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SECOND MOMENT OF GL(n) x GL(n) RANKIN-SELBERG L-FUNCTIONS

SUBHAJIT JANA

ABSTRACT. We prove an asymptotic expansion of the second moment of the central values
of the GL(n) x GL(n) Rankin—Selberg L-functions L(1/2,7 ® m), for a fixed cuspidal au-
tomorphic representation 7y, over the family of = with analytic conductors bounded by a
quantity which is tending off to infinity. Our proof uses the integral representations of the
L-functions, period with regularized Eisenstein series, and the invariance properties of the
analytic newvectors.

1. INTRODUCTION

Asymptotic evaluation of higher moments of the central L-values carries important arith-
metic information e.g. subconvex bounds or non-vanishing result for the central L-values.
This evaluation becomes more and more difficult as the moment, the degrees of the L-
functions, or the rank of the underlying group increase.

Obtaining subconvex bounds i.e. proving bounds of the form

L(1/2,7) < C(@)Y/*, 5> (]

where C() is the analytic conductor of an automorphic representation 7, is an extremely
difficult problem with respect to the current technology. A narrow, but important for ap-
plications, class of automorphic representations suffers from yet another major technical
difficulty, named conductor-drop. These representations are usually functorially lifted from
smaller groups and have unusually smaller analytic conductors.

For example, if 7 varies over automorphic representations for PGLy(Q) with C(m) being
of size T' then the size of the analytic conductor of the Rankin—Selberg convolution 7 ® 7
is roughly 7% where 7 is the contragredient of 7, unlike C'(7 ® ') has size of T? if C(7')
is of size T? but 7’ is away from 7. That is, the PGL(4)-subfamily of 7 ® 7 shows the
conductor-drop phenomena. Another example of a family which sees conductor-drop is the
PGL(3)-family of Sym?7 where 7 varies over a PGL(2) family (subconvexity problem on this
family is directly related to the arithmetic quantum unique ergodicity problem for SLy(R)).
This happens due to one of the Langlands parameter of Sym?r is extremely small compared
to the others. The families defined by the Plancherel balls with large radius (e.g. dilated) or
high center often exclude these narrow classes. Thus moment estimation over these families
does not usually become fruitful to yield a subconvex bound of an L-function which has
conductor drop, see e.g. [2, 26, 25].

IThe generalized Lindelf hypothesis predicts that any § < 1/4 is achievable.
1
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One naturally interesting and important family of automorphic representations can be
given by representations with growing conductors e.g.

Fx = {m automorphic representation for PGL,(Z) | C(7) < X},

with X' — co. The family Fx, unlike the families defined by the Plancherel balls, is indiffer-
ent towards the conductor-drop issue. So a high enough moment estimation over this family
will likely produce a subconvex estimate even for the L-functions suffering from conductor-
drop.

However, the family Fx becomes quite large as X tends off to infinity. One has |Fx|=
X", This is why to obtain a subconvex bound of an L-function attached to an element in
Fx one needs to evaluate quite a high moment in the sharpest possible (Lindel6f on average)
manner. For example, we need to estimate an amplified 4(n —1)’th moment over Fx even to
break the convexity barrier. Unfortunately, the current technology is not enough advanced to
tackle such a high moment of these L-functions due to large size of the conductors. Hence a
natural informal question arises regarding the race between the sizes of the conductors of the
L-functions and the families: As a function of n how high of a moment can be asymptotically
evaluated (or estimated in a Lindeldf-consistent manner) over the family Fx?

Such a question has been addressed in the literature for low rank groups. We may try
to guess an answer to our proposed informal question by looking at the small number of
examples in low ranks. For n = 2 in [I8] the authors obtained an asymptotic formula of
the 4’th moment over a family in the non-archimedean conductor aspect and restricted only
on the holomorphic forms. In [3] the authors proved a Lindel6f-consistent upper bound of
the 6’th in the non-archimedean conductor aspect for n = 3. These are the best possible
estimates so far for small n, which allows us wonder whether the 2n’th moment can be
asymptotically evaluated over the family Fx. However, if we work on GL(n) rather than
PGL(n) family, that is, if we do an extra central average we expect that an asymptotic
formula of the 2n + 2’th moment is achievable.

Our primary motivation is to prove an asymptotic formula for the 2n’th moment of the
central L-values for PGL(n) with n > 3, over the family Fx, using the integral represen-

tations of the L-functions and spectral theory. If 7 is an automorphic representation for
PGL(n) then

L(1/2,m)" = L(1/2,7 ® Ey),

where FEj is the minimal Eisenstein series for PGL(n) with trivial Langlands parameters and
® denotes the Rankin—Selberg convolution. Thus to evaluate the 2n’th moment of L(1/2,7)
it is same to evaluate the second moment of L(1/2,7m ® Ey). However, the approach of the
integral representations and the spectral decomposition encounter severe analytic difficulties
due to the growth of Fy near the cusp, e.g. Fj fails to be square integrable in the fundamental
domain. To avoid this particular technical difficulty we may, as an initiation, replace Fy by
a fixed cusp form, and try to evaluate their second moment asymptotically.
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Let n > 3. In this article we evaluate the second moment of the central Rankin—Selberg
L-values L(1/2,7m ® m) where 7 varies over a family of automorphic representations for
PGL,(Q) which are unramified at all the finite places and the archimedean conductors are
growing to infinity. Here 7 is a fixed cuspidal representation for PGL,(Q) which is again
unramified at all the finite places. Below we informally describe our main theorem.

Theorem 1 (Informal version). Let n > 3 and my be a cuspidal automorphic representation
for PGL,(Z) (i.e. unramified at the finite places) which is tempered at co. Let m vary over
the generic automorphic representations in Fx. Then we have an asymptotic formula of the
following (weighted) average

L(1/2, 7 ® m)|? ) ¢%(n/2
Egeifr)fc | (Lél,ﬂ,Ad)O)l + continuous| =n C((n/))

as X tends off to infinity.

L(1,m,Ad)log X + O, (1),

For the actual formal statement we refer to Theorem 2l

REMARK 1. In Theorem [If by “continuous” we mean the corresponding terms from the
generic non-cuspidal spectrum. In the actual statement i.e. Theorem [2] we do a specific
weighted average over the full generic automorphic spectrum such that the weights are uni-
formly bounded away from zero on the cuspidal spectrum with analytic conductors bounded
by X. Consequently, we also need to change the harmonic weight L(1, 7, Ad) by an equiva-
lent arithmetic factor for the non-cuspidal spectrum.

This is the first instance of an asymptotic evaluation of the second moment of a family
of L-functions with arbitrary high degree. In general, for a pair of groups H < G and
their representations 7 and II respectively, it is an interesting question to asymptotically
evaluate moments of the central L-values of the Rankin—Selberg (if defined) product II ® 7.
Previously, in [26] Nelson—Venkatesh asymptotically evaluated the first moment keeping IT
fixed and letting 7 vary over a dilated Plancherel ball when (G, H) are Gan—Gross—Prasad
pairs, more interestingly, allowing arbitrary weights in the spectral side. More recently in
[25] Nelson proved a Lindelof-consistent upper bound of the first moment for the groups
(G,H) = (U(n+1),U(n)) in the non-split case keeping 7 fixed and letting II vary over a
Plancherel ball with high center. The method in [25] also yields an asymptotic formula with
power savings of a specific weighted first moment over this family. Blomer in [I] obtained
a Lindel6f-consistent upper bound of the second moment for G = H = GL(n) keeping II a
fixed cuspidal representation and letting 7w vary in a Plancherel ball, however, his method
does not yield an asymptotic formula.

There have been quite a few results for asymptotic formula and upper bounds on rank < 2
and degree < 4. In particular, we refer to [4] where authors prove an asymptotic formula
for GL(2) x GL(2) Rankin-Selberg L-functions fixing one of the representations but with an
extra average in the central direction. In [§] an asymptotic formula of the sixth moment of
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the L-values attached to holomorphic cusp forms for GL(2) is achieved but again with an
extra averages over the central direction.

1.1. Sketch for the proof. Our point of departure is similar to [I] and [27]. We use
spectral decomposition on PGL(n) and integral representations of the L-functions. We start
by choosing ¢g € my such that the Whittaker function Wy of ¢g is an analytic newvector,
see for a brief description of the analytic newvectors. Such W in the Kirillov model of
7o can be described by a fixed bump function. Let Eis(fs) be the maximal Eisenstein series
PGL,(Z) attached to a generalized principal series vector f;. Also let X be a large real
number and x be the diagonal element in PGL, (R) given by diag(X, ..., X,1). We translate
the Eisenstein series by x to obtain Eis(f)(.z).

For this subsection let X := PGL,(Z)\PGL,(R) and N be the maximal unipotent of the
upper triangular matrices in PGL, (R). We start by writing the inner product

(1.1) (GoEis(f1/2) (), GoBis(fi/2) () = (|ol*, [Bis(f1y2) *(-2)).

where all the inner products above are the usual L2-product on the fundamental domain X.
Note that both of the sides of are absolutely convergent as ¢y decays rapidly at the
cusps.

We use Parseval’s identity in the LHS over PGL(n). A typical term corresponding to an
automorphic representation 7 in the spectral sum would look like

P |L(1/2,7 ® m?
 L(1,7,Ad)

|Zx(f1/27 VV7 WO)|27

/X 60(9) 8@V Eis( f1/2) (9)dg

and

Zu(fo, W, W) = / Wolg)W(g) fulg)dg
N\PGL,(R)

is the local zeta integral and the integral is over a N\PGL,(R).
We choose f so that f; {(é 1)] is supported on |c|< 7 for some 7 > 0 sufficiently small.

So that Wy fi/2(.z) would mimic a smoothened characteristic function of the archimedean
congruence subgroup Ko(X, 7) (see (2.8))). If W is an analytic newvector (see §2.9) then the
invariance property of W would yield that Z,(fi/2, W,Wy) > 1if C(7) < X. We use

S 1 Zu(frje, W, Wo) 2
w

as the spectral weights where in the above sum W traverses over some orthonormal basis
of m. We point out on the naive similarities between the spectral weight here and the one
which is used in e.g. [14], Theorem 1]. However, the invariance property which is needed here
is a bit stronger than the invariance used in [I4, Theorem 1]: We only needed invariance at
points near the identity in GL, (R) in [I4], where as here we have to gain an invariance which
is uniform for all elements in GL,_1(R). The method of using the approximate invariance
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of the newvectors is similar as in [27] for GL(2) where in the non-archimedean aspect the
exact invariance is used. This analysis is done in §7]

We now explain how we proceed to give an asymptotic expansion of the RHS of .
The heuristic idea, at least to obtain an upper bound, is to change variable in the period of

the RHS of (1.1)) to write it as

/X 60(g ) PIBis(f1/2) (9) Pdg.

and then bound this period by

< 60l2 0 / [Eis(f1,)(9)|2dg.

