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FUNCTORIALITY IN CATEGORICAL SYMPLECTIC GEOMETRY

MOHAMMED ABOUZAID AND NATHANIEL BOTTMAN

Abstract. Categorical symplectic geometry is the study of a rich collection of invariants of sym-
plectic manifolds, including the Fukaya A1-category, Floer cohomology, and symplectic cohomol-
ogy. Beginning with work of Wehrheim and Woodward in the late 2000s, several authors have
developed techniques for functorial manipulation of these invariants. We survey these functorial
structures, including Wehrheim–Woodward’s quilted Floer cohomology and functors associated to
Lagrangian correspondences, Fukaya’s alternate approach to defining functors between Fukaya A1-
categories, and the second author’s ongoing construction of the symplectic (A1; 2)-category. In the
last section, we describe a number of direct and indirect applications of this circle of ideas, and
propose a conjectural version of the Barr–Beck Monadicity Criterion in the context of the Fukaya
A1-category.

Contents

1. Introduction 1
2. Floer cohomology, the Fukaya A1-category, and the Operadic Principle 4
3. Quilted Floer theory and functors from Lagrangian correspondences 19
4. The symplectic (A1; 2)-category Symp 39
5. Applications 53
References 65

1. Introduction

A symplectic manifold (M;!) is a smooth even-dimensional manifoldM2n, together with a 2-form
! 2 
2(M ;R) that is closed (d! = 0) and non-degenerate in the sense that its top exterior power is
a volume form (!^n 6= 0 pointwise). The original motivation for this definition came from celestial
mechanics, but much of modern symplectic geometry is independent of these physical origins.

Example 1.1. The fundamental example of a symplectic manifold is Euclidean space with the
Darboux symplectic form:

(1)
�
R2n; !0 :=

nX
i=1

dpi ^ dqi

�
;

where R2n is equipped with coordinates (q1; : : : ; qn; p1; : : : ; pn). This choice of notation goes back to
classical mechanics, where the coordinates qi record the position of a particle, and pi its momentum.
From the point of view of a mathematician, the qi might as well represent local coordinates on a
smooth manifold, in which case the coordinates pi can be understood as coordinates on the cotangent
fibre. In this way, one obtains the canonical symplectic form

(2)
�
T �Q;!can :=

nX
i=1

dpi ^ dqi

�
;

on the total space of the cotangent bundle T �Q of any smooth manifold.
1
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Starting with the Darboux symplectic form, one constructs a large class of examples as follows:
identify R2n with complex affine space Cn, by setting pi = Re(zi) and qi = Im(zi), and observe that
the symplectic form is given, in terms of the @ and @ operators of complex analysis (@f =

P @f
@zi
dzi

and @f =
P @f

@�zi
d�zi) as

(3) !0 :=
i

2
@@
�
jzj2
�
;

with jzj2 =
P
jzij

2 (this amount to the statement that the Darboux form is the real part of the
standard Kähler form). Since the norm of a vector is invariant under rotation, one obtains an
induced symplectic form on the quotient CPn�1 of the unit sphere S2n�1 by the circle action. This
symplectic form on projective space is known as the Fubini-Study form !FS, and may be expressed
directly in terms of coordinates on a standard affine chart of projective space as

(4)
i

2
@@ log

�
jzj2
�
=

i

2jzj4

n�1X
j;k=0

�
jzj j

2 dzk ^ dzk � zjzk dzj ^ dzk
�
:

Via the complex geometry result that Kählerness is preserved by restriction to complex subman-
ifolds, one then obtains from complex submanifolds of projective space (i.e. projective algebraic
varieties) a large class of compact symplectic manifolds. 4

One of the fundamental questions in symplectic geometry is to understand the geometry of
the Lagrangian submanifolds (or simply Lagrangians), i.e. those embedded submanifolds L � M
along which the symplectic form vanishes. (In this paper, we will assume that all Lagrangians are
oriented.)

Example 1.2. The fundamental examples of Lagrangians are the p- and q- planes in R2n, equipped
with the standard symplectic form. This naturally generalises to the cotangent fibre and the zero
section of the cotangent bundle T �Q. The zero section is an example of a more general class: the
graph �(�) � T �Q of any closed 1-form � on Q.

In the examples which arise from complex geometry, one may use real geometry to produce
examples by: fix a smooth projective variety Z � CPn that is defined by a set of equations with real
coefficients. Considering Z as a symplectic manifold equipped with the restriction of the Fubini–
Study form, the real locus Z \ RPn (whenever it is smooth) is a Lagrangian submanifold. 4

1.1. Symplectic invariants from pseudoholomorphic curves. Unlike Riemannian geometry,
symplectic geometry has no local symplectic invariants as a consequence of Darboux’s theorem
[Dar82]. Below, we state this theorem in combination with Weinstein’s Lagrangian neighborhood
theorem [Wei71], which is the analogous result for the local geometry of near a Lagrangian subman-
ifold. Weinstein’s theorem involves the notion of a symplectomorphism, which is a diffeomorphism
' : M

�=
�! N between two symplectic manifolds that satisfies '�!N = !M .

Theorem 1.3. Any point in a symplectic manifold admits a neighbourhood which is symplectomor-
phic to a neighbourhood of the origin in (Cn; !0). Similarly, any Lagrangian embedding in (M;!)
of a closed manifold L extends to a symplectomorphism between a neighborhood of the zero section
in (T �L; !can) and a neighborhood of L in M . �

The reader new to this field may get the sense from these theorems that symplectic geometry
is similar in flavor to differential topology, but this is not the case. Indeed, a motif in symplectic
geometry is the interplay between flexibility and rigidity. In the foundational paper [Gro85], Mikhail
Gromov opened the floodgates to a wide variety of rigidity results, by importing holomorphic tech-
niques from complex geometry. Consider, for instance, the following result.
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Theorem 1.4 (Theorem 0.4.A2, [Gro85]). For any closed embedded Lagrangian L � Cn, there
exists a non-constant map u : D2 ! Cn, mapping the boundary to L, and which is holomorphic with
respect to the standard complex structures on D2 and Cn. �

If we write J for the standard complex structure on Cn, and j for complex structure on the disc,
the holomorphicity condition on u amounts to the requirement that the operator

(5) @u � du� J � du � j

vanish pointwise on the domain. We can easily deduce the following corollary, which establishes a
topological obstruction to Lagrangian embeddings into CPn.

Corollary 1.5. Suppose that L is a closed n-manifold with H1(L;R) = 0. Then L does not admit
a Lagrangian embedding into Cn.

Proof. Define � 2 
1(Cn;R) by � := 1
2

Pn
i=1(xi dyi � yi dxi), and note that � is a primitive of !0.

Denote by  the restriction of u to S1. By Stokes’s theorem, we have:Z
S1
�� =

Z
D2

u�!0 > 0;(6)

where the inequality follows from the fact that the latter integral is equal to the area of the image
of u, which is nonnegative by the holomorphicity condition, and strictly so by non-constancy. �

Gromov’s key insight in [Gro85] is that one can use similar ideas even in the case of symplec-
tic manifolds that are not Kähler: if (M;!) is any symplectic manifold, there is a contractible
(in particular, nonempty) space of !-compatible almost complex structures, i.e. endomorphisms
J : TM ! TM of the tangent bundle satisfying the following properties:

(AC structure) J2 = � Id.
(!-compatible) The contraction !(�; J�) defines a Riemannian metric on M .

While one can study holomorphic maps from a Riemann surface to an arbitrary almost complex
manifold, the fundamental result proved by Gromov in [Gro85] is that the moduli space of such
maps admits a natural compactification whenever the target is symplectic. This is the foundation
of all later developments extracting symplectic invariants from moduli spaces of holomorphic maps.

In this article, we will be primarily concerned with two symplectic invariants. The first is the
Floer cohomology group1 HF �(L;K) associated to a pair L and K of appropriate Lagrangians in
a symplectic manifold M , which categorifies their intersection number. Andreas Floer introduced
this invariant in the 1980s, and as an immediate consequence obtained a proof of one version of
the Arnold–Givental conjecture. Briefly, HF �(L;K) is the homology of a chain complex CF �(L;K)
freely generated by the elements of L \ K. The differential is defined by counting holomorphic
maps from R � [0; 1] to M , with boundary conditions defined by L and K. We will discuss Floer
cohomology in more detail in §2.1.

Lagrangian Floer cohomology groups form the morphism spaces of the second invariant which
we will consider, the Fukaya A1-category FukM , whose objects are Lagrangians (appropriately
decorated). Its definition originated in work of Simon Donaldson and Kenji Fukaya in the early
1990s, and over the intervening three decades its structure and properties have been steadily devel-
oped. It plays a central role in Maxim Kontsevich’s Homological Mirror Symmetry (HMS) conjecture
[Kon95], which posits that in certain situations there are pairs (M;X) of a symplectic manifold M
and a complex algebraic variety X for which a “derived” version of FukM is equivalent to an in-
variant of X called the derived category of coherent sheaves on X. A great deal of work has gone

1This group is not defined for arbitrary pairs (L;K), as its construction depends on a choice of additional data
which may not always exist. We suppress this point until §2.4 below.
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into proving and refining the HMS conjecture in various settings. In §2.2 we will give an overview
of the definition and of some of the properties of FukM .

1.2. Functorial properties of pseudoholomorphic curve invariants, the Operadic Princi-
ple, and the plan for this paper. If one wants to develop a toolbox for computing pseudoholo-
morphic curve invariants, the following is an obvious question:

If one understands the Fukaya category of a symplectic manifoldM , which is geometrically
related to a possibly-different manifold N , is it possible to then compute FukN?

Until the late 2000s, the only answer with any of degree of generality was given by Seidel in [Sei08],
where he demonstrated an inductive method for computing the Fukaya A1-category of the total
space of a Lefschetz fibration M ,! E � D2 in terms of the Fukaya category of M . While Seidel’s
work provides a powerful toolbox, it is limited to the setting of Lefschetz fibrations, and we might
want a more flexible framework. To that end, consider this variant on the above question:

What functorial properties are enjoyed by Floer cohomology, the Fukaya A1-category,
and other symplectic invariants defined by counting pseudoholomorphic curves?

One approach to this question is given by Weinstein’s symplectic creed [Wei82], which states that
“Everything is a Lagrangian submanifold.” In particular, this suggests that when it comes to the
Fukaya category, we should attempt to associate functors to Lagrangian correspondences, i.e. La-
grangians L12 �M

�
1 �M2 := (M1�M2; (�!M1)�!M2). In the late 2000s, Wehrheim andWoodward

pursued this approach, which led them to develop their theory of pseudoholomorphic quilts. In §3,
we will describe this work in detail. In §4, we will describe the second author’s development of the
symplectic (A1; 2)-category. Finally, in §5, we will survey a variety of applications of the theory of
pseudoholomorphic quilts.

Throughout this paper, we will emphasize the following principle:

The operadic principle in symplectic geometry: The algebraic nature of a sym-
plectic invariant defined by counting rigid pseudoholomorphic maps is inherited from the
operadic structure of the underlying collection of domain moduli spaces.

Finally, we note that Kenji Fukaya made a major contribution to this field in his 2017 preprint
[Fuk17]. Specifically, he associates functors to Lagrangians correspondences under very general
hypotheses. Fukaya used quilts to accomplish this, but he took a quite different approach from that
taken by Wehrheim and Woodward. See §3.11 for an account of Fukaya’s work.

1.3. Acknowledgments. N.B. was supported by an NSF Standard Grant (DMS-1906220) during
the preparation of this article. He is grateful to the Max Planck Institute for Mathematics in Bonn
for its hospitality and financial support. M.A. would like to thank Kobi Kremnizer for asking him,
many years ago, about whether there is a place for the Barr–Beck theorem in Floer theory. He was
supported by an NSF Standard Grant (DMS-2103805), the Simons Collaboration on Homological
Mirror Symmetry, a Simons Fellowship award, and the Poincaré visiting professorship at Stanford
University. The authors thank Kenji Fukaya, Yankı Lekili, and Paul Seidel for useful conversations.

2. Floer cohomology, the Fukaya A1-category, and the Operadic Principle

Default geometric hypotheses: In §§2.1–2.2, we assume our symplectic manifolds and
Lagrangians are closed and aspherical, i.e. satisfy �2(M;L) = 0, unless otherwise stated.
In §2.4, we relax this hypothesis and work with general closed symplectic manifolds.

4



In this section, we will introduce some fundamental objects in categorical symplectic geometry.
After introducing Floer cohomology in §2.1 and the Fukaya A1-category in §2.2, we will explain in
§2.3 that FukM is the first instance of the Operadic Principle mentioned in §1.2.

2.1. Floer cohomology. Given two Lagrangians L and K in a symplectic manifold, their La-
grangian Floer cohomology group HF �(L;K), when defined, categorifies their intersection number.
Shortly, we will mention a major result that motivated Floer to define this invariant. Before this,
we need to introduce the notion of a Hamiltonian diffeomorphism.

Given symplectic manifolds M and N , a symplectomorphism ' : M ! N is a diffeomorphism
satisfying '�!N = !M . The infinitesimal version of self-symplectomorphisms of M is given by the
symplectic vector fields, i.e. those X 2 X(M) with the property that !(X;�) is closed. Indeed, this
follows from Cartan’s magic formula:

LX! = d(�X!) + �Xd! = d(�X!):(7)

An important class of symplectic vector fields is formed by the Hamiltonian vector fields, i.e. those
X for which !(X;�) is not only closed, but exact. Note that since ! is nondegenerate, we can
associate to any smooth function H : M ! R a Hamiltonian vector field XH defined by solving the
equation !(XH ;�) = dH. Given a path of functions Ht : M ! R, we can integrate the associated
vector fields XHt to obtain a symplectomorphism ' : M !M . Such a map is called a Hamiltonian
diffeomorphism.

In 1988, Floer introduced Lagrangian Floer cohomologyHF �(L;K) in order to prove the following
case of a conjecture due to Arnold ([Ad78, Appendix 9], [Ad65]) and typically referred to as the
Arnold–Givental conjecture.

Theorem 2.1 (t = 1 case of Theorem 1, [Flo88]). Suppose M is a closed symplectic manifold and
that L � M is a Lagrangian with �2(M;L) = 0. Fix a Hamiltonian diffeomorphism � of M such
that L and �(L) intersect transversely. Then the following estimate holds:

#jL \ �(L)j �
dimLX
i=0

rkH i(L;Z=2Z):(8)

�

At the beginning of this subsection we called the Floer cohomology HF �(L;K) an “invariant”, but
we did not specify what it is invariant with respect to. In fact, HF �(L;K) is built so that there is
a canonical isomorphism HF �(L;K)

'
�! HF �(L; �(K)) for � a Hamiltonian diffeomorphism, and

this isomorphism was the key ingredient in the proof of this result.

Remark 2.2. We should think of this result as saying that deforming Lagrangians by Hamiltonian
vector fields is a less flexible operation than we might expect from purely differential-topological
considerations. Indeed, the normal and tangent bundles �L; TL are isomorphic (an !-compatible
almost complex structure, as introduced later in this subsection, defines such an isomorphism).
Choose a vector field X 2 X(L) whose zeroes are isolated and have index �1. On one hand, the
Poincaré–Hopf index theorem implies that the sum of the indices of the zeroes of X is equal to the
Euler characteristic �(L). On the other hand, our identification �L ' TL allows us to interpret
this same sum as the signed intersection number of L with a transverse pushoff of itself. We can
summarize this reasoning in the following inequality:

#jL \ �(L)j �
dimLX
i=0

(�1)irkH i(L;Z):(9)

4
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2.1.1. The definition of HF �(L;K). Fix transversely-intersecting Lagrangians L and K. In this
subsubsection, we will sketch the definition of HF �(L;K). HF �(L;K) is the homology of a chain
complex whose chain group is generated freely by intersection points:

HF �(L;K) := H
�
CF �(L;K) := �hpip2L\K ; d

�
:(10)

Given a base field k, the chain group CF �(L;K) is generated freely over the Novikov field,

� :=

(
1X
k=0

akT
�k
��� ak 2 k; �k 2 R; lim

k!1
�k = +1

)
:(11)

For simplicity, we will take k = Z=2Z; one can arrange to work with other base fields, assuming
additional hypotheses on M , L, and K. We work with a power series ring because if we did not,
the differential would not necessarily converge.

Remark 2.3. The complex CF �(L;K) is typically graded by Z or a finite cyclic group. The grading
will not be important to us in this paper. 4

The matrix coefficients of d are defined in terms of the cardinalities of certain moduli spaces of
pseudoholomorphic curves in M . To set this up, we define the notion of an !-compatible almost
complex structure.

Definition 2.4. An !-compatible almost complex structure on M is an endomorphism J : TM !
TM of the tangent bundle with J2 = � Id and such that !(�; J�) is a Riemannian metric on M .
The space of such J ’s is denoted J (M;!). We also allow for time-dependence, by taking paths
[0; 1]! J (M;!). 4

There always exists an !-compatible J ; in fact J (M;!) is homotopy-equivalent to a point (cf.
[MS98, Proposition 2.50(iii)]).

Given a time-dependent !-compatible Jt, generators p�; p+ 2 L \ K, and a homotopy class
[v] 2 �2(M;L \K) of Floer strips, define the following moduli space of Jt-holomorphic strips:

M(p�; p+; [v]) :=
�
u : R� [0; 1]!M

�� (�)	=R;(12)
(�) := u(s; 0) 2 L; u(s; 1) 2 K; lim

s!�1
u(s; t) = p�; @su+ Jt(u)@tu = 0; [u] = [v];

where the R-action used on the first line is defined by an overall translation in s. We can depict
these Floer strips either by drawing the domain of u with the different parts labeled by where they
map to, or by drawing a representation of the image of u, as in the following figure:

p� p�p+

K

L

p+ M

K

L

Figure 1.

As long as Jt is chosen generically, Floer–Hofer–Salamon proved in [FHS95] thatM(p�; p+; [v]) is
a smooth manifold of dimension ind v � 1, where ind v is the Maslov index of u.

We can now define d : CF �(L;K)! CF �(L;K):

dp� :=
X

p+2L\K

X
[v]:ind v=1

#M(p�; p+; [v]) � T
!(v) � p+;(13)

6



where !(v) :=
R
v�! is the symplectic area of v. Convergence follows from Gromov compactness,

which guarantees that for any p�, p+, [v], and C > 0, the moduli spaceM(p�; p+; [v])\fu j!(u) �
Cg is compact up to disks and spheres bubbling off, and strips breaking into chains of strips.

It remains to show d2 = 0. This is the step which fails for general pairs of Lagrangian subman-
ifolds, and which will require us to use the topological assumption in Theorem 2.1. According to
(13), d2 = 0 is equivalent to the following equality holding for every p� and p+:X

q2L\K

X
ind v1=ind v2=1

#M(p�; q; [v1]) �#M(q; p+; [v2]) � T
!(v1)+!(v2) = 0:(14)

Floer proved (14) by showing that for every [v] of index 2, the discrete spaceG
q2L\K

G
[v1]+[v2]=[v];

ind [vi]=1

M(p�; q; [v1])�M(q; p+; [v2])(15)

is nullcobordant. In fact, M(p�; p+; [v]) provides such a nullcobordism, where this space is the
result of compactifying M(p�; p+; [v]) by allowing bubbling and breaking phenomena. Indeed,
M(p�; p+; [v]) is a moduli space of dimension 1, and the codimension-1 boundary strata are formed
by breaking and disk bubbling, as illustrated in the following figure:

p+p+

K

L

p�q

K

L
p�p+

L

K

KL

L

K

p+ p�

Figure 2.

By the hypothesis of Theorem 2.1, there are no nontrivial disks with boundary on L or K, hence
(14) holds.

Remark 2.5 (allowing non-transverse intersections). We have only described the definition of
HF �(L;K) when L;K intersect transversely. There are various ways to extend this definition
to general L;K. For instance, one important task is to define the self-Floer cohomology HF �(L;L).

(1) One approach is to choose a Hamiltonian diffeomorphism � such that L and �(L) intersect
transversely, and to then set HF �(L;L) := HF �(L; �(L)). This is the tack taken in [Sei08],
for instance; it is straightforward, but comes at the price of keeping careful track of all the
perturbations that one has introduced.

