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Irreducible Modules of Quantized
Enveloping Algebras at Roots of 1

Nanhua Xi

Let A be an associative algebra over a field. An interesting problem is to understand
the structure of irreducible modules of A (of finite dimensions). More or less, this is
equivalent to understand the structure of maximal left ideals of A (of finite codimensions).
For the later, it would be helpful if we know the generators of the maximal left ideals.

In Lie theory, there are some infinite dimensional‘élgebras associated to a semisimple
Lie algebra g over C. We shall be only concerned with the following four of them.

(1). The universal enveloping algebra U of g.

(i1). The hyperalgebra i := Uz @z €&, where Uz is the Konstant Z-form of 4 and £ is an
algebraic closed field of prime characteristic.

(ii1). The quantized enveloping algebra U (over Q(v), v is an indeterminate) of g.

(iv). The quantized hyperalgebra Ug := Uq|y,v~1] ®Q,v-1] Q(£), where { € C* and
Uq[u,v-1] 18 @ Q[v, v~ ]-form of U [L1, section 4.1, p.243], Q(§) is regarded as a Q[v,v™']-
algebra through the Q-algebra homomorphism Q[v,v™!'] = Q(¢), v — &.

We are mainly interested in finite dimensional irreducibles modules of these algebras,
or equivalently, in maximal left ideals of the algebras of finite codimensions. The generators
of maximal left ideals of il of finite codimensions are known more than forty years ago {HC,
Lemma 15, p.42]. Thanks to the works [L1, Theorem 4:12, p.247] and [APW, Coroliary
7.7, p.40], a similar result holds for maximal left ideals of U and of U of finite codimensions
provided that £ is not a root of 1 or £ = 1. We will review these results in section 1.2.

The purpose of the paper is to find the counterparts of the above results for the
hyperalgebra e and for the quantized hyperalgebra U when € 1s a root of 1 of order
> 3. The main results might lead a way to compute the characters of finite dimensional
irreducible modules of iy and of Ue.

The basic idea is simple. When £ is a root of 1 of order > 3, the algebra Ug has a
Frobenius kernel ug [L4, Theorem 8.3, p.107]. The Frobenius kernel ug is a symmetric
Q(¢)-algebra [X, Theorem 3.5 of finite dimension. Moreover, the algebra ug has a trian-
gular decomposition ug = u; ugu?. Each Verma module of u; has a unique irreducible
submodule, and each irreducible ug-module L 1s an irreducible submodule of certain Verma

module Z of ug. As a u;-module, Z is isomorphic to u, . Therefore there exists an element
T in ug such that L is isomorphic to u; x as ug—module. It turns out that the element

z is a monomial of the generators of U (the negative part of Ug). So the generators
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of the maximal left idea of ug corresponding to L can be described explicitly (Theorem
5.3). But L is a restriction to ug of certain irreducible Ug-module [L2, Prop. 7.1 (c),
p.70]. Using tensor product theorem [L2, Therorem 7.4, p.73], we can give the generators
of maximal left ideals of U of finite codimensions (Theorem 5.4). The same idea is valid
to the hyperalgebra ;.

The paper is organized as follows. In section 1 we recall some basic definitions and
review some results in [APW, HC, L1-L4]. In section 2 we consider the Frobenius kernel
u¢. In section 3 we consider the category of finite dimensional Ug-modules of type 1. In
section 4 we prove that certain monomials in Ug are actually in ug. In technique, this is
the hardest part of the paper. In section 5 we give the main theorems of the paper. In
section 6 we consider the hyperalgebra il¢. In section 7 we give some questions.
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1. Introduction

1.1. Let g be a semisimple Lie algebra over C with rank n and let («;;) be the Cartan
matrix associated to g. We can find integers d; in {1, 2, 3} such that (d;q;;) is a symmetric
matrix. Assume the sum of all d; is as small as possible.

Let U be the quantized enveloping algebra of g over Q(v) with parameter v (v
an indeterminate). By definition, U is an associative Q(v)-algebra and has generators
E;, F;, K;, K7, i =1,2,...,n which satisfy certain relations (see for exemple, [L4, 1.1,
p-90]). The algebra U is in fact a Hopf algebra, the coproduct A | antipode S, counit e
are defined as follows:

AE)=E®1+KQE, AF)=FQK '"+18F, A(K)=K:®L,
S(E;)=-K'E;, S(F)=-FK;, S(K;)=K1,
e(Ei)=¢(F;) =0, €IfG)=1.
We need some notations to introduce quantized hyperalgerbas and for later uses.
Given an integer a and positive integers b, d, set
ad —ad b hd _ . —hd

lala = ——— Bla=]] —=

h=1

, 0l =1, [l = (=1)° [0
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b (a—h+1)d _ , —(a—h+1)d
[a] — H v ” v_hd , [a] -1, [ a.] -0

Note that [Z] is in Q[v,v™!], we shall denote [;] the evaluation of [Z] at £ for any

d d,§

£ in C* U {v}. Of course, we have [a] = [a} .
0] LBl4

The quantized hyperalgebra Ug (§ € C*) is defined as follows. Let Ugy, -1} be the
Q[v,v~!)-subalgebra of U generated by all E'* = = E¢/[a]y,, F .= Fellally,, K, K71,

1
t=1,2,..,n, a > 0. Regard Q(£) as a Q[v,v ]] -algebra through the Q- a.lgebm homo-
morphism Q[v, v~ '] — Q(¢), v — €. Define Ug := Uqpv,o-1] ®Qv,o-1} Q(E) and call Ue
a quantized hyperalgebra (associated to (a;;) with parameter £). For convenience, set
U, := U. The algebra Ug inherits a Hopf algebra structure from that of Uqy,,,-1], denote
again by A the coproduct, by S the antipode and by € the counit. The tensor product of
two Ug-modules then has a natural Ug-module structure by means of the coproduct, and

the antipode can be used to define the dual module of a Ug-module.

For an integer ¢ and a positive integer ¢ we set

Lople=h+Ddi _ -1, —(a—h+1)d;

I‘;-,',C : i — ;v I&',',C
[- u ] = H Y r— and [ 0 ] = 1.

h=1

LK, e . .
We have [ ' C] € UqQ[v,v-1] [L1, Lemma 4.4, p.244]. For simplicity, the images in Ug of
a
K¢

a

Ega), Fi(a), K;, Ki_l, { ], etc. will be denoted by the same notations.

The algebra U has a triangular decomposition. Let UE+ (resp. Ug; U¢) be the
a - -— K; .
subalgerba of U¢ generated by all Ef ) (resp. Ft-(a); K;, K; 1 [ "’CJ, ce€Z),1=1,2,..,n
a

a > 0. The multiplication in Ug defines a Q(€)-space isomorphism between U ® Ug QU ?
and Ug.

1.2. Given A = (A1, A2,...,A) € Z%, 0 = (01,02,...,04) € {£1}", let I;f"o be the left
a) g . I, Ai .
ideal of U generated by all E,( ), K; — o £N%, [ ! c] — af[ +c] L i=1,2...n
' ',E

a {1

a 21, ¢c €Z, and let Iy be the left idea of Ug generated by all F,-(a‘), 1 =1,2,..,n

a; 2 A + 1. Then let I, be the left ideal of Us generated by all elements in I;f"a U I;,o.
Then

(i). The Ug-module Ve(A,0) := Ue/Iy 4 is of finite Q(£)-dimension and has a unique
irreducible quotient module, denote by L¢(A, o). The Q(§)-dimension of Vi(A, o) is given
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by the Weyl’s character formula. [L1, Theorem 4.12, p.247]. We shall denote vy , the
image in Vg(A, o) of the neutral element 1 € Ug, and denote ¥ , the image in L¢(A,0) of
Vo

(ii). The map (A,0) = L¢(X,0) defines a bijection between the set Z7 x {£1}" and the
set of isomorphism classes of irreducible Ug-modules of finite dimensions. [L1, Prop. 2.6
and Prop. 3.2, p.241] and [L2, Prop. 6.4, p.69).

(iii). One has

Ve(A,0) 2 Ve(A 1) @ Q€)o,  Le(A,0) = Le(A, 1) @ Q(6)o,
where 1 = (1,1,...,1) € {£1}" and Q(£), is the one Q(€)-dimensional Ug-module on

which all Ega), Fi(a ,1=1,2/...,n,a > 1, act by scalar zero and I\;, A by scalar
a

oi, of Lj respectively, 1t = 1,2,...,n, ¢ € Z, a € N. [APW, 1.6, p.6-7].

(iv). Provided that € is not a root of 1 or £2 = 1, then V¢(A, o) is irreducible, i.e. Ve(X, o) ~
Le(A, 0). And every finite dimensional Ug-module is completely reducible. (L4, 7.2, p.105-
106; APW, Corollary 7.7, p.40].

