (A\A[)x M.
By classification, Z(a) # @ iff G(a)! is isomorphic to Sp(1, 1).

Lemma 5 We have

Qp(a, A e)= Z Z EM(w)QOP(n)(a,wA,E).

{a,E}CE; wEW(M(a), ANW(M,A)

Proof. Lemma 1 applies to G(a)!'. Note that the group W(G(a), A) consists
of all w € W(G, A) which leave C(a) pointwise fixed. Thus the formula for
em applies to G(a), too, and we conclude that ep(a){w) = ear(w) for w €
W(G(«a), A). In particular, the analogue of (32) reads

QDP(Q)(G1 wh,g) = EM(w)Q?p(a)(a, A€)

for w € W(G(a), A), which shows that the right-hand side of the asserted
identity is well defined.

We now combine the terms for each {@,a} in Qp and split the sum over
W(G, A). The exterior sum runs over the set

W(G(a), ANW(G, A) = W(G(a), ANW(G(a), AYW(M, 4)
= W(G(a), A) N W(M, A\W(M, A)
= W(M{(a), A\W(M, A). 0

Let us consider the series

n

[e¢]
V4
b= 3 5

which is absolutely convergent for s, z € C with s ¢ {-1,-2,.. .}, |z|] < 1, and
conditionally convergent for |z| = 1, z # 1. This is a hypergeometric series,
namely,

z 1
b(s,z) = mF(s +1,1;54+2;2) = ;(F(s, Lis+1;2)— 1),
and has in similar form been considered in [12], section 4. We have
1
b(s,z) = z/ t(1—zt)~lat (34)
0

for Res > —1, which provides the analytic continuation of 4(s, z) to ail z ¢
{1, 00) for the given values of s. (We might continue b(s, z) across the slit (1, c0)
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by deforming the contour of integration as to evade the point z7!. This would
yield a multi-valued function with logarithmic branching point at z = 1.) After
that we may analytically continue to all s ¢ {—1,—2, ...} using the identity

b(s—1,z)=2{b(s,2) +57"). (35)

From this and the definition of b it is clear that lim,(_s b(s, z) = 0. We shall
say more about the asymptotic as | Ims| — oo in Lemma 7.

Let us denote the restriction of Q% to the set {a € A : a**® > 1} by QF.
The series occurring in Qf, may be expressed as

o0 —na

O _b(—wA(H,),a"%),
gn—wl(h’a) (—wA(Hq) )

L:a"‘b wA(Hgy) —1,a%).
§n+w,\(Ha) (wA(Ha) )

If ar € AY', these series are conditionally convergent. If now rk G = rk K, then

woar = §gor = —a, and a substitution yields
1 1
+ 0= A - _= wh —_—
Qp(ar,A) - Qp(ar, A) 3 2 em@ert ) '\P(H“)wz\(Hc,)
wEW(G,A) aeTi\{8}
1 wA 1 1
= = Ap(Ha) - =0, (36)
3 E enm (w)ay Z Pliia ( MH AlH ) '
weW(M,A) aeTH\{p} wMHa)  wAH)

because & runs through T} \ {8} if & does.
Using the properties of b(s, z), we may continue Qf, as a real-analytic func-
tion across A7 = Ay \ Uyxps Cle) to the set {a € A : a¥ ¢ [l,00)Va €

T3\ {8}}. The extended function will still satisfy the differential equation (22).
As in [12], Lemma 22, one shows that

z‘lb(s—1,2)-6(-—5,2"1):/°°t"1(1wzi)_ldt
=(=2)""* -1 -1 =(—2z)""* s —5) = TF(—Z)_‘
= (=) [n_t (1407 dt = (~2) " B(s, 1 —s) = "D

for z ¢ [0,00) and 0 < Res < 1, where we use the branch of the complex power
on C\ (—o0,0] satisfying 1* = 1. This equality extends meromorphically to all
s ¢ Z and allows us to deduce that

_ 1
N -@N=5 3 em(w)p
weW(G,A)

x D Ap(Ha)(b(—wA(Ha),a™%) — a~b(wA(He) — 1,a%))
agDi\{8]
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—a)wf\(Hn,)

T DI (LD MR VCR s v C

weW(G,1) a€TE\(B)

Proof of Lemma 8 for tkG # rk K. In view of Lemma 5, it suffices to
consider G = SL(2,C), in which case £ =@, £p = {a, @}, and

Qf(a, ) = /\—P(?-I!a—)(aAb(—,\(Ha), a™®) 4 a*b(=A(Hz),a™ %)

+a T b(A(Ho), 6™ %) + a7 b(MHz), 0™ %).

The first and the last term have singularities for A\;(Hq) = n € {1,2,...}. But

b(s,z) = J37 + an analytic function near s = —n, and so the singular parts of

the aforementioned terms combine to the analytic function of {ag, Ag) # (1, 0)
a—*-nd _ gr-na a;-iz\n - “}\2}2 ha

‘elHa) | An(Hay R

Here we have used that A; and ne have the same value n on (Ho — Hy)/2, thus
coincide on ay. A similar assertion is true for the middle terms, hence Q; is
analytic for a=* ¢ [1,00) and (ag, Ar) # (1,0). In the same way we see that
Qp is analytic for a® ¢ [1,00) and (agr, Ar) # (1,0).

Ify = exp thﬂ — Hg) (in fact, v = —~1d € SL(2,{)), then v* = v& =1,
v = emAMHa—Ha) {hug sin TA(Hq) = 7 sin mA(H35), and equation (37) special-
izes to

(. 3) = U5 (a,1) = TRl (a2) = =, 2),

where

f(a, )‘) = a—)‘(_aa)f\(h",) _ YAaA(_a—&)A(H,s)
for a* ¢ [0,00). We assert that f(a,A) = 0. If s € W(ac,ac) is the simple
reflection in «, then sos5 = —1d, thus sz = —s5,4A or, explicitly, A — A(Hg)a =
—~A+ A(He)a. Thus, f(a,A) = ai¢* f(as, A). The quotient of the two terms in
fla;, A) equals

gar,A) = 7" ap*(—af){Hemtie),

Observe that A(Hy — Hg)a and 24 have the same restriction to ay, hence g is
locally constant on Ay \ C(«). But

(“a?)A(H.,—Ha,) — eEFi(Ha—Ha) _ A

for a; — 1, hence g(as,A) - 1, f(a,A)=0and Q} =Qp. O N
Finally, we suppose that rk G = rk A and study the behaviour of Q2p near

the singular set A;. In analogy to (23), we put

3 « 1
Vps(a, ) = Qpp(a,0)+ 5 Ap(Hp)log |aP/2 —a™P12|- Ag(a)(05(a) + Ouyo (@)
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If ¢ € M has Z-highest weight A — pg, we put ¥p(a, ), sgno) = \i’plz(a,o'),
which extends to an analytic function on A” x A4 \ Ar X Aa, satisfying (32).

