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INTRODUCTION

Let X be a normal, quasi-projective surface over an
algebraically closed field k, and let f!%-bx be a resolution
of singularities of X. Let FOKO(X) denote the subgroup of
KO(X) generated by the residue classes of the smooth points
of X, and similarly define F°K0(§). From the works [L2], [L3]
[L-w} ana [P-WI » we know that F K,(X) is isomorphic to

Hz(x,.xz), where )(2 is the Zariski K-sheaf )(Z'x = Kz( ak,x).

The corresponding result in the smooth case was proved by

Bloch in ‘:ﬁ} . The map f induces a surjective homomorphism
~

f*:FOKO(X)-47 FOKO(X). Bloch and Srinivas have conjectured

that the kernel of f* can be computed as

ker £+ = coker (1’ (X, X,)—> Lin i e, X)),
n
where En is the n-fold thickening of the exceptional divisor
of the map f. Loosely speaking, this says that the kernel of
f comes from analytic invariants of the singular local rings
of X, together with a global invariant from the resolution
‘;. In particular, if X has only rational singularities, the
analytic invariant %;g H1(En,fX2) vanishes, hence f* should be
an isomorphism. "

M.P. Murthy and N. Mohan Kumar( [M] and[M-M] ) have studied
the algebraic local rings on rational surfaces with a given
analytic type. From their work it follows that, if X is rational,
with a single singularity of type A, (n#7,8) or D, (n#8) then
FOKO(X) = 0, in agreement with the conjecture above. Together
with V. Srinivas ([L-5]) , we have analyzed a special type of

rational singularity, whose analvtic type has for minimal resoluition
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a single rational curve with self-intersection -4, and we have
verified the above conjecture for a surface possessing singularities
only of this special type.

One very nice class of rational singularities are the
quotient singularities, i.e. those singularities with the
analytic type'of(EZ/G)O, where G is a finite subgroup of GL(2,C),
such that each element g#id of G has only 0 as a fixed point.

In many ways, these singularities are "essentially non-singular",
and therefore should be a good place to start in attacking the
oonjecture of Bloch and Srinivas. 1In this work, we verify the
conjecture for singularities which have the analytic type of

a quotient singularity as above, with G cyclic. This includes

for example, all the singularities with analytic type An' and

all singularities with analytic type € [Ix", Py, xy™ T, ynﬂ .
The rational double points of analytic type Dn’ EG' E7, and EB

are not of this form.

The proof is very simple, and consists of two main steps.

The first is to notice that it is essentially enough to dominate
the singularity by a regular ring via a finite map, and the
second is to construct such a map for singularities of the type
described above. We would like to thank A. Collino for
suggesting the use of the first step, and K. Behnke, H. ''Esnault,
and E. Viehweg for kindly and patiently teaching me some of the

rudiments of quotient singularities.

We oesume Hw:us\wi bhek Jon (B) 0.



Lemma 1. Let R be a normal, two-dimensional local ring,
R 2 k, let X = Spec(R), and let p:§a5x be a resolution of
singularieties of X. Suppose there is a smooth scheme Y, and
a finite surjective map f:Y-aX of degree n. Let Efre-asEg be
the irreducible exceptional curves of p. Then the cokernel of
the map _\_Lk* > &, X,) is n-torsion.

Ey
Proof. Let Z be a resolution of singularities of the fiber
product Y xgy. Let F1,...,Fm be the irreducible exceptional
curves of the map g:Z->Y. As Y is smooth and semi-local, we have
H (¥, X, =0, hence_[_} k* generates H' (Z,)(z) . We have the

following diagram: +

9 N
1) 19
Y ——————a X .
£

~
Since Y is finite over X, Z is proper over X. The map g induces

maps

g*: B (X, K,) = vz, X))
: v
gu: H' (2, X)) = H' (X, X,) :

The map g, is induced by the map which sends a curve C on Z, and
a function h on C to the pair (g(C),NmC/g(C)(h)), if C is finite
over g(C), and to the identity if g(C) is a point. For 2z in

H1 6(', :)(2) ; we can represent z as a collection g(ci’hi)} ,where



C; is a curve of X, h, is in k(c )*, and Z(hi) = 0. Altering
the collection {(c ,h )s by a tame symbol if necessary, we may
assume that each Ci avoids the f;nitg set of points of x over
which 2 is not finife. Then g* (z) is represented by the
collection Ikg*(ci),g*(hi)& . F;om this description, it
follows that g,e.g* = n x id, and g*(Fi,a), a in k*, is of the
form (Ej,b), for suitable Ej; and suitable b in k*. This

proves the lemma.
gqg.e.d.

