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SINGULARITIES OF LOCAL MODELS

NAJMUDDIN FAKHRUDDIN, THOMAS HAINES, JOÃO LOURENÇO, TIMO RICHARZ

Abstract. We construct local models of Shimura varieties and investigate their singularities,
with special emphasis on wildly ramified cases. More precisely, with the exception of odd

unitary groups in residue characteristic 2 we construct local models, show reducedness of
their special fiber, Cohen–Macaulayness and in equi-characteristic also (pseudo-)rationality.

In mixed characteristic we conjecture their (pseudo-)rationality.

This is based on the construction of parahoric group schemes over two dimensional bases
for wildly ramified groups and an analysis of singularities of the attached Schubert varieties

in positive characteristic using perfect geometry.
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1. Introduction

1.1. Background. Let O be a complete discretely valued ring with fraction field K and alge-
braically closed (for simplicity, here) residue field k of characteristic p > 0. LetG be a (connected)
reductive group over K.

The local models we consider in this paper are certain flat projective O-schemes which model
the singularities of integral O-models of Shimura varieties (in the case of mixed characteristic)
and of G-shtukas (in the equicharacteristic case) with parahoric level structure. For a general
introduction to these schemes, the reader is referred to the survey article of Pappas, Rapoport
and Smithling [PRS13], see also [HR22].

The local models, which we denote by M̃G,µ, arise as the seminormalizations of certain orbit
closures MG,µ inside a Beilinson–Drinfeld Grassmannian, and are associated to a parahoric group
scheme G over O extending G, a geometric conjugacy class µ of cocharacters of G and certain
auxiliary additional data in the mixed characteristic case, see Section 5.2. The schemes are
constructed by Zhu in [Zhu14] and by Pappas–Zhu in [PZ13] for all G splitting over a tamely
ramified extension of K. Their construction in the mixed-characteristic setting is extended by
Levin in [Lev16] to all groups G which are restrictions of scalars of tamely ramified groups, so
covering all G (up to central isogeny) in the cases where p ≥ 5. In the equal-characteristic
setting, the construction for arbitrary groups is given in [Ric16].

One of the main results of [Zhu14] and [PZ13] is that when p - |π1(Gder)| the orbit closures

MG,µ are normal (hence coincide with M̃G,µ) with reduced special fiber, all of whose components
are normal, Cohen–Macaulay and compatibly Frobenius split. They also conjecture that under
the same conditions the local models are always Cohen–Macaulay [PZ13, Remark 9.5 (b)]. This
is proved by He in [He13] in the case that G is unramified and µ is minuscule and by the second
and fourth named author [HR22, Theorem 2.3] for p > 2 in all cases where local models had been
constructed. In the case when p | |π1(Gder)|, it is known by [HLR18], that the orbit closures

MG,µ are not normal in general, so instead one passes to their seminormalizations M̃G,µ which
then have the aforementioned properties.

The paper at hand extends the above results to all G and all p with the exception of one
family of examples: ramified odd unitary groups G in the case p = 2, see also Remark 2.2. More

precisely, excluding this family we construct local models M̃G,µ also for wildly ramified groups G
which are not necessarily restrictions of scalars of tamely ramified groups, and we prove that these
models are normal, Cohen–Macaulay and have reduced special fibers all of whose components
are also normal, Cohen–Macaulay and compatibly Frobenius split. The reader is referred to
Lemma 5.23 for the relation with the construction of local models via z-extensions from [HPR20,
Section 2.6]. Let us now explain our main results in more detail.

1.2. Main results. Fix O ⊂ K with residue field k and G as above. Denote by ΦG the relative
root system of G. If G ranges through all absolutely simple groups, then ΦG is non-reduced if
and only if G is an odd unitary group, see Section 2. Our first main result is Theorem 5.4 in the
main text and concerns local models in equicharacteristic:

Theorem 1.1. Assume that K ' k((t)) has characteristic p > 0. Also assume that p > 2 or

ΦG is reduced. Then the local model M̃G,µ is Cohen–Macaulay, has rational singularities, and

reduced special fiber equal to the admissible locus ÃG,µ.