Lemma 6 If G = SL(2,R), then

lim ¥ p(a,\,€) = Ap(Hp) (.,:,(1)

Y+ A(Hp)) + $(1 - A(Ha)))
2 1

cosmA(Hg) — ¢

+ A= — .
35 ¥p(l,A¢€) 35 Yp(l,Ae) = mAp(Hp)A(Hp) sinmA(Hg)

where A € ia™, € = X1, and ¢ denoles the logarithmic derivative of the gamma
function.

Proof. Let us fix Ap with Ap(Hg) = 1 and use the variables t € R, s € /R
defined by a® = e, A(Hg) = 5. Then a* = e*!,

Up(t,s,e) = L(e"b(~s,e™ ) + e *'b(s,e™ %) + (e* + e ") log(e' — ™))

for t > 0 and

Up(t,6,6) — ¥Up(—t,s,6) = l(e” —e) (.1. + ) .

2 5  sinTs

Substituting €%~ for the variable of integration in (34), we get, for Res > —1
and t > 0,

blo,e™) + log(e = ™) = b(s, e™) — b(0,e™¥) +¢
00 eZ:t—(3+1)u v
=/ du +1
2t |
—B(1) = p(s + 1)
as t — 0+4. Since, for s # 0, \i!p(t,s,e) - li'p(—-t,.q,s) — 0ast— 0, we have

proved the first assertion.
In view of the equality

d
dt

e—?(:-{-l)t

(8_2”6(8,8—2‘)) — _QW

we have, for t > 0,

G (7500, = b(0,67) = 5 (b(5,67) +6(0,¢77)).
Therefore,
dlI! =5 —aty -2t st —2t
P P(t,s,e)—i(e (8,e7%) —e*'b(—s,e7"))

~ssinh st log(e’ — e™*) + cosh st
s T8 1
— —2-(11)(1—3) —yY(l+s))+1= 5 oot o
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ast — 04-. If t < 0, then

d -~ _d = T | mE
H—t-\I'p(t,s,s)_dtlI'p( t,s,s)+2(e +e )(S+ - )

sInws
TSE

s ; 1 n
T co 71"‘H'-Q sinns
ast — 0—. Altogether,

d - d - COS TS — €
— lim —¥p(t =T5§—.
11rgl+ i lI'p(t §,€) — Jim — plt,s,e)=ms P
a

In the general case, G()! = SL(2,R). Put P(8)' = PNG(B)*. From the
definition (28) and (31) of Q2p we see that

Qpxa,o0) = QS’:'E(a, o)) + AE(G[)eg(GI)QP(ﬂ)I (ar, A, sgno)
fora € A", ¢ € My, A € ia%,. Thus,
Upxla, o) = Qpgla, 00) + As(ar)®q(ar)¥psy (ar, A sgna),
and Lemma 6 together with {36) implies
aggl(mbp,s(a,aﬂ,ax) - Upn(araz!,on)) =0, (38}

03 Wps(ar, or) ~ 05 ¥pn(ar,0) = 85 QP s(ar, 01) — 85 QP p(ar,02)
cosmA(Hg) —sgne
sinwA(Hg)

+ 7Ap(Hp)Ax(ar)Os(ar)M(Hpg) (39)

in the space of wo-invariant distributions on M which are tempered on each
connected component, provided a; € AY'.

4 Completion of the proof of Theorem 1

We are now in a position to determine the function Qp g appearing in Proposi-
tion 2. In order to prove Theorem 1, we have to show that this function coumld@
with Qp 5, which was defined by equatlons (28) and (31).

Thus, let

Tr =Qps - Qpx,

a smooth function on (A\ Ay) x M by Lemma 3. This notation is justified as
Qps—Qp 5 = Qpx—p 5 by (20) and (30). Let us again suppose dim K\G > 2
and write Tx(a,0) = T(a,A), where A — py is the E-highest weight of . Since
Tur = em(w)Tg, we see by varying £ that T(a, ) is defined for all A € Ay
and satisfies YT(a,wA) = eapr(w)YT(a,A) for w € W(G, A). By Proposition 2,

27



Qp s(a,o) is of polynomial growth in o, and Qpx(a, ) — 0 as a** — +oo,
uniformly on compacta in (ar,o). The same may be checked immediately for
Qp 5, hence it is true for T, too. From (21) and (29) we get

T(wa, ) = ep(w)T(a, A) (40)

for w € W(G, A). Therefore, T(a,A) — 0 for a=*# — oo as well. The
differential equation (22), which is also satisfied by £2p 5 by construction, implies
that T satisfies the homogeneous differential equation

DT(a, ) = (A, A\)T(a, A) (41)

for a € A\ A;. If we were able to show that T extends to a solution on all of A4,
it would be easy to deduce that T = 0.

However, it is difficult to see this directly. If, e. g., tk G = rk K, then (24)
and (38) imply that T(a;ag,A) extends to a continuous function of ag with
values in the space of skew W({(G, A)-invariant distributions on A4 which are
tempered on each connected component, while (26) and (39) imply that

OF Y (ar, A) = 85 Y(ar, ) = 4 > det(w)dy, 5 ®(way, A)
weEW(E, T, A \W(G,T)
wEl
—(0F (a1, X) — 87 Q% (a1, 1)), (42)

provided a; € A}’. Here, ®x(t,0) = ®(2, A) in the obvious sense. At the moment
we only know that the limit on the left-hand side exists in the alorementioned
space of distributions on A,. Note that the contribution from the trivial coset
W(G,T, Ar) has canceled that from the real root 8. But it would be a tedious
work to deduce from the explicit formulas that the whole expression vanishes.

