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Irreducible Modules of Quantized
Enveloping Algebras at Roots of 1

Nal1hua Xi

Let A be an associative algebra over a. field. An interesting problein is to understancl
the structure of irreducible l1loclules of A (of finite dinlensions). More or less, this is
equivalent to understand the structure of luaxiInalleft ideals of A (of finite codilnensions).
For the later, it would be helpful if we know the.genera.tors of the ll1axilnalleft ideals.

. ,.
In Lie theory, there are sonle infinite cliluensional algebras associateel to a semisilnple

Lie algebra g over C. \~e sha11 be only concerneel with the following four of theIn.

(i). The universal enveloping algebra U of g.

(ii). The hyperalgebra Ur := llz 0z e, whcrc llz is the Konstant Z-fornl of II anel e is an
algebraic closed field of prinlc characteristic.

(iii). The quantized cnveloping algebra U (over Q(v), v is an indetenninatc) of g.

(iv). The quaJltizecl hyperalgebra Ue := UQ[v,v-1) 0Q[v,v-1] Q(~), where ~ E C'" aJlel
UQ[v,v-t J is a Q[v, V-I ]-fonn of U [L1, scction 4.1, p.243], Q(~) is regarded as a Q[v, v- I

]_

algebra through the Q-algebra hOlnonl0rphisl1l Q[v, V-I] -t Q(~), V -t ~.

vVc are mainly intcrested in finite dilllensional irreducibles l1loclules of these algebras,
01' equivalently, in Iuaxilnalleft ideals of the algebras of finite codiIncnsions. Thc generators
of Inaxilnalleft ideals of II of fini te coelinlensions are known more than forty years ago [HC,
Lenl1ua 15, pA2]. Thanks to the works [L1, Theorenl 4:12, p.247] anel [APV,T, Corollary
7.7, pAD), a siInilar rcsult holels for Inaxitnalleft ideals of U anel of Ueof finite coclinlensions
proviclecl that ~ is not a root of 1 or e2 = 1. V\Te will review these results in section 1.2.

The purpose of the paper is to find the counterparts of thc above results for the
hyperalgebra Ur anel for the quantized hyperalgebra Ue when ~ is a root of 1 of order
2::: 3. Thc main results might lead a way to cOlnpute the characters of finite elilnensional
irreelucible llloelules of Ur anel of UE,.

The basic idea is simple. vVhcn eis a root of 1 of oreler ~ 3, the algebra UE, has a
Frobcnius kerncl ue [L4, Theorcnl 8.3, p.107] . The Frobenius kernel ue is a sYlnnletric
Q(e)-algebra [X, Theoreln 3.5] of finite cliluension. Ivloreover, the algebra u€ has a trian­
gular decomposition uE, = ueu~ut. Each \Terma lnodule of uE, has a unique irreducible
subll1oclule, and each irreducible uClnodule L is an irreclucible sub1110dule of certain Venua
Inodule Z of ue. As a ue-Inodulc, Z is isoluorphic to ue.Thereforc there exists an elenlent

x in uesuch that L is iSOI110rphic to uex as ue-nlodule. It turns out that the elelnelÜ

x is a 1110110mial of the generators of U€- (the negative part of Ue). So the generators
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of the lllaxinlal left idea of ue eorresponding to L ean be clescribed explicitly (Theorelll
5.3). But L is a restrietion to u.; of eertain irreclueible U.;-nl0dule [L2, Prop. 7.1 (c),
p.70]. Using tensor procluet theorenl [L2, Therorenl 7.4, p.73], we can give the generators
of 111axirnalleft ideals of U.; of finite cocliInensions (Theorem 5.4). The saille idea is valid
to the hyperalgebra Ur.

The paper is organizecl as follows. In section 1 we reca11 some basic definitions and
review SOllle results in [AP'~', HC,' L1-L4]. In section 2 we consider the Frobenius kernel
u.;. In section 3 we consider the category of finite clilllensional U';-lllodules of type 1. In
section 4 we prove that certain nlononlials in Ueare actually in ue. In teclmiquc, this is
the hardest part of the paper. In section 5 we give the main theorenls of the paper. In
section 6 we consider the hyperalgebra Ur. In seetion 7 we give SOllle questions.
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1. Introduction

1.1. Let 9 be a senüsil11ple Lie algebra over C with rank 11. and let ((t.ij) be the Cartan
Inatrix associated to g. '\'e can find integers d; in {1 , 2, 3} such that (d;aij) is a synunetric
matrix. Asslune the sunl of a11 cl; is as sl11a11 as possible.

Let U be the quantized enveloping algebra of 9 over Q(v) ,vith pararl1cter v (v
an indetenl1inate). By definition, U is an associative Q(v)-algebra anel has generators
Ei, Fi , ](i, ](;-1, i = 1,2, ... ,11. which satisfy certain relations (see for cxcluple, [L4, 1.1,
p.90]). The algebra U is in fact a Hopf algebra, thc coproeluct .6. , antipode S, counit €

are elefined as follows:

.6.(Ed = Ei 0 1 + ](i 0 Ei, .6.(Fi) = Fi 0 ](j-l + 1 0 Fi, .6.(](d = ](j 0 ](i,

S(Ed = -](i- 1Ei, S(Fi) = -Fi](i, 5(](i) = ](i- 1
,

€(Ed = €(F;) = 0, €(](i) = 1.

Vve need some notations to introeluce quantized hyperalgerbas and for later uses.
Given an integer Cl anel positive integers b, cl, set

v ad _ v-ud

{a]d:= d -d'
V - V

! b vhd _ v- hd

{b]a := II d -d'v - V
h=l

2
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[
al := b V ( a - h+1) d _ v-(a - h+1) d ,

b II v hd _ v-hd
d h=l

Note that [~L is in Q[v, V-I], we shal1 denote [~L,e the evaluation of [~L at Efor any

~ in C· U {v}. Of course, we have [al] [al .
} d,ll b d

The quautized hyperalgebra Ue (~ E C *) is defined as follows. Let UQ(v, v-I] be thc

Q{v,v-1]-subalgebraof U generated by aU E~a):= Ei/[a]~i' Fj(a):= Ft/[Q,]~il !{j, ]{i- 1
,

i = 1,2, ... , n, a ~ O. Regard Q(~) as a Q[v, v-I]-algcbra through thc Q-algebra h01110­
morphisll1 Q[v, V-I] -t Q(~), v -t ~. Define Ue := UQ[v,v-1j 0Q[v,v-1] Q(~) anel call Ue
a quantized hyperalgebra (associated to (aij) with paraIllcter ~). For convcnience, set
Uv := U. The algebra Ue inheri ts a Hopf algebra structure froul that of UQ [v, V-I j, elenote
again by ~ the coprocluct, by S the antipode anel by f the counit. The tensor procluct of
two Ue-Il1odules then has a natural Ue-Illodule structure by lueans of the coproduct, anel
the antipode can be usecl to clefine the clualluodule of a Ue-Iuoclule.

For an integer c ancl a positive integer a we set

and [
](j, c]

'= 1o . .

We have [J(:, c] E UQ[v,v-'j [LI, Lemma 4.4, p.244]. For simplicity, the images in Ue of

Eia), Fj(a l, J(j 1 J(j-l, [Je, c] ,etc. will be clenoted by the salue notations.
(/.

The algebra Ue has a triangular clecoluposition. Let ut (resp. Ue-; ug) be thc

b 1 b f U 1b 11 E(a) ( F(a) F~ F~-l [J(; 1 c] Z)' .su a ger a 0 egeneratee y a j resp. ; ; \. j , \.;' a 1 cE, 1, = 1, 2, ... , 11.,

a ~ O. The multiplication in Ue defines a Q(e)-space iSOI1l0rphisnl between Ue- 0 ug 0 ut
anel Ue.

1.2. Given A = (Al,A2,,,,,A n) E Z~, a = (0'1,a2, ... ,an) E {±l}n, let I~u be thc left

'cl 1 f cl 1 11 (a),~ )"·d· [J(jlc] a [Ai + c] .I ea 0 Ue generate )y a Ei ,J\.; - aie I " - a; , Z = 1,2, ... , n,
a' a d· e

Q, ~ 1, c E Z, and let r;u be the left ielea of Ue generatecl by all Fi(~;)' i = 1,2, ... , n,

Q,i ~ Ai + 1. Then let J)..,u' be the left ideal of Ue generated by a11 eleluents in Itu U T;,u'
Then

(i). The Ue-module Ve(A, 0') := Ue/ I)..,u is of finite Q(~)-clitnension and has a unique
irreducible quotient lllodule, denote by Le(A, a). The Q(~)-dilnensionof Ve(A, a) is given
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by the \~Teyl's character fonnula. [L1, Theoreru 4.12, p.247] . \Vc sha11 elenote v>",17 thc
iruage in Ve(.A, a) of the neutral eleruent 1 E Ue, and denotc v>.., 0" the image in Le().., er) of
v'\,I7'

(ii). The map (A,a) ---+ Le(A,er) elefines a bijection between the set Z~ x {±l}n anel the
set of isoruorphisul classes of irreelucible Ue-ruodules of finite dimensions. [L1, Prop. 2.6
anel Prop. 3.2, p.241] anel [L2, Prop. 6A, p.69].

(iii). Oue has

Ve()..,a) ~ Ve().., 1) C2) Q(~)I7' Le()..,er) ~ ~e().., 1) 0 Q(~)I7'

where 1 = (1,1, ... , 1) E {±l}n and Q(~)17 is the oue Q(~)-diIllensional Ue-ruodule on

h· 11 (a) (a). ,~ [I(i,C]WIch a Ei , F i , 'l = 1,2, ... ,11., a '2: 1, act by scalar zero anel I\"i, a act by scalar

O"i, O"i' [:] respectively, i = 1,2, ... ,11, C E Z, a E N. [APW, 1.6, p.6-7].

(iv). Provided that ~ is not a root of 1 01' ~2 = 1, then Ve().., er) is irrcduciblc, i.e. Ve(A, er) ~
LeC A, er). Anel every finite eliruensional Ue-llloelule is corupletely reelucible. [L4, 7.2, p.105­
106; APVl, CoroHary 7.7, pAO].