For the definition of the admissible locus ÃG,µ, the reader is referred to Definition 5.3. We also

note that M̃G,µ = MG,µ when p - |π1(Gder)|, see Remark 5.5 and Remark 5.15. In Corollary 5.8,

we also calculate the Picard group of M̃G,µ.
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Our second main result is Theorem 5.14 in the main text and concerns mixed characteristic
local models:

Theorem 1.2. Assume that K has characteristic 0. Also assume that p > 2 or ΦG is reduced.

Then the local model M̃G,µ is Cohen–Macaulay and has a reduced special fiber equal to the µ′-

admissible locus ÃG′,µ′ . If ÃG′,µ′ is irreducible (for example, G special parahoric), then M̃G,µ has
rational singularities.

Here G′ and µ′ are equicharacteristic analogues of G and µ associated to them via a choice

of O[[t]]-group lift G, see Section 2. As above, M̃G,µ = MG,µ when p - |π1(Gder)|, and see
Corollary 5.19 for its Picard group. Theorem 1.2 is slightly weaker than Theorem 1.1 in that we

do not prove that the singularities of M̃G,µ are always pseudo-rational. However, we conjecture
that this is always the case, see Conjecture 5.20.

1.3. Methods. We now explain our methods and the structure of this paper. The main input
needed to construct the local model (in mixed characteristic) is, as in [PZ13], the construction
of a lifting of the parahoric group scheme G over O to a group scheme G over O[[t]]. The special
fiber of the local model is then a closed subscheme of a partial affine flag variety over k and to
analyze this we also need to construct lifts of parahoric group schemes over k[[t]] to W (k)[[t]].
These steps were carried out for tame groups in [PR08, PZ13].

So we need to extend these constructions to wild groups. The group lifts are constructed in
Section 2 using ideas from [Lou19]: we define suitable integral models of maximal tori and root
groups separately which induce birational models and then apply the result that such a model
extends to a unique group scheme. The reason that we have to exclude the case of odd unitary
groups stems from this very first step since we are unable to construct the lifts of root groups in
the case of multipliable roots when G is ramified and p = 2, see Remark 2.2.

In Section 3 we start with a review of F -singularities and (pseudo-)rational singularities. These
techniques are central to the study of singularities of local models in later sections. Conjecture 3.6
states a conjectural mixed characteristic analogue of a result of Schwede and Singh [HMS14,
Appendix A], which would imply (pseudo-)rationality of mixed characteristic local models, see
also the discussion below.

The first step in analyzing the singularities of local models is the study of the singularities
of Schubert varieties Sw in affine flag varieties. We carry this out in Section 4, first proving in

Theorem 4.1 that the seminormalizations S̃w are always normal, Cohen–Macaulay, compatibly
Frobenius split and have rational (in fact, even F -rational) singularities. We use the by now
standard method of applying the Mehta–Ramanathan criterion for Frobenius splitting, but we
need some extra arguments for p = 2, 3. In Theorem 4.23, we then show that if p > 2 or ΦG is
reduced, then all Schubert varieties Sw are normal if and only if p does not divide the order of
π1(Gder).

In Section 5, we construct our local models and prove our main results. In the equicharac-
teristic case, the local model is canonical. In mixed characteristic, it depends on the choice of
the group lift G constructed in Proposition 2.6. For minuscule µ, which is the case relevant to
Shimura varieties, it is expected that these are independent of all choices, see [SW20, Conjecture
21.4.1], [HPR20, Conjectures 2.12, 2.15] and also [AGLR22]. To identify the special fiber and
prove that it is reduced, we follow the method of [Zhu14] and [PZ13] based on the coherence
conjecture. This is fairly straightforward, given the results of Section 4. It then remains to prove
that the special fiber is Cohen–Macaulay (and the statements about rationality; thanks to results
of Kovács (Proposition 3.7), it is enough to prove the objects in question have pseudo-rational
singularities). To do this, we use a variant of the argument used in [HR22, Section 6], which
has the advantage of also being applicable in characteristic 2 since it does not depend on Zhu’s
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global Frobenius splitting [Zhu14, Theorem 6.5]. The proof uses some results in commutative
algebra by Schwede and Singh [HMS14, Appendix A] to deduce that in equicharacteristic p the
local models are Cohen–Macaulay and have F -rational (hence pseudo-rational) singularities. In
the case of mixed characteristic, we get the reducedness and Cohen–Macaulayness of the spe-
cial fiber of the local model by comparing with the equicharacteristic case. However, it does
not seem possible to immediately transfer pseudo-rationality from equal characteristic to mixed
characteristic. Motivated by this we discuss the above mentioned conjectural mixed characteris-
tic analogue (Conjecture 3.6) of one of the results of Schwede and Singh which, given our other
results, would suffice to deduce the pseudo-rationality of local models in mixed characteristic.