(2) If one is willing to work with higher-dimensional moduli spaces of Floer strips, one can set
CF �(L;L) to be the chain group for some model of the cohomology of L — e.g. Csing

� (L) as
in [Aur07] or C�

dR(L). A prominent example is [FOOO09a].
(3) By extending the moduli space of Floer strips, one can avoid both choosing a pushoff of L and

working with an infinitely-generated chain group. This is the “cluster model” for self-Floer
cohomology, in which we choose a Morse function on L and set CF �(L;L) := C�

Morse(L). See
[Fuk97] and [Oh96] for foundational work on this topic. Cornea–Lalonde later used this as
the basis for their definition of “cluster homology” in [CL06]. See [Li15] for a very detailed
construction of this model for HF �(L;L). 4

Remark 2.6 (other geometric settings where one can define HF �(L;K)). We have sketched the
definition of HF �(L;K) when the only disks on L resp. K are nullhomotopic, which was the setting
originally considered by Floer. (An immediate extension is to only disallow those disks of positive
symplectic area.) Here are some other typical settings for defining HF �(L;K):

7



(1) The exact setting: ! = d� is an exact 2-form, and �jL = df and �jK = df are exact
1-forms. (Note that Stokes’ theorem implies that M is necessarily noncompact.) In this
setting, Stokes’ theorem excludes all nonconstant pseudoholomorphic spheres and disks with
boundary on L or K. This greatly simplifies the analysis, and HF �(L;K) is defined for a
generic choice of Jt. See [Sei08] for a construction of Fuk in the exact setting.

(2) The monotone setting: The homomorphisms

hc1(TM);�i : �2(M)! Z;

Z
S2
��! : �2(M)! R(16)

are positively proportional, and a similar condition holds for L andK. In this setting, sphere
and disk bubbling are not a priori excluded. It is still possible to define the Floer differential
d, but it does not necessarily square to zero: in fact, d2 = (�m0(L) � m0(K)) id, where
m0(L) denotes the number of pseudoholomorphic disks that pass through a generic point on
L. As long as m0(L) = m0(K), HF �(L;K) is well-defined. See [Aur07] for a survey of the
definition of the Fukaya category in this setting. (Originally, this approach is due to Oh,
[Oh92].)

(3) The general compact setting: When M;L;K are assumed only to be closed, it is no longer
possible to produce well-behaved moduli spaces by choosing Jt appropriately. One must rely
on an abstract perturbation scheme, see e.g. [FOOO09b]. 4

2.1.2. A first example: two great circles on S2. Equip S2 with an area form, and regard this as a
symplectic manifold. Define Leq to be a great circle, by which we mean an embedded circle which
divides S2 into two halves of equal area. Note that the hypotheses of Theorem 2.1 fail, because the
relative homology group �2(M;L) does not vanish. Nonetheless, due to work of Oh [Oh92], this
example falls within a larger class of examples for which the self-Floer cohomology is well-defined.
(M is monotone, as in Remark 2.6.) We now explain how to compute it.

We will use the first model for self-Floer cohomology described in Remark 2.5, and compute
HF �(Leq; L

0
eq), where L0eq is another great circle which intersects Leq transversely, in two points.

Calling these points p and q, our setup looks like this:

q

p

L0

L

Figure 3.

The chain complex CF �(Leq; L
0
eq) is freely generated by p and q. The Floer differential involves the

following four strips, with the green strips on the left resp. the orange strips on the right contributing
to dp resp. dq:

8



p

L0

L

q
L0

L

q

p

L0

L

q

p

L0

L

q

p

Figure 4.

This yields the following computation of d:

dp = T bq + T bq = 0; dq = T aq + T aq = 0:(17)

Here we have denoted by a resp. b the area of each of the two smaller resp. each of the two larger
of the four portions that S2 is divided into. It follows that HF �(Leq; L

0
eq) = �2.

Note that by the invariance of Floer cohomology, Leq cannot be displaced from itself by a Hamil-
tonian diffeomorphism. Note also that if we had made the same computation but for a non-great
circle, then the differential would not have been zero.

Remark 2.7. There are several introductory texts that contain more detailed introductions to
HF �(L;K). We will therefore refrain from discussing the basic examples that illustrate the phe-
nomena we have described. [Aur14] is a good starting point for the interested reader. In particular,
see Example 1.11 in that text to see an illustration of the fact that d2 = 0 can fail if we remove
Floer’s hypothesis that �2(M;L) = �2(M;K) = 0. 4

2.2. The Fukaya A1-category. As we discussed in §2.1, Floer defined HF �(L;K) assuming
that there are no nontrivial topological disks on L and K, because this allowed him to exclude
disk bubbling in his proof that d2 = 0. In the early 1990s, Fukaya (influenced by Donaldson)
categorified Floer cohomology in such a way that disk bubbling can be interpreted as defining an
algebraic operation (the curvature) which, together with Floer’s differential d, form the first two
operations in a coherent hierarchy. From this data, one extracts (by a purely algebraic procedure),
a categorification called the Fukaya A1-category. It is an invariant of certain symplectic manifolds
M , and it is denoted FukM .

The Fukaya category has been defined in many settings. (For instance, [Sei08, Part II] defines
FukM in the exact setting, and serves as the classic introduction to Fuk. Fukaya–Oh–Ohta–Ono
relied on the theory of Kuranishi structures to define FukM in the general compact setting in the
formidable [FOOO09a, FOOO09b].) Each incarnation is some variant of the following.

Definition 2.8. The Fukaya A1-category FukM consists of the following data:
� An object set Ob consisting of Lagrangians L �M , equipped with some auxiliary data.
� For L;K 2 Ob, a graded K-vector space hom(L;K) := CF �(L;K).
� For r � 1 and L0; : : : ; Lr 2 Ob, a K-linear map

�r : CF
�(L0; L1)
 � � � 
 CF �(Lr�1; Lr)! CF ��2+r(L0; Lr)(18)

called the r-ary composition map, and whose matrix coefficients are defined by counting
rigid pseudoholomorphic (r + 1)-gons with boundary on L0; : : : ; Lr.

The operations satisfy the A1-equations:X
1�a�r

1�i�r�a+1

��r�a+1
�
x1; : : : ; xi�1; �a(xi; : : : ; xi+a�1); xi+a; : : : ; xr

�
= 0 8 r � 1:(19)

As a result, FukM , is a K-linear A1-category. 4
9



Remark 2.9. In our definition of Floer cohomology in §2.1, we stratified the compactified space of
Floer strips using the Maslov index, then defined the Floer differential in terms of the cardinalities
of the dimension-0 strata. In an analogous way, in the definition of the Fukaya category, we stratify
the spaces of pseudoholomorphic polygons, and count only the elements of the 0-dimensional strata.
This is what we meant when we referred to rigid pseudoholomorphic polygons in the preceding
definition. 4

Remark 2.10. In its most fundamental form, the Fukaya category is defined with Novikov coefficients.
(This actually leads to a definition of FukM as a filtered gapped A1-category, as we discuss in §2.4.)
However, under certain assumptions, such as monotonicity or exactness, one can take coefficients
in the base field k. We have therefore left the choice of coefficients vague, and one should take K
to denote either � or k.

Let us elaborate a bit about the monotone or exact case. Under either of these hypotheses,
Fuk(M ; �) (where we are making the coefficient field explicit) can actually be defined over a poly-
nomial version of the Novikov field, �poly, in which the power series in T are finite. (In the monotone
case, one needs an additional “balancedness” hypothesis, which we will not explain here.) This leads
to the following diagram, in which the left pointing arrow is the result of specializing the Novikov
parameter T to a chosen finite value in k, and the right pointing arrow is induced by the inclusion
of �poly in �.

Fuk(M ; �poly)

vv ((
Fuk(M ;k) Fuk(M ; �):

(20)

4

Note that we can interpret the first few A1-equations like so:

� (�1)
2 = 0, i.e. �1 is a differential on CF �(L0; L1) (which we denoted d earlier).

� �2 is a chain map with respect to �1.

� �2 is associative up to a chain homotopy given by �3.

We can interpret an A1-category as a K-linear dg-category in which composition is only homotopy-
associative, but where we have a hierarchy of homotopies to control this lack of strict associativity.

To give the idea of how one verifies the A1-equations for the Fukaya A1-category, we will now
sketch the proof of the fact that �3 is a chain homotopy between the two different ways of composing
�2 with itself. The following figure illustrates the codimension-1 degenerations of the 1-dimensional
moduli space of pseudoholomorphic 4-gons:

10
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p1

p2

p3

q

Figure 5.

In the same way that considering 1-dimensional moduli space of pseudoholomorphic strips led us
to our proof of d2 = 0 in §2.1, this analysis implies the ternary A1-equation:

�2(�2(x; y); z)� �2(x; �2(y; z))(21)
= ��3(�1(x); y; z)� �3(x; �1(y); z)� �3(x; y; �1(z))� �1(�3(x; y; z)):

Remark 2.11. The punctilious reader will have noted the following difference between Figures 2
and 5: boundary strata in which a component disc carries no marked point other than the node
appear in the former but not the latter. These terms in fact also appear in a general analysis of
the boundary moduli space shown in Figure 5, but the point of the auxilliary data alluded to in
Definition 2.8 is precisely to algebraically cancel these terms so that their contribution vanishes. 4

Example 2.12. We now return to S2. In §2.1.2, we deduced that if Leq � S
2 is a great circle, then

HF �(Leq; Leq) is well-defined and isomorphic to �2. We will now turn to the task of determining
H FukS2. (Our treatment will be brief, and we invite the interested reader to consult §3.4 of the
excellent article [Bal08].)

The only Lagrangians in S2 are embedded circles. If S1 � S2 does not divide S2 into two
halves of equal area, then a computation similar to the one made in §2.1.2 shows that its self-Floer
cohomology is zero, hence that it is zero in FukS2. On the other hand, Oh shows in [Oh90] that
any two great circles are Hamiltonian-isotopic. It follows that when we use Novikov coefficients over
Z=2Z, FukS2 has one object, whose endomorphism algebra is �2. A computation of the composition
operation would show that

HF �(Leq; Leq) ' �hxi
�

x2 = T!(S

2)=2
�
:(22)

This is a Clifford algebra. (C.f. [Smi15, §5.5] for a discussion of the self-Floer cohomology of the
moment fibers of a toric Fano variety. As Cho proved in [Cho05], this self-Floer cohomology is
always a Clifford algebra.) 4

Remark 2.13. By using Z=2Z as our base field in this example, we avoided discussing the fact that
for more general base fields (such as C), there are actually two nonzero objects of FukS2: Leq,
equipped with a flat U(1)-bundle with monodromy either 1 or �1.

This is an illustration of a more general fact ([EL19, Corollary 1.3.1]) about compact monotone
toric symplectic manifolds: working over a field of arbitrary characteristic, the Fukaya category
is split-generated by copies of the unique monotone torus fiber, equipped with the finitely-many
choices of flat line bundles for which this torus fiber is a nonzero object.
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We also note that when we work over C, the A1-category FukS2 contains no more information
than H FukS2. This follows from the intrinsic formality of complex Clifford algebras (c.f. [She16,
Corollary 6.4]). On the other hand, over Z=2Z the Fukaya category of S2 is not formal, c.f. [EL19,
§§7.2–3]. 4

2.3. Associahedra and the operadic principle. In §2.2, we sketched the proof of the third
A1-equation, which was based on analyzing the boundary strata of a 1-dimensional space of pseu-
doholomorphic 4-gons. The reason that this works, and the reason that analogous arguments allow
one to establish all the A1-equations for FukM , is that the moduli space of domains have a certain
recursive structure. In order to articulate this, we formally define these domain moduli spaces.

Definition 2.14. For r � 2, define Kr to be the compactified configuration space of r distinct
unlabeled points on the real line, modulo translations and dilations. Equivalently, we can view such
a configuration as a configuration of r + 1 marked points on the boundary of the unit disk, with
one point distinguished, modulo the Möbius transformations that preserve the unit disk. 4

The compactification amounts to a recipe for how to define the limit of a path in which some points
collide (in the disk model). It turns out that the right compactification to use here is essentially
the one proposed by Fulton–MacPherson in [FM94]: when points collide, we “zoom in” in order
to remember the relative rates of the collision. This zoomed-in view produces a “bubbled-off”
configuration of points on a disk, which is attached to the original disk at the point where the
points collided. We illustrate this in the following depictions of K3 and K4:

Figure 6.

Here we have labeled each stratum by a typical example. It is apparent in these examples that the
posets of strata have straightforward combinatorial interpretations. For instance, we can identify
the poset of strata of K4 with posets of stable (i.e., no vertex of valence 2) planted planar trees with
four leaves, or with parenthesizations of four letters:
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(ab)(cd)

abcd

(a(bc))d

(abc)d

((ab)c)d

(ab)cd ab(cd)

a(b(cd))

a(bcd)

a((bc))d)a(bc)d

Figure 7.

These spaces are called associahedra. They were originally defined by Stasheff in [Sta63] in the
context of recognizing loop spaces, and they arise in many situations that involve homotopy asso-
ciativity. They deserve the suffix “-hedra” because they can be realized as convex polytopes. There
are now a variety of different polytopal realizations. In symplectic geometry, their use goes back at
least to [FO97].

Recall our proof in §2.2 of the ternary A1 equation (21): we produced a 1-dimensional null-
cobordism of a disjoint union of finite sets, such that the count over each finite set corresponded to
one of the terms in (21). This argument comes into clearer focus when seen through the lens of the
associahedra. For instance, consider the task of proving the quaternary A1 equation. To do so,
we fix inputs a; b; c; d and regard the 1-dimensional moduli space of pseudoholomorphic pentagons
as a nullcobordism. The projection of this nullcobordism to the domain moduli space K4 looks
something like this:

�3(�2(a; b); c; d)

�4(a; b; c; �1(d))
�1(�4(a; b; c; d))

�4(a; �1(b); c; d)

�2(a; �3(a; b; c))�2(�3(a; b; c); d)

�3(a; �2(b; c); d))

Figure 8.

Here we have labeled the ends of this nullcobordism by the terms in the quaternary A1 equation
that they correspond to. Note that the ends that lie in the boundary correspond to terms of the
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form �i(� � � ; �j(� � � ); � � � ) for i; j � 2, whereas the ends in the interior correspond to terms with
either i = 1 or j = 1.

This is the first instance we have encountered so far of the Operadic Principle, which we remind
the reader of:

The Operadic Principle in symplectic geometry: The algebraic nature of a sym-
plectic invariant defined by counting rigid pseudoholomorphic maps is inherited from the
operadic structure of the underlying collection of domain moduli spaces.

This is implemented by following the following procedure:
� Define stratified and compactified moduli spaces of pseudoholomorphic maps, as well as the
with associated domain moduli spaces.
� Prove a “gluing theorem”, which identifies the boundary of the 1-dimensional moduli spaces
with spaces constructed from the 0-dimensional moduli spaces.
� Interpret this recursive structure “operadically”, i.e. that the curve-counting invariant re-
sulting from counts over the 0-dimensional moduli spaces is a category over the operad of
chains on the domain moduli spaces (or some related notion).

Remark 2.15. This implementation procedure potentially hides an enormous amount of technical
complexity. For instance, in the first bullet, one needs to define moduli spaces that are well-
defined topological objects. In simple settings, such as the one Floer worked in, one can do this
with only a moderate amount of work. In other settings, such as when M is a general compact
symplectic manifold, one needs to choose a framework for virtual counts, such as the virtual approach
in [FOOO09b], the polyfolds package defined in a series of papers by Hofer, Fish, Wysocki, and
Zehnder, or Pardon’s approach [Par16]. 4

Remark 2.16. The notion of exploiting the operadic structure of the domain moduli spaces, especially
when considering the A1-operad or with variants of the moduli of nodal genus-0 stable curves, is
not new in symplectic geometry; c.f. for instance [Fuk10]. 4

Remark 2.17. Our definition of Kr only makes sense for r � 2. In fact, in the Floer-theoretic
setting one can set K1 := pttpt =R, where the second term should be interpreted as an Artin
stack. In terms of operations, pt corresponds to a unit in CF �(L;L), and pt =R corresponds to the
differential. 4

We conclude this subsection by introducing the notions of operads and categories over them, which
we need in order to make the Operadic Principle precise in the case of the Fukaya A1-category.

Definition 2.18. Fix a symmetric monoidal category C (such as Top, Set, or Ch). A nonsymmetric
operad O in C is the following data:

� For every r � 1, an object O(r) in C , which we think of as a collection of “r-ary operations”.
� Morphisms

� : O(r)�O(s1)� � � � � O(sr)! O(s1 + � � �+ sr)(23)

for any choice of r; s1; : : : ; sr � 1. We think of these as “composition maps” and we require
their compositions to satisfy an appropriate associativity condition.
� An element 1 2 O(1) that acts as the identity. 4

For instance, the associahedra (Kr)r�1 form an operad in Top, where we define K1 := pt and where
the composition maps Kr�Ks1�� � ��Ksr ! Ks1+���+sr are defined by concatenating trees of disks.
An operad that we will need shortly is

�
Ccell
� (Kr)

�
, which is an operad in Ch.
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Given an operad O, we need a way of turning O(r), which consists morally of “r-ary operations”,
into genuine operations. The right receptacle for this sort of procedure is given by the following
notion.

Definition 2.19. Fix a (nonsymmetric) operad O in C . Then a category over O (or an O-category)
A consists of the following data:

� A set of objects ObA .
� For every X;Y 2 ObA , an object hom(X;Y ) 2 C called the morphism space from X to Y .
� For every sequence X0; : : : ; Xr 2 ObA , a composition operation

O(r)� hom(X0; X1)� � � � � hom(Xr�1; Xr)! hom(X0; Xr):(24)

We require these operations to be compatible with the composition maps in O, and with the unit
1 2 O(1). 4

FukM is a category over
�
Ccell
� (Kr)

�
, because we can associate to a cell C � Kr an r-ary

operation defined by counting pseudoholomorphic maps whose domain is in C. Using the following
proposition, this implies that FukM is an A1-category.

Proposition 2.20. Linear A1-categories can be identified with categories over the operad
Ccell
� (K) :=

�
Ccell
� (Kr)

�
r�1

.

Proof of the backward direction. Let us explain a recipe to construct from a category C over�
Ccell
� (Kr)

�
r�1

a linear A1-category A .
We define the data of A as follows.
� The objects of A are the same as those of C.
� We define the unary operation �1 : hom(X0; X1) ! hom(X0; X1) to be the differential on
the chain complex hom(X0; X1).
� For r � 2, we define the r-ary operation

�r : hom(X0; X1)
 � � � 
 hom(Xr�1; Xr)! hom(X0; Xr)(25)

to be the result of feeding the fundamental class [Kr] into the first slot of the operation

'r : C
cell
� (Kr)
 hom(X0; X1)
 � � � 
 hom(Xr�1; Xr)! hom(X0; Xr):(26)

The only thing that we need to check is that these operations satisfy the A1-equations. To see
this, note that since (26) is a chain map, the following equation holds:

� 'r
�
@[Kr]; x1; : : : ; xr

�
+
X
1�i�r

�'r
�
[Kr]; x1; : : : ; xi�1; @xi; xi+1; : : : ; xr

�
= �@'r

�
[Kr]; x1; : : : ; xr

�
:(27)

Using the recursive structure of the associahedra, together with the coherences satisfied by the
operad structure of

�
Ccell
� (Kr)

�
r
and the action of this operad on C, we see that (27) yields the

following equation:X
2�a�r�1

1�i�r�a+1

��r�a+1
�
x1; : : : ; xi�1; �a(xi; : : : ; xi+a�1); xi+a; : : : ; xr

�
+
X
1�i�r

��r
�
x1; : : : ; xi�1; �1(xi); xi+1; : : : ; xr

�
= ��1(�r(x1; : : : ; xr)):(28)
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Rearranging this, we obtain the r-th A1 equation:X
1�a�r

1�i�r�a+1

�r�a+1
�
x1; : : : ; xi�1; �a(xi; : : : ; xi+a�1); xi+a; : : : ; xr

�
= 0:(29)

�

Remark 2.21. In the above formulation of A1-algebras as algebras over the A1 operad, we separated
the differential �1 from the remainder of the operations, and chose to consider it as part of the
structure of the target category (of chain complexes), rather than as one of the operations indexed
by the operad. This perspective is unnatural from the point of view of Floer theory because the
differential is constructed, like all other operations, by a count of holomorphic curves, but it succeeds
precisely because the differential is the first operation (in terms of parity) which we consider. 4

2.4. Anomaly in Lagrangian Floer theory. On general (closed) symplectic manifolds, the con-
struction of Fukaya A1-categories requires significantly more work than indicated above, because
the possible presence of holomorphic discs with boundary on a single Lagrangian obstructs the
equation �21 = 0, in the sense that there is an element �0 so that the vanishing of the differential is
replaced by the equation

(30) �21(x) = �2(x; �0)� �2(�0; x):

Geometrically, this equation arises from an analysis of degenerations of moduli spaces of holomorphic
strips with boundary on a pair (L1; L2) of Lagrangians. As indicated in Figure 2, there are three
boundary components to these moduli spaces; the first, corresponding to energy concentration taking
place at a sequence of points which escape the strip along the end (breaking of strips), gives rise
to the term �21, while the two terms on the right hand side of (30) arise when energy concentration
takes place along one of the two boundary components of the strip.

