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A DICHOTOMY BETWEEN RATIONALITY AND A NATURAL
BOUNDARY FOR REIDEMEISTER TYPE ZETA FUNCTIONS

WOJCIECH BONDAREWICZ, ALEXANDER FEL’SHTYN AND MALWINA ZIETEK

ABSTRACT. We prove a dichotomy between rationality and a natural
boundary for the analytic behavior of the Reidemeister zeta function for
endomorphisms of groups Zd

p, where Zp the group of p-adic integers. We
also prove the rationality of the coincidence Reidemeister zeta function
for tame endomorphisms pairs of finitely generated torsion-free nilpotent
groups, based on a weak commutativity condition.

0. INTRODUCTION

Let G be a group and ϕ : G → G an endomorphism. Two elements
α, β ∈ G are said to be ϕ-conjugate or twisted conjugate iff there exists
g ∈ G with β = gαϕ(g−1). We shall write {x}ϕ for the ϕ-conjugacy or
twisted conjugacy class of the element x ∈ G. The number of ϕ-conjugacy
classes is called the Reidemeister number of an endomorphism ϕ and is
denoted by R(ϕ). If ϕ is the identity map then the ϕ-conjugacy classes are
the usual conjugacy classes in the group G. We call the endomorphisms ϕ
tame if the Reidemeister numbers R(ϕn) are finite for all n ∈ N. Taking a
dynamical point of view, we consider the iterates of a tame endomorphism
ϕ, and we may define following [11] a Reidemeister zeta function of ϕ as a
power series:

Rϕ(z) = exp

(
∞∑
n=1

R(ϕn)

n
zn

)
,

where z denotes a complex variable. The following problem was investi-
gated [13]: for which groups and endomorphisms is the Reidemeister zeta
function a rational function? Is this zeta function an algebraic function?

In [11, 13, 19, 14, 12], the rationality of the Reidemeister zeta function
Rϕ(z) was proven in the following cases: the group is finitely generated and
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an endomorphism is eventually commutative; the group is finite; the group
is a direct sum of a finite group and a finitely generated free abelian group;
the group is finitely generated, nilpotent and torsion-free. In [29] the ratio-
nality of the Reidemeister zeta function was proven for endomorphisms of
fundamental groups of infra-nilmanifolds under some sufficient conditions.
Recently, the rationality of the Reidemeister zeta function was proven for
endomorphisms of fundamental groups of infra-nilmanifolds [6]; for endo-
morphisms of fundamental groups of infra-solvmanifolds of type (R) [16];
for automorphisms of crystallographic groups with diagonal holonomy Z2

and for automorphisms of almost-crystallographic groups up to dimension
3 [7]; for the right shifts of a non-finitely generated, non-abelian torsion
groups G = ⊕i∈ZFi, Fi ∼= F and F is a finite non-abelian group [28].

Let G be a group and ϕ, ψ : G → G two endomorphisms. Two elements
α, β ∈ G are said to be (ϕ, ψ)− conjugate iff there exists g ∈ G with

β = ψ(g)αϕ(g−1).

The number of (ϕ, ψ)-conjugacy classes is called the Reidemeister coin-
cidence number of endomorphisms ϕ and ψ, denoted by R(ϕ, ψ). If ψ
is the identity map then the (ϕ, id)-conjugacy classes are the ϕ - conjugacy
classes in the groupG andR(ϕ, id) = R(ϕ). The Reidemeister coincidence
number R(ϕ, ψ) has useful applications in Nielsen coincidence theory. We
call the pair (ϕ, ψ) of endomorphisms tame if the Reidemeister numbers
R(ϕn, ψn) are finite for all n ∈ N. For such a tame pair of endomorphisms
we define following [15] the coincidence Reidemeister zeta function

Rϕ,ψ(z) = exp

(
∞∑
n=1

R(ϕn, ψn)

n
zn

)
.

If ψ is the identity map then Rϕ,id(z) = Rϕ(z). In the theory of dynam-
ical systems, the coincidence Reidemeister zeta function counts the syn-
chronisation points of two maps, i.e. the points whose orbits intersect under
simultaneous iteration of two endomorphisms; see [23], for instance.

In [17], in analogy to works of Bell, Miles, Ward [1] and Byszewski,
Cornelissen [2, §5] about Artin–Mazur zeta function, the Pólya–Carlson
dichotomy between rationality and a natural boundary for analytic behavior
of the coincidence Reidemeister zeta function was proven for tame pair of
commuting automorphisms of non-finitely generated torsion-free abelian
groups that are subgroups of Qd, d ≥ 1.

