
Max-Planck-Institut für Mathematik
Bonn

Bijection between trees in Stanley character formula and
factorizations of a cycle

by

Karolina Trokowska
Piotr Śniady

Max-Planck-Institut für Mathematik
Preprint Series 2022 (66)

Date of submission: October 12, 2022

Bijection between trees in Stanley character
formula and factorizations of a cycle

by

Karolina Trokowska
Piotr Śniady

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

MPIM 22-66

BIJECTION BETWEEN TREES
IN STANLEY CHARACTER FORMULA
AND FACTORIZATIONS OF A CYCLE

KAROLINA TROKOWSKA AND PIOTR ŚNIADY

ABSTRACT. Stanley and Féray gave a formula for the irreducible character of the sym-
metric group related to a multi-rectangular Young diagram. This formula shows that the
character is a polynomial in the multi-rectangular coordinates and gives an explicit com-
binatorial interpretation for its coefficients in terms of counting certain decorated maps
(i.e., graphs drawn on surfaces). In the current paper we concentrate on the coefficients
of the top-degree monomials in the Stanley character polynomial which corresponds to
counting certain decorated plane trees. We give an explicit bijection between such trees
and minimal factorizations of a cycle.

1. INTRODUCTION

1.1. Normalized characters and Stanley polynomials. For a Young diagram λ with
N “ |λ| boxes and a partition π $ k we denote by

Chπpλq “

$

’

’

&

’

’

%

NpN ´ 1q ¨ ¨ ¨ pN ´ k ` 1q
looooooooooooooomooooooooooooooon

k factors

χλpπY1N´kq

χλp1Nq
for k ď N,

0 otherwise

the normalized irreducible character of the symmetric group, where χλpρq denotes the
value of the usual irreducible character of the symmetric group which corresponds to the
Young diagram λ, evaluated on any permutation with the cycle decomposition given by the
partition ρ. This choice of the normalization is very natural, see for example [IK99; Bia03].
One of the goals of the asymptotic representation theory is to understand the behavior of
such normalized characters in the scaling when the partition π is fixed and the number of
the boxes of the Young diagram λ tends to infinity.

2020 Mathematics Subject Classification. Primary: 05A19; Secondary: 05C05.
0An abridged, 12-page version of this paper was published in the proceedings of The 33rd International

Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2021) [Woj21]; note that at the
time of the FPSAC submission, the first named author of the current paper used a different surname.

1

2 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

p1

q1

p2

q2

p3q3

Figure 1. Multi-rectangular Young diagram p ˆ q “ p2, 3, 1q ˆ p5, 4, 2q.

For a pair of sequences of non-negative integers p “ pp1, . . . , pℓq and q “ pq1, . . . , qℓq
such that q1 ě ¨ ¨ ¨ ě qℓ we consider the multi-rectangular Young diagram p ˆ q, see Fig-
ure 1. Stanley [Sta03; Sta06] initiated investigation of the normalized characters evaluated
on such multi-rectangular Young diagrams and proved that

(1) pp,qq ÞÑ Chπ

`

p ˆ q
˘

is a polynomial (called now the Stanley character polynomial) in the variables p1, . . . , pℓ, q1, . . . , qℓ.
He also gave a conjectural formula (proved later for the top-degree part by Rattan [Rat08]
and in the general case by Féray [Fér10]) which gives a combinatorial interpretation to the
coefficients of this polynomial in terms of certain maps (i.e., graphs drawn on surfaces).
Stanley also explained how investigation of its coefficients might shed some light on the
Kerov positivity conjecture, see [Śni16] for more context.

Despite recent progress in this field (for the proof of the Kerov positivity conjecture see
[Fér09; DFŚ10]) there are several other positivity conjectures related to the normalized
characters Chπ that remain open (see [GR07, Conjecture 2.4] and [Las08]) and which
suggest the existence of some additional hidden combinatorial structures behind such
characters. We expect that such positivity problems are more amenable to bijective methods
(such as the ones from [Cha09]) and the current article is the first step in this direction.

We will concentrate on the special case when the partition π “ pkq consists of a single
part. In this case the degree of the Stanley polynomial (1) turns out to be equal to k ` 1. We
will also concentrate on the combinatorial interpretation of the coefficients of the Stanley
polynomial (1) standing at monomials of this maximal degree k ` 1; they turn out to be
related to maps of genus zero, i.e., plane trees. Nevertheless, the methods which we present
in the current paper for this special case are applicable in much bigger generality and in a
forthcoming paper we discuss the applications to maps with higher genera.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 3

%

n

.
⑨tm

N

f
@

00

I@
¥
&
.

*
I

⑤ f
-
0
£
8
0

H
E

Figure 2. An example of a Stanley tree of type p3, 5, 3q. The circled numbers
indicate the labels of the black vertices. The black numbers indicate the
labels of the edges. The colors (blue for 1, red for 2, green for 3) indicate
the values of the function f on white vertices.

1.2. Stanley trees. Let T be a bicolored plane tree, i.e., a plane tree with each vertex
painted black or white and with edges connecting the vertices of opposite colors. We
assume that the tree has k edges labeled with the numbers 1, . . . , k. We also assume that it
has n black vertices labeled with the numbers 1, . . . , n. The white vertices are not labeled.
Being a plane tree means that the set of edges surrounding any given vertex is equipped
with a cyclic order related to visiting the edges in the counterclockwise order. In our
context the structure of the plane tree can be encoded by a pair of permutations pσ1, σ2q

with σ1, σ2 P Sk such that the cycles of σ1 (respectively, the cycles of σ2) correspond to
labels of the edges surrounding white (respectively, black) vertices. We define the function
f which to each white vertex associates the maximum of the labels of its black neighbors.
We will say that T is a Stanley tree of type

pb1, . . . , bnq :“
´

ˇ

ˇf´1
p1q

ˇ

ˇ, . . . ,
ˇ

ˇf´1
pnq

ˇ

ˇ

¯

;

in other words the type gives the information about the number of the white vertices for
which the function f takes a specified value. Figure 2 gives an example of a Stanley tree of
type p3, 5, 3q.

Since for a tree the total number of the black and the white vertices is equal to the number
of the edges plus 1, it follows that

(2) b1 ` ¨ ¨ ¨ ` bn ` n “ k ` 1.

Note that the definition of the Stanley tree of a given type depends implicitly on the value
of k; in the following we will always assume that k is given by (2).

By Tb1,...,bn we denote the set of Stanley trees of a specific type pb1, . . . , bnq.

1.3. Coefficients of the top-degree p-square-free monomials. It turns out that in the
analysis of the Stanley polynomials it is enough to restrict attention to the p-square-free

4 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

monomials, i.e., the monomials of the form

(3) p1 ¨ ¨ ¨ pnq
b1
1 ¨ ¨ ¨ qbnn

with integers b1, . . . , bn ě 0, see [DFŚ10, Section 4] and [Śni16] for a short overview. The
following lemma is a reformulation of a result of Rattan [Rat08] and gives a combinatorial
interpretation to the coefficients standing at these p-square-free monomials which are of
top-degree.

Lemma 1.1. For all integers b1, . . . , bn ě 0 such that

(4) b1 ` ¨ ¨ ¨ ` bn ` n “ k ` 1

the p-square-free coefficient of the Stanley character polynomial is given by

(5)
”

p1 ¨ ¨ ¨ pnq
b1
1 ¨ ¨ ¨ qbnn

ı

Chk

`

p ˆ q
˘

“ ˘
1

pk ´ 1q!

ˇ

ˇTb1,...,bn

ˇ

ˇ .

In order to be concise we will not discuss the sign on the right-hand side. The above
lemma is a special case of a general formula conjectured by Stanley [Sta06, Conjecture 3]
and proved by Féray [Fér10] and therefore we refer to it as the Stanley–Féray character
formula. This general formula is applicable also when the assumption (4) is not fulfilled; in
this case on the right-hand side of (5) the Stanley trees should be replaced by unicellular
maps with some additional decorations, see Section 1.5.1 for more details.

There is another way of calculating the coefficient on the left-hand side of (5); we shall
review it in the following. The homogeneous part of degree k ` 1 of the multivariate
polynomial Chk

`

p ˆ q
˘

(i.e., its homogeneous part of the top degree) is called the free
cumulant and is denoted by Rk`1

`

p ˆ q
˘

. Free cumulants were first defined in the con-
text of Voiculescu’s free probability theory and the random matrix theory (see [DFŚ10,
Sections 1.3 and 3.4] for references); in the context of the representation theory of the
symmetric groups they were introduced in the fundamental work of Biane [Bia98]. From
the defining property of the free cumulant it follows that

(6)
”

p1 ¨ ¨ ¨ pnq
b1
1 ¨ ¨ ¨ qbnn

ı

Chk

`

p ˆ q
˘

“

”

p1 ¨ ¨ ¨ pnq
b1
1 ¨ ¨ ¨ qbnn

ı

Rk`1

`

p ˆ q
˘

,

provided that (4) holds true.
Dołęga, Féray and the second named author [DFŚ10, Section 3.2] introduced another

convenient family S2, S3, . . . of functions on the set of Young diagrams, which has the
property that for any strictly positive exponents b1, . . . , bn ě 1 the coefficient of the
corresponding p-square-free monomial (3) in any finite product

Sα2
2 Sα3

3 ¨ ¨ ¨ “

”

S2

`

p ˆ q
˘

ıα2
”

S3

`

p ˆ q
˘

ıα3

¨ ¨ ¨

(for any sequence of integers α2, α3, . . . ě 0 such that only finitely many of its entries are
non-zero) takes a particularly simple form, cf. [DFŚ10, Theorem 4.2]. On the other hand,

BIJECTION BETWEEN TREES AND FACTORIZATIONS 5

the free cumulant Rk`1 can be written as an explicit polynomial in the functions S2, S3, . . . ,
cf. [DFŚ10, Proposition 2.2]. By combining these two results it follows that for any integers
b1, . . . , bn ě 1 such that (4) holds true, the right-hand side of (6) is equal to

(7)
”

p1 ¨ ¨ ¨ pnq
b1
1 ¨ ¨ ¨ qbnn

ı

Rk`1

`

p ˆ q
˘

“ p´kq
n´1.

By combining Equations (5)–(7) we obtain the following result.

Corollary 1.2. For any integers b1, . . . , bn ě 1 such that (4) holds true, the number of the
Stanley trees of type pb1, . . . , bnq is equal to

(8)
ˇ

ˇTb1,...,bn

ˇ

ˇ “ pk ´ 1q! kn´1.

Remark 1.3. The assumption that the b1, . . . , bn are strictly positive cannot be weakened;
if some of the entries of the sequence b1, . . . , bn are equal to zero then the number of the
Stanley trees of type pb1, . . . , bnq takes a more complicated form which can be extracted by
an application of [DFŚ10, Lemma 4.5].

The above sketch of the proof of Corollary 1.2 has a disadvantage of being purely
algebraic. The main result of the current paper (see Theorem 2.1 below) is its new, bijective
proof. As the first step in this direction we will look for some natural class of combinatorial
objects the cardinality of which is given by the right-hand side of (8).

1.4. Minimal factorizations of long cycles. We fix an integer k ě 1 and denote by Sk

the corresponding symmetric group. We say that a permutation π P Sk is a cycle of length
ℓ if it is of the form π “ px1, . . . , xℓq.

Let a1, . . . , an ě 2 be integers. We say that a tuple pσ1, . . . , σnq is a factorization of a
long cycle of type pa1, . . . , anq if σ1, . . . , σn P Sk are such that the product σ1 ¨ ¨ ¨ σn is a
cycle of length k and σi is a cycle of length ai for each choice of i P t1, . . . , nu. In the
current paper we concentrate on minimal factorizations which correspond to the special
case when

(9)
n
ÿ

i“1

pai ´ 1q “ k ´ 1.

By Ca1,...,an we denote the set of such minimal factorizations of a long cycle of type
pa1, . . . , anq.

Biane [Bia96] extended a previous result of Dénes [Dén59] and proved that the number of
minimal factorizations σ “ σ1 . . . σn of a fixed cycle σ of length k into a product of cycles
of lengths a1, . . . , an for which (9) is fulfilled, is equal to kn´1. Since in the symmetric
group Sk there are pk ´ 1q! such cycles σ of length k, it follows that the number of the
minimal factorizations of a long cycle of type pa1, . . . , anq is equal to

(10)
ˇ

ˇCa1,...,an
ˇ

ˇ “ pk ´ 1q! kn´1

6 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

and therefore coincides with the right-hand side of (8). Our new proof of Corollary 1.2 will
be based on an explicit bijection between the set Tb1,...,bn of Stanley trees of some specified
type and the set Ca1,...,an of minimal factorizations of a long cycle of some specified type,
see Theorem 2.1 for more details.

1.5. Outlook: permutations, plane trees, maps. For simplicity, in the current paper
we consider only the first-order asymptotics of the character (1) of the symmetric group
on a cycle π “ pkq, which corresponds to the coefficients of the Stanley polynomial
(5) appearing at the top-degree monomials (4). In the light of the aforementioned open
problems which concern the fine structure of the symmetric group characters Chk evaluated
on a cycle (see [GR07, Conjecture 2.4] and [Las08]) it would be interesting to extend the
results of the current paper to the coefficients of general p-square-free monomials of the
Stanley character polynomial. We will keep this wider perspective in mind in what follows.

Each of the two sets Tb1,...,bn and Ca1,...,an which appear in our main bijection has an
algebraic facet and a geometric facet. In the following we will revisit the links between
these facets. These geometric facets will be essential for the bijection which is the main
result of the current paper.

1.5.1. Stanley trees, revisited. The general form of the Stanley–Féray character formula (see
[Sta06, Conjecture 3] and Féray [Fér10]) gives an explicit combinatorial interpretation to the
coefficient of an arbitrary monomial in the Stanley polynomial Chk

`

p ˆ q
˘

, nevertheless
it seems that in applications only p-square-free monomials are really useful, see [DFŚ10,
Section 4] and [Śni16]. It turns out that in general the coefficient

(11)
”

p1 ¨ ¨ ¨ pnq
b1
1 ¨ ¨ ¨ qbnn

ı

Chk

`

p ˆ q
˘

is equal (up to the ˘ sign) to the number of triples pσ1, σ2, f2q such that:
‚ σ1, σ2 P Sk are permutations with the property that their product

σ1σ2 “ p1, 2, . . . , kq

is a specific cycle of length k;
‚ f2 is a bijection between the set of cycles of the permutation σ2 and the set

t1, . . . , nu (we can think that f2 is a labeling of the cycles of σ2);
‚ we define the function f1 on the set of cycles of the permutation σ1 by setting

f1pc1q “ max
␣

f2pc2q : c2 is a cycle of σ2

such that the cycles c1 and c2 are not disjoint
(

if c1 is a cycle of σ1;

we require that for each i P t1, . . . , nu the cardinality of its preimage is given by
the appropriate exponent of the variable qi in the monomial:

ˇ

ˇf´1
1 piq

ˇ

ˇ “ bi.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 7

To this algebraic object pσ1, σ2, f2q one can associate a geometric counterpart, which is a
bicolored map. More specifically, it is a graph drawn on an oriented surface, with the edges
labeled with the elements of the set t1, . . . , ku. Each white vertex (respectively, each black
vertex) corresponds to some cycle of the permutation σ1 (respectively, to some cycle of the
permutation σ2) so that the counterclockwise cyclic order of the edges around the vertex
coincides with the cyclic order of the elements of the set t1, . . . , ku which are permuted by
the cycle, see [Śni13, Section 6.4].

We assume that the surface on which the graph is drawn is minimal which means that after
cutting the surface along the edges, each connected component is homeomorphic to a disc;
we call such connected components faces of the map. The product σ1σ2 “ p1, 2, . . . , kq

consists of a single cycle which geometrically means that our map has exactly one face; in
other words it is unicellular.

The bijection f2 geometrically means that the black vertices of our map are labeled by the
elements of the set t1, . . . , nu. Using such a geometric viewpoint, f1 becomes a function
on the set of white vertices which to a given white vertex associates the maximum of the
labels (given by f2) of its neighboring black vertices.

By counting the white and the black vertices it follows that the total number of the
vertices is equal to

b1 ` ¨ ¨ ¨ ` bn ` n.

A simple argument based on the Euler characteristic shows that for a unicellular map this
number of vertices is bounded from above by k ` 1 (which is the number of the edges plus
one) and the inequality becomes saturated (i.e., the equality (4) holds true) if and only if
the surface has genus zero, i.e., it is homeomorphic to a sphere.