Let R be a normal, two-dimensional local ring, containing

k. We call R a cyclic quotient singularity if the completion

ﬁ of R is isomorphic to the completion of the local ring at 0

of a variety of the form 12/6, where G is a finite, cyclic sub-
group of GL(2,k), such that 0 is the only fixed point of each
element g # id of G. Fix an’ embedding of k into €, let X = Spec(}
Xp = Spec(RnkC). We may suppose that R is the local ring of

a point p on an affine variety X* = Spec(A), and we let X* =

c

Spec(A®, €). Let Xp be a small analytic neighborhood of p in XE.
Then R (or by abuse of notation, X) is a cyclic quotient singularit
if and only if “}(x ~-p) is a finite cyclic group. Given a cyclic
P quotier
ngularity X, we construct a smooth scheme Y, and a finite surjective

map £f:Y-?X as in the lemma. We proceed in five steps:

Step 1: Let W be the dualizing sheaf on X, and let j:X-p=> X
be the inclusion. Since p is a quotient singularity, there is

a minimal r %1 such that uéia = j;(j*tuo)'r) is free. Choosing
an isomorphism u;r320¥ aet makes B =ie;u§i] into a finite
& =

X algebra. Letting X' = Spec& (B), X' is local, Gorenstein,
X

and X' is etale over X-p. Letting p' be the clc<2d point of X',



and letting x&, be a small analytic neighborhood of p' in a

suitable affine model of X', it follows that‘N1(Xé.-p') is

again cyclic, and hence p' is a rational double point of type

An’ Thus we may replace X with X', and assume that p is a

rational double point of type An.

Step 2: Let #~o, ,,** be the dual graph of the exceptional
curves in a minimal resohution’? of X, and let Ei be the irreducible
exceptional curve corresponding to the ith vertex froﬁ the left,.

Let H be a general hyperplane section of X* passing through p,

= n~
and let H be the proper transform of H up to X. Then

H'E; =0 for i=2,...,n-1
H- = He = i Y,

H E1 H En 1 if n% 2
H-E, = 2 if n=1 ,

and H is smooth. 1In case n=1, we may choose H so that H intersects
n
E1 at two points transversely. Let xP be the inverse image of

-~ -
xp under h:’;{—-)X. Then anp = Hp breaks up into two analytically

irreducible branches, L. and L' with

. = = ',
L'E, = 1=L'"E

and L ‘E_=0=1L"'""E

n 1 if nYy2 .

From an easy computation, it follows that both L and L' are

generators of Pic(xp-p) = Cl(Xp)'%‘N1(Xp-p) Sz/(n+1)Z .



Step 3: Take a general linear projection g:x*-&hﬂ, so that H

is finite over 11

» and the normalization HN of H is etale over
0 = g{p). This can be do;ae, as we may éhoose H so that H is
smooth except for an ordinary double point‘ at p. We may then
choose g so that each branch of H at p is étale over 0.

Let W* be the fiber product X* x HN, and iet a and b be

51

the two points of H lying over p. Then W* is finite over
X*, and etale over a neighborhood of p. Let s:HN-ﬁ W* be the
section to p, induced by the inclusion of H in X*, and let
c*= s(H'). Then C*generates Cl{ B'W*,x) for x = s(a), s(b),
and does not pass through the other points of W* lying over p.

~N ~
The following picture may be helpful:(X* and W* are minimal resolut
of X* and W*, respectively)
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Step 4: Let HN' be the Spec of the semi-local ring of the

points of HN lying over O, and let 2 be the Galois closure

of HN' over nﬁ. Then 2 is finite, etale, and Galois over

Z

Spec(b‘1'0) . Let U be the fiber product X x 1

U

and let C be the inverse image of C* in 4. By conjugating C by

A

elements of Gal(Z/A‘), we construct curves C = C1,...,C on U

t
such that

1) sing(u) ¢ U c,
i
2) if g is in Sing(U),-\Ci then Ci is a generator

N
of c1(0U g =B/ (aeniT .

In addition, U is finite and etale over X.

Step 5: Since U is semi-local, (n+l)C1 is a principal divisor.
Choosing an isomorphism C}U((n+1)c1) 4 BU gives an algebra

n
structure to the finite 06 module ® BL(1C1) = B. Let
i=0

f.:U, > U be the normalization of Specf (B). Let p,,...,pP
1°71 U 1 m
be the points of Sing(U) lying on C1. Then U1 is finite over
U, etale over U - Py and the points of U1 lying over
i
Pyr-..rp, are smooth on U1. We now repeat this procedure with
the curve f;1(cz), and so on, constructing a regqular, semi-local

scheme Y = Ut’ finite over U. Since U is finite over X, we

have constructed a morphism f:Y ~> X as required by lemma 1.