In [15] Pólya–Carlson dichotomy was proven for coincidence Reidemeis-
ter zeta function of tame pair of endomorphisms of non-finitely generated
torsion-free nilpotent groups of finite Prüfer rank by means of profinite
completion techniques.
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In this paper we prove a dichotomy between rationality and a natural
boundary for the Reidemeister zeta function of endomorphisms of the
groups Zdp, d ≥ 1, where Zp, p-prime, is the additive group of p-adic inte-
gers.

We also prove the rationality of the coincidence Reidemeister zeta func-
tion for tame endomorphisms pairs of finitely generated torsion-free nilpo-
tent groups, based on a weak commutativity condition .

Acknowledgments. This work was supported by the grant Beethoven 2 of
the Narodowe Centrum Nauk of Poland(NCN), grant No.
2016/23/G/ST1/04280. The second author is indebted to the Max-Planck-
Institute for Mathematics(Bonn) for the support and hospitality and the pos-
sibility of the present research during his visit there.

1. PÓLYA–CARLSON DICHOTOMY FOR THE REIDEMEISTER ZETA
FUNCTION OF ENDOMORPHISMS OF THE GROUPS Zdp

In this section we prove a Pólya–Carlson dichotomy between rationality
and a natural boundary for the analytic behaviour of the Reidemeister zeta
function for endomorphisms of groups Zdp, d ≥ 1, where Zp, p-prime, de-
notes the additive group of p-adic integers. The group Zp is the most basic
infinite pro-p group, it is totally disconnected, compact, abelian, torsion-
free group.The field of p-adic numbers is denoted by Qp and the p-adic
absolute value (as well as its unique extension to the algebraic closure Qp)
by |·|p.

We remind the definition of a natural boundary ( see [26], sec. 6.2).

Definition 1.1. Suppose that an analytic function F is defined somehow in
a region D of the complex plane. If there is no point of the boundary ∂D of
D over which F can be analytically continued, then ∂D is called a natural
boundary for F .

We need the following statement

Lemma 1.2. (cf. [1]) Let Z(z) =
∑∞

n=1R(ϕ
n)zn. If Rϕ(z) is rational

then Z(z) is rational. If Rϕ(z) has an analytic continuation beyond its
circle of convergence, then so does Z(z) too. In particular, the existence
of a natural boundary at the circle of convergence for Z(z) implies the
existence of a natural boundary for Rϕ(z).

Proof. This follows from the fact that Z(z) = z ·Rϕ(z)
′
/Rϕ(z). □
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One of the important links between the arithmetic properties of the coef-
ficients of a complex power series and its analytic behaviour is given by the
Pólya–Carlson theorem [26].

Pólya–Carlson Theorem. A power series with integer coefficients and ra-
dius of convergence 1 is either rational or has the unit circle as a natural
boundary.

Lemma 1.3. End(Zp) = Zp for abelian group Zp.

Proof. Let ϕ ∈ End(Zp). We have pnϕ(x) = ϕ(pnx). Then ϕ(pnZp) ⊂
pnZp, so ϕ is continuous. For every x ∈ Zp there exists a sequence of
integers xn converging to x. Then

ϕ(x) = limϕ(xn) = lim xnϕ(1) = ϕ(1)x,

so ϕ is a multiplication by ϕ(1). □

Let ϕ ∈ End(Zp), then ϕ(x) = ax, where a ∈ Zp. We have ϕn(x) = anx.
By definition,

y ∼ϕ x⇔ ∃b ∈ Zp : y = b+x−ab = x+b(1−a) ⇔ y ≡ x(mod(1−a)).
This implies that R(ϕ) = |Zp/(1− a)Zp|. But

(1− a)Zp = pvp(1−a)Zp = |1− a|−1
p Zp,

so we can write R(ϕ) = |1− a|−1
p = |a− 1|−1

p and, more generally,
R(ϕn) = |1− an|−1

p = |an − 1|−1
p , for all n ∈ N.

Now consider a group Zdp, d ≥ 2. It follows easily from Lemma 1.3, that
End(Zdp) = Md(Zp). For any matrix A ∈ Md(Zp) there exists a diagonal
matrix D ∈ Md(Zp) and unimodular matrices E,F ∈ Md(Zp) such that
D = EAF .

Lemma 1.4. For endomorphism ϕp : Zdp → Zdp we have

R(ϕp) = #Coker(1− ϕp) = | det(Φp − Id)|−1
p ,

where Φp is a matrix of ϕp.

Proof. Let matrices D,E, F ∈ Md(Zp) be such that D = E(Id − Φp)F ,
where D = (ai) is diagonal matrix, ai ∈ Zp, 1 ≤ i ≤ d, and matrices E,F
are unimodular. Then we have

R(ϕp) = #Coker(1− ϕp) = |Zdp : (Id− Φp)Zdp| = |Zdp : DZdp| =

= |Zp : a1Zp| · |Zp : a2Zp| · ... · |Zp : adZp| = |a1|−1
p · ... · |ad|−1

p =

= | det(D)|−1
p = | det(Id− Φp)|−1

p = | det(Φp − Id)|−1
p .

