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A DICHOTOMY BETWEEN RATIONALITY AND A NATURAL
BOUNDARY FOR REIDEMEISTER TYPE ZETA FUNCTIONS

WOIJCIECH BONDAREWICZ, ALEXANDER FEL’SHTYN AND MALWINA ZIETEK

ABSTRACT. We prove a dichotomy between rationality and a natural
boundary for the analytic behavior of the Reidemeister zeta function for
endomorphisms of groups Z;f, where Z,, the group of p-adic integers. We
also prove the rationality of the coincidence Reidemeister zeta function
for tame endomorphisms pairs of finitely generated torsion-free nilpotent
groups, based on a weak commutativity condition.

0. INTRODUCTION

Let G be a group and ¢ : G — G an endomorphism. Two elements
a, € G are said to be ¢-conjugate or twisted conjugate iff there exists
g € G with 8 = gad(g~'). We shall write {z}, for the ¢-conjugacy or
twisted conjugacy class of the element x € G. The number of ¢-conjugacy
classes is called the Reidemeister number of an endomorphism ¢ and is
denoted by R(¢). If ¢ is the identity map then the ¢-conjugacy classes are
the usual conjugacy classes in the group G. We call the endomorphisms ¢
tame if the Reidemeister numbers R(¢™) are finite for all n € N. Taking a
dynamical point of view, we consider the iterates of a tame endomorphism
¢, and we may define following [11] a Reidemeister zeta function of ¢ as a
power series:

Ry(z) = exp [ Y0 )
n=1

where z denotes a complex variable. The following problem was investi-
gated [13]: for which groups and endomorphisms is the Reidemeister zeta
function a rational function? Is this zeta function an algebraic function?

In [11, 13, 19, 14, 12], the rationality of the Reidemeister zeta function
R, (%) was proven in the following cases: the group is finitely generated and
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an endomorphism is eventually commutative; the group is finite; the group
is a direct sum of a finite group and a finitely generated free abelian group;
the group is finitely generated, nilpotent and torsion-free. In [29] the ratio-
nality of the Reidemeister zeta function was proven for endomorphisms of
fundamental groups of infra-nilmanifolds under some sufficient conditions.
Recently, the rationality of the Reidemeister zeta function was proven for
endomorphisms of fundamental groups of infra-nilmanifolds [6]; for endo-
morphisms of fundamental groups of infra-solvmanifolds of type (R) [16];
for automorphisms of crystallographic groups with diagonal holonomy Z,
and for automorphisms of almost-crystallographic groups up to dimension
3 [7]; for the right shifts of a non-finitely generated, non-abelian torsion
groups G = ®jcz F;, F; = F and F is a finite non-abelian group [28].

Let G be a group and ¢, ¢ : G — G two endomorphisms. Two elements
a, f € G are said to be (¢, 1) — conjugate iff there exists g € G with

B =1(g)ad(g™).

The number of (¢, 1)-conjugacy classes is called the Reidemeister coin-
cidence number of endomorphisms ¢ and ), denoted by R(¢,v). If ¢
is the identity map then the (¢, id)-conjugacy classes are the ¢ - conjugacy
classes in the group G and R(¢,id) = R(¢). The Reidemeister coincidence
number R(¢, 1) has useful applications in Nielsen coincidence theory. We
call the pair (¢, ) of endomorphisms tame if the Reidemeister numbers
R(¢™,4™) are finite for all n € N. For such a tame pair of endomorphisms
we define following [15] the coincidence Reidemeister zeta function

Ryp(2) = exp <Z Mz”) :

n
n=1

If ¢ is the identity map then Ry ;4(2) = R4(z). In the theory of dynam-
ical systems, the coincidence Reidemeister zeta function counts the syn-
chronisation points of two maps, i.e. the points whose orbits intersect under
simultaneous iteration of two endomorphisms; see [23], for instance.