In the following we consider the case when (4) indeed holds true. It is conceptually
simpler to consider such a map drawn on the sphere as drawn on the plane; being unicellular
corresponds to the map being a tree. It follows that in this case the geometric object
associated above to the triple pσ1, σ2, f2q which contributes to the coefficient (11) coincides
with the Stanley tree of type pb1, . . . , bnq.

The above discussion motivates the notion of the Stanley trees and shows which more
general geometric objects should be investigated in order to study more refined asymptotics
of the characters of the symmetric groups.

1.5.2. Minimal factorizations. The geometric object which can be associated to a minimal
factorization σ1, . . . , σn P Sk of a long cycle of type pa1, . . . , anq is a graph with k white
vertices (labeled with the elements of the set t1, . . . , ku) and n black vertices (labeled with
the elements of the set t1, . . . , nu). We connect the black vertex i with the white vertices
σi,1, . . . , σi,ai which correspond to the elements of the cycle σi “ pσi,1, . . . , σi,aiq. This
graph is clearly connected, it has k ` n vertices and it has a1 ` ¨ ¨ ¨ ` an edges; from the
minimality assumption (9) it follows that the graph is, in fact, a tree. We may encode the

8 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

cycles σ1, . . . , σn by drawing the tree on the plane in such a way that the counterclockwise
order of the white vertices surrounding a given black vertex i corresponds to the cycle σi.
On the other hand, we have a freedom of choosing the cyclic order of the edges around the
white vertices. In this way a minimal factorization of a long cycle can be encoded by a
plane tree with labeled white vertices and labeled black vertices.

1.6. Overview of the paper. In Section 2 we state our main result (Theorem 2.1) about
existence of a bijection between certain sets of minimal factorizations and Stanley trees;
the bijection itself is constructed in Sections 2.1, 2.2, 2.5 and 2.7. It is quite surprising that
a bare-boned description of the bijection (without the proof of its correctness) is quite short,
nevertheless this algorithm creates a quite complex dynamics, as can be seen by the length
of the description of the inverse map. Additionally, in Sections 2.6 and 2.8 we prove that
this algorithm is well defined.

As the first step towards the proof of Theorem 2.1, in Section 3 we show Proposition 3.2
which states that the output of our algorithm indeed is a Stanley tree of a specific type.

Section 4 contains an alternative description of the bijection.
In Section 5 we construct the inverse map.
Finally, in Section 6 we complete the proof of Theorem 2.1.

2. THE MAIN RESULT: BIJECTION BETWEEN STANLEY TREES AND MINIMAL
FACTORIZATIONS OF LONG CYCLES

The following is the main result of the current paper.

Theorem 2.1. Let n ě 2 and b1, . . . , bn ě 1 be integers. We define the integers a1, . . . , an
by

(12) ai “

#

bi ` 1 if i P t1, nu,

bi ` 2 otherwise.

Then the algorithm A presented below gives a bijection between the set Ca1,...,an of minimal
factorizations (see Section 1.4) and the set Tb1,...,bn of Stanley trees (see Section 1.2).

Note that both the notion of a Stanley tree as well as the notion of the minimal factoriza-
tion implicitly depend on the value of k given, respectively, by (2) and (9). In our context,
when (12) holds true, these two values of k coincide.

2.1. The first step of the algorithm A: from a factorization to a tree with repeated edge
labels. In the first step of our algorithm A to a given minimal factorization pσ1, . . . , σnq P

Ca1,...,an we will associate a bicolored plane tree T1 with labeled black vertices and labeled
edges. The remaining part of the current section is devoted to the details of this construction.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 9

÷
&

,
° "

•
•• •
• •

DO . . .

4
c ya EE

• " ° ②÷'d • • *

←
-

Xn
•
•
•

@
⑥g a

• as "

go @ no DQ
X

°

n

a • @ .
I

⇒ /× ?: xs : Xd . H :

B

¥
¥.

Figure 3. The structure of a white spine vertex c in the plane tree T0. The
labels of the black spine vertices αc, y1 P t1, . . . , nu fulfill αc ă y1.

2.1.1. The tree T0. Just like in Section 1.5.2 we start by creating a graph T0 with n black
vertices labeled 1, . . . , n and with k white vertices labeled 1, . . . , k, where k is given by (9).
Each black vertex i corresponds to the cycle σi “ pσi,1, . . . , σi,aiq and so we connect
the black vertex i with the white vertices σi,1, . . . , σi,ai . By the same argument as in
Section 1.5.2 this graph is, in fact, a tree.

In order to give this tree the structure of a plane tree we need to specify the cyclic
order of the edges around each vertex. Just like in Section 1.5.2 we declare that going
counterclockwise around the black vertex i the cyclic order of the labels of the white
neighbors should correspond to the cyclic order σi,1, . . . , σi,ai . The cyclic order around the
white vertices is more involved and we present it in the following.

The path between the two black vertices with the labels 1 and n will be called the spine;
on Figure 4a it is drawn as the horizontal red path. There will be two separate rules which
determine the cyclic order of the edges around a given white vertex, depending whether the
vertex belongs to the spine or not.

For each white vertex which is not on the spine we declare that going counterclockwise
around it, the labels of its black neighbors should be arranged in the increasing way (for
example, the neighbors of the white vertex 6 on Figure 4a listed in the counterclockwise
order are 3, 4, 6).

For each white vertex c which belongs to the spine there are exactly two black neigh-
bors which belong to the spine; we denote their labels by αc and y1 with αc ă y1, see
Figure 3. Going counterclockwise around c, all non-spine edges should be inserted after
αc and before y1. Their order is determined by the requirement that—after neglecting the

10 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

{
to

o
I.⑤

A
. ③

I
⑨
E

IE
to
-

of
E
I

¥
E
a

¥!
④

°

To
⑥
--

-

⑤
¥
¥
9

•no

.

I
E

E

n
o

⑤ do
.

(a)

o

o¥.②
4
④
o

to
0
¥
.

*
§

¥
0

⑧BsBoEr⑦
⑧
↳

¥¥#
a

⑥
⑦
-
o

g
o

to
⇒

I
8
%

do
@

of①

t⑦
⑧
T
o

(b)

Figure 4. (a) The output T0 of the first step of the algorithm A applied to
the minimal factorization (13). The spine is the horizontal red path between
the vertices 1 and 14. (b) The tree T1 with some sample clusters highlighted.
The red color indicates the cluster 1, while the green indicates the cluster 15.
The double transverse lines identify the roots of the respective clusters.

vertex y1—the cyclic counterclockwise order of the remaining vertices should be increas-
ing. For example, for the white vertex 1 on Figure 4a we have α1 “ 7, y1 “ 11 and the
counterclockwise cyclic order of the non-y1 black neighbors is 4, 7, 13.

For example, Figure 4a gives the tree T0 which corresponds to

n “ 14, k “ 27, a1 “ a14 “ 2, a2 “ ¨ ¨ ¨ “ a13 “ 3

and the minimal factorization pσ1, . . . , σ14q P C2,312,2

(13) σ1 “ p2, 3q, σ2 “ p13, 15, 14q, σ3 “ p6, 9, 10q, σ4 “ p1, 6, 26q,

σ5 “ p11, 15, 12q, σ6 “ p6, 8, 7q, σ7 “ p1, 16, 15q σ8 “ p21, 27, 24q,

σ9 “ p22, 23, 25q, σ10 “ p16, 19, 18q, σ11 “ p2, 20, 1q,

σ12 “ p20, 22, 21q, σ13 “ p1, 5, 4q, σ14 “ p16, 17q.

We denote by T1 the tree T0 in which each edge is labeled by its white endpoint and then
all labels of the white vertices are removed, see Figure 4b. The tree T1 is the output of the
first step of the algorithm A.

2.1.2. Information about the initial tree T1. In the current section we will define certain
sets and functions which describe the shape of the initial tree T1. In the language of
programmers: we will create variables Bc, αc, B, and C which will not change their values
during the execution of the algorithm A.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 11

o

'
'

.

' '

-

O

o
.

'

¥10
9
⑨
i

↳
of
*

§
0¥00

,

⑧
④
¥
8

¥9
.

f
t

④
a.§
.

⑨
¥

im
gur.EE

*
⑦
⑧
"

o

E
. ⑦
f¥⑦ ⑧
T
o

Figure 5. The tree T1 which is the starting point of the second step of the
algorithm A. Essentially this is an enlarged version of Figure 4b with some
additional highlights. For the sake of clarity we paint the non-root edges of
each cluster in one color, while the root edge is marked with two transverse
lines of the same color.

For c P t1, . . . , ku by the cluster c we mean the set of edges which carry the label c,
together with their black endpoints. We will also say that c is the label of this cluster. All
edges in a given cluster have the same white endpoint; this property will be preserved by
the action of our algorithm. This common white vertex will be called the center of the
cluster. For example, in Figure 4b the cluster 1 is drawn in red, while the cluster 15 is
drawn in green.

A cluster is called a spine cluster if it contains exactly two black spine vertices. The set
of labels of such spine clusters will be denoted by C Ď t1, . . . , ku.

We orient the non-spine edges of the tree so that the arrows point towards the spine. The
root of a non-spine cluster is defined as the unique edge outgoing from the center. The root
of a spine cluster is defined as the edge with the smallest label of the black endpoint among

12 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

the two spine edges in the cluster; with the notations of Figure 3 it is the edge between
the vertices c and αc. For example, in Figure 5 the root of a cluster is marked with two
transverse lines. Heuristically, our strategy will be to keep removing the edges from the
cluster; the root is the unique cluster edge which will remain.

The black end of the root of a cluster c P t1, . . . , ku in the tree T1 will be called the anchor
of the cluster c and will be denoted by αc P t1, . . . , nu. By definition, the anchor of a cluster
will not change during the execution of the algorithm. We denote by Bc Ď t1, . . . , nu the
set of labels of the black vertices in the cluster c in the tree T1. The notion of the root will
not be used in the description of the algorithm A, nevertheless it will be a convenient tool
for proving later its correctness.

By B Ď t1, . . . , nu we denote the set of the labels of black spine vertices.

For the example from Figure 4b we have:

(14) B “ t1, 7, 11, 14u, C “ t1, 2, 16u,

B1 “ t4, 7, 11, 13u, B2 “ t1, 11u, B6 “ t3, 4, 6u, B15 “ t2, 5, 7u,

B16 “ t7, 10, 14u, B20 “ t11, 12u, B21 “ t8, 12u, B22 “ t9, 12u,

α1 “ 7, α2 “ 1, α6 “ 4, α15 “ 7,

α16 “ 7, α20 “ 11, α21 “ 12, α22 “ 12.

We did not list the values of Bi and αi for white vertices i which are non-spine leaves
because these values will not be used by our algorithm.

A cluster is called a leaf if it contains exactly one edge. For example, in Figure 4b the
cluster 10 is a leaf.

Recall that we orient the non-spine edges of the tree so that the arrows point towards the
spine. The set of non-spine clusters is partially ordered by the orientations of the edges
as follows: a cluster c1 is a predecessor of a cluster c2 if the path from the spine to the
center of the cluster c2 passes through the center of the cluster c1. This partial order can
be extended to a linear order (not necessarily in a unique way). Let Σ be the sequence of
the clusters which are non-spine and non-leaf, arranged according to this linear order. For
example, for the tree T1 shown on Figure 4a we can choose Σ “ p6, 15, 20, 21, 22q.

In the plane tree T1 we can divide the set of white non-spine vertices (respectively, the
set of non-spine clusters) into the set of leftist vertices and the set of non-leftist vertices
(respectively, clusters). A white non-spine vertex (respectively, a non-spine cluster) is
called leftist in the tree T1 if it is the leftmost child of its parent. For example, for the tree
T1 shown on Figure 6, white leftist vertices are drawn as thick green empty circles.

2.2. The second step of the algorithm A: from a tree with repeated edge labels to a
tree with unique edge labels. The starting point of the second step of our algorithm A is
the bicolored plane tree T1 with black vertices labeled 1, . . . , n and with edges labeled with

BIJECTION BETWEEN TREES AND FACTORIZATIONS 13

•

•
O
•

•

O
r

o
r
a

•

•
⑦

a

•
•

D
O

•
a

⑧
•

O
o

OO
•

O
•

O
•

•

⑨

Figure 6. The tree T1 shown without the labels. The red edges indicate the
spine. The thick green empty circles indicate white leftist vertices.

the numbers 1, . . . , k; note that the edge labels are repeated. Our goal in this second step of
the algorithm is to transform the tree so that the edge labels are not repeated.

We declare that at the beginning all clusters of the tree T1 are untouched. Also, each
non-spine black vertex is declared to be untouched while each black spine vertex is declared
to be touched.

The second step of the algorithm will consist of two parts: firstly we apply the spine
treatment (Section 2.5), then we apply the rib treatment (Section 2.7). In fact, these two
parts are very similar: each of them consists of an external loop which has a nested internal
loop; one could merge these two parts and regard them as an instance of a single external
loop which treats the spine vertices and the nib-spine vertices in a slightly different way.

During the action of the forthcoming algorithm some edges will be removed from each
cluster. The root of the cluster may change during the execution of the algorithm. On the
positive side, the following invariant guarantees that some properties of a cluster will persist
(the proof is postponed to Proposition 2.5 and Proposition 2.7).

Invariant 2.2. At each step of the algorithm and for each cluster c the following properties
hold true:

(I1) the edges of the cluster c have a common white endpoint (called, as before, the
center of the cluster),

(I2) the anchor of c is a black vertex which is connected by an edge with the center of c,
(I3) the root of c is one of the edges which form the cluster c,
(I4) if the black endpoint of the root of c is not equal to the anchor αc then this black

endpoint is touched.

Be advised that distinct clusters might at later stages of the algorithm share the same
center. Also, the anchor of a given cluster might no longer belong to the cluster.

14 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

①
%

.
.
.

¥
.

⑦
\

±
.
.
.

T
O

%
⑤

a

Foo
#t
E

i

:÷¥¥÷÷¥:
⑦9

.
.

.

÷

(a)

I1¥
G
.
⑧ t
o

it
.
.
.

#
T

.

.
.

⑤9g
¥
.

÷
. ¥:#

⑦
i
t

.

.

.

⑦M
.
.

.

÷

(b)

Figure 7. (a) The initial configuration of the tree. (b) The output of Bx,y.

The algorithm will be described in terms of two operations, called bend and jump; we
present them in the following. Each of them decreases the number of the white vertices by
1, as well as decreases the number of edges by 1.

2.3. The building blocks of the second step: bend Bx,y.

2.3.1. Assumptions about the input of Bx,y. We list below the assumptions about the input
of the operation bend. We also introduce some notations.

(B1) The operation Bx,y takes as an input a bicolored tree T which is assumed to be as in
Invariant 2.2, together with a choice of two distinct black vertices x, y. We assume
that there is a cluster E1 such that x is the anchor of E1 and y belongs to E1, see
Figure 7a. We denote the center of E1 by v1.

(B2) We denote by i the black endpoint of the root of the cluster E1. We assume that
i ‰ y.

(B3) We also assume that the black vertex y has degree d ě 2; we denote the edges
around the vertex y by E1, . . . , Ed (going clockwise, starting from the edge E1

between v1 and y). We denote the white endpoint of the edge Ei by vi.

2.3.2. The output of Bx,y. The bend operation can be thought of as a counterclockwise
rotation of the edge E2 around the vertex y so that it is merged with the edge E1; a more
formal description of the output of Bx,y is given as follows.

We remove the edge between the vertices y and v2. The label of the edge between v1 and
y is changed to E2. If the removed edge was the root of the cluster E2, the aforementioned
edge between v1 and y becomes the new root of the cluster E2.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 15

Then we merge the vertex v2 with the vertex v1 in such a way that going clockwise
around v1 the newly attached edges are immediately before the edge E2 (these edges are
marked blue on Figure 7).

From the following on we declare that the cluster E1 is touched and also the black
vertex y is touched. It is easy to check that the output tree still fulfills the properties from
Invariant 2.2.

We will say that some operation on the tree separates the root and the anchor in a
cluster c if (i) before this operation was applied the anchor of c was the black endpoint of
the root of c, and (ii) after this operation is performed this is no longer the case. It is easy
to check that the following simple lemma holds true.

Lemma 2.3. The bend operation does not separate the root and the anchor in any cluster.

2.4. The building blocks of the second step: jump Jx,y.

2.4.1. Assumptions about the input of Jx,y. We list below the assumptions about the input
of the operation jump. We also introduce some notations.

(J1) The operation Jx,y takes as an input a bicolored tree T which is assumed to be
as in Invariant 2.2, together with a choice of two black vertices x, y. We assume
that there is a cluster E1 such that x is the anchor of E1 and y belongs to E1, see
Figures 8a and 9a. We denote by v1 the center of the cluster E1. We also assume
that the labels of the vertices x, y P t1, . . . , nu fulfill x ă y.

