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ON THE BEHAVIOR OF MASSEY PRODUCTS UNDER FIELD EXTENSION

ALEKSANDAR MILIVOJEVIĆ

Abstract. We show that global vanishing of Massey products on a commutative differential
graded algebra is not invariant under field extension. The non-vanishing of any triple Massey
product is invariant under field extension, while higher Massey products can generally vanish
upon field extension. If the field being extended is algebraically closed, all non-vanishing Massey
products remain non-vanishing on a finite type commutative differential graded algebra.

1. Introduction

Massey products are higher-order multi-valued operations on the cohomology of a differential
graded algebra which provide obstructions to formality, i.e. the existence of a chain of quasi-
isomorphisms between the differential graded algebra and its cohomology equipped with trivial
differential. We will be working with k-cdga’s, i.e. commutative (though this property will largely
be inessential) differential graded algebras over fields k. For purposes of discussion we will as-
sume the fields are of characteristic zero and the cdga’s connected; however, our general results
(Theorem 1.1 (2) and (4)) do not require these assumptions.

Following the convention of [4], [1], for homogeneous cohomology classes z1, . . . , zn, we first define
a defining system for the n-fold Massey product ⟨z1, . . . , zn⟩ to be a choice of representatives ai,i
for zi, and for each pair 0 ≤ i < j ≤ n other than (i, j) = (1, n), a choice of element ai,j (if it
exists) such that

d(ai,j) =

j−1∑
k=i

(−1)|ai,k|+1ai,kak+1,j .

Then the n-fold Massey product is the set of cohomology classes{ [n−1∑
k=1

(−1)|a1,k|+1a1,kak+1,n

] }
obtained by running over all defining systems1. The Massey product is well-defined if the above set
is non-empty, i.e. if there exists at least one defining system. We say the Massey product is trivial,
or vanishes, if 0 ∈ ⟨z1, . . . , zn⟩. The above set is a quasi-isomorphism invariant of differential
graded algebras.

Though formality of a cdga implies that all Massey products vanish, the converse does not hold
(see for example [3, 1.5] for a systematic study of this phenomenon on sufficiently highly connected
rational Poincaré duality algebras). Here we illustrate one more shortcoming of the property “all
Massey products vanish”: unlike what is clearly true for formality, the validity of this property is
not preserved under field extension.

We then investigate how individual Massey products behave under field extension. Concretely,
non-trivial triple Massey products, like cup products, remain non-trivial upon field extension. For
higher Massey products this need not be the case, unless the starting field is algebraically closed:

Theorem 1.1. Let k be a field. We have the following:

1The triple Massey product ⟨z1, z2, z3⟩ enjoys the special property that it can equivalently be described, when
defined, as a single element in the quotient of the cohomology modulo the ideal generated by z1, z3.
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(1) There are examples of k-cdga’s on which all Massey products vanish, but such that upon
field extension not all Massey products vanish (Section 2).

(2) Non-trivial triple Massey products remain non-trivial upon field extension (Section 3.1).
(3) A quadruple (or higher) Massey product can in general become trivial upon field extension

(Section 3.2).
(4) If k is algebraically closed, non-trivial Massey products of any order remain non-trivial

upon extension of the field k on a degree-wise finite-dimensional cdga. (Proposition 3.4).

In order to detect the non-formality of a cdga via Massey products, one may thus benefit from
looking at both larger and smaller ground fields. The example used in (1), and its minimal models,
provide examples of non-formal real cdga’s with “uniformly” (i.e. simultaneously, consistently, in
a precise sense) vanishing real Massey products (Remark 2.6).

In the category of A∞- (or C∞-) algebras, there are quasi-isomorphisms H(A) → A, where the
cohomology H(A) is an A∞-algebra with trivial differential, the multiplication it inherits from A,
and n-to-1 operations {mn}n≥3. The higher operations on H(A) are also sometimes referred to as
Massey products, and enjoy the property of being genuine n-to-1 operations. However, the A∞-
algebra structure on H(A) is not unique; automorphisms of this structure will in general change
the operations mn, and after collecting the outputs of all possible mn on a given input, one again
ends up with a multi-valued operation as in the “ad hoc” definition given before. Note also that
the ad hoc Massey products are not even well-defined on all inputs, unlike the operations mn. We
refer the reader to [1] for an investigation of the relation between these two notions of Massey
products. In what follows we will be considering only the ad hoc notion, defined directly on the
cdga level.