Therefore, the theory of finite dimensional Ug-module is well understood when £ is not
aroot of 1 or £2 = 1. When £ is a root of 1 of order >3 we donot know much about the
irreducible module Lg(A, ¢). In section 5 we shall describe the generators of the maximal
left ideal Jy o of Ug corresponding to Le(A, o). To have a look what the generators are we

. . a . .
introduce some monomials of Fi( ), 1 =1,2,...,n, a > 0. These monomials play a central
role in the paper.

1.3. Set o; = (a1i,a2i,...,ani) € Z". For every p = (i1, pt2,..., tn) € Z", we also write
(g, a)) for p;. Define s; : Z" — Z" by s, = p — (i, a )i The reflections s, s2,...,3,
generate the Weyl group W of the Cartan matrix (a;;).

Let A = (A1, A2,..., An) € Z. Assume that s; s;, -+ -s;, is a reduced expression of an
element of win W. Set A\j1 = Ay, X2 = (si, A ay), ., Ak = (si,_, - 80, A, @), ), where
i=(#1,%2,...,21). Define

Trwi = F,‘(;\Ll)Fi(;\i‘Z) . 'Fi('\ilk)a alld mf)\,w—l’i = Fi(k/\i,k)Fi(:_i,lk-—l) . Fi(/\i.l).
Note that in the universal enveloping algebra 4 of g similar elements are defined by Verma
[V, Theorem 4, p.162].

Lemma 1.4. The elements z) ;i and z', are independent of the choice of the re-
)

-1 'i
duced expression of w, only depend on A and w. We shall denote them z ,, and 2, _,
respectively. When w is the longest element of W, we simply write z) and !, for @), and
33’)\,1” respectively



Proof: Use the quantum Verma identity [L5, Prop. 39.3.7, p.313].

1.5. From now on € will be a root of 1 with oder I > 3. Let [; be the order of ¢2%
and set £ 1= (I; — 1,lp — 1,..,l, = 1). We say an element A = (A1, Ag, ..., An) € Zi is
l-restricted if Ay < Iy —1,...,A, <[, = 1. For each u = (p1,p2,...,tn) € Z" we set
I = (Lipen, lapay ooy Lnpin ).

Let A\, ;0 € Z%, 0 € {£1}" and assume that X is l-restricted. Let Ji 1, be the left
ideal of Ug generated by elements in Jj, 4z 0 and by elements F in U, such that F'z,—x = 0,
one main result of paper says that Ug/Jiu4a,0 = Le(le + A,0) (Theorem 5.4). One key
step to reach the result is the assertion that z,_y is in the Frobenius kernel (Theorem 4.2).

1.6. Remark: Some results in [L1-L4] are stated and proved in a full generality in [L5].
The other results in [L1-L4] can be stated and proved in a full generality along the same
way in [L1-L4]. Therefore the author feels free to quote the results in {L1-L4] in full
generality forms.

2. Frobenius Kernel

2.1. Recall that € is a root of 1 with order I > 3 and [; is the order of £2%. Let R* be
the set of positive roots of the root system R := W{aq,az,...cn} C Z". Set l, = I; if

a = w(a;) for some w in W. For each positive root « in RT, let E,, F, be the root vectors
defined in (L4, Theorem 6.6 (iii), p.104]}.

al;
1,2,...,n, a 2 0. The positive part U;:l, the negative part Ug! and the zero part Ug,, are

. . I'-i; .
Let Ug; be the subalgebra of U, generated by all E}al'), Fi(“l’), K, K1, [ : C}, P =

defined in an obvious way. Let ug be the subalgebra of Ug generated by all E,, Fa, K, K1,
o € R{+ :={a € R* |1, >2},7=1,2,..,n. The algebra is called the Frobenius kernel
of Ue. The Frobenius kernel u; is a Hopf algebra and dimqqey = 2" [Ti=, li [Taen+ 12 (L4,

8.11, p.111, and Theorem 8.3, p.107]. We define the positive part ug', the negative part

u, and the zero part ug in an obvious manner.

2.2. The following are some properties concerned with the algebras U; ; and ug, which are
due to Lusztig.

(1). There exists a unique Q(£)-algebra isomorphism Ug; — U ®qQ(&) such that Ei(a‘l") —

. ) ) ;. c K; ¢ .
Efa), Fi(al') — Fi(a), KE - KF Il, ] — |77, for i = 1,2,...,n, @ > 0, where
al;
(assume that (ai;) is indecomposable) Uy = Uy when I} = I = ... = I, and U] is the

quantized hyperalgebra associated to the transpose matrix of (a;;) when Iy # [, for some
k,m [L5, Theorem 35.1.7-Theorem 35.1.9, p.270; L4, Theorem 8.10, p.110).

(ii). Let {za} be a Q(€)-basis of u; and {ys} be a Q(€)-basis of U, then {zays} is a
basis of U7, so is {ysza} (L4, Lemma 8.8, p.109).

)



(iii). The elements HoeRiJf Floe) M, KX HaeR,*' EL“'C-), 0<aq,a, <lp—-1,0<4 <

2l; — 1, form a Q(£)-basis of ug; the elements HaeR+ FC(,“"‘), 0<a, <1, -1, form a
{

Q(¢)-basis of ug; the elements T, I\’f‘, 0 <b; <2 —1, form a Q(&)-basis of ug; the

elements HneRf’ Ef,,a:’), 0 < al, <1, -1, form a Q(€)-basis of ug'. [L4, Theorem 8.3,
p.107].

(iv). Let A,» € Z} and o € {£1}". Assume that X is l-restricted, then [L2, Theorem 7.4.,
p.73]
Le(lp 4+ A,o) ~ Le(lje, 0) @ Le(A, 1) o~ Le(lp, 1) @ Le( A, o).

(v). The restriction L¢(lp, o) to U, is an irreducible Ug j-module, and FoL¢(lp,0) = 0
for all & € R;. Moreover, through the isomorphism Ug; ~ Ul ®q Q(£), the restriction
becomes an irreducible module of U ®¢q Q(€) corresponding to (y, ). [L2, Prop. 7.5 (b),
p.74].

(vi). Asa ug-module, L¢(A, o) is irreducible if A is l-restricted. The map (A, o) — L¢(A, 0)
defines a bijections between the set Z1 | x {#1}" and the set of isomorphism classes of

irreducible ug-modules, where Z} ;| is the set of all l-restricted elements in Z% [L3, Prop.
5.11, p.291].

According to (i-vi), the algebra u¢ is a key to understand U;. To be convenience,
we consider the subalgebra fig of Ug generated by all elements in ug U Ug. One has

Ug = u;Ug ug'. By (vi) we see
(vii). Assume (A, 0) € 2} ;x{£1}", then the restriction to @1 of the irreducible Ug-module
Le(A, o) is an irreducible Gg-module, denote by I~,€(,\,o).

2.3. To go further we need some notions. Let v € ZR. An element z in Ug is said to have

v I, Ki,c— (v,a? X :
degree v if K,-:BK'._I = £—{maildiy and [ ‘a c]:z: ’L[ Ve na )] for2 = 1,2,...,n,
a
ce€?d, a€N.

Let Uz be a subalgebra of Ug containing U? and let M be a Ug-module. Let A =
(A1, A2, An) € 2™, 0 = (01,02,...,0,) € {£1}". An element m € M is called to have

weight (A, o) if
Km= Jg{’\‘d"m, [I\i’ c] m = of {/\" + C] m
“ @ laie

fori =1,2,..,n,c € Z, a € N. Denote M, , the set of all elements in M of weight (A, o).
We call (A, 0) a weight of M if M), , is not zero. If an element z in Ué has degree v, then
obviously 2M) o € My_, ».

As usual, for (A, 0), (i, 7) € Z" x {£1}", we write (A, 0) < (i, 7) if g — A € NRt and
o = r. This defines a partial order in Z™ x {£1}".
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2.4. Now we return to the algebra 0. Assume p = (p3,p2,...,44n) € Z" and 7 =
(11,72, 7n) € {£1}". Let I;"‘,. be the left ideal of @i generated by all E,,a € R},

- o . I"‘, . s
K — et [ &; C] -7f [u'j c] yt=1,2...,n,¢c€ Z a €& N. Denote Zg(y,7) the
I’E

Verma module ue/I“ . of fig. We shall write 1, , the image in Z¢(u,7) of the neutral

element 1 € 0. By 2.2 (iii), Zg(,lL,T) has Q(&)-dimension [[,cp+ la- We denote by
Q(Ehy,r the one Q(&)-dimensional tig-module on which all E,, F,, e € R?' act by scalar
L + C]

a

&’,', c

zero and K, ] act by scalars m;, 7 [
a

, respectively, where = = 1,2, ..., n,
d.‘,f
ceZ,aeN.

Let (A 0),(p,7) € Z™ x {£1}". Then (cf. [X, Prop. 2.4, Prop. 2.9])
(1). The Verma module Z}(A,a) has a unique irreducible quotient module, denote by
Le(A, o). Moreover Le(ly, 7) =~ Q(€)iy,r
(i1). We have
Ze(A+ 1w, 0m) = Ze(A,0) @ Le(lp, 7) = Ze(M,7) @ Le(lp, o),

where the meaning of o7 € {£1}" is obvious.