Instead we only observe some properties of these functions. Taking some
X = 0(Xpg - X_g), we have iA(Hg) = —AY(X), which allows us to rewrite
®(t, 7). As t? = e~2 the function ®(, A) is defined for t#” # 1, and

®(texp X,A) = Z cw(t, A)ew"(X)
weW (G, T,Ay)

for all X in a neighbourhood of zero in t depending on ¢. Here the ¢, (¢, A)
are analytic functions in A # 0, and W(G,T, A;) = W(G,T,Ar) x {1, sz}
Choosing now ¢ € T such that t* # 1 for all § € X¥ \ {#¥}, we get

4r Z det(w)®(w(texp X),A) = Z cu (t, X)e A (X)

weW (&, T, A \W(I.T) w€W(G,T)
wEl wArEAs

for X in a neighbourhood of zero in t, where W(G, T)=W(G,T) {1,s5v}. As
we have excluded the coset W(G,T, Ar), t** = 1 is allowed, so we can apply
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Opv at some point ayexp H € Ay, where af # 1 forall 6 € £V \ {#¥} and H € q;
is small.

Similarly, if we choose a € A with a® ¢ (0,00) for all @ € £} \ {3}, we can
write (37) in the form

Qﬁ(a exp H) — Q;(a exp H) = Z Z dw,u(a, A)el..w)\(H)
weW(G,A4) ae T\ {8}

for all H in a neighbourhood of zero in a. Inserting these expressions in (42},
we can choose ay € Ay such that

S;T(a; exp H,A) — 85 T(ayexp H, A)
= Z Ew(al) /\)ewA’(H) - Z z Jw,a(ab /\)e:,wA(H) (43)

weW(a,T) weW(G,4) aeni\{8}
wArEAL
for all H in a neighbourhood Uy, of zero in ay.

Let us return to the general case {without the equirank assumption) and
expand T(a, A) into a Fourier series with respect to ay. Fach term in the Fourier
series has the form g{ap)af with g € C*(Ar\{1}), 4 € A = A4,, it must satisfy
(41) and g(ag) — 0 as 6= — co. If {u, 4} # (A, A), then g(ag) is a linear
combination of the functions af, where v € af, ¢ is any of the two solutions of
{st, 1) + {v,v) = (A, A). The condition on the limit forces v € a} and leaves
only one solution on each component of Ag \ {1}. Thus, if (A, A) # {u, g} for
all 4 € A, then

T(a,\) = Z cE(A)arErea
BEA(A)

for at*P > 1, where A(A) = {g € A : (i, ) < (A, A}}, afinite set, and v, ) € a}
is the solution of {u, u} + (v, ) = (A, A} negative on Cp.

We know that T extends to a smooth function on A” with values in the space
of distributions on A4. If rkG # rk K, then AY is open and dense in Ay, and
T(arag, A) is smooth in ag iff ¢X(A) = 0 for all A € A(4). Thus, T(a,A) =0 in
this case.

If tk G' =tk K, then (40) implies ¢f = ¢, and

OFT(ar,\) =83 T(ar, ) =2 > cf(Awua(Hp)a}. (44)
HEA(X)

We have seen in (43) that this expression, evaluated at a; exp H for some a; €
Ay and all H € U,,, equals a linear combination of characters e H) of qp,
where w runs through a subset of W(gc, ac) with way # ar, i. ., war # ap.
Let B C A4 = A x ia}, be the set of all A for which (A, A) # (u, u) for all u € A,
and wA ¢ A x agc forall w € W(gc, ac) with war # ar. This 1s an open
dense subset of As. For each A € B, the characters e**() of a; occurring in
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(43) are different from those occurring in (44). Since Uy, generales the group ar
and the characters of a; are linearly independent, their restrictions to U,, are
linearly independent, too. Thus, ¢ (X) = 0 for all A € B, # € A(}). This means
T(a,A) =0 for A € B, hence for all A by continuity.

5 Connection with orbital integrals

In this section we are going to express the invariant distributions 7p in terms of
the orbital integrals I. In view of the identity (6), this amounts to calculating
the inverse Fourier transform on A of the dist.ributiop Qp.

So far we have parametrized representations ¢ € M by their Z-highest weight
A— pg € As. This is not enough in the case dim K\G = 2, where A is not con-
nected. As we shall now have to take this case into account, we shall sometimes
replace A by the character x € A defined by x(a) = a(a) if dim K\G = 2, and
x(a) = a* otherwise. Thus we write, fora € A’, x € A and ¢ = %1,

=y Y em(hux(@) ¥ da@uxe), ()

weW(G,4) agTh
where ¢q(a,x,€) equals

Ap(Ha)b(=A(Ha),a=®) if a*F > 1,

Ap(He) (b(A(Ha),a")+ A(Ilfa) + Sif:i?;ﬁ)) if a7 < 1.

¢a(ay’\: E) =

proviged A € A4 is the differential of y. Recall that if x is the E-parameter of
o € M in the aforementioned sense, then

Qp(a,x,x(v)) if dim[&'\G = 2,

QP'E(G,O’) = Qp(a,x,sgn 0‘) = .
Qp(a,x,—x(v)) otherwise.

For certain reasons, we introduce a notation for the inverse Fourier transform
of 29, (see equation (33)) rather than Qp, i. e., we put formally

K¥(a,a') = ﬁ /A Q%(a, %, £x(7))x(a’) dx, (46)

where the measure on A% = A 4 has been fixed earlier and extends in the obvious
way in the case dimK\G = 2, in which A = A® x {1,7}. This measure is
inversely proportional to Ap, hence Kp is independent of any normalization
of measures. We shall reduce the calculation to the case tk G < 2, where the
distribution Kﬁ will turn out to be a function. First of all, we have to calculate
the inverse Fourier transform of b(s, 2).
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Lemma 7 LetmeZ,veR, z€C, |z|< 1.
(i) M 2) = i+ O™ a5 = co.
(ii) If m > —1, then

—mi

2ze .
; R 1
b(m+w,z)e'"‘du: et — 2 ift>0,

2 0 ift<0

1 oQ

2 oo

as an improper integral.

(i1i) If m < —1, then the Cauchy principal value (at v = 0} of the same integral

equals
Zz: i_ zz'"‘“ for even m 0 ift >0,
62?‘3: D for odd m B i;f__m; ift<0.
1 00 G(mtiv)t
(iv) ;p.v.jlm — dv = sgn m + sgnt,

where the principal value i3 necessary for m = 0 only.