Therefore, the theory of finite eliulensional Ue-rllodule is weH understood when ~ is not
a root of 1 01' ~2 = 1. When ~ is a root of 1 of order '2:·3 we elonot know nluch about the
irreducible ruodule Le(A, er). In section 5 we sha11 elescribe the generators of the ruaxirual
left ideal J,\,17 of Ue corrcsponding to Le(A, a). To have a look what the generators are we

introduce sorue monoruials of Fi(a), i = 1,2, ... , n, a '2: O. These nlononlials play 30 central
role in thc paper.

1.3. Set O'i = (ali,a2i, ... ,ani) E Zn. For every J-l = (J-ll,ll2, ... ,ILn) E zn, we also write
(J-l, Q''() for p,j. Define $j : zn ---+ zn by SJ-! = fl - (p" a '( )ai' The reflections SI, S2, ... , Sn

generate the Vleyl group IIV of the Cartan lllatrix (aij).

Let A = (Al, A2, ... , An) E Z+. Assluue that Si 1Si 2 ••• Sik is a reeluced expression of an
eleruent of w in I/V. Set Ai,l = Ai1, Ai,2 = (Si 1A, O'G)' ... , Ai,k = (Sik_1 ... Si t A, O''(rr)' where
i = (i l , 'i 2 , •.. , i k ). Dcfine

and

Note that in the universal enveloping algebra II of f1 sirnilar elerllents are defineel by Venna
[V, Theorern 4, p.162].

Lenll11a 1.4. The eleluents x>.. 1U i anel Xl, _\' are independent of the choice of the re-, , "",W,l
duced expression of w, only depcnd on A anel w. \Vc sha11 denote thenl :C>.. W anel x', -1, A, UJ

respectively. \\Then w is the langest elenlellt of I/V, we sirnply write x>.. anel x~ for x>..,w anel
x~ W respectively

)
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Proof: Use the quantlull Venna identity [L5, Prop. 39.3.7, p.313J.

1.5. Fronl now on ~ will be a root of 1 with oder 1 2:: 3. Let li be the order of ~2di

anel set Ir := (11 - 1,12 - 1, , In - 1). We say an elenlelü A = (Al, A2, ... , An) E Z~ is
l-restricted if Al ~ [1 -1, ,An ::; In -1. For each J-l = Üll,J-l,2, ... ,J-ln) E zn we set
l'l ;= (lIP,1, 12J-l2, ... , InJ-ln)'

Let A, J1- E Z+.' a E {±1} n and assul11e that A is l-restricted. Let J1Jl+>.,u be the left
ideal of Ue generated by elenlents in IIJ.t+>',u ancl by elelnents F in Ue- such that Fx,.._>. = 0,
one Inain result of paper says that Ue/ JI JL +>., u ~ Le(lJ-l + A, a) (Theorelll 5.4). One key
step to reach the result is the assertion that X K ->. is in the Frobenius kernel (Theorel1l 4.2).

1.6. Reillark: SOine results in [LI-L4] are stated aJlel proved in a full generality in [L5].
The other results in [LI-L4] can be stated anel proved in a full generality along the salne
way in [LI-L4]. Therefore the author feels free to quote the results in [LI-L4] in full
generality forms.

2. Frobenius Kernel

2.1. Recall that ~ is a root of 1 with order I ~ 3 anel li is the order of ~2di. Let R+ be
the set of positive roots of the root systel11 R := l-V{O'), 0'2, . "O'n} C Zn. Set 10 , := li if
a = 1.0 ( 0' i) for SOI11e 1.0 in IV. For each posi tive root 0' in R+, let Ea , Fa be the root vectors
defined in [L4, Theoreln 6.6 (iii), p.l04].

Let Uo be the subalgebra of U, generatec1 by aU Ei a' ;), Fia';),](j, ](j-I , [I~j(] , i =

1,2, ... , n, a 2:: 0. The positive part Utl' the negative part Ue~l anel the zero part Ug,l are

defined in an obvious way. Let ue be the subalgcbraof Uegeneratcel by a11 E co Fa, Ki, I(i- 1
,

Q' E R.i := {O' E R+ I 10 2:: 2}, i = 1,2, ... , n. The algebra is calleel the Frobenius kernel
of Ue. The Frobenius kernel ue is a Hopf algebra anel elirnQ(e) = 2n n~:: I li naER+ I~ [L4,
8.11, p.l11, anel Theorem 8.3, p.l07]. 'Ve define the positive part ut, the negative part

u{" and the zero part u~ in an obvious Inanner.

2.2. The following are SOUle properties concerncd with the algebras Ue,l anel ue, which arc
due to Lusztig.

(i). There exists a unique Q(E)-algebra isolnorphisl11 Ue,l ~ U{ ®QQ(~) such that E;l/,li) ~

(a) (al;) (a) .~± .~± [I(i'C] [I(i'C] .' _ .Ei , Fi ~ Fi , I\. i ~ I\.. i , ali -)0 a ' fOI 1, - 1,2, ... ,n, a 2:: 0, WheiC

(assulne that (aij) is indecoinposable) Ut = U1 when 1] = 12 = ... = In and U: is thc
quantized hyperalgebra associated to the transpose nlatrix of (ai]) when h =J=. Im for SOInc
k,7Tl. [L5, Theorenl 35.1.7-Theorenl 35.1.9, p.270; L4, Theoreln 8.10, p.ll0].

(ii). Let {x(t} be a Q(~)-basis of ueanel {Yb} be a Q( ~)-basis of Ue~l' then {XaYb} is a

basis of Ue-, so is {YbXa} [L4, Lemilla 8.8, p.l09].
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(iii). The eleluents I10E Rt F~a,,) I17=1 J(f; IloERi E~a~), 0 :::; an, a~ :::; 10 - 1, 0 ::; bj :s;

21 i - 1, fornl a Q(~)-basis of Uej the elenlcnts IloER+ F~aa), 0 ::; a o :::; 10' - 1, fOrIn a
I

Q(~)-basis of ue; the elenIents I1;~1 J(t i
, 0 :::; bi ::; 2ii - 1, fonn a Q(~)-basis of u~; the

elenIents I10E Ri Eia~), 0 ::; a~ :::; in - 1, fOrIIl a Q(~)-basis of ut. [L4, Theorenl 8.3,

p.107].

(iv). Let A, v E Z+' and a E {±1}n. Assulue that A is l-restricted, then [L2, Theoreln 7.4.,
p.73]

(v). The restrietion Le(lJ.l ,a) to Ue,l is an irreducible Ueli-module, anel FO'Le(Ip, a) = 0
for a11 a E R;. Moreover, through the isolnorphislll Uell ~ U; QSlQ Q(~), the restrietion
becolues an irreelucible Inodule of U~ 0Q Q(~) corresponeling to (p, a). [L2, Prop. 7.5 (b),
p.74].'

(vi). As a UClllodule, L e(.\, a) is irreeluciblc if A is l-rcstricted. Thc 11lap (A, a) --t L e(A, a)
defincs a bijections between the set Z~ll x {±1}n anel thc set of isomorphisIll classcs of
irreducible Ue-lllodules, where Z~,l is the set of a11 l-restricteel eleillents in Z+ [L3, Prop.
5.11, p.291].

According to (i-vi), the algcbra ue is a key to understancl Ue. To be convenicnce,
we consider the subalgebra ue of Ue generateel by a11 elements in ue U ug. One has

ue=uZugut. By(vi)wesee

(vii). Assulue (A, a) E Z~,l X {± I} Tl, then thc restrietion to ue of the irreducible Ue-nloclulc

Le(A, a) is an irreeluciblc ue-nloclule, denote by Le(A, a).

2.3. To go further we neeel SOlllC notions. Let, E ZR. An eleulent x in Ue is said to havc

. ~ "'-1 (V}d' [Je, c] [I{j' c- (,,0'':1)]. .degree, lf J\.jxJ\.j = ~-"Qi IX anel a x = X a t for 1. = 1,2, ... ,n,

cE Z, a E N.

Let U€ be a subalgebra of Ue containing ug anel let Al be a U€-luodule. Let ..\ =

(A1,..\2, ... ,An ) E Zn,a = (al,a2, ... ,an ) E {±l}n. An element 11"1. E NI is ca11ed to have
weight (A, a) if

for i = 1,2, ... ,11" C E Z, a E N. Denote lVf>.,u the set of a11 elenlcnts in lvf of weight (A, a).
Vle eall (A, a) a weight of Al if lvI), lU is not zero. If an elenlent :t in Uehas degree " then
obviously xAif>.,u ~ lvl>,_,

l
u,

As usua.!, for (A, a), (,t, r) E Zn X {±l}", we writc (A, a) ::; (jt, r) if J-L - A E NR+ anel
a = T. This elefines a partial order in Zn X {±1}n .
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2.4. Now we return to the algebra ue. Asslune fl = (fll' fl2l ... , fln) E Zn anel T =
( Tl, T2, ... , Tn) E {±I} n. Let i-:, T be the left ideal of üe gencratcd by all Eo 1 0: E Ri,

T.-~..c/tjdj [1\i'C] a[lli+ C
] :-12 Z N D Z-() 1

1\.1 - T,'-, , a - Ti a dile' 1. - , , ... ,n, cE ,a E . enote e J-L,T tle

\TefIna 1110dule üe / i-:, T of ue. \\Te shall wri te i J1, T the ilnage in Ze(fL 1 T) of the neutral

elelnent 1 E iie. By 2.2 (iii), Zeül, r) has Q(~)-dilnension TIoER+ 10 • vVe denote by
Q(~)IJtIT the one Q(~)-dinlensional iie-nlodule on \vhich a11 Eco F n , Q' E Ri act by scalar

~ [1(i' c] [lifli + c] . .zero and B.. i , act by scalars Ti, Tr , respecbvely, where 1. = 1,2, ... ,11.,
a a d· e

cEZ,aEN. 11

Let (A, u), (J-L, T) E Zn X {±l}n. Then (cf. [X, Prop. 2.4, Prop. 2.9])

(i). The \Tenna lnoelule Ze(.~, u) has a unique irreducible quotient nlodule, denote by

Le(A, u). Moreover Le(Ifl, r) ~ Q(~)IJ1IT'

(ii). vVe have

Ze(A +11'" ur) ~ Ze(A, u) (;) Le(Ifl, T) ~ Ze(A, T) (;) Le(Ifl, er),

w here thc meaning of er T E {±1}n is 0 bvious.