□
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In order to handle the sequence R(ϕn) = |an− 1|−1
p , n ∈ N more easily,

we need a way to evaluate expressions of the form |an− 1|p when |a|p = 1.
The following technical lemma is useful.

Lemma 1.5. (cf. [21, Lemma 4.9], [1, Lemma 2]) Let Kv be a
non-archimedean local field and suppose x ∈ Kv has |x|v = 1 and infinite
multiplicative order. Let p > 0 be the characteristic of the residue field
Fv and γ ∈ N the multiplicative order of the image of x in Fv . Then
|xn − 1|v = 1 whenever (γ, n) = 1 and γ ̸= 1. Furthermore, there are
constants 0 < C < 1 and r0 ≥ 0 such that whenever n = kγpr with
(p, k) = 1 and r > r0, then |xn − 1|v = C|p|rv if char(Kv) = 0.

Now we prove a Pólya–Carlson dichotomy between rationality and a nat-
ural boundary for the analytic behaviour of the Reidemeister zeta function
for endomorphisms of groups Zdp, d ≥ 1.

Theorem 1.6. Let ϕp : Zdp → Zdp be a tame endomorphism and
λ1, λ2, ...λd ∈ Qp be the eigenvalues of Φp, including multiplicities. Then
the Reidemeister zeta function Rϕp(z) is either a rational function or it has
the unit circle as a natural boundary. Furthermore, the latter occurs if and
only if |λi|p = 1 for some i ∈ {1, . . . , d}.

Proof. Firstly, we consider separately the case of the group Zp as it illus-
trates some ideas needed for the proof of the dichotomy in general case
when d ≥ 1. Lemma 1.3 yields ϕp(x) = ax, where a ∈ Zp. Hence |a|p ⩽ 1.
Then the Reidemeister numbers R(ϕnp ) = |an − 1|−1

p , for all n ∈ N. If
|a|p < 1, then R(ϕnp ) = |an − 1|−1

p = 1, for all n ∈ N. Hence the ra-
dius of convergence of Rϕp(z) equals 1 and the Reidemeister zeta function
Rϕp(z) =

1
1−z is a rational function.

From now on, we shall write a(n) << b(n) if there is a constant c inde-
pendent of n for which a(n) < c · b(n). When |a|p = 1, we show that the
radius of convergence of Rϕp(z) equals 1 by deriving the bound

(1)
1

n
<< |an − 1|p ⩽ 1

Upper bound in (1) follows from the definition of the p-adic norm. We
may suppose that |an − 1|p < 1. Let F denote the smallest field which
contains Qp and is both algebraically closed and complete with respect to
| · |p . The p-adic logarithm logp is defined as

logp(1 + z) =
∞∑
n=1

(−1)n+1

n
zn,
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and converges for all z ∈ F such that |z|p < 1. Setting z = an − 1 we get

logp(a
n) = (an − 1)− (an − 1)2

2
+

(an − 1)3

3
− ...

and so | logp(an)|p ⩽ |an − 1|p. We always have

1

n
<< |n logp(a)|p = | logp(an)|p,

so this establishes (1).
The bound (1) implies by Cauchy - Hadamard formula that the radius

of convergence of Rϕp(z) equals 1. Hence it remains to show that the
Reidemeister zeta function Rϕp(z) is irrational if |a|p = 1. Then Rϕp(z)
has the unit circle as a natural boundary by the Lemma 1.2 and by the
Pólya–Carlson Theorem. For a contradiction, assume that Reidemeister
zeta function Rϕp(z) is rational. Then Lemma 1.2 implies that the func-
tion Zp(z) =

∑∞
n=1R(ϕ

n
p )z

n is rational also. Hence the sequence R(ϕnp )
satisfies a linear recurrence relation. Define n = γpr, where integer con-
stant r ⩾ 0. Applying Lemma 1.5, we see that

R(ϕknp ) = R(ϕnp )

whenever k is coprime to n. Hence the sequence R(ϕnp ) assumes infinitely
many values infinitely often, and so it cannot satisfy a linear recurrence by a
result of Myerson and van der Poorten [24, Prop. 2], giving a contradiction.

