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A NON-COMPACT CONVEX HULL IN GENERAL

NON-POSITIVE CURVATURE

GIULIANO BASSO AND YANNICK KRIFKA

Abstract. In this article, we are interested in metric spaces that sat-
isfy a weak non-positive curvature condition in the sense that they admit
a conical bicombing. Recently, these spaces have begun to be studied
in more detail, and a rich theory is beginning to emerge. In this paper,
we contribute to this study by constructing a complete metric space
X with a conical bicombing σ such that there is a finite subset of X
whose closed σ-convex hull is non-compact. In CAT(0)-geometry, the
analogous statement is an open question, i.e. it is not known whether
closed convex hulls of finite subsets of complete CAT(0) space are com-
pact or not. This question goes back to Gromov. Our result shows that
to obtain a positive answer to Gromov’s question, more than just the
convexity properties of the metric must be used. The constructed space
X has the additional property that there is an integer n such that it is
an initial object in the category of convex hulls of n-point sets. Thus,
roughly speaking, X can be thought of as the largest possible convex
hull of n-points.

1. Introduction

A family σ = (σxy)x,y∈X of geodesics σxy : [0, 1]→ X of a metric space X
with the property that σxy(0) = x and σxy(1) = y for all x, y ∈ X is called
(geodesic) bicombing. The terms combing and bicombing have been coined
by Thurston [15, p. 84] and variants of it have originally been studied in the
context of geometric group theory (see [1, 20, 25]). In the present article,
we are mainly concerned with metric spaces that admit bicombings whose
geodesics share properties with geodesics in non-positively curved spaces
such as CAT(0) spaces or, more generally, Busemann spaces. Following
Descombes and Lang [11], we say that a bicombing σ is conical if

d(σxy(t), σx′y′(t)) ≤ (1− t)d(x, x′) + td(y, y′) (1.1)

for all x, x′, y, y′ ∈ X and all t ∈ [0, 1]. We remark that in CAT(0) spaces the
function t 7→ d(γ(t), η(t)) is convex on [0, 1] for all linearly reparametrized
geodesics γ, η : [0, 1]→ X. In particular, the unique geodesics of a CAT(0)
space form a conical bicombing. Recently, conical bicombing have gained
some interest and have begun to be studied in more detail. This is partly
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due to some applications in the context of Helly groups (see [9, 24]). More-
over, they also naturally occur as target spaces in the context of Lipschitz
extension problems (see [30, 33]). Indeed, a metric space with a conical
bicombing has many more properties that are usually associated to ’non-
positive curvature’. See Theorem 2.2 below for a collection of some of those
results. In this article, we study convex hulls in metric spaces with a conical
bicombing. The starting point of our considerations is the following intrigu-
ing question regarding convex hulls in CAT(0) spaces due to Gromov (see
[20, 6.B1(f)]).

Question 1.1 (Gromov). Let X be a complete CAT(0) space and K ⊂ X
a compact subset. Is it true that the closed convex hull of K is compact?

Gromov’s question has been popularized by Petrunin (see [36] and also
[37, p. 77]). Since the closed convex hull of K has the same diameter as
K, it is not difficult to see that Question 1.1 has a positive answer if X
is proper. However, for non-proper spaces it seems to be very difficult to
answer. In fact, already for three-point subsets the question is completely
open. We remark that using standard techniques from CAT(0)-geometry
one can show that Question 1.1 has a positive answer if and only if it has a
positive answer for finite subsets; see [13, Lemma 2.18]. However, also for
finite subsets the closure of the convex hull needs to be considered. Indeed,
already the convex hull of three points is not closed if the points do not lie
on a geodesic and are contained in a generic complete Riemannian manifold
of dimension ≥ 3 (see [29, Corollary 1.2]).

Clearly, Question 1.1 can also be stated for spaces with a conical bicomb-
ing. Let σ be a conical bicombing on a complete metric space X. We say
that A ⊂ X is σ-convex if for all x, y ∈ A, the geodesic σxy is contained in
A. We consider the closed σ-convex hull of A,

σ–conv(A) =
⋂
C,

where the intersection is taken over all closed σ-convex subsets C ⊂ X
containing A. Our main result shows that in the setting of spaces with
conical bicombings the analogue of Gromov’s question has a negative answer.

Theorem 1.2 (Non-compact convex hull). There exists a complete metric
space X with a conical bicombing σ such that there is a finite subset of X
whose closed σ-convex hull is not compact.

Thus, to obtain a positive answer to Gromov’s question, more than just
the convexity properties of the metric must be used. We remark that there
is a metric space X as in Theorem 1.2 which is additionally an injective
metric space, see Theorem 5.2 below. Injective metric spaces are prime ex-
amples of metric spaces with a conical bicombing (see [28, Proposition 3.8]).
Descombes and Lang [11] showed that injective metric spaces of finite com-
binatorial dimension admit a unique bicombing which satisfies a stronger
convexity property than (1.1). More precisely, such spaces admit a unique
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convex bicombing which is furthermore consistent. The exact definitions are
recalled in Section 2.3. We do not know whether Theorem 1.2 holds also for
such bicombings.

The construction of the metric space X in Theorem 1.2 is discrete in
nature. Indeed, X is the metric completion of the direct limit V of a sequence
of finite graphs Gn = (Vn, En). The morphisms in question are injective
maps Vn → Vm, which are 1-Lipschitz with respect to an appropriate scaling
of the shortest-path metric on Gn. The conical bicombing σ on X is then
constructed using a midpoint map m : V ×V → V which satisfies a discrete
version of (1.1). More details about the construction of X can be found
in Section 1.1. The original idea behind this construction was to ensure
the existence of the initial object X0 in the following theorem. Indeed, the
metric space X in Theorem 1.2 can be taken to be X0 for any n0 ≥ 2.

Theorem 1.3 (Initial object). Let n0 ∈ N. Then there exists a complete
metric space X0 with a conical bicombing such that whenever A ⊂ Y is
an n0-point subset of some complete CAT(0) space Y , then there exists a
Lipschitz map Φ: X0 → Y such that Φ(X0) is convex and contains A.

We actually prove a stronger statement than Theorem 1.3. Instead of
complete CAT(0) spaces Y , more general non-positively curved target spaces
such as Busemann spaces can be considered. See Theorem 5.3 below for the
exact statement. We remark that, by construction, conv(A) ⊂ closure(Φ(X0)).
Therefore, if Φ(X0) is precompact, then the closed convex hull of A is com-
pact. Given this relation, it seems reasonable to suspect that X0 is not
compact. As it turns out, this is indeed the case for every n0 ≥ 2; see
Theorem 5.1. In addition, it also follows immediately from the construction
of X0 that there is some finite subset A ⊂ X0 such that σ–conv(A) = X0.
Hence, Theorem 1.2 is a direct consequence of Theorem 5.1.

One may of course wonder whether there also exists such a space X0

as above, which is in addition a complete CAT(0) space. The existence
of such spaces would reduce Gromov’s question to the problem of deciding
whether these spaces X0 are compact or not. If they are all compact, then
Question 1.1 would have a positive answer. On the other hand, the non-
compactness of X0 for some n0 ∈ N would give a negative answer. However,
our proof does not seem to be directly amenable for generating CAT(0)
spaces.

1.1. Strategy of proof. In the following, we give a brief overview of how
the metric space X0 in Theorem 1.3 is constructed as a direct limit of a
sequence of graphs Gn = (Vn, En). We fix n0 ∈ N and we let G0 denote the
null graph and G1 the complete graph on n0 vertices. The basic idea is that
we have an increasing sequence of vertex sets

V0 ⊂ V1 ⊂ · · ·
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such that the vertex set Vn is obtained from Vn−1 by appending all possible
midpoints, i.e.,

Vn = Vn−1 ∪midpoints(Vn−1).