(iii). vVe have

(iv). Let L be an irreducible iie-Illodule such that L is the direct sunl of its weight spaces,
then L is isonlorphic to certain .Le(A, 0'). Two irreducible ue-Inodules Le(A, 0') anel Le(p., r)
are isolllorphic if anel only if (A, er) = (p, r).

Relnark: It is easy to sec there is a natural bijection betwcen the set of isolnorphislll
classes of irreducible üe-nlodules and the set of lllaxinlal ideals of ug. Note that thc

sllbalgebra U'L of U~ generated by [J(;; 0] , i = 1,2, """' n, is isomorphie to a polynomial

ring over Q(~) in n variables. Anel ug is generated by U'~,l aJld u~.

\~ie need the fo11owing result to see that Ze( A, er) has a. unique irredllcible submoclulc.

Lenul1a 2.5. Givcn a nonzero element y in u€ we can find an elelnent x in u€ such that

xy = P,.., where F,.. = TIoER; F~IO;-I), thc product takes the order oppositc that in [L4,

4.3, p.93-94].

Proof: Set r := IR+ I. Let ßr-q+l be the q-th root in the total order on R+ arranged in
[L4, 4.3, p.93-94]. Then ßl, ß2, ... , ßr givc rise to a total order on R+ opposite to that in
[L4, 4.3, p.93-94]. By 2.2 (iii),

y=
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Let (bl,b2 , ... ,br ) be the Ininiulalclelncllt in {(al,02, ... ,ar ) E Z+ 1.4(al,a2, ... ,ar ) i= O}.
(Here we use the lexicographical order in Z+ such that (0,0, ... ,0,1) < (0,0, ... , 1,0) <
... < (0,1, ,0,0) < (1,0, ... ,0,0).) Set Cl = Ißt -1- b), ... ,cr = Ißr -1- br ancl let

x' = FJ:r) FJ~2) F~~d. Using cOlunlutation relations in [L4, 5.3-4, p.95-97] ancl [L4,

Theorenl 6.6 (iii), p.104], we see x1y = A(b), b2 , ••. , br)x' Fft~dF~~2) ... FJ~r) = BF~ for sonle

nonzero nunlber B in Q(~). Then the elClllent x := B-) x' satisfys our requireillents.

Proposition 2.6. let (A,a) E Zn ~ {±l}n, then

(i). The Venua rlloelule Z~(A, a) has a uniqlle irreclucible suhrlloclule.

(ii). Assurue that A is l-restrictecl, then the unique irreclucible suhrllodule of Z~(2f\. + WOA)
is isorllorphic to L~(A, a), where Wo is the langest element of liV.

Proof: (i). By Lenlllla 2.5, each submodule of Z~(A, a) contains the elerllent FKi>.,u' So
Ze(A, a) has a unique irreducible submoclule which is generated by F~l>.,u.

(ii). Since F", has clegrec 2K, so F~i2~+1VO>"U has wcight (WOA, a). Accarcling to thc
synlluetries [L5, Prop. 5.2.7, p. 45], thc lawcst weight of Le(A,a) is (woA,a). According
to 2.2 (vii), 2.4 (iii-iv) and the proof of (i) we see that the unique irreclucible subrllodule
of Z~(2f\. + tooA) is isorllorphic to L~(A, a).

Corollary 2.7. Assullle that A is l-restricteel, then

(i). There exists a nünzerü elerllent y>. (unique up to a scalar) in u~ such that v>. i2~+ wo>',u

has weight (A, a) and Eay>. i2~+wo>',u = °for all Cl' E RT. Necessarily y>. i2~+wo >',0' generates
the unique irreelucible suhmodule of Z~(2K + lUoA).

(ii). There exists a nonzero eleruent y~ (unique up to a scalar) in u~ such that y~ i ~+>',0'

has weight (1i+woA,a) anel Eay~lK+>',u =°for a11 0' E Ri. Necessarily y~i~+>.,u generates
thc unique irreducible subrlloelule of Z~(I)'. + A).

vVe sha11 see that Y>. = :l;~_>. anel y~ = x~ (see 1.5 für definitions of x>., x~).

Proposition 2.8. Let a E {±l}fi. Then

(i). The Verrna nlodule Z~ (K, a) is an irreducible üCrllodule, i.e. Ze (f\., a) ~ t~ (K, a).

(ii). As a iie-l11odule, 11~(h:, a) is isonlprphic to Ze(h:, a). In particular, 11~(1)'., a) IS an
irreducible U~-I11oclule.

(iii). For every p, E Z+' the 1110dnIe Ve(lfl + 1i, a) is an irreducible UC 1l10clule.

Praof: (i). Note that WOK. = -1)'.. By Proposition 2.6 (ii), the unique irreducible snbrlloclnle
of Ze( 1)'., a) is isol11orphic to tee 1'\" a). But Ze( h:, a )~,O' is one-clil11cnsional Q(e)-space, so
the irreclucible subrlloclnle of Ze( K., a) is generated by i ~,u' Hence Z~( Ir, a) is irreclucible
ancl isolnorphic to Le( K" a).

(ii). By the definitions of Z~( 1)'" a) anel of Ve(1'\" a), we have a natural iie-l11oelule
honloluorphisnl Z~(K., a) ---+ V~( fl" a). The homol11orphisl11 is surjective according to 2.2 (i)
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anel the definition of Ve(K, a). \~Teyl's character fonnula teIls us that the Q(~)-clilllension
of Ve(K, a) is TIO'ER+ ZO" So the homonl0rphislll is a ue-nloclule isolllorphislll. This proves
(ii).

(iii). By 1.2 (i), Le(Ip + K, a) is thc unique irreducible quotient Inoelule of V~(I'L +
K,a). Using (ii) ancl 2.2 (iv) we see Le(lp + K,a) is isolnorphic to L~(l'l,a) 0 Ve(K,l).
COll1bining 2.2 (v), 1.2 (i) anel 1.2 (iv), we know that the Q(~)-climensionsof Ve(lp +K, a)
anel Le(l,l., a) 0 Ve(K., 1) can be calculateel by 111ean8 of \~Teyl's character fonllula, they are
equa1. Hence Ve(lll + f\" a) is an irrechlcible Ue-moelnIe.

The proposition is proveel.

The fo11owing reslllt will not be usecl in the sequel of the paper.

Theorenl 2.9. (i). The algebra u~ is sYlnmetric.

(ii). Let k be the two sided ideal or' ue generated by J<i 1
- 1, J(~2 - 1, ... , J(;n - 1. Then

the algebra ue := ue/k is sylnmetric. ,

Reluark: The theoreln was proved in [X, Theorenl 3.5] with sonle restrictions 011 1. Since
[X] is unpublisheel and Theorern 3.5 in [X] was quoted in S0111C papers, it Inight be gooel
to represent here aversion without restrictions on 1. The proof is the sarne as that in [X].

Proof: (i). We need to construct abilinear fonn 'P on ue such that

(a). r..p is associative, i.e. <p(xy, z) = <p(x, yz) for any x, y, z E u~;

(b). 'P is non-clegenerate, i.e. if rp(x, x') = 0 (resp. <p(x', x) = 0) for a11.'/;' E ue, then x = 0;

(c). <p is sYlnmetric, i.e. 'P( x, y) = rp(y, x).

Let ßl, ßz, ... , ßr be as in the proof of Lenuna 2.5. Set

Z~,21:= {(h t ,hz, ... ,h 71 ) E Zn 10:S 11. 1 :S 2/1 -l, ... ,O:S hn:S 2/ 71 -1},

For A = (al, (l2, ... , ar) E Z~,b H = (11. 1 , hz, ... , hr ) E Z+.,21 , we shall vnite FA, E A , J(H
for p(a d p(a 2 ) ••• p(a r ) E(u r ) .•• E(n,.> E(n d J(h t J(h 2 ••• J(h n reSl)ectively. Let r!1 be thc

ßt ß2 ßr' ßr ß2 ßt' 1 Zn' r 0
Q(~)-linear function of Ue elefineel by

if FAJ(HEAI = F,E"

otherwise,

where t = (Ißt -l,lp2 -l, ... ,Ißr -1) E Z~,l' Set <p(x,y):= <po(xy). Obviously<p elefines
an associative bilinear fonn on ue. \Ve now show that 'P is non-clegenerate on ue.

Let
x = L: B(A,H,A')FAJ(HEAI # 0, B(A,H,A') E Q(~).

A,A1EZ+,1

HEZ+,21
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Let B = (bI, b2 , ••. , br ) be the Ininitnal elelnent in {A E Z~ ,I IB( A, H, A') i=- 0 for SOllle H, A'}I
anel let B' = (bI, b2 , ... , br ) be the nlinilnal eleluent in {A' E Z~ ,I I8(B, H, A') =I- °for SOUle H}.I
Here we use the lexieographieal order on Z~ clefined in the proof of LeIl1ma 2.5. Set

whcre Cl = Ißt - 1 - b1 , ... , Cr = Ißr - 1 - br , and c~ = ißt - 1 - b~, ... , c~ = Ipr - 1 - b~. By
the proof of LeIllIlla 2.5 we have

for SOHle nonzero number B1 E Q(~).

By the eOlnulutation relations in [X, 3.3] we see that

Y2 FI = Ft Y2 + L l}(A,H,A' )FA I{HEA " l}(A,H,A' ) E Q(~).