(v) Ife=%1,t#0, then

1 © /1 e ive efltl —1
b WY - P —— d - .
21rpv_/_Do (w+31n1rw)e VS et

In (ii)-(v), the principal value of the inlegral for t = 0 is half-way between the
one-sided limils t — 0%.

Note that the right-hand side of (iii) is regular at e* = z.
Proof. Substituting e~2* for the variable of integration in (34), we get

b(m + iu’z) _ /w 2ie-m:e_mdt
2 0 € LIRS 4

for |z| < 1, m > —1. This is the Fourier transform of the function f({) given by
the right-hand side of (ii). Let g(t) = f(t) — 5 e~ for ¢ > 0 and g(t) = 0 for ,
t < 0. As the distributional derivative of g is in L!(R) and has bounded total
variation, its Fourier transform is O(|v|™!) as v — co (see [7], §3). Thus, the
Fourier transform of g itself is O(|v|~?) as ¥ — oo. This proves (i) for m > —1,

and the general case follows from (35) in view of

: ((1 -2zz)='u + miiu) = —22)1'1/ (1 * T?fa?i?) '
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Assertion (ii) follows from the inversion formula for the Fourier transform, the
convergence of the integral is clear from (i).
Using residue calculus and the formula

l/ sy dv =sgnt

TS V

(improper integral), one easily proves (iv). If we denote, for any m € Z, by h,, (1)
the left-hand side of (ii) taken as principal value, then (iv) and equation (35)
imply

hrn—2(t) = 2(Am (1) + (sgn m + sgnt)e~™).

This allows to prove (iii) by induction. To prove (v), observe that, for mn € {0,1}
and Res > 0,

= () () (e ) (- 3))

o0 L2mt _ -1
= [ S e
0

1—e~2t
o0 (1-2m)t _ 1
= (_1)m/ f—-gt——ETe-”dt,
— 00 -

whereby the left-hand side (with s = iv) can be considered as distributional
Fourier transform. O
Lemma 8 Lett, FeR,t#£0,z€C. If|z| <1, then

=)

1 ® /m+iv imdtivt z et~ 41
Z ﬁp.v../_mb( 5 ,z)e'm vty P 'c'-‘a_l'

m=—0oQ

If |z| > 1, then the value of

[e=]

1 = m4tw 2 im84ivt
E —2—;p.v./ (b(— 5 , 2 >—m+iz/)e dv

m=-cc —0o0

ts given by the same formula. The integrals are conditionally convergent at
infinily, the principal value is taken at v = 0 (if necessary).

Proof. For the first assertion, one simply has to apply the summmation formula
for geometric progressions to formulae (ii) and (jii) of Lemma 7, which yields

z ( 2 Dettif 4 o2t 4 z)
: .

et — 2 — e—t+if 821'5 —z
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This can be simplified to the expression stated in the Lemma. In the same way

one obtains ” ) _ )
o« esm3+aut 62-18+1

Z lp.v.j dv = ———
T m+ i et—# _ ]

m==—00 -

from (iv), which allows to deduce the second assertion from the first one. 0O

We shall now calculate Kﬁ, as defined by (46), for groups G with rk G < 2.
By classification, G is then isomorphic to one of the groups SL{2, R}, SL(2, C),
SU(2,1) or Sp(1, 1). Here, we realize (2, 1) as the automorphism group of the
hermitian form z1 %3 4+ 2222 + 2aZ;, and Sp(1,1) as the automorphism group of
the quaternionic hermitian form ¢;d2 + ¢2¢;. This gives us the possibility, in
each case, to let A be the subgroup of diagonal matrices and P the subgroup of
upper triangular matrices in G. In order to make use of the preceding Lemmas,
we resort to the following explicit parametrizations:

If G = SL(2,R), let a; = diag(e*,e™"),

if G=SL(2,0), let a, = diag(e®, e~ *),

if G =SU(2,1), let a, = diag(e®, ¥~ %, e~%),

if G =Sp(1,1), let a, = diag(e®, e~ %),
where t e R, z € C.

Proposition 3 Let t, t' € R, z, ' € C, such that t £ 0, Rez # 0, t # &¢',
Rez # & Re?'.
If G =SL(2,R), then

1 .
gy ¥ ' > ¢,
Kp(ar,av) = Kp(ya, var) = 0 if |t'] < Jtl,t >0,
F1 if [¢'| < [t],2 <0,
N N 0 if t >0,
K% (ag,vyar) = Kz (yar,ap) = P4t g
planyar) = Ko, av) :I:l(tanh 4 a2 t) if t<0.
2 2 2
If G =SL(2,C), then
1

Kp(a,,a,n) = —Re

@ =) 1)
If G=8U(2,1), then

1 1 e* +e* e'+e"_'
Kp(as,a:) = T2 Re (e’—:'+:_‘ -1 (Bz — e t ¥ — 3—7)) '
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If G=5p(1,1),

. 1 1 e +et' e et
Kp(as, ax) =— 2 fe (ez+z-z‘+? -1 (e‘ — e + e — e-z_‘))

=7 ]
1 1 et +e* e
+ 1 Re _ _+ 21 ).
2 eitI+a' =1 _ | \ gt — o' et —e~?
The integral in (46) is conditionally convergent at infinity on each connected
component of A,

Obviocusly, the distribution (depending on a) given by the integrable func-
tion K#¥(a,a’) is then the distributional inverse Fourier transform on A of

Qp(a,x, £x(7))-
Proof. Let us insert (45) into (46). We shall see in short that one can
integrate, in the sense of Cauchy, the individual terms, i. e.,

! 1 v i)
£4(0,0) = 37 pv- [ 4a(o T 2x @) dx.
Since A(Ha) = MHa) = —A(Ha) and a% = a” for A € A4, @ € TF\ {) and

a € A, we have ¢,(a,x) = ¢s(a,X), hence k,(a,a’) = kz(a,a’). We may thus
write

. 2(k3(a,a") + kf(a,a’" 1)) if G = SL(2,R),
KP@a) =0 S oo (w)Reka(a, wa) otherwise.
weW(G,4)

The parametrization a, resp. a, identifies A° with R resp. C/27iZ, hence
any A € A4 defines a character of A of the form a},;y = ™+ with m € Z,
v € R (where m = 8 = 0 for SL(2,R)) and will be denoted by A = Apyip. We
choose the Haar measure da, = dt on Apg, thereby fixing Ap. The dual measure
on A4 will then be dA,,4;, = idv. Now we turn to the various cases of .