In [17], in analogy to works of Bell, Miles, Ward [1] and Byszewski,
Cornelissen [2, §5] about Artin—Mazur zeta function, the Polya—Carlson
dichotomy between rationality and a natural boundary for analytic behavior
of the coincidence Reidemeister zeta function was proven for tame pair of
commuting automorphisms of non-finitely generated torsion-free abelian
groups that are subgroups of Q¢,d > 1.

In [15] Pélya—Carlson dichotomy was proven for coincidence Reidemeis-
ter zeta function of tame pair of endomorphisms of non-finitely generated
torsion-free nilpotent groups of finite Priifer rank by means of profinite
completion techniques.



A DICHOTOMY BETWEEN RATIONALITY AND NATURAL BOUNDARY 3

In this paper we prove a dichotomy between rationality and a natural
boundary for the Reidemeister zeta function of endomorphisms of the
groups Zz, d > 1, where Z,, p-prime, is the additive group of p-adic inte-
gers.

We also prove the rationality of the coincidence Reidemeister zeta func-
tion for tame endomorphisms pairs of finitely generated torsion-free nilpo-
tent groups, based on a weak commutativity condition .

Acknowledgments. This work was supported by the grant Beethoven 2 of
the Narodowe Centrum Nauk of Poland(NCN), grant No.
2016/23/G/ST1/04280. The second author is indebted to the Max-Planck-
Institute for Mathematics(Bonn) for the support and hospitality and the pos-
sibility of the present research during his visit there.

1. POLYA—CARLSON DICHOTOMY FOR THE REIDEMEISTER ZETA
FUNCTION OF ENDOMORPHISMS OF THE GROUPS Zg

In this section we prove a Polya—Carlson dichotomy between rationality
and a natural boundary for the analytic behaviour of the Reidemeister zeta
function for endomorphisms of groups Zg, d > 1, where Z,, p-prime, de-
notes the additive group of p-adic integers. The group Z, is the most basic
infinite pro-p group, it is totally disconnected, compact, abelian, torsion-
free group.The field of p-adic numbers is denoted by Q, and the p-adic
absolute value (as well as its unique extension to the algebraic closure @p)

by [[;.
We remind the definition of a natural boundary ( see [26], sec. 6.2).

Definition 1.1. Suppose that an analytic function F' is defined somehow in
aregion D of the complex plane. If there is no point of the boundary 0D of
D over which F' can be analytically continued, then 0D is called a natural
boundary for F' .

We need the following statement

Lemma 1.2. (¢f. [1]) Let Z(z) = > .~ R(¢")z". If Ry(z) is rational
then Z(z) is rational. If R,(z) has an analytic continuation beyond its
circle of convergence, then so does Z(z) too. In particular, the existence
of a natural boundary at the circle of convergence for Z(z) implies the
existence of a natural boundary for R, ().

Proof. This follows from the fact that Z(z) = z - Ry(2) /R4(2). O
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One of the important links between the arithmetic properties of the coef-
ficients of a complex power series and its analytic behaviour is given by the
Pdlya—Carlson theorem [26].

Polya—Carlson Theorem. A power series with integer coefficients and ra-
dius of convergence 1 is either rational or has the unit circle as a natural
boundary.

Lemma 1.3. End(Z,) = Z, for abelian group Z,.

Proof. Let ¢ € End(Z,). We have p"¢(x) = ¢(p"x). Then ¢(p"Z,) C
p"Z,, so ¢ is continuous. For every x € Z, there exists a sequence of
integers x,, converging to x. Then

¢(z) = lim ¢(z,) = lim z,¢(1) = ¢(1)z,

so ¢ is a multiplication by ¢(1). O

Let ¢ € End(Z,), then ¢(z) = ax, where a € Z,. We have ¢"(z) = a"x.
By definition,
yr~preIEL,y=b+r—ab=x+b(l—a) < y=z(mod(l—a)).

This implies that R(¢) = |Z,/(1 — a)Z,|. But

(1-a)Z, = pvp(l_a)zp =|1- a|;1va

so we can write R(¢) = |1 — a|,;' = |a — 1|, and, more generally,

R(¢") =1 —a®," = |a™ — 1| !, foralln € N,

Now consider a group Zg, d > 2. It follows easily from Lemma 1.3, that
End(Z{) = Mqy(Zy,). For any matrix A € My(Z,) there exists a diagonal

matrix D € M,(Z,) and unimodular matrices £, F' € My(Z,) such that
D = FAF.