A,A'EZ+,l
1'\=1:1

HEZ+.,21

As in the proof of Lenlll1a 2.5 we see B( B, H, A' )V2 E A' i=- 0 inlplies that A'
Y2EBI = 82E t for SOlne nonzero nUluber 82 E Q(~). Thus

B' and

HEZ+.,21 A,A'EZ+,1
A;;iL

HEZ+.,21

where l}'(A, H, AI) E Q(~). Let I E Z~,21 be such that B(B, I, B') i=- 0, by the definition of

cp we see cp(]{/1Y2 YI , x) i=- O. vVe also have cp(x, ]ei 1Y2Yl ) i=- 0 since r.p is synlluetric by the
following argluuent.

Note that the eleluents E A l\.-H FA' , A,A' E Z~,llH E Z~,2b also form a Q(~)­

basis of ue. Let A = (ak),B = (bk),P = (Pk),Q = (qk) be eleIl1ents in Z~,I ancl let
H = (hi), H' = (hD be eleInents in Z~,21' Using COl1llllutation relations in [L4, 5.3-5.4,
p.95-97; X, 3.3] anel [L4, Theorenl 6.6, p.103-104] we see that 'P(FA]{HEp,EQ](f/,FB) =
cp(EQ](H I F B , FA ](HEp ) = 0 if one of thc following three eases happens: (a). ]{H](H' i=- 1,
(b). L~=l (ak + bk )ßk i=- 2~, (c). L~=l (1Jk + qk )ßk i=- 2/,\'.. Using [L4, TheoreIll 6.6, p.103­
104] and COllll11utation relations in [L4, 5.3-5.4, p.95-97] aJlel incluction on P (resp. B)
we know that (d). EpEQ = EQEp (resp. FAFB = FaF"t).if L~=l(ak + bk)ßk = 2~

(resp. L~=l (1Jk + qk )ßk = 2K.). By this anel the C0l1ll11utation relations in [X, 3.3], anel
noting that the coefficients of EpEQ, FaFA in ]\HEpEQ1Ci/, 1Ci/ FBFAI(f/ are the sarne
when L~=l(ak +bk)ßk = L~=l(Pk +qk)ßk = 2~, we see that ep(FA](f/Ep,EQI{H,FB ) =
'P(EQl\.-H,FB,FA]{HEp) if L~=l(a.k + bk)ßk = L~=l(]Jk + qk)ßk = 2~ and ](H](/il = 1.
Therefore 'P is sylnllletrie. Part (i) is proved.
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(ii). Since the iIuagcs in u e of thc elenlents FA!(f/EA " A, A' E Z.+,l' H E Z~,l' fonu
a Q(€)-basis of ue' the proof of (i) is also valid to u e.

The theorCll1 is provcd.

3. Category of finite dhnensional Ue-nl0dule of type 1

3.1. Let A1 be a finite diInensional UCIllodule. For each (J = ((Jl,(J2, ... ,O"n) in {±l}H,
set A1er := {rn E At[ I !(fi m, = (Jirn for 1: = 1,2, ... , n}. In Ue we have !(;li = 1 anel

X!(fi = l\.-fi x for every x E Ue [L2, Lenuua 4.4, p.64]. Therefore 1\1Ier is a subluodule of A1
anel A1 = EB er E {±1} n M er' We say that M has type (J if M = NIer' All fini te di lncnsional Ue­
modules of type (J with usual Ue-lll0dule hOlll01norphisIllS fonn a category of UClllodules,
denote by Cer. Clearly, the lnap 1\11 -4 lvI 0 Q(~)er gives rise to an isolnorphisnl betwcen thc
categories Cl and Cer [AP\V, 1.6, p.6-7]. \Vhat is luore, the Q(~)-algebraautomorphisIll
Ue -4 Ue defined by Ei a) -4 (Ji E;a), Fi(a) --t Fi(a) , !(i --t (Ji!(i (i = 1,2, ... , n, a 2": 0)
interchanges the Ue-nl0dules of type 1 to those of type (J [L2, 4.6, p.65].

Therefore, it suffices to work on the category Cl of Ue-nl0dules. Note that Ve(.,\, 1),
Lee>.., 1) E obC I for each AE Z+. V·.,Te shall drop the index 1 in a11 notations involved it.
So C, Ve(A), Le(A), VA' etc. will stand for Cl, Ve(A, 1), Le(A, 1), VA,!, etc. respcctively. One
Iuain result of the section is the following, which will be proved aftcr establishing Lenlnla.
3.4.

Theorenl 3.2. Let p E Z+.

(i ). The lllodule Ve(I,L + K) is injective as weIl as projective in thc category C.

(ii). The category C has enough injective objects and enough projective objects as weIl.

(iii). In C each injective object is also a projectivc object.

(iv). Every module /1.1 in obC is integrable (i.e. !vI = EBAEzn !vIA and E~a),Fi(a) are locally
nilpotent on !vI for i = 1,2, ... ,71, a 2": 1).

(v). If 1\1 is a finite dimensional Ue-Illodule, then M = EB(Aler) EZn x {±1} n MAler, i.e. M is
integrablc.

(vi). Let E be an injcctive object in C, then E has a SUbllloclules filtration 0 = EI.: C EI.:-I C

... C E 2 C EI = E such that E u/ E a+1 ~ V~(lJa) for sonle Va E Z~, a = 1, ... , J.; - 1.

Relllark: \Vhen 1 is apower of a prilne ntllnber, thc theorcln is proved in (APV\T, 9.8,
p.44; 9.12, p.45).

3.3. Let !vI be a Ue-Inodule of type 1. An nonzero elelllent r11 in AI.! is called prirnitive if

rn E A1A for S0111e A E Zn and E~a\n = 0 for i = 1,2, ... ,71, a 2": 1. \Ve have

(i). Let NI be an integrable 01' finite dinlcnsional Ue-Inodule of type 1. Assuil1e that
711. is a prilnitive elen1ent of weight A, then A E Z~ and thcre is a unique Ue-Inoclule
hOluoluorphisln Ve(A) --t NI which carries VA to rll. [L5, Prop. 3.5.8, p.33].
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Given a finite dill1ensional Ue-ll1odule E of type 1, \ve define the clualll10clules E*, E*
as in [APVv, 1.18, p.9] by 111eanS of the antipode S of Ue anel its inverse S-1 respectively.
Then [AP\V, 1.18, p.9-10]

(ii). vVe have (E*)* ~ E ~ (E*)*.

(iii). For any UC ll10dules IvI,lV, one has

HOll1uc (E* '21 M, N) ~ HOlllU
C
(lvI, E '21 N).

LenUlla 3.4. Let lVI be a finite eliluensional Ue-llloclule of type 1 ancliet 11, E Z~.

(i). Assullle that Ve(11-" + K.) is a subrnodule of lvI, then Ve(lp + K) is a direct sumlnancl of
l'vI, i.e. there exists a subnl0dule NI' of 11/[ such that M is isonl0rphic to Ve(lp + 1\,) ffi fvI'.

(ii). Assume that Ve(II-'·+I\.) is a quotient Inodule of lvI, then Ve(lP+K) is a direct sununand
of Al.

Proof: The 1110dules Ve(11-" + K:)*, Ve(II--l + h:), Ve(lp + 1\,)* are isolllorphic since Ve(ll--l + K,) is
irreducible (Proposition 2.8 (iii)) and wa(l,l + K) = -Ip- K. Now part (i) and part (ii) are
equivalent by 3.3 (ii). We give a proof of part (i).

For lJ = (Vll V2, ... , vu) E Zn, A = (Al, A2, ... , An) E Z+.,l' let A1(Iv+,\) be the set of a11
elerllents lH in fvI satisfying

Ki m = ~d;>'i m, ( [K;: 0] _ l/i)"m = 0, far i = 1,2, ... ,n and same a E N.

Thel1

(a). 1\1 = EBVEZ n fvI(v) , and E~a)lvI(v) ~ 1\1(v+aat}, F j
Ca )1\;f(v) ~ fvI(v-aad' [L2, Prop. 5.1

and its proof, p.65-67].

(b). Obviously, Mv =I- 0 if and only if 1\1(v) =I- O. So the set P(A1) := {v E Zn I lVl(v) =I- O}
is stable uncler the action of W [L5, Prop. 5.2.7, p. 45].

By induction on clilllQ(e)lVI \ve 111ay aSSlUlle that AljVe(l/l. + 1\.) is irreclucible. One of
the following three cases nUlst happen.

(c). There is a 111axil11al weight A in P(1\1) such that A =f:. Ip + K:.

(cl). I'l + K. is the unique 111axilual weight in P(1\1) and diruQCf,)1\1C1p+K ) = 1.

(e). I'l + h: is the unique maxilnal weight in P(1\1) and dinlQCf,)fvI(l/l+K) = 2.

Case (c). By (b), l'vI>.. =j:. O. Choose an nonzero elerllent lH in 1\1,\, then rn is a pri rlli tive
eleluent. Let A1' be thc sublllodule of NI generatccl by 1n. We clailll that 1I1'nVe(lp+f\~)= O.
Otherwise, AtJ' n Ve(ll-" + K,) = V~(ll-" + f\'.). Then \ve can find an elernent y in Uesuch that
VIJl+K = Y1n. Note that FKVl/1+f> =j:. 0, using 2.2 (ii-iii) we see that FKVl/1+f> = FKY"rn
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for sonle elclnent y' in Ui:l' Therefore A = Iv + Ip. + f\, for certain nonzero elelnent 11
in Zn. By Proposition 2.8 (iii) anel 3.2 (i), AtI' is irreducible. An contraelietion to the
asSUIUption on M' n Ve(IJ-l + K,) = Ve(Ip. + 1\,). Hence lvI' n Ve(lp. + /'t,) = 0, in adclition we
have 1\,11 ~ Ve(lp. + K) EB lvI' anel ]\,11' is irreducible.