(ii1). We have

Le(A+1p,07) = Le(X,0) @ Le(lp, 7) 2 Le(X,7) ® Le(ly, 0),

(iv). Let L be an irreducible 1 ug-module such that L is the direct sum of its weight _spaces,

then L is isomorphic to certain LE()\ o). Two irreducible Gg-modules LE()‘ o) and LE(.“' )
are isomorphic if and only if (A, o) = (g, 7).

Remark: It is easy to see there is a natural bijection between the set of isomorphism
classes of irreducible Gi;-modules and the set of maximal ideals of Ug. Note that the

I, 0] .
A
ring over Q(¢) in n variables. And Ug is generated by U’g’, and u

= 1,2,...,n, 1s 1somorphic to a polynomial

subalgebra U’ g’, of U, generated by [

We need the following result to see that Z¢(), o) has a unique irreducible submodule.

Lemma 2.5. Given a nonzero element y in u, we can find an element z in u, such that

zy = Fy;, where F; = HaERT F((J"_l), the product takes the order opposite that in [L4,
4.3, p.93-94].

Proof: Set r := |R*|. Let B,—441 be the g-th root in the total order on R* arranged in
(L4, 4.3, p.93-94]. Then f, fa, ..., B give rise to a total order on R* opposite to that in
(L4, 4.3, p.93-94). By 2.2 (iii),

y= Y. Alar,ag,..,a)FSVFEY FED A, a0, 00) € QUE).
OSamSIgm—l
1<m<r



TS e

—

Let (by,by,...,b;) be the minimal element in {(a1,ag,...,a,) € Z] | Ay, az,...,a,;) # 0}.
(Here we use the lexicographical order in Z7 such that (0,0,...,0,1) < (0,0,...,1,0) <

- < (0,1,..,0,0) < (1,0,...,0,0).) Set ¢; = lg, —1—by,...,cr = lg, —1— b, and let
' = Féf') ---Féj’)Féfl). Using commutation relations in [L4, 5.3-4, p.95-97) and [L4,
Theorem 6.6 (iii), p.104], we see 'y = A(by, by, ..., br)m’Féfl)Féi’” “ Féf’) = §F, for some

nonzero number 8 in Q(£). Then the element 2 := 81z’ satisfys our requirements.
Proposition 2.6. let (A, 0) € Z" X {£1}", then
(i). The Verma module Z¢(), o) has a unique irreducible submodule.

(ii). Assume that A is l-restricted, then the unique irreducible submodule of Z¢(2x + wo )
is isomorphic to Le(A, o), where wy is the longest element of W.

Proof: (i). By Lemma 2.5, each submodule of ZE(/\,O') contains the element F,{i,\,,,. So
Z¢(), 0) has a unique irreducible submodule which is generated by Fy1 5.

(ii). Since Fy has degree 2k, so F,;ig,;.}_wo,\,,, has weight (wgA, ). According to the
symmetries [L5, Prop. 5.2.7, p. 45}, the lowest weight of L¢(A, o) is (woA, o). According
to 2.2 (vii), 2.4 (iii-iv) and the proof of (i) we see that the unique irreducible submodule
of Z¢(2x 4 woA) is isomorphic to Le(X, o).

Corollary 2.7. Assume that A is l-restricted, then

(i). There exists a nonzero element y, (unique up to a scalar) in u, such that y),ig,;.l_wo)‘,,,
has weight (A, ¢) and an,\igﬁ woro = 0for all @ € R, Necessarily yxloxtwor o generates
) twor,o =~ i y +uwor, e 8

the unique irreducible submodule of Z¢(2x + woA).

(ii). There exists a nonzero element y) (unique up to a scalar) in u, such that Yh Lt a0
has weight (x+wgA, o) and Eny&i~+)\,a =0foralla € R?‘ Necessarily yi\iﬁ_mjg generates
the unique irreducible submodule of Z¢(x + A).

We shall see that yy = 2x_x and y), = z\ (see 1.5 for definitions of zy, z)).

Proposition 2.8. Let o € {£1}". Then
(i). The Verma module Z¢(x,0) is an irreducible @ig-module, i.e. Ze(x,0) ~ L¢(x, o).

(i1). As a ug-module, V¢(x,0) is isomprphic to Zf(n,a). In particular, Vg(x,0) is an
irreducible Ug-module.

(11). For every p € Z1, the module Ve(lyz + 5, 0) is an irreducible Ug-module.

Proof: (i). Note that wor = —#r. By Proposition 2.6 (i1}, the unique irreducible submodule
of Z¢(k,0) is isomorphic to Le(k,0). But Zg(k,0)x,0 is one-dimensional Q(&)-space, so
the 1rreducible submodule of ZE(N,J) is generated by 1, ,. Hence Z¢(x,0) is irreducible
and isomorphic to Lg(x, o).

(ii). By the definitions of ZE(R,O’) and of V¢(s,0), we have a natural fig-module
homomorphism Z¢(x,0) — Ve(x,0). The homomorphism is surjective according to 2.2 (i)
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and the definition of Ve(x,0). Weyl's character formula tells us that the Q(¢)-dimension
of Ve(k,0) is [Iocp+ la- So the homomorphism is a ig-module isomorphism. This proves
(i1).

(ii). By 1.2 (i), L¢(l + ,0) is the unique irreducible quotient module of Ve(lu +
k,0). Using (ii) and 2.2 (iv) we see L¢(lp + &,0) is isomorphic to Le(lp, o) ® Ve(x, 1).
Combining 2.2 (v), 1.2 (i) and 1.2 (iv), we know that the Q(¢)-dimensions of Ve(lp + &, o)
and Le(lp, 0) @ Ve(x,1) can be calculated by means of Weyl’s character formula, they are
equal. Hence Ve(lp + &, ) 1s an irreducible Ug-module.

The proposition i1s proved.

The following result will not be used in the sequel of the paper.

Theorem 2.9. (i). The algebra u¢ is symmetric.

(ii). Let k be the two sided ideal of‘uE generated by K — I,Ké’ —1,..,K!» —1. Then
the algebra u; := ug/k is symmetric.

Remark: The theorem was proved in [X, Theorem 3.5] with some restrictions on . Since
[X] is unpublished and Theorem 3.5 in [X] was quoted in some papers, it might be good
to represent here a version without restrictions on I. The proof is the same as that in [X].

Proof: (1). We need to construct a bilinear form ¢ on ug such that
(a). ¢ is associative, i.e. @(2y,z) = @(z,yz) for any x,y,z € ug;
(b). © is non-degenerate, i.e. if p(z,2') = 0 (resp. p(z’,z) = 0) for all 2’ € ug, then 2 = 0;
(c). ¢ is symmetric, i.e. ¢(z,y) = @(y, z).
Let 81, B2, ..., B be as in the proof of Lemma 2.5. Set

Z,,:={(a,a2,..,a,) €Z" |0 <@y <lg, —1,..,0 L a, < g, — 1},

1,21 = {(h.hh;_), ...,hn) € Zn | 0 S h.l S 2[1 - 1,...,0 S h.n S 2[,, - 1},

For A = (a,4az,...,a,) € LY, H = (h1,ho,....,hy) € Z 5 , we shall write Fg, Eq, Ky
(e plan) | plen) plan) | ples) plas) gk e T
fOl F’Bal F,Bsz "‘F‘Ba ,Eﬁ "'Eﬂzz Eﬂll ’1&111\22'..I\h

) . ) ", respectively. Let ¢ be the
Q(€)-hnear function of ug defined by

1, f FaAKyEyw = EFE,,

0, otherwise,

wo(FaKuEn ) = {

where ¢ = (Ig, = 1,1, — 1,...,15, = 1) € ZL . Set p(z,y) := po(xy). Obviously ¢ defines
an associative bilinear form on ug. We now show that ¢ is non-degenerate on ug.
Let
r= Y 8(AHA)FAKuEx #0, 6(A H A") € Q(&).

AA'€ZY |
HeZ} 5



Let B = (b1, bz, ..., by) be the minimal element in {A € Z] ;| 6(A, H, A") # 0 for some H, A’}
and let B' = (b1, b2, ..., b;) be the minimal element in {A' € Z1 || 6(B, H, A") # 0 for some H} |}
Here we use the lexicographical order on Z defined in the proof of Lemma 2.5. Set

w= B FEE, = BEPED B,

where ¢y = lg, —1—by,...,cp =1lg, —1—=by,and ¢ =1lg —~1=b),...,c. =15, —1-b,. By
the proof of Lemma 2.5 we have

veyic="6y2 »  8(B,H,A)FEKnEx
A'€ZT
HEZY 4

for some nonzero number §; € Q(§).