The formal definition of the midpoint construction m(a, b) can be found in
(3.1). Any connected graph can naturally be viewed as a metric space by
equipping it with the shortest-path metric (see (2.1) for the definition). The
edge set En is now defined such that the shortest-path metric of Gn satisfies
a discrete version of (1.1) for x = x′. Loosely speaking, En is obtained by
considering cones in Gn−1, and then the ’cone midpoints’ in Gn are adjacent,
and indeed every edge in Gn arises in this way. More concretely, we have
x ∼ y in Gn if and only if there there exists a vertex v ∈ Vn−1 (the cone
point) and an edge u ∼ w in Gn−1 (the base) such that x = midpoint(v, u)
and y = midpoint(v, w). Hence,

midpoint(v, u) ∼ midpoint(v, w).

whenever v ∈ Vn−1 and u ∼ w in Gn−1. This is illustrated in Figure 1.1.

u

w

v

x=m(v,u)

y=m(v,w)

Figure 1.1. Cone midpoints are adjacent.

For n0 = 2 and n = 1, 2, 3, 4, the graphs Gn = (Vn, En) obtained by
applying this rule are shown in Figure 3.1. The graph G5 has already 68
vertices and 184 edges and quite an intricate structure.

Letting dGn denote the shortest-path metric of Gn, we find by definition
of En that

dGn

(
midpoint(x, y),midpoint(x, z)

)
≤ dGn−1(y, z) (1.2)

for all x, y, z ∈ Vn−1; see Lemma 3.3. We interpret this as a discrete version
of (1.1) with x = x′. In particular, as x = midpoint(x, x), the inclusion
(Vn−1, dGn−1) ↪→ (Vn, dGn) is 1-Lipschitz. Hence, letting V =

⋃
n Vn, it

follows that % : V × V → R given by

%(x, y) = lim
n→∞

(diamVn)−1· dGn(x, y),
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defines a semi-metric on V (see Section 2.1 for the definition). We remark
that V is the direct limit of the sequence (Vn) with morphisms Vn → Vm,
for n ≤ m, induced by the identity. By construction, V is equipped with a
midpoint map m : V × V → V defined by m(x, y) = midpoint(x, y). Since
diamVn = 2n−1, it follows because of (1.2) that

%(m(x, y),m(x, z)) ≤ 1

2
%(y, z) (1.3)

for all x, y, z ∈ V . Now, X0 = (X0, d) is defined as the metric completion
of the metric space (X, d) associated to (V, %). We prove in Lemma 3.4 that
m extends to a map m : X ×X → X such that (1.3) still holds true. It is
not difficult to show that such a map m induces a conical bicombing σ on
X0 such that X0 = σ–conv(V1); see Lemmas 2.4 and 2.5.

We finish this overview with the main ideas that go into the proof of the
non-compactness of X0. As a first reduction, it is clearly sufficient to show
that X is not totally bounded. Now an important observation is that to
prove that X has an (m · 2−n)-separated set of cardinality r + 1, it suffices
to show that the graph Gm

n has an (r+ 1)-clique; see Lemma 4.1. Here, Gm
n

denotes the m-th power of Gn and Gm
n its complement. This is standard

terminology from graph theory, which is recalled in Section 2.2. Thus, by the
above, the problem has been completely reduced to the existence of cliques in
graph powers of Gn. This opens the field for applications of techniques from
extremal graph theory. Indeed, using Turán’s theorem, see Theorem 2.1, it
is not difficult to show that if for a certain sequence of integers m(n) one
has that

lim inf
n→∞

|E
(
G

m(n)
n

)
|

|Vn|2
= 0,

then X is not totally bounded; see Corollary 4.2. Hence, to conclude the
proof we need to show that Gm

n does not contain too many edges. This is
achieved by exploiting the explicit construction of En. In particular, the
number of edges of Gm

n is related to the edge counts of Ga
n−1 and Gb

n−1 with
a+ b = m; see Lemmas 4.3 and 4.4. Moreover, one has that

|En|
|Vn|1+ε

→ 0

as n → ∞ for every ε > 0; see Lemma 3.1. Combining these two results,
we finish the proof by a simple case distinction. This is done in Section 5.
We remark that our proof does no explicitly construct ε-separated sets with
arbitrarily large cardinality. We only establish their existence by an appli-
cation of Turán’s theorem. We believe that an explicit construction of such
sets would be worthwhile but probably very difficult.

1.2. Acknowledgements. The first named author is indebted to Urs Lang,
Alexander Lytchak, and Stephan Stadler for useful discussions about convex
hulls.
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2. Preliminaries

2.1. Basic metric notions. We use N = {1, 2, . . . } to denote the set of
positive integers. A non-negative function % : X × X → R is called semi-
metric if it is symmetric, satisfies the triangle inequality and %(x, x) = 0
for all x ∈ X. In other words, all axioms of a metric are satisfied except
(possibly) the positivity axiom, that is, there might exist distinct x, y ∈ X
such that %(x, y) = 0. In the literature, such a function is sometimes also
called a pseudometric (see, for example, [8]). However, in the present article
we will only use the term semi-metric. Let X = (X, d) be a metric space.
We use X to denote the metric completion of X. If readability demands it
we will sometimes tacitly identify X with its canonical isometric copy in X.
A metric space is said to be totally bounded if for every ε > 0 there exists a
finite subset A ⊂ X such that for every x ∈ X there exists a ∈ A such that
d(x, a) < ε. We recall that X is totally bounded if and only if X is compact.

2.2. Graph theory. We use standard notation from graph theory as found
in [7, 12]. Let G = (V,E) be a graph, that is, V is a (possibly infinite) set
and E ⊂ {e ⊂ V : |e| = 2}. If {x, y} ∈ E then we often write x ∼ y. We
let G denote the complement graph of G. That is, G has vertex set V and
x ∼ y in G if and only if x 6= y and x, y are not adjacent in G. We will also
need to consider graph powers of G. Let m ≥ 1 be an integer. We let Gm

denote the m-th power of G. By definition, Gm is a graph with vertex set V
and distinct vertices x, y ∈ V are adjacent if and only if there exists a path
in G of length at most m that connects x to y. We use the convention that
G0 denotes the empty graph (V,∅). Given an integer r ≥ 1, we let Kr+1

denote the complete graph on (r + 1)-vertices. The following theorem by
Turán is a foundational result in extremal graph theory.

Theorem 2.1 (Turán’s theorem). Let G = (V,E) be a finite graph and
r ≥ 1 an integer. If G does not contain Kr+1 as a subgraph, then

|E| ≤
(
1− 1

r

)
· |V |

2

2
.

We will apply this theorem to graphs of the form Gm to obtain m-
separated sets inG with respect to the shortest-path metric dG; see Lemma 4.1
and Corollary 4.2. Recall that the shortest-path metric dG : V × V → R is
defined by

dG(x, y) = min
{
k : (x0, . . . , xk) is a path in G form x to y

}
(2.1)

for all x, y ∈ V .

2.3. Bicombings. In the following we introduce bicombings and the various
properties one can impose on them. We decided to be a little more detailed
than would be strictly necessary for the main body of this article; see in
particular Theorem 2.2. All definitions appearing below are essentially due
to Descombes and Lang (see [11]).
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Let X be a metric space. We say that σ : [0, 1] → X is a geodesic if
d(σ(s), σ(t)) = |s− t| · d(σ(0), σ(1)) for all s, t ∈ [0, 1]. A map

σ : X ×X × [0, 1]→ X

is called (geodesic) bicombing if for all x, y ∈ X, the path σxy(·) : [0, 1]→ X
defined by σxy(t) = σ(x, y, t) is a geodesic connecting x to y. We remark
that, in contrast, a map σ : X × [0, 1]→ X is called combing with basepoint
p ∈ X if for all x ∈ X, the path σ(x, ·) is a geodesic connecting p to x.
However, we will not make use of this definition. Bicombings are also called
system of good geodesics; see [17, 19, 34]. Clearly, every geodesic metric
spaces admits a bicombing. We often consider bicombings in metric spaces
that have non-unique geodesics such as, for example, Rn equipped with the
p-norm for p = 1,∞. Therefore, it is useful to formalize some of the natural
properties of the bicombing on a uniquely geodesic metric space. We say
that σ is reversible if σxy(t) = σyx(1 − t) for all x, y ∈ X and all t ∈ [0, 1].
In [5, Proposition 1.3] it is shown that any complete metric space with a
conical bicombings also admits a conical reversible bicombing (see also [10]
for an earlier result). Furthermore, we say that a bicombing σ is consistent
if it is reversible and σ(x, y, st) = σ(x, σxy(t), s) for all x, y ∈ X and all s,
t ∈ [0, 1]. Consistent bicombings are used in [18, 23], and a variant of the
definition that allows for a bounded error is studied in [14, Definition 2.6].
We do not know if every space with a bicombing also admits a consistent
bicombing. This seemingly straightforward question does not seem to be so
easy to answer on closer inspection. For proper metric spaces admitting a
conical bicombing, it turns out to be true (see [3, Theorem 1.4]).

