
Reduction theory and periods of modular forms

Lecture given at the last Manin Seminar on Feburary 21, 2023

PART 0: Introductory Remarks

Today we are paying tribute to Yuri Ivanovich Manin. He was a wonderful person and
for me also a wonderful friend and collaborator.

I got to know Yuri in 1987 during two months I spent in Moscow. He was extremely
warm right from the beginning and to my great surprise invited me to one of the two
50th birthday parties he gave in his amazing apartment full of innumerable books in
many languages. A few years later, and to my great joy, he came to the Max Planck
Institute and became my colleague and over the years, with his wife Xenia Glebovna
Semenova, also close friend.

I do not plan to say anything today about those years or about the two papers that
we wrote together, both of which meant a great deal to me and taught me a lot about
doing and thinking about mathematics, often in ways that were often very different from
those I knew. Instead, I want to give a purely mathematical lecture about a circle of
ideas that originated from work of his and that we often discussed together, although to
my regret we never did any joint work in that direction. (However, his first two papers
with Matilde, who will speak after me, were on a related subject and were also closely
connected with some earlier work of mine and John Lewis.)

This circle idea of ideas originated from Manin’s two highly influential papers of 1972
and 1973 on modular symbols and on periods of modular forms of higher weight, both
closely related to the Eichler-Shimura cohomology theory that had been developed in
the previous decade. In the first part of this lecture I will review these two papers and
mention some later results, of myself and others, to which they led. The second part
will be concerned with the inverse problem of determining a modular form from its
periods. I posed this question to myself more than 25 years ago and found a very nice
solution for the case of modular forms on the full modular group, and I had planned
to submit this paper to a volume dedicated to Manin on his 60th birthday. But then
I discovered experimentally a surprising conjecture in reduction theory, generalizing in
an unexpected way the classical theory of continued fractions that had played a key role
in both of Manin’s papers, that would solve the inversion problem for modular forms on
arbitrary Fuchsian groups, and since I did not want to present anything half-baked for
such an important occasion, I decided to keep the paper “on ice” until I could prove my
conjecture. The same thing happened, to my shame, for the later volumes for his 70th
and 80th birthday volumes. But the conjecture still resisted solution and is in fact still
not proved even now, although there are partial results. So I will tell this story today,
as a kind of very belated present to Yuri.
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PART I: Historical Overview

1. Manin’s 1972 paper (Izvestia Akademii Nauk SSSR) “Cusps and zeta functions of
modular curves”

E= elliptic curve/Q, conductor N , Neron differential ω.

Weil’s 1969 conjecture says that there is a map ϕ : X0(N)→ E (Weil parametrization)
such that the pull-back ϕ∗ω is a multiple of f(z) dz, where f is the Hecke eigenform of
weight 2 corresponding to E (↔ “Taniyama-Weil conjecture”).

Then L(E/Q, 1) ∼ L(f, 1) ∼
∫∞

0
f(z) dz. Consider more generally {a, b} =

∫ b
a

(or NOT
the integral, but just the abstract class as a relative homology class in (X0(N), cusps) ).

Basic idea: introduce the space of formal integer combinations of symbols {a, b} with

{a, a} = 0, {a, b}+{b, a} = 0, {a, b}+{b, c}+{c, a} = 0, {γa, γb} = {a, b} (γ ∈ Γ)

and use this as a model of S2(Γ0(N)). (Essentially the same idea was proposed inde-
pendently by Birch at about the same time.) This was a very important theoretical
idea and, with its higher-weight generalizations, is also at the basis of most numerical
computations with modular forms done today.

2. Manin’s 1973 paper (Matematicheskii Sbornik) “Periods of cusp forms and p-adic
Hecke series”

The p-adic part gave rise to a huge literature, starting with papers by Manin–Vishik
and Manin–Panchishkin and later also by Hida, Mazur, Coleman and many others, but
I’ll only talk about the higher-weight part. Here there are two main discoveries:

(i) the algebraic nature of periods of modular forms,
(ii) explicit formulas coming from the action of Hecke operators.

Following Manin, I will illustrate both for the modular form ∆(z) of weight 12.

