Tête-à-tête twists and geometric monodromy.

Norbert A'Campo

Introduction. Let (Σ, Γ) be a pair consisting of a a compact connected oriented surface Σ with non empty boundary $\partial \Sigma$ and a finite graph Γ that is embedded in the interior of Σ. We assume that the surface Σ is a regular neihborhood of the graph Γ and that the embedded graph has the tête-à-tête property, which property we will define later in this paper. Moreover, we will construct for each pair (Σ, Γ) with the tête-à-tête property a mapping classe T_{Γ} on $(\Sigma, \partial \Sigma)$. We call the mapping classes resulting from this construction tête-à-tête twists.

A surface of genus g and with r boundary components carries up to congruence by homeomorphism of the surface only finite many graphs with the tête-à-tête property and hence for fixed (g, r) there are only finite many mapping classes, which are tête-àtête twists.

The main theorem of this paper asserts:
Theorem. The geometric monodromy diffeomorphism of a plane curve singularity is a tête-à-tête twist.

As a corollary, we obtain a very strong topological restriction for mapping classes, that are geometric monodromies of plane curve singularities.

Section 1. Tête-à-tête twist.

Let Γ be a finite connected metric graph with $e(\Gamma)$ edges and no vertices of valency 1. We assume, that the edges are parametrized by continuous bijective maps E_{e} : $\left[0, L_{e}\right] \rightarrow \Gamma, L_{e}>0, e=1, \cdots, e(\Gamma)$, such that the distance from $E_{e}(t)$ to $E_{e}(s)$ is $|t-s|, t, s \in\left[0, L_{e}\right]$.

Let Σ be a smooth, connected and oriented surface with non empty boundary $\partial \Sigma$. We say, that a map π of Γ into Σ is regular if π is continuous, injective, $\pi(\Gamma) \cap \partial \Sigma=\emptyset$, the compositions $\pi \circ E_{e}, e=1, \cdots, e(\Gamma)$, are smooth regular embeddings of intervals and moreover, at each vertex v of Γ all outgoing speed vectors of $\pi \circ E_{e}, v=E_{e}(0)$ or $v=$ $E_{e}\left(L_{e}\right)$ are distinct.

We denote by abuse of language by the pair (Σ, Γ) the pair $(\Sigma, \pi(\Gamma)$.
A safe walk along Γ is a continuous injective path $\gamma:[0,2] \rightarrow \Sigma$ with following properties:
$-\gamma(t) \in \Gamma, t \in[0,2]$,

- the speed, measured with the parametrization E_{e} at $t \in[0,2]$ equals ± 1 if $\gamma(t)$ is in the interior of edge e,
- if the path γ runs at $t \in(0,2)$ into the vertex v, the path γ makes the a sharpest possible right turn, i.e. the oriented angle at $v=\gamma(t) \in \Sigma$ in between the speed vectors $-\dot{\gamma}\left(t_{-}\right)$and $\dot{\gamma}\left(t_{+}\right)$is smallest possible.

It follows, that a save walk γ is determined by its starting point $\gamma(0)$ and its starting speed vector $\dot{\gamma}(0)$. Futhermore, if the metric graph $\Gamma \subset \Sigma$ is without cycles of length less are equal 2 , from each interior point of an edge start two distinct save walks.

Definition: Let (Σ, Γ) be the pair of a surface and regular embedded metric graph. We say that the tête-à-tête tête-à-tête property holds for the the pair if

- the graph Γ has no cycles of length ≤ 2,
- the graph Γ is a regular retract of the surface Σ,
- for each point $p \in \Gamma, p$ not being a vertex, the two distinct safe walks $\gamma_{p}^{+}, \gamma_{p}^{-}$: $[0,2] \rightarrow \Sigma$ with $p=\gamma_{p}^{+}(0)=\gamma_{p}^{-}(0)$ satisfy to $\gamma_{p}^{+}(2)=\gamma_{p}^{-}(2)$.

It follows that the underlying metric graph of a pair (Σ, Γ) with tête-à-tête property is the union of its cycles of length 4.