In [FOOO09a, FOOO09b], Fukaya, Oh, Ohta, and Ono encoded the full structure of operations
arising from the count of holomorphic discs with arbitrary numbers of marked point on a general
Lagrangian submanifold into the structure of filtered gapped curved A1-algebra, and explained
how to extract from this data an (ordinary) A1-category, which informally consists of ways of
(algebraically) correcting the differential so that the curvature vanishes. We shall presently define
this notion from an operadic perspective, by introducing the curved A1 operad after noting two
essential difficulties:

(1) Unlike the case of ordinary A1-categories, the curved A1 operad which we shall introduce
does not arise from an operad in the category of spaces.

(2) The notion of filtration, which is essential for the theory of curved algebras to produce
meaningful answers, requires a technical extension of the notions of the theory of operads to
a context where there is an additional label which, from the point of view of Floer theory,
records the energy.

Remark 2.22. To elaborate further, the lack of a space-level model for the curved A1 operad can
be seen as follows: in (19), the differential �1 has degree 1, while the product �2 has degree 0. This
forces the curvature term �0 to have degree 2. However, because of our cohomological conventions,
operations indexed by a manifold of dimension k have degree �k, so this operation is associated to
a space of dimension �2. There is a ready explanation for this negative dimension: in the generic
situation, the interior of the moduli spaces that define �0 are quotients of the space of maps with
domain a disc with a boundary marked point by the automorphism of the disc preserving this
point. Since any two discs with a boundary marked point are biholomorphic, the abstract space
of such discs (i.e. in the absence of a target symplectic manifold) is a point, but it should more
properly be considered as the stack quotient of this point by the automorphism group. Since the
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group of biholomorphic automorphisms of the upper-half plane is easily seen to be a contractible
2-dimensional Lie group, we see that the natural dimensional associated to it is indeed �2.

The above discussion suggests that we should construct the curved A1 operad in the category of
topological stacks. The first step in this construction was performed by Lurie and Tanaka [LT18],
who revisited the formulation of differentials in Floer and Morse theory from this perspective by
constructing a topological stack which encodes the differential at the equation d2 = 0. 4

Remark 2.23. The necessity of imposing the additional structure of a filtration to obtain a good
theory of curved categories is more difficult to justify geometrically, but can be algebraically justified
as follows: one can associate to each curved category a category of modules, which in the special case
of trivial curvature recovers the usual notion. However, it turns out that whenever the curvature is
a non-trivial element, this category is completely trivial. This can be proved by filtering the relevant
morphism complexes so that the differential on the associated graded group depends only on the
curvature, and using the fact that, for any vector space V , equipped with an non-zero element v,
the complex

(31) V ! V 
 V ! V 
 V 
 V ! � � � ;

with differential V 
k ! V 
k+1 given by the alternate sum of inserting v at the ith position,
is acyclic. Heuristically, and as explained in [Pos18], this is a consequence of the fact that the
formalism of A1-categories is defined in such a way that operations with smaller number of inputs
dominate, but the structure associated to the element �0 is too trivial for any information to survive
if we allow it to dominate.

A filtration resolves this issue as follows: by introducing a norm on the underlying graded vector
spaces, one may require that each operation �k be expressed as a sum of contribution of decreasing
norm. By requiring that all contributions to �0 have norm strictly smaller than unity, we ensure
that the lowest order contributions of the other operations (in particular, of �1) dominate. In this
way, we obtain an analogous theory to the one for ordinary algebras, and are able to formulate all
structures in terms of the homotopy of theory of filtered chain complexes, and we must take these
norms into account when introducing, for example, the category of modules. 4

We now proceed to give the definition of the curved operad in the category of chain complexes:
for each strictly positive integer r, define

(32) C0(r) := Ccell
� (Kr);

and set C0(0) := 0 and C0(1) := 0. We recall that the underlying vector space of this chain complex
is a direct sum indexed by the topological type T of stable discs with r + 1 marked points,

(33) Ccell
� (Kr) '

M
T

oT

with the graded oT given by the orientation line of the associated product of Stasheff associahedra
indexed by the components of this topological type, which we label (v1; : : : ; vdT ):

(34) oT := oKv1

 � � � 
 oKvdT

:

Moreover, the differential on this complex can be naturally written in terms of choosing an edge to
collapse.

We extend this construction to that of a chain complex C�(r), whose underlying graded vector
space is an (infinite) direct sum indexed by the topological type of pre-stable discs �, with r + 1
boundary marked points, which are labelled by non-negative real numbers, so that the following
condition holds:

The label of any unstable component is strictly positive.
17



We associate to each such (labelled) topological type T the graded vector space

(35) CT (r) :=
O
v

oKv ;

where the tensor product, as before, is indexed by the components v of the underlying topological
type, and the Stasheff associahedron Kv is the one associated to having number of inputs equal to
valence of v. Here, we have formally set

(36) oK0
:= o�1

Aut(D2;1)
; oK1

:= o�1
Aut(D2;�1)

;

as would be expected from Remark 2.22. The key point is that the direct sum

(37) C�(r) :=
M
T

CT (r)

can naturally be equipped with a differential which can be expressed in terms of collapsing an edge.
Finally, we take the direct sum of all these chain complexes, and define

(38) C(r) :=
M

�2[0;1)

C�(r):

Displaying each topological type as a tree, the concatenation of trees defines the structure map

(39) � : C�(r)
 C�1(s1)
 � � � 
 C�r(sr)! C�+�1+���+�r(s1 + � � �+ sr);

and the direct sum of these operations over all weights yields the desired operation.
This leads to the following operadic notion:

Definition 2.24. A gapped, filtered, curved A1-algebra is an algebra in over C with the property
that there is a discrete subset � of [0;1) so that the action of C�(r) vanishes unless � lies in �. 4

To recover Fukaya, Oh, Ohta, and Ono’s notion from this construction, one tensors the algebra
(over the ground ring), with the Novikov ring, denotes by �r� the operation associated to the unique
generator of C�(r) associated to a tree with no internal edges (after trivialising the corresponding
line), and defines the operation

(40) �k =
X

T ��k�:

The main result of Fukaya, Oh, Ohta, and Ono [FOOO09a] is that a closed embedded Lagrangian
L in a closed symplectic manifold determines a curved filtered A1-algebra, denoted CF �(L;L) in
the above sense. Before we indicate how one can extract an ordinary A1-category from this data,
we discuss a special situation (related to Remark 2.6) in which the theory simplifies: when the
Maslov class and the symplectic class in H2(M;L) are positively proportional

(41) c1(M;L) = m[!]

with m strictly larger than 1, then one can construct CF �(L;L) so that the curvature element for
each energy (which in our formulation is the element of C�(0) associated to the unique tree with no
interior edge), is a multiple �L0 =: m0(L) � 1L of the identity. In this case, one can essentially ignore
the curvature term, and obtain an A1-algebra in the usual sense.

In general, the procedure to obtain an A1-category from such a curved algebra is much more
complicated. Writing A for the underlying module over the Novikov ring, the first step is to consider
elements b 2 A which satisfy the Maurer-Cartan equation

(42) P � idA = �0 + �1(b) + �2(b; b) + �3(b; b; b) + � � � ;

for some scalar P (in the Novikov ring), which is called the potential value. Such solutions are
called weak bounding cochains, and the algebra is called weakly unobstructed if a solution exists (the
adjective weak is dropped if P vanishes).
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Lemma 2.25. The collection of weak bounding cochains with a given potential value are objects of
an A1-category in which the morphisms from b to b0 are given by a chain complex with underlying
module A and differential

(43) x 7! �2(b; x) + �2(x; b0) + �3(b; b; x) + �3(b; x; b0) + �3(x; b0; b0) + � � � :

3. Quilted Floer theory and functors from Lagrangian correspondences

Default geometric hypotheses: In §§3.3–3.9, we assume our symplectic manifolds and
Lagrangians are closed and monotone, and that the Lagrangians have minimal Maslov
index 3. By default, composition L1�L12 of Lagrangians with Lagrangian correspondences
is assumed to be cut out transversely and to result in an embedded Lagrangian. In §3.11
we relax these hypotheses and consider general closed symplectic manifolds.

As we alluded to in the introduction, much of the original development of the theory of Fukaya
categories arose in an attempt to formulate a precise statement of Kontsevich’s Homological Mirror
Symmetry Conjecture [Kon95]. In its initial formulation, this conjecture asserted that the mirror
phenomena discovered by string theorists starting with [CdlOGP91], which relate the enumerature
geometry of a complex Calabi–Yau 3-fold X with period integrals of a conjecturally-existing mirror
Calabi–Yau 3-fold Y , are consequences of an equivalence between the (then conjecturally-existing)
Fukaya category FukX on of one side of the mirror correspondence, and the bounded derived category
of coherent sheaves Db(Y ) of the other.

3.1. A brief overview of derived categories of coherent sheaves. The classical construction,
following Verdier [Ver96], describes Db(Y ) as a triangulated category. This version of Db(Y ) is a
category whose objects are complexes of coherent sheaves, and whose morphisms Hom�(�;�) are
graded complex vector spaces obtained by taking the cohomology of maps between resolutions of
these complexes. In the smooth setting, every complex is equivalent to a complex of holomorphic
vector bundles, and one can compute morphisms as the cohomology groups of the associated maps
of complexes of smooth vector bundles, equipped with the differential induced by the holomorphic
structure on the source and the target.

In addition to the data of linear composition of morphisms, a triangulated category is equipped
with the additional datum of a choice of exact triangles

F // G

~~
H;

[1]

``(44)

each of which induces a long exact sequence on morphisms

(45) � � � ! Hom�(�; F )! Hom�(�; G)! Hom�(�; H)! Hom�+1(�; F )! � � �

for any choice of input. The set of exact triangles satisfies various axioms which we will not discuss.
As the use of derived categories grew in algebraic geometry, the formulation of Db(Y ) as a

triangulated category came to be seen as an increasingly cumbersome technicality. The issue lies in
(45), which shows that H is specified up to isomorphism by the arrow F ! G, but does not specify
a particular choice of H. This causes particular difficulties when proving gluing results for derived
categories.

The solution for this problem is usually to enhance the structure of the derived category to
that of a differential graded category. In this context, being an exact triangle can be formulated
as a property (of a triple of morphisms and null-homotopies for their compositions), which enables
gluing. (This was first proposed by Bondal–Kapranov in [BK90]. See also [Dri04] for a more modern
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example of this approach.) Since a differential graded category is a particular example of an A1-
category, the formulation of Kontsevich’s mirror conjecture is usually made using these enhanced
categories.

3.2. Correspondences in algebraic geometry. A notable deficiency of the categorical formula-
tion of mirror symmetry is that, while a map of schemes induces pullback and pushforward functors
on their derived categories, there is no analogous functoriality of Fukaya categories with respect
to maps of symplectic manifolds (e.g. maps f : M ! N with f�!N = !M ). This can be seen for
examples as straightforward as an open inclusion D2 ,! CP1: the equator RP1 is a nontrivial La-
grangian in the target, but not in the source, which contradicts an inclusion of unital A1-categories
FukD2 ,! FukS2.

Remark 3.1. The only classes of symplectic maps which the authors know to induce functors on
Fukaya categories are (i) unbranched coverings [Sei11], and (ii) codimension 0 inclusions with contact
boundary, whose complement is exact [AS10]. Both of these classes of maps include the class of
symplectomorphisms, and fall within the framework which we shall presently describe (c.f. [Gao18,
Theorem 1.4]). 4

Somewhat surprisingly, one way to arrive at a good notion of functoriality for Fukaya categories
is to investigate the coherent sheaf side more carefully: the symplectic automorphism group of
a symplectic 2-torus includes as a subgroup the group SL2(Z) of modular transformations, which
therefore acts on its Fukaya category. One of the first test cases [PZ98] of mirror symmetry identifies
the mirror as an elliptic curve — but there is no elliptic curve with such a large automorphism group,
so derived categories must admit many more automorphisms than those arising from automorphisms
of the underlying schemes.

In this example, the missing automorphisms can be recovered from the theory of Fourier–Mukai
transforms which goes back at least to [Muk81], which associates to a coherent sheaf P on X � Y
the functor

�P : Db(X)! Db(Y ); E � ! p�(q
�E � 
P)(46)

obtained by pulling a sheaf on X back to the product X�Y along the projection to the first factor,
then tensoring the result with P, and finally pushing forward to Y along the second projection.
The fundamental theorem of Fourier–Mukai theory is:

Theorem 3.2 (Theorem 2.2, [Orl97]). Fix smooth projective varieties X and Y , and suppose that
F : Db(X) ! Db(Y ) is a fully faithful exact functor. If F has both a left and a right adjoint, then
there exists an object P 2 Db(X � Y ) such that F is naturally isomorphic to �P . Moreover, P is
uniquely determined, up to isomorphism. �

It would be difficult to overstate the importance of the above result, which forms the basis of
all substantial results in the subject. In fact, the result is quite a bit stronger, and consists of a
natural equivalence between the derived category of coherent sheaves on X � Y and the category
of functors from Db(X) to Db(Y ). (See [LS16, Theorem 1.1] for a variant of this statement.) We
give two examples:

Theorem 3.3 (Proposition 10.10, [Huy06]; see also Theorem 3.3, [Orl97]). Let X and Y be K3
surfaces. There exists a linear, exact equivalence between their derived categories Db(X) and Db(Y )

if and only if there exists a Hodge isometry eH(X;Z)
'
! eH(Y ;Z). �

Theorem 3.4 (Theorem 4.3, [Orl92]). Fix a smooth projective variety X and a codimension-c
smooth subvariety Y with c � 2, and denote by eX the blowup of X along Y . Then Db

� eX� admits
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a semiorthogonal decomposition of the following form:

Db
� eX� = DDb(X); Db(Y ); : : : ; Db(Y )| {z }

c�1

E
:(47)

�

We conclude this subsection with one more basic property of Fourier–Mukai transforms:

Proposition 3.5 (Proposition 5.10, [Huy06]; see also its original statement as Proposition 1.3 in
[Muk81]). Fix Fourier–Mukai kernels P 2 Db(X � Y ) and Q 2 Db(Y � Z), and define R 2
Db(X � Z) by

R := �XZ�
�
��XY P 
 ��Y ZQ

�
:(48)

Then the composition �Q � �P is naturally isomorphic to �R . �

We invite the reader to consult [Huy06] for a survey of this beautiful subject.

3.3. Correspondences in symplectic topology. By comparing the Fukaya category with the
derived category of coherent sheaves, we might hope for a machine that associates to a Lagrangian
correspondence, i.e. an object � of Fuk(M� � N) := Fuk(M � N; (�!M ) � !N ), some sort of
functor �� : FukM ! FukN . (See Remark 3.8 for an explanation of the minus sign on M�.) In a
remarkable series of five papers published between 2010 and 2018, Wehrheim and Woodward (and
in the case of one of these papers, Ma’u) developed just such a construction. Our main goal in the
current section is to explain the two theorems that form the culmination of Wehrheim–Woodward’s
work on pseudoholomorphic quilts.

The first theorem asserts that one can extend the Fukaya category in such a way that a Lagrangian
correspondences from M0 to M1 defines an A1-functor from the category associated to M0 to that
associated to M1. (We will explain below why Ma’u–Wehrheim–Woodward needed this extension.)

Theorem 3.6 (Theorem 1.1, [MWW18]). Suppose that M0;M1 are symplectic manifolds satisfying
standard monotonicity hypotheses. Given an admissible Lagrangian correspondence L01 �M

�
0 �M1

equipped with a brane structure, there exists an A1-functor

�#
L01

: Fuk#(M0)! Fuk#(M1)(49)

which acts on objects by appending L01 to a generalized Lagrangian L0 2 Fuk#(M0), and on mor-
phisms by counting quilted disks with two patches and boundary marked points. �

The second result is summarized in the phrase “composition commutes with categorification”:

Theorem 3.7 (Theorem 1.2, [MWW18]). Suppose that M0;M1;M2 are symplectic manifolds sat-
isfying standard monotonicity hypotheses. Let L01 � M�

0 �M1, L12 � M�
1 �M2 be admissible

Lagrangian correspondences with spin structures and gradings such that L01 �L12 is smooth, embed-
ded by �02 in M�

0 �M2, and admissible. Then there exists a homotopy of A1-functors

�#
L12
� �#

L01
' �#

L01�L12
:(50)

�

(Compare this with Proposition 3.5, which is the analogous result for Fourier–Mukai transforms.)
The crucial tool that Wehrheim and Woodward used to establish these results was their theory

of pseudoholomorphic quilts, which we will briefly survey later in this section.
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Remark 3.8. The essential reason that we have to introduce the symplectic manifoldM�, which has
no analogue in algebraic geometry, is that the derived category of coherent sheaves is equipped with
a natural equivalence to its opposite category (in which the direction of morphisms are reversed),
given by assigning to a sheaf its dual (i.e. the sheaf of morphisms to the structure sheaf). In contrast,
the Fukaya category has no such duality isomorphism, in part because there is no canonical object
that plays the role of the structure sheaf. One way to produce such a duality isomorphism is to
exploit an anti-symplectic involution on M , as discussed by Castaño-Bernard–Matessi–Solomon in
[CBMS10], who explored this structure in the context of mirror symmetry. 4

3.4. Approaching Ma’u–Wehrheim–Woodward’s A1-functor. We begin this subsection by
approaching Ma’u–Wehrheim–Woodward’s construction of the functors �#

L12
in Theorem 3.6 via the

Operadic Principle of §2.1.
There is a very natural way to try and define a functor �L12 : FukM1 ! FukM2 on the level of

objects. Indeed, we can view a Lagrangian L1 in M1 as a correspondence from pt to M1, and then
compose pt L1�!M1 and M1

L12�!M2 as correspondences — which is to say, to form

�L12(L1) := L1 � L12 := �M2(L1 �M1 L12)(51)

:= �M2

�
(L1 � L12) \ (�M1 �M2)

�
:

This idea is supported by an observation due to Guillemin–Sternberg:

Proposition 3.9 (Theorem 4, [GS05]). If the submanifolds L1�L12 and �M1�M2 ofM1�M
�
1 �M2

intersect transversely, then �M2 : M1 �M
�
1 �M2 ! M2 restricts to a Lagrangian immersion of

L1 �M1 L12 into M2. �

When the hypotheses of Proposition 3.9 are satisfied, we say that L1 �L12 have immersed composi-
tion. If L1 and L12 satisfy the additional hypothesis that L1 � L12 is an embedded submanifold of
M2, then we say that they have embedded composition.

There are two apparent issues with our attempted definition of �L12 on the level of objects: for
one thing, the composition L1�L12 may not even be immersed, hence may not produce a Lagrangian
submanifold, indeed a submanifold at all, of M2. For another, the Fukaya category typically con-
sists of embedded Lagrangians. Regarding the first issue, Wehrheim–Woodward showed in [WW12,
Proposition 2.2.1] that composition of Lagrangian correspondences can be made immersed after
applying a Hamiltonian isotopy in each factor. The second issue is surmountable via the theory of
“immersed Fukaya categories”, which were initially studied by Akaho and Joyce [AJ10] in an early
extension of Fukaya, Oh, Ohta, and Ono’s work.

We will return later to the issue of the definition of �L12 on objects. Before that, we consider its
action on morphisms. We expect this part of the definition of �L12 to be based on counts of some
sort of pseudoholomorphic objects, and therefore we turn to the Operadic Principle. This principle
suggests that we should follow these steps:

(1) Find an operadic construction that encodes the structure of an A1-functor.
(2) Find moduli spaces of Riemann surfaces that realize this operadic construction.
(3) Complete our definition-in-progress of �L12 by counting pseudoholomorphic curves whose

domains are the Riemann surfaces from the previous step.
That is nearly what Wehrheim and Woodward did. We begin by describing an answer to (1)

and (2) simultaneously. (We could treat them separately, but this would require introducing com-
binatorial objects that would not be enlightening. Instead, we will conflate the combinatorial and
topological instantiations of the multiplihedra.)

Definition 3.10. For every r � 1, the (r � 1)-dimensional multiplihedron Jr (defined in [SU04])
is the compactified moduli space of configurations of a vertical line in the right half plane H0 and
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r points on the imaginary axis, up to real translations and dilations. Alternately, we can visualize
such a configuration as a disk decorated with r boundary marked points and one interior circle
tangent to the boundary at a single point. We depict both presentations of a point in J3 in the
following figure:

Figure 9.

4

Topologically, Jr is a compact (r � 1)-dimensional manifold with boundary. For instance, J1 is a
singleton because any two circles tangent to the disc at 1 are related by a unique Möbius transfor-
mation that fixes �1. Jr can be realized as a convex polytope, but this polytopal structure is not
directly relevant for our current purposes. Below, we illustrate the 1- and 2-dimensional instances
J2 and J3:

Figure 10. The multiplihedra J2 and J3.

To see why the multiplihedra enable us to apply the Operadic Principle, we must understand
what sort of operadic structure (Jr) supports. It turns out that the answer to this question is
that the multiplihedra (Jr) form a bimodule over the operad (Kr) of associahedra [LAM22]. This
bimodule structure consists of the following:

(left module) A map Kr � Ja1 � � � � � Jar ! Ja1+���+ar , which is defined like so:
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Kr � Ja1 � � � � � Jar ! Ja1+���+ar

a1

ar

7!

