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SPIN" STRUCTURES IN LOW DIMENSION

MICHAEL ALBANESE, ALEKSANDAR MILIVOJEVIC

ABSTRACT. All compact orientable manifolds of dimension < 7 admit a spin® struc-
ture. We discuss conditions under which the compactness assumption can be removed.

A natural quaternionic analog to the spin group is the group Spin"(n) = Spin(n) x
Sp(1)/Zy (where Zs denotes the two-element group) defined in analogy with the spin®
group Spinf(n) = (Spin(n) x U(1)) /Zy. Writing the spin and spin® groups as
Spin(n) = (Spin(n) x Spin(1)) /Zs,  Spin(n) = (Spin(n) x Spin(2)) /Zs,
one notes that
Spin"(n) = (Spin(n) x Spin(3)) /Z,
naturally fits in this sequence by way of low-dimensional accidental isomorphisms of Lie

groups. The present authors studied this group and manifolds whose tangent bundle
admits a spin” structure, along with further analogues, in [AM21].

Therein, we made the following statement ([AM21, Theorem 1.3], [AM21, Corollary
3.10]): Ewvery orientable manifold of dimension < 7 is spin®. The argument for mani-
folds of dimension 6 and 7 relied on invoking Cohen’s immersion theorem [Coh85], and
as such we should have qualified the statement with a compactness assumption. The
result of [Coh85] was used in order to obtain a codimension 4 immersion in Euclidean
space, followed by an application of [AM21, Proposition 3.9] that such an immersion
guarantees the existence of a spin” structure.

In the present note, we prove the following theorem, using only results chronologically
preceding [Coh85], due to Atiyah, Dupont, and Hirsch:
Theorem. The following hold:
(1) Every (not necessarily compact) orientable manifold of dimension <5 is spin”.
(2) Compact orientable manifolds of dimension 6 and 7 are spin”.

(3) A non-compact orientable manifold M of dimension 6 or 7 is spin” if and only
if Ws(TM) = 0.

(4) A non-compact orientable manifold M of dimension 6 or 7 with no elements of
order exactly four in H®>(M;7Z) is spin”.

By “no elements of order exactly four” we mean that any x € H°(M;Z) satisfying

4x = 0 also satisfies 22 = 0.
1



2 MICHAEL ALBANESE, ALEKSANDAR MILIVOJEVIC

Proof. Part (1) is already proved in [AM21, p.5] without appealing to [Coh85]. It
is a corollary of [AM21, Corollary 2.6], which states that the primary obstruction to
the existence of a spin” structure on an oriented manifold is the fifth integral Stiefel-
Whitney class W5. This is an integral class of order two and hence vanishes on all
orientable manifolds of dimension < 5. Here and throughout, we use the fact that the
top cohomology (with any coefficients) of a non-compact manifold vanishes, e.g. see
[Wh61, Lemma 2.1]; see also [Br62, Theorem 2] that every (not necessarily compact)
manifold with boundary admits a collar neighborhood of its boundary, and hence it
deformation retracts onto its interior.

Compact orientable six-manifolds immerse in R'?, as proved in [Hir61, Corollary 9], and
hence they admit spin” structures by [AM21, Proposition 3.9]. Note that the statement
of [Hir61, Corollary 9] does not explicitly assume compactness, though it is clear from
the proof that the manifold is assumed to be closed; the general compact case then
follows by taking the double if the boundary is non-empty. This establishes part (2)
for six—manifolds.

For compact orientable seven—manifolds M, we use the result listed in the second table
of [AtDu72, p.25] (see also the footnote (1) in loc. cit.), that the only obstruction
to a compact seven—manifold admitting three linearly independent vector fields is the
integral Bockstein of wy, i.e. Wj5. Again, the result is stated for closed manifolds,
and the compact-with-boundary case follows by considering the double. (Note, for
orientable seven—manifolds, W is a priori the single obstruction to finding three linearly
independent sections over the five-skeleton.) This class vanishes by [Mas62, Theorem
3]. Hence the tangent bundle of M splits off a trivial rank three bundle, giving an
orientable rank four bundle with the same wy as T'M, and we again apply [AM21,
Proposition 3.9]. This proves part (2) for seven—manifolds.

Now let M be a non-compact orientable six-manifold. Since H%(M;Z) = 0, there are
no secondary or higher obstructions to admitting a spin” structure beyond Wis; this
establishes part (3) for six-manifolds. As for part (4), choose an increasing exhaustion
{M;} by compact manifolds with boundary. For an abelian group A and integer k > 1,
we have the short exact Milnor sequence [Sw17, Proposition 7.66]

0 — lm' /5 (M;; A) — H*(M; A) — lim H*(M;; A) — 0.