But unfortunately, Eis(f1/2) (barely!) fails to be square integrable on X. That is why we have
to regularize the period. We adopt regularizing techniques of Zagier [29], also see [22, 24].
First we deform |Eis(f1/2)[* as Eis(f1/215)Eis(fi/2) for s lying in some generic position with
very small R(s). From the Fourier expansions of the Eisenstein series we can pick off the
non-integrable terms in the product Eis(fi/24)Eis(f1/2) and call their sum to be F,. Then
we construct a regularized Eisenstein series by

E(s,.) :== Eis(f1/2+5)Eis(f1/2) — Eis(Fy).
We will check that F(s,.) lies in L*(X). Consequently, we regularize the period as
(o) 2 [Bis(fy)?) = lim(60(.a~) 2 ESCT)Eis(fyjare))
= tim (o) (s, ) + lim(on(.c~) 2, Eis(F).

—0

We call the first summand as the reqularized term which, upon rigorous application of the
heuristic above, could be proved to be of bounded size. The second summand is called the
degenerate term and yields the main term.

Up to some non-archimedean factors involving L(1, 7y, Ad) the degenerate term is of the
form

as:OZx(fl/Zfl/Q—i-s; W(]?WO) - aszOZx(Mf1/2Mf1/2+Sa Wo,Wo),
where M is certain intertwining operator which arises in the constant term of a maximal

parabolic Eisenstein series. One main difficulty of the paper is asymptotically evaluating
the above two derivatives. The first one is comparatively easy to understand as one can

apply the support condition of fi/2f1/2+s {(i 1) x} which is concentrated on ¢ = O(1/X)
and approximate invariance of W,. The second one is more technical to analyze. The

. . I . . I . ..
intertwined vector M f1 /o4 [(c 1) x} which on the matrices (c ) essentially mimics a

1

Fourier transform of f; /2, has support of size ¢ = O(X). So we can not get away just with
the invariance properties of Wy. In this case we understand a more detailed shape of the
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intertwined vectors via Iwasawa decomposition on the matrices of the form (c $% 1). This

analysis is done in §5]

On the other hand, to analyse the regularized term we understand the growth of the
(degenerate) Fourier terms of Eis(fs) for s being close 0,1/2 or 1. This analysis relies on
the analytic properties of the intertwining operators attached to various Weyl elements and
functional analytic properties of the Eisenstein series. This analysis is done in §6]

REMARK 2. We remark that our method of proof which is uniform for n > 3 can also be
made to work for n = 2 with a slight modification with a modified main term (the statement
of our theorem does not anyway make sense for n = 2). The main terms in the asymptotic
expansion are the artefacts of the non-integrable terms among the product of the constant
terms in the Fourier expansion of Eis(fi/2) and Eis(fi/245). The constant term of Eis(f;)
looks like > M, fs where M, are certain intertwining operators and w runs over a set
of Weyl elements attached to the underlying parabolic subgroup, (see . If n > 3 then
the non-integrable terms in the above mentioned product are of the form f;/sfi/24s and
M fi/2M f1/24+s where M is the intertwiner attached to the relative long Weyl element. In
particular, the off-diagonal terms of the from f;/2M f1 /21, are integrable. Such a phenomena
does not happen for n = 2. In this case (where the maximal Eisenstein series is also a
minimal Eisenstein series), the off diagonal terms are also non-integrable.

As described in the sketch of the proof, eventually we need to deform the principal se-
ries vector to regularize the Eisenstein series. The number of deformations needed in the
Langlands parameters of the associated principal series vector depends on the number of
non-integrable terms in the product of the constant terms. For n > 3 we need to deform
only one of the parameters of the principal series vector to regularize the corresponding
maximal parabolic Eisenstein series. However, for n = 2 for the reasons stated above, to
regularize the Eisenstein series we need to deform two (i.e. both) of the parameters. This
modification would produce more degenerate terms, and consequently, a different main term
with a different constant will appear, see [4].

1.2. What’s next? As we have described above, the motivating question for us is to find an
asymptotic expansion of the 2n’th moment of the central L-values for PGL(n), and to do that
we need to replace ¢y by a minimal Eisenstein series Ey with trivial Langlands parameters.
As, in particular, Ej is not in L, our current proof obviously fails (see the sketch for
the proof), and that is why we need to regularize E, as well. However, this regularization
increases the analytic difficulties many fold. We need to employ a regularized version of the
spectral decomposition (and Parseval), as in, e.g. [24, 22] to follow the same strategy as
in the sketch for the proof of the main theorem. On the other hand, regularizing both the
Eisenstein series involved in the period (|Ey|?, |Eis(f1/2)(.z)|*) we will introduce many more
degenerate terms which will typically have higher order poles at the critical point. This
would likely yield a higher power of log X in the main term. It will be interesting to see



SECOND MOMENT OF GL(n) x GL(n) RANKIN-SELBERG L-FUNCTIONS 7

if constants appearing in the main term are the same as predicted by the random matrix
models, see [7]. However, we leave this to future work.

We ought to wonder what happens for the second moment of the Rankin-Selberg L-
functions for other (GL(n), GL(m)) pairs with m # n and the GL(m) form being fixed
(cuspidal or Eisenstein). If m < n, we believe that the problems become simpler than the
m = n case as the degrees, hence conductors, become lower. Similarly, for m > n we expect
the problems to be much more difficult for high degree and conductor size. In particular, it
would be very interesting to see if we can push the method in this paper at least to m = n+1
case. More interestingly, if n = 3 and the fixed form is a minimal Eisenstein series then we
would have a Lindel6f-consistent eighth moment (the convexity barrier) of L-functions of
PGL(3) over the family Fy.

REMARK 3. We briefly remark that one may try to explicate the constant contribution of
the asymptotic expansion in the main theorem and obtain a power saving error term as in
[4]. Ome possible way to obtain finer asymptotics in the regularized part is to spectrally
expand the period (|¢o|?, Es(.x)) over the PGL(n) automorphic spectrum. Then one may
use the existence of a spectral gap and explicit decay of the matrix coefficient for n > 3 to
obtain that (|¢o|?, ¢)(¢, Es(.x)), at least for a tempered ¢, will decay polynomially in X.
However, it is not yet clear to us how to explicate the constant term and get an error term
with polynomial saving in the degenerate part, see Remark [4]
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2. BASIC NOTATIONS AND PRELIMINARIES

2.1. Basic notations. We use adelic language. Let r > 3. For any ring R by G(R) we
denote the set of points GL,(R)/R*. In this paper R will denote the Adeles A over Q or
the local fields R, Q, or rational numbers Q or the local ring Z,. We drop the ring R from
the notation G(R) if the ring is clear from the context.

Let N be the maximal unipotent subgroup of G consisting of upper triangular matrices.
For ¢ € A™™! we define a character of N(A) by

Ye(n(z)) = 1o (Z C]iifi,iﬂ) () = ()i

where )y is an additive character of Q\A. We abbreviate ;.. 1) by . Let A be the set of

diagonal matrices in G which we identify with (Arl 1) where A, is the set of diagonal
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matrices in GL(r —1). We parametrize elements of A, as a(y) := diag(yy ... Yr—1,- -+, Yr_1)
Let K := [] .., K be the standard maximal compact in G(A) where K, := G(Z,) for p < oo
and K := PO, (R).

For any factorizable function f on G(A) by f, we denote the p’th component of f which
is a function on G(Q,).

2.2. Domains and measures. Let § denote the usual modular character on A, trivially
extended to NA. We fix (resp. probability) Haar measures on G and its (resp. compact)
subgroups and a G-invariant measure of N\G. While integrating over N\ G over a local field
we use two different types of coordinates according to efficiency. The first one is the Iwahori
coordinates where we write

C

N\G > g = <h 1) (IT_l 1) ., h €N, 1\GL,_q,cis r — 1-tuple row vector,

and use the measure
dh

|det(h)|
where dc denotes the Lebesgue measure and dh is the GL,_;-invaraint measure on N,_1\GL,_;.

On the other hand when we integrate on N,_1\GL,_; we use the Iwasawa coordinates. We
write

dg = de,

Nrfl\Gerl S>h= a(y)ka a(y) € Ar‘fla ke Krfla
where K,_; is the standard maximal compact in GL,_;, with the measure

X .
dh = Mdk‘,
d(a(y))
where dk is the probability Haar measure on K, ;.
Let X := G(Q)\G(A). We fix a fundamental domain X in G(A) of the form
DxK;, DCGR)K;:=]]K,
p<oo

which is contained in a Siegel domain of the form S x K; where

@) 8= (O3 =n@) (V) ki< Lln ke K

where yy, > 0 is an explicit constant depending only on the group. We equip X with the
G(A)-invariant probability measure which in the Iwasawa coordinates looks like

a d*y;
Xag:n(x)( (v) 1) ) dg—dejk. H|detg(J w ))|dk,

where n(z) € N(A) and dx;; is the usual Lebesgue measure. Note that ¢ <a(y) 1) =
d(a(y))|det(a(y))|
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2.3. Automorphic representations. Let X be the isomorphism class of irreducible uni-
tary automorphic representations which are unramified at all finite places and appear in
the spectral decomposition of L*(X). Similarly, by Xgen we denote the subclass of generic
representations in X i.e., class of representations which have (unique) Whittaker models. We
fix an automorphic Plancherel measure dji,,; on X compatible with the invariant probability
measure on X. R

We mention Langlands description for Xqe,. We take a partition r = r; +---+1r;. Let 7;
be a unitary cuspidal automorphic representation for GL, (Q) (if 7; = 1 we take 7; to be a
unitary Hecke character). Consider the unitary induction IT from the Levi GL(rq) x ... X
GL(7x) to G of the tensor product m ®...®m,. There exists a unique irreducible constituent
of II which we denote by the isobaric sum 7y H - - - H 7. Then Langlands classification says
that every element in Xy, is isomorphic to such an isobaric sum. We refer to [23], [10, §5]
for details. X

For any 7 € X we denote the p'th component of 7 by 7, for p < co. The generalized
Ramanujan conjecture predicts that if 7 is cuspidal then m, is tempered for all p < oo. In this
paper we assume that certain cuspidal representations are -tempered at the archimedean
place, whose definition we recall below.