Descombes and Lang [11] introduced the following two non-positive cur-
vature conditions for a bicombing σ:

(1) if (1.1) holds, then σ is said to be conical.
(2) if for all x, y, x′, y′ ∈ X, the map t 7→ d(σxy(t), σx′y′(t)) is convex

on [0, 1], then σ is called convex.

There are many examples of conical bicombings that are not convex (see
[11, Example 2.2] and [3, Example 3.6]). However, any consistent conical
bicombings is convex. One may wonder if any convex bicombing is automat-
ically consistent. This turns out to be not to be the case, as is demonstrated
in [5, Theorem 1.1]. To the authors’ knowledge, a relatively simple example
of a convex non-consistent bicombings seems to be missing.

The following theorem is a ’state of the art’ collection of general facts
about spaces that admit a conical bicombing. All of these properties are
usually associated with ’non-positive curvature’.

Theorem 2.2. Let X be a complete metric space admitting a conical bi-
combing. Then the following holds true.

(1) X is contractible,
(2) X admits barycenter map in the sense of Sturm [40],

(3) all Lipschitz homotopy groups πLip
k (X) are trivial,
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(4) X admits an isoperimetric inequality of Euclidean type for Ik(X).

Moreover, if X is proper then

(5) X is an absolute retract,
(6) X admits a visual boundary which is a Z-boundary in the sense of

Bestvina [6],
(7) any subgroup of the isometry group of X with bounded orbits has a

non-empty fixed-point set.

Proof. We prove each item separately. Fix o ∈ X. Clearly, H : X × [0, 1]→
X defined by H(x, t) = σ(x, o, t) is a homotopy between the identity map
on X and the constant map with value o. This shows (1). A proof of (2)
can be found in [3, Theorem 2.6]. We proceed by showing (3). A metric
space X is called Lipschitz k-connected with constant c if for every ` ∈
{0, . . . , k}, every L-Lipschitz map f : S` → X has a cL-Lipschitz extension
f̄ : B`+1 → X. Here, S`, B`+1 ⊂ R`+1 denote the Euclidean unit sphere

and closed Euclidean unit ball, respectively. To prove that πLip
k (X) is trivial

it suffices to show that X is Lipschitz k-connected for some constant c.
Therefore, the statement follows, since in [39, Proposition 6.2.2] it is proved
that X is Lipschitz k-connected with constant 3. For a proof of (4) we
refer to Corollary 1.4 in [41]. Next, we prove (5). Using that X admits a
conical bicombing, it is not difficult to show that X is strictly equiconnected.
Therefore, it follows from a result by Himmelberg [22, Theorem 4] that
X is an absolute retract. The next statement, (6), follows directly from
Theorem 1.5 in [3].

To finish the proof, we establish (7). Let Γ be a subgroup of the isometry
group of X with bounded orbits. Fix x0 ∈ X and consider the orbit A =
{f(x0) : f ∈ Γ}. In the following we combine results from [3] and [4] to
show that the fixed-point set of Γ is non-empty. In view of [4, Theorem 1.2]
it suffices to show that X admits a Γ-equivariant conical bicombing. We
now use the proof strategy of [3, Lemma 4.5] to show that such a bicombing
exists. Let CB(X) be the set of all conical bicombings on X and for every
x ∈ X let the metric Dx on CB(X) be given as in [3, Section 4]. We define

D̃ = supx∈ADx. Clearly, D̃ defines a metric on CB(X) and by considering

the proof of [3, Lemma 4.2] it is straightforward to show that (CB(X), D̃) is
a compact metric space. Let f ∈ Γ and let F : CB(X)→ CB(X) be defined
by F (σ)(x, y, t) = f−1(σ(f(x), f(y), t)). Since f(A) = A, it follows that F

is distance-preserving if CB(X) is equipped with D̃. Now, one can argue
exactly as in the proof of [3, Lemma 4.5] to conclude that there exists some
σ∗ ∈ CB(X) such that F (σ∗) = σ∗ for all f ∈ Γ. In other words, σ∗ is a Γ-
equivariant concial bicombing, as desired. We remark that additional fixed-
point results for spaces with a conical bicombing can be found in [26, 27]. �

2.4. Conical midpoint maps. In this section we introduce conical mid-
point maps and derive some of their basic properties. We are mainly inter-
ested in this notion since it can be seen as a discrete analogue of conical
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bicombings. Indeed, any conical midpoint map on a metric space X induces
a conical bicombing on X. This is discussed at the end of this section.

Definition 2.3. We say that m : X ×X → X is a conical midpoint map if
for all x, y, z ∈ X, the following holds:

(1) m(x, x) = x,
(2) m(x, y) = m(y, x),
(3) d(m(x, y),m(x, z)) ≤ 1

2d(y, z).

We remark that for midpoints in Euclidean space, the inequality in (3)
becomes in fact an equality. It is easy to see that if m is as in Definition 2.3,
then z = m(x1, x2) is a midpoint of x1 and x2. Indeed,

d(z, xi) = d(z,m(xi, xi)) ≤
1

2
d(x1, x2)

and thus using the triangle inequality, we find that d(z, xi) = 1
2d(x1, x2).

Hence, a conical midpoint map is a midpoint map in the usual sense.
Furthermore, (3) can be upgraded to a more general inequality involving

four points. For all x, y, x′, y′ ∈ X, one has

d(m(x, y),m(x′, y′)) ≤ 1

2
d(x, x′) +

1

2
d(y, y′). (2.2)

This can be seen as follows. Using (2) and the triangle inequality, we get

d(m(x, y),m(x′, y′)) ≤ d(m(x, y),m(x, y′)) + d(m(y′, x),m(y′, x′))

and thus by virtue of (3) we obtain (2.2). Next, we show that conical mid-
point maps induce conical bicombings in a natural way. The used recursive
construction is well-known and goes back to Menger (see [31, Section 6]).

Let m be a concial midpoint map on X and x, y ∈ X. Further, let
Gn = (2−n · Z) ∩ [0, 1], where n ≥ 0, be the 2−n-grid in [0, 1]. We define
σxy :

⋃
Gn → X recursively as follows. We put σxy(0) = x, σxy(1) = y and

if t ∈ Gn \ Gn−1, then we set

σxy(t) = m(σxy(r), σxy(s)),

where r, s ∈ Gn−1 are the unique points such that t = 1
2r+ 1

2s and |r− s| =
2−(n−1).

Lemma 2.4. The map σxy extends uniquely to a geodesic σxy : [0, 1]→ X.
Moreover,

d(σxy(t), σx′y′(t)) ≤ (1− t)d(x, x′) + td(y, y′) (2.3)

for all x, y, x′, y′ ∈ X.

Proof. To begin, we show that σxy|Gn is an isometric embedding for all n ≥ 0.
We proceed by induction. Clearly, σxy|G0 is an isometric embedding. Now,
fix ti ∈ Gn, i = 1, 2 and let ri, si ∈ Gn−1 with si ≤ ri be points such that
ti = 1

2si + 1
2ri and σxy(ti) = m(σxy(si), σxy(ri)). By construction of σxy
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such points clearly exist. Without loss of generality, we may suppose that
t1 ≤ t2. Using the triangle inequality, we get

d(σxy(t1), σxy(t2)) ≤ d(σxy(t1), σxy(r1)) + d(σxy(r1), σxy(s2))

+ d(σxy(s2), σxy(t2)),

and so, by the induction hypothesis and because m is a midpoint map,

d(σxy(t1), σxy(t2)) ≤
(r1 − s1

2
+ |s2 − r1|+

r2 − s2

2

)
d(x, y).