From the long exact sequence in cohomology associated to the short exact coefficient
sequence

0737227 40

we have the following commutative diagram:
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A A A

H5(M;Z) —2— H(M;Z) —292 5 H>(M;Z,)

4 A A

lim' HY(M:Z) —— lim' H'(M;Z) —— lim' H*(M;Z,)

A A A

0 0 0

For each M;, we have W5(M;) = 0 by taking the double and applying [Mas62, Theorem
2] (or crossing the double with a circle and applying [Mas62, Theorem 3] again). For
an orientable manifold, the mod 2 reduction of Wy is ws. From here and by naturality,
ws(M) € H?(M;Zs) maps to the zero element in l‘&nH%M,g Zs). By [MiSt74, Lemma
10.3], the term @1 H*(M;Zy) vanishes. Therefore ws(M) must be zero as well. Now,
Ws(M) € H?(M;Z) is an element of order two which maps to ws(M) = 0 by mod 2

reduction. Therefore it is in the image of the map H®(M;Z) 2 H°(M;Z). Since by
assumption there are no elements of order exactly four in H°(M;Z), it follows that
Ws5(M) must be the zero class. This establishes part (4) for six-manifolds.

Now let M be an orientable non-compact seven—manifold. We will show that the
secondary obstruction to the existence of a spin” structure vanishes, establishing parts
(3) and (4). Take an exhaustion {M;} by compact seven—manifolds with boundary. If
Ws(M) = 0, which will for instance be true given the torsion condition on H°(M;Z) by
the argument above, we can choose a lift of the classifying map of the tangent bundle
M — BSO(7) to Ej, the second stage of the relative Postnikov tower of BSO(4) —
BSO(7),

BSO(4)

~

B« K(Z,4)

M —— BSO(7) -2 K(Z,5)
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Restricting to the M; gives a compatible system of lifts to E;. We consider now the
secondary obstruction o(M) to admitting three linearly independent vector fields. This
is a class in HS(M;m5(V(3,7))), where V(3,7) is the Stiefel manifold of 3-frames in R”.
We have the following exact sequence of homotopy groups:

16(BSO(T)) — m5(V(3,7)) — m5(BSO(4)) — m5(BSO(T)).

The natural map BSO(7) — BSO is an isomorphism on 7<g, and hence we have
75(BSO(7)) = m6(BSO(7)) = 0. Furthermore, 75(BSO(4)) = m,(SO(4)) = m,(S? x
S3) 2 7y & Zs.

Since we are fixing the lifts M — FE; and M; — F;, and they are compatible, the
secondary obstruction to lifting further to Fs is natural, i.e. o(M;) is the restriction of
o(M).

E2 — K(ZQ@ZQ,5)
E1 e K(ZQ@ZQ,G)

//

M

Let us now argue that o(M;) = 0. We will use [Du74, Theorem 1.1], which gives us
that for any choice of lift to E; on a closed orientable seven—-manifold, the secondary
obstruction vanishes. In order to apply this to M;, we consider the double DM;. We

will argue that the lift M, LN E, (obtained by restricting M EN Ey) extends to a lift
DM; — E;. Then, by applying loc. cit., we will have o(DM;) = 0 and hence o(M;) = 0.

/

/“BSO

E, +——— K(Z.4)

DM

First, choose any lift DM; N Ey of DM; — BSO(7); this exists since W5 vanishes
on any closed orientable seven—manifold. Now, f; and the restriction of G' to M; differ
by the action of an element z in [M;, K(Z,4)] = H*(M;;Z) (this group acts simply
transitively on the homotopy classes of lifts to £7). Let us denote this by [f;] = z+[G],]-
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Now observe that z is the restriction of a class X € H*(DM;;Z). Namely, consider the
Mayer—Vietoris sequence for the double:

oo — HY (DM Z) — H*(M;; Z) ® HY(M;; Z) — H*(OM;; Z) — -+
The element (z, ) maps to zero, and hence x = j*X for some X € H*(DM;;Z).

Therefore, if we consider the (class of the) lift X - [G] on DM; instead of [G], by
naturality we have that its restriction to M; is x - [G|a], i-e. [fi]-

Now we have that o(M;) = 0 for all i. Consider the short exact sequence

0 — lim' H*(My; Zy © Zo) — H'(M;Zs @ L) — lim H'(M; Zy & Zs) — 0.

Since H*(—;Zo @ Zs) is naturally isomorphic to H*(—;Zy) ® H*(—;Zs), the l'gl1 term
vanishes. Further, since o(M) maps to (0(M;));, which is the zero element, by injectivity
we have that o(M) = 0. Therefore M admits three linearly independent vector fields,
and we conclude that M admits a spin” structure. O

Remark. The primary obstruction to a spin® structure on an orientable manifold is
W3, and compact orientable four-manifolds are spin®. An analogous argument to the
above then shows that non-compact orientable four-manifolds with no elements of order
exactly four in H3(—;Z) are spin®. The four—torsion assumption can be removed in this
case [TV], and it is not clear whether one should expect this in the theorem above.
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