Now we consider the general case of a tame endomorphism ϕp : Zdp →
Zdp, d ≥ 1. According to the Lemma 1.4 we have

R(ϕnp ) = #Coker(1− ϕnp ) = | det(Φn
p − Id)|−1

p =
d∏
i=1

|λni − 1|−1
p ,

where Φp is a matrix of ϕp and λ1, λ2, ...λd ∈ Qp are the eigenvalues of Φp,
including multiplicities. The polynomial

∏d
i=1(X − λi) has coefficients in

Zp; in particular, |λi|p ⩽ 1 for every i ∈ {1, . . . , d} (see [15]). If |λi|p < 1,
for every i ∈ {1, . . . , d} then R(ϕnp ) =

∏d
i=1 |λni − 1|−1

p = 1, for all n ∈ N.
Hence the radius of convergence of Rϕp(z) equals 1 and the Reidemeister
zeta function Rϕp(z) = 1

1−z is a rational function. If |λi|p = 1, for some
i ∈ {1, . . . , d} then the bound (1) implies the bound

(2)
1

nd
<< R(ϕnp ) =

d∏
i=1

|λni − 1|−1
p ⩽ 1.

Hence the radius of convergence of Rϕp(z) equals 1 by the
Cauchy– Hadamard formula and the bound (2). Now for the proof of the
theorem it remains to show that the Reidemeister zeta function Rϕp(z)
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is irrational if |λi|p = 1 for some i ∈ {1, . . . , d}. Then Rϕp(z) has the
unit circle as a natural boundary by the Lemma 1.2 and by the Pólya–
Carlson Theorem. For a contradiction, assume that Reidemeister zeta func-
tion Rϕp(z) is rational. Then Lemma 1.2 implies that the function Zp(z) =∑∞

n=1R(ϕ
n
p )z

n is rational also. Hence the sequence R(ϕnp ) satifies a linear
recurrence relation. Define n = γpr, where integer constant r ⩾ 0. Apply-
ing Lemma 1.5, we see that R(ϕknp ) = R(ϕnp ) whenever k is coprime to n.
Hence the sequence R(ϕnp ) assumes infinitely many values infinitely often,
and so it cannot satisfy a linear recurrence by a result of Myerson and van
der Poorten [24, Prop. 2], giving a contradiction.

□

2. THE RATIONALITY OF THE COINCIDENCE REIDEMEISTER ZETA
FUNCTION FOR ENDOMORPHISMS OF FINITELY GENERATED

TORSION-FREE NILPOTENT GROUPS

Example 2.1. ([15], Example 1.3) Let G = Z be the infinite cyclic group,
written additively, and let

ϕ : Z → Z, x 7→ dφx and ψ : Z → Z, x 7→ dψx

for dϕ, dψ ∈ Z. The coincidence Reidemeister number R(ϕ, ψ) of endo-
morphisms ϕ, ψ of an Abelian group G coincides with the cardinality of
the quotient group Coker (ϕ − ψ) = G/Im(ϕ − ψ) (or Coker (ψ − ϕ) =
G/Im(ψ − ϕ)). Hence we have

R(ϕn, ψ n) =

{
|dnψ − dnϕ | if dnϕ ̸= dnψ ,
∞ otherwise.

Consequently, (ϕ, ψ) is tame precisely when |dϕ| ≠ |dψ| and, in this case,

Rϕ,ψ(z) =
1− d2z

1− d1z
where d1 = max{|dϕ|, |dψ|} and d2 =

dϕdψ
d1

.

This simple example (or at least special cases of it) are known. The aim of
the current section is to generalise this example to finitely generated torsion-
free nilpotent groups. LetG be a finitely generated group and ϕ, ψ : G→ G
two endomorphisms.

Lemma 2.2. Let ϕ, ψ : G → G are two automorphisms. Two elements
x, y of G are ψ−1ϕ-conjugate if and only if elements ψ(x) and ψ(y) are
(ψ, ϕ)-conjugate. Therefore the Reidemeister number R(ψ−1ϕ) is equal to
R(ϕ, ψ). For a tame pair of commuting automorphisms ϕ, ψ : G → G the
coicidence Reidemeister zeta function Rϕ,ψ(z) is equal to the Reidemeister
zeta function Rψ−1ϕ(z).
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Proof. If x and y are ψ−1ϕ-conjugate, then there is a g ∈ G such that
x = gyψ−1ϕ(g−1). This implies ψ(x) = ψ(g)ψ(y)ϕ(g−1). So ψ(x) and
ψ(y) are (ϕ, ψ)-conjugate. The converse statement follows if we move in
opposite direction in previous implications. □

We assume X to be a connected, compact polyhedron and f : X → X to
be a continuous map. The Lefschetz zeta function of a discrete dynamical
system fn is defined as Lf (z) := exp

(∑∞
n=1

L(fn)
n
zn
)
, where

L(fn) :=
dimX∑
k=0

(−1)k tr
[
fn∗k : Hk(X;Q) → Hk(X;Q)

]
is the Lefschetz number of the iterate fn of f . The Lefschetz zeta function
is a rational function of z and is given by the formula:

Lf (z) =
dimX∏
k=0

det
(
I − f∗k.z

)(−1)k+1

.