(J2) We denote by j the black neighbor of v1 which—going clockwise around the
vertex v1—is immediately after y (note that it might happen that j “ x, see
Figure 9a). We assume that j is the black endpoint of the root of the cluster E1, see
Figures 8a and 9a.

(J3) We also assume that the black vertex y has degree d ě 3; we denote the edges
around the vertex y by E1, . . . , Ed (going clockwise, starting from the edge E1).
For i P t1, . . . , du we denote the white endpoint of the edge Ei by vi.

(J4) We assume that the vertex x is touched.

2.4.2. The output of Jx,y. The output of Jx,y is defined as follows. We remove the three
edges connecting y with the three vertices v1, v2, v3. We create a new white vertex de-
noted w; this vertex is said to be artificial; we will use this notion later in the analysis of
the algorithm.

We connect w to the vertex j by a new edge which we label E2; more specifically, going
clockwise around j the newly created edge E2 is immediately after the edge E1. This newly
created edge replaces the removed edge between y and v2, so if this removed edge was the
root of the cluster E2, we declare that the new edge E2 becomes now the new root of the
cluster E2.

16 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

§

:
⑧
④

.

.

.

I
do

①
%

.
.
.

fifer
.
. o
.fi#
*.-E

%
⑤

⑧
⑨

#t
"

"÷
:

⑦9
.
.

.

÷

(a)

':

⑦
⑧

o
f

°
-

8
¥51

⑦
*

.
.
.

r
⑤

o
By

°
.
.

*
f

⑦
In
a

÷
.

¥:*
. and
:

① f.
.

i

{ \
.
.

.

÷

(b)

Figure 8. (a) The initial configuration of the tree. (b) The output of Jx,y.

⑦

④
%

☒
•¥
÷ i.⇒. ?

③

:¥÷I⇒ :
:
*A
.

:

(a)

⑧⑤⇔*-•
¥
7

.
.

⑤

÷.¥¥¥
?

↑ :*
:

.

.

.

:

(b)

Figure 9. (a) The initial configuration of the tree in the special case when
j “ x. (b) The output of Jx,y in the special case when j “ x.

We also connect the new vertex w to the vertex y by a new edge which we label E3;
the position of the edge E3 in the vertex y replaces the three edges which were removed
from y. Again, this newly created edge replaces the removed edge between y and v3, so if
this removed edge was the root of the cluster E3, we declare that the new edge E3 becomes
now the new root of the cluster E3.

We merge the vertices v2 and v3 with the vertex w. More specifically, the clockwise
cyclic order of the edges around the vertex w is as follows: the edge E2, then the edges
from the vertex V3 (listed in the clockwise order starting from the removed edge E3; on
Figures 8 and 9 these edges are marked red), the edge E3, then the edges from the vertex v2
(listed in the clockwise order starting from the removed edge E2; on Figures 8 and 9 these
edges are marked blue), see Figures 8b and 9b.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 17

÷
#

,
° "

•
•• •
• •

DO . . .

4 ya EE

• ° ° ②t• • • *

←
-

C
C

X,
°
c
C c

•
•
•

@
⑥g a

• as "

gig @ • ⑨& °

n

• • • .
Xlv

⇒ /× ?: xz : Xd . th :

D

¥
¥.

(a)

• :
• • .

.
.

•

\)) •
• •
• •

"
"

DO . . .

4 Yr EE

• a o @-I@ • • .

-
.

c
"

.¥
.

X,
°
c
C c

•
•
•

@
⑥g a

• no .

go @ no DQ
X

°

n

a • @ . b/!: xs : Xd th :

D

÷
x
ja

(b)

Figure 10. (a) A spine cluster c of the tree T1 corresponding the part of
the tree T0 on Figure 3. The black vertices αc, y1 with αc ă y1 are spine
vertices. The vertex αc is the anchor of the cluster c as well as the black
endpoint of the root of the cluster c. We denote by xd “ minBcztαc, y1u
the vertex with the minimal label among non-spine vertices in the cluster.
(b) The structure of the cluster c at a later stage of the algorithm as long as it
remains untouched, see Proposition 2.5 (P2) for details.

From the following on we declare that the cluster E1 is touched and also black vertex y is
touched. It is easy to check that the output tree still fulfills the properties from Invariant 2.2.

It is easy to check that the following simple lemma holds true.

Lemma 2.4. The jump operation separates the root and the anchor only in (at most) a
single cluster. This potentially exceptional cluster is the one which with the notations of
Figures 8 and 9 is denoted by E2.

In fact, we will use the jump operation only in the context when it indeed separates the
root and the anchor in E2; in this context E2 will turn out to be a leftist cluster.

2.5. The spine treatment. For each spine cluster C P C we apply the following procedure
(the final output will not depend on the order in which we choose the clusters from C). In the
language of programmers we run the external loop (or the main loop) over the variable C.
Since the spine in the tree T1 is a path, the intersection BC X B corresponds to the labels
of the two black spine vertices of the cluster C in the tree T1. One of these two vertices
is the anchor αC of the cluster, we denote the other one by y1; in this way αC ă y1. As
we will prove later (see Proposition 2.5, property (P2)), at the time of the execution of this
particular loop iteration, the spine cluster C is of the form shown on Figure 10b.

18 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

O
e

E
⑤

•
it
t
o
!
@ ⑥

o
s
o

=

¥
⇐ tf
t
¥
0
④

e
r..
.

⑤
¥0

oi@
f.Xo.o
*
-
¥0

o
f

in
④

⑧
④

o

o
¥
.¥¥¥¥f
④
a
⑦
-
o
.

*§I÷¥f
.

no

(a)

O
e

E
⑤

•
it
t
o
!
@ ⑥

o
s
o

=

¥
⇐ tf
t
¥
0
④

e
r..
.

⑤
¥0

oi@
f.Xo.o
*
-
¥0

o
f

in
④

⑧
④

o

o
¥
.±;÷o¥f
⑥
a
⑦
%
o
.

T
.

no
o

(b)

Figure 11. (a) The output of B1,11. (b) The output of B7,4.

⑤
o

Y
④
o

o.E.Ioe@
ozo.E
.

±
¥

⇐ If
⇐
o
¥f.
I

0
¥
.¥*⑨¥

If
⑤
¥

¥¥÷¥÷¥÷.
¥
⑦

(a)

¥
:@⑤

o
Y
④
o

o.is.Ioe@
ozo.E

±
¥

⇐ tf
⇐
o
¥

q①
•X⑧
④

yo
.
I

o :*
.
*f-

⑧
¥

* E
T
O
-
@
I

⑥
⑦
a
x
is
i
n

*
If
a
④

o

no
o

(b)

Figure 12. (a) The output of B7,11. (b) The output of J7,13.

We run the following internal loop over the variable y P BCztαCu (with the ascending
order). If y “ y1 or if the vertex labels y, αC P t1, . . . , nu fulfill y ă αC then we apply
BαC ,y; otherwise we apply JαC ,y.

Example. We continue the example from Figure 4b. We recall that C “ t1, 2, 16u.
For C “ 2 we recall that α2 “ 1 so we have y1 “ 11. Since B2zt1u “ t11u, the internal

loop is applied once with y “ 11. As a result we apply B1,11, see Figure 11a.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 19

4¥
⑤

•
t

o
⑥

o
E

to
.
. ±,④¥±x
to④
E

o
.:*
.

¥
If
⑤
go

*¥¥÷¥÷.¥
:

no

(a)

⑨
⑤

o
et

o#
⑧ ⑥

o
E

to
.
. ±;④¥±x
to⑦
E

o
.:*
.

¥
If
⑤
go

÷¥¥¥¥÷.¥
:

no
(b)

Figure 13. (a) The output of J7,10. (b) The output of B7,14.

For C “ 1 we recall that α1 “ 7 so we have y1 “ 11. Since B1zt7u “ t4, 11, 13u the
internal loop runs over: ‚ y “ 4 and we apply B7,4, see Figure 11b; ‚ y “ 11 and we apply
B7,11, see Figure 12a; ‚ y “ 13 and we apply J7,13, see Figure 12b.

For C “ 16 we recall that α16 “ 7 so we have y1 “ 14. Since B16zt7u “ t10, 14u the
internal loop runs over: ‚ y “ 10 and we apply J7,10, see Figure 13a; ‚ y “ 14 and we
apply B7,14, see Figure 13b.

2.6. Correctness of the spine treatment algorithm. Before we present the remaining part
of the algorithm (in Section 2.7) we will show that the above spine treatment is well-defined
in the sense that the assumptions for the bend and jump operations (Sections 2.3.1 and 2.4.1)
are indeed fulfilled during the spine treatment. We will show the following stronger result.

Proposition 2.5. At each step of the spine treatment algorithm, the current value of the
tree T fulfills the following properties.

(P1) The tree T fulfills the properties described in Invariant 2.2.
(P2) Let c be a spine cluster of the initial tree T1; we denote by αc, y1 the black spine

vertices in this cluster with αc ă y1. Assume that the cluster c is still untouched in
the tree T .

Then the vertex αc is both the anchor of the cluster c as well as the black endpoint
of the root of the cluster c.

Additionally, we compare:
(i) the cyclic order of the black vertex labels of the edges surrounding the center of

the cluster c in the original tree T1 (i.e. the cyclic order of the black endpoints’
labels of the cluster c in T1), see Figure 10a

20 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

with
(ii) the cyclic order of the black endpoints’ labels of the edges surrounding the

center of the cluster c in the tree T , see Figure 10b.
Then (ii) is obtained from (i) by adding some additional vertices which do not
belong to the cluster c; with respect to the cyclic order these additional vertices are
neighbors on either sides of the vertex y1, see Figure 10.

(P3) The set of clusters which are touched coincides with the set of values which the
variable C (in the external loop of the spine treatment algorithm) took in the past.

(P4) For each bend operation (respectively, for each jump operation) performed during
the spine treatment algorithm the assumptions (B1)–(B3) (respectively, the assump-
tions (J1)–(J4)) are fulfilled; in this way each bend/ jump operation is well-defined.

Proof. In the first part of the proof we will show that (B3), (J3) and (J4) are fulfilled in each
step of the spine treatment.

Note that during the spine treatment algorithm we perform operations Bx,¨ and Jx,¨ for
x P B. From the very beginning each black spine vertex is touched, so the assumption (J4)
is fulfilled in each step of the spine treatment.

In order to show (B3) and (J3) we will use the observation that when one of the operations
B¨,y or J¨,y is performed, the degree of each black vertex which is different from y increases
or remains the same.

Consider some black vertex y of the initial tree T1 which does not belong to the spine. In
this case the vertex y belongs to at most one spine cluster, so during the spine treatment
algorithm we perform at most one operation of the form B¨,y or J¨,y. Therefore, the degree
of y (at the time when this B¨,y{J¨,y operation is performed) is at least ay “ by ` 2 ě 3, as
required.

Consider now some black vertex y of the initial tree T1 which belongs to the spine. In
this case the vertex y belongs to at most two spine clusters. It follows that we perform no
operations of the form J¨,y at all, and we perform at most two operations of the form B¨,y.
In the case when we perform one such an operation B¨,y, the assumption (B3) is fulfilled
because the degree of y at the time when this operation is performed is at least ay ě

by ` 1 ě 2, by the same argument as in the previous paragraph. The other case when
two such bend operations B¨,y are performed can occur only if y R t1, nu is not one of the
endpoints of the spine; it follows therefore that the initial degree of the vertex y is equal
to ay “ by ` 2 ě 3. The bend operation B¨,y decreases the degree of the black vertex y
by 1. Therefore, at the time when the first operation B¨,y performed, the degree of y is at
least ay ě 3 while when the second such an operation is performed, the degree y is at least
ay ´ 1 ě 2, as required. This concludes the proof that the assumptions (B3) and (J3) are
fulfilled in each step of the spine treatment algorithm.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 21

In the second part of the proof, in order to show (P1)–(P4) we will use induction over the
variable C in the main loop of the spine treatment algorithm. Our inductive assumption is
that at the time when the iteration of the main loop starts or ends, the properties (P1)–(P3)
are fulfilled.

The induction base. The input tree T1 clearly fulfills the conditions (P1)–(P3).

The inductive step. We consider some moment in the action of the spine treatment
algorithm when a new iteration of the external loop begins. By the inductive assumption
the current value of the tree T fulfills the conditions (P1)–(P3). We denote by C the current
value of the variable over which the external loop runs. The assumption (P3) implies that
the cluster C is untouched; it follows that the assumption (P2) is applicable to this cluster
and hence the cluster C has the form shown on Figure 10b. We denote by x1, . . . , xl the
non-spine vertices of the cluster listed in the counterclockwise order, cf. Figure 10, and by
xd “ minBCztαC , y1u the vertex with the minimal label among non-spine black vertices
in this cluster.

We will follow the action of the internal loop (over the variable y) and we will show
that in each step the properties (P1), (P2) and (P4) are fulfilled. A straightforward analysis
shows that the variable y in the internal loop will take the following values (listed in the
chronological order):

xd, xd`1, . . . , xl
loooooooomoooooooon

phase (I)

, x1, x2, . . . , xi
loooooomoooooon

phase (II)

, y1
loomoon

phase (III)

, xi`1, . . . , xd´1
looooooomooooooon

phase (IV)

(note that in the exceptional case when d “ 1 this list has a slightly different form which
also depends whether x1 ă αC or not), therefore the execution of the internal loop can be
split into the following four phases:

(I) some number of the bend operations of the form BαC ,¨,
(II) some number of jump operations JαC ,¨,

(III) one bend operation BαC ,y1 ,
(IV) some more jump operations JαC ,¨.

For proving (P4) note that the conditions (B3), (J3) and (J4) are already proved; thus in
order to show that all bend/jump operations are well-defined, it is enough to show (B1) and
(B2), respectively (J1) and (J2). In the following we will analyze the phases (I)–(IV) one
by one and we will check that it is indeed the case. The evolution of the cluster C over time
in these four phases is shown on Figures 10b and 14 to 16 with c :“ C.

We start with the first bend operation from the phase (I), namely Bαc,xd
. (Note that in

the exceptional case when d “ 1 and x1 ą αc the phase (I) is empty and there is nothing
to prove.) The assumptions (B1)–(B2) are clearly fulfilled for this first operation, see
Figure 10b. Looking at Figure 14a, it is easy to verify that the bend operation preserves

22 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

• :

O '
.
.

•

{µ •
• •
• •

"
"

DO . . .

4 yr EE

• a o @#I@ . . o

C -
.

×. c.
a
.

•
•
•

@
⑥g a

• •
&

gg • •
""

Of Guy °

⇒ 1×7×9: xd .? # ti:
" "

#
•

(a)

• :

O
'
.
.

•

\))
•

• •
• •

"
"

DO . . .

4 y, EE

o o o @#C-@ . o o

c Tn:
x. cc '

% .
.
.

•& u
• .
.

• . no
""

A Buy
• .

I 1×2.9 • • .
.

•/ . Xz . Xd . Xd -11
&" a a

•

¢ "
°

•jj

(b)

Figure 14. (a) The structure of the spine cluster c from Figure 10b after
performing the first bend operation in the phase (I), namely Bαc,xd

. This
figure was obtained from Figure 10b by adding some additional vertices
which do not belong to the cluster c; going counterclockwise these additional
vertices occur after xd and before xd`1.
(b) The structure of the cluster c after the completion of the phase (I). This
figure was obtained from (a) by adding some additional vertices which do
not belong to the cluster c; going counterclockwise these additional vertices
occur after xd`i and before xd`i`1 for each i P t1, . . . , l ´ d ´ 1u, as well
as after xl and before y1.

the properties from Invariant 2.2. We do not modify any other spine clusters, so also the
assumption (P2) is preserved for this first bend operation.

It is easy to check that the above arguments remain valid also for the remaining bend
operations from the phase (I).

We move on to the first jump operation JαC ,x1 from the phase (II). The assumptions
(J1)–(J2) are clearly fulfilled for this operation JαC ,y, see Figure 14b. (In the exceptional
case if (a) d “ 1 and x1 ă αC , or (b) y1 ă x1 the phase (II) is empty and there is nothing to
prove.) Looking at Figure 15a, also it is easy to verify that this jump operation preserves the
properties from Invariant 2.2. We do not modify any other spine clusters, so the assumption
(P2) is still fulfilled. Also the assumptions (B1)–(B2) for the operation BαC ,y1 in the
cluster C are still fulfilled.

It easy to check that the above arguments remain valid also for the remaining jump
operations from the phase (II).