Lemma 1.4. For endomorphism ¢, : ZZ — ZZ we have
R(¢y) = #Coker(1 — ¢,) = | det(®, —1d)|,",
where ®, is a matrix of ¢,.

Proof. Let matrices D, E, F' € My(Z,) be such that D = E(Id — ®,)F,
where D = (qa;) is diagonal matrix, a; € Z,,1 < i < d, and matrices E, F'
are unimodular. Then we have

R(¢,) = #Coker(1 — ¢,) = |Z% : (Id — ®,)Z]| = |Z{ : DZ| =
=|Zy : a1 Zy| - |Zy : asZy) - ... - |Zy : agZy| = |a1|;1 e |ad|;1 =
= |det(D)|;" = |det(Id — ;)| " = | det(P, — Id)[ ;.
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In order to handle the sequence R(¢") = |a" — 1|, n € N more easily,
we need a way to evaluate expressions of the form |a™ — 1|, when |a|, = 1.
The following technical lemma is useful.

Lemma 1.5. (¢f. [21, Lemma 4.9], [1, Lemma 2]) Let K, be a
non-archimedean local field and suppose x € K, has |z|, = 1 and infinite
multiplicative order. Let p > 0 be the characteristic of the residue field
F, and v € N the multiplicative order of the image of x in F, . Then
|z — 1|, = 1 whenever (y,n) = 1 and v # 1. Furthermore, there are
constants 0 < C' < 1 and roy > 0 such that whenever n = k~p" with
(p,k) = Landr > ry, then |2" — 1|, = C|p|i if char(K,) = 0.

Now we prove a Polya—Carlson dichotomy between rationality and a nat-
ural boundary for the analytic behaviour of the Reidemeister zeta function
for endomorphisms of groups Zg, d>1.

Theorem 1.6. Let ¢, : Zg — Zg be a tame endomorphism and

A1y A9y Ag € @p be the eigenvalues of ®,, including multiplicities. Then
the Reidemeister zeta function Ry, (z) is either a rational function or it has
the unit circle as a natural boundary. Furthermore, the latter occurs if and
only if | \i|, = 1 for some i € {1,...,d}.

Proof. Firstly, we consider separately the case of the group Z, as it illus-
trates some ideas needed for the proof of the dichotomy in general case
when d > 1. Lemma 1.3 yields ¢, (z) = ax, where a € Z,. Hence |a|, < 1.
Then the Reidemeister numbers R(¢)) = |a" — 1|, for all n € N. If
lal, < 1, then R(¢}) = |a” — 1" = 1, for all n € N. Hence the ra-
dius of convergence of R, (2) equals 1 and the Reidemeister zeta function
Ry, (z) = 1= is a rational function.

From now on, we shall write a(n) << b(n) if there is a constant ¢ inde-
pendent of n for which a(n) < ¢ - b(n). When |a|, = 1, we show that the
radius of convergence of Ry, (2) equals 1 by deriving the bound

1
(1) —<<l|a" -1}, <1
n

Upper bound in (1) follows from the definition of the p-adic norm. We
may suppose that [a” — 1|, < 1. Let F' denote the smallest field which
contains Q,, and is both algebraically closed and complete with respect to
| - |, - The p-adic logarithm log,, is defined as

=, (—1)

log,(1+2) = Z Tz”,
n=1
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and converges for all z € F such that |z|, < 1. Setting z = a™ — 1 we get

log, (a") = (a" — 1) — (“n;” + W;” -

and so |log,(a")|, < |a™ — 1[,. We always have

1 n
- << |nlog,(a)|, = |log,(a")l,,

so this establishes (1).