Figure 11.

(right module) A map Ja �Kr1 � � � � �Kra ! Jr1+���+rk , which is defined like so:

Ja � Kr1 � � � � � Kra ! Jr1+���+ra

r1

ra

7!

Figure 12.

Remark 3.11. There is a fundamental asymmetry between the left and right module structures.
Namely, we can naturally extend the polyhedra Kr to the case r = 1 by declaring that K1 is a
point; this element then corresponds to the identity map of each A1-algebra. In this way, the right
module maps can be extracted from operations �i : Ja � Kr ! Ja+r�1, for r � 2, associated to
gluing a disc as a single input labelled by an integer 1 � i � a. In Figure 10, these operations label
the top boundary strata of J3 corresponding to the upper half of the hexagon. On the other hand,
while the moduli space J1 is also a singleton, it does not correspond to a tautological operation at
the level of algebra, and this is reflected in the fact that the codimension 1 boundary strata of Ja
which correspond to these operations involve attaching quilted discs at every input of an element
of Kr, as can be seen by inspecting the bottom boundary strata of J3.

Applying Ccell
� , we see that Ccell

� (J) :=
�
Ccell
� (Jr)

�
is a bimodule over Ccell

� (K). In fact, just as
an A1-category is the same thing as an Ccell

� (K)-category, an A1-functor is the same thing as a
functor over Ccell

� (J). (The notion of a functor over a bimodule over an operad is just what one
might expect: in the present case, given categories C;D over Ccell

� (K), a functor F : C ! D over
Ccell
� (J) consists of a map ObC ! ObD and a collection of chain maps

Ccell
� (Jr)
 hom(X0; X1)
 � � � 
 hom(Xr�1; Xr)! hom(F (X0); F (Xr))(52)

that satisfy a collection of coherences.)
The Operadic Principle now tells us that if we want to define a functor �L12 from FukM1 to

FukM2, we should construct moduli spaces of pseudoholomorphic curves whose domains are the
decorated disks in Figure 9. This requires deviating from the conventional notion of a pseudoholo-
morphic curve, because the disks we would like to use as our domains are divided into two “patches”,
and because there are two possible targets, M1 and M2. One of Wehrheim and Woodward’s central
insights was to ask for a map from one patch to M1 and from the other to M2, with these maps
coupled along the interior “seam” by L12. Indeed, this is an instance of Wehrheim–Woodward’s
notion of a pseudoholomorphic quilt, or simply a quilt. 4
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3.5. Quilted Floer cohomology. As we described in the previous subsection, a key innovation
of Wehrheim and Woodward was their notion of pseudoholomorphic quilts. We will approach this
general construction via the notion of quilted Floer cohomology, which is an extension of Lagrangian
Floer cohomology that is defined by counting rigid pseudoholomorphic quilts whose domain is
a cylinder divided into strips by interior lines. Just as ordinary Floer cohomology groups are
the natural input and output for operations defined by counting pseudoholomorphic curves with
boundary punctures, quilted Floer cohomology forms the natural input and output for operations
defined by counting pseudoholomorphic quilts.

We begin by defining generalizations of Lagrangian submanifolds and correspondences. For sym-
plectic manifolds M0;M1, a generalized (Lagrangian) correspondence from M0 to M1 is a sequence

L :=
�
M0 = N0

L01�! N1
L12�! � � �

L(r�1)r
�! Nr =M1

�
:(53)

A cyclic generalized correspondence is a generalized correspondence with M0 = M1. Just as a
Lagrangian is a correspondence from pt to a symplectic manifold, a generalized Lagrangian is a
generalized correspondence with M0 = pt. When r = 1, of course, these generalized notions reduce
to their ordinary counterparts.

Floer cohomology associates to a pair of Lagrangians L;K � M an Abelian group HF �(L;K).
From L and K, we can produce the following cyclic generalized correspondence:

pt
L **

M:
K

jj(54)

Quilted Floer cohomology extends HF �(L;K) to arbitrary cyclic generalized correspondences.
Indeed, fix a length-r cyclic correspondence L, as in (53). To define its quilted Floer cohomology,

we first need to specify a tuple � 2 (0;1)r of “widths”. Having done so, the quilted Floer cohomology
HF �� (L) is defined to be the homology of a complex�

CF�(L) := Khpip2I(L); d�
�
;(55)

where I(L) is the set of generalized intersection points. I(L) is defined by

I(L) :=
�
(p01; : : : ; p(r�1)r) 2 L01 � � � � � L(r�1)r j �j(p(j�1)j) = �j(pj(j+1))

	
;(56)

where we require the condition to hold for all 1 � j � r, and where we make the convention
Lr(r+1) := L01. (Indeed, from now on, we treat j as a cyclic index living in Z=rZ.) We require that
I(L) is cut out transversally. This is to say that the intersection

(L01 � � � � � L(r�1)r) \ �(�M0 � � � � ��Mr)(57)

is transverse, where � is the obvious permutation of factors.

Remark 3.12. Wehrheim–Woodward do not assume this transversality — rather, they show that
they can always arrange for it to hold, by applying Hamiltonian perturbations. In [WW10b, §5], they
show that split Hamiltonian perturbations (that is, the result of perturbing each factor separately)
are enough to ensure that I(L) is cut out transversally. 4

We will now encounter our first pseudoholomorphic quilt: to define the differential d� on CF �(L),
we need to count certain quilted Floer trajectories. Specifically, for elements p�, we define the
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following moduli space:

M�(p
�; p+) :=

n
u :=

�
uj : R� [0; �j ]! Nj

�
0�j�r

�� (�1); (�2); (�3); (�4)o= �;(58)

(�1) : @suj + Jj(uj)@tuj = 0 8 j; (�2) :
�
uj(s; �j); uj+1(s; 0)

�
2 Lj(j+1) 8 j; 8 s 2 R;

(�3) : E(u) :=
rX
j=0

Z
R�[0;�j ]

u�j!j <1; (�4) : lim
s!�1

uj(s;�) = p�j 8 j;

where the quotient in the definition of M(p�; p+) indicates that we identify two quilted Floer
trajectories that differ by a simultaneous translation in the s-coordinate. Conditions (�1), (�3), and
(�4) are familiar: they say that each map uj is pseudoholomorphic, has finite energy, and limits to
p�j as s! �1.

Condition (�2), which can be thought of a nonlocal boundary condition, is less familiar. It is
known as a seam condition, because we can visualize the domain of a quilted Floer trajectory as
the result of attaching together the domains of the uj ’s by identifying (s; �j) in the j-th rectangle
with (s; 0) in the (j + 1)-th. Indeed, we can view u as a quilted map whose domain is the cylinder
R � (R=j�jZ), where j�j denotes the sum �0 + � � � + �r. This cylinder is divided into regions called
patches, the j-th of which being equipped with a map to Nj . Specifically, for 0 � j � r, the map
from the j-th patch iseuj : R� [�0 + � � �+ �j�1; �0 + � � �+ �j ]! Nj ; euj(s; t) := uj(s; t� �0 � � � � � �j�1):(59)

We depict a quilted cylinder like so:

L01

L(r�1)r

N0

N1

Nr�1

Figure 13.

Note that when M0 = pt (in the notation of (53)), the 0-th map contains no information, so we can
remove it from our depiction of the domain of u and obtain a quilted strip.
When in addition r = 2, quilted Floer trajectories specialize to ordinary Floer trajectories.
M�(p

�; p+) enjoys the regularization and compactification properties as the moduli space of
unquilted Floer trajectories. Underlying this is the fact that the linearization of the @-operator
that definesM�(p

�; p+) satisfies domain-local elliptic estimates that can be patched together into
a global estimate, which implies that these linearized operators are Fredholm. These local elliptic
estimates result from the observation that locally in the domain, a quilted Floer trajectory can be
recast as an unquilted pseudoholomorphic curve. For instance, consider the maps eu0 : R� [0; �0]!
Mj and eu1 : R � [�0; �0 + �1] ! M1 and a point (s0; �0) in the intersection of their domains. If we
fix r 2 (0;minf�0; �1g), then the data of the restrictions eu0jB�r (s0;�0)

; eu1jB+
r (s0;�0)

is equivalent to the
data of a map

v : B+
r (s0; �0)!M0 �M1; @sv + ((�J0)� J1)@tv = 0; v((�r; r)) � L01;(60)

where B+
r resp. B�

r denote the halves of the open disk Br defined by �t � 0. (To see this, define v
by v(s; t) :=

�eu0(s;�t); eu1(s; t)�.)
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Regarding compactness, the standard approach to compactifying moduli spaces of pseudoholo-
morphic curves carries over to quilted Floer trajectories: given a sequence (u�) � M�(p

�; p+), we
may pass to a subsequence that converges to a possibly-broken quilted Floer trajectory, to which
trees of quilted bubbles may be attached. Under the present hypotheses, the only codimension-1
degeneration in a family of quilted Floer trajectories is a single breaking. As a result, the same
argument that shows that the ordinary Floer differential squares to zero applies here. Finally, an
argument similar to the one that shows that HF �(L;K) is independent of the almost complex
structure implies that HF�(L) is independent of the strip-widths. We summarize our conclusions
in the following definition-proposition.

Definition-Proposition. For any cyclic generalized correspondence L and tuple of widths �,
the quilted Floer cohomology HF �(L) is the homology of the complex (I(L); d�), where d� is the
differential that results from counting quilted Floer trajectories. 4

3.5.1. Quilted invariants. The quilted cylinders we counted to define the quilted Floer differential in
§3.5 are one instance of a general construction of pseudoholomorphic quilts, or simply quilts. Quilts
form the basis for all the functorial structures we will consider in this paper.

The domain for a quilt is a quilted surface, which is a collection of patches, i.e. Riemann surfaces
with boundary marked points, glued together by diffeomorphisms of boundary components. When
two boundary components are identified, the result is a seam. Quilted surfaces may have boundary.
For a complete definition, see [WW15, Definition 3.1].

Consider a quilted surface S; suppose that the patches are labeled by symplectic manifolds, the
seams are labeled by Lagrangian correspondences between the adjacent labels, and the boundary
components are labeled by Lagrangians. We denote the set of input marked points by Ei, and the
set of output marked points by Eo. For a single marked point e 2 Ei t Eo, we denote by Le the
cyclic generalized Lagrangian correspondence formed by the labels at this end. Now, if we fix an
element xe of the set of generalized intersection points I(Le) (see (56)) for every e 2 Ei tEo, we can
consider the associated moduli space MS

�
(xe)e2EitEo

�
. An element of this moduli space consists

of a JMk
-holomorphic map uk : Sk ! Mk for every k, the collection of which is required to satisfy

analogues of the conditions in (58): the maps satisfy seam conditions determined by the Lagrangian
correspondences; all maps have finite energy; and the limits at the marked points are equal to the
specified generalized intersection points.

By counting rigid instances of these quilts, we can produce a relative invariant �S :

�S :
O
e2Ei

HF �(Le)!
O
e2Eo

HF �(Le):(61)

The fact that this invariant descends to the homology level follows from considering the codimension-
1 degenerations in the associated moduli space MS . These are exactly Floer breakings at the
cylindrical ends, which corresponding to pre- or post-composing with the quilted Floer differential.

3.5.2. Categorification commutes with composition. An important feature of quilted Floer coho-
mology is its invariance under a move called strip-shrinking. This was established in [WW10a,
Theorem 1.0.1], in which Wehrheim–Woodward proved that under standard monotonicity hy-
potheses, and assuming also that the composition L01 � L12 is embedded, the canonical bijection
(L0 � L12) \ (L01 � L2)

'
�! (L0 � L2) \ (L01 � L12) induces an isomorphism

HF �(L0; L01; L12; L2)
'
�! HF �(L0; L01 � L12; L2):(62)

They proved this by constructing an isomorphism between the moduli spaces used to define the
differentials. That is, they identified triple and double strips of the following form:
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M0

M1

M2

L12

L01

L01 � L12

M0

M2

Figure 14.

They accomplished this via a set of domain-independent elliptic inequalities.
(62) immediately extends to a more general isomorphism of quilted invariants. Indeed, Wehrheim–

Woodward showed in [WW15, Theorem 5.1] that under the same hypotheses of (62), and assuming
that two quilts differ by shrinking a strip or annulus in the first to a curve, their associated quilted
invariants coincide.

The monotonicity and embedded-composition hypotheses that Wehrheim–Woodward imposed in
order to prove (62) are not merely technical. Indeed, when they are relaxed, there is an expected
obstruction to (62) coming from counts of “figure eight bubbles”. The reason for this is that in a
moduli space of triple strips (as on the left of Figure 14) with middle strip-width varying in [0; �0),
in the limit as strip-width approaches zero, we can see bubbling on the fused seam, like so:

Figure 15.

These quilted spheres, called figure eight bubbles and first predicted by Wehrheim–Woodward in
[WW12, §1], are the result of gradient blowup on the middle strip at a rate commensurate with
that at which the strip-width converges to 0. One rescales at a rate inverse to the gradient blowup,
which yields a quilted plane with three patches. The second author showed in his thesis [Bot15]
that the singularity at 1 can be removed, hence this plane can be completed to a quilted sphere.

Bottman–Wehrheim [BW18, §4] interpreted this bubble formation as saying that (62) should be
replaced by the formula

HF �(L0; L01; L12; L2)
'
�! HF �

�
L0; (L01 � L12; bL01;L12); L2

�
;(63)

where bL01;L12 2 CF �(L01 � L12; L01 � L12) is the result of counting rigid figure-eight bubbles with
an output marked point at the south poles of the sphere (where the two seams come together). The
notation (L01 � L12; bL01;L12) indicates that we have equipped the composed correspondence with a
bounding cochain. Bounding cochains were introduced by Fukaya–Oh–Ohta–Ono in [FOOO09a], in
order to define the Fukaya category in situations where the Lagrangians L may not satisfy �0 = 0,
i.e. there may be nonzero counts of disks with boundary on L. A bounding cochain for L is an
element b 2 CF �(L;L) satisfying the Maurer–Cartan equation

1X
k=0

�k(b; : : : ; b) = 0;(64)
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and equipping L with a bounding cochain b deforms all A1-operations involving this correspondence.
(C.f. §2.4 for more about bounding cochains, and §4 for the much larger subject of the symplectic
(A1; 2)-category that figure eight bubbling leads into.)

3.6. The definition of �#
L12

: Fuk#(M1)! Fuk#(M2). In §3.4, we contemplated from first prin-
ciples the task of defining an A1-functor �L12 : FukM1 ! FukM2. The Operadic Principle helped
us to formulate a strategy, which involved counting some sort of pseudoholomorphic maps whose
domains are disks with boundary marked points and with one interior circle. After our introduction
to quilts in §3.5, it is clear what we should do — we should count pseudoholomorphic quilts whose
domains are quilts of the following form:

M1 M2

L12L0
1

Ld1

Figure 16.

As we noted in §3.4, the obvious definition of �L12 on objects is

�L12(L1) := L1 � L12 := �M2(L1 �M1 L12):(65)

Besides the two issues mentioned in that subsection, another problem is that the tangential intersec-
tion of the seam with the boundary in the quilt just pictured leads to major analytical difficulties.
The way Ma’u–Wehrheim–Woodward dealt with this was to change their goal, and construct in-
stead a functor �#

L12
: Fuk#(M1) ! Fuk#(M2) between extended Fukaya categories (see Theorem

3.6 in §3.3).
The extended Fukaya category is tailor-made to eliminate these difficulties. Here is a sketch of its

definition, which Ma’u–Wehrheim–Woodward formulated under standard monotonicity hypotheses:

Definition 3.13. The extended Fukaya category FukM is the A1-category defined in the following
way.

� The objects of FukM are the generalized Lagrangians pt
L
�!M .

� The hom-set from L to K is defined to be the quilted Floer cochain complex CF �
�
L;K

�
.

� The A1-operations

�d
�
L0; : : : ; Ld

�
: CF �

�
L0; L1

�

 � � � 
 CF �

�
Ld�1; Ld

�
! CF �

�
L0; Ld

�
(66)

are defined by counting rigid quilts of the following form:

L0

Ld

M

Figure 17.
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4

An important aspect of this definition is that the seams at the output marked point approach the
boundary transversely, rather than tangentially. That is, in striplike coordinates near the output
marked point, the seams are parallel to the boundary, rather than asymptotic to the boundary.
This can be seen when comparing Figures 16 and 17.

While this version of the Fukaya category may appear so large as to be unmanageable, a folk
expectation is that in many cases, the embedding FukM ,! Fuk#(M) is a quasi-equivalence. Using
the extended Fukaya category in place of the ordinary one allows us to easily sidestep the first issue
in the definition of �#

L12
: instead of sending L1 to the geometric composition L1�L12, we can simply

act on L1 2 Fuk#(M1) by appending L12.
We expand on this in the following definition.

Definition 3.14. Given a correspondence L12 �M
�
1 �M2, we define �#

L12
in the following way.

� On objects, �#
L12

acts like so:

�#
L12

�
pt = N0

K01�! � � �
K(k�1)k
�! Nr =M1

�
(67)

:=
�
pt = N0

K01�! � � �
K(k�1)k
�! Nr =M1

L12�!M2

�
:

If we denote the input generalized Lagrangian by L1, then we often denote the output by�
L1; L12

�
.

� On morphisms,

�#
L12

: hom
�
L0
1; L

1
1

�

 � � � 
 hom

�
Lr�11 ; Lr1

�
! hom

��
L0
1; L12

�
;
�
Lr1; L12

��
(68)

is defined by counting rigid quilts of the following form:

L0
1

Ld1

M2

L12

M1

Figure 18.

4

Picture proof that �#
L12

satisfies the A1-relations, following [MWW18, Theorem 1.1]. In order for
�#
L12

: Fuk#(M1) ! Fuk#(M2) to define an A1-functor, it must satisfy the following relations for
any inputs x1; : : : ; xd:X

k;`

��#
L12

�
x1; : : : ; xk; �`(xk+1; : : : ; xk+`); xk+`+1; : : : ; xd

�
(69)

=
X

`;k1;:::;k`

��`
�
�#
L12

(x1; : : : ; xk1); : : : ;�
#
L12

(xk1+���+k`�1+1; : : : ; xk1+���+k`)
�
:
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This follows from considering the codimension-1 degenerations of the quilts that we counted to
define �#

L12
:

M2M1

Figure 19.

Indeed, counting the quilts on the left resp. on the right produces the left resp. right of (69). �

The strip-shrinking isomorphism in §3.5.2 translates into a homotopy of functors. Recall that
A1-functors F;G : A ! B are homotopic if they agree on objects, and if there exists a collection of
morphisms

T : hom(Xd�1; Xd)
 � � �hom(X0; X1)! hom(X0; Xd)(70)

so that the equation

(F �G)(� � � ) =
X
�T
�
� � � ; �C(� � � ); � � �

�
+

(71)

+
X
��D

�
F (� � � ); : : : ; F (� � � ); T (� � � ); G(� � � ); : : : ; G(� � � )

�
holds. (C.f. [Sei08, §1h] for more details.)

Ma’u–Wehrheim–Woodward proved in [MWW18, Theorem 1.2] that if L12 and L23 have embed-
ded composition, and if the usual monotonicity hypotheses hold, then the A1-functors �L23 ��L12
and �L12 � �L23 are homotopic. The homotopy 	L12;L23 is defined by counting quilted disks of the
following form:

M1 M2

M3

L23

L12

Figure 20.

Considering the codimension-1 degenerations of these disks leads to (71). Indeed, these degenera-
tions occur when either (i) the 12- and 23-seams collide, (ii) the 23-seam collides with the boundary,
(iii) a consecutive sequence of boundary marked points collide, or (iv) the 12- and 23-seams collide
at commensurate speeds with the boundary. We depict these degenerations below:
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Figure 21.

Counting these quilts nearly produces the four terms in (71), from left to right. The only discrepancy
is between the right-most degeneration in Figure 21 and the last sum in (71). Ma’u–Wehrheim–
Woodward resolved this by using delay functions (c.f. [MWW18, §7]). An alternate approach,
carried out in unpublished work of the second author, is to coherently augment the domain moduli
spaces in a way that exactly interpolates between the two relevant types of degenerations.

3.7. A related construction: A1-bimodules from correspondences. Given an A1-category
A , an A -module is an A1-functor A ! Ch. Here Ch is the dg-category of chain complexes of K-
vector spaces, considered as an A1-category. Unwinding the definition, an A -module M associates
to every object X 2 A a graded vector space M (X), and for every d � 1 and d-tuple of objects
X0; : : : ; Xd�1, maps

�M ;d : hom(X0; X1)
 � � � 
 hom(Xd�1; Xd)
M (X0)!M (Xd)[1� d]:(72)

These maps are required to satisfy the following hierarchy of coherences that come from the A1-
equations: X

k;`

��M ;d�`+1

�
a1; : : : ; ak; �A ;`(ak+1; : : : ; ak+`); ak+`+1; : : : ; ad;m

�
(73)

+
X
k

��M ;k

�
a1; : : : ; ak; �M ;d�k(ak+1; : : : ; ad;m)

�
= 0:

This definition should be compared with the fact that one can define a module over a ring R to
be a functor from R to the category Ab of Abelian groups, where we view R and Ab as categories
enriched in Ab.