Acknowledgements. This work was inspired by a conversation with Scott Wilson about [13,
Section 6]; I thank him and Jonas Stelzig for numerous helpful discussions and comments, together
with the Max Planck Institute for Mathematics in Bonn for its generous hospitality.

2. Global vanishing of Massey products is not preserved under field extension

In this section we show by example that having all Massey products vanish over a given field
does not imply all Massey products vanish over a larger field. Upon field extension, elements in an
algebra generally may become decomposable, allowing for substantially new Massey products to
be considered; cf. [12, p. 203f.] on how the tensor Massey products, arising from the Eilenberg–
Moore spectral sequence for an augmented dga, generally have a larger domain of definition than
the ad hoc (tuple, in the terminology of loc. cit.) Massey products. Our example will have all
Massey products vanishing over the real numbers, in fact uniformly vanishing in a sense to be
explained below, while its non-formality will be detected by a non-trivial triple Massey product
on its complexification.

The example is based on one often considered at the interface of rational homotopy theory and
complex geometry. Take the complex Lie group G consisting of matrices of the form1 x z

0 1 y
0 0 1

 ,

with x, y, z ∈ C. Quotienting by the subgroup of matrices with entries in the Gaussian integers
Z[i] yields a compact complex threefold known as the Iwasawa manifold. The holomorphic one-
forms ϕ1 = dx, ϕ2 = dy, ϕ3 = xdy − dz on C3 are left G-invariant and hence descend to the
Iwasawa manifold. The induced map from the exterior algebra generated by these forms and
their conjugates Λ(ϕ1, ϕ1, ϕ2, ϕ2, ϕ3, ϕ3), equipped with the de Rham differential determined by
dϕ3 = ∂ϕ3 = ϕ1ϕ2, into the de Rham algebra of smooth complex-valued forms on the Iwasawa
manifold, is a quasi-isomorphism. From this finite-dimensional model of the Iwasawa manifold one
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easily sees that it carries a non-trivial triple Massey product over the complex numbers. Namely
consider ⟨[ϕ1], [ϕ1], [ϕ2]⟩. For any choice of primitive of ϕ1ϕ1 = 0 and of ϕ1ϕ2, the resulting class
in the Massey product2 is [ϕ1ϕ3] ̸= 0.

Now let us consider the above over the real numbers. As a real Lie group, the group G consists
of matrices of the form 

1 0 x1 −y1 x3 −y3
0 1 y1 x1 y3 x3
0 0 1 0 x2 −y2
0 0 0 1 y2 x2
0 0 0 0 1 0
0 0 0 0 0 1

 ,

where xi, yi ∈ R.
By looking at the entries of A−1dA for a generic matrix A of this form, we compute a real basis

of left-invariant one-forms to be given by

η1 = dx1, η2 = dy1, η3 = dx2, x4 = dy2, η5 = dx3 + y1dy2 − x1dx2, η6 = x1dy2 + y1dx2 − dy3,

and so by Nomizu’s theorem the natural inclusion of the R-cdga
A = (Λ(η1, η2, η3, η4, η5, η6), dη1 = dη2 = dη3 = dη4 = 0, dη5 = η1η3 − η2η4, dη6 = η2η3 + η1η4))

into the smooth real-valued forms on the Iwasawa manifold is a quasi-isomorphism, cf. [13, Ex-
ample 6.24] and [2, Section 6]. The complexification of this cdga is identified with the complex
model given above via ϕj = η2j−1 + iη2j , ϕj = η2j−1 − iη2j for j = 1, 2, 3.

Lemma 2.1. Let A be the real model of the Iwasawa manifold given above. If z1z2 = 0 for
non-zero classes z1, z2 ∈ H1(A), then z2 = cz1 for some real number c.

Proof. Note that H1(A) is spanned by [η1], [η2], [η3], [η4]. Choosing representatives

α1η1 + α2η2 + α3η3 + α4η4, β1η1 + β2η2 + β3η3 + β4η4

of z1, z2, we have that z1z2 is represented by

(α1β2 − α2β1)η1η2 + (α1β3 − α3β1)η1η3 + (α1β4 − α4β1)η1η4 + (α2β3 − α3β2)η2η3

+ (α2β4 − α4β2)η2η4 + (α3β4 − α4β3)η3η4.