By the commutation relations in [X, 3.3] we see that

yQFi. = FLyZ + Z 77(-‘47 H, A')FAI\'HEAH 77(Aa H, A') € Q(ﬁ)
AA'€Z],

At
HeZ"

+,21
As in the proof of Lemma 2.5 we see (B, H, A" )y2 E4 # 0 implies that A’ = B’ and
y2 Ep: = 0, F, for some nonzero number 8, € Q(¢). Thus

vz =616, > (B, H,BYFKyE + Y 3'(AHAYF4KyEy,
HEZT , AA€ZT

A#e

HEZY 5

where '(4, H, A") € Q(€). Let I € Z}} , be such that (B, I, B') # 0, by the definition of

¢ we see (K[ 'yoy1, z) # 0. We also have o(z, KT 'y2y1) # 0 since ¢ is symmetric by the
following argument.

Note that the elements EaKpyFa, A, A" € 24 ,H € Z] ,, also form a Q(¢)-
basis of ug. Let A = (a),B = (b}, P = (pr),@ = (qi) be elements in Z ; and let
H = (h;),H' = (h}) be elements in Z ,. Using commutation relations in {L4, 5.3-5.4,
p.95-97; X, 3.3] and [L4, Theorem 6.6, p.103-104] we see that o(FaKyEp, EgKy Fg) =
W(EQKy Fg,FaKyEp) = 0if one of the following three cases happens: (a). Ky # 1,
(b). Yoroilar +b6)Bk # 28, (¢). 2pe(Pr + &)Br # 2k. Using [L4, Theorem 6.6, p.103-
104] and commutation relations in [L4, 5.3-5.4, p.95-97] and induction on P (resp. B)
we know that (d). EpEqg = EgEp (resp. FaFp = FpFa)-if 3 ;_,(ax + bx)fr = 2x
(resp. Y r—i(Pk + q&)Br = 2x). By this and the commutation relations in [X, 3.3}, and
noting that the coefficients of EpEq, FpF4 in I{HEquKgl, I\’BIFBFA Ky are the same
when E£=1((lk + bk)ﬁk = ZZ:I(I)L‘ + ({k),gk = 2K, we see that L,O(FAI(HEP, EQI\"].[fFB) =
P(BQKn Fp, FaKnEp)if 375 _ (ax +01)Bk = 3 5y (Pr + qx)Br = 25 and KKy = 1.
Therefore ¢ is symmetric. Part (i) is proved.
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(ii). Since the images in ug of the elements FuKyE4, AJA' € thl,H € Z1 ,, form
a Q(&)-basis of ug, the proof of (i) is also valid to uj.

The theorem is proved.

3. Category of finite dimensional Us-module of type 1

3.1. Let M be a finite dimensional Ug-module. For each ¢ = (01,02, ...,0,) in {£1}",
set My == {m € M | Ki'm = oymfori=1,2,..,n}. In Us we have K = 1 and
$K:‘ = I\"f":.'; for every = € Ug |[L2, Lemma 4.4, p.64|. Therefore M, is a submodule of M
and M = @Ue{il}n M,. We say that M has type o if M = M,. All finite dimensional U,-
modules of type o with usual Ug-module homomorphisms form a category of Ug-modules,
denote by C,. Clearly, the map M — M ® Q(€), gives rise to an isomorphism between the
categories C, and C, [APW, 1.6, p.6-7}. What is more, the Q(&)-algebra automorphism
Ue — Ug defined by Ef") — J?Efa), Fl-(“) — Fi(a), K, - o; (1 =1,2,..,n,a > 0)
interchanges the Ug-modules of type 1 to those of type o [L2, 4.6, p.65].

Therefore, it suffices to work on the category Cy of Ug-modules. Note that V¢(A,1),
L¢(A,1) € obCy for each A € Z. We shall drop the index 1 in all notations involved it.
So C, Ve(A), Le(A),va, ete. will stand for C1, Ve(A, 1), Le(A, 1),va1, etc. respectively. One
main result of the section is the following, which will be proved after establishing Lemma

3.4.

Theorem 3.2. Let y € Z1).

(i). The module Ve(lp + ) is injective as well as projective in the category C.

(ii). The category C has enough injective objects and enough projective objects as well.
(iii). In C each injective object is also a projective object.

1iv). Every module M in obC is integrable (i.e. M = » My and EF“), F' are locally
& AEZ i i
nilpotent on M fori =1,2,...,n,a > 1).

‘(vg. If S{I is a finite dimensional Ug-module, then M = @(A,U)eznx{il}n My s, ie. M is
integrable.

(vi). Let F be an injective object in C, then E has a submodules filtration 0 = Ey C Er—, C
-+ C Ey C Ey = Esuch that E,/Eq >~ Vg(v,) for some v, € Z},a=1,...,k—1.

Remark: When [ is a power of a prime number, the theorem is proved in [APW, 9.8,
p.44; 9.12, p.45].

3.3. Let M be a Ug-module of type 1. An nonzero element m in M is called primitive if
m € M) for some A € Z" and Efa)m =0for:=1,2,...,n,a>1. We have

(i). Let M be an integrable or finite dimensional Ug-module of type 1. Assume that
m is a primitive element of weight X, then A € Z% and there is a unique Ug-module
homomorphism Ve(A) — M which carries vy to m. [L5, Prop. 3.5.8, p.33].
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Given a finite dimensional Ug-module E of type 1, we define the dual modules E*, E*

as in [APW), 1.18, p.9] by means of the antipode S of U and its inverse S™! respectively.
Then [APW, 1.18, p.9-10]

(ii). We have (E*)* ~ E ~ (E*)*.
(ii1). For any Ug-modules M, N, one has

Homy, (M, N ® E) ~ Homy, (M @ E*,N),

Homy,(E* @ M,N) ~ Homy,(M,E @ N).

Lemma 3.4. Let M be a finite dimensional Ug-module of type 1 and let p € Z7.

(1). Assume that Ve(lp + &) is a submodule of M, then Ve(ly + x) is a direct summand of
M, 1.e. there exists a submodule M’ of M such that M is isomorphic to Ve(lu + &) & M'.

(i1). Assume that Ve(lu+x) is a quotient module of M, then Ve(lu+ &) is a direct summand
of M.

Proof: The modules Ve(lp + «)*, Ve(lu + &), Ve(lpe + £)* are isomorphic since Ve(lp + &) is
irreducible (Proposition 2.8 (iii)) and wo(lye + &) = —lg — k. Now part (i) and part (ii) are
equivalent by 3.3 (ii). We give a proof of part (1).

For v = (v1,ve,...,vn) € Z", X = (A1, Aay . An) € ZY 4, let M(y,4 ) be the set of all
elements m in M satisfying
I(,‘,O

Kim = €45%m, [ ]

] —v)*m=0, fori=1,2,...,n and somea & N.

Then

(a). M = @,czn My, and B M,y € Miypaarys FL My € M(y—ay). [L2, Prop. 5.1
and its proof, p.65-67).

(b). Obviously, M, # 0 if and only if M,y # 0. So the set P(M) := {v € Z" | M,y # 0}
is stable under the action of W [L5, Prop. 5.2.7, p. 45].

By induction on dimg)M we may assume that M/Ve(lj 4 &) is irreducible. One of
the following three cases must happen.

(c). There is a maximal weight A in P(A) such that A # lu + «.
(d). 1 + & is the unique maximal weight in P(M) and dimqg)Muu4x) = 1.
(e). 1 + & is the unique maximal weight in P(M) and dimqe)M(14x) = 2.

Case (c). By (b), My # 0. Choose an nonzero element m in My, then m is a primitive
element. Let M’ be the submodule of M generated by m. We claim that M 'ﬂVE(l,u—}- h) = 0.
Otherwise, M' N Ve(lp + &) = Ve(lu + ). Then we can find an element y in Ug such that
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for some element y' in U;;. Therefore A = lv + 1 + & for certain nonzero element v
in Z". By Proposition 2.8 (iii) and 3.2 (i), M’ is irreducible. An contradiction to the
assumption on M' N Ve(lp + «) = Ve(lu + &). Hence M' N Ve(lp + x) = 0, in addition we
have M ~ Ve(lp + k) ® M' and M’ is irreducible.

Case (d). By (b), all the four spaces My, Muts), Matp—n, M(_14-x) are of one
Q(&)-dimension. By (b) liz + & is the unique maximal weight in P(M*). Let M, be the
irreducible submodule of M* such that M*/M, is isomorphic to Ve(lyx + x)*. By our
assumptions on M we have lp 4« € P(M,). Choose a nonzero element m in M, (et x)> bhen
m is a primitve element and generates a submodule M, of M. By Proposition 2.8 (iii) and
3.2 (i), My is isomorphic to Ve(ly + ). Hence M* is isomorphic to V¢(lp + &) @ M. Note
that Ve(lp + £)* ~ Ve(lp + &), by 3.2 (ii) we see M is isomorphic to Ve(lu + x) @ M.