If G = SL(2,R), then £p = {8}, af = e?, and Hg = diag(l, —1) € s}(2,R).
We have A, (Hg) = iv, Ap(Hg) = 1. Remember that y = —Id and that the
Haar measure on Ay = {1,v} has total mass one. Taking into account that
da(a, x,€) = dala, x,€), we obtain

' 1 oa , o,

k;:('Ymai,'T"‘ agi) = Z or p.V./ ‘?5.8(“:,)‘—.';.,:!:6)5'" —m giv(t Dy
e=+1 T -0

Using Lemma 7, we see that if ¢ > 0, then

2
— it >,
k.g:(at:at’) = { ettt —1

0 if ' <t
k3 (as, —ay) =0,
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whereas if ¢ < 0, then

2

— ift' <,
k?(at.ﬂ:f) =dsgn(t —1')+ { e—t—t _ 1

0 it >t

k% (a;,—ap) =+ tanh b= tl.
P 2

If G = SL(2,C), then Lp = {a,a}, a? = ¥, a® = e2*, W(G, A) = {1, wp}
and wga; = a_;. In the co-ordinate z the vector H, acts as 3%. A€ Ay, then
A(Ho) = £a}|,_y hence Aniin (Ho) = 242, and Ap(H,) = §. With the help
of Lemma 8§ we get

=1 o o .
ka(artio, avtior) = E %p'v‘/ Ga(@rpio, Aomniy)e ™ —OHV-g,,
]

m==—00
1 ]+e(i—i9)—(t'—l'8')
- 2(c2(+0) 1) 1 = et—iby—(v—i8")

The assertion now follows in view of

Kp(a,, ﬂ;l) = Re(kﬂ(a,,a,:) + ka(a,,a_z:)l.

If G =SU(2,1), then £p = {a, &, f = a+a}, afy;p = '3, aff = =%,
H, = diag(l,-1,0), Hs = diag(0,1,-1) € gc = sl(3,C), and W(G, A) =
{1,s5}. Since a; = exp(zHo + ZHz), we have M(Ha) = £al|,_,, hence
Amtiv(Hqa) = 2L Moreover, Ap = %, Ap(Ha) = §. Using Lemma 8, we
obtain

1 gt =8’ + et—i0
2(gt+i0+28" _ 1) Tt il _ pt—if

ko(@itis, @ tior) =

If G =Sp(1,1), then £p = {0, &, f = &2, 6 = 258} o =¥, a¥ = ¥,

and W(G, A) = {1,s5} x {1,55}. Since a:’f{;'”ﬁ = eMm+2ivt we have Apqiv =
L(mé + ivB), Amyiv(Ho) = 2L, Moreover, Ap = &, Ap(Ha) = £. With the
help of Lemma 8 we see that kq{@i4ip, Gi/4isr) is given by the same expression
as in the case of SL(2,C).

In each case, the integrals appearing in Kp turned out to be of the type
considered in Lemma 7, and since t # ¢’ Re 2 # £+ Re 2/, they are conditionally
convergent at infinity. We know from Lemma 3 that the singularities at v = 0
of the various terms cancel, therefore no principal value is necessary. O

We come now to the main result of this section. In the notation of Lemma 4,
let A{e) = ANG(a)! and P(a)' = P(a)NG(e)!, thus A = C(a)A(e), Pla) =
C(a)P{a)!. Remember that Fy(a) = ex(a)lg(a, f) for a € A"
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Theorem 4 If f € Coon(G), ¢ € A, then

IP.E(G: .f) =

{o,8)CEY

f o Kjf(a)l(aa,a’)Ff(caa') da’,
W(M(a),A\A(a)

where we lake, for each {c, af} C EP, a decomposilion a = cqea, with ¢y € Cla),
1

ay € A(a). The funclion KP(a)l is given by Proposition 3 as applied 1o G(a)!.
One has lo take KP(p)l if dimK\G =2 and Kp 5, otherwise.

Proof. Given f € C(G) and x € A, put
0N = [ X@F (@) da
A

Then 8y, (f) = em(w)8y(f) for w € W(G, A), and if x is the T-parameter of o €
M as explained in the beginning of this section, then O, (f) = (=1)#®), ().
It is, of course, this equality which leads to (6).

We stick to our conventions concerning normalization of measures, which
also apply if we replace G by G(a)!. Then the compact group A/A(«) has
volume one, and

6, (f) = /AM(a)x(a)L(a)x(a’)F_r(aa’) da'.

Fourier inversion on A/A(a) yields, for each x’' € ;((Ej and e € A,

S @) = /A o X @ Frta) da (47)

x€A
xlaa)y=x’

If x is the E-parameter of o, then ¥ is the (—X)-parameter of &, and
Qpx(a,5) = (=1)¥EQp(a, g, £x(7)), where the sign depends on G as de-
scribed in the Theorem. By Lemma 5 we now get, for a € A/,

/. Qp.x(a,5)0x, (f) da:/ _Qp(a, %, £x(7))0x () dx
M W{M AN\A

= 2 s @ BN b
{a,5}cE} «

= Z Q?’(a)(aliiiX('r))gx (f) dxf

x€A
Xl a(a)=x'

{a, G}CE+ ]W’(M(a A)\A(a)
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Now we insert (45) and consider the sum over x for fixed x':

E EM (w)wX(a)éu(a:’fFX—: iX(7))eX(I)
x€A
x| Aga)=x'
=dala,wX, £X(M) D, wx(@ux()

x€A
x| A (a)y=x'

= pala, 5, X (7)) ] wx'(a')Fy(ad') dd’

A(a)

= ¢a(ta, X', £X'(7))0X (@a) / wx'(a')Fy(cqa’)dd’,
Afa)

where we have used (47) and the fact that ¢.(a, A, &) depends only on @ mod
C(a) and A|qq). Substituting wa’ for a’ and interpreting the result in terms of
G(a)!, we see that the whole formula takes the form

f o e (a"’-f':tx’(‘f))/ X' (")} Fy(cqa’) da' dx’.
{aaycsy” VM@ ANA(e) i)

Each term can be writien as #(W(M(a), A)\A(«))~! times an integral over
A(a). By distributional Fourier inversion on the group A(a),

1
30 /M Qp(a,5)0,, (f)do

is given by the right-hand side of the asserted formula. In view of Theorem 1,
this is what we had to prove. O

6 Passage to the limit

So far, the weighted orbital integral Jas(m, f) was only delined for m e M NG’
In [4}, J. Arthur has generalized the definition to any m € M. We shall now
recall this definition for our special situation of real rank one groups and extend
Theorem 1 to the limiting cases.