The image of d in degree two is spanned by η1η3−η2η4 and η2η3+η1η4, so z1z2 = 0 is equivalent
to

α1β3 − α3β1 + α2β4 − α4β2 = 0,(1)

α1β4 − α4β1 − α2β3 + α3β2 = 0,(2)

α1β2 − α2β1 = 0,(3)

α3β4 − α4β3 = 0.(4)

Case 1: α1 = 0. Then (3) gives α2β1 = 0.
Case 1.1: If α2 = 0, then (1) and (2) become

α3β1 + α4β2 = 0,

−α4β1 + α3β2 = 0,

i.e. the scalar product of (β1, β2) with both (α3, α4) and (−α4, α3) is zero. Since the latter two
are orthogonal, we conclude (α3, α4) = 0 or (β1, β2) = 0. In the first case we would have z1 = 0 so
we are done. In the second case, we have that both z1 and z2 are represented by elements in the
span of η3, η4, and the claim clearly holds.

2The Massey product ⟨z1, . . . , zn⟩ does not depend on the choice of representatives of the classes zi [7, Theorem
3].
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Case 1.2: If β1 = 0, then z1 and z2 are represented by elements in the span of η2, η3, η4, and
the claim again clearly holds (since there is no η1 involved, which necessarily shows up in any
non-trivial differential).

Case 2: α1 ̸= 0. We can assume α1 = 1. So, by (3), β2 = α2β1. Now (1) gives us

β3 = (α3 + α2α4)β1 − α2β4.

Plugging this into (2), we get (1 + α2
2)β4 = α4(1 + α2

2)β1, hence β4 = α4β1. Lastly, (4) gives
us α4β3 = α3α4β1. If α4 ̸= 0, we conclude β3 = α3β1; if α4 = 0, then from (1) and (2) we see
β3 = α3β1. Hence z2 = β1z1. □

Corollary 2.2. Every real n-fold Massey product ⟨z1, . . . , zn⟩ on the Iwasawa manifold M , for
n ≥ 3 with zi ∈ H1(M ;R) ∼= H1(A), is trivial.

Proof. Since zizi+1 = 0 by assumption, by the above lemma zi+1 is a scalar multiple of zi (we
may assume all the zi to be non-zero, since otherwise the Massey product automatically vanishes).
Note that the differential is trivial on degree zero, so each class in H1(A) in fact has a unique
representative. Therefore the representatives of zi are scalar multiples of each other. In particular,
the pairwise products of representatives of zi and zi+1 are zero, and we can choose the zero element
as primitive. Inductively choosing zero for all primitive elements, we are done. □

Remark 2.3. There are non-trivial real Massey products on A landing in H≥3(A), cf. [2, Section
6], for example ⟨[η1], [η3η4], [η2]⟩.

We can truncate the Iwasawa manifold’s real minimal model A in order to obtain an R-cdga
with cohomology concentrated in degrees up to two, and with vanishing Massey products. Namely,
consider the differential ideal A≥3 of elements of degrees ≥ 3, and consider the quotient

B = A/A≥3.

It is immediate that the quotient map A
f−→ B is a 1-quasi-isomorphism, i.e. an isomorphism on

H1 and an injection on H2.

Corollary 2.4. All real Massey products on the real cdga B vanish.

Proof. Since the quotient map A
f−→ B is a 1-quasi-isomorphism, all real Massey products involving

only degree 1 classes can be computed on A [14, Section 3.6], where they vanish by Corollary 2.2.
For degree reasons, all other Massey products (involving at least one element of degree at least
two) trivially vanish, since H≥3(B) = 0. □

Proposition 2.5. B is not formal.

Before giving the argument, let us recall some concepts and results. Let k be a field of char-
acteristic zero. A 1-minimal model (over k) [10, Definition 5.3] of a k-cdga A is a minimal cdga
generated in degree 1, with a 1-quasi-isomorphism to A. The 1-minimal model is unique up to
isomorphism [10, Theorem 5.6]. We say a cdga is 1-formal if there is a 1-quasi-isomorphism from
its 1-minimal model to its k-cohomology algebra [8, Lemma 2.2]; we refer the reader to [8], where
this notion is also referred to as 1-stage formality, for further discussion (including a comparison
with the different notion of i-formality considered in [6]).