The bound (1) implies by Cauchy - Hadamard formula that the radius
of convergence of R, (2) equals 1. Hence it remains to show that the
Reidemeister zeta function Ry, (2) is irrational if |a|, = 1. Then Ry (2)
has the unit circle as a natural boundary by the Lemma 1.2 and by the
Pélya—Carlson Theorem. For a contradiction, assume that Reidemeister
zeta function Ry, (z) is rational. Then Lemma 1.2 implies that the func-
tion Z,(2) = > ", R(¢})2" is rational also. Hence the sequence R(¢j)
satisfies a linear recurrence relation. Define n = ~p”, where integer con-
stant » > 0. Applying Lemma 1.5, we see that

R(¢,") = R(¢p)

whenever £ is coprime to n. Hence the sequence R(¢;) assumes infinitely
many values infinitely often, and so it cannot satisfy a linear recurrence by a
result of Myerson and van der Poorten [24, Prop. 2], giving a contradiction.

Now we consider the general case of a tame endomorphism ¢, : Zg —
Zg, d > 1. According to the Lemma 1.4 we have

d
R(¢p) = #Coker(1 — ¢') = |det(®r — 1)t = T IAF — 1], ",
i=1

where ®,, is a matrix of ¢, and \;, Az, .. \g € @p are the eigenvalues of ®,,
including multiplicities. The polynomial H?ZI(X — \;) has coefficients in
Zy; in particular, |);|, < 1foreveryi € {1,...,d} (see [15]). If | \;|, < 1,
forevery i € {1,...,d} then R(¢") = [[_, |\? — 1|,;* =1, foralln € N.
Hence the radius of convergence of Ry, (2) equals 1 and the Reidemeister
zeta function Ry, (2) = = is a rational function. If [\;[, = 1, for some
i € {1,...,d} then the bound (1) implies the bound

1 o TT e i
) — << R(¢}) = H1 A =1t <L
Hence the radius of convergence of Ry, (2) equals 1 by the
Cauchy— Hadamard formula and the bound (2). Now for the proof of the
theorem it remains to show that the Reidemeister zeta function R, (2)
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is irrational if |\;|, = 1 for some 7 € {1,...,d}. Then Ry (z) has the
unit circle as a natural boundary by the Lemma 1.2 and by the Pdlya—
Carlson Theorem. For a contradiction, assume that Reidemeister zeta func-
tion Ry, () is rational. Then Lemma 1.2 implies that the function Z,(z) =
> ney R(¢y)2" is rational also. Hence the sequence R(¢}) satifies a linear
recurrence relation. Define n = ~yp”, where integer constant > 0. Apply-
ing Lemma 1.5, we see that R(¢}") = R(¢;) whenever k is coprime to n.
Hence the sequence R(¢},) assumes infinitely many values infinitely often,
and so it cannot satisfy a linear recurrence by a result of Myerson and van
der Poorten [24, Prop. 2], giving a contradiction.

n

2. THE RATIONALITY OF THE COINCIDENCE REIDEMEISTER ZETA
FUNCTION FOR ENDOMORPHISMS OF FINITELY GENERATED
TORSION-FREE NILPOTENT GROUPS

Example 2.1. ([15], Example 1.3) Let G = Z be the infinite cyclic group,
written additively, and let

O: L — L, x> dyx and Vi L — 4, x> dypx

for dy,d, € Z. The coincidence Reidemeister number R(¢, ) of endo-
morphisms ¢, 1) of an Abelian group G coincides with the cardinality of
the quotient group Coker (¢ — ¢) = G/Im(¢ — ) (or Coker (¢p — ¢) =
G /Im(v) — ¢)). Hence we have

dr—dy| ifdp#dn
R(¢”,¢”):{| p—dgl ifdp#dp,
0 otherwise.
Consequently, (¢, 1) is tame precisely when |d,| # |d,| and, in this case,
il dyd
Ryp(z) = el where d; = max{|dy|, |dy|} and dy = 22
7 1 - dlZ dl

This simple example (or at least special cases of it) are known. The aim of
the current section is to generalise this example to finitely generated torsion-
free nilpotent groups. Let GG be a finitely generated group and ¢, v : G — G
two endomorphisms.