The extension proceeds in two stages. First of all, the definitions (1) and (2)
make still sense for f € C°(G) and those m € M for which G% C M, because
the integrals are compactly supported and v(zy) = v(z) for y € Gyn. Indeed,
y normalizes G°, and its unique maximal R-split torus Ar. Thus y represenis
some w € W(G, Agr), and the M-invariance of v reduces our assertion to the
case y € K, which has been dealt with in connection with (11). Also, there
is no problem in defining the invariant distribution Ip(m, f) by equation (8).
However, |Dg|'/? is only upper semicontinuous, and if one passed to the limit
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in a naive way, one would simply get zero in view of (13) and (21). Incidentally,
one may prove that G%, C M iff G,, C M. Indeed, in the preceding argument,
y ¢ M = m € M;, which suffices if a real root exists. Otherwise one has to
use the assumption that G is contained in its simply connected complexification,
which is essential here, as the example diag(i, —7) € SL(2,C)/{%1} shows. Since
the condition G2, C M is the one which generalizes, we shall not go into detail.

Let us again fix a Cartan subgroup A of M. Now a € A satisfies G C M
iff a € A”. As before, we choose a half-system X of positive roots for (mg, ag),
which enters implicitly in Fy(a) and Ty (a) as defined in section 2. Given a € 4,
let £, = {a € £ :a” = 1} and define ex(a) by

H (ea(H)/Z _ C—G(HJI'?) = exlexp H)| Dy (exp H)|Y/2.
a€I\I,

This is consistent with our earlier notation for a € A’, and e:z(a)‘1 =1 as

before. We write Jo,u(a, /) = ex(a)J(a, f), Jarn(a, f) = ex(a)dn(a, f) and
Ips(a, f) = ex(a)lp(a, f) for a € A”.
Following Harish-Chandra, we introduce the element

I, = HHa

o€,
of the symmetric algebra S{a; ¢) C S(ac), which depends implicitly on L. Of
course, [I; = 1 for a € A’, and we shall write I1 = I1;. Elements of S(a¢) may
be considered as polynomial functions on ag. Let us denote, for each p € S(ag),
by D, the corresponding invariant differential operator on A. Then
l‘im Dn.Az(a’) = CM.E);(G)IDM(G)P/Z.
a’ =0
The positive integer Cas, depends only on the group M,, and one has
Cu = #(W(M, A)l(pg).
Now Harish-Chandra’s formula
l'im Dn_ Ff(a') = CM.JG,E(a,f)
(see [9], p. 33) follows as well as .
Jim Dn,T;(a") = Cp. Ias,2(a, f).
Moreover, from (8) we get

ﬂl:il].],, Dn, fex(d, f) = Cum.Ipx(a, f), (48)

where @’ has to remain within A’.
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Theorem 5 Ifa € AY and f € CX(G), then

Ips(a, f) = —ex(a) Y IDG(G)l”zef(G)@w(fH—] Qp,p(a,5)04, (f) do

rE Gdll

provided we define Qpy as follows. If A — px is the L-highest weight of o € M
with 0'|AR # 1, then

Qpzla, o) = %Cﬂ_li Z epr(w)a®? Z Ma(sawlA)dq(a, wA, sgna),
weW(G,A) Qeg-;

where ¢q(a, A €) is given as in (45). Moreover, Ip(a) is a tempered distribution
forae A”, and Qpx(a, o) depends real-analytically on o € M.

I refrain from writing Qp(a, A) here because this function of A depends on &
(tbrough IT). Observing that, for w € W(G,, A), one has ¢y o(a, wh) = ¢,(a, A),
Ha(swawA) = Ma(wseA) = epr, (w)a(5aA) and epr, (w) = ep(w) by Lemma l,
one can replace the sum over W(G, A) by #(W{(Gq, A)) times a sum over
W(G,, A\W(G, A).

For the proof we need a lemma. We denote by S;(ag) the subspace of
elements of degree at most r. Let X be an indeterminate.

Lemma 9 /fa € E;, p € S:(arc), then there exists ¢(X) € S,_1(ag) @ T(X)
such, that

Dp(a*da(a, A,€)) = a*(p(saX)dala, A €) + g(a”, N))

foralla € A\ A;, A € ag and € = £1, where we consider ¢ as ¢ meromorphic
Junction on C x ag. Moreover, (1 — X) ¢(X) is a polynomial in X.

Proof. To start with, let us exclude the case a = 8, a*® = 1. Then we have,
for H € ag and a**F > 1,

Dirdala,X)=Ap(Ha) z q:;;r((g) .
n={} a)

= a() (28— r.)ba(a )

and therefore
Dy (a*$a(a, A)) = & (\(H) + Dig)a(a, A)
=a* (A(SOH)qﬁa(a, A+ M) .

1—a®
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In the exceptional case we excluded, there is an additional term

A TE o TE
Du (a sin a‘A(Hﬁ)) - )‘(H)sin TA(Hp)

If we restrict H to aj ¢, then H = sgH, and the lemma follows for p = H, since
saA(H) = A(so H).