Formality famously satisfies a descent property: a degree-wise cohomologically finite-dimensional
connected k-cdga A is formal in the category of k-cdga’s if and only if A ⊗k K is formal in the
category of K-cdga’s, where k is any field extension of k. The analogous statement holds for
1-formality, and more generally, i-formality (or i-stage formality, in the terminology of [8]). We
refer the reader to [16, Theorem 12.1] and [15, Theorem 4.19], and to [14, Section 3] for a nice
overview.
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Back to the truncated model of the Iwasawa manifold, there is clearly a Q-cdga B′ such that
B′ ⊗Q R ∼= B, as the same holds for the model A of the Iwasawa manifold. So, B is formal
as an R-cdga if and only if B′ is formal as a Q-cdga. We remark that since B is obtained by
extending a rational cdga, by taking nilpotent models we can realize the phenomena in this section
by topological spaces.

Proof of Proposition 2.5. If B were formal, then it would be 1-formal. Note that A is a real
1-minimal model of B via the quotient map; the 1-minimal model of a cdga is unique up to iso-

morphism. Therefore we would have a 1-quasi-isomorphism A
f−→ H(A) [8, Lemma 2.2]. Tensoring

with C, we would have a 1-quasi-isomorphism from the complex minimal model of the Iwasawa
manifold to its C-valued cohomology. Hence all Massey products landing in H2(A⊗ C) would be
trivial [14, Proposition 3.15], a contradiction. □

For the reader’s convenience, we spell the last sentence out for triple Massey products. Consider
a triple Massey product ⟨[a], [b], [c]⟩ where [a], [b], [c] ∈ H1(A ⊗ C). Choose primitives x and y of
ab and bc respectively. Then there are closed elements x′, y′ ∈ A such that [x′] = f(x) and
[y′] = f(y). Since f is a 1-quasi-isomorphism, there are closed elements x̃, ỹ ∈ A such that
f(x̃) = x′, f(ỹ) = y′. Then d(x − x̃) = ab, d(y − x̃) = bc and f(x − x̃) = 0, f(y − ỹ) = 0. With
this new choice of primitives, namely x − x̃ and y − ỹ instead of x and y, the Massey product
⟨[a], [b], [c]⟩ is represented by [(x− x̃)c+ a(y − ỹ)]. Now,

f∗[(x− x̃)c+ a(y − ỹ)] = [f(x− x̃)f(c) + f(a)f(y − ỹ)] = 0.

Since f is injective on H2, we conclude that the Massey product is trivial.

Remark 2.6. This real cdga B satisfies more than just vanishing of all real Massey products:
There exists a choice of representing forms for all classes such that in any well-defined (real)
Massey product, one can uniformly choose the zero element for all primitives. This illustrates
that the explanation of the criterion for formality given in [5, Theorem 4.1]3 as “a way of saying
that one may make uniform choices so that the forms representing all Massey products and higher
order Massey products are exact” is not meant to go both ways.

Choosing any section for the projection ker(d) → H(B) that sends [ηi] to ηi, we can take the zero
element whenever a choice of primitive must be made when constructing Massey products, and all
Massey products will be exact with this “uniform” (or, “simultaneous”) choice. Of course, B is
not minimal, so the criterion in [5] does not directly apply. However, choosing any minimal model

M(B)
∼−→ B, we can still make uniform choices making all Massey product representatives exact,

in the following sense: There is a section of ker(d) → H(M(B)) and a section d−1 : im d → A of the
differential, such that d◦d−1 = id and for a Massey product ⟨[a0,1], ..., [ar−1,r]⟩ one can inductively

build a defining system yielding the zero class by setting ai,j := d−1
∑

i<l<j(−1)|ai,l|+1ai,lal,j , where
ai,i+1 are the representatives of their cohomology classes given by the splitting. Namely, first note
that ker(d) in degree one of any M(B) maps isomorphically to ker(d) in degree one of B. We
choose the section of ker(d) → H(M(B)) so that [ηi] maps to the element corresponding to ηi
under the above isomorphism, and for degree reasons we can choose d−1 to be any section of the
differential.

Example 2.7. The Iwasawa manifold and the productH×H of the Heisenberg manifold with itself
have the same complex homotopy type, but distinct real homotopy types. Said differently, their de
Rham algebras of real-valued forms are not connected by a chain of R-cdga quasi-isomorphisms,
while their de Rham algebras of complex-valued forms are connected by a chain of C-cdga quasi-
isomorphisms.