1.4. Relationship with the perfectoid theory. Let us comment on the relationship between
this work and the other recent works [AGLR22, GL22] by some of the authors. The first paper
[AGLR22] studied at length a perfectoid analogue of the local model constructed in Scholze–
Weinstein’s book [SW20]. An important conjecture in [SW20] postulated that these perfectoid
local models, despite only being v-sheaves, should be representable by a flat, normal, and pro-
jective scheme over OE with reduced special fiber. This was proved in [AGLR22, Section 7]
under Hypothesis 2.1 and Hypothesis 5.24, using the constructions of this paper as an input
and comparing them to the v-sheaves of perfectoids via a specialization principle. However, we
stress that the results in [AGLR22] concerning the singularities of local models like reducedness
of their special fiber and Cohen–Macaulayness rely on the present paper. As for [GL22], it gives
a new proof that local models are normal with reduced special fiber, including the missing cases
of Hypothesis 2.1 and Hypothesis 5.24. The statements in [GL22] related to Frobenius splittings
of the special fiber or Cohen–Macaulayness rely again on the present paper.

1.5. Acknowledgements. We thank Johannes Anschütz, Ian Gleason, Stefano Morra, Michael
Rapoport, Peter Scholze, and Karl Schwede for helpful conversations and email exchanges.

N.F. acknowledges support from the DAE, Government of India, under Project Identifica-
tion No. RTI4001. The research of T.H. was partially funded by NSF grant DMS 2200873.
This project has received funding (J.L. via Ana Caraiani) from the European Research Council
under the European Union’s Horizon 2020 research and innovation program (grant agreement
nº 804176), and (J.L.) from the Max-Planck-Institut für Mathematik. This project has re-
ceived funding (T.R.) from the European Research Council (ERC) under Horizon Europe (grant
agreement nº 101040935) and funding (T.R.) from the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) TRR 326 Geometry and Arithmetic of Uniformized Structures,
project number 444845124.

2. Group lifts to two-dimensional bases

In our presentation we follow [Lou19, Sections 2–3] to construct group lifts via gluing from
birational group laws. The method works for Witt lifts (equal characteristic) and Breuil–Kisin
lifts (mixed characteristic) in the same way which we, however, treat in the separate Sections
2.1 and 2.2 for readability. We start by fixing some notation.

Let O denote a complete discretely valued ring with fraction field K and perfect residue field
k of characteristic p > 0. Let Ŏ/O be the completion of the maximal unramified extension with

fraction field K̆/K. Let G be a reductive K-group that is quasi-split (automatic if K = K̆ by

Steinberg’s theorem) and either simply connected or adjoint. Denote by Ğ := G⊗K K̆ the base
change.

Assume G is also almost K-simple. Then G = ResL/K(G0), for some finite separable field
extension L/K, of an absolutely almost simple L-group G0 [BT65, Section 6.21 (ii)], which is
necessarily quasi-split and simply connected or adjoint, respectively. Choose a separable field
extension M/L of minimal degree such that G0 splits over its Galois hull. As the only non-trivial



SINGULARITIES OF LOCAL MODELS 5

automorphism groups of connected Dynkin diagrams are Z/2 and S3, the extension M/L is of
degree ≤ 3.

In this section, we also work under the following:

Hypothesis 2.1. If p = 2, then the relative root system ΦĞ is reduced.

An examination of the tables in [Tit79] shows that ΦĞ is non-reduced if and only if the

associated absolutely almost simple group Ğ0 = G0⊗K K̆ is isomorphic to an odd unitary group.
So Hypothesis 2.1 excludes this case if p = 2.