Example 3.15. If A is an A1-category and Y is an object in A , we can define an A -module Y
by Y (X) := hom(X;Y ) and �Y ;d := �A ;d. This is called the Yoneda module associated to Y . 4

Similarly, given A1-categories A and B, we can define an (A ;B)-bimodule M to be an A1-
bifunctor (A ;B) ! Ch. This amounts to a graded vector space M (X;Y ) for every X 2 A and
Y 2 B, and multilinear maps

�M ;d;e : hom(X0; X1)
 � � � 
 hom(Xd�1; Xd)
(74)

 hom(Y0; Y1)
 � � � 
 hom(Ye�1; Ye)
M (X0; Y0)!M (Xd; Ye)

for any choice of objects X0; : : : ; Xd 2 A , Y0; : : : ; Ye 2 B. The A1-equations for M translate into
an equation similar to (73).

Example 3.16. If F : A ! B is an A1-functor, we can define an (A ;B)-bimodule M in the
following way:

M (X;Y ) := homB(F (X); Y );(75)
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�M ;d;e(a1; : : : ; ad; b1; : : : ; be;m)

:=
X

k;s1;:::;sk

��B

�
F (a1; : : : ; as1); : : : ;F (as1+���+sk�1+1; : : : ; ad); b1; : : : ; be;m

�
:

This is called the graph bimodule associated to F . 4

We can associate to a Lagrangian correspondence L12 �M
�
1 �M2 a (FukM1;FukM2)-bimodule.

This construction was first proposed by Ma’u; in the exact context, it was constructed by Gao, c.f.
e.g. [Gao18]. A variant of this construction appeared in [Woo11], and the domain moduli spaces
were studied systematically by Ma’u in [Ma’15].

Definition 3.17. Given L12 �M
�
1 �M2, we define its associated (FukM1;FukM2)-bimodule ML12

by setting ML12(L1; L2) to be CF �(L1; L12; L2) and defining the structure maps to be the result of
counting the following quilts:

L12

M1

M2

L0
1

L0
2Ls2

Lr1

Figure 22. The positions of the marked points on the boundary of this quilted
strip are not fixed.

4

The A1-equations for ML12 follow immediately from an enumeration of the codimension-1 de-
generations of the quilts we count to define the structure maps of ML12 .

The advantage of considering bimodule ML12 rather than the functors �L12 and �#
L12

is that the
quilts we use to define ML12 do not involve tangential intersections of seams, so we are not forced
to choose between working with such quilts or with the extended version of the Fukaya category.
Moreover, ML12 does not involve composing Lagrangians. In situations where �L12 can be defined on
non-extended Fukaya categories, we expect ML12 to be isomorphic to the graph bimodule associated
to �L12 .

3.8. (�L12 ;�LT12) is an adjoint pair. Consider the functors

Fuk#(M1)

�#
L12 ..

Fuk#(M2)

�#
L
12T

nn(76)

associated to a Lagrangian correspondence and its transpose. These functors form an adjoint pair.
(To our knowledge, this statement does not appear in Wehrheim–Woodward’s work.)

According to [AS19, Definition 2.14], a pair

C
L ))
D

R

hh(77)

of A1-functors is adjoint if there is a natural isomorphism of C-D-bimodules

homD(L(�);�)
'
�! homC(�; R(�)):(78)
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In the case of the putative adjunction (76), such a natural isomorphism includes a collection of
morphisms

CF �(Ld�11 ; Ld1)
 � � � 
 CF
�(L0

1; L
1
1)
 CF

�(L0
2; L

1
2)
 � � � 
 CF

�(Le�12 ; Le2)
 CF
�((L0

1; L12); L
0
2)

(79)

#

CF �(Ld1; (L
e
2; L

T
12)):

Such an isomorphism is given by counting quilts of the following form.

L0
1

L0
2Ls2

Lr1

L12M2M1

Figure 23. Again, the positions of the marked points on the boundary of this
quilted strip are not fixed.

3.9. Lagrangian correspondences from symplectic reduction, and an example. In this
subsection, we will illustrate how the compatibility of categorification with geometric composition
of Lagrangian correspondences can be used to effectively compute Floer cohomology. Since we will
use group actions to produce our illustrative examples, we need to introduce the right notion of
quotients in symplectic topology: the starting point is to consider a compact Lie group G acting
smoothly, and by symplectomorphisms, on a symplectic manifold (M;!). By differentiating this
action, we obtain a map from the Lie algebra g to the space of vector fields on M ; note that this
map is automatically G-equivariant when the domain is equipped with the adjoint action. As we
introduced in §2.1, the symplectic form assigns to each function on M its Hamiltonian vector field,
and we say the datum of a Hamiltonian action of G on M consists of an equivariant lift:

(80)
C1(M;R)

g C1(M;TM):

In order to record this data more efficiently, it is convenient to express it in terms of the dual Lie
algebra g�:

Definition 3.18. The moment map of a Hamiltonian G-action is the map

(81) � : M ! g�

which is characterized by the equation

(82) d�X = �X#!;

for each vector field X 2 g, with associated vector field X# on M . 4

While this definition may seem intimidating at first, it is simply the natural generalization to a
general G of the action of R on a symplectic manifold by the flow of a Hamiltonian vector field.

Example 3.19. Consider the action of Tn on CPn by rotating the latter n homogeneous coordinates:�
ei�1 ; : : : ; ei�n

�
� [z0 : � � � : zn] :=

�
z0 : e

i�1z1 : � � � e
i�nzn

�
:(83)
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Equip CPn with the normalized Fubini–Study form ! := �!FS , where � is chosen so that ! has
monotonicity constant 1, i.e. so that the class of the symplectic form agrees with the first Chern
class. This action is Hamiltonian, with moment map given by:

� = (�1; : : : ; �n) : CP
n ! Rn; �([z0 : � � � : zn]) := �

1

2

�
jz0j

2; : : : ; jznj
2
�

jz0j2 + � � �+ jznj2
:(84)

4

Atiyah and Guillemin–Sternberg’s Convexity Theorem [Ati82, GS82] asserts that the image of the
moment map of a Hamiltonian torus action is the convex hull of the images of the fixed points, and
in particular is always a convex polytope. In the case of the above standard action on projective
space, this image is the simplex spanned by the origin and the rescaled standard basis vectors
�1

2ei (the unfortunate scaling is a consequence of our choice of monotonicity constant and of the
conventions for Hamiltonian vector fields).

With this necessary groundwork in place, we can define the symplectic reduction M==G and the
associated correspondence M==G

�G�!M associated to a Hamiltonian action of a compact Lie group
G on (M;!M ), with moment map �.

Definition 3.20. If a is fixed by the coadjoint action, and G acts freely on ��1(a), the symplectic
reduction or symplectic quotient at level a is the quotient

(85) M==G := ��1(a)=G;

equipped with the symplectic form !M==G that is characterized by ��!M==G = ��!M . The moment
correspondence is the Lagrangian

�G := f([p]; p) 2M==G�M j p 2 ��1(a)g �M==G�M�:(86)

4

The fact that �G is Lagrangian is a consequence of the defining property of !M==G.

Example 3.21 (Theorem 6.2.1, [WW10b]). In this example, which appears as a theorem in
[WW10b], we show how categorification-commutes-with-composition can be used to efficiently com-
pute the self-Floer cohomology of the Clifford torus

TnCl :=
�
[z0 : � � � : zn]

�� jz0j = � � � = jznj	 � CPn;(87)

with its standard spin structure.
We begin by introducing a collection of Lagrangian correspondences between complex projective

spaces, which all arise in the fashion of Definition 3.20. Given n � 1, we loosely follow [WW10b]
and define correspondences �A for A ( f1; : : : ; ng:

�A := CPn�#A
�A�! CPn;(88)

�A :=
n�

[zj ]j2f0;:::;ngnA; [z0 : � � � : zn]
� ��� jzkj2 = 1

n+1

nX
j=0

jzj j
2 8 k 2 A

o
:

Note that �A is the correspondence that results from taking the symplectic quotient CPn==T#A,
where T#A : CPn ! CPn is the restriction of the standard action of Tn (on the latter n homogeneous
coordinates) to the circle factors corresponding to the indices in A.

In fact, one can use strong induction to show HF �(TnCl; T
n
Cl) ' HF �(Tn�1Cl ; Tn�1Cl )
2, hence

HF �(TnCl; T
n
Cl) ' Z

2n . In the following figure, we illustrate how we can prove the induction step in
the case of HF �(T 3

Cl; T
3
Cl) by applying the strip-shrinking isomorphism.
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HF �

 

HF �

 

HF �

 

HF �

 
HF �

 



!

!

!

!!

T 3
Cl T 3

Cl

S1Cl �(2;3) �T1 T 2
Cl

S1Cl T 1
Cl � T

2
Cl T 2

Cl

S1Cl S1Cl T 2
Cl T 2

Cl

Figure 24. These four expressions are isomorphic, thus identifying HF �(T 3
Cl; T

3
Cl)

with HF �(S1Cl; S
1
Cl)
HF

�(T 2
Cl; T

2
Cl). The first two isomorphisms are essentially the

strip-shrinking isomorphism (62). The third isomorphism is straightforward. 4

3.10. The continuation map approach. In [LL13], Lekili–Lipyanskiy demonstrated another
method for proving categorification-commutes-with-composition results in quilted Floer theory.
They were motivated by Lekili’s work on identifying Perutz’s Lagrangian matching invariants with
Ozsváth–Szabó’s Heegaard Floer invariants for 3-manifolds equipped with “broken fibrations” over
S1, which requires working in the strongly negatively monotone case. (This project of Lekili’s
resulted in [Lek13].) Lekili–Lipyanski’s main result is the following variant of the strip-shrinking
isomorphism (62).

Theorem 3.22 (Paraphrase of Theorem 3, [LL13], in the corrected form described in [LL17]). Fix
closed symplectic manifolds M0;M1;M2 of dimensions d0; d1; d2. Fix compact Lagrangians

L0 �M0; L01 �M
�
0 �M1; L12 �M

�
1 �M2; L2 �M2(89)

such that L01 and L12 have embedded composition. Suppose that the symplectic manifolds and
Lagrangians are negatively monotone, and satisfy a certain index inequality. Then the canonical
bijection (L0 � L12) \ (L01 � L2)

'
�! (L0 � L2) \ (L01 � L12) induces an isomorphism

HF �(L0; L01; L12; L2)
'
�! HF �(L0; L01 � L12; L2):(90)

�

Lekili–Lipyanskiy construct the isomorphism (90) using a continuation map. Specifically, they count
quilted strips of the following form, which are known as Y-maps:
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M0

M2

M1

L12

L01

L01 � L12

Figure 25. The Y-quilt.

3.11. Fukaya’s alternate approach to constructing composition (bi)functors. In [Fuk17],
Kenji Fukaya built on Lekili–Lipyanskiy’s work to construct functors

�L12 : FukM1 ! FukM2(91)

in the general compact setting, and proved that they are compatible with compositions.
The essential difficulty in establishing such a result lies in understanding how to extract the

desired algebraic structures from the compactification of the moduli space of Y-quilts: in virtual
codimension 1, the possible breakings take place at the ends, along the seams, or at the singular
point where all three seams meet. The breakings at the end correspond to differentials in Floer
complexes, and those along the seams to the curvature of each of the Lagrangian correspondences,
which means that it remains to account for breaking at the singular point. The corresponding
bubble turns out to be a cylinder with three parallel seams, labelled by L01, L12, and the geometric
compositions L01 � L12, like so:

L01

L01 � L12

M0

M1

M2

L12

Figure 26.

This cylinder exactly corresponds to the differential in the quilted Floer complex

(92) CF �(L01; L12; L01 � L12):

The naive expectation is that, since the fibre product of L01�L12 with L01 �L12 over M0�M1�
M1�M2 is exactly a copy of L01 �L12, the fundamental class of this manifold should define a cycle
in the Floer complex of (92), and that inserting this cycle at the Y-point gives rise to the desired
map associated to the Y-quilt.

Wehrheim–Woodward worked in a setting where every Lagrangian L has the property that �0 = 0,
i.e. the count of rigid disks on L equals 0, and the topological assumptions alluded to in Theorem 3.22
are imposed specifically in order to ensure that this breaking does not occur for the moduli spaces
that are required in the construction of the functor. In the general compact setting, in which
the Lagrangians are moreover only assumed to be immersed, this is no longer the case. For the
particular problem at hand, the differential on the quilted Floer complex may not square to 0, so
that it does not even make sense to consider cycles. The proper algebraic structure is that of a curved
A1-trimodule, over the curved Floer algebras of the three Lagrangians: the equation d2x = 0 is
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replaced, in this context, by the equality between d2 and the result of acting on x by the curvatures
of the Lagrangians L01, L12, and L01 � L12.

Fukaya therefore needed to consider Lagrangians L equipped with bounding cochains (c.f. §3.5.2).
Constructing a functor associated to the Y-quilt thus amounts to solving the following problem:

Theorem 3.23 (Paraphrase of Theorem 1.5 and Proposition 8.11, [Fuk17]). Fix immersed La-
grangians L01 � M�

0 � M1 and L12 � M�
1 � M2 equipped with bounding cochains b01; b12, and

assume that the fiber product L01 � L12 is cut out transversely, with clean self-intersections. There
is a bounding cochain on L01 � L12 which is characterised, up to gauge equivalence, by the property
that the Yoneda module of L01 �L12 is quasi-isomorphic to the module (over the Fukaya category of
M�

0 �M2) associated to the composition of the correspondences L01 and L12. �

Remark 3.24. Since classical techniques do not suffice to even define the Fukaya category in the
general compact setting, Fukaya relies heavily on the techniques developed in [FOOO09b], whose
exposition goes beyond what we can hope to achieve in this paper. 4

Returning to the discussion above, Fukaya then shows in [Fuk17, Theorem 9.1] that the choice
of bounding cochain on L01 � L12 fixed in Theorem 3.23, combined with the study of Lekili and
Lipyanki’s Y-map, determine a homotopy equivalence between the functors associated to the geo-
metric composition, and the composition of functors associated to L01 and L12:

(93)
FukM0 FukM1

FukM2:

Fukaya then upgrades this result to prove the following result, which constructs a composition
bifunctor between Fukaya categories.

Theorem 3.25 (Paraphrase of Theorem 1.8, [Fuk17]). The quasi-equivalence of Theorem 3.23
extends to a filtered A1-bifunctor�

Fuk(M�
0 �M1);Fuk(M

�
1 �M2)

�
! Fuk(M�

0 �M2);(94)

which is associative up to homotopy in the sense that there is a prescribed homotopy in the following
square of A1-trifunctors:
(95)�

Fuk(M�
0 �M1);Fuk(M

�
1 �M2);Fuk(M

�
2 �M3)

� �
Fuk(M�

0 �M1);Fuk(M
�
1 �M3)

�
�
Fuk(M�

0 �M2);Fuk(M
�
2 �M3)

�
Fuk(M�

0 �M3):

�

Fukaya’s proof of the first part of the above result does not use any significantly new geometric
input beyond the moduli spaces in Figure 26 (with additional marked points along the seams). On
the other hand, the proof of the second part — i.e. the homotopy in Diagram (95) — uses a new
type of quilted surface, lying on a genus-0 curve with four punctures, as shown in Figure 27.
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L01 � L12 � L23

L01

L01 � L12

L12 � L23

L23

L12

M2
M0

M3

M1

Figure 27.

Heuristically, the appearance of the quilted surface in Figure 27 can be justified as follows: given
a triple L01, L12, and L23 of Lagrangian correspondences, which are in generic position, one defines
a Lagrangian correspondence Lij for each pair 0 � i < j � 3 by geometric composition. Now, each
end of the surface in Figure 27 is labelled by a triple of integers i < j < k, and carries parallel
seams to which the Lagrangian correspondences Lij , Ljk, and Lik. As an outcome of Theorem
3.23, a choice of bounding cochains on the initial three Lagrangians L01, L12, and L23 determines
a bounding cochain on each Lagrangian Lij , and this choice is such that the quilted Floer group

(96) CF �(Lij ; Ljk; L
T
ik)

admits a canonical cycle representing the equivalence between Lik and the composition of Lij with
Ljk (we call this cycle the unit). The essential point in showing that Figure 27 induces the desired
equivalence is to compute that the count of constant pseudoholomorphic quilts with the given seam
conditions, with the unit as input in three of the ends and as output at the third end, is exactly
one, which is analogous to the fact that the unique constant disc with four marked points in fixed
conformal position, passing through any point on a Lagrangian submanifold, is regular. This fact
ultimately reduces to the maximum principle for holomorphic functions, which shows that any
holomorphic function on a disc, with value in Cn, and with boundary condition on Rn, must be
constant.

Remark 3.26. In §4, we explain an alternative conjectural approach to reprove these result, following
the geometric ideas initiated by Wehrheim–Woodward. Fukaya’s proof of Theorem 3.23 amazingly
succeeds in bypassing all the analytic and geometric difficulties in the study of figure eight bubbling,
and ultimately reduces it to an algebraic lemma about curved bimodules between curved A1-
algebras. We expect that the complete functoriality package that we discuss in §4 can also be
implemented in Fukaya’s approach, but that doing so would require complicated arguments in the
theory of curved algebras, which are further removed from the geometry of Floer theory than the
quilted approach we discuss. 4

4. The symplectic (A1; 2)-category Symp

Wehrheim–Woodward’s package of A1-functors and homotopies

�#
L12

: Fuk#(M1)! Fuk#(M2); 	#
L12;L23

: �#
L23
� �#

L12

'
�! �#

L12�L23
(97)
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represented a major step toward a notion of functoriality for the Fukaya category, but it faces
fundamental restrictions because Wehrheim and Woodward only considered settings in which figure
eight bubbles are a priori excluded. This leads to an obvious question: is there a single algebraic
framework that incorporates the composition operations in the Fukaya category, functors �

L#12
,

the homotopies  L12;L23 , and a hypothetical algebraic operation defined by counting figure eight
bubbles?

In this section, we describe a project of the second author and his collaborators which aims to
achieve this goal and additionally constructs a coherent package for the functoriality of the Fukaya
category, incorporating higher homotopies between the composition of the maps in (97). This
package is called the symplectic (A1; 2)-category, denoted Symp. It is a chain-level version of a
2-category constructed by Wehrheim–Woodward in [WW10a].

We begin with the observation that a number of pseudoholomorphic maps and quilts can be
subsumed as instances of a more general family of quilts, called witch balls. Indeed, consider the
pseudoholomorphic quilts depicted in the following figure, which we encountered while discussing
the Fukaya category (§2.2), the A1-functor �L12 : FukM1 ! FukM2 (§3.4), the A1-homotopy
	L12;L23 : �L23 � �L12 ! �L12�L23 (§3.6), and strip-shrinking (§3.5.2), respectively.

L1
1

L0
1

M1
M2

L12

x1

x3
L3

L0

L2

x2

L1

M

M1

M0

M2

L01 L12

L1
1

L0
1

x

M1M2
M3

Figure 28.

Each of these quilts is an instance of a witch ball, which is a quilt whose domain is depicted in the
following figure (borrowed from [Bot19a, p. 2]).

Figure 29. Two equivalent views of the domain of a witch ball. On the left, we
depict R2, divided into patches by vertical lines with marked points. On the right,
we compactify R2 to S2; the lines become circles that intersect at the south pole.

The domain moduli spaces of witch balls are called 2-associahedra, and are denoted 2Mn or Wn

depending on whether we are referring to the stratified topological space or to the poset of strata;
the indexing set n is a sequence of natural numbers that records the number ofpoints on each seam.

The symplectic (A1; 2)-category Symp is the structure that emerges from counting witch balls.
We will now give a blueprint for this structure. After that, we will explain what portions of this
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structure have been defined and what parts remain to be constructed. In the subsequent subsections,
we will delve into the details of the components of Symp.

Blueprint for Symp, and a roadmap of which parts have and have not been completed.
Symp is an (A1; 2)-category consisting of the following data:

� The category Symp1, whose objects are symplectic manifolds (M;!) and where
hom(M1;M2) is the set of Lagrangian correspondences M1

L12�!M2.

� For each pair of 1-morphisms, i.e. Lagrangian correspondences M1
L12;L012�! M2, the Floer

cochain complex CF �(L12; L
0
12) of 2-morphisms from L12 to L012.