The phase (III) consists of the single bend operation BαC ,y1 , see Figure 15b. Going
counterclockwise around y1 we denote by E the label of the edge which is immediately
after the edge C, see Figure 15b. We remind that each bend operation preserves the

BIJECTION BETWEEN TREES AND FACTORIZATIONS 23

• :

O '
.
.

•

{µ •
• •
• •

"
"

DO . . .

4 yr EE
• o o @#÷@ . o a

C -
.

•
,

•

÷.
. ÷.-•

Xn
. . .

"
a •

t

Fs B .

•a Xz • ⑧ '
.

: ÷ Xs :
.

Xd :
.

Xd -11
a

(a)

• :

O '
.
.

•

\))
•

• •
• •

"
"

DO . . .

4 yr EE

o o o @##• o o o

C -
.

*I ¥ .

;i . .
✓

• a a
Be a no

""

Of Bey
@ a

•a 0 @ .

.

Xp . or × .
. Xd-11

. in . Xd :
. Xi : .

6

(b)

Figure 15. (a) The structure of the spine cluster c from Figure 14b after
performing the first jump operation in the phase (II). This figure was obtained
from Figure 14b by removal of the edge c with its black endpoint x1 from
the center of the cluster c and by combining black x1 and αc with a new
white vertex.
(b) The structure of the cluster c from (a) after completion of the phase (II).
This figure is obtained from (a) by removal of the edge c with its black
endpoint xk from the center of the cluster c and by combining black xk and
αc with a new white vertex for each k P t2, . . . , iu.

properties from Invariant 2.2. From Figure 16, it is easy to see that if the cluster E is
non-spine or spine and touched, then we do not disturb no other untouched spine clusters,
so the assumption (P2) is still fulfilled. If E is an untouched spine cluster, then either (a)
the vertex y is both the anchor of the cluster E as well as the black endpoint of the root
of the cluster E, or (b) y is the black spine vertex of the cluster E with the larger label. In
both cases, the untouched spine cluster E still fulfills (P2).

Finally, we move on to the phase (IV); the arguments which we used in the phase (II) are
also applicable here.

Note that during the execution of the internal loop we performed only operations of the
form BαC ,y and JαC ,y for y P BC , so we touched exactly one cluster, namely C. Therefore,
in each step of the internal loop the assumption (P3) is fulfilled. This completes the proof
of the inductive step. □

2.7. The rib treatment. In the current section we continue the algorithm from Section 2.5.
For each successive cluster C from the sequence Σ we apply the following procedure. In
the language of programming we execute an external loop over the variable C.

We run the following internal loop over the variable y P BCztαcu (with the ascending
order): if y ă αc we apply Bαc,y; otherwise we apply Jαc,y.

24 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

•
• •

Of

÷
.

4
• yr

• a o @# @ . . o

C -
.÷
.I µ .

;i . .
• . no

''

pg Of,
u

& p d @ a

•a 0 ⑧ .

.

Xp . o' X .
. Xd-11

. in . Xd :
. Xi ; .

6

Figure 16. The structure of the cluster c from Figure 15b after performing
the phase (III). The Figure 16 is obtained from Figure 15b by adding some
additional vertices which do not belong to the cluster c; going counterclock-
wise these additional vertices occur after y1.

Example. We continue the example from Figure 13b. We recall that Σ “ p6, 15, 20, 21, 22q.
For C “ 6 we have α6 “ 4. Since B6zt4u “ t3, 6u the loop runs over: ‚ y “ 3 and we

apply B4,3, see Figure 17a; ‚ y “ 6 and we apply J4,6, see Figure 17a.
For C “ 15 we have α15 “ 7. Since B15zt7u “ t2, 5u the loop runs over: ‚ y “ 2 and

we apply B7,2, see Figure 17b; ‚ y “ 5 and we apply B7,5, see Figure 17b.
For C “ 20 we have α20 “ 11. Since B20zt11u “ t12u, the internal loop is applied once

with y “ 12. As a result we apply J11,12, see Figure 18a.
For C “ 21 we have α21 “ 12. Since B21zt12u “ t8u, the internal loop is applied once

with y “ 8. As a result we apply B12,8, see Figure 18b.
For C “ 22 we have α22 “ 12. Since B22zt12u “ t9u, the internal loop is applied once

with y “ 9. As a result we apply B12,9, see Figure 19a.
Figure 19b gives the output T2 of our algorithm A applied to the minimal factorization

(13). The result is a Stanley tree of type p114q.

The resulting tree T2 is the final output of our algorithm A. In Section 3 we will show
that it has the desired properties from Theorem 2.1.

2.8. Correctness of the rib treatment algorithm. The main result of this section is
Proposition 2.7 which states that the rib treatment presented in Section 2.7 is well-defined
in the sense that the assumptions for the bend and jump operations (Sections 2.3.1 and 2.4.1)
are indeed fulfilled during the rib treatment.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 25

⑨
⑤

o
Et

o#
⑧ ⑥

o
E

to.±¥

,④*±x
④
E

o
-¥o•

¥
If
⑤
¥

.:&
.

f.Tf
.

o

°

o

⑦

(a)

⑨
⑤

o
r
if

E. ⑥
o

o

¥
¥
¥

÷÷÷*¥⇒¥¥
.

←
•
-

¥0
If
⑤
¥

. .o÷¥
.

f.If
.

o

°

o

⑦

(b)

Figure 17. (a) The output of B4,3 and J4,6. (b) The output of B7,2 and B7,5.

⑨
⑤

o
et

I. ⑥
o

¥
.. ¥
←,④*±x

⑧ to
¥

¥
.
. .

x
.It
"

⑦

(a)

⑨
⑤

o
tf

I. ⑥
o

¥
¥

-

0
¥

E

,④*±x
to

÷
¥
If÷ .o.jp

.

EYE
*¥

it.
⇒

"

o

⑦

(b)

Figure 18. (a) The output of J11,12. (b) The output of B12,8.

⑨
⑤

o
Et

I. ②
o

¥
¥

-

0
¥

yo
,④*±x

⑧ to
÷
¥
If

9.
÷
.o.fi

EYE
*¥

it.
"

o

⑦

(a)

⑧ ⑤
o

eI
E. ⑥

o
⑨

A
⇐ Y④

'

I
←
•

f
÷÷÷ :

÷÷÷÷:
⑤
⑧
T
o

(b)

Figure 19. (a) The output of B12,9. (b) The output of our algorithm A
applied to the minimal factorization (13).

26 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

For a black non-spine vertex z by the branch defined by z we mean the edge outgoing
from z in the direction of the spine together with all edges and vertices which are its
ancestors. The branch defined by z will also be called the branch z.

Lemma 2.6. For each black non-spine vertex z the branch z does not change during the
action of the algorithm A until the vertex z becomes touched.

Proof. As the first step we notice that the algorithm A (i.e., the combined the spine part
and the rib part) can be regarded as a sequence of jump and bend operations. We will use
the induction over the number of bend/jump operations which have been performed so far.

At the beginning of the algorithm there is nothing to prove.

Let us take an arbitrary tree transformation T (with T “ Bx,y or T “ Jx,y for some black
vertices x, y) in our algorithm; we denote by T the value of the tree before the transformation
T was applied. Our inductive hypothesis is that (i) the branch z was unchanged before
T was applied, and (ii) the vertex z was untouched before T was applied. Let E1 be the
cluster defined in (B1) in Section 2.3.1, respectively in (J1) in Section 2.4.1.

In the case when z “ y then after performing the transformation T the vertex z becomes
touched and there is nothing to prove.

We will show that x is touched. In the case when the black vertex x in the original tree
T1 was a spine vertex there is nothing to prove. Consider now the case when x in T1 was a
non-spine vertex; in this case the operation T is a part of the rib treatment algorithm. Let
c be the white vertex in the original tree T1 which is the parent of the vertex x; it follows
that in some moment before the operation T was applied, the variable in the external loop
(either in the spine treatment algorithm or in the rib treatment algorithm) took the value
C “ c and one of the operations: Jαc,x or Bαc,x was applied; since this moment the vertex
x was touched, as claimed. Since z is assumed to be not touched, it follows that z ‰ x.

The above discussion shows that we may assume that z R tx, yu. We denote by F
the cluster in the tree T1 which is defined by the edge outgoing from the vertex z in the
direction of the spine. We will show that the cluster E1 is not contained in the branch z,
i.e., the situation depicted on Figure 20 is not possible. By contradiction, suppose that the
cluster E1 is contained in the branch z. By the inductive assumption, before T was applied,
the branch z remained unchanged, so the relative position of the spine, the vertex z and the
clusters E1 and F is the same in the initial tree T1 and in the tree T , cf. Figure 20. It follows
that E1 is a non-spine cluster; furthermore either F is a spine cluster, or F is a non-spine
cluster which is a predecessor of E1 in the sequence Σ. In particular, the transformation T
was performed during the rib treatment part of the algorithm and the value of the variable C
in the main loop at this moment was equal to C “ E1. In one of the previous iterations
of the main loop (either in the spine treatment or in the rib treatment) the variable C took
the value C “ F ; during this iteration of the loop the vertex z became touched, which
contradicts the inductive hypothesis.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 27

a

*

*

g
u
y

•
:

•
I

W
.

*
p

D
g

•

@
*

.

B

p
A

*
•

*
•

•

&
°

.

-

IN
EG

e
e
O

•
.
-

B
}

:
L
L

-

b
f
⇐

L

OB
o

$
0

t
.

Figure 20. The hypothetical relative position of the cluster E1 (green), the
vertex z, the cluster F (blue) and the spine (red) in the tree T as long as the
branch z remains unchanged.

The above observation that E1 is not contained in the branch z allows us to define the
branch z in an equivalent way by orienting all edges of the tree towards the cluster E1 and
saying that the branch z consists of the edge outgoing from z in the direction of E1 with
all edges and vertices which are its ancestors. We will use this alternative definition in the
following.

In the case when T “ Bx,y (see Figure 7a, where z is any black vertex different than x
and y; note that this black vertex may be also in the part of the tree which was not shown),
we can notice that the branch z still does not change after the application of T, see Figure 7b,
as required.

In the case when T “ Jx,y and (with the notations from Section 2.4.1) j “ x (see
Figure 9a, where z is any black vertex different than x and y), we can notice that the branch
z still does not change after the application of T, see Figure 9b, as required.

Consider now the remaining case when T “ Jx,y and j ‰ x (see Figure 8). If z ‰ j then
the branch z still does not change after the application of T, as required. The case z “ j is
is not possible because Invariant 2.2 (I4) applied to the cluster E1 implies that z is touched
which contradicts the inductive assumption.

This completes the proof of the inductive step. □

Proposition 2.7. For each operation bend (respectively, jump) performed during the rib
treatment algorithm the assumptions (B1)–(B3) (respectively, the assumptions (J1)–(J4))
are fulfilled; in this way each bend/ jump operation is well-defined.

28 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

£
•

⑧

*
Bed

a

D
p

n
-

D
U

•
T
o

•
U

U
-
a

9.
•

D
D
g

.
U

•
D
&

E
.

E
W

.=
U

•
0
*
8

→
A

S
T

*
9

⑧
@

o
r

00

•
&

••
,

(a)
@•
U

•
8

@
-

B

•
D

U
•

O
@

-

U
p

-

•
.

a
. I
@
U

.

W
m
@

&
S
s

:
z

a
o
&

⇒
U

→
@

o
r

-
.
.

O
e

o
f

a
0
9

•
@

•@

•

••
,

(b)

*

-
→

a

•
I

•
•

*

•
U

⑥
*

m

••
8

.
.

D

J
.
@

.

✓
.

.

N
U
o
e
s

✓
←
•
•

•
r

•
s
o

u
e

a

D

Z

•
•

@

@@

•

••
,

(c)

Figure 21. Three possible structures of the non-spine cluster C at the begin-
ning of the iteration of the external loop in the rib treatment algorithm.
(a) This structure coincides with the original structure of C in the input
tree T1. The edge outgoing from the center of the cluster C in the direc-
tion of the spine is the root of the cluster C and its black endpoint is the
anchor αC of the cluster.
(b) This structure occurs as an outcome of either (i) the bend operation in
the parent cluster, provided that C is the leftmost child, or (ii) the jump
operation in the parent cluster, provided that C is the second leftmost child,
i.e., C corresponds to E2 with the notations from Figures 8 and 9. This
structure was obtained from (a) by adding some additional vertices which
do not belong to the cluster C; going clockwise these additional vertices
occur after αC . The edge outgoing from the center of the cluster C in the
direction of the spine does not belong to the cluster C.
(c) This structure occurs as an outcome of the jump operation in the parent
cluster, provided that C is the leftmost child, i.e., C corresponds to E1 with
the notations from Figures 8 and 9. The root edge does not correspond to
any of the edges which formed C in the original tree T1; in particular the
black endpoint of the root does not belong to the set BC “ tαC , y1, . . . , ylu.
The root of the cluster C is in the direction of the spine. More specifically,
the counterclockwise cyclic order of the edges with their black endpoints
around the center of cluster C is as follows: the root of the cluster C, the
edges which belong to cluster C with consecutive black endpoints y1, . . . , yl,
the edge which does not belong to the cluster C with the black endpoint
equal to the anchor αC and the remaining edges which do not belong to the
cluster C.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 29

Proof. We will go through some iteration of the external loop of the rib treatment for some
specific value of the variable C (i.e., C is a non-spine cluster) and we will verify that all
operations performed in this iteration are well-defined.

Consider the case when the anchor αC is a non-spine vertex. By C1 we denote the cluster
which is the parent of the cluster C in the tree T1. Therefore, the black vertex αC also
belongs to the cluster C1. During some previous iteration of the main loop either during
the spine treatment or during the rib treatment (more specifically, this was the iteration
when the variable C took the value C1) we performed an operation T with T “ BαC1

,αC

or T “ JαC1
,αC

. From the above Lemma 2.6 it follows that until the operation T was
performed, the branch defined by the black vertex αC was unchanged, hence the cluster C
had the form depicted on Figure 21a.

In the case when T “ BαC1
,αC

is a bend operation, after this operation T is applied the
cluster C either has the form depicted on Figure 21b (this happens if C is leftist) or it still
has the form depicted on Figure 21a (otherwise).

In the case when T “ JαC1
,αC

is a jump operation, after this operation T is applied the
cluster C either has the form depicted on Figure 21c (this happens if C is leftist), or the
form depicted on Figure 21b (this happens if C is the second leftmost child) or it still has
the form depicted on Figure 21a (otherwise).

For each of the aforementioned three cases depicted on Figure 21 one can go through
the internal loop (in a manner similar to that from the proof of the inductive step on the
pages 21–23, but simpler) and to verify that the assumptions required by the bend/jump
operations are indeed fulfilled, as required.

Now, we assume that αC is a spine vertex. In this case we have two possible situations.
The black vertex αC belongs to either one or two spine clusters in the tree T1.

Consider the case when the anchor αC belongs to two spine clusters in the tree T1,
denoted by C1, C2. During some previous iteration of the main loop of the spine treatment
part (more specifically, this was the iteration when the variable C took the value Ci for
i “ 1, 2) we performed an operation T with

(i) T “ BαCi
,αC

if αCi
ă αC ,

(ii) T “ BαCi
,¨ or T “ JαCi

,¨ if αCi
“ αC .

In the case (i), after this operation T “ BαCi
,αC

is applied, the cluster C either has the
form depicted on Figure 21b (this happens if C is leftist) or it still has the form depicted
on Figure 21a (otherwise). By checking these two cases separately (the reasoning is fully
analogous to the one presented above) we see that during this external loop iteration for
this specific value of C all the assumptions for the bend/jump operations are fulfilled, as
required.

30 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

In the case (ii), after the operation T is applied the cluster C still has the form depicted
on Figure 21a. Again, one can easily check that that during this loop iteration all the
assumptions for the bend/jump operations are fulfilled, as required.

In the case when the black vertex αC belongs to only one spine cluster in the tree T1 the
reasoning is analogous to the one above and we skip the details. □

As an extra bonus, the above proof shows that any non-spine cluster C at a later stage
of the algorithm (as long as it remains untouched) either has the form (a), (b), or (c) on
Figure 21.

3. THE OUTPUT OF THE BIJECTION IS A STANLEY TREE

The following results are the first step towards the proof of Theorem 2.1.

Lemma 3.1. Let Jx,y be one of the jump operations performed during the execution of
the algorithm A, and let j be the corresponding black vertex which was defined in the
assumption (J2) from Section 2.4.1, see Figures 8 and 9. Then the label of the vertex j is
smaller than the label of the vertex y.

Proof. Our strategy is to explicitly pinpoint the vertex j “ jpx, yq in the original tree T1.