Fix a maximal K-split torus S ⊂ G with centralizer equal to a maximal torus T and a Borel
subgroup B containing it. Let H/Z be the split form of G equipped with a pinning. Choose a
Chevalley–Steinberg system for H, see [Lou19, Section 2.1]. Let Ks/K be a Galois extension
splitting G, and fix an isomorphism

G⊗K Ks '−→ H ⊗Z K
s (2.1)

preserving the chosen maximal tori and Borel subgroups such that the Gal(Ks/K)-action trans-
ported to the target acts by pinned automorphisms, so G = ResKs/K(H ⊗Z K

s)Gal(Ks/K) by
Galois descent.

The Chevalley–Steinberg system for H induces a Chevalley quasi-system for the quasi-split
group G in the sense of [Lou19, Définition 2.2.6, Proposition 2.2.7]. Essentially, this is the choice
of the pair S ⊂ B in G along with a family of isomorphisms

xa : Ua
'−→

{
ResLa/KGa
ResL2a/KHLa/L2a

(2.2)

for all a ∈ Φnd
G with Φnd

G ⊂ ΦG the subset of non-divisible roots and Ua the corresponding root
subgroup. Here, if ΦG is reduced, then La = M if a ∈ Φ<G is short and La = L if a ∈ Φ>G is
long. If ΦG is non-reduced, then La = M ⊃ L = L2a if 2a ∈ ΦG and HLa/L2a

is the L2a-group
described in [BT84, 4.1.9]. Here, the quadratic extension La/L2a is allowed to be ramified if
p > 2 but must be unramified if p = 2 by Hypothesis 2.1. This induces a Chevalley valuation
of A (G,S,K), see [BT84, 4.2.2], which we then regard as the origin of that affine space, which
then becomes identified with V (S) = X∗(S)⊗ R.

Remark 2.2. Let us comment on the various hypotheses on G.

(1) If we wished to include the case where p = 2 and ΦG is non-reduced, the structure of Ua
would be arithmetically more involved, particularly as the subset M0 ⊂M of trace zero
elements does not behave so well, see [BT84, Sections 4.1.10, 4.2.20]. For instance, the
valuation of M0 divides the quadratic separable extensions into those given by roots of
primes and the rest of them, see [BT84, Lemmes 4.3.3, 4.3.4]. Root-of-prime extensions
are treated in [Lou19] relying on the theory of pseudo-reductive groups. For the other
quadratic extensions, we do not know, for example, how to construct the groups Ua that
appear below.

(2) The case of quasi-split and simply connected (respectively, adjoint) groups G appears to
be most important when studying the geometry of Schubert varieties and local models.
Note that for such G the maximal torus T is induced [BT84, Proposition 4.4.16], which is
a technical convenience, see the proof of Lemma 2.5. If we wished to include more general
central extensions of G with induced maximal torus, we could follow the construction in
[Lou19, Section 2.4], see also Section 5.3.1 for a particular interesting case. Further, it
should be possible, though difficult, to extend the construction of group lifts below to
not necessarily quasi-split groups using étale descent [BT84, Section 5].
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2.1. Witt lifts. In this subsection, we assume that K is a Laurent series field of characteristic
p > 0. Choosing uniformizers u of L and t of K, we identify their rings of integers OL = kL[[u]]
and O = k[[t]] as k-algebras. The uniformizers satisfy an Eisenstein equation:

ue + ae−1(t)ue−1 + · · ·+ a1(t)u+ a0(t) = 0 (2.3)

where each of the

ai(t) =
∑

bijt
j (2.4)

is a power series with bij ∈ kL, bi0 = 0 and b01 6= 0. Consider now the defining equation

ue + [ae−1(t)]ue−1 + · · ·+ [a1(t)]u+ [a0(t)] = 0 (2.5)

where each of the

[ai(t)] =
∑

[bij ]t
j (2.6)

is a power series in W (kL)[[t]] obtained by taking Teichmüller representatives of the coefficients.
Then (2.5) defines the finite free W (k)[[t]]-algebra W (kL)[[u]], which reduces modulo p to the k[[t]]-
algebra kL[[u]]. Similarly, we lift OM/OL to W (kM )[[v]]/W (kL)[[u]] via a choice of uniformizers.