Let ¥ > 0. By the Langlands classification, we know that any unitary irreducible repre-
sentation £ of G(R) is a Langlands quotient of an isobaric sum of the form

o1 ® |det|*B--- B o, ® |det|*,

where the underlying Levi of the above induction is attached to a partition of r = Y r; by
2’s and 1’s and ) r;s; = 0. Here each o; is either a discrete series of GLy(R) or a unitary
character of GL;(R) of the form sgn’|.|* for some 6§ € {0,1} and yu; € iR. We say that &
is ¥-tempered if all such s; have real parts in [—¢,9]. By [21] if 7 is cuspidal then 7, is
J-tempered with 9 =1/2 —1/(1 + r?).

We denote the analytic conductor of m by C(m). Note that as 7 € X is unramified at all
the finite places we have C'(7) = C(7y). If {p;} € C" are the Langlands parameters of 7y
then we define (see [11]) C(moo) := [ 11—, (1 + |puil]).

2.4. Maximal Eisenstein Series. Let P be the standard parabolic subgroup in G attached
to the r = (r — 1) 4+ 1 partition. We choose a generalized principal series vector

fo € Tro1a(s) := Indif)|det B -5, s e C,
by

2.2 10 = foa()i= | Dltergldetig) e

AX

where ® € S(A") be a Schwartz—Bruhat, factorizable function and e, = (0,...,0,1) € A".
The integral in (2.2]) converges for (s) > 1/r and then can be extended meromorphically
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to the whole complex plane. By d we denote Fourier transform of ® which is defined by
d(z) == / O (u)tho(x1ug + - - + +x,u,)du.

We abbreviate f, ; as fs. We record the transformation property of fs which can be seen
from ([2.2]),

h s
(2.3) fs g| = ldet(h)"fs(g9), h € GL_1(A),g € G(A).
1
Finally, we define a maximal Eisenstein series by

Bis(f)(g9) = > f(v9)

YEP(Q\G(Q)

The above definition is valid for s in a right half plane and then can be extended to all of C
by a meromorphic continuation. From [I7, §4], [9, §2.3.1] we know that for fs e € Z,_11(s)
with some ® € S(A") the maximal parabolic Eisenstein series Eis(fs o) has at most simple
poles at s = 0 and s = 1. The residues at these poles are independent of g.

Let P be the maximal parabolic subgroup in G attached to the partition r =1+ (r — 1)
(the associated parabolic to P). We can similarly construct an associated Eisenstein series
from a vector fs € 7, r—1(s) defined analogously. All of the properties of an Eisenstein series
associated to P hold analogously for the same associated to P.

2.5. Genericity and Kirillov model. We briefly review the Whittaker and Kirillov models
of a generic representation of G over a local field, see [12] for details. In this subsection we
only talk locally, without mentioning the underlying local field. Fix a non-degenerate additive
character ¢ of N < G. Consider the space of Whittaker functions on G by

W(G) :={W € C=(G) | W(ng) = ¥(n)W(g),n € N,g € G},

on which G acts by right translation.

We call an irreducible representation m of G generic if there exists a G-equivariant em-
bedding m# — W(G). For generic m we identify 7 with its image in W(G) which we call
Whittaker model of m under this embedding.

It is known that (e.g. see [12] for the archimedean local field) from the theory of Kirillov
model that if 7 is an irreducible generic representation of PGL(r) then

oo 0 )

is injective and the space of the restricted Whittaker functions in the RHS, which is called
Kirillov model, is isomorphic to 7 as well. It is also known that the space

Cso(Nr—l\GLr—la,lvD) g ™

under this realization.
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If 7 is also unitary then we can give a unitary structure on its Whittaker model by the

Nrf]\Ger]

i.e. we have (Wy(.g), Wa(.g)) = (W1, Ws) for g € G.

2.6. Zeta integrals. We review the theory of GL(r) x GL(r) zeta integral. We refer to
[9] for details. We choose ¢ € mg with a factorizable Whittaker function Wy and a maxi-
mal Eisenstein series Eis(f;) attached to some vector f; in the generalized Principal series
Z,—11(s), as defined in . Let m € X and ¢ € 7 be any automorphic form. One defines
the Rankin—Selberg global zeta integral [9] §2.3.2] between ¢g and ¢ by

U(fo. b0.6) = / 60(9) (@) Eis( 1) (9)dg.
G(Q\G(A)

As ¢q is cuspidal the above integral converges absolutely. For s in a right half plane per-
forming a standard unfolding-folding one gets

V(fuond) = [ aulg)dl o)y
PQ\G(&)
The above integral representation of ¥( f,, ¢, #) has a meromorphic continuation to all s € C.
It is known that if 7 and my are cuspidal then the only possible poles of U are simple and
can occur at R(s) =0, 1.

We may choose fs to be factorizable which can be done by choosing ® € S(A"), as in
§2.4] to be factorizable. Furthermore, if we assume that 7 is generic such that ¢ € 7 has
a factorizable Whittaker function W, then for all s € C the global zeta integral is Eulerian
i.e. factors in local zeta integrals:

\Ij(fs, ¢u Q_S) - \Ijoo(fs,oou WO,oo; W(;S,oo) H qu(fs,zn WO,pa Wgﬁ,p),

p<oo
where the local zeta integral ¥, is defined by
Vol o Wooe Won) 1= [ W (0) W) fuel9)ds
NR)\G(R)

_ / Wooo ()W (9) Do (er9) det (g)*dg,
N(R)\GL-(R)

for s being in some right half plane and then can be meromorphically continued to the whole
complex plane. Similarly, the non-archimedean zeta integral ¥, is defined by replacing oo
with p and R with Q. It is known that if 7y, and 7, are unitary and v, and ¥ tempered,
respectively, then the above integral representation of ¥, is valid for £(s) > 1/2 if ¥ + 9y <
1/2 and p < oo (this can be seen in the archimedean case from the bounds of the Whittaker
functions in Lemma [7.1)).
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We record the local functional equation satisfied by V.. From [J, Theorem 3.2] we have
/ Wt () Wi (0)c 1) et ()l
NR)\GL-(R)

= 700(87 7TO,oo X 7700) / WO,oo(g)W¢,oo<g)q)oo(eTg)|det<g)|sdg‘
N(R\GLr(R)

Here W denotes the contragredient Whittaker function of W defined by W(g) := W(wg™)
where w is the long Weyl element in G(R) and 7, denotes the local archimedean ~-factor.
Folding the above integrals over |R* we can also rewrite the local functional equation as

(24) \Ijoo(fl—spoa WO,om Woo) = 700(37 7T0,oo ® ﬁoo)woo(fs,ooa WD,om Woo)7

for any W, € 7w and f is related to ® according to (2.2). From the definition of the
v-factors (see [9, p. 120]) one can check that |y (1/2,II)|= 1 if II is unitary.

2.7. Plancherel formula. We refer to [22] §2.2] for a more detailed discussion of the

Plancherel formula. Recall the automorphic Plancherel measure dp,,; on X. Let P1, P2 €
C*(X) with rapid decay at all cusps. We record a Plancherel formula (i.e. a spectral
decomposition) of the inner product between ¢; and ¢s.

(2.5) (1, P2) :/ D (b1, 8) (@, B2 dptane (7),

X geB(r)

where B(7) is an orthonormal basis of 7 and

<nﬁwzéﬁ@ﬁ@@.

(2.5)) is independent of choice of B(r).
Rapid decay properties of ¢; imply that all the inner products in the RHS of (2.5)) con-
verges. One can show by the trace class property in L*(X) of some inverse Laplacian that

the RHS of (2.5 converges absolutely.

2.8. Spectral weights. Let m, 7 € Xgen with Wy oo € Moo and fs € Z,_11(s). We define
the spectral weight

(26) J(fs,ooWO,ooaﬂoo) = Z |\1100(f8,007W0,OO7W_OO)|27

Weo€B(To0)

here B(7) is an orthonormal basis of 7. The sum in the RHS of is absolutely
convergent and is independent of choice of B(my,), see [B, Appendix 4].

The definition of J involves only the archimedean components of the representations and
functions. In fact, one can define J for any irreducible generic unitary representation o of
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G(R) and g € C*°(N(R)\G(R), 1)) with sufficient decay at infinity, by
J(B,0) =

2
/ B8(9)W(g)dg| .
WeBlo) 1/ NE\G®)

Then using Whittaker—Plancherel formula (see [28, Chapter 15]) one can obtain that

(2.7) /A J(8, 0)dpo(o) = / B(@)Pdg = 1822 ncm

G(R) NRN\G(R)

—

where G(R) is the tempered unitary dual of G(R) equipped with the local Plancherel measure
d:uloc‘

2.9. Analytic newvectors. Analytic newvectors are certain approximate archimedean ana-
logue of the classical non-archimedean newvectors pioneered by Casselman [6] and Jacquet—
Piatetski-Shapiro-Shalika [16]. Let Kq(p") C PGL,(Z,) be the subgroup of matrices whose
last rows are congruent to (0,...,0,%) mod pV. Let ¢ be a generic irreducible representa-
tion of PGL,(Q,) and let Ny be the minimal non-negative integer such that ¢ contains a
non-zero vector v which is invariant by Ko(p™°). Let C(co) be the conductor of o which can
be defined in terms of the local gamma factor attched to o. Then the main theorem of [0}, [10]
states that the real number p° = C(o). One calls such v to be a newvector of o.

In [15] the authors produce an approximate analogue of this theorem at the archimedean
place. Let X > 1 be tending off to infinity and 7 > 0 be sufficiently small but fixed. We
define an approximate congruence subgroup Ko(X,7) C PGL,(R), which is an archimedean
analogue of the subgroup Ky(p), in the following way.

(2.8)

a b

a€GL,_1(R), |a—1,_4|<T, [b<T,
Image in PGL,(R) of {(c d) € GL,(R) }

d € GL,(R), |c]<%, d—1]< 7

Here, various |.| denote arbitrary fixed norms on the corresponding spaces of matrices. Fix
0 < ¥ < 1/2. Then in [15, Theorem 1] the authors show that for all € > 0 there isa 7 > 0
such that for all generic irreducible unitary ¥-tempered representation m of PGL,(R) there
is a unit vector v € 7 such that

|m(g)v —v||x<e€  forall g e Ko(C(m), ),

where C'() is the analytic conductor of 7. We call such a vector v to be an analytic newvector
of .