Let us now prove the lemma for general p by induction on r. For r = () there
is nothing to prove. We assume that the assertion is true for p € Sr(a; ¢) and
let H € ay¢. Then

DHP(a’\q‘Ja(a, Ae))= p(sa/\)DH(aAdaa(a, Ae))+ Dy(a)‘q(a", )

=a’ (p(sa,\)sa)\(f[)daa(a, Ae)+ M@p(sa/\)

1—a«

+A(H)g(a®, A} + a(H)a%¢'(a®, )\)) )

where ¢/(X) = 4%¢(X). Now (1-X)r+!¢’(X) is a polynomial, and the last three
terms have degree at most r in A. This proves the assertion for Hp € Sr41(ar.¢),
and the general case follows by linearity, O

Proof of Theorem 5. In view of formula (48), we only have to apply Dn, and
pass to the limit @’ — a in Theorem 1. Concerning the contribution from Gg;s,
recall thet Ax©, is explicitly given in [9], p. 96, as a linear combination of char-
acters on each connected component of A”. Being skew W (M, A)-invariant, this
function may be written as a linear combination of terms Ag©, for appropriate
o € M. Therefore O, is smooth on A", and

tim Dy, (Rs()0(«")) = Crtoex()iDa(a) /O (a)
It remains to show that the expression
C;,t lim D, Qp(a’, A,sgno)
a’ —a

(which clearly defines a real-analytic function of A € A4 in view of Lemma 3)
is given by the formula stated in the Theorem. The preceding lemma tells us
that both expressions differ by %C;,l_ times

lim Z epm(w)a'™? Z gala’®, wh)

a'—a

+
weW(G,A) Q€L

= 2 lim Dy ey (Ax(a')(©0(a") + Oua(a))).-

+
a€Ly

Let us consider a monomial Hy ... Hy entering in ¢,(a®), where k& < #(X5) by
the preceding lemma. If we apply Dy, m, according to the Leibniz rule to
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As(a')®,(a’), which is the product of [,y (a’® — 1) with a smooth function,
then we get a sum, in each term of which at least one factor {a’® — 1) remains
undifferentiated. Thus, in the limit ¢ — a’ we get zero. O

We turn now to the definition of Jar(m, f) for m € M with G% ¢ M. In
this case, m € My, and Ja(mag, f) blows up as ag — 1 in Ar \ {1}. Let S
be the only reduced root of (g, ar) positive on the chamber Cp, and define
the coroot Hg,. € ar by Bm(Hp,.) = 2. It follows from the calculations in [1],
section 4, that the limit

Tu(m, )= Jim (Tar(man, )+ Ap(Hg,) loglag!* = a/?) - Ja(mag, 1))

exists for f € C2°(() and equals

Ju(m, f)= IDG(m)]1/2LL/N ./‘;\r flkn'man'~ k™6, (n) dn dn’ dk,

where K is such that its Cartan involution & stabilizes Ag, the Haar measure
on N is so normalized that

[G f(z)dz = /K /N , f(kna)dadn dk,

and the function é,, on Ny, can be described as follows. If X € gng., ¥V €
Om,28,, 8nd X # 0, then

Sm(exp(X +Y)) = Ap(Hp, ) log —— lel

where |X|* = —(X,8X) and r,, = |Hp,|. Although the function A*(a) used
in {1] vanishes whenever £, # §, it can easily be replaced by |Dg(a)|!/? without
impairing the argument. Note that P and P are interchangeable in the definition
of Jas.

The function 7 (X) = £|X| appearing in the definition of é,, can be char-
acterized as follows. It is the square root of an Mj m-invariant positive defi-
nite quadratic form on gm ., and J(X) = 1 iff (X, Hﬁ_,—BX) is a Lie triple
(cf. [13]). Indeed, if X € gmp,,, then 0X € g -p,., and [X,0X] € m,,. As
0[X,0X] = —[X,0X], we see that [X,0X] is a multiple of Hg,_. Our assertion
now follows from the equality

([X,-0X), Hp,) = (X, [Hp,, 0X]) = 2|X|*

Of course, both j,,, and the measure on N depend on the choice of K.

Our definition of Jy(m, f) for G5, ¢ M, which generalizes (14), slightly
differs from the general one given in {4], where J. Arthur uses a®= instead
of @?=/2 in order to cover the p-adic case. In this connection, ¢f. his remark on
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p. 289 bottom. In [17], section 15, G. Warner has given a different expression
for Jy(m, f), which obviously converges for f € C(G) and shows that Jp (mn, f)
is a tempered distribution.

Next we look at the definition (8) and insert map. As the last two terms
are continuous in ag, we may put

Ip(m, f) = lim (Ir(mag, 1)+ Ap(Ha,) loglaf!* = apP~"3| - Jo(man, 1))

If we specialize m = ay € A;, we may define Ipy(a;, f) = ex(ar)lp(ay, f).
Of course, we are now going to pass to the limit in Theorem 5. Tor each
7 € Gaqis, the function ag — |Dg(asar)|/*O,(arar) is even and equals a
linear combination of characters on each connected component of A%. Thus we
may extend it to agp = 0 by continuity.

Theorem 6 If u; € Ay and f € C(G), then Ipy(a;, f) is still given by the
formula from Theorem 5, provided we define Qpg(ar, o) as follows. If A — ps
is the T-highest weight of o0 € M with a|AR # 1, then

1 .
Qps(ar,o) = §CM1” Y em(w)aft Y Ma(sawd)dalar, wh),
weW(G,A) GEE;

where go(ar, A) is defined as before if a§ # 1 (the series now being only condi-
tionally convergent), while

balar,A) = Ap(Ha)(#(1) — %(1 — A(Ha)) — log(a(Hg,,)/2))

ifaf = 1. Here, ¢ denotes the logarithmic derivative of the gamma function.
Moreover, Qpx(as, o) depends real-analytically on 0 € M.

Remember that —1(1) is the Euler-Mascheroni constant. The remark made
after Theorem 5 applies here as well.

Proof. Since chg[af?{"“"’2 - a;t'e"“’zl = log|1 - aﬁﬁ"‘| + i‘-ﬁm(log ag), we can
write, with the abbreviations a = aag, §' = f,,,

Ipx(ar, f) = 61;211 (Ip,z(a»f) + Ap(Hp')log|1 — ﬂz_zﬂ’| -Ja gla, f)) :

This formula remnains valid for any f € C(G) (cf. [17], Lemma 15.2). Thus, our
assertion would be true if we defined ©2p 5(a;7, o) to be the limit as ag — 1 of
Qpx(a,o) plus

-g! 1 - . ! ! !
Ap(Hp)log|L = a” | - 5C, lim Dn, (Ax(a')(©0(") + Ou,o(a')))
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in the space of wg-invariant tempered distributions on M. If we assume that
ap — 1 while a?{' > 1, then this limit equals

1
EC'L Z EM(w)a‘,")‘

weEW(G,A)

x lim ( Z g, (50 wM)da(a, wd) + Ap(Hg )Mo, (wA) log{l — aﬁp')) .

ag—1
QEE;