Lemma 2.3. The quasi-pinned K-group (G,B, S, (xa)a∈Φnd
G

) lifts to (G,B, S, (xa)a∈Φnd
G

) defined

over the maximal open subset U ⊂ SpecW (k)[[t]] over which the extension W (kM )[[v]]/W (k)[[t]]
is étale.

Proof. Firstly, the split form H/Z of G with its Chevalley–Steinberg system induces a split
form H0/Z of G0 with such a system. As quasi-pinnings are compatible with restriction of
scalars along finite étale maps, we reduce to the case G = G0 is absolutely almost simple

and without loss of generality also non-split. Let Ṽ be the Galois hull of the finite étale map
V := f−1(U) → U where f : SpecW (kM )[[v]] → SpecW (k)[[t]]. As f is ramified at {t = 0}, we

have U ⊂ SpecW (k)((t)) and the reduction of Ṽ → U modulo p defines a Galois ring extension

K̃/K splitting G. Hence, Gal(Ṽ /U) → Gal(K̃/K) acts through (2.1) by pinning preserving

automorphisms on H, replacing Ks by K̃ if necessary. We define

G = ResṼ /U (H ⊗Z Ṽ )Gal(Ṽ /U), (2.7)

equipped with the quasi-pinning induced from the chosen Chevalley–Steinberg system for H,
which satisfies the requirements of the lemma. �

Note that W (k)((t)) is a Euclidean domain which is not local. Even though the extension
W (kM )((v))/W (k)((t)) is ramified in general, we can extend G from U over SpecW (k)((t)) via a
birational extension process as follows. Note that we have the maximal torus T in G defined over
U . We consider the family of group schemes consisting of the connected Néron W (k)((t))-model
of T denoted by the same symbol, and the unipotent group schemes

Ua =

{
ResW (ka)((ta))/W (k)((t))Ga
ResW (k2a)((t2a))/W (k)((t))HW (ka)((ta))/W (k2a)((t2a))

(2.8)

for every non-divisible root a ∈ ΦG, extending the quasi-pinning defined in Lemma 2.3. Here,
the symbols ka denote the residue field of the root fields La, and the variables ta are either one
of the prescribed lifts u or v of the uniformizer of La, depending on whether it equals L or M .

Lemma 2.4. The models (T ,Ua) glue birationally to a smooth, affine W (k)((t))-group G with
connected fibers extending (2.7).
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Proof. This follows from the method of [Lou19, Proposition 3.3.4]. Here we give an overview of
the argument.

First, we must show that the axioms of [BT84, Définition 3.1.1] are satisfied: These involve
showing that the conjugation action of T on the Ua, the commutator morphisms between Ua and
Ub for linearly independent roots, and a rationally defined morphism exchanging the order of ±a
in a rank 1 big cell extend from U (defined in Lemma 2.3) to all of SpecW (k)((t)). In the rank
1 case, we can construct G explicitly by extending the definition of G over U , isogenous to a
restriction of scalars of either SL2 or SU3, to the more general ring extensions that we consider;
this provides us with the first and third morphisms using the Néron property of T . Hence, the
main concern are commutator morphisms. Over the generic fiber, these morphisms are given
explicitly in [BT84, Section A.6], up to sign and conjugation, and only involve natural operations
such as sum, multiplication, trace and norm, so they are still well-defined over W (k)((t)). For
example, if ΦG is reduced, and a, b are short roots with long sum c = a + b ∈ ΦG, then the
commutator γa,b is given on points under the fixed pinnings by

(x, y)→ trR[ta]/R(xy), (2.9)

where R is any W (kc)((tc))-algebra, and x, y ∈ R[ta] = R ⊗W (kc)((tc)) W (ka)((ta)), up to ignoring
sign and conjugation. It is now a consequence of [Lou19, Théorème 3.2.5] that there is a smooth
affine W (k)((t))-group G with connected fibers glued from these closed subgroups. Here, for
affineness we use the fact that W (k)((t)) is a Dedekind ring. �

We already know that G is reductive over k((t)) and K0((t)), where K0 = W (k)[p−1]. We can
compare a portion of their Bruhat–Tits theory.