The authors also prove that [I5, Theorem 7| any unit vector v which in the Kirillov
model of 7 can be given by a function in C®(N,_;(R)\GL,_;(R), 1/5,)°—1® is a newvector.
Moreover, v can be chosen in a way such that if W is the image of v in the corresponding
Whittaker model then also

(W(g) =W(D)|<e
for all g € Ko(C(m),7) and W (1) < 1.
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2.10. Main theorem.

Theorem 2. Let r > 3 and X be tending off to infinity. Let my be a fized cuspidal represen-
tation in X such that m o s at most Vg-tempered for some 0 < ¥y < 1/(r* +1). We define
a weight function
Jx : Xgen — RZ()?
as in (4.5) which satisfies the following properties:
o Jx(m) only depends on the archimedean component of ™ (with an abuse of notation
we write Jx(m) = Jx (7))
o If 1o is U-tempered such that ¥ + 9y < 1/2 and C(7) < X then Jx(Too) >r, 1.
fG Ix (oo )dptioe(oo) = X771

And ﬁnally, we have

/ LORFET e (ﬁ“ﬂ)zL(L 0, Ad) log X + Om(l)) 7

{(m) ¢(r)
where T is the contrgredient of w. Here ((m) is defined as in (4.3) and only depends on the
non-archimedean data of .
If 7 is cuspidal then ¢(w) =< L(1,7,Ad) with an absolute implied constant and thus
((m) < C(m)¢ which follows from [20].

We note that if 7 € Xgen then 7., is ¥-tempered for ¥ < 1/2 —1/(r? + 1) which is a result
in [21I]. Thus the YJp-temperedness assumption of 7y o in Theorem [2implies that Jx(7) > 1

for all m € Xgen with C'(7) < X. Moreover, we know that the size of the family
FE" .= {generic automorphic representations 7 of PGL,(Z) with C(7) < x}

is < X"~1. Hence, Jyx can be realized as a smoothened characteristic function of Fi .
Consequently, we have an immediate corollary of Theorem [2]

Corollary 1. Let o be as in Theorem[2 Then

LO27em)f _ o
o X7 Vog X,
2. LA o o8
C(m)<X

Xon cuspidal
as X tends off to infinity.

This is the sharpest possible (Lindel6f on average) second moment estimate of the cuspidal
Rankin—-Selberg central L-values.

3. FOURIER EXPANSION OF MAXIMAL EISENSTEIN SERIES

We recall some useful information about the Fourier expansion of maximal Eisenstein
series. The computation is essentially done in [I9], however, we extract the relevant compu-
tation for completeness.
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Let fs be a holomorphic section in the generalized principal series Z,_; 1(s) such that f; is
constructed from a Schwartz—Bruhat function ® € S(A"), as described in §2.4 Let Eis(f;)
be the Eisenstein series attached to f,.

We want to understand the Fourier expansion of Eis(f;). It is a straight forward calculation
using a Bruhat decomposition. We sketch out the essential details for completeness. Let
R(s) be suffciently large. We temporarily allow v to be a possibly degenerate character of
N. Then

3.1 Eis(f, DNdn — S et
. /N(@)\N(A) S tngumen WEP(Q%G(Q) /N(@)\N( )f (1mg)(m)dn

We start by a Bruhat decomposition of G(Q) with respect to P(Q). The Bruhat cells be
indexed by a subset of the Weyl group, namely, the subset of Weyl elements w such that
wa > 0 for all simple roots o other than ay which determines P.

Lemma 3.1. We define the Weyl elements

I
w; = L |, 1<i<r.
1
Also let N; be the subgroup of N of the form
I
N; =< n:= 1 oz | x:=(x,...,20—;)
]T—Z

Then

where the union is disjoint.

Proof. Any v € G(Q) has the bottom row of the form (0,...,0,d,*,...,x) where d # 0
and occurs at the ¢'th position for some 1 < ¢ < r. There exists an element z € N; such
that v = dv'z with 4/ having bottom row of the form (0,...,0,1,0,...,0) with 1 at the i’th
position. We check that v'w; ' € P(Q). Clearly, the union is disjoint. O

Using Lemma [3.1| and left- P(Q) invariance of f; we can rewrite the RHS of (3.1)) as

/ fu(wiyng)p(n)dn,
i= 1 YEN;(Q) N(Q\N(A

Note that N; := N Nw; 'Ntw;. Hence, N = N;N; where N; := N N w; 'Nw;. It can be
checked that

NZ’:{HENIGZ'HIQZ‘},
where e; = (0,...,0,1,0,...,0) with 1 at the i’th place.
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We write an element n € N as nyn, with n; € N; and ny € N;. Unfolding over N;(Q) sum
we obtain that the RHS of (3.1)) equals to

Z/ _ ¢(”2)/ fs(wininag)h(ny)dnidna.
i=1 Y Na(Q\Ni(4) Ni(A)

There exists n, € N; and n}, € N; such that njn|, = niny and and n € N such that
nyw; = w;ny. Appealing to left-N(A) invariance of fs we conclude that the above expression
is

Z/ _ 1/1(712)/ fs(wmllg)Yﬁ(nl)dnldng.
i=1 Y Ni(Q\Ni(A) Ni(A)

We check that if e;n; = (0,1, ) for some x € A" then n} = (0, 1, zu) for some u an upper
triangular unipotent matrix in GL,_;(A). Also t(ny) = #(n}). Thus changing variable
xu — x whose Jacobian is 1, we obtain that

. Eis( f, —d:T w(n)dn' (wing)(n)dn.
(3.2) /N i U ) = 3 /N oy, P /N oo G

Clearly, if ¢ is non-degenerate the above is zero. In particular, if ¢ is of the form )5 for some
q = (q;); € Q"' then the ¢’th summand, for i < r, in the RHS of does not identically
vanish only if ¢; = 0 for all j # ¢. For ¢ = r the same happens only if ¢ = 0 in which case
the summand equals to fs(g). For ¢ € Q we denote (0,...,0,q,0,...,0), where ¢ is at the
i’th place, by i(q).

We define (again on a right half plane, and extend by a meromorphic continuation) twisted
intertwining operators on Z,_11(s) 3 fs attached to the Weyl element w; by

(3.3) M?f(g) := /N(A) fs(wng) g (n)dn.

Thus we obtain the following Fourier expansion of Eis(f5)(g).

Lemma 3.2. Let f, and Eis(f5)(g) as above. Then

Eis(f,)(g) = fs(g) + i: > Mifi(g).

i=1 qeQ

The terms fs and M f, are the constant terms of Eis(fs)(g).

Let G(A) > g = nak be its Iwasawa decomposition where a := (a(y) 1>, and ¢ < 7.
Then

VI = [ Hlwnmak) G

which is defined for R(s) large enough and can be meromorphically continued.
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We work exactly as before to compute the above integral. We write n = nyny with n; € N;

and ny € N; and change variable n’ + n'n;'. Then we write wyn'ny = nhw;n” for some

ny € N and n” which is related to n’ as before and we change variable n” +— n’. We use left
N (A)-invariance of f; and that ¥ (n') = ¢ (n”).
Finally, we change variable n’ — an’a™! and use transformation property of f, to obtain

i—1 r—1
(34)  Mfu(g) = Vi (ma) [ [l 1] [1ws| @~ /N N fo(wink)iq) (ana=")dn.
=1 j=i i

We first study the integral in the RHS of (3.4) for ¢ = 0. We use the construction of f;
using ® € S(A") as in §2.4 We also parametrize n so that e;n = (0,1, x) with € A" and
change variables x — z/t to write the integral as

/ /kCI)(O,t,x)|t|”_T+idXtdx.
r—1i AX

Here k®(z) := ®(zk). Using Tate’s functional equation we can rewrite the above as
/ @Z(tei)ltr—i—l—l—rsdxt’
AX

where the partial Fourier transform @' is defined by

A

q)i<x1a s 7:I;T) = / q)(xla vy Li—1, ULy e v 7ur—i+1)¢(xiu1 + o+ Irur—i—l-l)du'
Ar—itl

In particular, it can be seen that
(3.5) My fo(g) = fi_oa(wg™) =: fulg).

where w is the long Weyl element. It can be checked that f lies in the Principal series
7y ,-1(1 — s) arising from the associated parabolic P.

Now for ¢ # 0 the integral in the RHS of ([3.4]) gives rise to a degenerate Whittaker function.
Parametrizing n € N;(A) as in Lemma e can see that ;) (ana™) = Yo(qyiz1), ie.
depends on a only through y;. We define

W}S(C]Z/u k) := / fs(wink)ii(g) (ana=")dn,
N;i(A)

Again, the above is defined for R(s) sufficiently large and can be extended analytically to all
of C and shown that W} (t,k) decays rapidly as t — oo. We prove these claims in Lemma
[6.2] (although these results are implicitly done in [I3]). In particular, we have

M fi(g) = W} (qui, k)Yo(qziis),
for g # 0.

We summarize the above results and re-write Lemma |[3.2] in the following proposition to
record the Fourier expansion of a maximal Eisenstein series.
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Proposition 3.1. Let f; € Z,_11(s) be a holomorphic section and Eis(fs)(g) be the corre-

sponding maximal Eisenstein series. Let g = n(x) (a(y) 1) k be its Twasawa decomposition

r—1 1—1
Els(fs) + ZH“JJ 5]H|y] (1=s){r=5) Mofs + Z Wfs qYi, )¢0(Q$u+1)
i=1 j=1 qeQx

The terms containing M are the constant terms of Eis(fs)(g) and the terms containing W}
are holomorphic in s. The above sum converges absolutely and uniformly on compacta.
4. PROOF OF THE MAIN THEOREM

4.1. Choices of the local components. We start by choosing various vectors and auxiliary
test functions. Let my € X, be the fixed cuspidal representation as in Theorem Let
¢o € mo with Whittaker function Wy = ®p,<scWo,p, such that

W), are unramified for p < oo with W ,(1) = 1.
We choose W o € 7o o SO that

Wl = 1 nd Wae | (* )] € €2 (BNGL -1 (R) ) 0.

whose existence is guaranteed by the theory of Kirillov model. We choose S(A") 5 & =
Rp<coPp With
®, := char(Z)) = ®,, for p < oo,
and for 7 > 0 sufficiently small but fixed
o, € CF(B,(0,...,0,1)),

and non-negative. Here B, denotes the ball of radius 7.
Let fs := fso € Z,—1.1(s) be related to @ according to (2.2). The support condition of ®,

ensures that
r—1 -
/R {f1/2oo| [( 1)] de <1,

with absolute implied constant. We normalize @, so that the above integral is 1.