Case (cl). By (b), all the four spaces Ml p +K,]V[(I/--L+K),NI_I/--L-K,1l1C- 1/--L-K) are of one
Q(~)-dimension. By (b) IJ-l + K. is the unique InaxiIual weight in P (NI * ). Let NI1 be thc
irreelucible subluodule of kl* such that lvl* /1\11 is isolnorphie to Ve(l/l. + n:)*. By our
asslunptions on NI wc have Ip. +K f$ P(1l11 ). Choose a nonzero element 111, in 1l1tl/t+K)' then
r17. is a priIuitve elenlent aud generates a subnloelule 1\12 of NI. By Proposition 2.8 (iii) anel
3.2 (i): 1\12 is isomorphie to Ve(lp + n:). Hence J.\1* is isomorphie to Ve(lp. + K.) EB 1l11 . Note
that Ve(l/l. + K.)* ~ Ve(lp + K.), by 3.2 (ii) we see 111 is isonl0rphic to Ve(lp + K.) EB 1l1{.

Case (e). Set /l.i := (J-l, ar) for i = 1,2, ... , n. By (b) we have F}litti+ld M(IJL+K) = °
for all i. Using (a) anel our assu1uption on Ip. + K. we see

But in Ue we have [L2, lenlnla 4.3, p.64]

[J(i'O] = 1 rr1--Li ([J(i' 0] _j).
H·I· (H' +1)' I·rt t ,..-1 . j=O t

[
Je, 0] .. ([J(i' 0]Now li - P.i 1S nilpotent on .A1(I/--L+K) ' so li

isoluorphic to Ve(Ip. + 1\,) EB Ve(lp. + K).

The lenllua is proved.

3.5. Now we prove Theorem 3.2. Part (i) is a trivial consequence of LelDIDa 3.4.

(ii). According to part (i) anel 3.3 (iii), for any finite eliInensional Ue-lTIoelule A1 of
type 1, the 1110dules 1I"e(lp. + K.) ® 1\1 anel 111 (9 Ve(lp, + K.) are projevtive and injective as
weIl in the category C. For any A in Z~, choose 1/ in Z+' sueh that 1I1 + K. - A E Z~. By 3.2
(i) we have a nonzero Ue-hOluolllorphislu Ve(Iv + K) -t Le(;\) ® Ve(lll + Ii - A). By 3.3 (iii),
this gives rise to a nonzero Ue-honl0lTIOrphislu Ve(I11 + K;) 0 V~(Iv +K. - ;\)* -t Le(A), which
is necessarily surjeetive. Further, this surjeetive gives rise to a nonzero U~-honl0nl0rphisnl

Le(-WOA) ::: Le(A)* -t (Ve(lll + K;) 0 Ve(lll + K. - A)*)* ::: Ve(lv + fi) 0 V~(hl + t\, - A).
Therefore the category C has enough injective objects anel enough projective objeets as
weIl. Part (ii) are proved.

(iii). Note that thc lnodules V~(Ip.+ I\~)* l Ve(l/l. +K;), Ve(lp +K)* are isolll0rphic. Since
for each A1 E obC, the lnodules Ve(lp + K;) 0 A1 anel V~(l/l. + K,) 01l1* are projeetive and
injective as weH in the category C, part (iii) follows.

(iv). vVe have seen that eaeh il1decolnposable injective objeet is a direet sunlluand of
Ve(lv + K;) 0 Ve(8) for some v,8 E Z~. So each injeetive object in obC is an integrable
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Ue-nlodule. Let IvI be a finite elirnensional Ue-lllodule of type 1 and let M' be the nlaxinlal
conlpletely reducible snl)luodnIe of 1\1. By (ii), we can find an injective object Ein 0bC
anel an injective Ue-holllomorphislll A1' r-, E. Since E is injectivc in the category, the
above injection can be extended to an injective Ue-h0l1l0nlOrphisln A1 L.....+ E. Therefore 1\1
is integrable since E is integrable.

According to the statements in 3.1 we see (v) is an iUlluediate consequence of (iv).

(vi). It is no hann to asslllue that E is indecoluposable, then E is a direct sUllllllancl
of V := Fe (lll + h:) 0 Ve(5) for sonle v,5 E Z+. By [L5, 27.3.3, p.221], V has a SUblllodule
filtration 0 = Vh C Vh-l C ... C V2 C VI = 1/ such that Va/Va+l ~ v~(5a) for sonle
5a E Z~, CL = 1, ... , h - 1. Since E is a direct sUlllluand of V, the requirecl filtration exis ts.

The theorClu is proved.

Another Inain result of the section is the following.

Theorenl 3.6. Let A E Z+.,I, J-l. E Z~. Then

(i). The nl0dule Ve(lJ-l. + '" + A) contajns a unique irreducible subnloelule.

(ii). The irreducible SUblllodule Ve(lp, + '" + A) has highest weight IJ-l. + '" + lUOA and is
generated by y~V1 Jl+,,+,\. (See Corollary 2.7 (ii) for the definition of y~.)

Proof: (i). In the proof of Theorenl 3.5 (ii) we have seen that Ve(lJL + K,) 0 Ve (A) is an
injectivc object in the category C. According to [L5, 27.3.3, p.221], the SUblllodllle of
Ve(lJ-l. + h~) (9 Ve(A) generated by VI/~+" 0 V,\ is iSOl110rphic to Ve(lp + K, + A). Let E be
the indeconlposable direct slllumand of Ve(lp + K.) 0 Ve(A) containing VIJI+" 0 v,\, then
Ve(lJ-l. + K. + A) is isoluorphic to a subnlodule of E. The luodulc E contains a unique
irreducible subnlodule since E is an indecol1lposable injective object in the category C.
This forces that Ve(lJL + fl. + A) cont.ains a unique irreducible subnl0dule.

(ii). 'VVe need to prove that

(a). The elenlent 111. : = y~VI Il+,,+,\ is a pritni tive elenlent in Ve(lJL + K. + A).

(h). The element y~VI JJ +,,+,\ generates an irreducihle sllhnl0dule of Fe(lIL + K. + A).

Note that in Fe(K. + A) we have F"v,,+,\ =1= 0 and FaF"v,,+,\ = 0 for all a E Ri.

Since F?d F" = F"Fpd for i = 1,2, ... ,11. [L4, Lemnla 8.5 (ii), p.10S], so F?d F"v,,+,\ = 0
for 'i = 1,2, ... , n. By thc proof of Proposition 2.6 (i), F"v,..+,\ gcnerates an irreclucible
subnlodule A1' of Ve(K. + A) whose lüghest weight is K. + lUOA. By Corollary 2.7 (ii), thc
irreducible sublnodule Ai' is gellerated by y~V,,+,\. Thus y~v,,+,\ is a prituitivc elenlcnt in
ve(Ii. +A) since it has weight h.~ + lUOA. By [L4, Lenuna 8.5 (i), p.108], for i = 1,2, ... ,11" we
111ay write

E (l;) , _ , E(l;) +
i Y,\ - Y,\ i

A,A/EZ+,l
b.:·(A,A')Eu~
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Since FAVt>+I, A E Z+,ll are Q(~)-linearly independent, so J((A,A')vt>+'\ = 0 when
EA' = 1 and 8(A., A') "# O. But [((A, A') E u~, so [((A, A')vt>+'\ = 0 is equivalent to

[((A, A')VlJi+t>+'\ = O. Therefore E;li)Y~VIJ-'+t>+'\ = 0 for 'i = 1,2, ... , n. By Corollary 2.7
(ii) and 2.4 (ii), EaYAvIJL+t>+'\ = 0 if 10: ;::: 2. Hence y~VIJL+t>+'\ is a prinlitive eleillent in
Ve(IJl + K. + A). This proves (a).

Let Za, a = 1,2, ... , q, ... , TIaER+ ia , be a Q(~)-basis of ueancl let zb' b = 1,2, ... , q', ... ,

be a Q(~)-basis of UZ'" such that

(c). The elelllnts Za Dt>+wo'\' a = 1,2, , q is a basis of the irreducible nl0dule Le(Ii +WQA),
ancl zavt.:+wo,\ = 0 for a = q + 1, , TIaER+ 10 , where vt>+wo'\ is a nonzero eleIllent in
Le(K. +WQA) of weight f\, +WQA.

(cl). The eleillnt s z~ 'VI 11 , b = 1, 2, ... , q' is a basis of the irreducible Inoclule Le(lp,), z~Vl 1t = 0
for b = q' + 1, q' +2... , where VlJi is a nonzero element in Le(lp) of weight I,L.

(e). For each posi tive integer b, the elenlent z~ has a degree 1bENR+ (see 2.3 for the
definition of degree).

\\Te clailll that the elelnents zazb' a = 1, ... ,q, b = l, ... ,q', span A;J := U~n1. as a
Q(~)-space. By 2.2 (i), 2.2 (v) anel 3.2 (i) we see z~n~ = 0 whenever b > q'. Now aSSUlne
that 1 ::; b ::; q' anel q < a :s TIaER+ 10 , \~Te use incluction on lb to provc that zaz~ is a
Q(e)-linear c0111bination of the eleillents ZI z~, ... , ZqZ~, ... , ZI z~!, ... , ZqZ~I' 'AThen lb = 0, this
isobvious. If 1 ::; a ::; q, nothing need to prove. Suppose tha q < a ::; TI 0' E R+ 1Q' • \~Tri te
zaz~ = zbza + L: Ac,dZcZ~, Ac,d E Q(~), then by [L4, Lemlua 8.5 (ii), p.l08], ld < lb
whenever Ac,d "# O. By ineluction hypothesis, zazbrn - 2:= Ac,dzcz~1n is a Q(()-lineaJ.'

1· t' f I , , , Th fconl )lna Ion 0 Z1 Z1 , ... , ZqZl' ... , Z1 Zql, ... , ZqZq!' ere ore

This forces that diulQ(e) A;J = cliulQ(O Le(l,L + fi. + Wo A) anel lvI is an irreclucible Ue-lllodule
of highest weight IJl + K, + Wo A.

4. The eleillents x~

4.1. Recall that in 1.4 we have defineel the elenlellt x~ E Ue- anel in Corollary 2.7 (ii)

defined the eleluent 'VA E uefor every A in Z~. The luain result of this section is Theorenl
4.2. Vle prove it after establishing severallelnulas. It is a sorry that the author coulcl not
find a silllpie proof of Theorelll 4.2 except for type An, B 2 .