� For each r � 1 and m 2 Zr�0 n f0g, for each sequence M0; : : : ;Mr, and for each collection of
sequences of Lagrangian correspondences

L0
01; : : : ; L

m1
01 �M

�
0 �M1;

: : : ;

L0
(r�1)r; : : : ; L

mr

(r�1)r �M
�
r�1 �Mr;

a composition map

(98) 2cm : Csing
� (2Mn)


O
1�i�r;
1�j�mi

CF �
�
Lj�1(i�1)i; L

j
(i�1)i

�
�! CF �

�
L0
01 � � � � � L

0
(r�1)r; L

m1
01 � � � � � L

mr

(r�1)r

�
:

4
We now describe the current status of progress toward the definition of Symp.
� As we will explain in §§4.1–4.2, the second author defined in [Bot19a] the 2-associahedra
2Mn in terms of two equivalent models W tree

n ' W br
n =: Wn. He established the basic

combinatorial properties of the 2-associahedra, in particular thatWn is an abstract polytope
with a recursive structure. Next, in [Bot19b], the second author constructed the moduli
spaces 2Mn of witch curves and established their basic topological properties. These spaces
will form the domain spaces for the maps whose counts define Symp. In [BO19], Bottman–
Oblomkov upgraded the topological structure on 2Mn to a smooth structure — specifically,
they equipped 2Mn with the structure of a smooth manifold with g-corners in the sense of
[Joy16].
� As we will explain in §4.3, Bottman and Carmeli defined in [BC18] the notion of a relative
2-operad. They showed that

�
2Mn

�
forms a 2-operad relative to

�
M r

�
, and used this to

define an (A1; 2)-category to be a 2-category-like object in which there is an operation on
2-morphisms associated to every singular chain on 2Mn. (M r is the topological instantiation
of the (r � 2)-dimensional associahedron, which we referred to as Kr earlier in this paper.)

Depending on the particular regularization theory, one might hope for a definition of Symp
in which operations on 2-morphisms are associated to cellular chains on 2Mn. This requires
a nontrivial modification to the definition of an (A1; 2)-category. The second author is
currently developing such a modification.
� As we will describe in §4.4, Bottman and Wehrheim established two basic analysis results
necessary for it to be conceivable to define a curve-counting theory via witch balls. Specifi-
cally, Bottman proved a removal-of-singularity theorem in [Bot20] via a collection of width-
independent elliptic inequalities, and Bottman and Wehrheim built on this in [BW18] to
establish a Gromov compactness result for moduli spaces of witch balls.
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� The major step toward Symp that has not yet been completed is the construction of a regu-
larization theory for moduli spaces of witch balls. While a number of regularization theories
for moduli spaces of pseudoholomorphic curves exist, none of these theories currently allow
for families of quilts involving colliding seams. The second author and Katrin Wehrheim are
currently working on an approach to this task via the theory of polyfolds.

In addition, there is the issue of Lagrangian correspondences that do not have transversely-
defined composition, and those that do, but for which the composition is immersed, rather
than embedded.

Remark 4.1. Here, we describe Symp1 as an ordinary category, which implies that composition of
1-morphisms L12 � L23 is strictly associative. To carry out the construction of Symp1 in generality,
this will need to be relaxed to allow homotopy-associative composition. The reason for this is the
figure-eight bubbling discussed in §3.5.2. 4

4.1. The domain moduli spaces of witch curves. The Operadic Principle described in §2.2
tells us that to understand the structure that results from counting witch balls, we must first define
and understand the relevant compactified domain moduli spaces. These moduli spaces are indexed
by a non-negative integer r � 1 which records the number of vertical lines appearing in the left part
of Figure 29, and a sequence n 2 Zr�0 n f0g of integers which records the number of marked points
on each vertical line.

There is an open moduli space 2Mn associated to these data that parametrizes witch curves, i.e.
configurations of vertical lines in R2 equipped with marked points; we identify two configurations
if they differ by an overall translation and positive dilation. This moduli space is not compact,
because points on a single line can collide, or lines can collide. We compactify 2Mn to a space
2Mn of nodal witch curves like so: when a collection of lines collide, then wherever the marked
points on these lines are as this collision happens, we bubble off another configuration of lines and
points. This compactified moduli space is called the n-th 2-associahedron. To define 2Mn, we need
to specify the allowed degenerations, and this is where the 2-associahedra come in: for r � 1 and
n 2 Zr�0 n f0g we define the 2-associahedron Wn to be the poset of degenerations in 2Mn.

There are two combinatorial models for Wn, which take the form of isomorphic posets W tree
n and

W br
n . These models are completely analogous to the models Ktree

r and Kbr
r for the associahedra:

� W tree
n consists of tree-pairs Tb ! Ts, where Tb resp. Ts are planted trees called the bubble

tree resp. seam tree. When identifying the strata of 2Mn with the elements of W tree
n , it

is straightforward to go from a tree of spheres to the bubble tree Tb: Tb has a cluster of
solid edges for every sphere, where the number of solid edges corresponds to the number of
seams on that sphere. Tb has a dashed edge for every attachment point and marked point
in the tree of spheres. The seam tree Ts keeps track of how the seams have collided — and,
importantly, enforces certain coherences, as we will explain below.

� W br
n consists of 2-bracketings. Roughly, a 2-bracketing encodes the data of a witch tree by

including a 2-bracket for every sphere. For each sphere, the corresponding 2-bracket contains
the information of all the lines and marked points that are either on that sphere, or on a
sphere farther from the root.

We illustrate this in the following figure (borrowed from [Bot19a, p. 3]): on the left is the compact-
ified moduli space 2M200, and in the middle and on the right are two presentations of W200. These
figures are not intended to be understandable just yet, but they will serve as points of reference as
we describe 2Mn, W tree

n , and W br
n in more detail.
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Figure 30.

In the current subsection, we will focus on the domain moduli spaces 2Mn. In §4.2, we will return
to the posets W tree

n ;W br
n .

Remark 4.2. We defined 2Mn to be a moduli space of quilted spheres, but in Figure 30, we have
labeled its strata by representative quilted disks. The reason is that an element of 2Mn can be
identified with a quilted disk, by excising the left-most patch of the quilted sphere; moreover, when
n is of the form n = (n1; 0; : : : ; 0), this extends to the boundary to yield an identification of an
element of 2Mn with a nodal quilted disk. 4

We begin by being describing in 2Mn in more detail, while still falling short of providing a
complete description, which will require the definitions of W tree

n and W br
n (but to understand the

definitions of these posets, it is helpful to first have some intuition about 2Mn!). First, we record
the definition of its interior, 2Mn:

2Mn :=

�
`1; : : : ; `r vertical lines in R2 ordered from left to right,
pi1; : : : ; pini points on `i; ordered from top to bottom

��
R2oR>0

;(99)

where these lines and points are required to be distinct and where we identify two configurations
that differ by an element of the group R2 o R>0 of automorphisms of the plane generated by
translations and positive dilations. 2Mn is not compact, because lines or points can collide. To
define a theory by counting witch balls, we therefore need to compactify this domain moduli space.
Bottman Gromov-compactified 2Mn to form 2Mn, according to the following paradigm:

When a marked points pij collides with either another marked point pi0j0 or with a
line `i0 , we resolve this collision by “bubbling off” a new copy of R2, which we obtain
by zooming in at the collision point c at a rate commensurate to the slowest collision
occurring at c. If in this zoomed-in view there is still a collision, we resolve this
collision in the same way, and so on inductively.

A detailed example of this compactification process is given in [Bot19b, §1.1]. We summarize this
example now. For � 2 (0; 12), take the following configuration in 2M10010 (pictured with � = 2=5):
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0

0 1�2

�2 � �3 + �4�2 � �3

Figure 31.

As � ! 0, all lines except the right-most one collide, and the two marked points also collide. The
limit is defined by inductively rescaling on the marked points involved in collisions, according to
the paradigm in italics above. We depict this limit below:

Figure 32. Two equivalent depictions of the limit. On the left, we have a tree of
configurations in R2. On the right, we have a tree of configurations in S2.

A subtle but important aspect of 2Mn is that unlike M r, the strata of 2Mn do not decompose
as products of lower-dimensional instances of 2Mn! We will approach this through the example of
2M200, as in Figure 30. Specifically, we consider the upper-right stratum of that pentagon, which
corresponds to the degeneration where the three lines collide commensurately. We see that we can
naturally identify the codimension-1 stratum resulting from degenerations of this form with the
locus inside 2M2 � 2M100 � 2M100 where the positions of the lines on the two bubbled-off screens
agree, up to translation and dilation. Equivalently, if we denote by � : 2M100 ! M3 the forgetful
map which remembers the x-positions of the lines, we have identified this stratum with the fiber
product 2M2 � 2M100 �M3

2M100. We will return to this aspect of the 2-associahedra in §4.3.
The full construction of Symp will depend on the choice of an abstract perturbation scheme. At

least one of these schemes — based on the polyfold theory developed by Hofer, Wysocki, Zehnder,
and Fish — requires smooth structures on the domain moduli spaces. In the case of Symp, the
relevant domain moduli spaces are the spaces 2Mn of witch curves. It turns out that endowing 2Mn

with a smooth structure is a nontrivial proposition, because 2Mn cannot be a smooth manifold with
boundary and corners in a way compatible with its natural stratification. The first example where
we can see this is in the 3-dimensional space 2M40 corresponding to two seams, one of which carries
four marked points. Consider the portion of @

�
2M40

�
depicted below:
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Figure 33.

This configuration cannot appear in a 3-dimensional manifold with boundary and corners, because
2M40 is not locally diffeomorphic to [0; 1)3 at the corner depicted here.

Nevertheless, one can equip 2M40 with a smooth structure. To approach this, we recall the main
result from [BO19]. This result is concerned with 2M

C

n, which is a “complexification” of 2Mn: 2M
C

n

is a compactified moduli space of configurations of vertical complex lines in C2, up to complex
dilations and translations.

Theorem 1.1, [BO19]. 2MC

n is a proper complex variety with toric singularities. There is a forgetful
morphism � : 2M

C

n ! M0;r+1, which on the open locus sends a configuration of lines and points to
the positions of the lines, thought of as a configuration of points in C. �

Bottman–Oblomkov’s result has a direct implication for 2Mn. This implication did not appear in
their paper, but it is a straightforward translation from the complex to the real picture.

Corollary of Theorem 1.1, [BO19]. There is a canonical way to endow 2Mn with the structure
of a (compact) manifold with g-corners, in the sense of [Joy16]. �

A manifold with g-corners (short for “generalized corners”) can be thought of as a manifold with a
smooth structure (in particular, with a well-behaved notion of tangent bundle) that is modeled on
polytopes that are not necessarily simple. Alternately, one can think of a manifold with g-corners
as the differential-topological, positive-real analogue of a toric variety.

Remark 4.3. An immediate consequence of this corollary is that 2Mn is a topological manifold
with boundary. In fact, if X is a compact topological manifold with boundary whose interior is
homeomorphic to Rk, then X is a closed ball. It follows that 2Mn is homeomorphic to Bjnj+r�3. 4

4.2. The combinatorial models W tree
n and W br

n . In §4.1, we described the domain moduli spaces
2Mn for Symp, which parametrize witch curves. The precise definition of 2Mn proceeds by first
defining the stratum corresponding to each element ofWn, and then defining a topology on the union
of these strata by formulating a notion of a “Gromov-convergent sequence”. In this subsection, we
will describe the equivalent posets W tree

n ' W br
n =: Wn. The precise definitions of W tree

n and W br
n

can be found in Definitions 3.1 and 3.11 of [Bot19a]. These definitions are rather technical and by
now are well-established, so we will limit ourselves to sketching them.

We begin withW tree
n . Recall from §2.3 thatKtree

r consists of stable rooted planar trees. Moreover,
recall that there is a correspondence between Ktree

r and the combinatorial type of a nodal tree of
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disks: one replaces each disk by a vertex, adds an interior edge for every nodal point, and adds an
exterior edge for every boundary marked point. W tree

n is an analogous construction, but where we
are summarizing the combinatorial information of a witch curve instead of a nodal tree of disks. We
must now incorporate data that record the sphere components, the seams, the attachment point
between spheres, and the marked points that appear on seams. Given a witch curve, we translate
it into a tree-like object by doing the following:

� Replace a sphere with k seams by a corolla of k solid edges (i.e. a vertex with k attached
edges).
� If the south pole of a sphere is attached to the i-th seam of another sphere, add a dashed
edge connecting the bottom point of the first sphere’s corolla to the top point of the i-th
solid edge in the second sphere’s corolla.
� If a sphere has j input marked points on its i-th seam, add an exterior dashed edge attached
to the top point of the i-th solid edge in the sphere’s corolla.

A naive definition of W tree
n might allow for all trees whose edges alternate between solid and

dashed, subject to a suitable stability condition. However, this would include many trees that do
not correspond to degenerations in 2Mn. The key to defining trees corresponding to legitimate
degenerations is to introduce an auxiliary tree, the seam tree; to disambiguate, we refer the tree
we had been considering as the bubble tree. The seam tree is a stable rooted planar tree, which
tracks hown the seams have collided. It enforces the necessary coherences in the bubble tree. In
particular, the seam tree is necessary in order to produce a poset of degenerations which has the
recursive structure described in §4.1, where strata naturally decompose as products of fiber products.

Sketch definition of W tree
n , the model for Wn consisting of stable tree-pairs. W tree

n is the
set of stable tree-pairs of type n, where the latter is a datum 2T = Tb

f
! Ts.

� The bubble tree Tb is a planar rooted tree whose edges alternate between solid and dashed.
We impose a stability condition which corresponds to a fact that a screen with one seam
has finitely many automorphisms if and only if the seam has at least two marked points,
and a screen with two or more seams has finitely many automorphisms if and only if there
is at least one marked seam.
� The seam tree Ts is a planar rooted tree.
� The coherence map is a map f : Tb ! Ts of trees, which contracts all dashed edges and all
solid corollas with only a single solid edge. Every solid corolla with k � 2 edges is mapped
bijectively by f to a corolla in Ts with k edges. 4

The middle pentagon in Figure 30 illustrates all stable tree-pairs in the case n = (2; 0; 0).

Next, we turn to the model W br
n , which a posteriori is equivalent to W tree

n . Recall from §2.3 that
Kbr
r consists of legal bracketings of 1; : : : ; r. Moreover, recall that there is a correspondence between

Kbr
r and the combinatorial type of a nodal tree of disks: for every disk, one tabulates all the input

marked points that are either on this disk or on a disk further from the output marked point, and
includes a bracket containing the corresponding numbers. We define W br

n in an analogous fashion.
Given a witch curve, we translate it into a 2-bracketing by doing the following:

� Label the seams from left to right by 1; : : : ; r. Label the marked points on the i-th seam
from bottom to top by 1; : : : ; ni.
� Consider one of the sphere components C in the witch curve we are considering. Define B
to be the subset of f1; : : : ; rg corresponding to the seams that appear either on C or on a
sphere component further from the output marked point than C. Similarly, for every i 2 B,
define 2Bi to be the subset of f1; : : : ; nig corresponding to the input marked points that

46



appear either on C or on a sphere component further from the output marked point than
C.
�
B; (2Bi)i

�
is the 2-bracket corresponding to C.

� Define the resulting 2-bracketing to be the collection of 2-brackets corresponding to sphere
components in the given witch curve, together with the information of the order in which
bubbles appear along each seam.

In fact, the resulting 2-bracketing also contains the information of the fashion in which the seams
collided, which takes the form of a bracketing in Kbr

r . This information is redundant unless there
are collisions of unmarked seams.

Sketch definition of W br
n , the model for Wn consisting of 2-bracketings. A 2-bracket of

n is a pair 2B = (B; (2Bi)) consisting of a 1-bracket B � f1; : : : ; rg and a consecutive subset
2Bi � f1; : : : ; nig for every i 2 B such that at least one 2Bi is nonempty. W br

n is the set of 2-
bracketings of n. The latter is a pair (B; 2B), where B is a bracketing of r and 2B is a collection
of 2-brackets of n (together with partial orders reflects the order in which bubbles appear on seams)
that satisfies these properties:

� The 2-brackets in 2B are nested, in the sense that if two have nonempty intersection, one
must contain the other. Moreover, if

�
B; (2Bi)i

�
is a 2-bracket in 2B, then B must be an

element of B.
� We impose technical conditions that are too complicated to state precisely here, but which
reflect (i) the fact that marked points can only appear on unfused seams and (ii) the natural
coherences amongst partial orders. 4

The right pentagon in Figure 30 illustrates all 2-bracketings in the case n = (2; 0; 0).
Finally, we summarize the properties of the 2-associahedra.

Theorem 4.1, [Bot19a]. For any r � 1 and n 2 Zr�0 n f0g, the 2-associahedron Wn is a poset, the
collection of which satisfies the following properties:

(abstract polytope) dWn, which denotes Wn with a formal, minimal element of dimen-
sion �1, is an abstract polytope of dimension jnj+ r � 3.
(forgetful) Wn is equipped with a forgetful map � : Wn ! Kr, which is a surjective map
of posets.
(recursive) Each closed face of Wn decomposes as a canonical way as a product of fiber
products of lower-dimensional 2-associahedra, where the fiber products are with respect to the
forgetful maps �. �

Remark 4.4. The (abstract polytope) property says thatWn shares several combinatorial prop-
erties with face posets of convex polytopes of dimension jnj + r � 3. It is not directly relevant to
the construction of Symp, but it does direct our intuition.

The forgetful map � : Wn ! Kr has simple descriptions in both models: �tree : W tree
n ! Ktree

r

remembers only the seam tree, while �br : W br
n ! Kbr

r remembers the underlying 1-bracketing. 4

4.3. Relative 2-operads and (A1; 2)-categories. As we described in §2.2, the associahedra form
an operad in the category of topological spaces. Since the structure maps of the Fukaya category
are defined by counting nodal disks, the Fukaya category is an A1-category.

We might hope that a similar story holds for Symp. However, the collection of spaces�
2Mn

�
r�1;n2Zr

�0nf0g
does not form an operad. At the most basic level, these spaces are not in-

dexed by the positive integers. A more nontrivial reason that these domain moduli spaces do not
form an operad is that, as we explained in §4.1, the strata of 2Mn decompose as products of fiber
products of lower-dimensional 2-associahedra. In fact, 2-associahedra form a 2-categorical version
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of an operad, called a relative 2-operad. This structure was defined by Bottman–Carmeli in [BC18]
with the specific example of

�
2Mn

�
in mind.

Definition-Proposition 2.3, [BC18]. The 2-associahedra (2Mn), together with the forgetful
maps � : 2Mn !M r and certain of the structure maps �2T , form a 2-operad relative to the realized
associahedra (M r). 4

The relative 2-operadic structure of the 2-associahedra consists of the forgetful maps from the 2-
associahedra to the associahedra noted in Theorem 4.1 from [Bot19a] (mentioned above), along with
the structure maps established in the same theorem from products of fiber products of 2-associahedra
to other 2-associahedra. We illustrate one of these structure maps in the case of 2M300 below (figure
borrowed from [Bot19a, p. 6]):

W200W100 �K3�W2 ,! W300

Figure 34.

The relative 2-operadic structure of the 2-associahedra enabled the second author and Carmeli to
define in [BC18] the notion of an (A1; 2)-category. When reading the following definition, one
should keep in mind the primordial relative 2-operad,

��
M r

�
;
�
2Mn

��
.

Definition 4.5. A (nonsymmetric) relative 2-operad in a category C with finite limits is a pair�
(Pr)r�1; (Qm)m2Zr

�0nf0g;r�1

�
;(100)

where (Pr)r�1 is a nonsymmetric operad in C, and where (Qm) � C is a collection of objects together
with a family of structure morphisms

�m;(nai ) : Qm �
Y

1�i�r

PsiY
1�a�mi

Qnai ! QP
a n

a
1 ;:::;
P

a n
a
r
;(101)

r; s1; : : : sr � 1; m 2 Zr�0 n f0g; n
a
i 2 Z

si
�0 n f0g:

(Here the subscript in QP
a n

a
1 ;:::;
P

a n
a
r
denotes the concatenation of

P
a n

a
1,
P

a n
a
2, etc., which is a

vector of length
P

i si, and the superscript Psi indicates that we are taking a fibre product.)
We require these objects and morphisms to satisfy the following axioms.

(projections)
�
(Pr); (Qm)

�
is equipped with projection morphisms

�m : Qm ! Pr; r � 1; m 2 Zr�0 n f0g(102)

that intertwine the structure morphisms �m;(nai ) with those in the underlying operad (Pr).
(associative), (unit) The structure maps satisfy a straightforward associativity condition,
and there is a unit map 1! Q1 satisfying the obvious properties. 4
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Definition 4.6. Let K be a ring. An K-linear category over a relative 2-operad
�
(Pr); (Qn)

�
in Top

consists of:
� A category (Ob;Mor; s; t).
� For each pair of morphisms L;K : M ! N , a complex of free K-modules 2Mor(L;K).
� Composition maps

C�(Qm)

O
1�i�r
1�j�mi

2Mor(Lj�1i ; Lji )! 2Mor(L0
1 � � � � � L

0
r ; L

m1
1 � � � � � L

mr
r );(103)

where C�(Qm) denotes the complex of singular chains in Qm with coefficients in K.
We require the composition maps to be associative.2 4

Definition 4.7. An K-linear (A1; 2)-category is an K-linear category over the relative 2-operad�
(M r); (2Mn)

�
. 4

Remark 4.8. Observe that by passing to homology, i.e. applying H to 2Mor(L;K), we can extract
an K-linear 2-category from an K-linear (A1; 2)-category. (By “K-linear 2-category”, we mean a
category enriched in K-linear categories.) In particular, note that the commutativity of horizon-
tal and vertical composition of 2-morphisms follows from the fact that the two ways to compose
correspond to the following two points in W22, which can be connected by a path.