Case (e). Set p; := (u,af) for i = 1,2,...,n. By (b) we have F,-“”““")M(”&N) =0
for all z. Using (a) and our assumption on lp + k we see

T

[I(,‘ ,0

L+ i+l
il ]AJ{I;H-H) = BT FTOM g = 0.
kA

But in Ug we have [L2, lemma 4.3, p.64]
K, 0] 1 al [K,—, o] .
1.1 = (n | H( =)
|: pils (pi +1)! =0 l;
K;,0

l;
isomorphic to Ve(lp + &) @ Ve(lpe + &).

;0

N
INOwW l"

— ft; 1s nilpotent on M, 4, S0 ([ } — 1i)Mau4r) = 0. Therefore M is

The lemma is proved.

3.5. Now we prove Theorem 3.2. Part (i) is a trivial consequence of Lemma 3.4.

(ii). According to part (i) and 3.3 (iii), for any finite dimensional Ug-module M of
type 1, the modules Ve(lp 4 &) @ M and M ® Ve(lp + k) are projevtive and injective as
well in the category C. For any A in Z, choose v in ZY such that lv 4+« — A € Z}.. By 3.2
(i) we have a nonzero Ug-homomorphism Ve(ly + &) — Le(A) @ Ve(lv + x — A). By 3.3 (iii),
this gives rise to a nonzero Ug-homomorphism Ve (lv 4+ &) @ Ve(lv + k — A)* — Lg(A), which
is necessarily surjective. Further, this surjective gives rise to a nonzero Ug-homomorphism
Le(—wod) = Le(A) - (Ve(lw + 5) @ Ve(ly + 5 = M) )* =~ Ve(lv + 1) @ Ve(ly + & — A).
Therefore the category C has enough injective objects and enough projective objects as
well. Part (i1) are proved.

(ili). Note that the modules Ve(ly + x)*, Ve(l + &), Ve(lpe + &)™ are isomorphic. Since
for each M € obC, the modules Ve(lp + k)@ M and Ve(lp + x) @ M* are projective and
injective as well in the category C, part (iii) follows.

(iv). We have seen that each indecomposable injective object is a direct summand of
Ve(lv + k) ® Ve(6) for some v,§ € Z. So each injective object in obC is an integrable
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Ug-module. Let M be a finite dimensional Ug-module of type 1 and let M’ be the maximal
completely reducible submodule of M. By (ii), we can find an injective object E in obC
and an injective Ug-homomorphism M' — E. Since E is injective in the category, the
above injection can be extended to an injective Ug-homomorphism A «— E. Therefore M
is integrable since E is integrable.

According to the statements in 3.1 we see (v) is an immediate consequence of (iv).

(vi). It is no harm to assume that E is indecomposable, then E is a direct summand
of Vi= Ve(lv 4+ k) @ V¢(8) for some v, 6 € Z}. By (L5, 27.3.3, p.221], V has a submodule
filtration 0 = V, C Vihmy C -+ C Vo C Vi = V such that V,/V,1 ~ Ve(6q) for some
be €ZL,a=1,..,h—1. Since E is a direct summand of V, the required filtration exists.

The theorem is proved.

Another main result of the section is the following.

Theorem 3.6. Let A € Z1 |, n € Z. Then
(1). The module V¢(lz + £ 4+ X) contains a unique irreducible submodule.

(i1). The irreducible submodule Ve(lp + £ + A) has highest weight lp + £ + woA and is
generated by y\vip4xsa. (See Corollary 2.7 (ii) for the definition of ¥}.)

Proof: (i). In the proof of Theorem 3.5 (ii) we have seen that Ve(ly 4 &) @ Ve(A) is an
injective object in the category C. According to [L5, 27.3.3, p.221}, the submodule of
Ve(lg + &) @ Ve(A) generated by vy,qx ® vy is isomorphic to Ve(lu + 5 + A). Let E be
the indecomposable direct summand of Ve(lpr 4+ ) @ Ve(X) containing viu4x ® va, then
Ve(lp + & 4+ A) is isomorphic to a submodule of E. The module E contains a unique
irreducible submodule since E is an indecomposable injective object in the category C.
This forces that Ve(lp + & + A) contains a unique irreducible submodule.

(i1). We need to prove that
(a). The element m := y)\vip4 x4 1s a primitive element in Ve(ly + £ + A).
(b). The element ¥} vyt x4 generates an irreducible submodule of Ve(l + & + A).

Note that in Ve(k + A) we have Fyvupa # 0 and FpFivepn = 0 for all a € R;".
Since FL'F, = F,F'? for i = 1,2,...,n [L4, Lemma 8.5 (ii), p.108), so F{*) Fyvapr = 0
for « = 1,2,...,n. By the proof of Proposition 2.6 (i), Fyv.4x generates an irreducible
submodule M’ of V(s 4 A) whose highest weight is & 4+ wpA. By Corollary 2.7 (i), the
irreducible submodule M’ is generated by y\ve4a. Thus y\v.qa is a primitive element in
Ve(x 4+ A) since it has weight & +wgA. By [L4, Lemma 8.5 (i), p.108], for ¢ = 1,2,...,n, we
may write

EVy =B+ YT 84, A)FAK (4, 4)Ex, 8(4,4) € Q(6).
AA€Z]
K(A,A")eug
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Since Fpveqr, A € Z,, are Q(€)-lincarly independent, so K(A, A')uepa = 0 when
Es =1 and §(4,A") # 0. But K(4,A") € ul, so K(A, A" )uepa = 0 is equivalent to
K(A, A" Yipqnsr = 0. Therefore Ef"')yi\'ulu+,;+,\ =0 for: = 1,2,...,n. By Corollary 2.7
(i1) and 2.4 (i1), Eay\vip+s+r = 0if I = 2. Hence ¥\ viu4x+a is a primitive element in
Ve(lpe + £ 4+ A). This proves (a).

Let z,, a =1,2,...,¢, ..., [[ e p+ los be 2 Q(£)-basis of u;” and let 23, b=1,2,...,¢,...,
be a Q({)-basis of U, such that

(c). The elemnts z4Tx4wor, @ =1,2,...,¢ is a basis of the irreductble module L¢(x + wol),
and zgUipwer = 0 for @ = ¢ + 1,...,HoeRJr la, where Uxqu,a 18 a nonzero element in
Le(k 4 woA) of weight s + wgA.

(d). The elemnts z;91,, b =1,2,...,¢" is a basis of the irreducible module L¢(1it), 2491, = 0
for b=¢" +1,¢' +2..., where 91, is a nonzero element in L¢(lp) of weight 1.

(e). For each positive integer b, the element z; has a degree v, € NR™ (see 2.3 for the
definition of degree).

We claim that the elements z,z;, « = 1,...,¢, b = 1,...,¢', span M := Ugm as a
Q(¢)-space. By 2.2 (i), 2.2 (v) and 3.2 (i) we see z;m = 0 whenever b > ¢’. Now assume
that 1 < b < ¢ and g < a < HaeR+ lo. We use induction on v, to prove that z,7; is a
Q(é)-linear combination of the elements z, 27, ..., 2421, ..., 21 z;,, ey ZqZy. When 4, = 0, this
is obvious. If 1 < a < ¢, nothing need to prove. Suppose tha ¢ < @ < [[,ep+ la- Write
Zaz = Zpza + Y, Acazezly, Acd € Q(E), then by [L4, Lemma 8.5 (ii), p.108], v4 < ¥
whenever A.4 # 0. By induction hypothesis, zozjm = 3 Acqzc.23m 1s a Q(€)-linear
combination of z21,..., 2427, ..., 21 z;;, veey zqz;,. Therefore
dimg(e)M < q¢' = dimqeyLe(x + woA) - dimgqey Le(lpe) = dimqeey Le(lp + £ + woA).

This forces that dimQ(E)ﬁJ = dimQ(e)LE(lu + x4+ woA) and M is an irreducible Ug-module
of highest weight 1z + & + wgA.

4. The elements =/

4.1. Recall that in 1.4 we have defined the element 2}, € U; and in Corollary 2.7 (ii)
defined the element ¥} € u, for every A in Z%. The main result of this section is Theorem

4.2. We prove it after establishing several lemmas. It is a sorry that the author could not
find a simple proof of Theorem 4.2 except for type 4, B;.

Theorem 4.2. Let A € Z |, 1 € Z. Then

(1). The elements z,v1,4 442 1s a primitive element in Ve(lge + & + A).

(ii). We have 2 = 8y} for some nonzero number § € Q(§). In particular, ), is in u,
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Lemma 4.3. Let M be an integrable Ug-module of type 1 and let m € M, (jz € Z"). Let
1,7 be integers in [1,n] and let a, b, c be non-negative integers.

(1). Assume that E,(h)m = 0 for h > 1, then Fi(a)FJ-(b)Fi(c)m =0if a+ (oj,a])b+ ¢ >
(u, ).

(i1). Assume that th)m = O,Ega)m = 0 for h > 1, then Fi(")EEb)FJ(C)m =0if a +
(aj, @ )(c = b) > (u,ay).