Theorenl 4.2. Let A E Z+.,I, Il E Z+'. Then

(i). The elenlents x ~ VI Ji+ t.:+'\ is a priInitive elelllent in Ve(I,L + K. + A).

(ii ). We have x~ = By~ for SOl1lC nonzero 11umbcr B E Q (~). In particular, .'C~ is in Ue.
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Leuuna 4.3. Let Al be an integrable Ue-nlodule of type 1 and let rn E ]\lIp., (IL E Zn). Let
i, j be integers in [1, n) and let CL, b, c be non-negative integers.

(i). Asslllne that E;'t}m. = 0 für h 2: 1, then Fj(a) FJb) Fi(C) rn = 0 if a + (O'j, a'()b + c >
(/l, a~).

(ii). Asslllne that E~h)1n = 0, Eja)l1l = 0 for h 2: 1, then F?t) E?) FjC)rn = 0 if a +
(aj, a'()(c - b) > (/l,a'().

Proof: (i). By the C0111111utatiol1 relations in [L4, 5.3-5.4, p.95-97], thc elenlent Fi(a) FJb) Fi(c)

is in the left ideal of Ue- generated by Fi(h) 1 h 2: a + (a j, O'~)b + c > (p, n'(). Now using

3.2 (i) to the subalgebra of Ue generated by all E;h), Fi(h) , ]ti, ]ti-
1

, h .2: 0, we see (i) is
true.

(ii). If b > c, then

p!a) E~b)F~c)1n = F.(a) '"'" p~c-h) [I(j' 2h - C - b] E~b-h)rn. = 0
I)) I L) h ) .

O~h::;c

If b :::; c, using (i), then

F
.(a)E(b)p(c) _ p(a)p(c-b) [](j, b - c] _ [(Pl aj) + b - c] p(a)p(c-b) _ 0
i j j Tri, - i j b 1H - b i j rn - .

The lenl11la is proved.

LeUllna 4.4. Let A E Z+,l, P E Z+' tu E W. Then

(i). In Ve(lIL + K. + A) we have .'t~,wVI/J+K+'\ =I=- O.

(ii). If 1i 2: 2, then EiX~ wV1/t+K+'\ = O.,

(iii). If Za 2: 2, then EaX~,wVlp.,+K+'\= O.

(iv). Assull1e that X~,1V = Pi~ad Fi~a2) ... Pi~ak). For non negative integers b1 , b2 , ... , bk , if

ah - bh E li nZ for h = I, ... , k:, then EiFi~bdF i\b
2

) ••• FLb/c)Vl/L+K +,\ = 0 if li 2: 2.

Proof: Set rn := VI JL+K +,\.

(i). According to [L5, Lemll1a 39.1.2, p.304], in Ve(A) we havc x~,wv,\ #- O. By 1.2 (i),
this iluplies that x~,wTn #- O.

(ii). According to [L5, Lenuna 39.1.4, p.305], there exists z in Ue- such that

[
](i,l - (A, O''()] [li(p, n'() + 1i ]

Since li 2: 2, 111 = 111 = O. Therefore Eix~,1VTn = O.
1 1
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(iii). '~Then a11 li 2: 2, this is a sinlple consequence of (ii) since ueis genenerated by
Fi, i = 1,2, ... , n. \Vhen li = 1 for sonle i, we l11ay check it directly.

Part (iv) is a SilUple consequence of (ii).

LeUUlla 4.5. Let A E Z+.,l, 'W EH'. Assurue that the Cartan matrix (aij) is synu11etric.

If Sj'W 2: 'W, then E)(t)X~,wVK+>'= 0 for a11 a 2: 1. (\Ve also use "2:" for the Bruhat order
on W.)

Proof: Set rn := V K+>.. Since allli, i = 1,2, ... ,11., are equal, we shnply write I' for any one

of theIn. Since Ui is generated by Ei, E~l') for i = 1,2, ... ,11., [L2, Prop. 3.2 (b), p.62],

by Lemnla 4.4 (ii), it suffices to prove that Ey') X~~1U171. = O. 'Ve use induction on the
length l(w) of w. Let Si t Si 2 ••• Si le be a reduced expression of w. '~Te sha11 write ah for
(Si h +1 ••• Si le A, Q'~) for h = 1, ... , k. Whell k = 0,1, nohting neeel to prove. Now aSSlll11e
that k 2: 2. Set i := i 1 anel let u be the shortest element of the coset < Si, Sj > w. Since
the Cartan Inatrix is syuuuetric, k - 1 2: I(1l) .2: k - 2.

If I(u) = k - 1, then u = Si 2 ••• Sik anel S jU 2: u. Note that 1: f=. j, using induction

h th ' E(l') , F(adE(l') , 0ypo eSlS, we see j x >.,w rn = i j x >'~IJ m, = .
If l(u) = k - 2, we l11ay asSltl11C that i 2 = j anel u = Sia .•. 8i le • Thcll Si1l 2: 1l, SjU 2: 'U

cl E (a) , 0 E(a) I 0 f 11 > 1 S E(l') I P(adE(l')pa s ) Ian .i x >',u rn = , j x>. ,uTn = 01' a a _ . 0 j x>. I W 171 = i j j 1:>., tJ '!TL

Note that CLI = (s j'UA, 0';) = (llA, 0'; + 0'1) = (tLA, 0';) + (L2 anel x\urn has weight K, + UA,

by LemI11a 4.3 (ii) we see EY')x~,w1n = O.

The lemlna is provecl

LeUUlla 4.6. Let A E Z~,l' Then in V~(K+ A) the elel11ent X~VK+>' is prilnitive.

Proof: Set 111. := V K+>.. Since ut is generated by Ei, E~ld für i = 1,2, ... ,11., by Len1111a 4.4

(ii), it suffices to prove that E~ldx~ w1n = 0 for aH i.,

(a). Assulue that ((Lij) is synuuetric. Choose a reduced expression Si
1

s12 ... Sir of the
longest elenlcnt Wo of IV such that i1 = i. Note that a := (Si s ... Si r-A, 0:';) < li, so

E (li) I L p(a-h) [Je, 2h - a - li] E(li- h) J
i x >. 111. = 1 I i:t >. u 171. ,

~ ,
O::::;h::::;a

where 7.L = Bis'" Sir' By Lel11111a 4.5, E~li-h) X~,1t 111. = 0 for h = 0, 1, ... , CL. Therefore

E (li) I - 0 f .. - 1 ?i X>. 111. - 01 1. - , .... , ..• , n.

(b). Assurne that ((Lij) is of type B ll • We nUlnber the siruple roots in R+ so that
(0'2, u~) = -2, (0:'1, O'~) = -1, (0'2, O'j) = -1, ... , (O'n-l' O'~) = -1. vVe have d1 = 1, d2
... = dn = 2, b = ... = In, ancl 21j 2:: 11 2: Ij for j = 2, ... , n. '~Te use incluction on n.

\\Then 11. = 2, write a := (A, ur), b := (A, O'~). Then

I _ p(a)p,(a+b)p(a+2b)p,(b) _ p,(b)p(a+2b)p,(a+b)p(a)
x>. - 1 2 1 2 - 2 1 2 l'
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Since 11 > a, using Lenuna 4.4 (ii) we see

E
(ld / F(a)F.(a+b)E(l!lF(a+2h)p,(b).
I .'"C ).. 711.. = I 2 I I 2 T'f"l..

Note that Fi b) 771. is a prinliti ve elelnent of weight K, + A - ba:2. Now

By Lenlll1a 4.3 (ii) we have E~ldx~7n = O. Silnilarly we have

Now suppose thc lemlua is true for n - 1. Let U be the longest ele1uent in <
S1,S2,···,Sn-l >. Thenwo = 3 n S ll -1" 'S2 S 1 3 2" 'Sn-1SnU = U3 n 3 n -1" '82 3 1 8 2" ·8n-13n .•

Set

an.d

Tl / - p(a n ) p,(U 2 )p(btlp,(b 2 ) F(b n ) / N t t1 t E(a), - 0 !' 11' > 1lenx)..- Tl ••• 2 1 2 ... n X)..,u· oe Ia i X)..,u 1n.= lora 1.,(1._

anel that Zn > an' Using Lenllna4.3 (ii) anel Lelnllla4.4 (ii) repeated1y we see E;li)x~rn. = 0
for 1: = 2, ... ,11..

We neecl da a 1itt1e 1lIore to see t hat Ei I d x ~ 711.. = O. Let "tU be t he langes t e1eluent

in < 32, .•• , 8 n >. Then Era)x~ w7n = 0 for i = 1,2, ... ,11., a 2:: 1. Note that Wo =
818281838281 ..• 8 n •.• S2S 1wand 1'1 > Cl :=< A, ai). Using Le1nlua 4.3 (ii) allel Lelluua 4.4
(ii) repeateclly, one can check that

whcre Cl, ... , Ch are defined according to the reeluced expression 818281838281 •.• 3 n •.. 3281 W

allel k = 1 + n(n - 1)/2, h = n(n + 1)/2. This conlpletes the proof for type E n .

(c). Silnilarly, we prove the LenIllla for type en .

(cl). (Sketch.) Silui1arly we prove the 1elluua for type P4, G2 . Note that thc longest
eleluent of the \Veyl group of type F4 is 348382838481823382813483823384813283828132838283'

Here we nUlllber the si111ple roots as usuaL Moreaver, if necessary, use thc conllllutation
relations in [L4 5.3-5.4, p.95-97] anel note that F j(al

1 +b) p/ cl1
+d) = 0 if 0 < b, d < li and

b+d2:: 1i.

LenUlla 4.7. Let 81 , ... ,8k E Z+' anel A E Z+.,I' Then the SUb1110dule of Le(l81 ) (9 (9

Le(l8k ) 0 Le(K. + A) generated by Vl6 1 '2) ... '2) Vl6 k '2) v~+).. is isolllorphic to Ve(l8 1 + +
18k + K, + A).
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Proof: By 3.1 (i), we have a U{-hOlnOlllorphislll

which carries 1nl := Vlli 1 +...+16k+~+'\ to 7n := Vl6 t 0 ... 0 VIOk 0 V~+,\. By 2.2 (v), '!JA Tn =
VI6 t 0· .. 0 VIole 0 YA V~+,\ =I=- O. But YA1Tl'1 generates the unique irreducible submodule of V1

(Theorelll 3.6 (ii)). Therefore, thc SUblllodule of V generatcd by 1n is isolllorphic to VI.