We give basic examples of pairs (Σ, Γ) with tête-à-tête property:

- the surface is the cylinder $[-1,1] \times S^{1}$ and the graph Γ is the cycle $\{0\} \times S^{1}$ subdivided by 4 vertices in edges of equal length. Here we think S^{1} as a circle of length 4.
- the surface $\Sigma_{1,1}$ is of genus 1 with 1 boundary component and the metric graph $\Gamma \subset \Sigma$ is the biparted complet graph $K_{3,2}$.
- for $p, q \in \mathbf{N}, p>0, q>0$, the biparted complet graph $K_{p, q}$ is the spine of a surface $S_{g, r}, g=1 / 2(p-1)(q-1), r=(p, q)$, such that the tête-à-tête property holds. For instance, let P and Q be two parallel lines in the plane and draw p points on P, q points on Q. We add $p q$ edges and get a planar projection of the graph $K_{p, q}$. The surface $S_{g, r}$ is a regular thickening of that projection.

Let (Σ, Γ) a pair of a surface and graph with tête-à-tête property. Our purpose is to construct for this pair a well defined element T_{Γ} in the relative mapping class group of the surface Σ. For each edge e of Γ we embed relatively a copy $\left(I_{e}, \partial I_{e}\right)$ of the interval $[-1,1]$ into $(\Sigma, \partial \Sigma)$ such that alle copies are pairwise disjoint and such that each copy I_{e} intersects in its midpoint $0 \in I_{e}$ the graph Γ transversally in one point which is the midpoint of the edge e. We call I_{e} the dual arc of the edge e. Let Γ_{e} be the union of $\Gamma \cup I_{e}$. We consider Γ_{e} also as a metric graph. The graph Γ_{e} has 2 terminal vertices a, b.

Let $w_{a}, w_{b}:[-1,2] \rightarrow \Gamma_{e}$ be the only save walks along Γ_{e} with $w_{a}(-1)=a, w_{b}(-1)=$ b. We displace by a small isotopy the walks w_{a}, w_{b} to smooth injektive path $w_{a}^{\prime}, w_{b}^{\prime}$, that keeps the points $w_{a}(-1), w_{b}(-1)$ and $w_{a}(2), w_{b}(2)$ fixed, such that $w_{a}^{\prime}(t) \notin \Gamma_{e}$ for $t \in(-1,2)$. The walks w_{a}, w_{b} meet each other in the midpoint of the edge e. Hence by the tête-à-tête property we have $w_{a}(2)=w_{b}(2)$. Let w_{e} the juxtaposition of the pathes w_{a}^{\prime} and $-w_{b}^{\prime}$. We may assume that the path w_{e} is smooth and intersects Γ transversally. Let I_{e}^{\prime} the image of the path w_{e}. We now claim that there exits up to isotopy a unic relative diffeomorphism ϕ_{Γ} of Σ with $\phi_{\Gamma}\left(I_{e}\right)=I_{e}^{\prime}$. We define the tête-à-tête twist T_{Γ} as the class of ϕ_{Γ}.

For our first basic example we obtain back the classical right Dehn twist. The second example has as tête-à-tête twist the geometric monodromy of the plane curve singularity $x^{3}-y^{2}$. The twist of the example ($S_{g, r}, K_{p, q}$) computes the geometric monodromy of for the singularity $x^{p}+y^{q}$.

Section 2. Relative tête-à-tête retracts.

We prepare material, that will allow us to glue the previous examples. Let S be a connected compact surface with boundary ∂S. The boundary $\partial S=A \cup B$ is decomposed as a partition of boundary components of the surface S. We assume $A \neq \emptyset, B \neq \emptyset$.

Definition. A relative tête-à-tête graph (S, A, Γ) in (S, A) is an embedded metric graph Γ in S with $A \subset \Gamma$. Moreover, the following properties hold:

- the graph Γ has no cycles of length ≤ 2,
- the graph Γ is a regular retract of the surface Σ,
- for each point $p \in \Gamma \backslash A$, p not being a vertex, the two distint safe walks $\gamma_{p}^{+}, \gamma_{p}^{-}$: $[0,2] \rightarrow \Sigma$ with $p=\gamma_{p}^{+}(0)=\gamma_{p}^{-}(0)$ satisfy to $\gamma_{p}^{+}(2)=\gamma_{p}^{-}(2)$.
- for each point $p \in A, p$ not being a vertex, the only save walk γ_{p}^{+}satisfies $\gamma_{p}^{+}(2) \in A$.