But, since t1 ≤ t2, it holds r1 ≤ s2. Hence, by the above, d(σxy(t1), σxy(t2)) ≤
|t1 − t2|d(x, y). As a result,

d(x, y) ≤ d(x, σxy(t1)) + d(σxy(t1), σxy(t2)) + d(σxy(t2), y)

≤
(
t1 + |t1 − t2|+ |t2 − 1|

)
d(x, y).

This implies that d(σxy(t1), σxy(t2)) = |t1 − t2|d(x, y), and so σxy|Gn is an
isometric embedding. It follows by induction that σxy|Gn is an isometric
embedding for every n ≥ 0, as claimed. Now, since

⋃
Gn is a dense subset of

[0, 1], it follows that σxy can be uniquely extended to an isometric embedding

σxy : [0, 1]→ X. Next, we show (2.3). Clearly,

d(σxy(1/2), σx′y′(1/2)) ≤ 1

2
d(x, x′) +

1

2
d(y, y′),

as σxy(1/2) = m(x, y), σx′y′(1/2) = m(x′, y′) and m is conical midpoint map
and thus satisfies (2.2). We now proceed by induction and show that if (2.3)
is valid for all t ∈ Gn−1, then it is also valid for all t ∈ Gn. Fix t ∈ Gn and
let s, r ∈ Gn−1 be the unique points with s ≤ r such that t = 1

2s + 1
2 t. We

compute

d(σxy(t), σx′y′(t)) ≤
1

2
d(σxy(s), σx′y′(s)) +

1

2
d(σxy(r), σx′y′(r))

≤
(1− s

2
+

1− r
2

)
d(x, x′) +

(s
2

+
r

2

)
d(y, y′);

hence, (2.3) holds for all t ∈ Gn. Since
⋃
Gn is a dense subset of [0, 1] and

σxy and σx′y′ are geodesics, (2.3) is valid for all t ∈ [0, 1]. �

Thus, we have constructed a map σ : X ×X × [0, 1]→ X such that (1.1)
holds for all geodesics σxy and σx′y′ . Now, given x, y ∈ X, we set

σxy(t) = lim
n→∞

σxnyn(t)

where xn, yn ∈ X are points such that xn → x and yn → y as n → ∞,
respectively. It follows that σ is a well-defined conical bicombing on X. We
call σ the conical bicombing induced by m. We point out that m is defined
on an arbitrary metric space X but σ is always a bicombing on X.

We conclude this section by giving a description of σ-convex hulls in terms
of m. Indeed, as with conical bicombings, conical midpoint maps give rise to
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’convex hulls’. For any A ⊂ X, we let m –conv(A) ⊂ X denote the closure
of the set ⋃

n∈N
Mn(A),

whereM1(A) =
{
m(a, a′) : a, a′ ∈ A

}
andMn(A) =M1(Mn−1(A)) for all

n ≥ 2.

Lemma 2.5. Let m be a conical midpoint map on a metric space X and
suppose σ denotes the conical bicombing on X induced by m. Then

σ–conv(A) = m –conv(A)

for all A ⊂ X.

Proof. Clearly, m –conv(A) ⊂ σ–conv(A). Thus, it suffices to show that
the closed set m –conv(A) is σ-convex. To this end, let n ≥ 1 and let x,
y ∈ Mn(A). By construction of σ, it follows that σxy(Gm) ⊂ Mn+m(A)
for all m ∈ N. Hence, σxy([0, 1]) ⊂ m –conv(A). Now, suppose that x,
y ∈ m –conv(A). There exist points xk, yk ∈Mnk

(A) such that xk → x and
yk → y as k → ∞, respectively. Moreover, σxkyk → σxy uniformly. This
implies that σxy([0, 1]) ⊂ m –conv(A), and so m –conv(A) is σ-convex. �

3. Appending midpoints

Throughout this section we fix n0 ∈ N. This n0 will correspond to the
parameter from Theorem 1.3. We follow the proof strategy outlined in Sec-
tion 1.1 to construct the metric space X0. To begin, we construct recursively
a sequence of graphs Gn = (Vn, En). The whole construction is quite formal.
The basic idea is that Vn is obtained from Vn−1 by appending ’midpoints’
and two midpoints in Vn are adjacent if and only if they are part of a cone
whose base is an edge of Gn−1.

We let G0 denote the null graph and G1 the complete graph on n0 vertices
with vertex set V1 = {1, . . . , n0}. For n ≥ 2 we set

Vn = Vn−1 ∪
{
{x, y} : x, y ∈ Vn−1, x 6= y

}
.

To formalize the notion of ’midpoint’ we use the following notation

m(a, b) =

{
{a, b} if a 6= b,

a otherwise.
(3.1)

Notice that Vn = m(Vn−1 × Vn−1). Moreover, we remark that we have
constructed an infinite nested sequence

V0 ⊂ V1 ⊂ V2 ⊂ · · ·
Now, the edge set En is uniquely determined by {x, y} ∈ En if and only
if there exist v ∈ Vn−1 and {u,w} ∈ En−1 such that x = m(v, u) and
y = m(v, w). Loosely speaking, x and y are adjacent in Gn if and only if
x, y are the midpoints parallel to the base of a cone with vertex v ∈ Vn−1
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and base u ∼ w in Gn−1. See Figure 1.1 for an illustration. For example, if
n0 = 2, one has

V2 =
{

0, 1, {0, 1}
}

and E2 =
{
{0, {0, 1}}, {{0, 1}, 1}

}
.

The graphs Gn for n0 = 2 and n = 1, 2, 3, 4 are depicted in Figure 3.1.

Figure 3.1. The graphs Gn for small n with n0 = 2.

To begin, we collect some basic facts about the cardinalities of Vn and En

that will be used later on.

Lemma 3.1. One has |V0| = 0, |V1| = n0, and for all n ≥ 2,

|Vn| =
1

2
·
(
|Vn−1|+ |Vn−2|

)
·
(
|Vn−1| − |Vn−2|+ 1

)
(3.2)

Moreover, for every ε > 0,

lim
n→∞

|En|
|Vn|1+ε

= 0. (3.3)

Proof. By construction, Vn−2 ⊂ Vn−1. Thus, letting Wn−1 = Vn−1 \ Vn−2

and using that m is symmetric, we find

Vn = m(Vn−1×Vn−1) = m(Vn−2×Vn−2)∪m(Vn−2×Wn−1)∪m(Wn−1×Wn−1).

Therefore, as these sets are pairwise disjoint,

|Vn| = |Vn−1|+ |Vn−2| · |Wn−1|+
|Wn−1| ·

(
|Wn−1| − 1

)
2

.

Since |Wn−1| = |Vn−1| − |Vn−2|, this yields (3.2). To finish the proof, we
establish (3.3). Clearly, this is valid if n0 = 1. Thus, in the following, we
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may suppose that n0 ≥ 2. Notice that |E0| = 0, |E1| = 1
2(n0 − 1)n0 and

|En| ≤ |Vn−1| · |En−1| for all n ≥ 2. Consequently,

|En| ≤ C ·
n−1∏
i=1

|Vi|, (3.4)

where C = 1
2(n0 − 1)n0. We claim that

|Vn−1|2

|Vn|
≤ 3 (3.5)

for all n ∈ N. For n = 1, 2 this can be seen by a direct verification. Let now
n ≥ 3. Letting αn = |Vn−2|/|Vn−1| and using (3.2), we find that

|Vn−1|2

|Vn|
≤ 2

1− α2
n

.

In particular, if αn ≤ 1/
√

3, then (3.5) follows. Now, suppose that n0 ≥ 3.
It follows that α3 ≤ 1/

√
3 and hence (3.5) is valid for n = 3. Clearly, if

(3.5) holds for n − 1, then αn ≤ 3/|Vn−2|. Thus, as |V2| ≥ 6 ≥ 3
√

3, the
desired inequality (3.5) follows by induction. This establishes (3.5) when
n0 ≥ 3. We now treat the special case when n0 = 2. We have |V2| = 3,
|V3| = 5, |V4| = 12, and |V5| = 68. Hence, (3.5) holds true if n = 3, 4, 5.
The general case now follows as before by noting that |V4| = 12 ≥ 3

√
3, and

so (3.5) can be established by induction. This completes the proof of (3.5).
By combining (3.4) with (3.5), we arrive at

|En|
|Vn|1+ε

≤ C · 3n

|Vn|ε
.