4.8. A sketch proof of Theroelll 4.2. (i) For i = 1,2, ... ,11, denote Dj E Z+ the uniquc
elelllent such that (Dj, O'}) is (p, 0'~) if i = j, is 0 if i =1= j. By LClnma 4.7, the sublllodule
Al of V := Le(lDl) 0· .. 0 Le(IDn ) 0 Le(K, +A) generated by 1n := Vlo t 0· .. 0 VI6 n 0 V~+,\ is
isolllorphic to Ve(lp +K. +A). By LeillIlla 4.6, Tn' := VI6 1 0· .. (9 VI6 n (9 x~ V~+,\ is a prilllitivc
eleluent in V. But one can check that x~nt = 1n'. Therefore x~VIJI+~+'\ is a priluitive
eleillent in Ve(lJ-l + K, + A).

(ii). Since X~Vllt+K+'\ =I=- 0 ancl has the salue weight with Y~ VIJt+~+'\. By (i) anel
Theoreln 3.6, we can find a nonzero lltunber () E Q(e) such that x~ - ()Y~ E Il~+~+'\'

Choose p, E Z~ such that (J-l, nY) > tlR+ I, then x A- ()Y'>. E II~+~+'\ is equivalcnt to
x~ - ()Y~ = O.

The theorenl is proved.

4.9. By Leullua 4.4 (iii), Theorelll 4.2 is actually equivalent to that xA E uZ when A is
l-restricted. For type B2 , using the COllullutation relations in [L4, 5.3, p.96] we sec easily
that if A is l-restricted then x~ E ue. For type An therc is a naive argument for the
fact, which is based on the following Lenl1ua 4.10. We necd a notation. Given i E [1,11.],
let X j be the Q(e)-subspace of Uf.- spanned by a11 F~~tl F~~~) ... F~:r), aJ, .", a r E N and

ah ::; Ißh - 1 whenever ßh - O'j E NR.+, h = 1, ... ,1'. Obviously, n;:::l Xi = Ue.
LelUlua 4.10. Let x bc an elenlcnt in Ue. Assume that x is expressed as a Q(e)-linear

cOlubination of SOlne lllononüals Zl, "., Zh of F~a), Q' E R+, a E N. Given i E [1,11.]. If

a ::; 10 - 1 whenever F~a) appears in SOlne 111onoll1ial Zk anel Q' - Q'j E NR.+, then x E J{j.

Proof: Using COffilnutation relations in [L4, 5.3-5.4, p.95-97] allel [L4, Theorelll 6.6, p.103­
104].

4.11. Now we give a SilUpIe proof of Theorcnl 4.2 for type An by using Lelnnla 4.10. By
Lelllina 4.4 (ii), it suffices to prove that x~ E uewhen A is l-restricted. 'Ve use illduction
on n. Set Ai = (A, Q'~), i = 1,2, ... , n. 'iVhen 1 ::; 'l < j ::; n we also write Ai,} for
Ai + Ai+l + ... + Aj. Then

Note that 11 = ... = In, we see

(a). x~ E Xl. SYlnlnetrica11y, we have x~ E J{n.
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Let W = 818281838281 ... 8 n -l ... 8281. Set

Y
' '= p(>'l,n-tl ... p,(>'1,2)F(>.tl
l. 11-1 2 l'

Then X~ w = yyl. By induction hypothesis, y, x~ w E u;-. By 2.2 (ii), then x~ w = yz for, , , ,
SOlDe z E ue.Note that

auel that

where {L := (A2, ... , An, Al)' According to induction hypothesis, X~L,W E uZ. Therefore
I , F("\l+"'+>'n) nn-l flJ" Cl' 1. 1( ) I n71 flJ" -

x,.\ = xJi,w 11 Z E 1=1 .Jli· Orll)lne t 11S ane a we see x,.\ E i=l Jl..i = U e .

5. Main results

5.1. In this section wc give the Inain rcsults of the paper. Essentially, they reexpress SOHle
results in previous sections. Recall that in 1.4 we have definecl the elenlent X,.\ E Ue- for

\. ZneveryAln +.

Theorenl 5.2. ASSUlllC that A is l-restricted, then X,.\ E uZ.

Proof: vVe have x>. x~wo"\' Note that -WQA is also l-restrictecl, by Theorelll 4.2 (ii),

x,.\ E ue.
Theorenl 5.3. Assulue that A = (Al, A2, ... , An) is l-restrictecl and a = (al, a2, ... , an) E
{±l}n. Let Ue(A,a) be the leH ideal of ue generated by a11 Ea ,IC - aie"\idi, 0: E Ri,
i = 1,2, ... ,11, and elelllents F E uesuch that Fx,.._,.\ = O. Then

(i) ue / ue (A, a) is an irreducible Ucnloduie. IvIoreover, as a Uc1l10dule, Le(A, a) is iSOIDor­
phic to ue / lle( A, a).

(ii). For any , E NR+, clenote ll~r the set of 3011 elelnents in ueaf elcgrec " anel set.

ne(A,,) := {F E u~r I Fx,.._,.\ = O}. Then clinlQ(e)Le(A,a)"\_i',(1 = dilnQ(e)U~r-ne(A,,).

f () cA·d· [1(i' c]Prao: i. Let JA,(1 be the left ideal of üe generated by Eo:,1(i - ai~ I I, -

a

a [Ai + c] . +. _ ')
ai , ü E R1 , 1. - 1, .... , ... ,11., C E Z,a E N , eleIuents F E ue such that

a d;,e

Fx,.._>. = O. Since X"'-A = X~OA+"" by Theorcrn 4.2 (ii) aud Carallary 2.7 (ii) we sec

üe / 1>',(1 ~ Le(A, a). But A is l-rcstricted, so the restrietion to ue of Le(A, a) is an irre­
ducible ue-nlodule. Obviously, the restrict.ion is isorllorphic to ue / ue( A, a). But Le(A, a)
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is the restrietion to iie of the irreducible Ue-nl0dulc Le(~, a). So as a ue-nl0dule, Le(A, a)
is isomorphie to ue / ue( A, a).

Part (ii) is an itnnlcdiate consequence of part (i).

The theorem is proved.

Theoren15.4. Let A = (Al,A2, ... ,A n ),p, = (Pl,P2""'P'1l) E Z~ anda = (ul,a2, ... ,an ) E
{±1} n. Assulne that A is l-restricted. Let Jl1t+A,U be the left ideal of Ue generated by
elelnents in IA,u anel elelnents F E uesuch that such that FXt>-A = O. Then Ue/ JI,t+A,U ~

Le(lp + A, a).

Proof: Since Le(1f-l + A, a) ~ Le(1f-l, 1) 0 Le(A, a)), we have JI ,t+A,U'ÜIJ1+A,U = O. Note that

Let z~, b = 1,2, ... , k, ... , be a Q(~)-basis of Ue~l such that

(a). The elenlilts Zb'ÜI Il , b = 1, 2, ... , k is a basiS of thc irreclucible IUOelule Le(lp.), Zb'ÜI Jt = 0
for b = k + 1, k + 2... " where Vl ll is a non zero eleluent in Le(lp) of weight IJ.!. Let I be
the Q(~)-spacc spannecl by ZhF, 1 ::; h ::; k~, F E ue' then we have I + II~+t>,u = Ui". Since

I1-;+t>,u ~ IIIl+A,U, as Q(e)-spaces we have

By Theoreln 5.3, clinlQ(OI n J1,1+A,U .2:: k( dimQ(e) ue- dinlQ(e)Le( A, u)). Since dimQ(OI =

kditnQ(O ue' we have

This force that Ue/ JIIl+A,u and Le(lp + A, a) have the salne Q(~)-dilllensionand as Ue
lllodules, they are isomorphie.

The theorelll is proved

Fronl the above proof \ve get the following result.

Corollary 5.5. I(eep the notations in Theorcill 5.5. Then the left ideal JIIl+A,u n Ue- of

Ue- is generated by FFilti+1d, i = 1,2, ... ,11., anel clenlents F E uesuch that such that
FXt>-A = O.

6. Hyperalgebra

6.1. Recall that 9 is a semisilnple Lie algebra over C. Let Let eCtl JCt) h j , Q: E R+,
i = 1,2, ... ,n be a Chevalley basis of g. \\Te also write Cj,!i far eCtj,!Oi' i = 1,2, ... ,11..

Let ebe an algebraic closed field of prilne characteristic p. Reeall that Ur = ilz 0 eis thc
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hyperalgebra associated to g and e. Let ut, U;-, U~ be the positive part, negative part, zero
part of Ur respectively. Giveu an positive integer a, let Ua be the a-th Frobenius kernel of
Ur, denote Ud, u;:;-, t1~ the positive part, negative part, zero part of Ua respectively. Let ua
be the subalgebra of Ur generated by Ha and U~, then Ua = U~U~Ud'

For any A E Z+, denote Vr(A) the Vleyl Illodllle of Ur of highest weight A anel denote
L r(A) the irredueible Inodule of Ur of highest weight A. When A is pa. -restri cted (i.e.
o ~ (A,O'{) < pa for -i = l,2, ... ,n), the restrietion to Ua (resp. ua ) of Lr(A) is an
irredueible ua-luoelule (resp. ua-nlodule), denotc the restrietion by Lr,a (A) (resp. Lr,a (A)).

For any p. E Zn, denote Zr, a (,l) thc Venna lllUl0dnIe of ua of highest wcight Il, whieh
contains a unique irreducible ua-submodule. The following results (i) and (ii) are duc to
Jantzen [J, 6.2 (1), p.190j 6.3 Corollar, p.191], the assertion (iii) lnaybe is wen known, a11
of theIu also can be provecl along the proofs of Prop. 2.6, Theorell1 3.6 anel Theorem 3.2.