Recall first that a modular form of weight k on the full modular group Γ1 = SL(2,Z),
or on any discrete group Γ ⊂ SL(2,R) of finite covolume, is a holomorphic function
f(z) in the upper half-plane H = {z ∈ C | =(z) > 0} that is invariant with respect to

the action f(z) 7→ (f |kγ)(z) := (cz + d)−kf
(
aX+b
cX+d

)
of γ =

(
a b

c d

)
∈ Γ and satisfies a

suitable growth condition. Since Γ1 is generated by the two elements T =
( 1 1

0 1

)
and

S =
( 0 −1

1 0

)
, this is equivalent to the two conditions f(z+ 1) = f(z), meaning that f(z)

has a Fourier expansion f(z) =
∑
anq

n (q = e2πiz), and f(−1/z) = zkf(z). The most
famous example is Ramanujan’s discriminant function

∆(z) = q

∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 − · · · − 6048q6 + · · · =:

∞∑
n=1

τ(n) qn

which, as Ramanujan discovered experimentally in 1916 and Mordell proved one year
later, satisfies the multiplicativity property τ(mn) = τ(m)τ(n) for (m,n) = 1, e.g.

τ(6) = −6048 = −24 · 252 = τ(2) τ(3) .
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Modular forms with this property are called Hecke eigenforms and play a central role
in the whole theory and in Manin’s work.

Manin’s results (i) and (ii) for the special case f = ∆, k = 12 are then as follows:

(i) Set rn(f) =
∫∞

0
f(z) zn dz (n = 0, . . . , k − 2) . Then for f = ∆, k = 12 we have(

r0(∆) : r2(∆) : r4(∆)
)

=
(

360
691 : − 4

9 : 1
7

)
,
(
r1(∆) : r3(∆) : r5(∆)

)
=
(

48
5 : −5 : 4

)
.

In other words, the rn(f) for n even/odd are algebraic (here rational) multiples of two
basic periods ω± = ω±(f). This result has inspired countless others, notably Deligne’s
conjecture on special values of L-functions as multiples of periods of algebraic forms,
with special cases for Symn(f) involving monomials in the same numbers ω+ and ω− .

(ii) Combining the modular symbols idea with the theory of Hecke operators, Manin
proved the now famous formula (in which σ11(n) :=

∑
d|n d

11)

σ11(n)− τ(n) =
691

18

∑
∆∆′+δδ′=n

∆2δ2(∆2 − δ2)3 , (1)

where the sum is over all integral solutions of the equation with 0 < δ < ∆ and either
0 < δ′ < ∆′ or δ′ = 0 and 0 < δ ≤∗ 1

2∆ ( ∗ = count endpoint as 1/2). This expresses
the nth Fourier coefficient of a modular form in terms of the representations of n by
an indefinite quadratic form and can be seen as the start of a theory of holomorphic
theta series attached to indefinite quadratic forms that has slowly been being developed
during the last 20 years by Zwegers, myself, and others.

These results can be stated very nicely in terms of the language of period polynomials.
For f ∈ Sk(Γ1) (cusp forms) we define the period polynomial Pf (X) ∈ C[X] of f by

Pf (X) =

∫ ∞
0

f(z) (z −X)k−2 dz =
k−2∑
n=0

(−1)n
(
k − 2

n

)
rn(f)Xk−n .

Then Manin’s result (i) says that the even and odd parts P±f (X) of this polynomial,

up to multiplicative constants ω±(f), have algebraic (and even rational for f = ∆)
coefficients whenever f is a Hecke eigenform, e.g.,

P∆(X) = ω+

(
36
691X

10 −X2(X2 − 1)3 − 36
691

)
+ ω−X(X2 − 1)2(X2 − 4)(4X2 − 1) .

The polynomial Pf is the special case Pf = Pf,S of a map Γ 3 γ 7→ Pf,γ ∈ Vk given by

Pf,γ(X) =

∫ ∞
γ−1(∞)

f(z) (z −X)k−2 dz .

Here Vk is the space of polynomials in X of degree ≤ k− 2, with the group action given
by P (X) 7→ (P |2−kg)(X) = (cX + d)k−2P

(
aX+b
cX+d

)
for g =

(
a b

c d

)
∈ SL(2,R), and the

map γ 7→ Pf,γ is a cocycle for this action, meaning that Pf,γγ′ = Pf,γ |2−kγ′ + Pf,γ′ for
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all γ, γ′ ∈ Γ. In particular, Pf,γ for all γ are determined by Pf,S = Pf and Pf,T = 0,
since S and T generate Γ1. The theory of period polynomials was developed by Eichler,
Shimura, and Manin, and for Γ = Γ1 we know that the maps Sk(Γ)→ H1(Γ, Vk) sending
a modular form to the even or odd part of its period polynomial are both injective.