We claim that |Vn| ≥ |Vn−2|2 for all n ≥ 6. Letting β = |Vn−1|/|Vn−2|, we
obtain

|Vn|
|Vn−2|2

≥ 1

2
(β + 1)(β − 1). (3.6)

Since |V4| = 12 if n0 = 2, it follows that |V4| ≥ 12 for every n0 ≥ 2.

Therefore, |Vn−2|
3 ≥

√
3 for all n ≥ 6, and thus by virtue of |Vn−1| ≥ 1

3 |Vn−2|,
we obtain β2 ≥ 3. This is equivalent to 1

2(β + 1)(β − 1) ≥ 1. By the use of

(3.6), we can conclude that |Vn| ≥ |Vn−2|2 for all n ≥ 6, as desired. Now, by
repeated use of this inequality and using that |V3| ≥ |V2|, we get

|Vn| ≥ |Vn−2|2 ≥ · · · ≥
(
|V2|
)2n−3

2

for all n ≥ 6. Thus, letting c = ε
2
√

2
and using that |V2| ≥ 3, we obtain

lim
n→∞

|En|
|Vn|1+ε

≤ C · lim
n→∞

3n

|Vn|ε
≤ C · lim

n→∞
|V2|n−c(

√
2)n = 0.

�
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Let dn : Vn × Vn → R denote the shortest-path metric on Gn. The defi-
nition of the shortest-path metric of a graph is recalled in (2.1). Our next
result shows that any two distinct points in V1 ⊂ Vn realize the diameter of
Vn with respect to dn.

Lemma 3.2. For all distinct x, y ∈ V1,

dn(x, y) = diamVn = 2n−1.

Proof. To begin, we show that

dn(x, y) ≤ 2dn−1(x, y) (3.7)

for all n ≥ 2 and all x, y ∈ Vn−1. Let (x0, x1, . . . , xk) be a shortest-
path in Gn−1 connecting x to y. We set x′i = m(xi−1, xi) for all i =
1, . . . , k. Clearly, xi−1 ∼ x′i and x′i ∼ xi in Gn for all i = 1, . . . , k.
Hence, (x0, x

′
1, x1, x

′
2, . . . , x

′
k, xk) is a path in Gn connecting x to y, and

so dn(x, y) ≤ 2k = 2dn−1(x, y), as desired.
By construction, diamV1 = 1. Hence, it follows from (3.7) that diamVn ≤

2n−1. To finish the proof we thus need to show that dn(x, y) ≥ 2n−1 for all
distinct x, y ∈ V1. For this we will use the following construction. We
define the functions δn : Vn → ∆n0−1 ∩ 2−(n−1) · Zn0 recursively as follows.
We may suppose that V1 = {1, . . . , n0} and we set δ1(i) = ei for each
i = 1, . . . , n0. Here, ei ∈ Rn0 is the vector with a one at the ith position and
zeros everywhere else. Suppose now n ≥ 2 and x ∈ Vn. We set

δn(x) =
1

2

(
δn−1(a) + δn−1(b)

)
if x = m(a, b) with a 6= b, and δn(x) = δn−1(x) otherwise. It follows by
induction that if {x, y} ∈ En, then

|δn(x)− δn(y)|∞ =
1

2n−1
, (3.8)

where |·|∞ denotes the supremum norm on Rn0 . Clearly, δn(i) = ei for all n ∈
N and all i = 1, . . . , n0. Now, let x, y ∈ V1 be distinct and (x0, x1, . . . , xk) a
path in Gn connecting x to y. By the above, it follows that

1 = |δn(x)− δn(y)|∞ ≤
k−1∑
i=0

|δn(xi)− δn(xi+1)|∞ =
k

2n−1
.

Hence, dn(x, y) ≥ 2n−1, as was to be shown. �

Our next lemma relates shortest-paths in Gn to shortest-paths in Gn−1.
The proof follows easily from the definition of dn and the recursive construc-
tion of En.

Lemma 3.3. For all x1, x2, y1, y2 ∈ Vn−1,

dn(m(x1, x2),m(y1, y2)) ≤ dn−1(x1, y1) + dn−1(x2, y2). (3.9)
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Proof. Let (p0, . . . , pk) and (q0, . . . , q`) be shortest-paths in Gn−1 connecting
x1 to y1, and x2 to y2, respectively. We construct a path (r0, . . . , rk+`) in
Gn as follows. We set ri = m(p0, qi) for all i = 0, . . . , ` and r`+j = m(pj , q`)
for all j = 1, . . . , k. By construction, ri−1 ∼ ri in Gn for all i = 1, . . . , k+ `.
Hence, (r0, . . . , rk+`) is a path in Gn connecting r0 = m(x1, x2) to rk+` =
m(y1, y2), and so it follows that

dn(m(x1, x2),m(y1, y2)) ≤ k + `.

But dn−1(x1, y1) = k and dn−1(x2, y2) = `. This finishes the proof of (3.9).
�

We remark that (3.9) should be thought of as a discrete analogue of the
conical inequality (1.1). Indeed, by considering the scaled metrics %n =
(diamVn)−1 · dn and using that diamVn = 2n−1 by Lemma 3.2, we obtain
that

%n(m(x1, x2),m(y1, y2)) ≤ 1

2
%n−1(x1, y1) +

1

2
%n−1(x2, y2) (3.10)

for all x1, x2, y1, y2 ∈ Vn−1. In particular, if x, y ∈ Vn−1, then %n(x, y) ≤
%n−1(x, y). In view of these inequalities, letting

V =
⋃
n≥1

Vn

we find that the map % : V × V → R defined by

%(x, y) = lim
n→∞

%n(x, y)

is a semi-metric on V (see Section 2.1 for the definition). More formally, V
could also be constructed as the direct limit of the sequence of metric spaces
(Vn, %n) with morphisms Vn → Vm, for n ≤ m, induced by the identity.

By the above, the semi-metric space (V, %) is naturally equipped with a
’conical midpoint map’. Indeed, because of (3.10), m : V × V → V defined
by (x, y) 7→ m(x, y) satisfies

%(m(x, y),m(x, z)) ≤ 1

2
%(y, z) (3.11)

for all x, y, z ∈ V . It is now not difficult to upgrade m to a concial
midpoint map on a metric space X. Indeed, let us denote by (X, d) the
metric space induced by (V, %). By definition, X = V/∼ with x ∼ y if
and only if %(x, y) = 0 and d is the quotient metric on X. We recall that
d([x], [y]) = %(x, y) for all x, y ∈ V .

Lemma 3.4. The map m : X × X → X defined by m([x], [y]) = [m(x, y)]
for all [x], [y] ∈ X is a concial midpoint map on X. Moreover,

X =
⋃
n∈N
Mn(A),

where A = [V1] ⊂ X.
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Proof. By applying (3.11), we get

%(m(x, y),m(x′, y′)) ≤ %(m(x, y),m(x, y′)) + %(m(x, y′),m(x′, y′))

≤ 1

2
%(y, y′) +

1

2
%(x, x′).

Hence, if %(x, x′) = 0 and %(y, y′) = 0, then %(m(x, y),m(x′, y′)) = 0. This
shows that m : X × X → X defined by m([x], [y]) = [m(x, y)] for all [x],
[y] ∈ X is well-defined. Moreover, it follows directly from the inequality
above that m is a concial midpoint map on X. By construction, m(Vn−1 ×
Vn−1) = Vn for all n ≥ 2, and so V ⊂ m –conv(V1). This implies the desired
equality. �

In summary, we have shown that the map m : V × V → V descends to
conical midpoint map on X, where X denotes the metric space associated
to V . For simplicity this map is also denoted by m. Due to the results in
Section 2.4, m now induces a conical bicombing on X. We set X0 = X.
In Section 5 we show that X0 is non-compact. We achieve this by showing
that X is not totally bounded. In order to work effectively with X, it seems
natural to determine how much the semi-metric % (and hence d) differs from
the metric %n on Vn. The following lemma shows that % does not collapse
the distances too much.

Lemma 3.5. For all n ≥ 2,

%n(x, y)− 8

2n
≤ %(x, y) ≤ %n(x, y). (3.12)

for all x, y ∈ Vn.