We can now prove our main result.
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Theorem 2. Let X be a normal, quasi-projective surface over k,
£:X ->X a resolution of singularities. Suppose that each point
of Sing(X) is a cyclic quotient sinqularity. Then

2 £

B (x, X,) HE (X, X,)

is an isomorphism.

Proof. Let X' be a projective closure of X, with Sing(X')=Sing(X).
~
Let X' be the corresponding projective closure of ’)?.A We have
Withme phiznn #’:7’ > X’
the five term exact sequences coming from the Leray spectral
sequences Hp(x,qu*(;Kz)) > Hp+q(’§'3(2) and Hp(x',qu;(.Xz)) =>
" v
P, X, -
1 1R a 0 1 2 ‘1\* 2 0
0 DH X, £,(R,)) S H (X, Ky) DH (X,R£,(K,)) 4B (X, £, (X,)) D B (X,?
K ] X 4 ) 'y
3 T 1 ? , ) TS ] t #y t r

Qa
0 SH'(x1E1(X,) > ' (R X)) S HO R (X, B (i) (K, »r? &)

Since )(2 X and f*(J(z,x) are isomorphic off a codimension two
’

subset of X, we have
2 x, £, X)) = 52x,X,)

and similarly
B (x', 6, R, = BAx', R ,) .

By [Lgl : OX LP-W} ,» we have



w2 (x, X,) = cH? (X,Sing (X))

and B (X', R,) = CH®(X',Sing(x")) ,

where CHZ(X,Sing(x)) is the free abelian group on the smooth
points of X, modulo divisors of functions on curves C, with
C ASing(X) = ¢ , and CH?(X',Sing(X')) is defined similarly.
By [ﬁl we have a similar isomorphism for the smooth varieties
? and'i'. Thus f* and f'* are surjective.

By lemma 1, the cokernels of a and a' are torsion groups.
On the other hand, by[ﬁx for the smooth case, and[L1] in the

singular case, we know that

2 . ~ ~
CH (x‘,SJ.ng(x'))tor = Alb(X')

2 (%)

(1S

CH

tor tor

Thus a' is surjective. Therefore a is also surjective, and
£*:H2 (X, XZ) = 1% (X, X ,) is an isomorphism.

g.e.d.

~
Corollary 3. Let f:X -3 X be as in Theorem 2. Let FOKO(X)
be the subgroup of Ko(x) generated by the classes of the residue

fields k(x) for smooth points x of X, and define Foxo(ﬁ) similarly.
Then
~
f*:Ko (X) ~» Ko(x) is injective

and
* e
f 1F0K0(X).a FOKO(X)

£*.cH? (X, Sing (X)) =>cn? (%)

are isomorphisms.
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d
Proof. As CH’(X,Sing(X)) = H2(X, X,), and cE®(X) = B2 (X)),

the last statement follows from theorem 2. From [Id in the

singular case, and YB-S}in the smooth case, we have

~ _ 2N
FOKO(X) = CH" (X)

FoKq (X) = cH? (X,Sing (X))

whence the second statement. Let FIKO(X) be the subgroup of KO(X)
generated by FOKO(X) and the classes of Cartier divisors~on X, andN
define F K (X) similarly. Then Ko(X) = F,Ky(X) @ Z, Ko(X) = PyKy(X) @2
with the Z generated by the class of the trivial module. We also have
the short exact sequences (by [B-S] and [L2] )

~N Y . ~N
0~ FOKO(X) ﬁFlKo( ) = Pic(X) = 0O

ok} i) P

0 = FoKo(X) = FyKo(X) = Pic(X) 20

The map f£*:Pic(X) -» Pic &) is injective since X is normal, hence
~
£*:K, (X) 3K, (X) is injective, as desired.
g.e.d.

As an application, we have the following corollary.

Corollary 4. Let X be a rational, affine surface over k, X = Spec(R),
Suppose that X is normal, and has only cyclic

quotient singularities. Let p be a smooth point of X, then

the maximal ideal mp of p is a complete intersection, i.e.,

there exist £,g, in R with mp = (f,q9).

Proof. Following Serre (S} , there is a rank two projective

P and a short exact sequence 0-3R~P amp-yo. In Ko(x) : we have

[ = -(mé = ‘ﬁl/m; .

On the other hand, letting Nx be a resolution of singularities of
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X, it is easy to show that cnz(§) = 0. By corollary 3,
CHZ (X,Sing(X)) is also 0, hence the class of[_‘R/mp‘ in KO(X)
is zero as well. By the cancellation theorem of Murthy-Swan

YM—éS » P is a free R module,hence mp is two-generated, as

desired. q.e.d.

The same argument as above also shows that any height

two ideal I of R, locally a complete intersection, is globally

a complete intersection.
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