If af # 1, then limg 1 ¢ala, A) = dalar, A). It remains to consider the contri-
bution from £f , = {a € T} : af = 1}.
Note that Iog(l —z) = —b(0, z). Equation (34) implies

Yo

di
1-1

lim(b(s, 2) = 8(0, 2)) = /0

for Res > —1. The substitution ¢ = e™* shows that this equals (1) - (s +1),
and the equality extends by analyticity to all s ¢ {—1,—-2,...}. Applying this
formula to ¢a(a,A) = Ap(Ha)b(—=A(Hy),a™*), we see that

lim ( Z Mo, (seA)¢ala, X) + Ap(Hp)g, (X) log(1 — a;zﬂ'))

ap—1
+
aEZPJI

= 3 Ap(Ho)la (saX)($(1) = (1 = A(Ha)))

4
aEEPﬂI

+

Jim, (Ap(ﬂp.)ua,(,\) log(1— a7’ )~ > Ap(Ha)lg, (503) log(1 — ap” )

a€TE,,

2 Uai(saA)da(ar, A) + pa, (1) lim log(l - i),

a€Lf,,

where @,(az, A) is as defined in the Theorem and

Pa;(A) = Ap (Hﬁ.,)na:(’\) - Z Ap(Ha)lla, (saA).
a€L}

P.l‘

The existence of limg,—1 2p (2, o) in the space of tempered distributions im-
plies the curious fact that

E: en (w)af pa; (wA) = 0.
weW(G,A)

This proves our formula and shows that the limit exists pointwise on M \ M.
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We come now to the smoothness of Qp s(ay, o). First of all, we observe that,
for A; € aj o and H € a;,¢, we have (saAr—s5A1)(H) = A (Ho+ Ha)a(H) = 0.
Thus, Mg, (8aA1) = Ma,(saAs) for all A\; € Aa,. If af # 1, then, as we have
seen in the proof of Lemma 3,

Z em(w)a¥* (dalar, wh) + dalar, wi))

weW({G(a),A)

is real-analytic in A € A4. Since ¢,(a;, A} has at most simple poles on the
subset A4, C Ay, it follows from the preceding remark that

S earlwar (o (so \aler, ) + Iy (s 0)galor, w)
wEW(G(a),A)

is real-analytic, too.
As for the roots o with af = 1, we recall that #(s) = X5 + a holomor-

phic function for Res near n € {—1,—2,...}. Therefore, if A € A,y with
fixed Ar(Hq) = n,

o, (saM)P(1 4+ A(Ha)) + g, (saA)p(1 + A(Hg))
o, (saA) — I, (50 )
= Ma(Ha)

+ a real-analytic function,

and the above observation shows that this whole expression is analytic. In
analogy with Lemma 5 it is easy to see that Qp g(as, o) is a linear combination
of functions of the two types just considered. This implies our assertion. D

Remark. Obviously, ps, (A} depends only on the restriction of A to a,,. If
we consider G, in the role of G, we see that p,, = 0. It would be interesting
to have a direct proof for this fact, i. e., for the identity

3" Ap(Ha)sall = Ap(Hp, )

aEE;

Corollary. If { lies in the centre of G, then Qp (¢, 0) = (*Qp5(1,0), and

Qp,x(1,0) = Ap(Hp, )d(o)$(1) — D A”(Ha)rllT(f:E);)
aEE;
y (zb(l + A(Ha)) *2' P = M) | log(ﬂ(ﬂm)ﬁ)) )

where d(o) denotes the degree of o and the other notations are as in Theorem 6.
This follows from Theorem 6 if one remembers that N{s,wpA) = (s~ y,aA) and
woA(Ha) = —A(H-woa)-

Finally, let us have a look at the case when f belongs to the space C(G//K)
of K-biinvariant functions in C(G). If now 7 € Giemp, then 7(f) = 0 unless
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™ 2 wpy,, where 1 = lp, is the trivial representation of M;, and A € iaj.
Let c(A) be the restriction of the intertwining operator Jpjp(1,) to the one-
dimensional subspace of K-invariant vectors in My, and let ©,(f) = O, (f)
denote the spherical transform of f € C(G//K). Then the definition of Jp(e, f)
simplifies to
dpc(A)

o(d)
Using definition (8) and Theorem 1, the weighted orbital integral Jas x(a, f) =
ex(a)Jas(a, f) for a € A’ can now be expressed in terms of ©,(f), namely,

Jp(1a, f) = =0a(f)

Ins(@ ) =50 [ Qs N0 dh+ 3A5(@8e(1), (49

in®
IQR

where

st ot (R )

By forming the even part in A we have canceled the simple pole of the logarithmic
derivative of ¢(A) at A = 0. For the function ¢(}), one has the explicit formula

. 2~ He)/2T (LA(Hp,))
"T((m(B1) + 2+ A(Hp, )T (XA + pp) (Hp,))

(see, e. g., {11], Ch. IV, Theorem 6.4), which also shows that n(1ls,) = 1.
Here, m(f) is the multiplicity of the only reduced root 8 of (g,ar) positive
on Cp, pp(H) = %Tradn(H) for H € ap, and the constant ¢ depends on the
normalization of the measure on N. Thus,

dpc(A)
c(A)

c(A) =

= T (ta) (20 (3N (Hs,)
—¥(3(m(B1) + 2+ A(Hp,))) — $(3(A+ pp)(Hp,)) ~ 210g2>.

It is an easy matter to extend (49) to the limiting cases, using Theorems 5 and 6.
E. g,

In(1 ) = 5z [ (100N DA+ 560(1),

where

o) =000 (57 057

Of course, Qp s(1,1.) is given here by the corollary of Theorem 6. For this
special case, the function £44(1,A) has been calculated earlier with the help
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of the inversion formula for the Abel integral transform. Namely, it follows
from [16], Theorem 9.3, that Qar(1, A) equals

1 m 1

5P (Hp) (¥ (22) +9(1) = 61+ $A(Hp) - (1 - $2(H5)))
Unfortunately, our formulas imply a more complicated expression for Qps(1, A).
I have checked the equality of both expressions for rk ¢ < 2 using the duplication
formula 2¢(2s) = ¥(s) + ¥(s + 1) + 2log 2, but I did not find an argument for
variable rank. Since both formulas are proved, this is, of course, only a cross-
check.
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