We start with the case when the jump operation Jx,y was performed during the spine
treatment (this case holds true if and only if the white vertex between x and y is a spine
vertex). Let C be the value of the external loop variable at the time when Jx,y was performed.
We have shown in the proof of Proposition 2.5 that the anchor of the cluster C is the endpoint
of the root of the cluster C in each step of the internal loop. Therefore j “ x, see the case
described on Figure 9.

Consider now the case when the jump operation Jx,y was performed during the rib
treatment; again let C be the value of the external loop variable at the time when Jx,y was
performed; in particular C is a non-spine cluster.

If the cluster C in the tree T1 is non-leftist, from Lemmas 2.3 and 2.4 we infer that no
bend/jump operation separates the anchor of the cluster C with the root of this cluster, it
follows therefore that j “ x, see the case described on Figure 9.

Consider now the case when the cluster C in the tree T1 is leftist. From Lemmas 2.3
and 2.4 it follows that in order to check whether the anchor of the cluster C is separated
from the root, we need to consider one of the previous iterations of the main loop (in the
spine treatment or the rib treatment), namely the one for the cluster C 1 which is the parent
of C. In the case when x ă αC1 , this previous iteration contained the bend operation BαC1 ,x

which does not separate the anchor from the root, so again j “ x.

The only challenging case is the one when C is a leftist cluster and x ą αC1 so that this
previous iteration contains the jump operation JαC1 ,x which separates the anchor and the

BIJECTION BETWEEN TREES AND FACTORIZATIONS 31

>

y •

•
Xp • •

Bo
•

•

Xz •

•

Xz •

•

÷
I

• a

r n

Figure 22. The tree T1 with black vertices y, x1, x2, x3 where a white leftist
vertices are marked green.

root in the cluster C. Let us have a closer look on this previous jump operation JαC1 ,x;
it is depicted on Figures 8 and 9 with the blue cluster E2 “ C and the black cluster
E1 “ C 1. Our desired value of jpx, yq is the black endpoint of the root of the cluster C;
on Figures 8b and 9b this endpoint carries the label j. On the other hand, the value of the
variable j “ jpαC1 , xq for the previous jump operation JαC1 ,x in the parent cluster is the
black endpoint of the root of the cluster C 1 “ E1; on Figures 8a and 9a this vertex carries
the same label j. In this way we proved that our desired value of

j “ jpx, yq “ jpαC1 , xq

coincides with the value of j for the jump operation JαC1 ,x in the parent cluster. It follows
that the value of j can be found by the following recursive algorithm.

32 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

We traverse the tree T1, starting from the black vertex y, always going towards the spine,
as long as the following two conditions are satisfied:

(C1) we are allowed to enter a white vertex only if it is a leftist vertex;
(C2) we are allowed to enter a black vertex only if its label is smaller than the label of

the last visited black vertex so far.
Additionally, if we just entered a black spine vertex, the algorithm terminates. If we entered
a white spine vertex w it is not clear what does it mean to move towards the spine; we
declare that we should move now to the the root αw of the cluster defined by w. We denote
by z “ pz1, . . . , zlq the labels of the visited black vertices. For the example on Figure 22 if
x3 ă x2 ă x1 ă y we have z “ py, x1, x2, x3q. The label zl of the last visited black vertex
is the label of our searched black vertex j. It is obvious that j ă y. □

Proposition 3.2. The output of the algorithm A from Section 2 belongs to Tb1,...,bn .

Proof. By construction, the initial tree T1 has n black vertices labeled with the numbers
1, . . . , n, and k white vertices, and

ř

i ai “ n ` k ´ 1 edges labeled with the numbers
1, . . . , k in such a way that each edge label is used at least once, cf. (9). By counting the
number of edges we observe that

k
ÿ

c“1

|Bc| “ n ` k ´ 1.

Furthermore, if c P t1, . . . , kuzpC Y Σq, so that the corresponding cluster is a leaf, then
|Bc| “ 1. It follows that the total number of jump/bend operations during the execution of
our algorithm A is equal to

(15)
ÿ

cPC

p|Bc| ´ 1q `
ÿ

cPΣ

p|Bc| ´ 1q “

“
ÿ

cPC

p|Bc| ´ 1q `
ÿ

cPΣ

p|Bc| ´ 1q `
ÿ

cPt1,...,kuztCYΣu

p|Bc| ´ 1q “

“

¨

˝

k
ÿ

c“1

|Bc|

˛

‚´ k “ n ´ 1.

After performing each bend/jump operation, the number of white vertices as well as the
number of edges decreases by 1; furthermore the edge which disappears has a repeated
label, in this way the set of the edge labels remains unchanged in each step.

It follows that the output T2 is a bicolored plane tree with pn`k´1q´pn´1q “ k edges
labeled by numbers 1, . . . , k (so each label is used exactly once) and with k ´ pn ´ 1q “
řn

i“1 bi white vertices, cf. (4). To complete the proof we have to show that the tree T2 is a
Stanley tree of type pb1, . . . , bnq.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 33

We will consider two types of edges: solid and dashed. At the beginning in the plane
tree T1 each edge is declared to be solid. After performing the operation Bx,y the two edges
which form the path between x and y become dashed, see Figure 7b. After performing
the operation Jx,y the two edges which form the path between j and y become dashed, see
Figure 8b (for the case when j “ x, see Figure 9b).

We say that a white white vertex v is attracted to a black vertex i if one of the following
two conditions holds true:

‚ the vertices i and v are connected by a solid edge,
‚ the vertices i and v are connected by a dashed edge and

max
␣

y : y and v are connected by a dashed edge
(

“ i.

If v is attracted to i, we will also say that the edge e between v and i is attracted to i or that
e is an attraction edge.

For each i P t1, . . . , nu we define the variable bi; in each step of the algorithm this
variable counts the number of white white vertices which are attracted to the black vertex i.

By considering any bend/jump operation which is performed during the algorithm A it
is easy to see that each of the variables b1, . . . , bn weakly decreases over time. The only
difficulty in the proof is to verify that during the jump operation the newly created vertex
w (with the notations from Figures 8 and 9) is not attracted to the vertex j; this fact is a
consequence of Lemma 3.1. Below we will show that for i P t2, . . . , n ´ 1u the variable
bi during the algorithm A decreases at least by 2, while each of the variables b1 and bn
decreases at least by 1.

Case 1: i is a non-spine vertex. For convenience we will denote the non-spine black
vertex i by the symbol y. There exists exactly one cluster c P t1, . . . , ku in the direction of
the spine in the plane tree T1 such that y P Bc. In the iteration of the main loop (in the spine
treatment or in the rib treatment) corresponding to C “ c one of the following operations
is applied: either Bαc,y (if y ă αc, see Figure 23) or Jαc,y (otherwise, see Figure 24). By
Lemma 2.6 it follows that at the time one of these operations is applied, the edges in the
branch y are solid; on Figures 23a and 24a this branch is located on the right-hand side and
drawn with non-wavy lines. By looking on Figures 23 and 24 we see that for either of these
two operations bafter

y “ bbefore
y ´ 2, as required.

Case 2: i is a spine vertex. Note that in the spine treatment any two bend operations
commute. Furthermore, any jump operation performed in a given spine cluster does not
affect the remaining spine clusters. Therefore, the final output does not depend on the order
in which we choose the clusters from C. For this reason we may start the analysis of the
time evolution of any spine cluster C from the input tree T1 where all edges are solid (i.e.,
we may assume that the external loop is executed first for the cluster C).

If i P Bzt1, nu is not one of the endpoints of the spine, it belongs to exactly two spine
clusters c1, c2 in the plane tree T1. Let us fix some j P t1, 2u; with the notations of

34 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

•
•

BO
,
@

•
@

•
•

as
•

•

•
•

•

•
•

;
m
m
m
m
m
im

•A
l
.

•

•
x

:o

(a)

•
•

BO
,
@
•

as

•

•

•
→

@
•

•
•

•
A

•
Iim
u

••T
ip

.

•
Ip

•

x
•

@:

(b)

Figure 23. (a) The initial configuration of the tree. Wavy edge means that
this edge can be solid or dashed.
(b) The structure of the tree (a) after performing the operation Bx,y with
x ą y.

•
•

08
,
@

•
@

•
•

as
•

•
n

•
•

•

•
•
s

'T
s

/
m
m
m
m
m
im

•A
l
.

•

x
•

:o

(a)

@
•

as

•

•

•
•

A
•i

•
y

•

I

⑨
l '

o

/
•
•
•

I/
•

m
m

'T
s

•riff
.

•

•

•
x

:o

(b)

Figure 24. (a) The initial configuration of the tree. Wavy edge means that
this edge can be solid or dashed. We recall that j ă y by Lemma 3.1.
(b) The structure of the tree (a) after performing the operation Jx,y with
x ă y.

Figure 10a, i P tαcj , y1u is one of the two spine vertices in the cluster cj and Bαcj ,y1
is

one of the operations which is performed in the iteration of the external loop in the spine
treatment for C “ cj . From Figure 25 it follows that for each spine vertex v P tαcj , y1u in
this cluster bafter

v “ bbefore
v ´ 1. Since there are two choices for j P t1, 2u it follows that the

variable bi decreases (at least) twice during the whole algorithm, as required.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 35

:]
a

&
o

O
b

-
g

-

a
@
@

°
@

-

⑧
,
→
*

.

•
•

A

•
•

•
,
→

*
-

B
e
a

-

a
•

"

•
→

@

0
0

-
a
a
p

0
0

a
•

o@

'

w

f
•

•g
o

@

(a)

••
]

a
&

o

O
S

-

@
@

-

@
'

,
→
&

T

•

.
.

•
-

a
•

"

•
→

@

0
0

-
A

→

Age
-

-

.
I

•
I

⑧
•

I
:

I
•
I

•
-
a
a
B
o

):
o@

I

%yo
@

@B
e

a

(b)

Figure 25. (a) The initial configuration of the tree T1. The black vertices
αci , y1 are spine and such that αci ă y1. The orange edges mark one of the
possible pathways of the spine.
(b) The structure of the tree (a) after performing the operation Bαci ,y1

.

An analogous argument shows that if i P t1, nu is one of the endpoints of the spine then
the variable bi decreases (at least) once during the whole algorithm, as required.

At the beginning of the algorithm binitial
i “ ai for each i P t1, . . . , nu; the above discussion

shows therefore that in the output tree T2

(16) bfinal
1 ď a1 ´ 1, bfinal

2 ď a2 ´ 2, . . . , bfinal
n´1 ď an´1 ´ 2, bfinal

n ď an ´ 1.

It follows that
n
ÿ

i“1

bfinal
i ď

n
ÿ

i“1

pai ´ 1q ´ pn ´ 2q “ pk ´ 1q ´ pn ´ 2q “ k ´ pn ´ 1q,

where we used the relationship (9). In each step of the algorithm each white vertex is
attracted to at least one black neighbor; it follows that the left-hand side of the above
inequality is an upper bound for the number of white vertices in the output tree T2.

On the other hand, from the first part of the proof we know that the output tree T2 has
exactly k ´ pn ´ 1q white vertices and the above inequality is saturated:

(17)
n
ÿ

i“1

bfinal
i “ k ´ pn ´ 1q.

It follows that each white vertex is attracted to exactly one black neighbor; also the tree T2

is a Stanley tree of type pbfinal
1 , . . . , bfinal

n q. If at least one of the inequalities (16) was strict,
this would contradict (17). We proved in this way that bfinal

i “ bi which is given by (12)
which completes the proof. □

36 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

4. ALTERNATIVE DESCRIPTION OF THE BIJECTION

In the current section we will provide an alternative description of the bijection A. This
alternative viewpoint on A will be essential for the construction of the inverse map A´1 in
Section 5.

Recall that the spine in the output tree T2 is the path connecting the two black vertices
with the labels 1 and n. We orient the non-spine edges of the tree T2 in the direction
of the spine. In this way we can view the plane tree T2 as a path (=the spine) to which
there are attached plane trees. With this perspective in mind, the output tree T2 will turn
out to be uniquely determined by: the ‘local information’ about the structure of white
non-spine vertices, the ‘local information’ about the structure of black non-spine vertices,
and the information about the spine and its small neighborhood. The aforementioned

‘local information’ for a black non-spine vertex y is just the list of the labels of the edges
connecting y to its children. For a white non-spine vertex the ‘local information’ contains
more data, see Section 4.2. This local information will be provided separately for white non-
spine vertices (Sections 4.1 to 4.4) and for certain black non-spine vertices (Section 4.6).
Finally, in Sections 4.9 and 4.10 we will describe the spine vertices of T2 as well as its
neighborhood.

4.1. White vertices: organic versus artificial. Recall that in the description of the jump
operation in Section 2.4.2 the newly created white vertex w (see Figures 8b and 9b) was
declared to be artificial. Each white vertex which was not created in this way by some
jump operation will be referred to as organic. More precisely, we declare that all white
vertices in the initial tree T1 are organic. The bend operation can be viewed as merging two
white vertices (with the notations of Figure 7a these are the vertices v1 and v2); it turns out
that for each bend operation which is performed during the execution of the algorithm the
vertex v2 is organic. We declare that the vertex created by merging v1 and v2 is organic
(respectively, artificial) if and only if v1 was organic (respectively, artificial).

4.2. Direct neighborhood of a white non-spine vertex. For any non-spine white vertex
w of T2 we will describe the direct neighborhood of w which is defined as:

‚ the labels of the children of w, together with the labels of the corresponding edges,
and

‚ the label of the parental edge of w, defined as the edge which connects w with its
parent (however, we are not interested in the label of this parent).

We will describe such direct neighborhoods separately for white non-spine organic vertices
and for white non-spine artificial vertices.

4.3. Direct neighborhood of white non-spine organic vertices in the output tree T2.
Our starting point is the tree T1. Our goal in this section is to find all non-spine organic
white vertices in T2 and then for each such a vertex to describe its direct neighborhood. For

BIJECTION BETWEEN TREES AND FACTORIZATIONS 37

this reason we disregard now all artificial white vertices as well as the information about
the descendants of the black vertices.

4.3.1. The first pruning. With this quite narrow perspective in mind, each jump operation
(with the notations from Figures 8 and 9) can be seen as removal of the edge E1 between
y and v1 as well as removal of the white vertices v2 and v3. The remaining children of
y (i.e., the white vertices v4, v5, . . .) remain intact, but we are not interested in keeping
track of the parents of white vertices (we are interested in keeping track of just the label
of the parental edge for a white vertex). Still keeping our narrow perspective in mind, it
follows that the application of all jump operations in the rib treatment part of the algorithm
(Section 2.7) is equivalent to the following first pruning procedure:

for each non-spine white vertex v1 and its child y which carries a bigger
label than its grandparent (i.e., y ą αv1) we remove:

‚ the vertex y together with the edge which points towards its parent,
‚ the two leftmost children of y (with the notations of Figures 8 and 9

they correspond to v2 and v3) together their children, and the edges
which connect them.

The side effect of the removal of the vertex y is that each of the edges E4, E5, . . . (which
formerly connected y to its non-two-leftmost children) has only one endpoint, namely the
white one.

Remark 4.1. Later on we will use the following observation: our initial choice of the cyclic
order of the edges around white vertices (Section 2.1.1) implies that after this pruning,
for each white non-spine vertex w the labels of its remaining children are arranged in an
increasing way from right to left; furthermore, each of these labels is smaller than the label
of the parent of w, i.e., αw.

4.3.2. The second pruning. If an edge between a non-spine white vertex w and its child b
still remains after the above pruning procedure, this means that during the execution of the
algorithm A a bend operation Bαw,b was performed. With the notations of Figure 7a this
operation does not affect the white vertices v3, v4, . . . (i.e., the children of the vertex y “ b
except for the leftmost child). With our narrow perspective in mind, we are not interested in
keeping track of the parent of these vertices which motivates the following second pruning
procedure:

we disconnect each black non-spine vertex b from the edges connecting b
with each of its children, with the exception of the leftmost child.

Again, as an outcome of this disconnection there are some edges which have only one
endpoint, a white one.

Note that since in the initial tree T0 the degree of each black vertex was at least 2, in the
outcome of the second pruning each black non-spine vertex has degree equal exactly 2. Our

38 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

÷.

÷

(a) (b)

Figure 26. (a) The initial configuration of a part of the tree T . (b) The
outcome of folding at the vertex b.

analysis of the impact of the bend operation Bαw,b is not complete yet and will be continued
in a moment.

4.3.3. Folding. After performing the above two pruning operations, the tree splits into a
number of connected components. Let T be one of these connected components which
is disjoint with the spine; it is an oriented tree which has a white vertex v as the root.
Additionally, this root v has a special edge (the parental edge) which is pointing in the
former direction of the spine; this edge has only one endpoint.