Lemma 2.2. Let ¢,v : G — G are two automorphisms. Two elements
x,y of G are Y~ ¢-conjugate if and only if elements 1)(x) and 1) (y) are
(v, ¢)-conjugate. Therefore the Reidemeister number R(1 ') is equal to
R(¢p,v). For a tame pair of commuting automorphisms ¢, : G — G the
coicidence Reidemeister zeta function Ry () is equal to the Reidemeister
zeta function Ry-1,(2).
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Proof. If x and y are 1)~'¢-conjugate, then there is a ¢ € G such that
x = gy~ '¢(g~"). This implies y(z) = ¥(g)¥(y)p(g~"). So 1 (z) and

¥ (y) are (¢,1))-conjugate. The converse statement follows if we move in
opposite direction in previous implications. U

We assume X to be a connected, compact polyhedronand f : X — X to
be a continuous map. The Lefschetz zeta function of a discrete dynamical

system f” is defined as L¢(z) := exp (ZOO Mz”) , where

L") = Y0 (1) b [ [ Hi(X5Q) = Hi(X;Q)]

is the Lefschetz number of the iterate f™ of f. The Lefschetz zeta function
is a rational function of z and is given by the formula:
dim X
H det [ fek- z)
k=0
In this section we consider finitely generated torsion-free nilpotent group
I'. Tt is well known [20] that such group I' is a uniform discrete subgroup
of a simply connected nilpotent Lie group G (uniform means that the coset
space G/T" is compact). The coset space M = G/T is called a nilmanifold.
Since I' = (M) and M is a K(T', 1), every endomorphism ¢ : ' — T'
can be realized by a selfmap f : M — M such that f, = ¢ and thus
R(f) = R(¢). Any endomorphism ¢ : I' — I' can be uniquely extended
to an endomorphism F : G — G. Let F : G — G be the ‘corresponding
Lie algebra endomorphism induced from F" and let S pectr(F ) be the set of
eigenvalues of F.

Lemma 2.3. (c¢f. Theorem 23 of [12] and Theorem 5 of [14]) Let ¢ : ' — T’
be a tame endomorphism of a finitely generated torsion free nilpotent group.
Then the Reidemeister zeta function R,(z) = Ry(2) is a rational function
and is equal to

3) Ry(2) = Ry(2) = L((—1)P2) V",

where p the number of |1 € Spectr(ﬁ) such that p < —1, and r the number
of real eigenvalues of F' whose absolute value is > 1.

)k+1

Every pair of automorphisms ¢, : I' — I' of finitely generated torsion
free nilpotent group I can be realized by a pair of homeomorphisms f, g
M — M such that f, = ¢, g. = ¢ and thus R(g7'f) = R(v'¢) =

R(¢,). An automorphism ©»~'¢ : I' — T can be uniquely extended to
an automorphism L : G — G. Let L : G — G be the corresponding Lie
algebra automorphism induced from L.
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Lemma 2.2 and Lemma 2.3 imply the following

Theorem 2.4. Let ¢,1) : I' — ' be a tame pair of commuting automor-
phisms of a finitely generated torsion-free nilpotent group I'. Then the co-
incidence Reidemeister zeta function Ry (%) is a rational function and is
equal to

@) Ryp(2) = Ry1g(2) = Ryoip(2) = Ly 5((—1)72) Y,

where p the number of i € Spectr(L) such that ;i < —1, and r the number
of real eigenvalues of L whose absolute value is > 1.

For an arbitrary group G, we can define the k-fold commutator group
v&(G) inductively as v (G) = G and Y;41(G) = [G,7(G)]. Let G be
a group. For a subgroup H < G, we define the isolator /H of H in G
as: VH = {g € G| g" € H for some n € N}. Note that the isolator of a
subgroup H < G doesn’t have to be a subgroup in general. For example,
the isolator of the trivial group is the set of torsion elements of G.