In this section we consider finitely generated torsion-free nilpotent group
Γ. It is well known [20] that such group Γ is a uniform discrete subgroup
of a simply connected nilpotent Lie group G (uniform means that the coset
space G/Γ is compact). The coset space M = G/Γ is called a nilmanifold.
Since Γ = π1(M) and M is a K(Γ, 1), every endomorphism ϕ : Γ → Γ
can be realized by a selfmap f : M → M such that f∗ = ϕ and thus
R(f) = R(ϕ). Any endomorphism ϕ : Γ → Γ can be uniquely extended
to an endomorphism F : G → G. Let F̃ : G̃ → G̃ be the corresponding
Lie algebra endomorphism induced from F and let Spectr(F̃ ) be the set of
eigenvalues of F̃ .

Lemma 2.3. (cf. Theorem 23 of [12] and Theorem 5 of [14]) Let ϕ : Γ → Γ
be a tame endomorphism of a finitely generated torsion free nilpotent group.
Then the Reidemeister zeta function Rϕ(z) = Rf (z) is a rational function
and is equal to

(3) Rϕ(z) = Rf (z) = Lf ((−1)pz)(−1)r ,

where p the number of µ ∈ Spectr(F̃ ) such that µ < −1, and r the number
of real eigenvalues of F̃ whose absolute value is > 1.

Every pair of automorphisms ϕ, ψ : Γ → Γ of finitely generated torsion
free nilpotent group Γ can be realized by a pair of homeomorphisms f, g :
M → M such that f∗ = ϕ , g∗ = ψ and thus R(g−1f) = R(ψ−1ϕ) =
R(ϕ, ψ). An automorphism ψ−1ϕ : Γ → Γ can be uniquely extended to
an automorphism L : G → G. Let L̃ : G̃ → G̃ be the corresponding Lie
algebra automorphism induced from L.
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Lemma 2.2 and Lemma 2.3 imply the following

Theorem 2.4. Let ϕ, ψ : Γ → Γ be a tame pair of commuting automor-
phisms of a finitely generated torsion-free nilpotent group Γ. Then the co-
incidence Reidemeister zeta function Rϕ,ψ(z) is a rational function and is
equal to

(4) Rϕ,ψ(z) = Rψ−1ϕ(z) = Rg−1f (z) = Lg−1f ((−1)pz)(−1)r ,

where p the number of µ ∈ Spectr(L̃) such that µ < −1, and r the number
of real eigenvalues of L̃ whose absolute value is > 1.

For an arbitrary group G, we can define the k-fold commutator group
γk(G) inductively as γ1(G) := G and γk+1(G) := [G, γk(G)]. Let G be
a group. For a subgroup H ⩽ G, we define the isolator G

√
H of H in G

as: G
√
H = {g ∈ G | gn ∈ H for some n ∈ N}. Note that the isolator of a

subgroup H ⩽ G doesn’t have to be a subgroup in general. For example,
the isolator of the trivial group is the set of torsion elements of G.

Lemma 2.5. (see [5], Lemma 1.1.2 and Lemma 1.1.4) Let G be a group.
Then

(i) for all k ∈ N, G
√
γk(G) is a fully characteristic subgroup of G,

(ii) for all k ∈ N, the factor G/ G
√
γk(G) is torsion-free,

(iii) for all k, l ∈ N, the commutator [ G
√
γk(G),

G
√
γl(G)] ≤ G

√
γk+l(G),

(iv) for all k, l ∈ N such that k ⩾ l if M := G
√
γl(G), then

G/M
√
γk(G/M) = G

√
γk(G)/M.

We define the adapted lower central series of a group G as

G = G
√
γ1(G) ⩾

G
√
γ2(G) ⩾ ... ⩾ G

√
γk(G) ⩾ ...,

where γk(G) is the k-th commutator of G.
The adapted lower central series will terminate if and only if G is a

torsion-free, nilpotent group. Moreover, all factors G
√
γk(G)/

G
√
γk+1(G)

are torsion-free.
We are particularly interested in the case where G is a finitely generated,

torsion-free, nilpotent group. In this case the factors of the adapted lower
central series are finitely generated, torsion-free, abelian groups, i.e. for all
k ∈ N we have that

G
√
γk(G)/

G
√
γk+1(G) ∼= Zdk , for some dk ∈ N.