Lemma 2.5. There are identifications

A (G,S, k((t))) ' A (G,S,K0((t))), (2.10)

of apartments, equivariant along a natural identification of the Iwahori–Weyl groups.

Proof. Our method of proof is similar to [Lou19, Proposition 3.4.1]. We fix as origin of the
apartments the Chevalley–Steinberg valuations determined by the quasi-pinning inherited from
(2.8). Then, both identify with the real vector space V (S) generated by the coweights of the
split torus S compatibly with the hyperplanes.

As G is assumed to be either simply connected or adjoint, the maximal torus T is induced
and so is T over U . We denote by T its connected Néron W (k)[[t]]-model, see [Lou19, Définition
3.3.3] and [Lou20, Part IV, Proposition 3.8]. Let N be the normalizer of S in G. In order to
identify the Iwahori–Weyl groups, we prove that they are isomorphic to

N(W (k)((t)))/T (W (k)[[t]]) (2.11)

via the natural maps as follows. It suffices to show that the natural maps

T (W (k)((t)))/T (W (k)[[t]])→ T (L((t)))/T (L[[t]]) (2.12)

and

N(W (k)((t)))/T (W (k)((t)))→ N(L((t)))/T (L((t))), (2.13)

are isomorphisms, where L equals either k or K0. The first case (2.12) is verified by decomposing
T as a product of restriction of scalars of multiplicative group schemes. The second case (2.13)
is a consequence of constancy of the Weyl group of a split torus and vanishing of H1 for T . One
sees readily that these comparison isomorphisms are compatible with those of the apartments
and the corresponding group actions. �
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For any point x in the apartments, we have a certain optimal quasi-concave function fx : ΦG →
R in the sense of [BT84, Section 4.5], defined with respect to the chosen origin, the Chevalley–
Steinberg valuation. We use this to define the W (k)[[t]]-models Ua,x via

Ua,x =

{
ResW (ka)[[ta]]/W (k)[[t]]

(
t
eafx(a)
a Ga

)
ResW (k2a)[[t2a]]/W (k)[[t]]

(
t
(eafx(a),eafx(2a))
a HW (ka)[[ta]]/W (k2a)[[t2a]]

) , (2.14)

where the ea are the ramification degrees of the root field extension La/K, and by construction
the eafx(a) are integers.

Proposition 2.6. The models T and Ua,x for all a ∈ Φnd
G birationally glue to a smooth, affine

W (k)[[t]]-group scheme Gx with connected fibers. Its reductions to k[[t]] and K0[[t]] are parahoric
group schemes coming from facets which correspond under (2.10).

Proof. To see that the models T and Ua,x for all a ∈ Φnd
G satisfy the axioms of [BT84, Définition

3.1.1], we can proceed as in [Lou19, Proposition 3.4.5]: due to the equality W (k)((t)) ∩K0[[t]] =
W (k)[[t]], it suffices to apply [BT84, Théorème 3.8.1] to prove the existence of a birational group
law. So it glues to a smooth and separated group scheme Gx with connected fibers due to [Lou19,
Théorème 3.2.5].

This group scheme is quasi-affine and admits a smooth affine hull, whose geometric fibers are
connected outside the unique closed point of Spec(W (k)[[t]]), by [Lou19, Proposition 3.2.7]. In
order to check affineness, we apply verbatim the proof in [Lou19, Théorème 3.4.10]: indeed, this
relies on the identification of the Iwahori–Weyl groups given in Lemma 2.5. �

2.2. Breuil–Kisin lifts. In this subsection, we assume that K has characteristic zero. So L/K
is a finite extension of complete discretely valued fields of characteristic zero with perfect residue
fields kL/k of characteristic p > 0. Define also Lnr/K as the maximal unramified subextension
of L/K, so L/Lnr is totally ramified. Choosing uniformizers πL of L and πK of K, they satisfy
an Eisenstein equation:

πeL + ae−1(πK)πe−1
L + · · ·+ a0(πK) = 0, (2.15)

where each of the ai(πK) ∈ πKOLnr is a power series in πK with coefficients being Teichmüller
representatives of elements in kL and satisfying the usual constraints, compare with (2.3). As-
sume without loss of generality that there exists i with (i, p) = 1 and

ai(πK) 6= 0. (2.16)