Lemma 2.5. (see [5], Lemma 1.1.2 and Lemma 1.1.4) Let G be a group.
Then
(i) forall k € N, {/(G) is a fully characteristic subgroup of G,
(ii) for all k € N, the factor G| {/~(G) is torsion-free,
(iii) forall k,1 € N, the commutator | §/v£(G), /%(G)] < /11 (G),
(iv) forall k,l € N such that k > Lif M := $/~(QG), then

I (GIM) = /(G /M.

We define the adapted lower central series of a group G as
G=n(G)> V@) >..2 Y@ > ..

where 7, (G) is the k-th commutator of G.

The adapted lower central series will terminate if and only if G is a
torsion-free, nilpotent group. Moreover, all factors §/7(G)/ §/7k+1(G)
are torsion-free.

We are particularly interested in the case where G is a finitely generated,
torsion-free, nilpotent group. In this case the factors of the adapted lower
central series are finitely generated, torsion-free, abelian groups, i.e. for all
kE € N we have that

/(G /) /1 (G) = Z%, for some dj, € N.

Let N be a normal subgroup of a group G and ¢,¢ € End(G) with
d(N) € N,¥(N) C N. We denote the restriction of ¢ to N by ¢|x, ¥ to
N by 9|y and the induced endomorphisms on the quotient G/N by ¢, ¢’
respectively. We then get the following commutative diagrams with exact
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Tows:

1 y N —— G 2> G/N — 1

) lqslN,M lw/z la,w

1 y N 4G L5 G/IN —1

Note that both ¢ and p induce functions 7, p on the set of Reidemeister
classes so that the sequence

Rlb|n, ¥|n] —— Rlo, v)] —— R, 1] — 0

is exact, i.e. p is surjective and p~![1] = im(7), where 1 is the identity
element of G/N (see also [18]).

Lemma 2.6. If R(¢|y, ¥ |n) < 0o, R(¢',¢') < coand N C Z(QG), then
R(¢,¢) < R(¢|n, ¥In)R(S, ).

Proof. Let R(¢lon, ¥ln) = {[mlofyuln s [MR@Iywln) oy vlx  and
R(¢", ") = {[91N]o v, - [9Rr(¢r ) N0 } be the

(9w, ¢| ~)-Reidemeister classes and (¢, 1)')-Reidemeister classes respec-

tively. Let us take g € G. Then gN € [g;N|, 4 for some i, so there exists

hN € G/N such that

gN = ¢'(hN)g:N¢/(hN) ™" = ¢/ (h)gi¢/(h) " N.

It follows that there exists n € N such that ¢ = ¢'(h)g;¢'(h)"'n. In
turn n € [n;]g|y.|x for some j, hence there exists m € N such that n =

Ylnv(m)n;d|n(m)~t. Since n,m,nj, Y|n(m), |n(m) € N C Z(G), it
follows that

g = [¢(hm)](gin;)[¢(hm) "],
i.e g € [gin,]s.- Since this is true for arbitrary g € G we obtain that
R(¢7 w) < R(¢’N7 w’N)R(¢/7 W)
U

Theorem 2.7. Let N be a finitely generated, torsion-free, nilpotent group
and

N = Y/m(N) = Vv > V/%e(N) = Ve (N) =

be an adapted lower central series of N. Suppose that R(¢,1) < oo and
R(¢x, k) < oo for a pair ¢,¢ of endomorphisms of N and for every
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pair ¢y, Yy, of induced endomorphisms on the finitely generated torsion-free
abelian factors

]{/')/k(N)/ ]{/vk-i-l(N) = dev dk € N7 1 S k S C,

then

R(¢, ) = [ ] R(ox o).

k=1

Proof. We will prove the product formula for the coincidence Reidemeister
numbers by induction on the length of an adapted lower central series. Let
us denote \/7x(N) as Ny. If ¢ = 1, the result follows trivially. Let ¢ > 1
and assume the product formula holds for a central series of length ¢ — 1.
Let ¢,¢ € End(N), then ¢(N.) C N.,¢(N,.) C N, and hence we have the
following commutative diagram of short exact sequences:

1 sy N, —— N —2— N/N, — 1

¢C9wc J/(z),w l(ﬁl’/lp/

1 sy N, —— N —2— N/N, —— 1

~
g

‘—

b

~
g

where ¢, 1. are induced endomorphisms on the N... The quotient N/N, is
a finitely generated, nilpotent group with a adapted central series

N/Nc = Nl/Nc = N2/NC Z ... 2 Nc—l/Nc P Nc/Nc =1

of length ¢ — 1.