Proof: (i). By the commutation relations in [L4, 5.3-5.4, p.95-97], the element Fi(ﬂ)F}b)Fi(c)
is in the left ideal of U, generated by Fz-(h), h>a+ (aj,af)b+c> {(i,a)). Now using

3.2 (1) to the subalgebra of Us generated by all th),Fi(h),I&',-,I&'i_l, h > 0, we see (1) is
true.

(i1). If b > ¢, then

(@) ) ple), . _ ) (c~h)
FYEVFOm=F" Y F

[Ifj, 2h—c—1b
0<h<c

] }Ej(-b“h)m =0,
1

If b < ¢, using (i), then

a c a c— .—_’ - ) Y b— -
FEPF O m = FOF [I‘f : "'] m = [(# @; >b+ C] FOFE™m =,

The lemma 1s proved.

Lemma 4.4, Let A € Z} ,u € Z{,w0 € W. Then
(i). In Ve(lpr + & + A) we have )\ , o142 # 0.
(11) If l,' Z 2, then E;mf\’wvl,,+ﬁ+,\ = 0.

(ii1). If I, > 2, then Eaa:’,\lw'ulﬂ.,_,ﬁ)‘ = ().

iv). Assume that 7', = FYFE) P For non negative integers by, by, ..., by, if
A,w 11 12 99 g g
ap — by € 1;, Z for h =1,..., k, then EfFi(lb‘)F‘.(:ﬂ) . F.(:k)vlmﬂ =0ifl; >2.

t
Proof: Set m := vipqnta.

(i). According to [L3, Lemma 39.1.2, p.304], in Ve(A) we have 2\ ,vx # 0. By 1.2 (i),
this implies that @y ,m # 0.

(ii). According to [L5, Lemma 39.1.4, p.305], there exists z in U such that

Kil—(\aY
Eifl”)\,w = :E’A,wEi + z[ Vi, ( y O )]

1

K1 = (AaY)

Since l; > 2, [ )

. v .
]m = [ll(ﬂ’ a]j )+ I'] m = 0. Therefore Ejz), ,m = 0.
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(iii). When all ; > 2, this is a simple consequence of (ii) since ug is genenerated by
Fi,2=1,2,..,n. When [; =1 for some 7, we may check it directly.

Part (iv) is a simple consequence of (ii).

Lemma 4.5. Let A € Z |, w € W. Assume that the Cartan matrix (a;;) is symmetric.
If s;2 > w, then Egu)rﬂ')‘lwvﬂ_i_,\ =0 for all @ > 1. (We also use “>” for the Bruhat order
on W.)
Proof: Set m := vy . Since all I;, 1 = 1,2,...,n, are equal, we simply write [’ for any one
of them. Since U;' 1s generated by E,',Efl) for 7 = 1,2,...,n, [L2, Prop. 3.2 (b), p.62],
by Lemma 4.4 (ii), it suffices to prove that Ej(,-l ):v")\,wm = 0. We use induction on the
length {(w) of w. Let s, s, -3si, be a reduced expression of w. We shall write a, for
(8ingr - Sip Ay ) for b =1,.., k. When k = 0,1, nohting need to prove. Now assume
that £ > 2. Set 2 := 7; and let u be the shortest element of the coset < $i,s; > w. Since
the Cartan matrix is symmetric, &k — 1 > {(u) > k — 2.

If I(u) =k —1, then u = s, -+ 3;, and s;u > u. Note that 7 # j, using induction
hypothesis, we see E}I )mi\’wm = Fl-(al)Ej-! )rz:',\,um = 0.

If I{x) = k — 2, we may assume that i3 = j and v = s, - -+ s;,. Then s;u > w, sju > u
and Efﬂ)mf\’um =0, E'}a):c’,\,um =0foralla>1. So EJ(T-I )rc’)\,wm = Ft-(a‘)E;-! )F]@)n:f\ L.
Note that ay = (s;uh, o)) = (ud, o) + o)) = (ud,a}) + az and 2, ,m has weight x +u,
by Lemma 4.3 (ii) we see EJ(,-’ )rc;)wm = 0.

The lemma is proved

Lemma 4.6. Let A € Z7, ;. Then in V(s + A) the element /v,y is primitive.
+,1 £ AUn+ !
Proof: Set m := vy . Since U;' 1s generated by Ej;, Efl") forz =1,2,...,n, by Lemma 4.4
i1), it suffices to prove that EWgl =0 for all i.
t Ay w

(a). Assume that («¢;;) is symmetric. Choose a reduced expression s;, s;, -+ s;, of the
longest element wg of W such that 7; = 7. Note that a := (s;, ---s; A, &)} < I;, s0

: - K 2h—a -1 1 —h)
EW gt o = E ple—m i HEW-Myr
L 0$ita h 1 o

.. By Lemma 4.5, Efl"_h):c"\,um = 0 for h = 0,1,...,a. Therefore
Efl‘)mi\7?1. =0forz=1,2,...,n.

where u = s;,-+-$;

(b). Assume that («;;) is of type B,. We number the simple roots in R* so that
{@g,0)) = =2, {c1,ay) = =1, {az,a]) = =1,..,{apn_y,o) = —1. We have d; = 1,dy =
wo=dp =2, =...=1,,and 21; > I} > | for j =2,...,n. We use induction on n.

When n = 2, write ¢ := (A, a7),b:= (A, a5). Then
'Ui\ — Fl(a)Fg(a+b)F1(a+2b)F2(b) — Fz(b)F](a+2b)F2(a+b)Fl(a).
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Since {; > a, using Lemma 4.4 (i1) we see
E(ll),b)‘y,n — Fl(“')Fz(ﬂ-f-b)th)Fl(a-i‘?h)F(b)
Note that F:,(b) m is a primitive element of weight £ + A — bay. Now
a+b— (o, a])(lhi—a=-2b)=5L —-b>lh —1—-b={(k+ A —baz,ay).
By Lemma 4.3 (ii) we have Egl‘)mg\m = 0. Similarly we have

E( 2)a:)\m = Fz(b)Fl(a-{_%)EéI’)Fz(""-b)F](a)m =0.

Now suppose the lemma 1s true for n — 1. Let u be the longest element in <
81,525+, Sn—1 >. Thenwy = 8psu—1 328182 - 8718, = USpSp—1 525152 "~ Sp—15n-J
Set

= L1 898180 ¢ Aoy h=2
ap 1= (Sh_1 898182 Sn—18nl ,ah>a =2Z,..,N,

and
— {a vV —
bp := (8p1 - Spo1spud, ), h=1,2,...,n

Then 2!, = F,(,a") . -Fz(aZ)Fl(b‘)Féb’) e F,(,b")rcf\lu. Note that E}“)mc\,um =0foralls,a>1

and that I,, > a,. Using Lemma 4.3 (ii) and Lemma 4.4 (ii) repeatedly we see Efl‘)mi\777. =0
fore=2,...,n.

We need do a little more to see that Egl‘)wi\m = 0. Let w be the longest element

in < 82,...,8, >. Then E( )a,,\ o = 0forz =12 ..,n, a > 1. Note that wy =
515251538957 - “ 825 W and ll > ¢ :=< A, a)). Using Lemma 4.3 (ii) and Lemma 4.4
(11) repeatedly, one can check that

E{"im = E{V VD R R R D R =0,

where ¢y, ..., ¢y are defined according to the reduced expression s15981 838287 -+ 8y, - $281Ww
and k =1+ n(n —1)/2,h = n(n + 1)/2. This completes the proof for type B;.

(c). Similarly, we prove the Lemma for type C,.

(d). (Sketch.) Similarly we prove the lemma for type Fy, G;. Note that the longest
element of the Weyl group of type Fy is $45352835451528382518483528354818283528789535283.
Here we number the simple roots as usual. Moreover, if necessary, use the commutation
relations in [L4 5.3-5.4, p.95-97] and note that F*" TV RO+ — 4450 < b.d < I; and
b+ d 2> ;.

Lemma 4.7. Let é;,...,6x € Z} and X € 1,]. Then the submodule of L¢(16,) @ --- @
Le(16r) @ Le(k + A) generated by v1s, @ ® vis, ® Vet I8 isomorphic to Ve(lé, + ... +
165 + &+ A).
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Proof: By 3.1 (i), we have a Ug-homomorphism
V1 = Vg(lél + -I— l(SL + K + /\) — V = L&(l(sl) ® s @ Le(l(SL) ® L&(h‘. + )\),

which carries m1 1= vis, 4. 416,4n+2 t0 M 1= 15, @ -+ @ V15, @ Vega. By 2.2 (v), y\m =
vis, @ @uis, @ Y\Us+a 7 0. But yim, generates the unique irreducible submodule of V;
(Theorem 3.6 (ii)). Therefore, the submodule of V' generated by m is isomorphic to V.