This can be achieved by replacing πL by πL + πK , if needed. Consider, in analogy to (2.5), the
equation

ue + [ae−1(t)]ue−1 · · ·+ [a0(t)] = 0, (2.17)

where u and t are indeterminates, each of the [ai(t)] ∈ W (kL)[[t]] is obtained from ai(πK) by
taking the coefficients and by replacing πK by t. Equation (2.17) defines the finite free W (k)[[t]]-
algebra W (kL)[[u]]. We repeat this procedure for M/L: choose a uniformizer πM of M satisfying
the analogue of (2.16) with respect to πL, an indeterminate v and define the finite free W (kL)[[u]]-
algebra W (kM )[[v]]. Tensoring with O over W (k), we arrive at the finite free ring extensions

O[[t]] ⊂ OLnr [[u]] ⊂ OMnr [[v]], (2.18)

where Lnr and Mnr are the maximal unramified subextensions of L/K and M/K, respectively.
The tower (2.18) reduces modulo t − πK to O ⊂ OL ⊂ OM ; its reduction modulo πK is k[[t]] ⊂
kL[[u]] ⊂ kM [[v]] with separable fraction field extensions by (2.16).

As for the group G endowed with its quasi-pinning (B,S, (xa)a∈Φnd
G

), these data also lift to

an open neighborhood U ⊂ SpecO[[t]] of the points (πK) and (t− πK) in analogy to Lemma 2.3,
and we denote the resulting U -groups by G, B, T and S as before. To extend G from U over
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SpecO((t)), we proceed again via a gluing procedure using extensions of birational group laws.
Consider the family of group schemes consisting of the connected Néron O((t))-model T (note
that O((t)) is a Dedekind domain), and the unipotent group schemes

Ua =

{
ResOLnr

a
((ta))/O((t))Ga

ResOLnr
2a

((t2a))/O((t))HOLnr
a

((ta))/OLnr
2a

((t2a))

(2.19)

for every root a ∈ Φnd
G , extending the generic quasi-pinning. Here, the variables ta are either t,

u or v depending on the cases for the root fields La for a ∈ ΦG explicated in (2.2). We arrive at
the following result:

Lemma 2.7. The models (T , (Ua)a∈Φnd
G

) birationally glue to a smooth, affine O((t))-group G with

connected fibers. Furthermore, its fibers over K and κ((t)) for κ = k,K are reductive, and there
are identifications of apartments

A (G,S,K) ' A (G,S, κ((t))), (2.20)

equivariantly for the respective Iwahori–Weyl groups.

Proof. The proofs of Lemma 2.4 and Lemma 2.5 translate literally. �

For any point x in the apartments (2.20), we have the quasi-concave function fx : ΦG → R,
compare with (2.14). We define the O[[t]]-models Ua,x by

Ua,x =

{
ResOLnr

a
[[ta]]/O[[t]]

(
t
eafx(a)
a Ga

)
ResOLnr

2a
[[t2a]]/O[[t]]

(
t
(eafx(a),eafx(2a))
a HOLnr

a
[[ta]]/OLnr

2a
[[t2a]]

) , (2.21)

where the ea are the ramification degrees of the extensions La/K and by construction the eafx(a)
are integers. Let T be the connected Néron O[[t]]-model of the induced torus TU , compare with
the proof of Lemma 2.5.

Proposition 2.8. The models T and Ua,x for all a ∈ Φnd
G birationally glue to a smooth, affine

O[[t]]-group scheme Gx with connected fibers. Its reductions to O and κ[[t]], with κ = k,K are
parahoric group schemes coming from facets which correspond under (2.20).

Proof. The proof of Proposition 2.6 applies verbatim. �

3. A conjecture on pseudo-rationality

We recall some definitions and facts from the theory of singularities, especially in positive
characteristic. Conjecture 3.6 below is a mixed characteristic analogue of a result of Schwede–
Singh recalled in Lemma 3.2. Its proof would imply that mixed characteristic local models also
have (pseudo-)rational singularities, see Conjecture 5.20.