Notice that due to Lemma 3.5, if x, y ∈ Vn satisfy dn(x, y) ≥ 5, then
d(x, y) > 0. In particular, ε-separated sets in (Vn, %n) induce ε′-separated
sets in X. See Lemma 4.1 for the exact statement.

Proof of Lemma 3.5. The desired upper bound of %(x, y) follows directly
from (3.7). In what follows we show the lower bound. To begin, we claim
that

2dn−1(x, y) ≤ dn(x, y) + 4 (3.13)

for all x, y ∈ Vn. Fix distinct points x, y ∈ Vn−1 and let {x, x′} and {y, y′}
be edges in En−1. Since Gn−1 is connected such edges surely exists. Because
of (3.8), it follows that p := m(x, x′), q := m(y, y′) ∈ Vn \ Vn−1. Moreover,
since x ∼ p and y ∼ q in Gn, by the triangle inequality,

|dn(x, y)− dn(p, q)| ≤ 2.

We claim that

dn(p, q) = min
{
dn−1(x, y) + dn−1(x′, y′), dn−1(x, y′) + dn−1(x′, y)

}
. (3.14)

Indeed, let (x0, . . . , x`) be a shortest-path in Gn connecting p to q. For each
i = 1, . . . , ` there is vi ∈ Vn−1 and {ui, wi} ∈ En−1 such that

xi−1 = m(vi, ui) and xi = m(vi, wi).
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x

x′

p
x1

x2

x3 x4 x5

y

y′

q

γ

η

Figure 3.2. The construction from Lemma 3.5.

We define a0, . . . , a` ∈ Vn−1 and b0, . . . , b`+1 ∈ Vn−1 by induction as follows.
We put a0 = v1 and b0 = u1, b1 = w1. Now, for every i = 1, . . . , ` − 1, we
set {

ai = wi+1 and bi+1 = bi if ui+1 = ai−1,

ai = ai−1 and bi+1 = wi+1 if ui+1 = bi.

By construction, m(a0, b0) = x0 = p and m(a`−1, b`) = x` = q. Moreover, af-
ter deleting repeated entries, γ = (a0, . . . , a`−1) and η = (b0, . . . , b`) are (pos-
sibly degenerate) shortest-paths in Gn−1 such that length(γ) + length(η) =
` = dn(p, q). See Figure 3.2. Hence,

dn−1(a0, a`−1) + dn−1(b0, b`) ≤ dn(p, q).

Because of p, q /∈ Vn−1, without loss of generality we have a0 = x, a`−1 = y,
b0 = x′ and b` = y′, and so the desired equality (3.14) now follows due to
Lemma 3.3.

Having (3.14) at hand, (3.13) now follows easily. Indeed, using that
dn−1(x, x′) = dn−1(y, y′) = 1, we have

dn−1(x, y)− 1 ≤ dn−1(x, y′)

dn−1(x, y)− 1 ≤ dn−1(x′, y)

and

dn−1(x, y)− 2 ≤ dn−1(x′, y′),

and so using (3.14), we deduce that

dn(x, y) ≥ dn(p, q)− 2 ≥ 2dn−1(x, y)− 4.

This shows (3.13). Now, by dividing (3.13) by 2n−1, we obtain

%n−1(x, y) ≤ %n(x, y) +
8

2n
.
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In particular, for every k ∈ N,

%n(x, y) ≤ %n+k(x, y) +
8

2n

k∑
i=1

1

2i

and the left inequality of (3.12) follows by taking the limit k →∞. �

We remark that in (3.13) at least an additive error of 2 must occur. This
is discussed further in the following example.

x

xʹv

ba

Figure 3.3. Illustration of the construction in Example 3.6.

Example 3.6. Let n0 = 2 and consider the graph G4 depicted in Figure 3.3.
In particular, v = m(0, 1), a = m(0, v), b = m(v, 1) and

x = m(a, 1) and x′ = m(v, b).

Clearly, d4(x, x′) = 2. We claim that d5(x, x′) = 2 as well. Since x ∼ b in
G4, the points x0 := m(v, b) and x1 := m(v, x) are adjacent in G5. Thus, as
m(x, v) ∼ m(x, x) inG5, it follows that (x0, x1, x2) is a path inG5 connecting
x′ to x. Hence, d5(x, x′) ≤ 2. On the other hand, it is not difficult to see that
δ5(x) = δ5(x′) and thus due to (3.8), it follows that x and x′ are not adjacent
in G5. This shows that d5(x, x′) = 2. Hence, 2d4(x, x′)− d5(x, x′) = 2, and
so the additive error in (3.13) must be at least 2.

4. Gm
n has few edges

In this section, we find a sufficient condition that X is not totally bounded
in terms of the number of edges of Gm

n . The basic graph theory notation
that is needed in the sequel can be found in Section 2.2.

Lemma 4.1. Let n, r ≥ 1 and m ≥ 6 be integers. If Gm
n has an (r + 1)-

clique, then there exist r + 1 points x1, . . . , xr+1 ∈ X such that

d(xi, xj) ≥
m

2n

for all distinct i, j = 1, . . . , r + 1.

Proof. If v1, . . . , vr+1 ∈ Vn are the vertices of an (r + 1)-clique in Gm
n , then

by definition one has

dn(vi, vj) ≥ m+ 1
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for all distinct i, j = 1, . . . , r + 1. Hence, by dividing by 2n−1 on both sides
and using Lemma 3.5, we obtain

d(vi, vj) ≥
2m− 6

2n
≥ m

2n
,

as desired. �

Fix an integer k ≥ 1 sufficiently large to be determined later. We ab-
breviate m(n) = 2n−k. Using Turán’s theorem we obtain the following
non-compactness criterion for X.

Corollary 4.2. Let n0 ≥ 2 and let X be constructed as in Section 3. If

lim inf
n→∞

|E
(
G

m(n)
n

)
|

|Vn|2
= 0, (4.1)

then X is not totally bounded.

Proof. We prove the contrapositive. Suppose that X is totally bounded.
There exists r ≥ 1 such that X does not contain a 1

2k
-net of cardinality

r + 1. Hence, by Lemma 4.1, for n ≥ 1 sufficiently large, the complement
graph of the m(n)-th power Gn does not contain an (r + 1)-clique. Thus,
Turán’s theorem, see Theorem 2.1, tells us that

|E
(
G

m(n)
n

)
| ≤

(
1− 1

r

)
· |Vn|

2

2

for all n sufficiently large. Therefore,

|Vn| · (|Vn| − 1)

2
− |E

(
Gm(n)

n

)
| ≤

(
1− 1

r

)
· |Vn|

2

2

and it follows that

lim inf
n→∞

|E
(
G

m(n)
n

)
|

|Vn|2
≥ 1

2r
> 0,

as desired. We remark that to show the lower bound on the liminf we have
used that |Vn| is an unbounded sequence, which is only valid if n0 ≥ 2. �

Thus, to prove that X not totally bounded, it suffices to establish (4.1).

To this end, in the next subsection we derive some upper bounds for |E
(
G

m(n)
n

)
|.

4.1. Upper bounds. The following estimate is not sharp in general, but
is sufficient for our purposes. It is the crucial building block for inequality
(4.3), which is our key tool in the proof of Theorem 1.2.

Lemma 4.3. Let n,m ∈ N. Then there exist non-negative integers a, b
such that a+ b = m and

|E(Gm
n )| ≤ 2m |E(Ga

n−1)| · |E(Gb
n−1)|.

We recall that we use the convention that |E(G0)| = |V | for any finite
graph G = (V,E).
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Proof of Lemma 4.3. Suppose that x is adjacent to y in Gm
n . By definition,

there exist a shortest-path (x0, . . . , x`) in Gn of length ≤ m connecting x to
y. For each i = 1, . . . , ` there is vi ∈ Vn−1 and {ui, wi} ∈ En−1 such that

xi−1 = m(vi, ui) and xi = m(vi, wi).

As in the proof of Lemma 3.5, we define a0, . . . , a` ∈ Vn−1 and b0, . . . , b`+1 ∈
Vn−1 by induction as follows. We put a0 = v1 and b0 = u1, b1 = w1. Now,
for every i = 1, . . . , `− 1, we set{

ai = wi+1 and bi+1 = bi if ui+1 = ai−1,

ai = ai−1 and bi+1 = wi+1 if ui+1 = bi.