Let N be a normal subgroup of a group G and ϕ, ψ ∈ End(G) with
ϕ(N) ⊆ N,ψ(N) ⊆ N . We denote the restriction of ϕ to N by ϕ|N , ψ to
N by ψ|N and the induced endomorphisms on the quotient G/N by ϕ′, ψ′

respectively. We then get the following commutative diagrams with exact
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rows:

(5)

1 N G G/N 1

1 N G G/N 1

i

ϕ|N ,ψ|N

p

ϕ,ψ ϕ′,ψ′

i p

Note that both i and p induce functions î, p̂ on the set of Reidemeister
classes so that the sequence

R[ϕ|N , ψ|N ] R[ϕ, ψ] R[ϕ′, ψ′] 0î p̂

is exact, i.e. p̂ is surjective and p̂−1[1] = im(̂i), where 1 is the identity
element of G/N (see also [18]).

Lemma 2.6. If R(ϕ|N , ψ|N) <∞, R(ϕ′, ψ′) <∞ and N ⊆ Z(G), then
R(ϕ, ψ) ⩽ R(ϕ|N , ψ|N)R(ϕ′, ψ′).

Proof. Let R(ϕ|N, ψ|N) = {[n1]ϕ|N ,ψ|N , ..., [nR(ϕ|N ,ψ|N )]ϕ|N ,ψ|N} and
R(ϕ′, ψ′) = {[g1N ]ϕ′,ψ′ , ..., [gR(ϕ′,ψ′)N ]ϕ′,ψ′} be the
(ϕ|N , ψ|N)–Reidemeister classes and (ϕ′, ψ′)–Reidemeister classes respec-
tively. Let us take g ∈ G. Then gN ∈ [giN ]ϕ′,ψ′ for some i, so there exists
hN ∈ G/N such that

gN = ψ′(hN)giNϕ
′(hN)−1 = ψ′(h)giϕ

′(h)−1N.

It follows that there exists n ∈ N such that g = ψ′(h)giϕ
′(h)−1n. In

turn n ∈ [nj]ϕ|N ,ψ|N for some j, hence there exists m ∈ N such that n =
ψ|N(m)njϕ|N(m)−1. Since n,m, nj, ψ|N(m), ϕ|N(m) ∈ N ⊂ Z(G), it
follows that

g = [ψ(hm)](ginj)[ϕ(hm)−1],

i.e g ∈ [ginj]ϕ,ψ. Since this is true for arbitrary g ∈ G we obtain that

R(ϕ, ψ) ⩽ R(ϕ|N , ψ|N)R(ϕ′, ψ′).

□

Theorem 2.7. Let N be a finitely generated, torsion-free, nilpotent group
and

N = N
√
γ1(N) ⩾ N

√
γ2(N) ⩾ ... ⩾ N

√
γc(N) ⩾ N

√
γc+1(N) = 1

be an adapted lower central series of N . Suppose that R(ϕ, ψ) < ∞ and
R(ϕk, ψk) < ∞ for a pair ϕ, ψ of endomorphisms of N and for every
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pair ϕk, ψk of induced endomorphisms on the finitely generated torsion-free
abelian factors

N
√
γk(N)/ N

√
γk+1(N) ∼= Zdk , dk ∈ N, 1 ≤ k ≤ c,

then

R(ϕ, ψ) =
c∏

k=1

R(ϕk, ψk).

Proof. We will prove the product formula for the coincidence Reidemeister
numbers by induction on the length of an adapted lower central series. Let
us denote N

√
γk(N) as Nk. If c = 1, the result follows trivially. Let c > 1

and assume the product formula holds for a central series of length c − 1.
Let ϕ, ψ ∈ End(N), then ϕ(Nc) ⊆ Nc, ψ(Nc) ⊆ Nc and hence we have the
following commutative diagram of short exact sequences:

1 Nc N N/Nc 1

1 Nc N N/Nc 1

i

ϕc,ψc

p

ϕ,ψ ϕ′,ψ′

i p
,

where ϕc, ψc are induced endomorphisms on the Nc. The quotient N/Nc is
a finitely generated, nilpotent group with a adapted central series

N/Nc = N1/Nc ⩾ N2/Nc ⩾ ... ⩾ Nc−1/Nc ⩾ Nc/Nc = 1

of length c− 1.
Every factor of this series is of the form

(Nk/Nc)/(Nk+1/Nc) ∼= Nk/Nk+1 by the third isomorphism theorem, hence
it is also torsion-free. Moreover, because of this natural isomorphism we
know that for every induced pair of endomorphisms (ϕ′

k, ψ
′
k) on

(Nk/Nc)/(Nk+1/Nc) it is true that R(ϕ′
k, ψ

′
k) = R(ϕk, ψk).

The assumptions of the theorem imply that R(ϕ′, ψ′) <∞ and
R(ϕc, ψc) <∞.