Consider some black vertex b P T . Its degree is equal to 2 and the aforementioned bend
operation Bαw,b can be seen as a counterclockwise rotation of the edge which connects
b with its only child towards the edge which connects b with its parent so that these two
edges are merged into a single edge (see Figure 26). We keep only the label of the edge
which formerly connected b with its child. As a result of the edge merging, a pair of white
vertices: the child of b and the parent of b is merged into a single white vertex and the
vertex b becomes a leaf. After the above folding procedure is applied iteratively to all black
vertices in T , the connected component T becomes a single white vertex connected to a
number of black vertices, and together with the parental edge of the root. For an example,
see Figure 27.

The above folding procedure can be described alternatively as follows: we traverse the
tree T by the depth-first search, starting at the root and touching the edges by the left

BIJECTION BETWEEN TREES AND FACTORIZATIONS 39

\
•

5 ↓ & •

/
•% •%9 7

12 110
• •

••
8

16
•
/
•
/
nz ¥

•%to 15
17

••
• • 18

s,
••*

30
AM

It
(a)

9 5 3 12 10
20
• • • 7

*. • •
21 • 6

80
or

•
4

13
•

• 8
16 ••

• 18
30 *

• 11
4

15 •

• 8 2
17 / ••

14

(b)

Figure 27. (a) Example of a connected component T (with a white root) of
the output of the two pruning procedures. For simplicity the edge labels are
not shown. The black vertices having the same parent were drawn with the
same color. The thin red line with the arrows indicates the beginning of the
depth-first search traversing of the tree; the black vertices are visited in the
order 14, 2, 11, 18, 8, 4, . . . (only the first visit in a given vertex is listed).
(b) The output of the folding procedure applied to the tree T from (a).

hand. For example, the beginning of such a depth-first search is indicated on Figure 27a by
the red line with an arrow. We order the black vertices according to the time of the first
visit in a given vertex. This order coincides with the children of the root v (listed in the
counterclockwise order) in the output of folding applied to T .

4.3.4. Conclusion. To summarize the current subsection: there is a bijective correspon-
dence between (i) the white non-spine organic vertices in the output tree T2, and (ii) the
connected non-spine components of the outcome of the two pruning procedures. The chil-
dren of such white organic non-spine vertices in T2 can be found by the above depth-first
traversing of the connected component. This observation will critical for the construction
of the inverse map A´1.

4.4. Direct neighborhood of white non-spine artificial vertices in the output tree T2.
Our goal in this section is to find all non-spine artificial white vertices in T2 and then for
each such a vertex to find its direct neighborhood.

Each white artificial vertex w is created during the execution of some jump operation Jx,y
so there is a bijective correspondence between the artificial white vertices and the collection
of certain pairs px, yq, where x and y are black vertices such that x is a grandparent of y

40 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

and x ă y, cf. Figures 8 and 9. Let us fix the values of w, x, and y; we shall describe now
the children of w. For this reason we will disregard in the future the descendants of the
black vertices as well as the white vertices which will not be merged with w by some bend
operations.

After creation, the vertex w may gain some children only by the application of some bend
operations; in particular we may restrict our attention only to the descendants of the vertex
w and disregard the remaining part of the tree. This observation motivates the following
procedure.

We apply the jump operation Jx,y to the initial tree T1; the resulting tree has
a unique artificial white vertex which is denoted, as above, by w. Then we
keep only the vertex w, the edge adjacent to w which is in the direction of
the spine, and the descendants of w. We remove the remaining part of the
tree.

A discussion analogous to the one from Section 4.3 motivates the following first pruning
procedure:

for each remaining white vertex w1 and each its child b which carries a
bigger label than its grandparent (i.e., b ą αw1) we remove the vertex b and
all of its descendants,

as well as the following second pruning procedure:

for each remaining black vertex b and each child w1 of b which is not left-
most, we remove the edge between b and w1 as well as the vertex w1, all of
its descendants, and all edges between them.

The outcome is a tree which has the white artificial vertex w as the root. Furthermore,
each black vertex has degree 2. Exactly as in Section 4.3.3, we apply folding to this tree;
as a result we obtain a tree which consists of a single white vertex w as the root which is
connected to some number of black vertices. Additionally, the root w is connected to the
parental edge which has only one endpoint. This tree is equal to the direct neighborhood of
the artificial white vertex w in the output tree T2.

To summarize: the set of all neighbors of an artificial vertex w together with the informa-
tion about their cyclic order looks like on Figure 28.

4.5. Children of black vertices: how to name the white vertices? For a given black
non-spine vertex we intend to find the list of its children in the output tree T2. Each such
a child is a white non-spine vertex, and in Sections 4.3 and 4.4 we already found the
collection of such vertices. Now we need some naming convention which would allow to
match each child to some white vertex from Sections 4.3 and 4.4. In this way a person who
has the access to the tree T1 but has no access to the tree T1 would still be able to distinguish

BIJECTION BETWEEN TREES AND FACTORIZATIONS 41

Figure 28. The neighbors of an artificial white vertex w in the output tree
T2, see Figures 8b and 9b. The vertex j is the parent of w. The blue vertices
a, b, c, and the other adjacent blue vertices are the outcome of the pruning
and folding of the blue tree on Figures 8a and 9a which starts with the
edge E2. The red vertices d, e, f , and the other adjacent red vertices are the
outcome of the pruning and folding of the red tree on Figures 8a and 9a
which starts with the edge E3. By Remark 4.1 and Lemma 3.1 the vertex y
carries the biggest label among all neighbors of w.

the white non-spine vertices of T2. Our naming convention will be defined separately for
the white organic and for the white artificial vertices.

In Section 4.3 we showed that each white organic vertex w in T2 is an outcome of folding
applied to a certain tree T ; in order to name w we will identify it with the root of the tree T
(which is just a white vertex in T1).

To each white artificial vertex w of the tree T2 we associate the largest label of its
neighbors. This largest label y is an element of the set t1, . . . , nu and can be identified
with a black vertex in the tree T1. The discussion from Section 4.4 shows that this map is
injective and allows us to pinpoint uniquely each artificial white vertex; furthermore the
label y has the following natural interpretation: the artificial vertex w was created by some
jump operation of the form J¨,y.

With these conventions we will give the children of a non-spine black vertex in T2 in the
form of a list of (black and white) vertices of the tree T1.

4.6. Children of black never-spine vertices. Consider a black vertex y which in the input
tree T1 was not a spine vertex. It turns out (we will prove it later in Sections 4.9 to 4.10)

42 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

that the vertex y in the output tree T2 is still not a spine vertex; in the following we will
describe the children of y in T2 as well as the labels on the edges connecting y with its
children.

Recall that we oriented all non-spine edges in the tree T1 towards the spine. Now, we
additionally orient some spine edges in T1 in such a way that for each white spine vertex
w its parent is equal to the root αw of the corresponding cluster. With this convention,
we denote by x the grandparent of y. It follows that during the action of the algorithm A
exactly one of the following two operations was performed: either the bend operation Bx,y

(in the case when x ą y) or the jump operation Jx,y (in the case when x ă y).

4.7. Children of a black never-spine vertex, the case when x ą y.

4.7.1. The tree T . In this case the bend operation Bx,y was performed. As a result, the
edge connecting y to its leftmost child in T1 is not among the edges which connect y to its
children in T2. The other (i.e., the non-leftmost) edges connecting y to its children in T1

will remain in T2; these edges will connect y to its organic children. On the other hand, the
vertex y may gain some new, artificial children as an outcome of some jump operations.
We will discuss them in the following.

Recall that with the notations of Figures 8 and 9 we denote by j “ jpx1, y1q the black
vertex which, as a result of a jump operation Jx1,y1 , gains a new child (which is a white
artificial vertex). This vertex j is given in terms of the input tree T1 by the algorithm
contained in the proof of Lemma 3.1. The problem which we currently encounter is roughly
the opposite: for a given black vertex y of T1 we should find its all artificial children in the
output tree T2 or, equivalently, all jump operations Jx1,y1 performed during the algorithm
for which y “ jpx1, y1q. Our strategy is to construct a certain tree T which is a subtree of
T1. This plane tree will have the vertex y as the root, and it will have the following two
properties:

‚ whenever x1, y1 are black vertices in T1 such that Jx1,y1 is one of the operations
performed during the algorithm A then

jpx1, y1
q “ y ðñ x1, y1

P T,

‚ if x1, y1 are black vertices in T such that x1 is the grandparent of y1 then Jx1,y1 is one
of the operations performed during the algorithm A (or, equivalently, x1 ă y1).

In this way there will be a bijection between the black non-root vertices of the tree T and
the artificial children of the vertex y in T2 which maps the black vertex y1 to the artificial
white vertex created during the operation of the form J¨,y1 .

4.7.2. The prunings. As the first step towards the construction of the tree T we perform
the following zeroth pruning:

in the tree T1 we keep only the vertex y and its offspring.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 43

Recall that the bend operation Bx,y was performed and the edge connecting y to its leftmost
child in T1 is not among the edges which connect y to its children in T2. This motivates the
following operation.

Additionally, we remove the label from the edge connecting y to its leftmost
child.

The condition (C2) from the algorithm contained in the proof of Lemma 3.1 motivates
the following first pruning procedure:

for each remaining white vertex v1 and its child y1 which carries a smaller
label than its grandparent we remove the edge connecting v1 with y1, as well
as the vertex y1 and its offspring, as well as the edges connecting them.

Compare this to Section 4.3.1 where we removed each vertex which is bigger than its
grandparent. As a result, the following analogue of Remark 4.1 holds true.

Remark 4.2. Later on we will use the following observation: our initial choice of the cyclic
order of the edges around white vertices (Section 2.1.1) implies that after this pruning,
for each white non-spine vertex w the labels of its remaining children are arranged in a
decreasing way in the clockwise order; furthermore, each of these labels is bigger than the
label of the parent of w, i.e., αw.

The other condition (C1) from the algorithm contained in the proof of Lemma 3.1
motivates the following second pruning procedure:

for each remaining black vertex y1 such that y1 ‰ y is not the root vertex
we remove all non-leftist children of y1 as well as their offspring and all
adjacent edges.

We denote by T the outcome of these prunings. This tree has the property that the degree
of each black vertex (with the exception of the root) is equal to 2.

4.7.3. Jump operation as a replacement. Let w be a child of the root vertex y. We start
with the case when w is not the leftmost child of y. Let the black vertices V1, . . . , Vd be
the children of w, listed in the clockwise order. After applying the jump operations which
correspond to the cluster w the whole subtree of T which has w as the root is replaced by
the following collection of trees attached to the root (we list these trees in the clockwise

44 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

order):

(18) pthe single organic vertex wq,

pan artificial white vertex which carries the name V1

to which there is an attached tree TV1 which was formerly attached to V1q,

. . . ,

pan artificial white vertex which carries the name Vd

to which there is an attached tree TVd
which was formerly attached to Vdq;

above we used the naming convention for white vertices from Section 4.5.
In the case when w is the left-most child, the above discussion remains valid, however

one should remove the first entry of the list (18), i.e. the single organic vertex w.

Each tree TVi
has a white vertex as the root, let the black vertices W1, . . . ,We be is

children. Now, performing all jump operations in the cluster defined by this root corresponds
to replacing the following item from the aforementioned list:

pthe artificial white vertex which carries the name Vi

to which there is attached tree the TVi
q

by the following collection of trees attached to the root y:

pthe artificial white vertex which carries the name Viq,

pan artificial white vertex which carries the name W1

to which there is an attached tree which was formerly attached to W1q,

. . . ,

pan artificial white vertex which carries the name We

to which there is an attached tree which was formerly attached to Weq.

We iteratively apply these replacements until each child of the root y is a leaf. When the
algorithm terminates, the ordered list of the children of the root y in the output coincides
with the ordered list of the children of the vertex y in the tree T2 that we are looking for.
With the convention from Section 4.5, the children of y (listed in the clockwise order) can
be identified with a list of (black and white) vertices of the input tree T1. In the following
we will provide a more direct way of finding this list based only on the tree T . In fact, the
elements of the list which we construct will provide more information; each entry of the
list will be a pair of the form

(19)
`

pname of a white vertex wq, pthe label of the edge connecting v and wq
˘

.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 45

4.7.4. The depth-first search. The recursive algorithm from Section 4.7.3 is just a com-
plicated way of performing the depth-first search on the tree T . We traverse the tree T
by keeping it with the right-hand side (note that in the analogous depth-first search in
Section 4.3.3 we touched the tree with the left-hand side). When we enter a non-root vertex
v for the first time, we proceed as follows:

‚ if v is a white vertex which is a child of the root y but not the left-most child of
the root (each such a vertex corresponds to an white organic child of y in T2), we
append the list with the pair

`

v, pthe label of the edge connecting v and yq
˘

,

[note that during the zeroth pruning we removed the label from the leftmost edge of
the root so that it is not listed here];

‚ if v is a black vertex (each such a vertex corresponds to a white artificial child of y
in T2) we append the list with the pair
`

v, pthe label of the edge connecting v with its unique child in T q
˘

.

This procedure can be regarded as an analogue of folding from Section 4.3.3. This
completes the description of the local information about the children of a black never-spine
vertex y in the case when x ą y.

4.8. Children of a black never-spine vertex, the case when x ă y. We plan to proceed
in an analogous way as in Section 4.7. In this case the jump operation Jx,y was performed.
As a result, the leftmost child v2 of y (with the conventions of Figures 8 and 9) and the
whole subtree attached to v2 will not contribute to white artificial children of the vertex y.
Indeed, if x1, y1 are black vertices, and are among the offspring of v2 then the algorithm
from the end of the proof of Lemma 3.1 for calculating jpx1, y1q does not terminate in the
vertex y and hence jpx1, y1q ‰ y. For this reason our first step towards the construction of
the tree T is more radical:

in the tree T1 we keep only the vertex y and its offspring; additionally we
remove the left-most child of y, its offspring and the adjacent edges.

Another consequence of the aforementioned jump operation Jx,y is that the second-
leftmost child of the vertex y in the tree T1 (with the notations of Figures 8 and 9 it is the
vertex v2) will not give rise to an organic child of y in the output tree T2. On the other
hand, the subtree rooted in this second-leftmost child v2 may give rise to some children of
y which are artificial white vertices. For this reason we may proceed now with the first
and the second pruning in the same way as in Section 4.7.2. Finally, the local information
about the children of the black vertex y in the tree T2 is provided by the depth-first search
algorithm from Section 4.7.4.

4.9. Detailed anatomy of the spine.

46 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

(a)

(b)

Figure 29. (a) A part of the initial tree T1. The horizontal thick red edges
are the spine, we assume that the labels of the black vertices fulfill v1 ă v2.
The neighbors of the white vertex w2 are not shown. (b) The corresponding
part of the backbone. The oriented edge pv1, v2q is bald.

4.9.1. The backbone. Recall that the spine in the input tree T1 is the path connecting the
two black vertices with the labels 1 and n. We define the backbone B as the graph which
consists of the black spine vertices in T1. We declare that a pair of backbone vertices
v1, v2 P B (with v1 ‰ v2) is connected by an oriented edge pv1, v2q pointing from v1
towards v2 if and only if (a) the distance between v1 and v2 in the tree T1 is equal to 2 (in
other words, v1 and v2 have a common white neighbor), and (b) the labels of the vertices
v1, v2 P t1, . . . , nu fulfill v1 ă v2. As a result, the backbone is a path graph with 1 and n as
the endpoints, together with the information about the orientation of the edges.

4.9.2. Bald and hairy edges in the backbone. Consider some oriented edge pv1, v2q in the
backbone, and assume that v2 ‰ n does not carry the maximal label. In this case the vertex
v2 is adjacent to another backbone vertex v3 (with v3 ‰ v1). In the tree T1 the path between
the vertices v1 and v3 is of the form

pv1, w1, v2, w2, v3q

for some white vertices w1, w2. Assume that in the tree T1, going clockwise around the
black vertex v2, the direct successor of the edge connecting v2 to w2 is the edge connecting
v2 to w1, see Figure 29a. In this case we will say that the edge pv1, v2q in the backbone is
bald, see Figure 29b. The edges in the backbone which are not bald will be called hairy.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 47

4.9.3. Maximal backbone segments. Let Ar, Ar´1, . . . , A1, B1, . . . , Bs P B (with r, s ě 1)
be backbone vertices such that:

‚ pAr, Ar´1q, pAr´1, Ar´2q, . . . , pA2, A1q are bald edges in the backbone,
‚ pA1, B1q is a hairy edge in the backbone,
‚ pBs, Bs´1q, pBs´1, Bs´2q, . . . , pB2, B1q are bald edges in the backbone,

see Figure 30a. We will say that the above collection of edges which form a path connecting
Ar and Bs constitutes a backbone segment. In other words, a backbone segment consists of
a single hairy edge pA1, B1q surrounded by two (possibly empty) oriented paths with the
endpoints A1 and B1, which consist of only bald edges.