3One should assume in this criterion that the minimal cdga is furthermore in normal form as in [11].
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Indeed, a complex minimal model of H ×H is given by complexifying the real minimal model
given by

(Λ(x1, x2, x3, y1, y2, y3), dx3 = x1x2, dy3 = y1y2) ,

and so relabelling xi to ϕi and yi to ϕi identifies this with the complex minimal model of the
Iwasawa manifold given earlier. The real homotopy types are distinct, since the real minimal
model of H has a non-trivial Massey product in H2, e.g. ⟨[x1], [x1], [x2]⟩.

3. Behavior of individual Massey products under field extension

3.1. Triple Massey products persist under field extension. For simplicity of notation let
us consider the field extension R ⊂ C. Suppose a triple Massey product ⟨[x], [y], [z]⟩ in a real cdga
A becomes trivial in A⊗ C. That is, there are α, β,Ψ ∈ A⊗ C such that

dα = xy, dβ = yz, dΨ = αz − (−1)|x|xβ.

Choose a homogeneous real vector space basis {uj} for A; then a real basis for A⊗ C is given by
{uj , iuj}. Write

α =
∑
j

cjuj + i
∑
j

c′juj , β =
∑
j

c̃juj + i
∑
j

c̃′juj ,

where cj , c
′
j , c̃j , c̃

′
j ∈ R. Since d is real, we conclude d(

∑
j cjuj) = xy and d(

∑
j c̃juj) = yz. Since

αz − (−1)|x|xβ = dΨ, we similarly conclude that (
∑

j cjuj)z − (−1)|x|x(
∑

j c̃juj) is exact by some

real element. That is, the real Massey product ⟨[x], [y], [z]⟩ is trivial.
The above argument works just as well for any field extension k ⊂ K, by choosing a k-basis

{1, c1, c2, . . .} of K and taking the k-basis {ui, cjui}i,j for A⊗kK. We give an alternative argument
in Proposition 3.5. However, the result does not generalize to quadruple (or higher) Massey
products.

3.2. Non-trivial quadruple Massey products can become trivial upon field extension.
Consider the real cdga(

Λ(x, y, a, b, u, v, w), dx = dy = db = 0, da = xy, du = ay, dv = by, dw = 2xu− a2 − b2
)
,

where deg(x) = 2,deg(y) = 3, deg(a) = deg(b) = 4, deg(u) = deg(v) = 6,deg(w) = 7. Consider
the Massey product ⟨[x], [y], [y], [x]⟩. For the unique representatives x and y, a generic choice of
primitives is given by xy = d(a+ k1b), y

2 = d(k2xy), yx = d(a+ k3b) for some scalars ki. Then the
triple Massey product representatives are made exact via

(a+ k1b)y − k2x
2y = d(u+ k1v − k2xa+ k4x

3 + k5xb),

k2x
2y + ya+ k3by = d(k2xa+ u+ k3v + k6x

3 + k7xb).

The resulting element in the quadruple Massey product is then represented by

(u+ k1v − k2xa+ k4x
3 + k5xb)x− (a+ k1b)(a+ k3b) + x(k2xa+ u+ k3v + k6x

3 + k7xb)

= (2xu− a2 − k1k3b
2) + (k1 + k3)(xv − ab) + (k4 + k6)x

4 + (k5 + k7)x
2b.

We compute that H8 is spanned by {[x4], [2xu − a2], [x2b], [xv − ab]}. For the Massey product
to be trivial, we need to choose ki so that k4 + k6 = 0, k5 + k7 = 0, k1 + k3 = 0, k1k3 = 1. This can
be solved over C by choosing k1 = i, k3 = −i, but cannot be solved over R.

Completely analogously we have the following: let k ⊂ k(
√
θ) be a proper extension of fields of

characteristic zero. Then the k-cdga(
Λ(x2, y3, a4, b4, u6, v6, w7), dx = dy = db = 0, da = xy, du = ay, dv = by, dw = 2xu− a2 + θb2

)
has a non-trivial quadruple Massey product, namely ⟨[x], [y], [y], [x]⟩, which vanishes upon field

extension to k(
√
θ).
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Note that there is a non-trivial triple Massey product in the above examples, on the unextended
cdga, given by ⟨[x], [y], [b]⟩.

3.3. Extending from an algebraically closed field. The above example indicates that trivi-
ality of a Massey product comes down to solvability of a system of polynomial equations in the
coefficients along some vector space basis of the considered cdga.