Figure 35.

4

4.4. Analytical aspects of the construction of moduli spaces of witch balls. As we ex-
plained at the end of the introduction to §4, the operations on 2-morphisms in Symp will be defined
by counting rigid witch balls. To do this, one needs to develop a regularization theory for moduli
spaces of witch balls. Analytic issues arise from the witch ball’s “singularity”, the point where all the
domain’s seams intersect tangentially, and from the related phenomenon that in a moduli space of
witch balls, the width of one of the strips in the domain can shrink to zero. In [Bot20] and [BW18],
Bottman–Wehrheim made progress toward overcoming these challenges in the case of figure eight

2In fact, this condition is not entirely straightforward. We invite the interested reader to consult [BC18].
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bubbles; the same analysis applies to general witch balls. The analytic core of these results, which
we will describe below, is a strengthening of the strip-shrinking estimates in [WW12].

The first result is a “removal of singularity” for figure eight bubbles. Such a bubble can be viewed
as a tuple of finite-energy pseudoholomorphic maps

w0 : R� (�1; 0]!M0; w1 : R� [0; 1]!M1; w2 : R� [0;1)!M2

satisfying the seam conditions (w0(s; 0); w1(s; 0)) 2 L01 and (w1(s; 1); w2(s; 0)) 2 L12 for s 2 R.
The second author established the following property of figure eights, as conjectured in [WW10b].

Theorem 4.9 (Removal of singularity, [Bot20]). If the composition L01 � L12 is cleanly immersed,
then w0 resp. w2 extend to continuous maps on D2 �= (R�(�1; 0])[f1g resp. D2 �= (R� [0;1))[
f1g, and w1(s;�) converges to constant paths as s! �1. �

The second result concerns strip-shrinking, a phenomenon new to quilted Floer theory: in a
moduli space of quilted maps, the width of a strip or annulus in the domain of a pseudoholomorphic
quilt may shrink to zero, as in the figure to the right. To understand the topology of moduli spaces
of maps from such domains, we need a “Gromov Compactness Theorem”: given a sequence of quilts
in which strip-shrinking occurs and in which the energy is bounded, a subsequence of the maps
must converge C1loc away from finitely many points where the gradient blows up, and at each blowup
point a tree of quilted spheres forms. We depict this type of degeneration below:

Figure 36.

Bottman–Wehrheim established full C1loc-convergence in the following theorem.

Theorem 4.10 (Gromov compactness, [BW18]). Say that Q� is a sequence of pseudoholomorphic
quilted maps, whose domains have a strip Q�1 of width �� ! 0. Denote the target of Q�1 by M1,
and the targets of the neighboring patches M0;M2; call the Lagrangians defining the adjacent seam
conditions L01; L12. Under the assumptions of Theorem 4.9, there is a subsequence that converges
up to bubbling to a punctured quilt, and the energy that concentrates at each puncture is captured in
a bubble tree consisting of disks, spheres, and figure eight quilts. �

The major outstanding step toward the definition of Symp is the completion of a regularization
theory for moduli spaces of witch balls. Classical regularization techniques are not sufficient, except
in specialized situations.

Remark 4.11. There are concrete obstructions to regularizing moduli spaces of pseudoholomorphic
curves by classical means. For instance, when the symplectic manifold has spheres with negative
Chern number, the standard argument for regularizing moduli spaces of Floer cylinders by choosing a
“generic” almost complex structure breaks down. Indeed, the presence of multiply-covered spheres of
negative Chern number lead to components of the moduli space of dimension higher than one would
expect from standard index formulas (see [Sal99, §5.1] for a detailed discussion of this phenomenon).
The same phenomenon occurs in Lagrangian Floer theory in the presence of multiply-covered discs of
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negative index. It seems that the only analogous phenomenon for witch balls occurs for components
with only one seam, as these are the only ones that can be multiply covered. Of course, since
one studies the space of stable maps associated to witch balls, in which sphere and disc bubbles
arise, the transversality obstructions associated to such multiply-covered configurations will affect
the transversality theory for the definition of Symp. 4

4.5. Interpretations of existing structures in terms of Symp. Quite a number of existing con-
structions can be interpreted as substructures of the symplectic (A1; 2)-category. In this subsection,
we will explain some of them.

4.5.1. The Fukaya A1-category, the A1-functors �L12, and the geometric composition A1-
bifunctor. As we explained in the discussion around Figure 28, the pseudoholomorphic disks whose
counts define the structure maps in FukM are just two-patch witch balls mapping to pt and
M . This is reflected and extended by the fact that in Symp, the vertical composition maps in
hom(M0;M1) = Fuk(M�

0 �M1) are exactly the A1-compositions in Fuk(M�
0 �M1).

Next, recall that in §3.4, our initial attempted definition of a functor �L12 : FukM1 ! FukM2

proceeded by counting two-patch quilted disks (see the second illustration in Figure 28). These
quilted disks are exactly three-patch witch balls mapping to pt, M1, and M2, with no marked
points on the right seam. This is reflected by the fact that in Symp, there is a horizontal composition
A1-bifunctor �

Fuk(M�
0 �M1);Fuk(M

�
1 �M2)

�
! Fuk(M�

0 �M2);(104)

whose structure constants are given by counts of three-patch witch balls.

4.5.2. The closed-open string map. The diagonal Lagrangian

(105) �M �M
� �M

is a canonically-defined Lagrangian which corresponds to the identity object of the endomorphism
category Fuk(M��M) of M in Symp. When M is compact, the Floer cohomology of the diagonal
is known to be isomorphic to the ordinary cohomology [FOOO17], while in the noncompact case,
it is expected to correspond to the symplectic cohomology SH�(M) originally introduced by Hofer
and Floer (there is a discrepancy in the literature, as we use cohomology to refer to the group that
they referred to as homology). While the construction of this group is now understood in large
generality (c.f. [Gro15]), this expectation is asserted as a well-known result in [Gan12, §8] for the
special class of Liouville domain.

On the other hand, there is the closed-open string map

(106) CO : SH�(M)! HH�(FukM);

which is a homomorphism from symplectic cohomology to the Hochschild cohomology of the Fukaya
A1-category of M . This is an important tool for studying deformations of FukM which goes back
to Fukaya, Oh, Ohta, and Ono and to Seidel.

The closed-open map is defined by counting disks with one incoming cylindrical end and any
number of incoming boundary marked points, and one outgoing boundary marked point, as on the
left of the following figure:

51



L3

L0 x0

x1

x2 L3

L2

L1

L0

MM

x0

x1

x2

L2

L1

y

y

�M

Figure 37.

On the other hand, the figure on the right depicts an equivalent quilt, which moreover is one
of the contributions to the specialization of the composition A1-bifunctor in §4.5.2 with M0 :=
pt;M1 := M =: M2. The conclusion we can draw from this is that the natural lift of CO to an
A1-homomorphism is part of the structure of Symp. That is, the following square commutes:

SC�(M) //
OO

'
��

CC�(FukM)
OO

'
��

CF �(�M ;�M ) // hom(idFukM ; idFukM )

(107)

This point of view was (at least implicitly) suggested in [Gan12] and [RS17].

4.5.3. The open-closed string map, and symplectic cohomology as a module over a decategorification
of Symp. Similarly to the closed-open string map described in §4.5.2, there is a homomorphism
OC : CC�(FukM) ! SC�(M) from the Hochschild chain complex of the Fukaya category to the
symplectic cochain complex, which is a crucial ingredient in the first author’s generation criterion
for FukM (which has so far been proven in the wrapped [Abo11] and monotone [RS17] settings).
This homomorphism is known as the open-closed string map, and it is defined by counting disks
with boundary punctures and one outgoing cylindrical end, as depicted below:

L3

L0x1

x2

x3

L2

x0

L1

Figure 38.

The open-closed string map also has an interpretation in terms of Symp — but this interpretation
is notably different than that of the closed-open string map. Observe that the punctured disk in
Figure 38 is a special case of the following sort of quilted cylinder:
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Figure 39.

Indeed, a cylinder of this form with one seam and patches mapping to pt and M , we get exactly
the disk in Figure 38.

Counting quilted cylinders as in Figure 39 has a clear algebraic interpretation. We think of
feeding in Hochschild chains in

CC�(Fuk(M
�
1 �M2)); : : : ; CC�(Fuk(M

�
r�1 �Mr))(108)

and obtaining a map

SC�(M1)! SC�(Mr):(109)

Counting quilted cylinders as in Figure 39 exhibits
L

M SC�(M) as an A1-module over SympCC� ,
where the latter objects is the decategorification of Symp to an A1-category whose morphism
complexes are given by

hom(M1;M2) := CC�(Fuk(M
�
1 �M2)):(110)

5. Applications

In this final section, we will survey a number of developments which either use the theory of
pseudoholomorphic quilts directly, or take inspiration from it without actually implementing its
constructions.

5.1. Categorification of Dehn twists. The study of Dehn twists in symplectic topology started
with Arnold’s generalization in [Ad95] of the fact that the monodromy of a family of complex curves
which acquire a nodal singularity is given by the Dehn twist around the vanishing circle to higher
dimensions. Arnold constructed a symplectomorphism of the disc cotangent bundle of the n-sphere,
which essentially wraps the fibres around the base, showed that it models the monodromy of a
family of smooth projective varieties near ordinary double point singularities.

In [Sei03] Seidel then showed that Arnold’s model symplectomorphisms are not isotopic to the
identity, relative the boundary, by computing their action on Floer homology groups: more precisely,
imposing some technical conditions on the ambient symplectic manifold, he proved that, if V is a
Lagrangian sphere, and L a Lagrangian supporting an object of the Fukaya category, there is an
exact triangle

(111)
HF �(V;L)
 V L

�V L

in the Fukaya category. This result was a milestone in the study of rigidity phenomena in symplectic
topology, and has motivated key developments in the study of homological mirror symmetry, cate-
gorification of braid invariants, and, as we shall discuss below, symplectic constructions of invariants
of knots and 3-manifolds.

Wehrheim and Woodward extended the reach of Seidel’s result in two ways:
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(1) They generalised the result by replacing V by a spherically fibered Lagrangian correspon-
dence, i.e. a Lagrangian C � N� �M whose projection to M is an embedding and whose
projection to N is a sphere bundle, and

(2) They formulated an exact sequence depending only the C, and not on any auxiliary La-
grangian in M .

They geometrically formulate their result in terms of a variant of the extended Fukaya category of
M��M (c.f. §3.6); objects of this category are cyclic generalized correspondences starting and end-
ing at the symplectic manifold M . This simplest such correspondence is the empty correspondence,
which we denote �M because it corresponds to the diagonal of M .

We need three additional geometric constructions to formulate Wehrheim and Woodward’s lift
of the Seidel exact triangle:

(1) The graph of every symplectomorphism  define a Lagrangian correspondence � in M��
M .

(2) Given a Lagrangian C � N��M , the product C�C is a Lagrangian inM��N�N��M ,
hence defines an object of Fuk(M �M�), which is denoted Ct#C.

(3) There is a canonical morphism Ct#C ! �M , of degree dimN , given by counting quilts of
the following form.

C

Figure 40.

The morphism Ct#C ! �M is simply the co-unit of the adjunction between C and Ct.
Denoting by �C the fibred Dehn twist associated to C, Wehrheim and Woodward’s result is:

Theorem 5.1 (Theorem 7.4, [WW16]). The counit Ct#C ! �M fits in an exact triangle in
Fuk(M �M�)

(112)
Ct#C[dimN ] �M

��C :

�

We have formulated this result in a slightly stronger way than Wehrheim–Woodward, by specifying
one of the morphisms in the exact triangle, which determines the isomorphism class of ��C .

Since it is stated at the level of the productM�M�, rather than onM , the quilt formalism yield
a categorification of Seidel’s result, which lifts the exact triangle of Floer groups to an exact triangle
of bimodules. More precisely, by passing from Fukaya categories to their categories of bimodules as
in §3.7, we have:
Corollary 5.2 (Theorem 7.4, [WW16]). There is an exact triangle in the category of bimodules
over FukM

(113)
CF �(L0; C)
 CF

�(L1; C) CF �(L0; L1)

CF �(L0; �CL1):
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�

In fact, Seidel’s triangle (111) is a consequence of this corollary.

5.2. Khovanov homology. In [SS06] Seidel and Smith introduced an invariant of oriented links in
S3 as follows: they associate to each natural number n a symplectic manifold Sn, equipped with a
symplectic action (up to Hamiltonian isotopy) of the braid group on n letters, i.e. a homomorphism

(114) �: Braidn ! �0Symp(Sn):

They construct as well a Lagrangian Len in a symplectic manifold Sn, thus obtain a homology group
associated to each oriented knot K, which is presented as the closure of a braid � with n strands
(see Figure 41) from Lagrangian Floer cohomology:

(115) Khsymp(�) := HF �(Len;��L
e

n):

Figure 41. The closure of the product of positive braid generators �3�2�1.

The essential problem is now to prove that the above group does not depend on the choice of
presentation of K as a braid closure, i.e. that it defines a knot invariant, which is called symplectic
Khovanov homology (see Theorem 5.4 below). This can be analyzed using classical Markov moves
[Bir74] which can be used to relate any two braid closure presentations of a knot. The first move
is a conjugation, which can be implemented by a Hamiltonian isotopy in the ambient symplectic
manifold Sn.

The second move is a stabilization, and entails comparing Floer homology groups in Sn and Sn+2.
In Seidel–Smith’s construction of their invariant, this move can be described in terms of a pair of
Lagrangian correspondences [1 and [2 in S�n � Sn+1, which are S2 fibered over Sn, that meet
cleanly along a copy of Sn. Writing �2 for the fibered Dehn twist about [2, Seidel–Smith prove:

Proposition 5.3 (Lemma 44 of [SS06]). Given a pair of Lagrangians L and L0 in Sn, there is a
natural isomorphism

(116) HF �(L;L0) �= HF �([1L; �2 [1 L
0):

�

This establishes the key step in the proof that Khsymp defines a knot invariant because, under the
homomorphism Braidn ! �0Symp(Sn) studied by Seidel and Smith, the image of each elementary
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braid is a fibered Dehn twist about an S2-fibered Lagrangian [i in S�n � Sn+1. This was exploited
by Rezazadegan [Rez09] to extend Seidel and Smith’s theory to a tangle invariant.

Because the Lagrangian correspondences [i are noncompact, it has been difficult to directly use
the theory of pseudoholomorphic quilts in this specific context. Nonetheless, a version of Corol-
lary has 5.2 proved essential in implementing the comparison between Seidel–Smith’s theory and
Khovanov homology which was initiated in [AS+16]:

Theorem 5.4 ([AS19]). Over a field of characteristic 0, the knot invariant Khsymp agrees with
Khovanov categorification of the Jones polynomial (after collapsing the bigrading to a single grading).

�

5.3. Floer field theory. Building on work of Donaldson, Floer, Fukaya, Donaldson, Salamon–
Wehrheim, and others, Wehrheim–Woodward use quilted Floer theory to construct in [WW20] a
(2 + 1)-dimensional connected category-valued field theory. More specifically, for coprime positive
r; d, Wehrheim–Woodward construct a functor

�: (compact connected oriented 2-manifolds, 3-bordisms)(117)
�! (A1-categories, homotopy classes of A1-functors):

� is defined on objects and morphisms in the following way:
� Fix a (compact, connected, oriented) surface X. Up to isomorphism, there is a unique
degree-d U(r)-bundle P on X. � sends a (compact connected oriented) surface X to
Fuk#(M(X)), where M(X) is the representation variety of central-curvature connections
with fixed determinant. The Hodge pairing equipsM(X) with a monotone symplectic form.
� Suppose that Y is a 3-cobordism from X� to X+ that is elementary, i.e. it is either a cylinder
or it represents a handle attachment. Define L(Y ) to be the moduli space of central-curvature
fixed-determinant connections. Then restriction defines a Lagrangian correspondence

L(Y ) ,!M(X�)
� �M(X+);(118)

and the machinery of §3.6 then produces an A1-functor

�(Y ) := �#
L(Y ) : M(X�)!M(X+):(119)

When Y is not elementary, we can choose a decomposition into elementary cobordisms
Y1; : : : ; Ym, and define �(Y ) to be the composition �(Ym) � � � � � �(Y1). We of course
need to know that this definition is independent (up to A1-homotopy) of the choice of
decomposition, and this follows from the strip-shrinking analysis described in §3.5 and the
fact that any two decompositions differ by a sequence of Cerf moves.

(This is part of a long history of work on the Atiyah–Floer conjecture, as explained in [Weh16].)
Following an idea proposed by Kronheimer–Mrowka in [KM11], Wehrheim–Woodward defined an

invariant HF r;d(Y ) of closed oriented 3-manifolds Y via the following procedure:
� Define Y to be the result of connect-summing Y with the toric cylinder [�1; 1]� T 2.
� The representation varietyM(T 2) is a point, so the functor � associates to Y an endofunctor
of Fuk#(pt). We now define the 3-manifold invariant like so:

HF (Y ) := H
�
hom

�
�
�
Y
��
(pt); pt

�
:(120)

Equivalently, HF (Y ) is the quilted Floer cohomology of the sequence pt
L(Y1)
�! � � �

L(Ym)
�! pt,

where Y1; : : : ; Ym are the elementary cobordisms in a chosen decomposition of Y .
An alternate construction applies to 3-manifolds Y equipped with a nonseparating embedded com-
pact connected oriented surface X � Y , c.f. [WW20, Definition 4.3.1].
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See [Weh16, Lek13, Aur10] for work toward an interpretation of Heegaard Floer homology in
terms of quilted Floer cohomology. In a different direction, Ivan Smith incorporated insights from
mirror symmetry in order to study the instanton Floer homology of a 3-manifold fibered by genus-2
curves in [Smi12].

5.4. Homological mirror symmetry. We return to mirror symmetry as a motivating source of
structures in Floer theory, and note a particular mystery whose solution is provided by the functorial
structures discussed so far: on the algebro-geometric side, the fact that coherent sheaves are locally
given by the datum of modules over commutative rings allows one to assign to a pair of coherent
sheaves a tensor product, which is a coherent sheaf on the same space, that is locally given by the
tensor product of the corresponding modules. This can be formulated as the existence of a natural
functor

(121) Db(X)
Db(X)! Db(X)

together with structures witnessing the associativity and commutativity of the tensor product con-
struction.

This functor has no straightforward analogue in symplectic geometry, because there is no universal
way of assign to a pair of Lagrangian submanifolds of a given symplectic manifold a putative tensor
product that is a submanifold of the same space. From the perspective of the theory discussed in
§4, such a functor would arise most naturally from a Lagrangian correspondence

(122) �
 �M �M �M�

that is invariant under the involution which permutes the first two factors, and that satisfies the
property that the two possible ways of composing M with itself (by pairing the M� summand of
the first factor with either of the two M summands of the second factor) agree:

(123) �
 �1 �

 �M �M �M �M� � �
 �2 �


:

In his thesis [Sub10], Subotic considered this problem for M a surface of genus 1, and found that
the construction of �
 depends on two choices: a projection map � from M to the circle, and a
section thereof. Writing B for the base circle, the symplectic form canonically identifies the universal
cover of the fibre Xb over each point b 2 B, based at its intersection with the chosen section, with
the cotangent fibre T �b B, based at the origin: the pairing of a vector in TbB with a point in fMb is
given by measuring the (symplectic) area of the (infinitesimal) region obtained by transporting the
associated path in Mb, in the direction of the chosen vector, along some local trivialisation of the
projection mapM ! B in a neighbourhood of b. This procedure identifies the deck transformations
on fMb with translation by the multiples of a nonzero covector in T �b B, and hence equips the fibre
Mb with the structure of an abelian group.

Subotic’s key idea at this stage is to define a correspondence using fibrewise addition:

(124) �
 :=
�
(p; q; r) 2M �M �M�

�� �(p) = �(q) = �(r); p+ q = r
	
;

where the last equation makes sense because the first imposes the condition that the three points
(p; q; r) lie over the same point in B. An application of the Arnold–Liouville theorem shows that
this is a Lagrangian correspondence, and it is straightforward to prove that it satisfies the desired
commutativity and associativity properties. The main result of [Sub10] is:

Theorem 5.5. The Lagrangian correspondence �
 induces a symmetric monoidal structure of the
Donaldson-Fukaya category of a 2-torus, which corresponds, under mirror symmetry, to the tensor
product of bounded complexes of coherent sheaves, on the mirror elliptic curve. �

In subsequent work, Pascaleff [Pas18] explored the formal structure giving rise to correspondences
of the form �
 from local actions of a Lie group, and identified Weinstein’s notion of a symplectic
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groupoid as a general notion encompassing generalisations of Subotic’s construction to higher dimen-
sional tori, cotangent bundles, and twisted versions thereof. Under suitable technical assumptions,
one can then prove the analogue of Theorem 5.5.