Every factor of this series is of the form
(Ng/N.)/(Ngy1/N.) = Ny /N1 by the third isomorphism theorem, hence
it is also torsion-free. Moreover, because of this natural isomorphism we
know that for every induced pair of endomorphisms (¢}, 1;,) on
(Ng/N.)/(Ngy1/N.) itis true that R(¢y, ¢;) = R(pk, Vr).

The assumptions of the theorem imply that R(¢’, ') < oo and
R(c, 1) < oc.

Moreover, let [g1 Ny .y, -, [gnNe] & 4 be the (¢', ¢')-Reidemeister
classes and [¢1]g, s - [Cml o0, - the (¢, 1L)-Reidemeister classes. Since
N.C Z(N), by Lemma 2.6 we obtain that R(¢, 1) < R(¢., ) R(¢',¢).

To prove the opposite inequality it suffices to prove that every class
[cig;] . represents a different (¢, ¢)-Reidemeister class. Then we obtain

R(¢,9) = R(de, o) R(, ¥)

and then the theorem follows from the induction hypothesis.
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Suppose, that there exists some i € N such that ¢;g; = ¥(h)cagpp(h) !
Then by taking the projection to N/N, we find that

9iNe = pleigy) = p((R)cagop(h) ™) = ¢ (hN) (g6 Ne)¢' (RN,) ™
hence [g; N¢]¢ v = [96Nc]y 4. Now assume that
cigi = ¥(h)cagjo(h) 1. If h € N, C Z(N), then ¢;g; = ¥(h)c,p(h)™"
and consequently [¢;], 4, = [Ca) .- SO let us assume that b ¢ N, and that
Ny, is the smallest group in the central series which contains h. Then c¢;g; =
D(B)eugs0() " = g6 = V(R)eugy(h) " & = g7 v ()cag,o(h)
S = gj_lw(h)gjgzﬁ(h)*lca & et = 9; Y4 (h)g;¢(h)~! and therefore
ch;lNk+1 = gj_lw(h)gj¢(h)_1Nk+1
= [g;, (M)~ (R)p(h) ™) Ny
As cic;' € N, C Nyiq and [g;,¢(h) ™! € Ny, we find that (¢x) (A Nky1)

(wk)(h]\f k+1). That means that the set of coincidence points Coin (¢}, 1},

# {1}, which implies that R(¢’,¢’) = oo and this contradicts assumption.
U

Theorem 2.8. Let ¢,1): N — N be a tame pair of endomorphisms of a
finitely generated torsion-free nilpotent group N. Let c denote the nilpo-
tency class of N and, for 1 < k < ¢, let ¢, : Gy, — G, 1 < k < ¢
denote the tame pairs of induced endomorphisms of the finitely generated
torsion-free abelian factor groups Gy, = Ny /Nyi1 =

N%(N)/ X w1 (N) = 2% for some dy, € N, that arise from an
adapted lower central series of N. Then the following hold.

(1) For eachn € N,

R(¢",¢") = HR(¢;?, i) forn € N.

k=1
2)Forl1 <k <eglet

Pr,0, Ykt Gro = Gro

denote the extensions of ¢y, )y, to the divisible hull G g = Q®z G = Qdx
of G. Suppose that each pair of endomorphisms ¢i g, V1 q is simultane-
ously triangularisable. Let &y, 1, . .., &k a, and N1, - - ., Nk, 4, De the eigenval-
ues of ¢ g and Yy, g in the field C, including multiplicities, ordered so that,

Jorn € N, the eigenvalues of ¢;'q — VYy'g are &'y — ng'y, - &g, — Ny
Then for eachn € N,

(6) ¢k ) wk H|£k i T]k )

(3) Moreover, suppose that |& ;| # |nk7i]f0r 1<k<cel<i<<d. If
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@, is a tame pair of endomorphisms of N and ¢, Ve 1 < k < ¢ are
simultaneously triangularisable pairs of endomorphisms of G, q, then the
coincidence Reidemeister zeta function Ry ,(2) is a rational function.