Proposition 3.4. Let K be an algebraically closed field, and K ⊂ L any extension. Let A be a
K-cdga which is degree-wise finite-dimensional. If a Massey product ⟨[x1], . . . , [xn]⟩ is non-trivial
on A, then it remains non-trivial on A⊗K L.

Proof. In each graded piece Ai of A choose a complement Ci to image(d) inside ker(d), and choose
a complement Ii to ker(d) in Ai. This gives us a splitting Ai = image(d)⊕C⊕I for each i. Choose
graded K-vector space bases {ui}, {vi}, {wi} of image(d), C = ⊕iCi, I = ⊕iI. For convenience let
us denote the union of these bases by {bi}. Here and throughout, indices on lower-case letters are
for enumerative purposes and do not correspond to the degree. There are scalars βk

i,j ∈ K such

that bibj =
∑

k β
k
i,jbk.

Now, d is an isomorphism I → image(d); we denote its inverse by δ. Extending the field to L
respects the above splitting; {ui}, {vi}, {wi} still form bases and (the extended) d is an isomorphism
I ⊗K L → image(d)⊗K L with inverse the extension of δ.

We go through the procedure of building a generic representative of ⟨[x1], . . . , [xn]⟩. First of all,
a generic primitive for xixi+1 is given by

δ(xixi+1) +
∑
j

α
uj

i,i+1uj +
∑
j

α
vj
i,i+1vj .

Then a generic representative of ⟨[xi], [xi+1], [xi+2]⟩ is given by(
δ(xixi+1) +

∑
j

α
uj

i,i+1uj +
∑
j

α
vj
i,i+1vj

)
xi+2

− (−1)|xi|xi

(
δ(xi+1xi+2) +

∑
j′

α
uj′
i+1,i+2uj′ +

∑
j′

α
vj′
i+1,i+2vj′

)
.

Expanding xi, xi+1, xi+2 in terms of the basis, we see that exactness of this expression is equivalent
to the vanishing of the coefficients along {vi} and {wi}, which are K-linear expressions in the α’s.
Given that this element is exact, a generic primitive is given by the following: we apply δ (which
writes each ui in terms of wj) and add an element in ker(d), i.e. a linear combination of {ui, vj},
whose coefficients we also label with α and treat as variables. When considering the generic
representative of the fourfold product ⟨[xi], [xi+1], [xi+2], [xi+3]⟩, exactness will be equivalent to
the existence of a zero of a system of polynomial equations, in the variables α with coefficients
in K, and of degree ≤ 2 (α terms will be multiplied with other α terms when multiplying the
primitive of xixi+1 with that of xi+2xi+3).

Repeating the above, we see that triviality of the Massey product over L is equivalent to the
existence of a zero {aj} of a system of K-polynomial equations {Pi({αj})} over L (recall, the

coefficients βk
i,j and the coefficients in the expansion of each zi are in K). By the degree-wise

finite-dimensionality assumption, the set of variables {αj} and the set of polynomials {Pi} under
consideration are finite. If there were a zero over L, then there would be one over its algebraic
closure L. Now by the weak Nullstellensatz, this is equivalent to the ideal generated by the Pi

in K[{αj}] being proper. Since K is itself algebraically closed, this is in turn equivalent to the
existence of a zero over K. □

In fact, the above is showing a bit more: if a Massey product of K-classes is trivial over L, then
it is first of all well-defined, and furthermore trivial over K.



8 ALEKSANDAR MILIVOJEVIĆ

For Massey products of length 2n or 2n+ 1, the degrees of the polynomials that appear above
are bounded from above by n. In this regard the persistence of non-triviality of triple Massey
products upon field extension has the same explanation as the persistence of the non-triviality of
a cup product upon field extension; namely, a k-linear system has a zero over an extension K only
if it has a zero over k.

Due to quasi-isomorphism invariance of Massey products, the degree-wise finite-dimensionality
assumption above can be relaxed to cohomological degree-wise finite-dimensionality in common
situations, e.g. if we are in characteristic zero and the cdga is modelling a simply connected space
with degree-wise finite-dimensional cohomology.

Let us now turn back to the persistence of triple Massey products under field extension. One
can extend any cohomologically finite-dimensional and connected k–cdga A to one satisfying n-
dimensional Poincaré duality, which we call its Poincaré dualization Pn(A). Furthermore, a degree
one map of n–dimensional Poincaré duality cdga’s preserves triple Massey products [17]. Using
this we give a topologically inspired argument for Section 3.1. We can take A to be degree-wise
finite-dimensional, and truncate it above a sufficiently high degree, not altering the triviality of a
given Massey product.