That γ 7→ Pf,γ is a cocycle can be checked by direct calculation or by writing it as a
coboundary in a larger space of functions. If f is a modular form of weight k on Γ1 (or
any other lattice Γ), then its Eichler integral is by definition any holomorphic function
F in H with dk−1F/dzk−1 = f . Explicit representations if f(z) =

∑∞
n=1 ane

2πinz is a
cusp form are given by

F (z) =
∞∑
n=1

an
(2πin)k−1

e2πinz =
1

(k − 1)!

∫ i∞

z

f(τ) (τ − z)k−2 dτ . (2)

An easy calculation shows that F |2−kγ is given by the same integral as in (2) but with the
upper limit of integration replaced by γ−1∞. This gives

(
F (z) − F |2−kγ

)
(z) = Pf,γ(z),

from which the cocycle property follows immediately.

The result (ii) was also established using period polynomials. For n ∈ N, the nth Hecke
operator Tn acting on the space of modular forms sends f ∈Mk(Γ) to the sum of f |kM
with M ranging over the Γ1-orbits of 2 × 2 integral matrices of determinant n, and

Manin showed that this action could be lifted to period polynomials by Pf |Tn
= Pf |T̃n,

where P |T̃n is defined as the sum of the polynomials P |2−k
(

∆ −δ
δ′ ∆′

)
with ∆,∆′, δ, δ′

satisfying the conditions in (1). This “period version” of Hecke theory had many later
variants (Mazur 1972, Merel 1991, Choie-Zagier 1993). One of them could be refined
in a way that led to a new and elementary proof of the Eichler-Selberg trace formula
for Tr(Tn,Mk(Γ1)), as I sketched in a lecture in Japan in 1993 and completed with
Alexandru Popa in 2020.

I end this first part of the lecture with a rather surprising consequence of the theory of
period polynomials that I found some 20 years ago: For every real number x, the sum∑

a,b,c∈Z, a<0

b2−4ac=5

max(0, ax2 + bx+ c) (3)

converges, and its value is the constant function 2 ! For example, if x = 1/π then there
are only triples (a, b, c) with −100000 < a < 0 and ax2 + bx+ c > 0, namely,

(−1, 1, 1), (1,−1, 1), (−5, 5,−1), (−11, 7,−1), (−409, 259,−4), (−541, 345,−55),

and the corresponding six values

1.21699, 0.58037, 0.08494, 0.11364, 0.00190, 0.00215

of ax2 + bx + c already add up to 1.99998. If we replace “5” in (3) by any positive
integer D, then the same result is true with the constant “2” replaced by a constant
aD ∈ Z depending only on D and essentially equal to ζQ(

√
D)(2), and if we replace the

quantity max(0, ax2 + bx+ c) by its cube, then the result still holds, with aD replaced
by a constant bD essentially equal to ζQ(

√
D)(4), but if we put the 5th power instead

in (2) then the right-hand side becomes cD + dDΦ(x) where Φ(x) is a function that is
differentiable but not C∞ and that essentially coincides with the extension to R of the
Eichler integral of Ramanujan’s discriminant function ∆ !
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PART 2: The Inversion Problem

Given the injectivity of f 7→ Pf (or f 7→ P±f ), it is natural to pose the question of

reconstructing f explicitly from Pf (or P+
f or P−f ). This question has two versions:

giving a formula for f(z) in terms of Pf for z ∈ H and giving a formula for the nth
Fourier coefficient an of f in terms of Pf for n ∈ N. Here I’ll describe only the former.

The solution, like both of Manin’s papers, is based on the theory of continued fractions.
Given a real number x, its “minus” continued fraction is given by x = n0−1/(n1−1/ · · · )
with the n ∈ Z defined inductively by x0 = x, xi ≤ ni < xi + 1, and xi+1 = 1/(ni−xi).
One then has xi = γi(x) with γ0 =

( 1 0

0 1

)
and γ−1

i+1 = γ−1
i

( ni −1

1 0

)
. On the other hand,

the Fourier integral expression of the Eichler integral F of f in (2) converges also for
z real, so one can talk about the values F (x) for x ∈ R, and of course the equalities
F |T = F and F |S = F − Pf still hold there. These equalities imply that

Pf |γi+1 = (F − F |TniS)|γi+1 = F |γi+1 − F |γi
and hence (after verifying the convergence)

F (x) = −
∞∑
i=1

(Pf |γi)(x) (x ∈ R)

One now uses the following surprising lemma, in which the key idea is to forget that the
matrices γi’s are naturally ordered!

Lemma. For every x ∈ RrQ, the set of matrices {γ1, γ2, . . . } defined by the continued
fraction of x coincides with the set of γ ∈ Γ1 satisfying 0 ≤ γ(∞) < 1 ≤ γ(x) .