Moreover, let [g1Nc]ϕ′,ψ′ , ..., [gnNc]ϕ′,ψ′ be the (ϕ′, ψ′)-Reidemeister
classes and [c1]ϕc,ψc , ..., [cm]ϕc,ψc - the (ϕ′

c, ψ
′
c)-Reidemeister classes. Since

Nc ⊆ Z(N), by Lemma 2.6 we obtain that R(ϕ, ψ) ⩽ R(ϕc, ψc)R(ϕ
′, ψ′).

To prove the opposite inequality it suffices to prove that every class
[cigj]ϕ,ψ represents a different (ϕ, ψ)-Reidemeister class. Then we obtain

R(ϕ, ψ) = R(ϕc, ψc)R(ϕ
′, ψ′)

and then the theorem follows from the induction hypothesis.
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Suppose, that there exists some h ∈ N such that cigj = ψ(h)cagbϕ(h)
−1.

Then by taking the projection to N/Nc we find that

gjNc = p(cigj) = p(ψ(h)cagbϕ(h)
−1) = ψ′(hNc)(gbNc)ϕ

′(hNc)
−1,

hence [gjNc]ϕ′,ψ′ = [gbNc]ϕ′,ψ′ . Now assume that
cigj = ψ(h)cagjϕ(h)

−1. If h ∈ Nc ⊆ Z(N), then cigj = ψ(h)caϕ(h)
−1gj

and consequently [ci]ϕc,ψc = [ca]ϕc,ψc , so let us assume that h /∈ Nc and that
Nk is the smallest group in the central series which contains h. Then cigj =
ψ(h)cagjϕ(h)

−1 ⇔ gjci = ψ(h)cagjϕ(h)
−1 ⇔ ci = g−1

j ψ(h)cagjϕ(h)
−1

⇔ ci = g−1
j ψ(h)gjϕ(h)

−1ca ⇔ cic
−1
a = g−1

j ψ(h)gjϕ(h)
−1 and therefore

cic
−1
a Nk+1 = g−1

j ψ(h)gjϕ(h)
−1Nk+1

= [gj, ψ(h)
−1](ψ(h)ϕ(h)−1)Nk+1

As cic−1
a ∈ Nc ⊆ Nk+1 and [gj, ψ(h)

−1] ∈ Nk+1 , we find that (ϕk)(hNk+1)
= (ψk)(hNk+1). That means that the set of coincidence points Coin(ϕ′

k, ψ
′
k)

̸= {1}, which implies that R(ϕ′, ψ′) = ∞ and this contradicts assumption.
□

Theorem 2.8. Let ϕ, ψ : N → N be a tame pair of endomorphisms of a
finitely generated torsion-free nilpotent group N . Let c denote the nilpo-
tency class of N and, for 1 ⩽ k ⩽ c, let ϕk, ψk : Gk → Gk, 1 ≤ k ≤ c,
denote the tame pairs of induced endomorphisms of the finitely generated
torsion-free abelian factor groups Gk = Nk/Nk+1 =

= N
√
γk(N)/ N

√
γk+1(N) ∼= Zdk , for some dk ∈ N, that arise from an

adapted lower central series of N . Then the following hold.
(1) For each n ∈ N,

R(ϕn, ψn) =
c∏

k=1

R(ϕnk , ψ
n
k ) for n ∈ N.

(2) For 1 ⩽ k ⩽ c, let

ϕk,Q, ψk,Q : Gk,Q → Gk,Q

denote the extensions of ϕk, ψk to the divisible hull Gk,Q = Q⊗ZGk
∼= Qdk

of Gk. Suppose that each pair of endomorphisms ϕk,Q, ψk,Q is simultane-
ously triangularisable. Let ξk,1, . . . , ξk,dk and ηk,1, . . . , ηk,dk be the eigenval-
ues of ϕk,Q and ψk,Q in the field C, including multiplicities, ordered so that,
for n ∈ N, the eigenvalues of ϕnk,Q − ψ n

k,Q are ξ nk,1 − η nk,1, . . . , ξ
n
k,dk

− η nk,dk .
Then for each n ∈ N,

(6) R(ϕnk , ψ
n
k ) =

dk∏
i=1

|ξ nk,i − η nk,i|;

(3) Moreover, suppose that |ξk,i| ̸= |ηk,i| for 1 ⩽ k ⩽ c, 1 ⩽ i ⩽ dk. If
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ϕ, ψ is a tame pair of endomorphisms of N and ϕk,Q, ψk,Q, 1 ⩽ k ⩽ c, are
simultaneously triangularisable pairs of endomorphisms of Gk,Q, then the
coincidence Reidemeister zeta function Rϕ,ψ(z) is a rational function.