4.8. A sketch proof of Theroem 4.2. (i) For i = 1,2,...,n, denote §; € Z] the unique
element such that (6;,¢7) is (u,«)) if i = 7, is 0if i # j. By Lemma 4.7, the submodule
MofV :=Le(l6;)®- - @ Le(16,) ® Le(x + A) generated by m := vis, ® - Q@ vis, @ Unta 18
isomorphic to Ve(lz+ £+ A). By Lemma 4.6, m' := vj5, ® - -Quis, ®mi\v,;+,\ is a primitive
element in V. But one can check that z\ym = m'. Therefore 2\ v| 4442 15 a primitive

element in Ve(lp + & -+ A).

(ii). Since @\viugxta # 0 and has the same weight with yivi,4x+a. By (i) and

Theorem 3.6, we can find a nonzero number 8 € Q(€) such that =, — 8y € e
\'4

C'hooze’,u. € Z} such that {u,a)) > {|RT|, then z) — 8y} € It rsa 18 equivalent to

The theorem is proved.

4.9. By Lemma 4.4 (iii), Theorem 4.2 is actually equivalent to that 2 € u, when A is
l-restricted. For type B, using the commutation relations in [L4, 5.3, p.96] we see easily
that if A is l-restricted then 2\ € u,. For type A, there is a naive argument for the
fact, which is based on the following Lemma 4.10. We need a notation. Given i € [1,n],

let H; be the Q(€)-subspace of U spanned by all Fé‘:‘)Fé:’) e Féf’), ap,...,ar € N and
ap < lg, — 1 whenever B — a; € NR*, h =1,...,7. Obviously, (;_, ; = ug .

Lemma 4.10. Let = be an element in Ug. Assume that x is expressed as a Q(§)-linear
combination of some monomials zy,...,z; of Fc(,a),a € R*,a € N. Giveni € [1,n]. If
a <l — 1 whenever F, c(,a) appears in some monomial z; and o — o; € NR™, then z € H;.
Proof: Using commutation relations in [L4, 5.3-5.4, p.95-97] and [L4, Theorem 6.6, p.103-
104].

4.11. Now we give a simple proof of Theorem 4.2 for type A, by using Lemma 4.10. By
Lemma 4.4 (ii), it suffices to prove that @) € u, when A is l-restricted. We use induction
onn. Set Aj = (M), 7 =1,2,...,n. When1 < ¢ < j < n we also write \;; for
Ai+ Aig1+ -+ Aj. Then

.'E’A - Fl(/\n)F2(An-—1.n) . Fr(lp\]_,n)Fl(/\n—I)Fz(l\nui,n-l) s Frgill,n—l) . Fl(Az)Fz(t\l,ﬂ)Fl(Al).

Note that [y = ... = [;, we see

(a). =% € H;. Symmetrically, we have &, € H,.
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Let w = 8182851838281 " S8u—1 82387, Set
,y c= Fl(,\n_l)F2(A"-2In-1)Fl(An_z)F;/\"_3'"-1)F2(,\n_3‘"_2)F1(/\n_3) . ngizz'"—l) . Fl(/\z)’

y' = F,(]ill'"_‘) e Fz(,\l’?)F](,\l).

Then z, ,, = yy'. By induction hypothesis, y,z), , € u;. By 2.2 (ii), then @} , = yz for
some z € u, . Note that

.'E’A — F](/\n)Fz(An—l'F'\n) . Fr(lA_31+o+/\n)yF1(lAl++/\")z
and that ) o ) o ")
. n n-— + n ++ n
Fl F2 ' n—:l y:Ifu,wﬁ
where 1 := (Ag,..., An, A1). According to induction hypothesis, Tyw € u, . Therefore
zh = .'c:‘,wF,E’\""""{"\“)z € Ny H;. Combine this and (a) we see z € i, Hi = u, .

5. Main results

5.1. In this section we give the main results of the paper. Essentially, they reexpress some
results in previous sections. Recall that in 1.4 we have defined the element z) € U, for
every Ain ZY.

Theorem 5.2. Assume that A 1s l-restricted, then z) € u, .

Proof: We have z) = m’_wo)\. Note that —wgA is also l-restricted, by Theorem 4.2 (ii),
Ty € ug.

Theorem 5.3. Assume that A = (A, Az, ..., A,) is l-restricted and o = (0y,02,...,0,) €
{£1}". Let ug(X,0) be the left ideal of ug generated by all Eo, K; — 0;6%%, o € R},
1=1,2,...,n, and elements F ¢ u; such that Fz,_ = 0. Then

(1) ug/ug(A, o) is an irreducible ug-module. Moreover, as a ug-module, Le(A, o) is isomor-
phic to ug/ug(A, o).

(i1). For any v € NR™T, denote u, . the set of all clements in u, of degree v, and set
ne(A,7) = {F € ug_ | Fzx_x = 0}. Then dimqqe)Le(A, 0)r-v,0 = dimgeyu, ., —ne(A, 7).
K,-,c] 3

Proof: (i). Let j,\,,, be the left ideal of 0 generated by E,, K; — a,—{’\"d‘,[
. a

Ait+c :
U?[ 'a ] ,a € Rf,i=12..,n ¢ € Za € N, clements F € u; such that
d"ye

Fzio_x = 0. Since zx—x = 2}, sy,, by Theorem 4.2 (ii) and Corollary 2.7 (ii) we sec
U¢/Jxo = Le(A,0). But A is l-restricted, so the restriction to ug of Le(A, o) is an irre-
ducible ug-module. Obviously, the restriction is isomorphic to ug/ug(A o). But Le(X, o)
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is the restriction to Q¢ of the irreducible Ug-module L¢(A, o). So as a ug-module, L¢(A, o)
is isomorphic to ug/ug(A, o).

Part (ii) is an immediate consequence of part (i).

The theorem is proved.
Theorem 5.4. Let A = (A1, Ao, ..., An), it = (jt1, fi2y ooy pta) € Z and o = (01,09, ...,0,) €
{£1}". Assume that \ is l-restricted. Let Ji,4x, be the left ideal of Ue generated by

elements in I , and elements F' € uE_ such that such that Fz,_x = 0. Then Ug/J1,4r,0 =
Le(lp + A, 0).

Proof: Since Le(lp + A, 0) ~ Le(lp, 1) ® Le(A, o)), we have Jiuq4a,001u+2,0 = 0. Note that
Le(lp,1) @ Le(k,0) > Le(lp, 1) @ Ve(k,0) ~ Ve(lp + &, 0).

Let zy, b=1,2,..,k,..., be a Q(é)-basis of U, such that

(a). The elemnts z;7y,, b= 1,2,..., k is a basis of the irreducible module L¢(1p), z; 01, =0
for b=k +1,k+ 2...,, where 91, is a non zero element in Lg(ly) of weight lp. Let I be
the Q(€)-space spanned by z, F,1 < h <k F € u,, then we have I'+ Iy = U, . Since
Hpino © Duta,e, as Q(&)-spaces we have

Ue/ Nyt r,e = UE_/UZ:'_ N Jptr,0 I/In Nptro.

By Theorem 5.3, dimq(E)I_ﬂ JNptre 2 k(dimq(s)u; —dimge)Le(A, 0)). Since dimQ(E)_f =
kdimge) u;, we have

dimgyg) Ue/ Npare < kdimQ(E)LE(/\, o) = dimgeyLe(1pt + A, o).

This force that Ug/Jiu4a,0 and Le(lp + A, o) have the same Q(¢)-dimension and as U,-
modules, they are 1somorphic.

The theorem is proved

From the above proof we get the following result.

Corollary 5.5. Keep the notations in Theorem 5.5. Then the left ideal Ji 41,0 N UE_ of

Us is generated by Fi(l;“;-'_l‘), : = 1,2,...,n, and elements F' € u; such that such that
Fz,_ =0

6. Hyperalgebra

6.1. Recall that g is a semisimple Lie algebra over C. Let Let en, fa, hi, @ € RT,
: = 1,2,...,n be a Chevalley basis of g. We also write ¢;, f; for eq;, fo;, © = 1,2,...,n.
Let & be an algebraic closed field of prime characteristic p. Recall that U, = 4z @ £ i1s the
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hyperalgebra associated to g and &. Let U7, U7, 42 be the positive part, negative part, zero
part of Llp respectively. Given an positive integer «, let u, be the a-th Frobenius kernel of
e, denote ut,u;, u? the positive part, negative part, zero part of u, respectively. Let 1,
be the subalgebra of Uy generated by u, and U3, then ii, = iy Ui}

For any A € Z', denote Vi(A) the Weyl module of U of highest weight A and denote
Le()) the irreducible module of iy of highest weight A\. When A is p®-restricted (i.e.
0 < (MaY) < p* for ¢ = 1,2,...,n), the restriction to u, (resp. U,) of Le(A) is an
irreducible u,-module (resp. fia-module), denote the restriction by Ly (A) (resp. Le ().

For any i € Z™, denote Zp o(j) the Verma mmodule of i, of highest weight g, which
contains a unique irreducible {t,-submodule. The following results (i) and (ii) are due to
Jantzen [J, 6.2 (1), p.190; 6.3 Corollar, p.191], the assertion (iii) maybe is well known, all
of them also can be proved along the proofs of Prop. 2.6, Theorem 3.6 and Theorem 3.2.