(i). Asslulle that A is pa-restricted, thell the irreducible Ua -SUbll1odule of Zr,a(2(pa -l)p +
Wo A) is isolllorphic to Lr,a( A), whcre p = (1, ... , 1) E Z~.

(ii). Assluue that A is pU-restricted, then Vr(2(pU -l)p+wo..\) contains a unique irredueible
ilr-subluodulc, whieh is isonl0rphic to L r(A).

(iii). Thc category <! of finite diInensional Ur-modules has cl10ugh injective objects anel
enough projective objects as wen. Allel in <! each injective object is also a projective object.
Each injcctivc objcct in <! is a elirect sunl111anel of the lnodule Vr((Z} - l)p) 0 Vr(<5) for
S0111e positive integer b anel <5 E Z+. Müreüver, if E is an injective object in l! then E has a
subnl0dules filtration 0 = E k C Ek-l C .. , C E 2 C E 1 = E such that E a / E a+1 ~ Vr(va )

for SOlue l/a E Z+' a = 1, ... , k - 1.

6.2. Vle 8hall fix the positive integer a. Asslllue that g is iSll1ple. If p is oeld, anel p 2:: 3
WhCll 9 is of type G 2 , choose a pa-th prinütivc root ~ of 1. If 9 is of type A, D, E and p = 2,
choose a 2a +1_th primitive rüot ~ of 1. Let Ue be the Z[~]-subalgebraof Ue generated by

E (k) F(k) l-~· 1-~-1 . - 1 ? k· > 0 C 'cl' h f:I al b 11',- U' f:I 1 .i i, \1' \j , 'l - , .... , ... ,n, _ . onsl Cl te '[:- ge ra r'- e0z[el '[:, Wlele
~ is regarcled as a Z[~]-algebra through the ring hOnl01110rphisl11 Z[~] -t e, ~ -t 1. Für

silnplicity, the images in U~ of Ei k
), F/ k

), ](i, !(i-
1

, ctc. will bc denoted by the Sal11e
notations.

Let X' be the two-sided ideal of U~ generated by !{j - 1, ... , ](11 - 1. Set Ur := U~/X/.

Again for silnplicity, the ill1ages in U~ of E~k), F i(k), ]{i, !(i- 1
, etc. will be dcnüted by thc

sanle notations. The follüwing result is due to Lusztig [L3, 6.7 (cl), p.295] (cf. 1.6).

(i). There is a unique ~-algcbra iSOl110rphisnl Ur -t Ur such that E;k) luaps to e~k) .­

ef /k! 0 1 and Fi(k) luaps to ffk) := It /k! 01 for i = 1,2, ... , n. The inlage in Ur of [j{~,O]

will be clenoted by (hki).

Given A E Z+,w E l'V, define the 1110nolnials ~'\,w,~~,w' ~,\,~~ of f;k), -i = 1,2, ... ,H,
k 2:: 0 as the same way in 1.4.
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Theorenl 6.3. Assun1c that A E Z+ is p(t-rcstrictcd. Then

(i). The elen1ents 1=,\ and 1=~ are in u;;.

(ii). Thc eieillent t(p4-1)p-,\3 generates the uniquc irreduble subn10dulc of Zr,a (2(pa - 1)p+
WOA) (rcsp. Vr(2(pa - l)p + WOA)), where J is a nonzero elClllent in Z~,a(2(pCt - l)p + woA)
(resp. Vr(2(pa - l)p + WOA)) of highest weight.

Proof: It is no harn1 to assun1e that 9 is sin1ple. \:Vhen g is of type An, Dnl Eu; 01' En, C'n, F4

anel p is odel; 01' type G2 anel P 2: 5, thc theoren1 is a simple consequence of Theorelll 4.2
alld 6.2 (i). vVhen g is of type Eu, Olll F4 aüd p = 2; 01' type Gz anel p = 2,3, one 111ay
prove thc theoren1 by clirect calculations.

Theorenl 6.4. Assun1c that A E Z+ is pa-restricted.

(i). Let J,\ be the left ideal of Ur gencrated by a11 cleluents e~k), ('~) - (('\'~f)), ffk;),
i = 1,2, ... , n, k 2: 1, h:i 2: pa, and 8011. elen1cnts f E u;; such that f~(1'4 -l)p-'\ = 0, then
Ur /J,\ ::: L r( A).

(ii). Let],\ be the left ideal of U a generatecl by a11 eleluents e~k), (~i) - (('\,~~ )), a E R.+,
i = 1,2, ... ,11., 1 ::; k: ::; pa - 1, anel a11 elelllcnts f E U; such that ft(Jla -1),)-'\ = 0, then
ua /],\ ::: Lr,a(A).

(iii) For any I E N R+, clenote U;;" the set of all eleillents in u; of degrcc ,and denote
0a (A, r) the set {f EU;;" I ft(pa -1 )p_'\ = O}, then din1L r ( A),\-, = din1U;;,1' - clilllna (A,,),

Proof: Sinülar to those in section 5.

7. Questions

7.1. Let ~ be root of 1 of order 2 3. For i E [1,11.], k E N, denote Gi,k the Q(~)­

linear hOllloll1orphislll Ut, ~ Ut" ;z: ~ xFi(k). The kernel and the ilnage of Gi,k are casily
describccl by llleans of PB\\T TheoreIl1. Asslulle that A E Z+ is l-restricted. Let Si} Si 2 ••• Sir

be a reeluced expression of the longest elell1ent of lV. Set h~h := (Sih_l ... Si l (Ii - A), a~h)'
Dh := h:1 nil + ... + khO"ih' h = 1, ... ,1'. R,ecall that for any r E NR+ we denote u~ the

.. ,I'

set of a11 ehnents in ueof clegree r' Given ß E N R+ 1 set

Do,ß = clirnQ(e) u~ß'

D 1 ,ß = clilnQ(O Gil ,kl (u~ß)'

DZ,ß = lllin{Dt,ß' dilnQ(e)Gi2,k2(U~ß+6l)}'
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Conjecture A. The nUlnber Dr,ß is independent of the choice of the reduced expression
Wo and dirnQ(,O L~(...\ ),\-ß = Dr,ß·

7.2. For i E [1, 11.], k E N, denote () i, k the e-linear hOmOI110rphism Ur ----? Ur, x ----? x fi( k) .

The kerne! and the iinage of Bi,k are easily clescribecl by Illeans of PBW Theorem. ASSUllle
that ,,\ E Z~ is pa-restricted. Let Si l Si:2 ... Sir be a reclucecl expression of the longest elelllent
of Hf. Set kh := (Si h _ 1 ••• Si l ((pa - l)p - ,,\), O'~), DIt := k1Gi l + ... + A:hO'i h , h = 1, ... ,1'.

Recall that for any / E N R+ we donte u;;- '"'( the set of all elInents in u;;- of clegree /. Given
ß E NR.+, set '

()o,ß = dimQ(~) u~ß'

D1 ,ß = clünQ(~)Bil ,k l (u~ß)'

Dz,ß = Inin{DI,ß' diInQCOBi:2,k2(U~ß+6t)},

Conjecture B. The nlunber 1)r,ß is independent of the choice of the reduccd expression Wo

and dinlQCOLr,a("\),\-ß = Dr,ß provieled that p :2: the Coxeter nUlnber of the root systein
R associated to g.

7.3. Recall that Uv = U. vVe drop the index v anel the index 1 in all notations involved
theIn. So F (,\) will stand for ~I ( ,\ ). Let '\, p. E Z~. Assuine that ,\ E Z~ is 1- restricted.
Given w E Hf, set

Then HW(,\) is a free Q[v, V-I ]-SUblllodule of F("\).

Conjecture C. Essentially, HW(l/t + ,\) is the free part of the coholnology group
HICw)(w(lJ-l +,,\ + p) - p) defined in [AP\~T, section 3, p.22].

7.4. !(eep the notations 7.3. Let Si/c ... Si:2Sit be a. reduced expression of w. Set (l.h

(Si h _ t Si h _ 2 ... 8i 1 A, Q'~)i Vh := (11 /.+ h~, O:'~) + alt i d~ = dih i h = 1, ... , k. Then set

a,\,w :=
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Conjecture D. As UQ[vlv-1]-nloclules, UQ[VlV-l]X~l1OVIJ1+~+,\/a"\ltv is isolnorphic to
H1O(lfl + K + .-\).

7.5. Keep the notations in 7.3. Let rPl be thc [-th cyclolnatic polynonüal (i.c. the Ininilnal
polynolnial of ~). For each integer k E N, set

Conjecture E. (i). lvIr+1 = 0.

(ii).The filtration °= lvfr+ 1 ~ lI/fr ~ ... ~ A11 ~ 1\10 = UQ[vlv-1]Vl/J+,.\ is just the .Janb~en

filtration of UQ[v,v-1j'VIJt+"\.

7.6. Recall that in U- a Inonolllial of Fi(k), i = 1,2, ... , n, k 2: 0, is callecl to be tight [L6,
section 1J if the nl0nomial is an elmnent of the canonical basis of U-.

Conjecture F. For each .-\ E z+n and w E ltV, the 1llononüals X,.\ 10, :c', E U- are tight.
, "'ltv

Renlark. It is enough to prove that x~ is tight.

7.7. Let ~ be a root of 1 of order 2: 3. Asslune that 9 is silnple. In Rn, consider the
hyperplanes

Dcnote So lk the corresponding reflections of Rn, that is

These reflections generate an affine \Veyl group l'V1, which is the affine vVeyl group asso­
ciated to the Cartan Inatrix (aij) when 11 = ... = In, the affine \"eyl group associatec1 to
thc transpose 1natrix of the CartaJl Inatrix ((Lij) when li =1= Ij for sonle i, j.

Conjecture G. Thc Conjecture 8.2 in [L2, p.75] is true in tenns of I/VI anel Ue.

7.B. For Conjecture C - Conjectllre E, one 1llay states si1nilar conjectures for itz anel "Teyl
I110elules of it.
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