By construction, m(a0, b0) = x0 = x and m(a`−1, b`) = x` = y. More-
over, after deleting repeated entries, γ = (a0, . . . , a`−1) and η = (b0, . . . , b`)
are (possibly degenerate) shortest-paths in Gn−1 such that length(γ) +
length(η) = ` = dn(x, y). See Figure 3.2. Moreover, any two non-degenerate
shortest-paths γ and η induce at most two edges in Gm

n in this way. Conse-
quently,

|E(Gm
n )| ≤ |Vn−1| · |E(Gm

n−1)|+ 2

m−1∑
i=1

|E(Gi
n−1)| · |E(Gm−i

n−1 )|.

We put
M = max

{
|E(Gi

n−1)| · |E(Gm−i
n−1 )| : i = 0, . . . ,m

}
.

By the above, it follows that |E(Gm
n )| ≤M + 2(m− 1)C ≤ 2mM . �

Recall that we have fixed an integer k ≥ 1 which is sufficiently large to
be determined later, and we use the notation

m(n) = 2n−k and n̄ = n− k.
Using Lemma 4.3, it is possible to obtain an upper bound on the number of

edges of G
m(n)
n in terms of a product with factors |E(Gmi

k )| and |Vn−i|ki .

Lemma 4.4. Let n ≥ 1 be sufficiently large. Then there exist an integer
K ∈ {1, . . . ,m(n)}, positive integers m1, . . . ,mK such that m1 + · · ·+mK =
m(n), and integers ki ∈ {0, . . . , 2i − 1} for i = 1, . . . , n̄ satisfying

n̄∑
i=1

ki · 2n̄−i = m(n)−K, (4.2)

such that

|E(Gm(n)
n )| ≤ 32m(n)

( K∏
i=1

|E(Gmi
k )|

)( n̄∏
i=1

|Vn−i|ki
)
. (4.3)

Proof. We consider the following replacement rule:

|E(Gm
n )| →

{
2m |E(Ga

n−1)| · |E(Gb
n−1)| if m > 0, where a, b are as in Lemma 4.3

|Vn| if m = 0.
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By using this rule and Lemma 4.3 sufficiently many times, we obtain integers
`i ∈ {1, . . . , 2i}, for i = 0, . . . , n̄− 1, such that

|E(Gm(n)
n )| ≤

( n̄∏
i=1

2`i−1 ·Ai · |Vn−i|ki
)
·
( K∏

i=1

|E(Gmi
k )|

)
, (4.4)

where

Ai :=

`i−1∏
j=1

αi,j

for some positive integers αi,j > 0 satisfying αi,1 + · · ·+αi,`i = m(n). Notice
that in particular `0 = 1. Using the inequality of arithmetic and geometric
means, we get

`i∏
j=1

αi,j ≤
(m(n)

`i

)`i
= 2(n̄−log2 `i)·2log2 `i .

The function f(x) := (n̄− x) · 2x is increasing on [0, n̄− 2], and

max
x∈[0,n̄]

f(x) =
2n̄

e log 2
≤ 2n̄.

Hence, using that `i ∈ {1, . . . , 2i}, we have An̄ ≤ 2n̄ and for all i = 1, . . . , n̄−
2,

Ai ≤ 2(n̄−(i−1))·2i−1
.

Thus, since
n̄−2∑
j=0

(n̄− j)2j ≤ 2n̄−1 +
n̄−1∑
j=1

2j ≤ 2n̄−1 + 2n̄,

we find that
n̄∏

i=1

Ai ≤ 22n̄+2n̄−1+2n̄ ≤ 162n̄ .

Moreover,
n̄∏

i=1

2`i−1 ≤
n̄−1∏
i=0

22i ≤ 22n̄ ,

and thus (4.3) follows from (4.4). �

We remark that if Lemma 4.3 were true for a = b = m
2 , by exactly the

same reasoning as in the proof of Lemma 4.4, we would get the following
slightly more elegant upper bound in (4.3),

8m(n) · |E(Gk)|m(n),

but we do not know how to prove this.
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5. Proof of main results

In this section we prove the main results from the introduction. Theo-
rem 1.2 is an immediate consequence of the following result.

Theorem 5.1. Let n0 ∈ N and let X0 be the complete metric space con-
structed in Section 3. Then X0 admits a conical bicombing σ and there
is a finite subset A ⊂ X0 such that σ–conv(A) = X0. Moreover, X0 is
non-compact for every n0 ≥ 2.

Proof. In the following, we retain the notation of Section 3. Recall that
X0 = X, where (X, d) is the metric space associated to the semi-metric
space (V, %). We set A = V1 ⊂ X0. Lemma 3.4 tells us that m : X×X → X
defines a conical midpoint map on X and

X =
⋃
n∈N
Mn(A).

Let σ be the conical bicombing on X0 induced by m. For the construction of
σ we refer to Section 2.4. Because of Lemma 2.5, it follows that σ–conv(A) =
X0.

Let now n0 ≥ 2. To finish the proof we show that X0 is not compact.
This is achieved by showing that X is not totally bounded, which in turn is
established via Corollary 4.2. Fix ε ∈ (0, 2−4) and choose k ≥ 1 sufficiently
large such that

max
{ 1

|Vk|
,
|E(Gk)|
|Vk|(1+ε)

}
≤ 1

(2α)
1
ε

, (5.1)

for some large constant α > 0 to be determined later. The existence of k
is guaranteed by Lemma 3.1. As in Section 4, we set m(n) = 2n−k and
n̄ = n− k. We claim that

|E(G
m(n)
n )|
|Vn|2

≤
(1

2

)m(n)
(5.2)

for all n ≥ 1 sufficently large. By Lemma 4.4, there exists an integer K ∈
{1, . . . ,m(n)}, positive integersm1, . . . ,mK such thatm1+· · ·+mK = m(n),
and ki ∈ {0, . . . , 2i − 1} for i = 1, . . . , n̄, such that (4.2) holds and

|E(Gm(n)
n )| ≤ 32m(n)

( K∏
i=1

|E(Gmi
k )|

)( n̄∏
i=1

|Vn−i|ki
)
. (5.3)

In the following, we derive an upper bound for 1/|Vn|2. Due to (3.5), we
have

|Vn−1|2

|Vn|
≤ 3, (5.4)

and so we find that

1

|Vn|2
≤ 32

|Vn−1|4
=

3b0

|Vn−1|k1
· 1

|Vn−1|b1
,
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where b0 = 2 and b1 = 2b0−k1. We define the integers b0, . . . , bn̄ recursively
as follows. We set b0 = 2, and bi = 2bi−1 − ki for all i = 1, . . . , n̄. Hence, by
using (5.4) repeatedly, we arrive at

1

|Vn|2
≤
( n̄∏

i=1

3bi−1

|Vn−i|ki
)
· 1

|Vk|bn̄
(5.5)

Via a straightforward computation, we find

n̄−1∑
i=0

bi ≤
n̄−1∑
i=0

2i+1 ≤ 2n̄+1, bn̄ = 2 ·m(n)−
n̄−1∑
i=0

kn̄−i · 2i.

Hence, because of (4.2), it follows that bn̄ = m(n) +K. By combining (5.3)
with (5.5), we obtain

|E(G
m(n)
n )|
|Vn|2

≤ αm(n) ·
∏K

i=1|E(Gmi
k )|

|Vk|2K
· 1

|Vk|m(n)−K , (5.6)

where α = 32 · 9. In the following, we consider the cases K ≤ (1 − ε)m(n)
and K > (1− ε)m(n) separately. First, we suppose that K ≤ (1− ε)m(n).
From (5.6), we find that

|E(G
m(n)
n )|
|Vn|2

≤ αm(n) · 1

|Vk|m(n)−K .

Since ε ·m(n) ≤ m(n)−K, it follows from our assumption (5.1) on k that

|E(G
m(n)
n )|
|Vn|2

≤ αm(n) ·
(

1

(2α)
1
ε

)ε·m(n)

≤
(1

2

)m(n)
.