We call the subset A the boundary of the relative tête-à-tête graph (S, A, Γ). This boundary carries a self map $p \in A \mapsto \gamma_{p}^{+}(2) \in A$, which we call the boundary walk w.

We now give a family of examples of relative tête-à-tête graphs.

- Consider the previous example $\left(S_{g, r}, K_{p, q}\right), g=1 / 2(p-1)(q-1), r=(p, q)$. We blow up in the real oriented sense the p vertices of valency q, so we replace such a vertex $v_{i}, 1 \leq i \leq p$ by a circle A_{i} and attach the edges of $K_{p, q}$ that are incident with v_{i} to the circle in the cyclic order given by the embedding of $K_{p, q}$ in $S_{g, r}$. We get a surface $S_{g, r+p}$ and its boundary is partitioned in $A:=\cup A_{i}$ and $B=\partial S_{g, r}$. The new graph is the union of A with the strict transform of $K_{p, q}$. So the new graph is in fact the total transform $K_{p, q}^{\prime}$. We think this graph as a metric graph. The metric will be such that all edges have a positive length and that the tête-à-tête property remains for
all points of $K_{p, q}^{\prime} \backslash A$. We achieve this by giving the edges of A the length $2 \epsilon, \epsilon>0, \epsilon$ small and by giving the edges of $K_{p, q}^{\prime} \backslash A$ the length $1-\epsilon$. The boundary walk is an interval exchange map from $w: A \rightarrow A$. We denote by the pair $\left(S_{g, r+p}, K_{p, q}^{\prime}\right)$ this relative tête-à-tête graph together with its boundary walk.

Section 3. Gluing and closing of relative tête-à-tête graphs.

First we discribe the procedure of closing. We do it by an example. Consider $\left(S_{6,1+2}, K_{2,13}^{\prime}\right)$. We have two A boundary components A_{1} and A_{2}. In oder to close the A components, we choose a piece-wise linear orientation reversing selfmap $s_{1}: A_{1} \rightarrow A_{1}$ of order 2 . The boundary component A_{1} will be closed if we identify the pieces using the map s_{1}. In order to get the tête-à-tête property we do the same with the component A_{2}, but we take care such that the involution $s_{2}: A_{2} \rightarrow A_{2}$ is equivariant via the boundary walk w to the involution s_{1}. Hence we take $p \in A_{2} \mapsto s_{2}(p):=w \circ s_{1} \circ w^{-1}(p) \in A_{2}$. More concretely, we can choose for $s_{1}: A_{1} \rightarrow A_{1}$ an involution that exchange in an orientation reversing way the opposite edges of an hexagon. If we do so, we get a surface $S_{8,1}$ with tête-à-tête graph. The corresponding twist is the geometric monodromy of the singularity $\left(x^{3}-y^{2}\right)^{2}-x^{5} y$. If we make our choices generically, the resulting graph will have 51 vertices, 36 edges, 6 vertices of valency 2 , 45 vertices of valency 3 .

Now an example of gluing. We glue in an walk equivariant way to copies of $\left(S_{2,1}, K_{2,5}^{\prime}\right)$. We get a tête-à-tête graph on the surface $S_{5,2}$. The corresponding twist is the monodromy of the singularity $\left(x^{3}-y^{2}\right)\left(x^{2}-y^{3}\right)$.

This is work in progress. A futher constuction for isolated singularities $f: \mathbf{C}^{n+1} \rightarrow$ C provides its Milnor fiber with a spine, that consists of lagrangian strata. Again the monodromy is concentrated at the spine. The monodromy diffeomorphism is a generalized tête-à-tête twist. The case of plane curves is already interesting for we are aiming progress in restricting the adjacency tables. Thanks for your interest.

University of Basel, Rheinsprung 21, CH-4051 Basel.
example of pairs (S, Γ) with tête-a-fite property

$$
\left(s_{1,1}^{x}-k_{2,3}^{y}\right)
$$

Example of a relative fain (S, A, B)