Combining this lemma with the easy formula f(z)
.
=
∫∞
−∞ F (t) (z − t)−k dt expressing

the cusp form f in terms of the extension to R of its Eichler integral, we get the formula

f(z)
.
=

∑
γ∈Γ1

0≤γ(∞)<1

(
Qf
∣∣
k
γ
)
(z) with Qf (z) :=

∫ ∞
1

Pf (t)

(t− z)k
dt ∈ C

[ 1

z − 1

]

giving f(z) as an infinite sum of rational functions determined completely by Pf .

One can obtain other representations of f in terms of Pf by changing the choice of con-
tinued fraction algorithm. For instance, with the “nearest-integer” algorithm (xi and γi
defined as above but now with xi − 1

2 ≤ ni < xi + 1
2 ), the analogue of the lemma above

says that the set of γi (i ≥ 1) for a given number x ∈ R consists of all γ ∈ Γ1 with(
γ(x), γ(∞)

)
∈
[
2,∞

)
×
[

1−
√

5
2 , 3−

√
5

2

]
∪
(
−∞,−2

]
×
[−3+

√
5

2 , −1+
√

5
2

]
. (4)

To understand the situation better, I considered new continued fraction algorithms
defined by

x 7→


x+ 1 ( = Tx) if x < a,

−1/x ( = Sx) if a < x < b,

x− 1 ( = T−1x) if x > b

(and some choice at the end points), where a and b are real numbers satisfying b−a > 1
and ab < −1. Then, based on extensive numerical experiments, I conjectured that for
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these continued fraction algorithms there is always a similar statement to the one shown
in (4), but with the right-hand side replaced by some finite union of rectangles with
horizontal and vertical sides. This is illustrated for the example (a, b) =

(
− 2

3 ,
7
10

)
by

the following pictures, which were kindly made for me by Anke Pohl:

The first picture shows a domain (“attractor”) in R × R bounded by finitely many
horizontal and vertical lines:

Figure 1: The attractor

The second picture shows this region divided into three subregions corresponding to
γ(x) belonging to (−∞, a), (a, b) or (b,∞), colored red, blue and green respectively for
convenience of visualization:

Figure 2: “Before”

The third picture shows the images of these three domains under the diagonal maps
(x, y)→ (Tx, Ty), (x, y)→ (Sx, Sy), and (x, y)→ (T−1x, T−1y), respectively:
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Figure 3: “After”

Comparing these last two pictures, we see that they give two different partitions of the
original attractor into three sets, corresponding to the generators T , S and T−1, and
this is precisely the property that we wish to achieve. Finally, we remark that all of
these pictures actually live on the 2-torus P1(R)×P1(R), so that for instance the “After”
picture is perhaps better imagined as repeated periodically on an unfolded torus:

Figure 4: Repeated periodically
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I conjectured that the same behavior holds for any (a, b) ∈ R satisfying b − a > 1 and
ab < −1. This was proved later by Svetlana Katok and Ilie Ugarcovici at the MPIM.

However, as I mentioned at the beginning of this lecture, what I really wanted was not
to have infinitely many different representations of a modular form on SL(2,Z) in terms
of its associated period cocycle, but at least one such representation for modular forms
on any nice Fuchsian group Γ, say the congruence subgroup

Γ0(N) =
{(

a b
c d

)
∈ Γ1

∣∣∣ c ≡ 0 (mod N)
}

with N ∈ N, since this property would imply the existence of an explicit formula for
reconstructing a cusp form on Γ from its period cocycle. Specifically, the conjecture says
that the analogue of the lemma above holds for some “continued fraction algorithm”
defined by x 7→ αm(x) for all x ∈ Im. Here (I1, . . . , IM ) is a partition of R into finitely
many disjoint intervals Im labelled by suitable elements αm ∈ Γ, one of the key parts
of the conjecture being to define what “suitable” means. (I have a number of different
candidate definitions and believe that in a fair level of generality they are all equivalent
to one another.) This statement is still unproven, as I said at the beginning, but results
of Anke Pohl in her thesis combined with recent results of her and Paul Wabnitz (arXiv,
Sept. 2022) imply that there is indeed at least one “suitable” algorithm for Γ = Γ0(N)
for many values of N, including all primes. If a conjecture formulated by Anke’s student
Nicolas Herzog in his 2011 Bachelor’s thesis and verified by him up to N = 5000 is true,
then their result would in fact apply to all N which are either odd or have at most three
prime factors.

8