(i). Assume that ) is p®-restricted, then the irreducible i -submodule of Zg (2(p® —1)p +
wyA) is isomorphic to Ly o(}), where p = (1,...,1) € Z%.

(i1). Assume that A is p®-restricted, then V(2(p® —1)p+1woA) contains a unique irreducible
{e-submodule, which is isomorphic to Le(A).

(iii). The category € of finite dimensional ilp-modules has enough injective objects and
enough projective objects as well. And in € each injective object is also a projective object.
Each injective object in € is a direct summand of the module Ve((p® — 1)p) @ Ve(8) for
some positive integer b and é € Z. Moreover, if E is an injective object in € then F has a
submodules filtration 0 = By C Fy—y C --- C E; C E| = E such that E,/E,4+1 ~ Vi(va.)
for some v, € 2, a=1,...,k - 1.

6.2. We shall fix the positive integer a. Assume that g is ismple. If p is odd, and p > 3
when g is of type G, choose a p®-th primitive root £ of 1. If gis of type 4, D, F and p = 2,
choose a 2¢*!-th primitive root £ of 1. Let Ug be the Z[¢]-subalgebra of U generated by

EEH Fz-(k), K, K71 i=1,2,..,n, k > 0. Consider the -algebra U} := Ui @zjg £, where
t is regarded as a Z[€]-algebra through the ring homomorphism Z[¢] — & ¢ — 1. For
simplicity, the images in U} of Egk), F,-(k), I, Ki_l, ete. will be denoted by the same
notations.

Let X' be the two-sided ideal of U}, generated by Iy —1,..., [\, — 1. Set U := Ui/ XK',
Again for simplicity, the images in U, of Efk), Fi(k), I, I{i_l , etc. will be denoted by the
same notations. The following result is due to Lusztig [L3, 6.7 (d}, p.295] (cf. 1.6).
(1). There is a unique E-algebra isomorphism Uy — e such that Ei(k) maps to ef.k) =
ef/k! ® 1 and Fi(k) maps to fi(k) = f¥/E'®@1 for i =1,2,...,n. The image in U of [K;';'O]
will be denoted by (4.

Given A € Z% ,w € W, define the monomials £y u, % ,,, Ir,Ey Of f}k), 1=1,2,...,n,
k > 0 as the same way in 1.4.
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Theorem 6.3. Assume that A € Z7 is p“-restricted. Then

(1). The elements ry and ¢\ are in uj.

(i1). The element z(,e_;),_1j generates the unique irreduble submodule of Zeo(2(p* — D)p+
woA) (resp. Ve(2(p® — 1)p+1wo))), where j is a nonzero element in Zg o(2(p® — 1)p + wo )
(resp. Ve(2(p® — 1)p + woA)) of highest weight.

Proof: It is no harm to assume that g is simple. When g is of type A,,, D,,, E,;; or B,,C,,, Fy
and p is odd; or type G2 and p > 5, the theorem is a simple consequence of Theorem 4.2
and 6.2 (i). When g is of type B,,C,,F; and p = 2; or type G2 and p = 2,3, one may
prove the theorem by direct calculations.

Theorem 6.4. Assume that A € Z] is p®-restricted.

(i). Let Ja be the left ideal of Uy generated by all elements cgk), (’2) — ((’\‘f}l)),f,«(k‘),
1 =12,..,n, k21, k 2 p? and all elements f € u; such that frie_1),—a = 0, then
ﬂy/:i,\ s Ly(/\).

(11). Let Jy be the left ideal of u, generated by all elements eg,k), (';') — (<'\’f'y>), o« € RT,

i=1,2,..,n, 1<k <p®—1 and all elements f € u; such that frpa—1)p—r = 0, then
lla/j,\ ~ Lg'a()\).

(iii) For any v € NR¥, denote u; ., the set of all elements in u; of degree v and denote
na(A,v) the set {f € ug . | frps—1yp—a =0}, then dimLe(A)r—y = dimug _ — dimn, (A, 7).

Proof: Similar to those in section 5.

7. Questions

7.1. Let £ be root of 1 of order > 3. For i € [1,n], & € N, denote O; the Q(&)-

linear homomorphism Ug — Ug, @ — o F; i(k). The kernel and the image of ©; ; are casily
described by means of PBW Theorem. Assumethat A € Z_'; 1s l-restricted. Let s, s;, -« 84,

be a reduced expression of the longest element of W. Set ky := (s4,_, ---s;,(k — A), a7, ),

6p i= kioy, + - + kpay,, k= 1,...,7. Recall that for any v € NRT we denote uE_'r the

L]

set of all elments in ug of degree v. Given § € NRT, set
Dg,‘g = climQ(E)uE_’ﬁ,
Dl’ﬂ = dile(E)eh,h(uEﬁ)a

Dg'ﬂ = nlin{Dl'ﬂ, dian(E)(_)iz,ka(u.g_,ﬂ+6,)}v



D, g= nlin{D,-_lyg, dian(f)e"f’k'(uaﬂ+5r-x)}'

Conjecture A. The number D, g is independent of the choice of the reduced expression
Wwo and dimQ(s)Lf(/\),\_ﬂ = D,-”s.

7.2. For i € [1,n], k € N, denote 6; x the t-linear homomorphism iy — Ue, @ — mft-(k).
The kernel and the image of 8; ; are easily described by means of PBW Theorem. Assume
that A € Z is p®-restricted. Let sy, s;, - - - s;, be areduced expression of the longest element
of W. Set kp := (si,_, ---55,(p" = L)p = A),af ), b := kyay, + -+ kpay,, h=1,..,7.
Recall that for any v € NRT we donte u, . the set of all elments in u7 of degree v. Given
B € NRT, set

00, = dimqgyug g,
Dl,ﬂ = (lian(f)eil:kl (ugﬂ)’

02 g = min{d g, dimQ(E)Giz.kz(u_g,ﬁ-p&l)}a

Or,p = min{d,—1,6, dimqe)fi, k(g 545, )}
Conjecture B. The number 0, g is independent of the choice of the reduced expression wy

and dimgg)Le,a(A)r—p = 0, p provided that p > the Coxeter number of the root system
R associated to g.

7.3. Recall that U, = U. We drop the index v and the index 1 in all notations involved

them. So V(A) will stand for V(). Let A, € Z}. Assume that A € Z} is l-restricted.
Given w € W, set

Hw(l[l -+ )\) = {yv];:-i:,\ | /RS Ua YTnx—r,w € UQ[v,v‘l]}-
Then H*(A) is a free Q[v,v™!]-submodule of V().

Conjecture C. Essentially, H*(1jz -+ A) is the free part of the cohomology group
H @ (w(lz + X+ p) — p) defined in [APW, section 3, p.22].

7.4. Keep the notations 7.3. Let s;, ---s;,8;, be a reduced expression of w. Set aj :=
(Sin_1Sing iy A 0 ) vn = (L + Ry ) +ap; &y = diy; h=1,..., k. Then set

a . 15 1203 Vi

Aaw = .

B A1) g L82] g ak] g
1 2 k
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Conjecture D. As Uqyy,,-1j-modules, Uqy,v-1)T) 4 Vlp+r+r/@x,w 18 isomorphic to

HY(p + 6+ A).

7.5. Keep the notations in 7.3. Let ¢; be the I-th cyclomatic polynomial (i.e. the minimal
polynomial of ¢). For each integer k € N, set

My = {yvl,‘.,.,\ | S UQ[U’!,—J], YTu—A € (,f);;UQ[U,,,-l]}.

Conjecture E. (i). M4, =0.

(i1).The filtration 0 = M,y C M, C-.- C M; C My = UQ[v,u-1)Vtu+x is just the Jantzen
filtration of UQ[U‘U-I]'UI“.F,\.

7.6. Recall that in U~ a monomial of Fi(k), 1 =1,2,...,n, k>0, 1s called to be tight [L6&,
section 1} if the monomial is an element of the canonical basis of U~ .

Conjecture F. For each A € Z] and w € W, the monomials x ., :z:i\’w € U™ are tight.
Remark. It is enough to prove that @/, is tight.
7.7. Let £ be a root of 1 of order > 3. Assume that g is simple. In R”, consider the

hyperplanes
Hor:={ecR"|(e+p,a")=kl,}, o€ RN kel

Denote s, 1 the corresponding reflections of R", that is

sak(e)=e—(le+p,a¥) —kl)a, e€R™
These reflections generate an affine Weyl group W), which is the afline Weyl group asso-
ciated to the Cartan matrix (a;;) when Iy = ... = [, the affine Weyl group associated to
the transpose matrix of the Cartan matrix (a;;) when [; # I; for some ¢, 7.

Conjecture G. The Conjecture 8.2 in [L2, p.75] is true in terms of W and U,.

7.8. For Conjecture C - Conjecture E; one may states similar conjectures for Uz and Weyl
modules of .
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