Proof. The coincidence Reidemeister number R(ϕ, ψ) of automorphisms
ϕ, ψ of an Abelian group G coincides with the cardinality of the quotient
group Coker (ϕ−ψ) = G/Im(ϕ−ψ) (or Coker (ψ−ϕ) = G/Im(ψ−ϕ)).

For 1 ⩽ k ⩽ c, let tame pairs ϕk, ψk : Gk → Gk of induced endomor-
phisms of the finitely generated torsion-free abelian factor groups Gk =
Nk/Nk+1

∼= Zdk , are represented by integer matrices Ak, Bk ∈ Mdk(Z)
associated to them respectively. There is a diagonal integer matrix Ck =
diag(c1, ..., cdk) such that Ck = Mk(Ak − Bk)Nk; where Mk and Nk are
unimodular matrices. Now we have detCk = det(Ak − Bk) and the order
of the cokernel of ϕk−ψk is the order of the group Z/c1Z⊕ .....⊕Z/cdkZ.
Thus the order of the cokernel of ϕk−ψk is |Coker (ϕk−ψk)| = |c1···cdk | =
| detCk| = | det(ϕk − ψk)|.

Then for each n ∈ N and 1 ⩽ k ⩽ c, R(ϕnk , ψ
n
k ) = |Coker (ϕk − ψk)| =

| det(ϕk − ψk)| = | det(ϕk,Q − ψk,Q)| =
∏dk

i=1|ξ nk,i − η nk,i|.
Now we will prove the rationality of Rϕ,ψ(z). We open up the absolute

values in the product R(ϕnk , ψ
n
k ) =

∏dk
i=1|ξ nk,i − η nk,i|, 1 ⩽ k ⩽ c. Complex

eigenvalues ξk,i in the spectrum of ϕk,Q, respectively ηk,i in the spectrum of
ψk,Q, appear in pairs with their complex conjugate ξk,i, respectively ηk,i.

Moreover, such pairs can be lined up with one another in a simultane-
ous triangularisation as follows. Write ϕk,C, ψk,C for the induced endomor-
phisms of the C-vector space V = C ⊗Q G ∼= Cdk . If v ∈ V is, at the
same time, an eigenvector of ϕk,C with complex eigenvalue ξk,dk and an
eigenvector of ψk,C with eigenvalue ηk,dk , then there is w ∈ V such that w
is, at the same time, an eigenvector of ϕk,C with eigenvalue ξk,dk ̸= ξk,dk
and an eigenvector of ψk,C with eigenvalue ηk,dk , possibly equal to ηk,dk .
Thus we can start our complete flag of {ϕ, ψ}-invariant subspaces of V with
{0} ⊂ ⟨v⟩ ⊂ ⟨v, w⟩, and proceed with V/⟨v, w⟩ by induction to produce the
rest of the flag in the same way, treating complex eigenvalues of ψk,C in the
same way as they appear. If at least one of ξk,i, ηk,i is complex so that these
eigenvalues of ϕQ and ψQ are paired with eigenvalues ξk,j = ξk,i, ηk,j = ηk,i,
for suitable j ̸= i, as discussed above, we see that∣∣ξ nk,i − η nk,i

∣∣ ∣∣ξ nk,j − η nk,j
∣∣ = ∣∣ξ nk,i − η nk,i

∣∣ 2 = (ξ nk,i − η nk,i
)
· (ξk,i

n − ηk,i
n
)
.

If ξk,i and ηk,i are both real eigenvalues of ϕQ and ψQ, not paired up with
another pair of eigenvalues, then exactly as in Example 2.1 above we have
|ξ nk,i − η nk,i| = δ n1,k,i − δ n2,k,i, where δ1,k,i = max{|ξk,i|, |ηk,i|} and δ2,k,i =
ξk,i·ηk,i
δ1,k,i

. Hence we can expand each product R(ϕnk , ψ
n
k ), 1 ⩽ k ⩽ c using an
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appropriate symmetric polynomial, to obtain for the Reidemeister numbers
R(ϕn, ψn) an expression of the form

(7) R(ϕn, ψn) =
c∏

k=1

R(ϕnk , ψ
n
k ) =

c∏
k=1

dk∏
i=1

|ξ nk,i − η nk,i| =
∑
j∈J

cjw
n
j ,

where J is a finite index set, cj ∈ {−1, 1} and {wj | j ∈ J} ⊆ C ∖ {0}.
Consequently, the coincidence Reidemeister zeta function can be written as

Rϕ,ψ(z) = exp

(
∞∑
n=1

R(ϕn, ψn)

n
zn

)
= exp

(∑
j∈J

cj

∞∑
n=1

(wjz)
n

n

)
.

and it follows immediately that Rϕ,ψ(z) =
∏

j∈J(1 − wjz)
−cj is a rational

function.
□
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