Second, suppose that K > (1− ε)m(n). Since mi ≥ 1 and m1 + . . .+mK =
m(n), it follows that mj ≥ 2 for at most 2ε·m(n) many indices j. To ease the
notation, we may suppose m1 = · · · = mL = 1, where L = dK − 2εm(n)e.
Hence, using (5.6) once again, we find that

|E(G
m(n)
n )|
|Vn|2

≤ αm(n) ·
( |E(Gk)|
|Vk|(1+ε)

)L
· 1

|Vk|(1−2ε)m(n)−εL

≤ αm(n) ·
( 1

2α

)(1−2ε)m(n)+(1−ε)L
,

where in the last inequality we used (5.1), our assumption on k. By con-
struction, L ≥ (1− 3ε)m(n), and so we get

(1− 2ε)m(n) + (1− ε)L ≥ (1− ε)(2− 5ε)m(n) ≥ m(n),

where in the last step we used that ε ∈ (0, 2−4). Therefore, it follows from
the above that

|E(G
m(n)
n )|
|Vn|2

≤
(1

2

)m(n)
.



24 GIULIANO BASSO AND YANNICK KRIFKA

This concludes the case distinction and establishes (5.2). Finally, having
(5.2) at hand we find that

lim inf
n→∞

|E(G
m(n)
n )|
|Vn|2

= 0,

since m(n) → ∞ as n → ∞. So Corollary 4.2 tells us that X is not totally
bounded. Hence, X0 is not compact. �

A metric space Y is called injective if whenever A ⊂ B are metric spaces
and f : A→ Y a 1-Lipschitz map, then there exists a 1-Lipschitz extension
f̄ : B → Y of f . More formally, Y is an injective object in the category of
metric spaces with 1-Lipschitz maps as morphisms. Injective metric spaces
have been introduced by Aronszajn and Panitchpakdi in [2] and are some-
times also called hyperconvex metric spaces by some authors. We refer to
[16, 28] for an introduction to injective metric spaces. As observed by Lang in
[28, Proposition 3.8], every injective metric spaces admits a conical bicomb-
ing. Indeed, given an injective metric space Y , by applying Kuratowski’s
embedding theorem, we may suppose that Y ⊂ Cb(Y ), and so because Y is
injective, there is a 1-Lipschitz retraction r : Cb(Y )→ Y and thus

σ(x, y, t) = r((1− t)x+ ty)

defines a conical bicombing on Y . Using an extension result of [3], we find
that Theorem 1.2 is also valid for an injective metric space.

Theorem 5.2. There exists an injective metric space Y with a conical bi-
combing σ such that there is a finite subset of Y whose closed σ-convex hull
is not compact.

Proof. Let n0 ≥ 2 and let X0 be constructed as in Section 3. We recall that
by definition X0 = X and X is naturally equipped with a conical midpoint
map m. Let σ denote the conical bicombing on X0 induced by m. As m is
symmetric, it is not difficult to see that σxy(t) = σyx(1− t) for all x, y ∈ X0.
This shows that σ is a reversible conical bicombing. Hence, by virtue of [3,
Theorem 1.2], there exists an injective metric space Y containing X0, and
a conical bicombing σ̃ on Y such that σ̃xy = σxy for all x, y ∈ X0. As
X0 is complete, it follows that σ̃–conv(A) = σ–conv(A) for any A ⊂ X0.
Therefore, due to Theorem 5.1, Y admits a finite subset whose closed σ̃-
convex hull is not compact. �

We finish this section by proving the following more general version of
Theorem 1.3.

Theorem 5.3. Let n0 ∈ N. Then there exists a complete metric space X0

with a conical bicombing such that whenever A ⊂ Y is an n0-point subset of
some complete metric space Y with a conical midpoint map m, then there
exists a Lipschitz map Φ: X0 → Y with A ⊂ Φ(X0) and furthermore Φ(X0)
is σ-convex with respect to the conical bicombing σ induced by m.
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Proof. Let X0 = (X0, d) be the metric space constructed in Section 3. We
set A0 = V1 ⊂ X0. By Lemma 3.2, it follows that

d(x, y) = d1(x, y) = 1 (5.7)

for all distinct x, y ∈ A0. In particular, A0 ⊂ X0 is an n0-point subset. Now,
let A be as in the statement of the theorem. Since A and A0 are both n0-
point sets, there is a surjective map ϕ : A0 → A. Clearly, ϕ is L-Lipschitz for
some L ≥ 1. We define L-Lipschitz maps ϕn : (Vn, %n)→Mn(A) recursively
as follows. Because of (5.7), it follows that ϕ1 = ϕ is L-Lipschitz with
respect to %1. Given n ≥ 2 and x ∈ Vn, we set

ϕn(x) = m
(
ϕn−1(a), ϕn−1(b)

)
if x = m(a, b) with a, b ∈ Vn−1. Let x, y ∈ Vn be such that x ∼ y in
Gn. Hence, by definition, there is v ∈ Vn−1 and u ∼ w in Gn−1 such that
x = m(v, u) and y = m(v, w), and so

d(ϕn(x), ϕn(y)) = d
(
m(ϕn−1(v), ϕn−1(u)),m(ϕn−1(v), ϕn−1(w))

)
≤ 1

2
d(ϕn−1(u), ϕn−1(w)) ≤ L · 1

2n−1
,

where in the last step we have used that ϕn−1 is L-Lipschitz with respect to
%n−1. Since %n = 2−(n−1) · dGn , it now follows directly from the above and
the definition of the shortest-path metric dGn that ϕn is L-Lipschitz with
respect to %n. By construction, ϕn(x) = ϕm(x) for all x ∈ Vn and m ≥ n.
Hence, as Y is complete these maps naturally give rise to a L-Lipschitz map
Φ: X0 → Y .

To finish the proof we show that Φ(X0) is σ-convex. For simplicity, in
the following we will denote the bicombings on X0 and Y both by σ. By
construction of Φ and since σ is induced by a conical midpoint map, it
follows that Φ(σ(x, y, t)) = σ(Φ(x),Φ(y), t) for all x, y ∈ Mn(A0) and
all t ∈ [0, 1]. Let now x, y ∈ X0 be arbitrary. Then there exists xk,
yk ∈ Mnk

(A0) such that xk → x and yk → y as k → ∞, respectively.
Moreover, σxkyk → σxy uniformly. Hence, as Φ is Lipschitz continuous, we
have Φ(σ(x, y, t)) = σ(Φ(x),Φ(y), t) for all t ∈ [0, 1]. This shows that Φ(X0)
is σ-convex. �

6. Does X0 admits a consistent conical bicombing?

In practice, it is often desirable to impose stronger properties on a bi-
combing than (1.1). By asserting that a conical bicombing is consistent, see
Section 2.3 for the definition, one obtains an interesting class of bicombings
which seem to be quite rigid. Following Haettel, we call a metric space
a CUB-space if it admits a unique consistent conical bicombing (see [21]).
The class of CUB-space is already quite rich and still growing. For example,
in [5] it is shown that any convex body in a dual Banach space is CUB.
Moreover, proper, finite-dimensional injective metric space are CUB and
Deligne complexes of certain Artin groups are CUB if they are re-metrized
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by considering the length metric induced by the `∞-metric on each cell (see
[11, 21]).

However, using a non-affine isometry first introduced by Schechtman [38],
one can construct a complete metric space with two distinct consistent coni-
cal bicombings (see [5, Example 4.4]). On the other hand, up to the author’s
knowledge, there is no example of a metric space with a conical bicombing
that does not also admit a consistent conical bicombing. In other words, the
following question of Descombes and Lang [11] is still open.

Question 6.1 (Descombes–Lang). Let X be a complete metric space. Is it
true that X admits a conical bicombing if and only if it admits a consistent
conical bicombing.

This question also appears in the problem list [35, p. 385]. A partial
result that indicates a positive answer when X is proper has been obtained
in [3, Theorem 1.4]. One difficulty in finding a negative answer to Ques-
tion 6.1 lies in the fact that many know examples of metric spaces with a
conical bicombing have locally a nice structure. In this situation one can
then employ a generalized version of the Cartan-Hadamard theorem due to
Miesch [32] to construct a consistent conical bicombing. The metric space
X0 is locally not ’nice’ as it is fractal-like in nature. So we believe that it
could be a potential candidate for a counterexample to Question 6.1.
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