We say that a backbone segment is maximal if cannot be extended by adding an additional
bald edge at either of its endpoints. It is easy to check that any two maximal backbone
segments are disjoint.

We claim that each oriented edge e “ pv1, v2q of the backbone belongs to some maximal
backbone segment. Indeed, if e is hairy, it forms a very short backbone segment with
r “ s “ 1; by extending this backbone segment we end up with the maximal backbone
segment. On the other hand, if e is bald we can follow the orientations of the edges and
traverse the backbone as long as we visit only bald edges pv2, v3q, pv3, v4q, . . . , pvl´1, vlq.
In a finite number of steps our walk will terminate; there is a number of cases which give a
specific reason why the walk terminated.

Firstly, we could have encountered one of the endpoints of the backbone, i.e. vl P t1, nu.
The case vl “ 1 is not possible because vl “ 1 carries the minimal label, so vl ă vl´1 which
contradicts the assumption that pvl´1, vlq is one of the oriented edges of the backbone. The
other case vl “ n is also not possible because, by definition, the oriented edge pvl´1, nq is
not bald.

The second possibility is that the other edge attached to the vertex vl (it is an oriented
edge of the form f “ pvl, vl`1q or f “ pvl`1, vlq for some vl`1 ‰ vl´1q) is hairy. In this
case the maximal backbone segment containing the hairy edge f contains the edge e, as
required.

The third case is that the other edge attached to the vertex vl is a bald edge f “ pvl`1, vlq
with vl`1 ‰ vl with the wrong orientation of the edge which prevents traversing f . This
would imply that the backbone vertex vl has two incoming bald edges, and therefore that
the black vertex vl (regarded as a vertex in the original tree T1) has degree 2. On the other
hand, the degree of the vertex vl is equal to avl ě 3 by (12) which leads to a contradiction
and completes the proof.

It follows that the maximal backbone segments provide a partition of the set of backbone
edges.

4.9.4. Tree segments. The collection of all endpoints of the maximal backbone segments
(for the maximal backbone segment depicted on Figure 30a these endpoints are denoted by

48 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

(a)

(b)

(c)

Figure 30. (a) A maximal backbone segment in the backbone. The oriented
edge pA1, B1q is the only hairy edge on this picture, for this reason it
was decorated by a double line. (b) The corresponding tree segment; for
simplicity only the direct neighborhood of the spine was shown. Note that in
the exceptional case r “ 1 there is no restriction on the edges surrounding
the vertex A1 “ Ar, and in the exceptional case s “ 1 there is no restriction
on the edges surrounding the vertex B1 “ Bs. (c) The outcome of the
algorithm A applied to this tree segment. Only the neighbors of the spine
white vertex W are shown.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 49

Ar and Bs) can be used to split the initial tree T1 into a number of connected components
which will be called tree segments. Each such an endpoint (with the exception of the
vertices 1 and n) belongs to two such tree segments; in order to split the neighbors of
such boundary vertices between the two tree segments we use the convention shown on
Figure 30b: each tree segment contains these non-spine edges attached at the endpoint
which are on “the left-hand side” of the spine (from the viewpoint of a person who looks
along the spine, in the direction of the respective endpoint).

The spine naturally splits the tree segments into two parts; we refer to them as the upper
part and the lower part according to the convention from Figure 30b.

4.10. Action of the algorithm on a tree segment. In the following we will investigate the
action of the algorithm on some tree segment; we will use the notations from Figure 30b.

We denote by E0 “ F0 the white vertex between A1 and B1, and for i P t1, . . . , r´1u we
denote by Ei the white vertex between Ai and Ai`1. The assumption about the orientations
of the edges in the backbone segment implies that the vertex Ai`1 is the anchor of the
cluster Ei; this implies that the bend operation BAi`1,Ai

is one of the operations performed
in the iteration of the main loop for the cluster C “ Ei. As a result, the white spine vertices
Ei and Ei´1 are merged into a single white spine vertex. On the other hand, after this bend
operation is performed, the black spine vertex Ai no longer belongs to the spine.

For i P t1, . . . , s ´ 1u we denote by Fi the white vertex between Bi and Bi`1. Similarly
as above, the bend operation BBi`1,Bi

is one of the operations performed during the spine
treatment part of the algorithm. As a result the white spine vertices Fi and Fi´1 are merged
into a single white spine vertex, and the black spine vertex Bi no longer belongs to the
spine.

As a result of the above operations, all white spine vertices E0, E1, . . . , Er´1, F1, . . . , Fs´1

in the considered tree segment are merged into a single white spine vertex which will be
denoted by W , see Figure 30c. In the following we will describe the neighbors of W in the
output tree T2.

In the output tree T2, the vertex W is connected to two black spine vertices: Ar and Bs

which were the endpoints of the backbone segment which we consider. With the notations
of Figure 30c we will first concentrate on the ‘bottom’ part of W . More specifically, going
counterclockwise around the vertex W , after the vertex Ar and before the vertex Bs, we
encounter (among other black vertices) the vertices Ar´1, Ar´2, . . . , A2, A1, arranged in
this exact order, see Figure 30c. In order to find the remaining black vertices which are
interlaced in between we may revisit Section 4.3; a large part of that section is applicable
also in the current context.

More specifically, for i P t0, . . . , r ´ 1u we denote by αi the part of the original tree
T1 which is attached to the spine at the white vertex Ei, see Figure 30b. Just like in
Section 4.3.1 we perform the first pruning; for the purposes of this first pruning we declare
that the parent of the white vertex Ei (which is the root of the tree αi) is equal to Ai`1.

50 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

Then, just like in Section 4.3.2, we perform the second pruning and then the folding (see
Section 4.3.3). The outcome of this procedure is a sequence of black vertices: these are
exactly the neighbors of the white vertex W which appear (in the clockwise cyclic order)
after the vertex Ai`1 and before Ai; we use the convention that A0 “ Bs, see Figure 30c.
This completes the description of the bottom part of the vertex W .

The upper part of the vertex W is slightly more complicated. We denote by γ the part
of the tree T1 which has the leftmost non-spine child of B1 as the root, see Figure 30b.
The key difference between the bottom and the upper part lies in the fact that one of the
operations performed in the iteration of the main loop in the spine treatment part of the
algorithm for the cluster C “ E0 is the bend operation BA1,B1 . This operation plants the
tree γ in the vertex W , in the counterclockwise order after the vertex B1 and before the
vertex Ar, see Figure 30c. Then the usual pruning and folding procedures are applied to γ.
The remaining black vertices in the upper part of W correspond to the trees β1, . . . , βs´1,
see Figure 30c.

As we can see, any operation performed for the clusters which form the given tree
segment does not affect the other segments. For this reason it is possible to study the action
of the algorithm A on each tree segment separately.

5. THE INVERSE BIJECTION

We will complete the proof of Theorem 2.1 by constructing explicitly the inverse map
A´1. The starting point of the algorithm is a Stanley tree T2 of type pb1, . . . , bnq, cf. Sec-
tion 1.2. Our goal is to turn this tree into a minimal factorization pσ1, . . . , σnq P Ca1,...,an ,
where the numbers a1, . . . , an are specified in Theorem 2.1.

Similarly as in Section 2, the path in T2 between the two black vertices with the labels 1
and n will be called the spine.

5.1. Which white vertices are artificial? Recall that the notion of artificial vertices was
introduced in the context of the jump operation at the beginning of Section 2.4.2. In the first
step of our algorithm A´1, for a given a Stanley tree T2 we will guess which white vertices
are artificial, i.e., which vertices are the result of the jump operation. The remaining part of
the current section is devoted to the details of this issue.

Lemma 5.1. Let T2 be an a Stanley tree which is an output of the algorithm A for some
input data and let v be one of its white non-spine vertices. The vertex v is organic if and
only if its neighbor with the maximal label is equal to the parent of v.

With the terminology from page 33, since in the output tree T2 all edges are dashed, each
white vertex is attracted to exactly one neighbor, and the above result can be rephrased as
follows: v is organic if and only if v is attracted to its parent.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 51

Proof. Since artificial vertices arise only as a result of a jump operation, the vertex v of the
tree T2 is artificial if and only if there is a black vertex y in the tree T2 which is a child of v
and such that during the execution of the algorithm A there was a jump operation of the
form J¨,y.

Consider the case when v is artificial; immediately after this jump operation is performed,
the newly created vertex v (on Figure 24b it is the vertex between j and y) is attracted to y
because j ă y by Lemma 3.1. Moreover, from the proof of the Proposition 3.2 it follows
that after this jump operation J¨,y is performed, the set of vertices which are attracted to y
does not change until the very end of the algorithm A. In this way v is attracted to one of
its children, hence not to its parent, as required.

Consider the opposite case when v is organic; let y be some child of v. It follows that
during the execution of the algorithm A there was a bend operation B¨,y. By examining
Figure 23 it follows that immediately that after this bend operation was performed, the
vertex v is not attracted to y. Again, from the proof of the Proposition 3.2 it follows that
after this bend operation B¨,y is performed, the set of vertices which are attracted to y does
not change until the very end of the algorithm A. In this way we proved that v is not
attracted to any of its children, hence it is attracted to its parent, as required. □

5.2. Recovering the cycles away from the spine. Each black vertex B P t1, . . . , nu in the
initial tree T1 corresponds to the cycle σB. There is a canonical bijective correspondence
between the set of black vertices in the tree T1 and the set of black vertices in the output tree
T2, therefore B can be identified with a black vertex in the output tree T2. In order to find
the inverse map A´1 we need to recover the cycle σB based on the information contained
in the tree T2.

We will start with the assumption that the black vertex B of T2 is away at least by two
edges from the spine; this assumption will be used also in Sections 5.2 to 5.7 below.

Let W denote the parent of B, and let J denote the parent of W . We define Y to be the
neighbor of W with the biggest label. Our prescription for finding σB will depend on the
position of Y with respect to J and B, see Figure 31.

5.3. Case (a): Y “ J . By Lemma 5.1, in this case W is an organic white vertex.

5.3.1. The labels E2, . . . , Ed. The proof of Proposition 3.2 shows that the black vertex B
lost exactly two white neighbors which were attracted to B when we performed the
operation B¨,B and it never gained new ones (we showed that bB “ bfinal

B “ binitial
B ´ 2 “

aB ´ 2). Using this information and basing on Figure 7 (with the notations of this figure
we have y “ B, v1 “ W , x “ J) we conclude that in the output tree T2 the labels of the
edges attracted to B (with the notations of Figure 7b these are the edges E3, . . . , Ed) all
belong to the cycle σB. The label of the edge which is in the direction of the spine (this
edge is not attracted to B; with the notations of Figure 7b this is the edge E2) also belongs

52 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

Figure 31. The four cases necessary for determining the cycle σB. The
black vertex is assumed to be away from spine by at least two edges. The
vertex W is the parent of B; the vertex J is the parent of W . We define Y
to be the neighbor of W with the biggest label. The case a) (see Section 5.3)
corresponds to the case when Y “ J . The case b) (see Section 5.5) corre-
sponds to the case when Y is located (going clockwise around the vertex
W) after the vertex B and before J , while the case c) (see Section 5.6)
corresponds to the case when Y is located after J and before B. The case d)
(see Section 5.7) corresponds to the case when Y “ B.

to the cycle σB, see Figure 7b. In this way we identified so far all elements of the cycle
σB “ pE1, . . . , Edq, with the exception of the label E1.

5.3.2. How to find the missing label E1? The information about the missing label E1 is
contained in one of the connected components of the two pruning procedures considered
in Section 4.3 (more precisely, in the tree T which contains the black vertex B). Clearly,
E1 is the label on the edge which connects the vertex B to its parent in T . Regretfully, we
do not have (yet) the access to this tree T . On the bright side, we do have the access to
the outcome of the folding procedure (Section 4.3.3) applied to this tree T ; the discussion
from Section 4.3 shows that this outcome is just W (which is a white organic vertex) in the
output tree T2 as well as its all children, together with its parental edge. In the following
we will describe how to reverse the folding procedure and, in this way, to recover the tree T
(in the example from Section 4.3.3 it is the tree Figure 27a) from the outcome of folding
(Figure 27b).

5.3.3. The greedy algorithm. Our first step is to identify the children V1, . . . , Vm (listed in
the counterclockwise order) of the root of T ; on the example from Figure 27a these vertices

(20) V “ pV1, . . . , V5q “ p14, 18, 20, 21, 30q

BIJECTION BETWEEN TREES AND FACTORIZATIONS 53

are drawn in blue. In the following we will treat the aforementioned outcome of the folding
as the list L “ pL1, . . . , Lℓq of the children of W in T2, listed in the counterclockwise order.
In the example from Figure 27b we have

(21) L “ p14, 2, 11, 18, 8, 4, 6, 7, 10, 12, 3, 5, 9, 20, 21, 13, 16, 30, 15, 17q;

with boldface we indicated the entries of V ; on Figure 27b these boldface vertices are also
drawn in blue.

Since the list L can be seen as an outcome of the depth-first search, it has the following
structure:

(22) L “
`

V1, (the black descendants of V1),
V2, (the black descendants of V2), . . . ,

Vm, (the black descendants of Vm)
˘

.

By Remark 4.1 each black descendant of Vi carries a label which smaller than Vi; further-
more V “ pV1, . . . , Vmq is an increasing sequence. It follows that V “ pLi1 , . . . , Limq is
an increasing subsequence of L which can be found by the following greedy algorithm:

We set i1 “ 1 so that V1 :“ L1.
If ik was already calculated, we define ik`1 as the smallest number

l P tik ` 1, . . . , ℓu with the property that Ll ą Vk “ Lik; we set Vk`1 :“
Lik`1

. If such a number l with such a property does not exist, the algorithm
terminates.

In other words, we start with the empty list V “ H and read the list L. If the just read entry
of L is greater than the last entry of V (or if V is empty), we append it to V . We leave it as
an exercise to the Reader to verify that this greedy algorithm applied to L from (21) indeed
gives (20).

5.3.4. Recovering the black vertices in the tree T . The above greedy algorithm identifies
just the children of the root of T . In order recover the full structure of the tree T we use
recursion, as follows. Equation (22) shows that the elements of the sequence V act like
separators between the list of the black descendants of V1, the list of the black descendants
of V2, . . . ; in particular we are able to find explicitly such a list of the black descendants of
any vertex Vi. In the example from (21) we have

(the descendants of V1 “ 14) “ p2, 11q,

(the descendants of V2 “ 18) “ p8, 4, 6, 7, 10, 12, 3, 5, 9q,

(the descendants of V3 “ 20) “ H,

(the descendants of V4 “ 21) “ p13, 16q,

(the descendants of V5 “ 30) “ p15, 17q.

54 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

Each such a list of the descendants of Vi is again the outcome of the depth-first-search, this
time restricted to the black descendants of the vertex Vi.

By applying the above greedy algorithm to the list of the descendants of the vertex Vi

we identify the grandchildren of Vi, as well as the lists of the descendants of each of these
grandchildren. For example, the greedy algorithm applied to the descendants of V2

p8, 4, 6, 7, 10, 12, 3, 5, 9q

shows that the vertex V2 “ 18 has three grandchildren: 8, 10, and 12, as well as gives the
list of the descendants for each of them.

By applying the above procedure recursively, we recover the structure of the tree T (with
the edge labels removed).

5.3.5. Labels come back. Our goal is to use the information about the outcome of the
folding in order to recover the edge labels in the tree T .

Essentially, the above reconstruction of the tree T implies that we know which elementary
folding operations from Figure 26 were performed. The only missing component in order
to fully revert such an elementary folding operation at a black vertex b is the label of the
edge f which connected b to its parent w in the tree T . We will denote by v the parent
of b in the output tree T2; the vertex v corresponds to the root of the folded version of T .
Note that both w as well as v denote the parent of b; the difference lies in a different tree
being considered. In fact, in order to solve the problem from Section 5.3.2 of finding the
missing label E1, we are interested in the special case when b “ B and w “ W ; with these
notations f “ E1. Fortunately, before the folding was applied, the edge f and the edge
g which connects w to its parent belonged to the same cluster, so they carried the same
label. The problem is therefore reduced to finding explicitly the location of the edge g in
the outcome of the folding.