4.2. Computation of the spectral side. Let Eis(fs) := Eis(f;¢) be the maximal Eisen-
stein series attached to fs ¢ € Z,_11(s) which is defined in . Let X > 1 be large number
tending off to infinity and

AA) s = (x)p, Too:=diag(X,...,X,1) € A(R) and z, =1 for all p < 0.

Our point of departure is the following period which we write in two different ways:

(4.1) / 160(g) IEis(£.) (92)Pdg = (GoEis(f.)(-2), oBis(£.) ().
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We use Parseval relation and notations in §2.6| to write the RHS of (4.1)) as

(42) / Z ‘\Ij fs ¢07 )| dﬂaut( )

$EB(r
where B(m) is an orthonormal basis of Tr.

Lemma 4.1. Let 7 € X \ Xgen i.e. be a non-generic representation. Then U(f,, ¢g, ) = 0
forallp € m and s € C.

Proof. For R(s) sufficiently large we have (see §2.6)

V(fuond) = [ o3l flody
PQ\G(A)
We follow the computation of [9, p.104-105]. We use the Fourier expansion

$o(9) = Z Wo(79),

YEN(Q\P(Q)
the left P(Q)-invariance of f;, and unfold over P(Q) to get

V(S do, @) = / Wo(9)8(9) fu(9)dg
NQ\G(A)

We fold the last integral over N(A), use left N-equivariance of Wy, and left N-invariance of
fs to obtain

U(fs. b0, &) — /N o W0 10) / Fng)(n)dndy.

N(Q)\N(a)
By definition, the inner integral vanishes as ¢ is non-generic. Finally, by analytic continuation
of ¥ we extend the result for all s € C. O
Thus Lemma allows us to reduce the integral in (4.2)) only over Xgen Once we restrict

to m € Xgen then we can use the Eulerian property of the zeta integral ¥ as in If
¢ € m with ||¢||,= 1 and Whittaker function Wy = ®,< W, such that W, is unramlﬁed and
W,(1) =1 for p < oo then by Schur’s lemma we have

(4.3) 18ll7= £(m)[Wee |z

where ¢(m) only depends on the non-archimedean data of 7. A standard Rankin—Selberg
computation yields that ¢(7) =< L(1, 7, Ad) for a cuspidal 7.

Another standard computations [9, Theorem 3.3] show that
(4.4) U (fops Wop, Wp) = Ly(s,mo@7), p< o0,

where f is as chosen in and L,(s,.) denotes the unramified p-adic Euler factor of L(s, .).
Thus by a meromorphic continuation we have

(fs>¢07¢) (5 7T0®7T)¢oo(f5007W000aW_oo)
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for all s € C whenever the both sides of the above are defined. Now compiling the equations
above and recalling the spectral weight in (2.6)) we obtain that (4.2)) equals to

/ |L(877T0 ®ﬁ-)|2J(fs,oo(..Too>W0,oo;ﬂ-oo)d,ulaut(ﬂ-)‘
T HT)

We appeal to the holomorphicity of the zeta integrals to specify s = 1/2 and define a
normalized spectral weight as Jx (7 ) by

(4.5) Tx () = Tx(Too) = XTI (f1/9,00(-To0) Wi 00, Too)-
Thus we write the main equation of our proof.
L(1/2,my @ 7)|? T_ .
ag) [ UEIEOL s i r) = X o B ) ()P

4.3. Computation of the period side. Again recall the choices of the local factors in
§4.11 We write f; = ®p<oofs,p then for k, € K,

Fully) = [ yfteskylde(t) e
@

Here we fix Haar measures on Q' and (resp. Q) such that vol(Z)) =1 (resp. vol(Z,) = 1).

Note that te.k, € Z, if and only if t € Z,,. Thus

fs,p(kp) _ Zp—mrs _ (1 . p—rs)—l’
m=0

for (s) > 0. Thus f,, is an unramified vector in Z,_;;(s), for p < oco. Similarly, using

(3.5) we have
fS,P(kP) = flfsﬁfp(wkp_t) = (1 - p—T(l—S))—17
for £(s) < 1 and is an unramified vector in Z; ,_1(1 — s), which is a generalized principal

series attached to the opposite parabolic of P. Thus for ¢g in the fundamental domain of X
we can write

(47) fs(g) - C(rs)fs,oo(QOO)a
(48) fs(g) = C(T - T‘S)st,oo(QOO)a

which is valid for all s € C which can be achieved by a meromorphic continuation.
Let R(s) be small enough. From Proposition 3.1| we can see that among the constant terms

of Eis(f1/2+5)(g) the terms which do not lie in L*(X) are fi/24,(g) and fi /2+s(g). Similarly,
one checks that the constant terms of

Eis(f1/2)Eis(fi/24s) — f1_/2f1/2+s — f1/2f1/2+s

are integrable in L*(X). Inspired by this we define a regularized Eisenstein series of the form

(4.9) Es = EiS(fl/z)EiS(f1/2+s) - Eis(f1_/2f1/2+s) - Eis(fl_/Zfl/2+s)'



SECOND MOMENT OF GL(n) x GL(n) RANKIN-SELBERG L-FUNCTIONS 21

Proof of Theorem [ Recall (4.6) and (4.9). We write the inner product in the RHS of (4.6
as

lim (Iool?, Es(2)) + lim [{16o0]%, Bis(Fi/afi o) () + {l60l%, Bis(Fifijoss) ()]

The second term is the degenerate term as in (5.1)). From (5.4), Proposition and Lemma
6.1l we obtain that the second term above is

rL(1,m, Ad)C(gﬂ(/TQ))2 log X + O, (1).

On the other hand, we write the first term above which is the regularized term as

1m%/cho|2(g:v‘l)Es(g)dg,
S— X

and estimate by
o0l s [ 1 (9)lds

From Proposition we know that the last integral is convergent for s being small enough,
and Fy is holomorphic in a small enough neighbourhood of s = 0. Thus using Cauchy’s
residue theorem we can write the above limit as

1 9, _INE ds
[ 2 [l B s

for some arbitrary small but fixed € > 0. Applying Proposition [6.1] once again we confirm
the above integral is Og, ((1).

Now non-negativity and the first property of the spectral weight Jx (7) follow from the def-
inition . The second property follows from Proposition Finally, the third property
follows from and Lemma Hence we conclude the proof. OJ

5. ANALYSIS OF THE DEGENERATE TERMS IN THE PERIOD SIDE

In this section we analyse the degenerate terms

(5.1) tim |(160/2, Bis(Fi/2f1/20) () + (90l Bis(fi 2 fr/216) () |

Note that fl_/2f1/2+5 € Z,_1,1(1 + s) such that its local component fi /5, f1/2+s, is unramified
for p < co. Thus by the uniqueness of spherical vector, fi/2,fi/245p € Zr—11(1 4 5), is a
multiple of the unramified vector

g+ ®,(te,g)|det(tg)|' Td*¢t.
Q
Comparing the values of the functions at the identity as before we check that the multiple is
(1 _ p—r/2)—1(1 _ p—r/Q—Ts)—l
(1 _ pfrfrs)fl

for p < oo.
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We compute the first term inside the limit in (5.1]) for %(s) large. Doing a similar computation
as in §2.6/and using (4.4) we obtain

¢(r/2)¢(r/2 + rs)

(5'2) <‘¢0|2>Eis(f1_/2f1/2+3)('x)> - C(T_|_7a5)

L(l + 5,mo ® 7}0)

\Ijoo(fl/Z,oofl/QJrs,oo(-xoo)a WO,ooa W(],oo)-
Finally, we meromorphically continue to above to the whole complex plane. .
Similarly, we compute the second term inside the limit in (5.1)). Note that in this case f

lies in Z, ,_; associated to the parabolic P. Performing an unfolding-folding as in §2.6| we
obtain that

(ol2, Eis(Fr o jass) (o)) = / e

We recall definition of f in (3.5) and change variable g — wg™" to obtain that the above
equals

)|¢0|2(9)f1_/2f1/2+s(g$)d9-

/ |¢~50‘2(9)]31/2]61/2%(955_1)6597
PQ\G(A)

where @o(g) = ¢o(wg™") which lies in the contragredient representation 7;. Note that
¢, = &, for p < co. Thus doing a similar calculation preceding ([5.2) we obtain
_ C(r/2)¢(r/2 —1s)

(5.3) (|ol® Bis(fijofijoes) () = G Hlmsm®R)

qjoo(fl/Z,oofl/Q—s,oo<~xo_ol)a I/T/YO,oo: WO,OO>‘

Recalling definition of the contragredient Wy and changing variable g, — wgy! in the
definition of the zeta integral V., we also have

\Ijoo(fl/2,mf1/2—s,m('$gol>: WO,ooa WO,OO) = qjoo(fl/2,oofl/2+s,oo<-xoo>7 WO,ooa WO,oo)-
In the following Lemma we prove the the archimedean factors W, in the RHS of (/5.2
and ((5.3) are equal for s = 0.

Lemma 5.1. Recall the choices of the local components in §{.1. We have
HWO,oofl/z,oo(-xoo)H2: HWO,oofl/Z,oo(-xoo)HZ: HWO,oofl/Z,ooHQ: L,
where all the norms are taken in L*(N(R)\G(R)).

Proof. To ease the notations we drop oo from the subscripts in this proof.