In order to lift Theorem 5.5 from cohomology to the chain level, one needs an appropriate for-
mulation of what it means to have a symmetric monoidal A1-category. We expect that such a
lift contains substantially more information than the cohomological version: concretely, consider a
Lagrangian L which is a unit for the monoidal structure, in the sense that

(125) �
 �1;2 (L� L) = L:

The outcome of Theorem 5.5 is that the multiplicative structure of the Floer cohomology ring of
such a Lagrangian is commutative. In characteristic 0, commutativity is essentially a property of
A1-algebras, and there is little additional information to be extracted. On the other hand, the
theory of (coherently) homotopy commutative algebras in finite characteristics is rich enough that
one can extract from it the Steenrod operations on the cohomology of spaces. One is therefore led
to formulate the following:

Conjecture 5.6. The Steenrod operations on the cohomology of a closed manifold can be extracted
from the Floer theory of its cotangent bundle, and the geometry of fibrewise addition. �

5.5. Fuk of G-manifolds. We have already discussed, in Definition 3.20, the fact that a Hamilton-
ian G-action on a symplectic manifoldM induces a correspondence betweenM and its Hamiltonian
reduction. In [EL19], Evans and Lekili considered instead the correspondence associated to the
action G�M !M :

(126) �G :=
�
(g; a; x; y)

�� a = �(g � x); y = g � x
	
� (T �G)� �M� �M:

By applying the Wehrheim–Woodward formalism, this correspondence gives rise to a functor

(127) FukT �G! Fuk(M� �M):

Evans and Lekili observed that this functor maps
(1) the cotangent fibre at the identity element of G to the diagonal �M , and
(2) the image of the zero section of T �G agrees with the composition �G � �

t
G, of the moment

correspondence and its adjoint.
The domain of this functor is well-understood to be equivalent to a subcategory of the category
of modules over the chains C��
G [Abo12] (the paper [EL19] systematically misstates this to be
the category of bimodules, but the arguments are unaffected). This implies in particular that the
0-section G is equivalent, in the Fukaya category of T �G, to a complex built from copies of the
cotangent fibre. Applying the functor therefore implies that �G ��tG is built from the diagonal �M .
In general, the diagonal object may formally decompose into summands

L
��M;� corresponding to

the maximal decomposition of the quantum-cohomology ring QH�(M) into a direct sum of rings,
and an elementary algebra argument shows that �G ��tG can in fact be built from those summands
�M;� which are not Floer-theoretically orthogonal to it.

The main result of [EL19] is that, under mild assumptions on G, this procedure can be inverted:

Theorem 5.7 (Theorem 1.2.2 of [EL19]). If K is a field of characteristic relatively prime to the
torsion subgroup of the cohomology group H�(G), then every summand �M;� which is not Floer-
theoretically orthogonal to �G � �

t
G lies in the category which it split-generates.

While we do not reproduce their argument here, we note that it is a completely algebraic conse-
quence, given the above discussion, of the fact that the quantum cohomology of a closed manifold
is finite-dimensional and commutative.

Assuming that the Hamiltonian reduction of M by G is smooth, this result, combined with those
discussed in Section 5.7 below, yield a description of the summands of FukM on which �G � �

t
G
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acts non-trivially in terms of the Fukaya category of the reduction. Evans and Lekili restricted
themselves to the case in which this reduction is a point, and concluded:

Corollary 5.8. If ��1(0) is a free orbit of G, then it split-generates an orthogonal factor of FukM .

The most straightforward class of examples satisfying this condition are toric varieties, where
the group G is a torus Tn. We invite the reader to peruse [EL19] for how one can derive explicit
computations about Fukaya categories of toric varieties from the above result, with minimal effort.

5.6. A formal group structure on MC(M). In [Sei19], Paul Seidel used ideas from the theory of
pseudoholomorphic quilts to define a new invariant of compact monotone symplectic manifolds. This
invariant is denoted MC(M). To introduce it, we begin by reviewing the notion of Maurer–Cartan
elements, in the setting of [Sei19].

Suppose that A is an A1-ring, and that N is an adic ring. (“Adic” means that N is a nonunital
commutative ring and that the map N ! lim

 �m
N=Nm is an isomorphism. Some standard examples

are qZ[[q]], qZ[q]=qm+1, qFp[[q]], and pZp.) Now define A
̂N to be the inverse limit lim
 �m

A 


(N=Nm), which is the right way to formulate “A with coefficients in N ”.

Definition 5.9. A Maurer–Cartan element in A
̂N is an element  2 A1
̂N satisfying the
Maurer–Cartan equation X

d�1

�d(; : : : ; ) = 0:(128)

We say that two solutions ; e of (128) are (gauge-)equivalent if there exists h 2 A0
̂N satisfyingX
p;q�0

�p+q+1

�
; : : : ; | {z }

p

; h; e; : : : ; e| {z }
q

�
=  � e:(129)

((129) can be interpreted as saying that �e is exact with respect to the differential on A deformed
by  and e.) We now define MC(A;N) to be the set of equivalence classes of Maurer–Cartan
elements in A
̂N . 4

This construction is functorial in N , so we can think of MC(A;�) as a functor from adic rings
to sets. Seidel’s main contribution in [Sei19] is to show that when C := QC�(M) is a suitable model
for the integral quantum cochain complex of M , thought of as an A1-ring, then MC(C;�) can be
upgraded to a functor from adic rings to groups. Such a functor is, in Seidel’s parlance, a formal
group, so we obtain an invariant of compact monotone symplectic manifolds denoted MC(X) and
valued in formal groups.

The group structure onMC(M) is defined by counting certain pseudoholomorphic spheres inM .
While these spheres are conventional, unquilted pseudoholomorphic curves, the motivation for the
construction comes from quilted Floer theory — particularly, from the composition bifunctor

C :
�
Fuk(M�

1 �M2);Fuk(M
�
2 �M3)

�
! Fuk(M�

1 �M3);(130)

where the objects in this version of the Fukaya category are Lagrangians equipped with bounding
cochains, as in §3.5.2 and §3.11. A version of this functor has been defined by Fukaya, as explained in
§3.11, and in the monotone setting, a version of this functor was constructed by Ma’u–Wehrheim–
Woodward in [MWW18]. Ma’u–Wehrheim–Woodward’s approach is expected to extend to the
general compact setting, in which it will act on objects by sending

�
(L12; b12); (L23; b23)

�
to (L12 �

L23; b13), where b13 is defined to be the result of counting two-seam witch balls with patches mapping
toM1;M2;M3, and with arbitrarily many insertions of b12 and b23 on its seams. When we specialize
to M1 =M2 =M3 and L12 = L23 = �M , we obtain an operation that sends

�
(�M ; b); (�M ; b

0)
�
to

(�; b00), where b00 is the result of counting pseudoholomorphic spheres in M with arbitrarily many
insertions of b resp. b0 arranged on two circles. We can think of this as an operation on QC�(M).
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One of Seidel’s insights is that this operation descends to MC(M), and that it is associative as a
product on MC(M). Before descending to MC(M), this operation is not associative.

This invariant is quite new, and its properties and applications have not been explored fully.
One intriguing relationship with quantum Steenrod squares arises when we work with coefficients in
qFp[q]=q

p+1: then p-th power map on Maurer–Cartan elements intertwines with the t
p�1
2 -component

of the quantum Steenrod square.

5.7. A Barr–Beck theorem in Floer theory.

5.7.1. Adjunction, monads, and the Barr–Beck theorem. Our purpose in this section is to recall
a formalism, going back to category theorists in the 1960’s, for answering the following question,
which we shall discuss more specifically the case of Fukaya categories in §5.7.2 below.

Question 5.10. Given a functor X ! Y , when is Y “computable” from X, together with some
additional data?

The simplest example to have in mind is the case where X decomposes as the (orthogonal) union
of Y and another category. In this case, there is a functor in the other direction, so that the
composite endofunctor of X is idempotent, and Y can readily be recovered from this data.

A more sophisticated example is the case in which the domain is the category of modules over a
ground ring k, and the target is the category of modules over a k-algebra A, and the functor assigns
to each k-module its tensor product with A, considered as an A-module. We again have a functor
in the other direction, which assigns to each A-module the underlying k-module, and consider the
composite endofunctor T which assigns to each k-module its tensor product with A, now considered
only as a k-module.

In this case, the functor T is not idempotent, but multiplication in A defines a map

(131) � : A
A
M ! A
M

which gives a natural transformation from T 2 to T . Moreover, the identity element of A gives

(132) � :M ! A
M

which defines a natural transformation from the identity to T . The axioms for an algebra that are
taught to undergraduates are then reflected in properties of the functors � and �, and the content
of the theory which we shall describe is that the category of A-modules can be recovered from the
endo-functor T and these operations.

Note that, in the above discussion, we used the existence of a functor in the other direction. The
general framework in which this functor can be placed is that of an adjunction L a R:

X
L ))

Y:
R

ii(133)

We shall presently formulate what it means for such an adjuction to be monadic, before introducing
the Barr–Beck theorem, which is a convenient characterization of this property.

Denote the unit and counit of the adjunction by � : idX ! RL and � : LR ! idY . This data
gives rise to a monoid object (T; �; �) in the category of endofunctors of X (a monad on X), i.e.
the following data (subject to two straightforward coherence conditions):

� An endofunctor T : X ! X.
� Two natural transformations � : idX ! T (“identity”) and � : T 2 ! T (“composition”).

Indeed, we define the monad associated to L a R by

(T; �; �) := (RL;R�L; �):(134)
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It turns out that every monad comes from an adjunction (as Eilenberg–Moore and Kleisli proved
in 1965, via completely different constructions). One way to see this is by considering the Eilenberg–
Moore category modT associated to a monad (T; �; �) on X. As the notation suggests, modT is
the category of T -modules, i.e. pairs (x; h) of x 2 X and h : Tx! x (the “structure map”) satisfying
diagrams representing the associative and unit laws. Then there is an adjunction

X

LT
''
modT;

RT

ee(135)

which the reader may either work out as an exercise or find in [Mac71, Theorem 1]. This adjunction
LT a RT has the property that its associated monad is exactly (T; �; �).

Remark 5.11. The Eilenberg–Moore category is typically denoted XT , and its elements referred to
as T -algebras. We use the terminology of T -modules in part because it enables us to refer to perfect
T -modules later in this subsection. 4

Given an adjunction as in (133), we can define the associated comparison functor K : Y ! modT ,
which acts on objects by sending y 2 Y to (Ry;R�y). We say that L a R is a monadic adjunction
if K : Y ! modT is an equivalence. Monadic adjunctions are thus those with the property that
if we form the associated monad, and then form the adjunction associated to that monad via the
Eilenberg–Moore category, we return to the adjunction we started with.

The Barr–Beck theorem3 provides a criterion for monadicity that is often easier to check than by
working from the definition. We state a weak version of this theorem, because it is easier to state
and sufficient for our purposes. (This is the “Weak Tripleability Theorem” from Beck’s thesis.)

Theorem 5.12 (paraphrase of Exercise VI.7.3, [Mac71]). An adjunction L a R is monadic if the
following conditions hold:
(BB1) R is conservative, i.e. it reflects isomorphisms. (That is, if Rf is an isomorphism, then f

must be an isomorphism.)
(BB2) Y has and L preserves all coequalizers. �

We now make some comments about these two conditions.
(1) An example of a conservative functor is the forgetful functor from Grp to Set, because

a group homomorphism is an isomorphism if and only if it is a bijection. A nonexample
is the forgetful functor from Top to Set, because there are continuous bijections that are
not homeomorphisms. Note also that conservativity does not imply the property that if
RX ' RY , then X ' Y : for instance, if we consider the forgetful functor from Grp to Set,
this latter property is not satisfied, because two finite groups of the same cardinality are not
necessarily isomorphic.

(2) A coequalizer is a colimit of a parallel pair of morphisms. That is, a coequalizer of the pair
f; g : A� B is an morphism h : B ! C such that h � f = h � g, and such that for any other
such morphism h0 : B ! C 0, there exists a morphism C ! C 0 making the following diagram
commute:

A
f //
g
// B

h //

h0   

C

��
C 0:

(136)

3A more historically-accurate name may be “Beck’s precise tripleability theorem”, as in [Mac71, Theorem 10].
However, modern authors typically use the name “Barr–Beck theorem” (see e.g. [Lur12, Theorem 4.7.3.5]).
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In the category Grp, the coequalizer of f; g : A ! B is the quotient of B by the normal
closure of the set of elements of the form f(x)g(x)�1. One should think about a coequalizer
as the generalization to an arbitrary category of the notion of the quotient by an equivalence
relation.

5.7.2. Barr–Beck and the Fukaya category. As we explained in §3.8, the functors �#
L12

and �#

LT12
are

expected to form an adjunction. The same is true of the extended versions of these functors:

Fuk#(M1)

�#
L12 ,,

Fuk#(M2);

�#

LT
12

jj
(137)

It is natural to ask when this adjunction is monadic, and in particular, when the hypotheses of
Theorem 5.12 hold.

Remark 5.13. We stated Theorem 5.12 for an adjoint pair of functors, rather than an adjoint pair of
A1-functors (c.f. Equation (76)). Since our main goal in this section is to describe some geometric
ideas regarding the relevance of the Barr–Beck theorem to symplectic topology, we leave the precise
formulation to future work by the present authors. 4

The fundamental difficulty in applying Theorem 5.12 to (137) is that checking condition (BB2) a
priori involves a computation for each Lagrangian in M2. This is not a reasonable computation to
directly perform, because we do not have any concrete description of the collection of all Lagrangians
in any symplectic manifold of dimension greater than 2.

Quilted Floer theory provides us with a solution: consider the “quilted closed-closed map”

SH�(M1)
HH�(CF
�(L12; L12); CF

�(L12; L12))! SH�(M2)(138)

which is defined by counting quilts of the following form:

M1M2

Figure 42.

In this figure, the red marked point is the output, the arrows on the output and the interior input
marked points indicate a choice of framing, and the blue marked point is the distinguished element
of the Hochschild chain. The framings and the blue marked point are all aligned.

Expectation 5.14. If the unit idM2 2 SH
�(M2) lies in the image of the quilted closed-closed map

(138), then there is then a quasiisomorphism

FukM2 ' mod
�
�#

LT12
� �#

L12

�
(139)

4
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Heuristic of the proof. Hypothesis (BB2) is straightforward: Fuk#(M2) is a pretriangulated A1-
category, so it has finite colimits, hence it has coequalizers. The adjunction �#

LT12
a �#

L12
implies

that �#

LT12
preserves colimits, hence �#

LT12
preserves coequalizers.

The rest of our discussion is devoted to hypothesis (BB1).

Step 1: We explain how the existence of a certain commutative diagram for every L2 2 FukM2

implies hypothesis (BB1).

The desired commutative diagram is analogous to the “Cardy relation” in [Abo10], and it has the
following form:

SH�(M1)
HH�(CF
�(L12); CF

�(L12)) //

QCC

��

HH�(CF
�(L12); CF

�(L2#L
T
12))

��
SH�(M2)

CO
// HF �(L2):

(140)

Here we are abbreviating by CF �(L) the A1-algebra associated to L, and we are regarding
CF �(L2#L

T
12) as an A1-bimodule over CF �(L12). By assumption, QCC hits the unit idM2 2

SH�(M2). Since CO is unital, the composition CO �QCC hits the unit idL2 2 HF �(L2). Commu-
tativity implies that the map

HH�(CF
�(L12); CF

�(L2#L
T
12))! HF �(L2)(141)

also hits the unit idL2 .
We now fix a morphism f 2 CF �(K2;K

0
2) in Fuk#M2 such that �#

LT12
(f) is an isomorphism; to

establish hypothesis (BB1), we must show that f is an isomorphism. To simplify the exposition,
assume thatK2 = K2 andK 0

2 = K 0
2 are Lagrangians, rather than genuinely generalized Lagrangians.

Set L2 := cone(f) in (140). Since �
L#12

(f) is an isomorphism, cone
�
�#

LT12
(f)
�
is the zero object, but

�#

LT12
commutes with colimits, so �#

LT12

�
cone(f)

�
= cone(f)#LT12 is the zero object. It follows that

the upper-right entry in (140) is zero. Since the right-hand map in (140) hits the unit, idL2 must be
zero, hence L2 = cone(f) is the zero object. It follows that f is an isomorphism, so �#

LT12
is indeed

conservative.

Step 2: We construct the commutative diagram used in the previous step.

We will define the maps appearing in (140), as well as the chain homotopy which descends to an
isomorphism between the compositions, by counting certain quilts. As a first step toward defining
these quilts, consider the following 1-dimensional family of quilted surfaces:

Figure 43.

The surface corresponding to the midpoint of the interval is the radius-2 disk with an interior circle
of radius 1, with marked points on the interior and boundary circles that are opposite from one
another. The left half of the interval corresponds to letting the radius of the interior circle vary in
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the interval [0; 1], such that when the radius becomes 0, we bubble off a quilted sphere. The right
half of the interval corresponds to inserting a rectangular portion into the disk; the right endpoint
corresponds to (quilted) Floer breaking. We do not quotient out by any automorphisms.

Next, we construct a higher-dimensional family of quilted surfaces by adding arbitrarily-many
marked points to the seam, and adding a framed interior marked point in the inner patch. We do
not allow the positions of the seam marked points to vary, but we do fix the position of the interior
marked point, in the way illustrated in the diagram below.

Finally, we consider the pseudoholomorphic quilts whose domains are these quilted surfaces. The
inner patch maps to M1, and the outer patch maps to M2. We impose a seam condition in L12,
and a boundary condition in L2. The framing of the interior puncture always points to the left.
Counting the rigid quilts of this form defines a chain homotopy between the rigid quilts that live
over the endpoints of the interval in Figure 43, thus proving the commutativity of (140). “�”

To clarify the situation further, we describe the relationship of this result with the split-generation
criterion of [Abo10]: When M1 = pt, M2 = M , and L is a Lagrangian in M , the quilted count in
Equation (138) specializes to the open-closed map defined in [Abo10]. Moreover, (140) is the key
diagram (1.5) in [Abo10]). It follows that in this case, the hypothesis of Expectation 5.14 specializes
to the hypothesis in the main result of [Abo10] that the open-closed map hits the identity. However,
it turns out that the conclusion that we obtain by applying Barr–Beck is not exactly identical.

To see this, let us specialize to the case that M is closed. Conflating FukM and Fuk#M and
identifying Fukpt ' perfk, Barr–Beck says in this case that the following adjunction is monoidal:

perfk

�L --
FukM:

�
LT

ll(142)

That is, FukM is equivalent to the Eilenberg–Moore category perfk
�
�LT ��L

�
of CF �(L)-modules

whose underlying k-modules have finite rank cohomology (this is also known as the category of
pseudoperfect modules).

The conclusion of the generation criterion in [Abo10] (as applied to closed symplectic manifolds
[RS17]) is instead that FukM is equivalent to the category of perfect modules over CF �(L), i.e.
those which are built from the free module CF �(L) using finitely many cones and summands.

For a general A1-algebra A, the categories of pseudoperfect and perfect modules are not equiv-
alent. Assuming that the cohomology of A is finite dimensional (which is automatic for closed
Lagrangians), every perfect module is automatically pseudoperfect, and this inclusion is an equiva-
lence if we impose the additional property that A is smooth, in the sense that the diagonal bimodule
admits a split-resolution.

The fact that the hypothesis of Expectation 5.14 implies that the Floer algebra CF �(L) is smooth
(c.f. [Gan12, Theorem 1.2]) thus relates the generation criterion to Expectation 5.14.

It is desirable to have an extension of Expectation 5.14 which directly generalises the generation
criterion. Its formulation requires one to introduce the category perf T of perfect modules over a
monad, i.e. the subcategory of T -algebras which are obtained from an object of X by taking its
image under T (and passing to the closure under cone and summands). The analogue of Expectation
5.14 is then formulated in terms of the “quilted open closed map,” which is the composite

(143)

HH�(FukM1)
HH�(CF
�(L12; L12); CF

�(L12; L12))

SH�(M1)
HH�(CF
�(L12; L12); CF

�(L12; L12))

SH�(M2):
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Expectation 5.15. If the unit idM2 2 SH
�(M2) lies in the image of the quilted open-closed map

(138), then the Eilenberg–Moore comparison map lifts to the category of perfect modules, and this
lift is an equivalence:

(144)

perf
�
�LT � �L

�
FukM2 mod

�
�LT � �L

�
:

4
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