Proof. The coincidence Reidemeister number R(¢, 1) of automorphisms
¢, of an Abelian group G coincides with the cardinality of the quotient
group Coker (¢ — ) = G /Im(¢ — ¢) (or Coker (¢ — ¢) = G/Im(t) — §)).

For 1 < k < ¢, let tame pairs ¢, ¥y : G — Gy of induced endomor-
phisms of the finitely generated torsion-free abelian factor groups G =
Ni/Nyy1 = Z% are represented by integer matrices Ay, B, € My, (Z)
associated to them respectively. There is a diagonal integer matrix C}, =
diag(cq, ..., g, ) such that Cy, = M (Ax — By)Ny; where My and N, are
unimodular matrices. Now we have det C, = det( Ay, — By,) and the order
of the cokernel of ¢, — v, is the order of the group Z/c1Z @ ..... ® Z/cq, Z.
Thus the order of the cokernel of ¢y — 1y, is |Coker (¢pr—1y)| = |c1+-cq, | =
[ det Cy| = | det(¢x — tie)]-

Then foreachn € Nand 1 < k < ¢, R(¢)!,¢)") = |Coker (¢r, — )| =
[det(dr — ¥e)] = | det(Brg — )l = [T, [&2 — nitl.

Now we will prove the rationality of R, ,(z). We open up the absolute
values in the product R(¢*, ") = Hfil|§k’fi —ngil, 1 < k < c. Complex
eigenvalues &, ; in the spectrum of ¢y, @, respectively 7, ; in the spectrum of
1@, appear in pairs with their complex conjugate @, respectively 7y ;.

Moreover, such pairs can be lined up with one another in a simultane-
ous triangularisation as follows. Write ¢y, ¢, ¢ ¢ for the induced endomor-
phisms of the C-vector space V = C ®g G = C%*. If v € V is, at the
same time, an eigenvector of ¢ c with complex eigenvalue 4, and an
eigenvector of 1, ¢ with eigenvalue 7, 4, , then there is w € V' such that w
is, at the same time, an eigenvector of ¢ ¢ with eigenvalue @ # Ek.d,
and an eigenvector of 1, ¢ with eigenvalue 7 4., possibly equal to 7y g4, .
Thus we can start our complete flag of {¢, 1 }-invariant subspaces of V' with
{0} C (v) C (v, w), and proceed with V/ (v, w) by induction to produce the
rest of the flag in the same way, treating complex eigenvalues of 1, ¢ in the
same way as they appear. If at least one of & ;, 1)y, ; is complex so that these
eigenvalues of ¢g and g are paired with eigenvalues & ; = &ki, Mkj = Mis
for suitable j # i, as discussed above, we see that

s —ml 168y — nis| = e — il ” = (&8 — i) - @ — ™).

If &, and 7;; are both real eigenvalues of ¢g and /g, not paired up with
another pair of eigenvalues, then exactly as in Example 2.1 above we have
1§ — il = 0% — Og'ki» Where 8y g = max{[&xil, [4|} and dpp; =

Ek,iM,i
01,k,i

. Hence we can expand each product R(¢;",¢;"), 1 < k < cusing an
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appropriate symmetric polynomial, to obtain for the Reidemeister numbers
R(¢™, ™) an expression of the form

c c dg
D R(e" ") = [[ R o) =[] TIer — nisl =D cw
k=1 k=1 1i=1 jeJ

where J is a finite index set, ¢; € {—1,1} and {w; | j € J} C C ~ {0}.
Consequently, the coincidence Reidemeister zeta function can be written as

Ryp(z) =exp | Mz” —epn (YY) (wij)”

n=1 jeJ n=1

and it follows immediately that Ry (2) = [];c;(1 — w;2)™% is a rational
function.
O
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