First recall that ~ A
fiy2(9) = fij2(wg™)
which implies, by a change of variable g — wg™", that

WofalolP= [ Wa(o)Pliistwg ' YPdg = [ |Wag)Plfia(an ).
NRN\G(R) NERNG(R)
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We change variable g — gz and then employ the Whittaker—Plancherel formula as in (2.7))
to write the above as

||7T0( )Wof1/2|| = / Z |‘I’ f1/2; 7To )Wm W)|2dﬂloc(o-)'
G(R) WGB(U
We use GL(r) x GL(r) local functional equation as in ({2.4)) and unitarity of the gamma factor
at 1/2 to obtain that
|‘I’(f1/2,7~70($)W0,W)|2: |‘I’<f1/277T0(5E_1)W07W)|2'

Consequently, applying Whittaker-Plancherel again with orthonormal base B(¢) := {o(z)W}
we obtain

IWofiya()lP= 1Fo(@)Wofrjoll*= llmo(z™ ) WofijallP= Wosfijo(-)I,

which proves the first equality.
Thus now it is enough to prove that

||Wof1/2||2: ||Wof1/2(-95)||2-

We use Iwahori coordinates to write

XI,_
[ wiree]s ()|
NRN\G(R)
h hX dh
[Vr—1(R)\GLr—1(R) /Rr—1| 0‘ c 1 | 1/2| cX 1 |det(h)|

Using the transformation property of fi» and changing variable ¢ + ¢/X we obtain the
above equals to

2 Ir—l 2 h Ir—l dhd
/Rr—llfl/2| K ¢ 1)} /NH(R)\GLH(R)|WO| K 1) (C/X 1)} “

Using the G-invariance of the inner product in the Whittaker model as in we conclude
that the inner integral above equals to

/ | (" )] o= | (") ()]
Nyp_1(R)\GLr_1(R) Np_1(R\GLr_1(R) ¢

Thus reverse engineering above manipulation with Iwahori coordinates (that is, taking X =
1) we conclude the proof of the first two equalities.
From the above proof we also obtain that

2| (1,_
WohryalP= Wol2, [ |f12] b de
c 1
Rr—l

We conclude the last equality recalling the normalizations of Wy and fis. O
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It is known that (see [9, Theorem 4.2]) if 7y is cuspidal then L(s, 1y ® ) has a simple
pole at s = 1 with residue L(1,m, Ad). Let us write

L(l, 70, Ad)
S

as § — 0. Thus using (5.2)), (5.3)), and Lemma we can evaluate the limit in (5.1]) as

L(14 s,m®7g) = + On (1),

(5.4) 1 |90l Eis(Fiyzfijzrs) () + (190l Eis(fiyzfiors) ()] =
L(1, 7m0, Ad)—ag(/f)yklf’( F1 /200 Wo o) + Oy (1),

where W'(f1 /2,00, Wo,00) is defined as

Ouc (Voo (P2 o200 () W, Woroe) = Wou (i 2o fi e (1), Wooes Woe) )
Proposition 5.1. We have
U'(f1/2,00 Wo,e0) = 7log X + Oy, 0. (1),
as X tends off to infinity.

Proposition follows immediately from the following Lemma [5.2] Lemma [5.3] and
Lemma [5.1] Again to ease the notations we drop oo subscripts from the proofs of the
next two lemmata.

Lemma 5.2. We have

85:0\1100<f1/2,00f1/2+s,oo<-xoo)a WO,oo; WO,OO) = - logX”Wo,oof1/2,ooH2+OWO,OO,*1>OO(1>7
as X tends off to infinity.

Proof. We start by change variable g — wg™" in the zeta integral to write

\Ij(fl_/?.]gl/}i-s('x)a WO; WO) = qj(fl_/?fl/Q—s('x_l)a I/T/07 W_O>

We use Iwahori coordinates as in the proof of Lemma to write the above zeta integral as

ok N\ h/X dh
/NM(R)\GLH(R)/R”'WOl Kc 1)}f1/2f1/23{<C/X 1)}dc!det(h)\'

Again as in the proof of Lemma we use the transformation property of fl /2 fl /2—s and
change variable ¢ — cX to obtain the above equals to

= I_ . h
X (r=bs fi/ofi/os K 1 )1/ W, 2{( >] det(h)|*dhdc.
e 1/2J1/2 c 1 Nr,l(R)\GLT,I(R)‘ O| cX 1 | ( )l
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Differentiating at s = 0 we obtain the above equals to

r ]r—l 712 h

55) (r—DlogX | |} K )]/ W K )]dhdc

(5:5) ( ) Rr-l' vzl c 1 Nr_l(R)\GLr_l(R)| o cX 1

~ . I, = ol h

+/R?"—1 fisBamofifas K ¢ 1)} /NH(R)\GLM(R)WO' KCX 1)] dhe

R I, 112 h
— f 2[( )}/ W, [( )}logdeth dhdc.
/Rm| vzl c 1 Nrfl(R)\GLPl(R)' ol eX 1 derti)

The first summand in (5.5)) is easy to understand. Using the invariance of the unitary
product exactly as in the proof of Lemma [5.1] we can yield the first summand equals to

(r — 1) log X[ Wl fr /21

From the Whittaker—Plancherel expansion (2.7), the GL(r) x GL(r — 1) local functional
equation, and the unitarity of the -factor, as in the proof of Lemma [5.1] one also gets that
[Wollzo= 1Wollno

We claim that the second summand in is of bounded size. Note that again the
invariance of the unitary inner product implies that the inner integral equals to HWOH%O.
Thus using Cauchy’s integral formula we can write the second summand as

- 1 - A I ds
W 2 - . r—1 d—,
W, [ [ Febe (7 0)] 05

for some small enough ¢ > 0. To show that the above integrals converge we start with the

o I . : .
Iwasawa decomposition of < TC ! 1). One can check by induction or otherwise that

o) (M) =i (M) her a0 e Nw LR € K,

VIt dt ety
VItd+ -+ 31 +]c?

a(c) := diag(ai(c), ..., a,-1(c));  ailc):
Thus using the transformation rule we get

I Irf —r s ¢ r
Frauaee |70 1)] < Q0 KB iy i

Thus the second summand of (5.5)) is bounded by

e fWo / (1 + |C|2>_T/2(1_E)dc.
Rr—l

The above integral is convergent for small enough e.
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We now focus on the third summand in (5.5). In the inner integral we use Iwasawa
coordinates for h = ak, move the K-integral outside, and change variable ¢ — ck to rewrite
it as

- /orl(u@ /er il K[(Tzkl 1)}
/Arlm)woyz[(a 1) <1ch1 1) (k 1)]10g1det(a)|%dcdk

.. I._ . L ~ alcX
We use Iwasawa decomposition of <cX1 1) asin (5.6)) to write it as n(cX) ( (eX) 1) k(cX).

Then using left N(R) invariance of |[W|? and changing varible a + a x a(cX)~! we obtain
that the above quantity equals to

[ ek )] wstaeaexiatace)
[ el ) ke (* )] e
- /o ® /R T1|f1/2!2{<]£k1 1)] 3(a(cX))

/14,«_1(R)|W0’2 [(a 1> k(cX) (k 1)} log|det(a)‘%dcdk,

We write the above as A — B (in the most obvious way). To analyze A we reverse engineer
the above process: change variable a — a x a(cX), use left N(R) invariance of |Wy|?, and
change variable ¢ — ck™! to obtain

A= /eryfl/2’2|:<jrcl 1>:| /O o log|det(a(ck71X))‘
] ak ]7"—1 da
/,4T_1(R)|Wo]2[< 1) <CX 1)} mdkdc.

But det(a(cX)) = (1 + X?|c|?)™"/? = det(a(ck X)) for all k € O,_;(R). Using that we can
move the integral over O,_; to couple with the integral over A,_;(R) to obtain an integral
over N,_1(R)\GL,_1(R). Then once again appealing to the invariance of the unitary product
we obtain

~ A I_ -
A= HW0|!,2,0/ | f1/2]? [( . ! 1)1 log|det(a(cX))|dc.
R'rfl
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Note that

log|det(a(cX))|= —g log(1 + X?|c]?)

= —Zlog(1+ X%) + Olog(1 + |ef%)) = —rlog X + O.((1 +el)").

Using Iwasawa decomposition and transformation property of fl /2 as in the second case we

obtain
~ A I
A—l—rlogXHWoH,%ro/ 1’f1/2|2{( cl 1)] de

<<W0,e ”fl/QH%OO(KOO)/ (1 + ‘6‘2)7T/2+6dc <<<I)’WO 1.

Rfl

Working as in the proof of Lemma [5.1] we check that

~ A I
Wl [ Ul ()| de= sl
RTfl
Thus we obtain

(5.7) A = —rlog X ||Wo fi/2]]*+Owsy £ (1).

Now we prove that B is of bounded size. To prove that we first claim that

[ me[(n )i () ot <, 1

uniformly in ¢. We assume the claim. Now note that

(1 +X2|C|2)r/271 Xr72(1 + |c|2)r/271

6(alcX)) =
) = axe v axy) € 20 axe)

Using transformation of fl /2 as before after doing an Iwasawa decomposition we thus get

XT2(1 2\r/2—1
B <, (14 |ck[*)~"/? _( + |l dcdk
0.f r—2 2
O,—1(R) JRr—1 Hi:1 (1+¢7X?)

r—1
< 1+ c}) de,
| Ha+aya

i=1

which we obtain by noting that |ck|= |c| for k € O,_1(R) and changing variables ¢; — ¢;/ X
for 1 < r — 2. It is easy to see that the above integral is convergent which yields that

B = Oy, (1).
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Now to prove the claim above let w := k(cX) (k 1) € K, implicitly depending on ¢X.
Note that from Lemma [7.1| we get that

sl | (V)] e 52=(afy)deta(y)) >~ [min, Iyl ).

=1

Thus we obtain

/AH(R)|7~TO<W)VVO|2 Ka 1)} log|det(a) %

- min(L, Jy;|~*)|det(a(y)) """~ (|det(a(y))|*+|det(a(y))| ™) H d™y;.

LWon,M /
(RX)T—l H

Employing the bound of ¥ from the statement of Theorem [2] we check that the above integral
is convergent for large enough M and small enough € > 0 which yields the claim. 0

REMARK 4. In the very last estimate of the proof of Lemma [5.2] we can only prove that
the integral of the Whittaker function is of bounded size. It is not clear to us if or how
one can improve the estimate to be a constant plus a power saving error term. This would
potentially explicate the constant term of the asymptotic expansion in Theorem [2| with a
power saving error term, see Remark [3|

Lemma 5.3. We have
as:O\Ijoo(fl/Q,oofl/QJrs,oo(--roo)v WO,ooa WO,OO) = (T - 1) logX”W07oof1/2,oo||2+OW0,OQ,¢’OO(1>a
as X tends off to infinity.