Firstly, consider the generic case (shown on Figure 26) when the vertex w is not the root
of the tree T . We denote by b2 the black vertex which is the parent of w in T . In this case,
after the folding at the vertex b2 is performed, the label of the edge g will be stored in the
edge connecting the vertex b2 with its parent. This property will not be changed by further
foldings of the tree T .

To summarize: in order to find the label f of the edge in the initial tree T1 which
connected the black vertex b to its parent w one should apply the following procedure.
We apply the recursively the greedy algorithm from Section 5.3.4 to the children (in the
output tree T2) of the white vertex v which is the parent of b; this vertex v and its children
correspond to the folded version of T . In this way we find the vertex b2 which in the input
tree T1 is the grandparent of b. The desired label f is carried by the edge connecting b2
with its parent v in the output tree T2.

Consider now the exceptional case when the white vertex w is the root of the tree T .
In fact, based on the information contained in the tree T2 it is easy to check whether this

BIJECTION BETWEEN TREES AND FACTORIZATIONS 55

exceptional case holds true by applying the greedy algorithm from Section 5.3.3 to the
children of v and checking if the vertex b belongs to the list pV1, . . . , Vmq.

In this case the edge h as well as its endpoints should be removed from Figure 26 since
they do not belong to the tree T . The vertex w is attached to its parent by the parental
edge g. This edge will not be modified by further steps of the algorithm; as a result our
desired label f is stored in the folded version of T in the parental edge of the root, and
hence in the output tree T2 it is still stored in the edge g connecting v “ w with its parent.

5.4. Cases (b), (c), (d): Y ‰ J . By Lemma 5.1, in these three cases W is an artificial
white vertex thus the discussion from Section 4.4 and Figure 28 in particular are applicable
here. We will study each of the cases (b), (c) and (d) in more detail in the following.

5.5. Case (b): going counterclockwise around W , the vertex Y is after B and before J .
With the notations of Figure 28, our vertex B is one of the blue neighbors of w, located
after j and before y (going counterclockwise around w), see Figure 28.

Since B ‰ Y it follows that we did not perform a jump operation of the form J¨,B , hence
we performed a bend operation of the form B¨,B. As a consequence, the discussion from
Section 5.3.1 is applicable also in our context; as a consequence we have found the labels
E2, . . . , Ed which contribute to the cycle σB “ pσ1, . . . , σdq. As before, the remaining
difficulty is to find the label E1.

If we keep only the vertex w and the aforementioned blue neighbors of the vertex w, and
declare that the edge between w and its parent j is the parental edge of the vertex w, we
obtain a tree with w as a root. This tree T 1 is the outcome of the folding of the blue tree on
Figures 8a and 9a. It follows that the algorithm from Sections 5.3.2 to 5.3.5 applied to T 1

gives the blue tree on Figures 8a and 9a and the desired edge E1 can be recovered.

5.6. Case (c): going counterclockwise around W , the vertex Y is after J and before B.
This case is fully analogous to the case b) considered in Section 5.5. The only difference is
that instead of blue one should keep only the red neighbors of w, and one should take the
edge connecting w with y “ Y as the parental edge of w.

5.7. Case (d): B “ Y . In the case B “ Y we deduce that the vertex W was created by a
jump operation of the form J¨,B.

5.7.1. The labels E2, . . . , Ed. The following discussion is fully analogous to the one from
Section 5.3.1. Proposition 3.2 and its proof imply that the black vertex B lost exactly two
white neighbors from binitial

J when we performed the operation J¨,B and never gained new
ones. Using this information and Figures 8 and 9 we conclude that in the output tree T2 the
Stanley edge labels of the black vertex B all belong to cycle σB “ pE1, . . . , Edq (with the
notations of Figures 8b and 9b these are the edges E3, . . . , Ed).

56 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

The label of the edge E2 is easy to recover: by Figures 8 and 9 we conclude that in the
output tree T2 the label E2 is carried by the edge connecting W and J . The only remaining
difficulty is to find the label E1.

5.7.2. How to find the missing label E1? The following discussion is somewhat analogous
to the one from Sections 5.3.2 to 5.3.5.

With the notations from Figures 8 and 9 the missing label E1 was also carried by the
edge of the tree T1 connecting v1 with its parent x. This edge belongs also to the subtree T ;
regretfully we do not have (yet) access to this tree.

On the bright side, we do have the access to the outcome of the algorithm from Sec-
tion 4.7.4. The organic children of J can be treated as separators which split the artificial
children of J into a number of lists. Each such a list was generated by the depth-first search
algorithm applied to the subtree attached to some organic child of J . The discussion from
Section 5.3.3 is also applicable in our context with some minor modifications: the role of
Remark 4.1 is played now by Remark 4.2, we now list the vertices in the clockwise order,
and the greedy algorithm aims to find a decreasing subsequence. This, together with the
analogue of Section 5.3.4 allows us to recover the structure of the tree T (without the edge
labels yet).

In this way, using only the information contained in the tree T2, we can find the vertex x
which in the tree T was the grandparent of Y . There are the following two cases.

Firstly, if x “ J is the root of the tree T , the missing label E1 is carried in the tree T2 by
the edge connecting J with its organic child W .

Secondly, if x ‰ J is not the root of T , the desired label E1 appears in the pair (19)
together with the vertex x. This means that the label of E1 is carried by the first edge on
the (very short) path which connects the vertex J with x in T2.

5.8. Recovering the cycles near the spine. Our goal is to recover the cycle σB in the
special case when B in the output tree T2 is either a spine vertex or a neighbor of a white
spine vertex. We will keep this assumption also in Sections 5.9 to 5.11.

In order to achieve this goal we need to recover the past of the white spine vertex (or the
two white spine vertices) which is a neighbor of B.

5.8.1. The fake symmetry. From the discussion in Section 4.9 it follows that each white
spine vertex of the output tree T2 corresponds to some tree segment. At the first sight it
might seem that the definition of a tree segment (or a backbone segment) has a rotational
symmetry which corresponds to a rotation by 1800 of Figures 30a and 30b and reversing
the roles played by the sequences A1, . . . , Ar and B1, . . . , Bs. This false impression may
be reinforced by the apparent 1800 symmetry of the output of the algorithm depicted on
Figure 30c. In fact, this false symmetry of Figure 30c is problematic for our purposes
because for a given white spine vertex W of the output tree T2 we need to know which of
its two black vertices plays the role of Ar and which one plays the role of Bs.

BIJECTION BETWEEN TREES AND FACTORIZATIONS 57

In order to resolve this ambiguity we split the set of neighbors of the white spine
vertex W into two halves: each half consists of an endpoint of a spine edge and (going
counterclockwise) the subsequent non-spine neighbors of W , up until the other spine
neighbor, see Figure 30c. With these notations the set tA1, B1u is equal to the set of two
neighbors of W with the maximal labels in each of the halves respectively. The requirement
that A1 ă B1 gives us the unique way to fit Figure 30c into the the neighborhood of W .

5.8.2. The first application of the greedy algorithm. By applying the greedy algorithm from
Section 5.3.3 we can reconstruct a large part of the information depicted on Figure 30b:
recover the black vertices A1, . . . , Ar and B1, . . . , Bs as well as the folded versions of the
trees α1, . . . , αr´1, β1, . . . , βs´1, γ.

Our prescription for finding the cycle σB will depend on the location of the black vertex
on Figure 30b.

5.9. Case (i): never-spine vertex. Consider the case when B is a non-spine black vertex
which is adjacent to a white spine vertex W and B R tA1, . . . , Ar, B1, . . . , Bsu; in other
words B in the input tree T1 was not a spine vertex. This means that B belongs to a folded
version of one of the trees α0, . . . , αr´1, β1, . . . , βs´1, γ (Figure 30b) and with the available
information we can pinpoint this folded tree. The algorithm presented in Sections 5.3.1
to 5.3.5 is also applicable in this context. Note, however that this algorithm takes as an
input a white vertex as a root surrounded by black vertices, together with the parental
edge of the root, so we need to specify in each case this parental edge. For the tree αi

(with i P t1, . . . , r ´ 1u) it is the edge connecting W with Ai`1; for the tree βi (with
i P t0, . . . , s ´ 1u) it is the edge connecting W with Bi`1; for the tree γ it is the edge
connecting W with B1.

5.10. Case (ii): post-spine vertices. Consider the case when B P tA1, . . . , Ar´1, B1, . . . , Bs´1u;
in other words B was a black spine vertex in the tree T1 but it is not a spine ver-
tex in the tree T2. It follows that the corresponding cycle can be written in the form
σB “ pE1, . . . , Edq, where E1 and E2 are the spine edges surrounding the vertex B, see
Figure 30b. From the proof of Proposition 3.2 (Case 2) it follows that the vertex B lost two
edges which are attracted to B, namely the two spine edges E1 and E2. In this way we
recovered the edges E3, . . . , Ed (these are the edges which are attracted to B in T2) and the
remaining difficulty is to find E1 and E2.

The key observation is that all edges surrounding the vertex Ei (with i P t0, . . . , r ´ 1u)
in the tree T1 carried the same label; after performing the algorithm A this label is stored
in the edge connecting W with Ai`1. Similarly, all edges surrounding the vertex Fi (with
i P t1, . . . , s ´ 1u) in the tree T1 carried the same label; after performing the algorithm A
this label is stored in the edge connecting W with Bi`1. In this way we are able to recover
the labels of all spine edges in the segment and, as a result, to recover the labels E1 and E2.

58 KAROLINA TROKOWSKA AND PIOTR ŚNIADY

5.11. Case (iii): spine vertices. Consider now the case when B is a black spine vertex in
the tree T2. In the generic case when B R t1, nu is not one of the endpoints of the spine,
the vertex B lies on the interface between two tree segments. The cycle σB consists of:
the edge labels lying on one side of the spine, followed by a single spine edge label, after
which come the edge labels lying the other side of the spine, and the other spine edge label.
From the proof of Proposition 3.2 (Case 2) it follows that the vertex B lost precisely these
two spine edges; fortunately the discussion from Section 5.10 shows how to recover them.

6. CONCLUSION. PROOF OF THEOREM 2.1

In Section 5 we constructed a map

A´1 : ImagepAq Ñ Ca1,...,an
which has the property that

A´1
˝ A “ id : Ca1,...,an Ñ Ca1,...,an

is the identity map. In particular, it follows that the map

A : Ca1,...,an Ñ Tb1,...,bn

is injective. It remains to show that it is also surjective.

A fast way to do this is to compare the cardinalities of the respective sets by Corollary 1.2
and (10). This proof has a minor disadvantage of being not sufficiently bijective.

An alternative but more challenging strategy is to notice that the map A´1 from Section 5
is well defined on Tb1,...,bn . This time, however, one has to check that the image of A´1 on
this larger domain is still subset of Ca1,...,an . The next step is to verify that

A ˝ A´1
“ id : Tb1,...,bn Ñ Tb1,...,bn .

This method of proof does not create real difficulties, but it is somewhat lengthy. In order
to keep this paper not excessively long we decided to omit this more bijective approach.

ACKNOWLEDGMENTS

Research of the first named author was supported by Grant 2017/26/A/ST1/00189 of
Narodowe Centrum Nauki. The second named author is grateful to Max Planck Institute
for Mathematics in Bonn for its hospitality and financial support.

REFERENCES 59

REFERENCES

[Bia03] Philippe Biane. “Characters of symmetric groups and free cumulants”. In: Asymp-
totic combinatorics with applications to mathematical physics (St. Petersburg,
2001). Vol. 1815. Lecture Notes in Math. Springer, Berlin, 2003, pp. 185–200.
DOI: 10.1007/3-540-44890-X_8.

[Bia96] Philippe Biane. “Minimal factorizations of a cycle and central multiplicative
functions on the infinite symmetric group”. In: J. Combin. Theory Ser. A 76.2
(1996), pp. 197–212. ISSN: 0097-3165. DOI: 10.1006/jcta.1996.0101.

[Bia98] Philippe Biane. “Representations of symmetric groups and free probability”.
In: Adv. Math. 138.1 (1998), pp. 126–181. ISSN: 0001-8708. DOI: 10.1006/
aima.1998.1745.

[Cha09] Guillaume Chapuy. “A new combinatorial identity for unicellular maps, via a
direct bijective approach”. In: 21st International Conference on Formal Power
Series and Algebraic Combinatorics (FPSAC 2009). Discrete Math. Theor.
Comput. Sci. Proc., AK. Assoc. Discrete Math. Theor. Comput. Sci., Nancy,
2009, pp. 289–300.

[Dén59] József Dénes. “The representation of a permutation as the product of a minimal
number of transpositions, and its connection with the theory of graphs”. In:
Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 (1959), pp. 63–71. ISSN: 0541-9514.

[DFŚ10] Maciej Dołęga, Valentin Féray, and Piotr Śniady. “Explicit combinatorial in-
terpretation of Kerov character polynomials as numbers of permutation fac-
torizations”. In: Adv. Math. 225.1 (2010), pp. 81–120. ISSN: 0001-8708. DOI:
10.1016/j.aim.2010.02.011.

[Fér09] Valentin Féray. “Combinatorial interpretation and positivity of Kerov’s character
polynomials”. In: J. Algebraic Combin. 29.4 (2009), pp. 473–507. ISSN: 0925-
9899. DOI: 10.1007/s10801-008-0147-y.

[Fér10] Valentin Féray. “Stanley’s formula for characters of the symmetric group”. In:
Ann. Comb. 13.4 (2010), pp. 453–461. ISSN: 0218-0006. DOI: 10.1007/
s00026-009-0038-5.

[GR07] I. P. Goulden and A. Rattan. “An explicit form for Kerov’s character polynomi-
als”. In: Trans. Amer. Math. Soc. 359.8 (2007), pp. 3669–3685. ISSN: 0002-9947.
DOI: 10.1090/S0002-9947-07-04311-5.

[IK99] V. Ivanov and S. Kerov. “The algebra of conjugacy classes in symmetric groups,
and partial permutations”. In: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst.
Steklov. (POMI) 256.Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 3 (1999),
pp. 95–120, 265. ISSN: 0373-2703. DOI: 10.1023/A:1012473607966.

[Las08] Michel Lassalle. “Two positivity conjectures for Kerov polynomials”. In: Adv.
in Appl. Math. 41.3 (2008), pp. 407–422. ISSN: 0196-8858. DOI: 10.1016/j.
aam.2008.01.001.

https://doi.org/10.1007/3-540-44890-X_8
https://doi.org/10.1006/jcta.1996.0101
https://doi.org/10.1006/aima.1998.1745
https://doi.org/10.1006/aima.1998.1745
https://doi.org/10.1016/j.aim.2010.02.011
https://doi.org/10.1007/s10801-008-0147-y
https://doi.org/10.1007/s00026-009-0038-5
https://doi.org/10.1007/s00026-009-0038-5
https://doi.org/10.1090/S0002-9947-07-04311-5
https://doi.org/10.1023/A:1012473607966
https://doi.org/10.1016/j.aam.2008.01.001
https://doi.org/10.1016/j.aam.2008.01.001

60 REFERENCES

[Rat08] A. Rattan. “Stanley’s character polynomials and coloured factorisations in the
symmetric group”. In: J. Combin. Theory Ser. A 115.4 (2008), pp. 535–546.
ISSN: 0097-3165. DOI: 10.1016/j.jcta.2007.06.008.

[Śni13] Piotr Śniady. “Combinatorics of asymptotic representation theory”. In: European
Congress of Mathematics. Eur. Math. Soc., Zürich, 2013, pp. 531–545.

[Śni16] Piotr Śniady. “Stanley character polynomials”. In: The mathematical legacy of
Richard P. Stanley. Amer. Math. Soc., Providence, RI, 2016, pp. 323–334. DOI:
10.1090//mbk/100/19.

[Sta03] Richard P. Stanley. “Irreducible symmetric group characters of rectangular
shape”. In: Sém. Lothar. Combin. 50 (2003/04), Art. B50d, 11.

[Sta06] Richard P. Stanley. A conjectured combinatorial interpretation of the normalized
irreducible character values of the symmetric group. 2006. arXiv: arXiv:
math/0606467v2 [math.CO].

[Woj21] Karolina Wojtyniak. “Bijection between trees in Stanley character formula and
factorizations of a cycle”. In: Sém. Lothar. Combin. 85B (2021), Art. 25, 12.

Email address: karolina5284@wp.pl

MAX-PLANCK-INSTITUT FÜR MATHEMATIK - BONN, VIVATSGASSE 7, 53111 BONN, GERMANY
Email address: psniady@impan.pl

https://doi.org/10.1016/j.jcta.2007.06.008
https://doi.org/10.1090//mbk/100/19
https://arxiv.org/abs/arXiv:math/0606467v2
https://arxiv.org/abs/arXiv:math/0606467v2

	66_Trokowska_cover