Proposition 3.5. Non-trivial triple Massey products remain non-trivial under field extension
k ⊂ K.

Proof. Let ⟨z1, z2, z3⟩ be a non-trivial triple Massey product on the k-cdga A. We will use the

notation of [9, Section 4]. Consider the k-linear map A
i−→ A ⊗k K sending a 7→ a ⊗ 1. For any

n we obtain a k-linear map Φ from the shifted dual complex Dn(A) to the shifted dual complex
Dn(A ⊗k K), where the latter consists of the K-linear functionals, thought of as a k-complex.
Namely, we send φ to the K-linear functional Φ(φ) determined by Φ(φ)(a⊗ u) = φ(a)u. Now the

k-linear map A ⊕ Dn(A)
i⊕Φ−−→ (A ⊗k K) ⊕ (Dn(A ⊗ K)) is a map of k-cdga’s. The verification

is similar to [9, Lemma 4.6]; we carry it out here. For clarity we denote the cup product on the
Poincaré dualization by ∧. The only non-trivial check of multiplicativity is for elements of the
form φ∧ a, where φ is in the dual complex and a ∈ A. On the one hand, for b ∈ A and u ∈ K, we
have

((i⊕ Φ)(φ ∧ a)) (b⊗ u) = Φ(φ ∧ a)(b⊗ u)

= ((φ ∧ a)(b))u = (φ(ab))u

= Φ(φ)(ab⊗ u) = Φ(φ)(i(a)(b⊗ u)).

On the other hand we have

((i⊕ Φ)(φ) ∧ (i⊕ Φ)(a)) (b⊗ u) = (Φ(φ) ∧ i(a)) (b⊗ u) = Φ(φ)(i(a)(b⊗ u)).

Therefore, for large enough n we have a map of k-cdga’s which satisfy cohomological Poincaré
duality Pk

n (A) → PK
n (A⊗kK), where the superscript indicates the category in which the Poincaré

dualization is performed. Note also that since i maps 1 to 1, the volume class of Pk
n (A) is mapped

to the volume class of PK
n (A⊗k K).

Now we argue that non-trivial triple Massey products remain non-trivial under such a map,
following an argument due to Taylor [17]. A triple product involving cohomology classes on a cdga
algebra is non-trivial if and only if it is non-trivial on the Poincaré dualization [9, Proposition
4.9]. For simplicity let us denote by f the map induced by i⊕Φ on k-cohomology followed by the
inclusion of k-cohomology into K-cohomology.

Consider the ideal Jz1,z3 generated by z1, z3 in H(Pk
n (A)), and the vector space Az1,z3 of classes

z0 such that z1z0 = z0z3 = 0, [17, Notation 1.2]. We then have a map

⟨z1,−, z3⟩ : Az1,z3 → H(Pk

n (A))/Jz1,z3 .
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For z0 ∈ Az1,z3 , the product z0⟨z1, z2, z3⟩ is a single class [17, Theorem 2.1], since z0 kills the
indeterminacy. As a consequence, z0⟨z1, z2, z3⟩ being a non-zero class implies that ⟨z1, z2, z3⟩ is
non-trivial. Now, the Poincaré duality pairing on cohomology induces a non-degenerate pairing
[17, Proposition 5.1]

(H(Pk

n (A))/Jz1,z3)
r ⊗k (Az1,z3)

n−r → k.

Therefore, given the non-trivial Massey product ⟨z1, z2, z3⟩, there is a t ∈ Az1,z3 such that∫
t⟨z1, z2, z3⟩ = 1

under the Poincaré duality pairing [17, Theorem 5.2]. Now consider the triple Massey product
⟨f(z1), f(z2), f(z3)⟩ in A ⊗k K. We have that f(t) is in the K-vector space Af(z1),f(z3), and so

f(t)⟨f(z1), f(z2), f(z3)⟩ is a single class which is non-zero, since f maps the volume class of Pk
n (A)

to that of PK
n (A⊗k K). Therefore the Massey product ⟨f(z1), f(z2), f(z3)⟩ is non-trivial on A⊗k

K. □

One can compare the general non-persistence of quadruple and higher products under field
extension with the non-preservation of such products under non-zero degree maps of rational
Poincaré duality algebras as investigated in [9].
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