Proof. Proof of this lemma is very similar to (and easier than) the proof of Lemma We
first write \I/(fl/gfl/QJrs(.x), WO,WO) as

h — I._
X(’"‘l)s/ / W, 2{( )} . [( r—t )] deldet(h)|*dh.
Ny_1(R)\GL,_1(R) Rr—l' o c/X 1 Tz iz c 1 [det(A)]

Note that the s = 0 derivative in the the statement of this Lemma can be computed exactly

same as we did in the calculation of (5.5)) of Lemma and can be seen equal to

Irfl 2 h
5.8) (r—1)logX f 2[( >] / Wi [( >] dhdc
(58 r=0log X | 1eP U )] e e/ 1
—_— ]r—l 2 h
Rr_lfyz 0f1/2+ c 1 NT_I(R)\GLT_l(R)| o ¢/X 1

Ir—l 2 h
+ QK )]/ W, [( )]10 det(h)|dhdec.
[odnel| (7 e | (1) sty
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Exactly as in the proof of Lemma M, we can check (e.g. changing fl/g_s to fi/24s and WO
to W) that the first and second summands in (5.8) are

(r — 1) log X[|Wo fu2]|*

and Oy, £(1), respectively. We claim that the third summand in (5.8)) is also O, (1) which
yields the lemma.
From the relation between f and ® from (2.2]) we write

fiy2 [(Irc‘l 1)} :/RX O(t(c,1))|t]"/2d*t.

Recall the choice of @ in §4.1 Support of & on B.(0,...,0,1) implies that in the above
integral ¢t < 1 and hence ¢ < 1. Below we show that

h
W 2{( )} log|det (h)|dh <, 1,
/Nr1(IR)\GLT1(R)’ o c/X 1 |det(h)] Wo

which clearly implies our claim above.

k
c/X 1)'
k € O,_1(R) and ¢/X < 1 there exists a fixed compact set 2 € G(R) such that w € Q for
all relevant ¢ and k. Thus it is enough to show that

We write h = ak in the Iwasawa coordinates and let w := Note that as

da

/Ar_l(]R)’ﬂ-O(w)WOP {(a 1>} 1og|det(a)|m <wga 1.

This can be done similarly as we did at the end of the proof of Lemma [5.2l Hence we
conclude. U

6. ANALYSIS OF THE REGULARIZED TERM IN THE PERIOD SIDE

Let s € C with small enough R(s). Recall the regularized Eisenstein series £, from (&.9).
The main proposition of this section is the following.

Proposition 6.1. E, is holomorphic in a small enough neighbourhood of s = 0 and is
integrable on X.

Note from the definition that E, is holomorphic in a punctured neighbourhood of
s = 0. Thus it is enough to prove that E, is holomorphic at s = 0. Recall the description
of poles of maximal Eisenstein series in . We know, in particular, Eis(f/2)Eis(fi/24s) is
holomorphic at s = 0 and we thus only need to show the following Lemma [6.1].

Lemma 6.1. For fized g € X

Eis(fl_/2f1/2+5) (9) + Eis(f1_/2f1/2+s) (9)

1s holomorphic at s = 0.



30 SUBHAJIT JANA

Proof. Our argument is to show that the residues R and R (which are independent of g)

at the simple poles at s = 0 of Eis(f1/2f1/245) and Eis(fl_/g fi /2+5), Tespectively, cancel each
other.
Let ¢ be the cusp form as we have chosen in §4.1] From (5.2) we get

Rlldoll3 = Resa—oll6ol Bis(Fijafuzzss)
2
_ %L(l,ﬁo,Ad)\Dmﬂﬁ/Zle’ oo o),

Similarly, from (j5.3]) we get

Rl ¢ol2 = Reseo(|o|?, Eis(fr/afi/ars))

r/2)* ~ -
- - g( / ) L(L o, Ad)\ljoo(|f1/2,oo|27 WO,om WO,oo>‘
¢(r)
From Lemma (with 2o = 1) we conclude that the W, factors in the above expressions
of R and R are equal. Thus we conclude. 0

Now we prove some preparatory lemmata to prove intgrability of E, on X. We actually
show that Fj is integrable in the Siegel domain S as in (2.1)) which contains X. Let g € S

with ¢ = (9o, kf) Where goo = N (a(yoo) 1) ks € G(R) in Iwasawa coordinates and

ky € Ky = Hp<oo K,. As g € S we have y; > 1. We recall the quantities in Proposition
from §3

Lemma 6.2. Suppose thati < r. Let k € K and s € C be away from a pole of M f, with
|R(s)|< 2. Then

M fo(k) < 1.
Further, let R* x K¢ 3 (Yoo, 1) =t y. Then for all s with |R(s)|< 2

qeQ*

Moreover, all the dependencies on K are continuous.

Proof. In this proof we assume that ® € S(A") is an arbitrary Schwartz function. We get
that

MOF(k) = / | / kD0, £, 2) [t id*t <5 /| . 1 e <o 1,
r—i Jax o), |t|<1

if R(s) is sufficiently large. On the other hand, using the Tate functional equation and
working similarly we obtain

M) = [ Rt e L
AX
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if R(s) is sufficiently negative. Using Phragmén—Lindeldf convexity principal we conclude
the first claim.
Let z € A and k € K. Following a similar computations after (3.4) in §3| we get that

Wi = / /A k@ (0,1, )go(zar )t d" tde.

This converges absolutely if R(s) is sufficiently large.

We first concentrate on the z; integral. In the archimedean component of this integral we
integrate by parts with respect to the z; o, variable. This yields that archimedean integral
is bounded by <y |200] N|tso|Y for all large N.

In the p-adic (for p < co0) component we note that compact support of ®, forces z;, to
vary over a compact space. This implies that the p-adic integral vanishes unless |z,/t,|< 1.
However, the support condition of ®, ensures that |t,|< 1 which in turn restricts z, to be
of bounded size.

Thus we can analytically continue the integral representation of W}S to R(s) sufficiently
negative, but fixed. Altogether, estimating the integrals as before we obtain if R(s) > —2
then for sufficiently large N we have

W}S(Z7 k) <rn 200 H char|, <.

p<oo
Thus for ¢ € Q* and y as in the statement of this lemma we have
W}S (qy7 k) <<K,N |yOOQOo|_N,

if the denominator of ¢ is bounded, otherwise, the above is zero. We conclude by summing
over ¢ € Q* with bounded denominators which is absolutely convergent for all large enough
N. OJ

Lemma 6.3. Let g €S and s € C with R(s) small enough. Then

Eis(f1/2) (9)Eis(f1/24+5)(9) = fi2(9) f1j245(9) = fi/2(9) frjoss(g) <ic 6777 Ka(ym) 1)} ’

for some n > 0.

Proof. Recall that

g [(a<yw) 1)] = ﬁilyj,oolj(r‘”-

Note that y; . > 1 as g € S. Thus it is enough the show that exponents of |y; | arising in
the LHS in the expression in the lemma are less than j(r — j).
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We recall (3.4) and for 1 < ¢ < r write

= Z Miqf1/2+s(g)

q€Q

i—1 r—1
= M fijors(9) + Y () [ [y V27 ] [l |20 W (aws b,

where n; is an unipotent element as in §2.4, Using Lemma we obtain that

<<K H|y oo| (1/24R(s))j H|y 1/2 R(s))(r— j)

On the other hand, we sunllarly obtain
r—1
— Z M2 f1a4s(9) <k H|yj7oo|(1/2f%(s))(rfj)fN61:1_
qeQ> J=1

We also record that
r—1

Frjzes(9) < [ ljool /2,
j=1

and

];1/2+s << H|y] oo| (1/2=R(e))r= J)
7j=1

We use Lemma to rewrite

Eis(f1/245)(9) = fio4s(9) + fijors(g) + Hi(g) + Z H(g)

1<i<r
After multiplying Eis(f1/2) and Eis(fi/24,) using the above expression and subtracting the

terms fl_/g fi/24s, and fl /2 fl /2+s We remain with the following type of terms whose bounds

are given below.
r—1

Fiafijzes(9) < JJ1yso0l 20700,
j=1
If we switch tilde to f;/, above then a similar inequality holds with the exponent in the RHS
being /2 + jR(s). In any case for R(s) small enough and r > 3 we have
r/2+r|R(s)|<j(r—7j), 1<j<r
A similar estimate can be done for fi2H!(g). Next we check,

r—1

HE(9) frjovs < [[Is] 0 RENC =N,
j=1
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Similar happens if we replace f; jo+s by H}. Clearly, for #(s) small enough we have
(1 =R(s))(r —J) = Noj=1 <j(r —J).
Finally, for 1 <4 < r the exponent of y; », of Fg is < (r—2)/2. On the other hand the same
of Gy is < (1/2 + |R(s)|)(r — 1) for G, being one of fi24s, fi/24s, or H. with i < r. So the
exponent of y; ., of the product HiG; for 1 < i <7 is
S(r=2+r—=1)/2+ (r = 1D[R(s)[< j(r—J),

for R(s) small enough.

Similarly, one estimates remaining terms of the form F& J1/246 mHé, and fl 2 H 1 which
we leave for the reader. Hence we conclude the proof. 0

Lemma 6.4. Let g € S and s € C with R(s) small enough. Then

Eis(fl_/Qfl/Qﬂ)( ) — f1/2( ) f1/245(9) <k §tn _<a(y°°) 1>— :

and also

Eis(fl—ﬂf1/2+s)( ) — f1/2( ) frjass(g) < 6177 -<a(y°°) 1)_ 7

for some n > 0.

Proof. We take a very similar path as in the proof of Lemma Let s € C be away from
the poles of the relevant Eisenstein series and R(s) be small enough.

First note that fl_/z fl s2+s € Liy—1(1 — s). We use the functional equation of Eisenstein
series [0, Proposition 2.1]: there exists Fy € Z,_; 1(s) such that

Eis(fi/2f1/21s) = Bis(F).

In fact, F, is the pre-image of f~1_/2 fl /2+s under the standard intertwiner from Z; ,_;(1 — s)
to Ir,Ll(S), i.e.

f1/2f1/2+s = M?Fs-
From Lemma we get that
Eis(f1/2f1/2+s) — fia(g )f1/2+s( ) = Eis(F})(g) — M{F,(g)

+ > M{F(9)+ > Y MIF(q).

qeQx 1<i<r qeQ

Working as in the proofs of Lemma and Lemma we obtain that

r—1
Fu(g) < [ J1wseel™
j=1
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Similarly,
r—1
Z MiIF,(g) <n H|yj7oo|(lfﬂ?(s))(rfj)fN5j:17
qeQx Jj=1

and for 1l <i<r

1—1 r—1
S MIE(g) < [[1500 PO T 0l R,
q€Q Jj=1 j=i

In each case the exponent of y; o, is strictly smaller than j(r — j) which concludes the proof
for the second assertion for $(s) small enough. The first assertion can be proved similarly
which we leave for the reader. OJ

Proof of Proposition[6.1 In Lemma we already have proved holomorphicity of Ej at
s = 0. From Lemma and Lemma we conclude by triangle inequality that for R(s)

small enough and g € S
Ey(g) <k 677 [(a(ym) 1)} :
for some 7 > 0. Thus

/X |Esl(9)dg < /y . 5" Ka(ym) 1)} E[dej,oo.

J

The last integral is convergent and we conclude. 0

7. ANALYSIS OF THE SPECTRAL SIDE

Recall the spectral weight Jy (o) from ([4.5)), choices of the local components from §4.1]
and Yp-temperedness assumption on 7y from the statement of Theorem . In this section
we prove the remaining second property of the spectral weight as described in Theorem 2]

That is, we show that Jy (7 ) is uniformly bounded away from zero if 7., is ¥-tempered
with ¥ + 19y < 1/2 and C(7y) < X.

Proposition 7.1. Let 7 € Xgen be such that T, is U-tempered with 9 + Yy < 1/2. Let my be
the cuspidal automorphic representation as in Theorem[3. Then,

JX(WKJ > 17 if(j(ﬁaﬂ < X,
where the implied constant possibly depends on Wy o, Poo

For the rest of this section, to ease notations, we drop the oo-subscript everywhere.
We recall the notations and definition of the Sobolev norm S, as in [22] §2.3.2], [15], §3.9].
Let {H} be a basis of Lie(G(R)). We define a Laplacian on G(R) by

(7.1) D:=1-) H
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which is positive definite and self-adjoint on any unitary representation £ of G(R). For any
v € £ we define the d’th Sobolev norm of v by

Sa(v) = [ D]e.

We refer to [22, §2.4] for a collection of useful properties of the Sobolev norm.
Let W € 7 be a unit vector such that in the Kirillov model W is given by Wy, i.e.

o[ )]l )]

Note that, W € 7 is then an analytic newvector in the sense of §2.9

Lemma 7.1. Let Wy be as in the §4.1 Let A,_1(R)O,_1(R) > h = ak as before. if ¢ < 1
then

Wo Kc/hX 1)} Ky |det(a)| 7705127 [(a 1)} min(1, a; Hmln (ai/ais1)™™),

for any n > 0.

This lemma is proved in [15, Lemma 5.2] for my being a tempered representation. Here we
modify the proof to accommodate the Jp-tempered case.

Proof. Let W := mg {(c/kX 1

compact set. Hence, it is enough to show that

Wa {(a 1)} <t mg [det(a)| 77082 {(a 1)} min(1, a, "} Hmln (ai/air)™).

We take a very similar path as in the proof of [15, Lemma 5.2].
We define W, := dmo(YM) (W), where Y is a Lie algebra element such that

o[ )] -]

Thus it is enough to prove

Wi {(a 1)} Lyarm |det(a)| 70082 {( )] Hmm (ai/ai1)~).
We use Diximier-Malliavin to find finitely many a; € C2°(G(R)) and W; € 75° so that

W1 = Z To(O&i)W

It is enough to show the above estimate of W for mo(c;)W; =: W, for each i.

] Wy. Note that for £ € O,_1(R) and |c¢|< 1 vary over a
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Let 0 € R. We use Whittaker—Plancherel formula to expand
(7.3) |det(a)| "W K“ 1)} = /A > W) Zw, o (W) dpoc(),
GLr-1 yreB(n)
which is valid for ¢ in some left half plane. Here

Ty o (W) = / W, Kh 1)} W(h)|det (h)|~*dh

N’V‘*l\GL’V‘*l
_ 7(1/2 P ®F>1wﬂ/(_1)r1/ W2 |:(h 1>:| W/(h)‘det(h)’(’dh
r 1\GL’I‘ 1

In the last line we have used the GL(r) x GL(r — 1) local functional equation. Here 7(.)
denotes the local gamma factor and w. denotes the central character of 7. Finally, W
denotes the contragredient of W defined by W(g) := W(wg™") where w is the long Weyl
element of the respective group.

Let a;(g) := a;(g7"). Let N* be the unipotent radical of upper triangular matrices attached
to the partition r = (r — 1) + 1. We write

W2 [(h 1>} B /G’(]R) &i(g>m Kh 1) 9} dg
:/N*\G(R)V[/i Kh 1) 9] / (") e, _yn(n")dn’ dg,

where e,_; is the row vector (0,...,0,1). Then we have that

Zw,.o(W v(1/2 — o, 7T0®7r) W (— 1)7’_1

/ *\G“R)/ \GL,- Kh 1) g}/ (g e, (n)dn W ()| det ()| dhdg.

We choose an orthonormal basis B(n’) consisting of the eigenfunctions of the Laplacian D’
on GL,_;(R), as defined in (7.1), and integrate by parts the h-integral L times with respect
to D’. We note that W’ ® |det|” is also an eigenfunction of D’. We recall a bound of the
gamma factor from [I5, Lemma 3.1]:

Y(1/2 — 0,1 @ ') Koy C(7')7.

We apply Cauchy-Schwarz on the above h integral. Then we use the above bound of the
gamma factor and unitarity of my to obtain that

ZWz,U < C( )TU/\W/ / </ D/L (/ ai(n*g)d)erlh(n*)dn*)
N*\G(R) NT_1\GLT_1 N*

W' (h)|det(h)|”

5 N\ 1/2
dh) dg,
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where A}, is the D’-eigenvalue of W'. The above N*-integral gives rise to a Schwartz function
in e,_1h which can be seen integrating by parts several times in the N*-integral. Thus

D (/ ozi(n*g)@berlh(n*)dn*) < min(1, |e,_1h|™Y).

Noting that g varies over a compact set in G(R) modulo N* we obtain that

~ 1/2
Zwy o < C(n") N, < / min(1, |er_1h|‘N)|W’(h)|2]det(h)|2"dh> :
Nyp—1\GLy_1

We use [I5, Lemma 5.2] on W’ (which is in the tempered representation #’) to check that
the above integral is absolutely convergent for any o > 0. In particular, from the location of
the first pole of y(1/2 — o, mo ® ') ~! we may conclude that one can choose o in (0,1/2 — )
in the definition of Zy, ,(W’).

Again we use [I5, Lemma 5.2] to estimate W’ (a) in by

< §Y/? ( Hmm (a;/aiy1)” M))‘?/VH

where d only depends on M. We choose 0 = 1/2 — 9y — 1 to obtain that

Q) PP )

Hmln (ai/ais)™™) Z /\ LEdpnee (7).

GL, W'eB(n

We make L sufficiently large and invoke [15, Lemma 3.3] to conclude that the above sum
and integral are absolutely convergent. 0

Lemma 7.2. Let W be as in (7.2) and Wy be as in . Let'V be W or Wy and & be m or
mo, respectively. Also let A,_10,_1(R) > h = ak where a = diag(ay, ...,a,_1), and |c|< 1.
Then for any small enough n > 0

e o)A ( )] oo () TR

Here 0 is ¥ or 9y depending on whether & is ™ or my, respectively.

This is essentially the main result of analytic newvectors, proved in [15, Proposition 4.1],
but in a more quantitative form. We need to only modify the proof of [I5, Proposition 4.1]
and we describe that here.
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Proof. Let o € R be in some left half plane. As in the proof of [I5, Proposition 4.1] we write
the difference in the lemma as

/ w1 OO (12— 0 o) Y WR)[det(h)]?
GL(r-1) W'eB(x’)

L et aC@/) ~ 1 (79 ) ] Wt

where w' is the long Weyl element of GL(r — 1). Note that 7’ is tempered. We now use [15],
Lemma 5.2] for tempered representation to estimate

W'(h) < 6'27(a) Sy(W),

for any n > 0 and some d > 0. We choose 0 = 1/2 — 6§ —n (which is admissible) and proceed
as in the proof of [I5, Proposition 4.1] to conclude. O

proof of Proposition[7.1. Recall the definition of Jy from and . In the expression
of we choose a basis B(7) containing an analytic newvector W as in (7.2). To show
the required lower bound of Jy it is enough to drop all but the term containing W from the
sum in (2.6) and show that

Xr71|\1’(f1/2(-37), Wo, W)|2> 1,

if C(m) < X.
First, using (2.2)) and the choices of the local components as in we get

Hya KITC_I 1)] = /]R O(t(c, 1))[t]*d"t > 0.

The support condition of ® in §4.1| implies that the above vanishes unless |c|< 7. We use
the Iwahori coordinates and change variables to write X %1\11( fi2(@), Wo, W) as

AP A3 (90 (4790 8 O

We use Lemmal[7.2) for W, noting that |¢[< 7 and C(7) < X, to obtain the above integral is

0 Tl el o
A [ [ (|

de

|det(h)|1/2+19

)
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We use Lemma [7.2| for W, and the definition of W in the Kirillov model as in ([7.2)) to obtain
that the main term of ([7.4]) equals to

h dh I

( ) Nr—1(R)\GLT_1(R)| O’ 1 |det(h)|1/2 - f1/2 c 1
i h 1/2—1 h L
o <X /NT—I<R>\GLT—1<R>|WO| K 1)} ’ 1) ] |det(h)[1/2+00

Ir—l
[0 )] ).
From the choice of ® in §4.1| we obtain that

0< fi/ (L"C—l 1)}dc<<1.

Rr—1

Also, the choice of W, in §4.1] ensures that

[ (h dh
Wol? ( )} _dh
/NT_1<R>\GLT_1(R>| 4 [\ 1] [det(R)1/2 =7

So the main term of ([7.5)) is
- r—1
w foe| ()]

On the other hand, the error term in (7.5)) is trivially <., . X! which follows from the
support condition of Wy as in . In total we obtain that (7.5) which is the main term of

@D is
I,
xm/ fl/z[( - 1)}dc+0m77(1/X).
Rr—1

Now we focus on the error term of ((7.4). We use Iwasawa coordinates in the integral and
use Lemma [7.1] to estimate the error term by

<L T/er Ji/2 {(L«; 1)} de /I;Tl‘det(a”lﬂ_ﬁ_ﬂo(s_% Kh 1)}

min(1, a; Hmln (ai/ais1) M)d*a.

We recall the assumption that ¥ +vy < 1/2. Hence, the inner integral is convergent for small
enough 7 and large enough M. Thus we obtain ([7.4]) is

=, (L+70,(1) [ fl/QKTCI 1)]dc+ow<1/)<).

Rr— 1
We conclude that the above is > 1 by making 7 small enough but fixed. O
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