3.1. Review of F -singularities. A Noetherian scheme X over Fp if said to be F -finite is the
absolute Frobenius morphism F : X → X is a finite morphism (for example, finite type schemes
over F -finite fields). It is said to be F -split if the canonical morphism OX → F∗OX has an
OX -linear splitting. A local Fp-algebra (R,m) is said to be F -injective if the map on local
cohomology F∗ : H•m(R)→ H•m(R) is injective (for example, local rings of F -split schemes).

A Noetherian reduced F -finite Fp-algebra R is said to be F -regular if every prime ideal local-
ization Rp has all its ideals tightly closed, see [HH89, Section 1]. If every parameter ideal of such
an Rp is tightly closed, we say Rp is F -rational ; see [HH94, Definition 4.1], and also [FW89] or
[Smi97]. We say a Noetherian reduced F -finite Fp-scheme has F -rational singularities if all of
its local rings are F -rational.
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A projective scheme X over an F -finite field is said to be globally F -regular provided that
for every ample invertible sheaf L, the section ring

⊕
n∈Z≥0

H0(X,L⊗n) is a strongly F -regular

ring, in the sense of [HH89, Section 3] (see also [Cas22, Definition 5.2]). By [HH89, Theorem
3.1(d)], any strongly F -regular ring is F -regular (the converse is expected but appears to be an
open question in general). A key property of strong F -regularity is that it passes to all prime
localizations of the ring.

We shall use the following results, extracted from [HH89, Smi00, HMS14].

Lemma 3.1. A globally F -regular projective variety Proj(S) over a perfect field is F -rational.

Proof. By [Smi00, Theorem 3.10], S is strongly F -regular. By [HH89, Theorem 3.1], all localiza-
tions of S and all direct summands of such are strongly F -regular. This means the local rings of
Proj(S) are strongly F -regular. Now by [HH89, Theorem 3.1(d)], they are also F -regular, which
means that all ideals are tightly closed. In particular these local rings are F -rational. �

Lemma 3.2. Let R be an F -finite Noetherian local ring and t a non-zero divisor. If R/(t) is
F -injective and R[t−1] is F -rational, then R is F -rational.

Proof. This is Schwede–Singh [HMS14, Corollary A.4]. �

3.2. Pseudo-rational singularities. We follow [LT81, Section 2] (see also [Smi97, Definition
1.8] and [Kov17, Definition 9.4]): An excellent (thus Noetherian) local ring (R,m) is said to be
pseudo-rational if it is normal, Cohen–Macaulay, admits a dualizing complex, and if for each
proper birational morphism π : Y → Spec(R) with Y normal, the canonical map

f∗ωY → ωR (3.1)

is an isomorphism (or equivalently, is surjective on global sections [LT81, Section 4] (or [Kov17,
Lemma 3.22]), or equivalently by duality theory Hd

m(R) → Hdm(Rf∗OY ) = Hd
f−1(m)(OY ) is

injective for d = dim(R)). An excellent scheme has pseudo-rational singularities (or is pseudo-
rational) if each of its local rings is pseudo-rational.

Remark 3.3. In order to establish pseudo-rationality, one may restrict to the class of projec-
tive birational morphisms π : Y → Spec(R) with Y normal, see [Kov17, Lemma 9.8]. In fact,
projective maps (as opposed to proper maps) are used in [Kov17, Definition 9.4]. Further, we
note that the definition of pseudo-rationality in [MS21, Definition 2.6] is weaker in that R is not
required to be excellent or normal.

Lemma 3.4. Any excellent local Fp-algebra R which is F -rational is also pseudo-rational.

Proof. This is [Smi97, Theorem 3.1]. �

The next lemma is used in Theorem 5.14 to establish pseudo-rationality of special local models:

Lemma 3.5. Let R be a local ring of mixed characteristic (0, p) which is excellent, normal and
admits a dualizing complex. Let π ∈ m be a non-zero divisor such that R/(π) is an Fp-algebra.
If R/(π) is F -rational, then R is pseudo-rational.

Proof. Since R is assumed to be normal, this is [MS21, Theorem 3.8]. �

The following conjecture is a mixed characteristic analogue of Lemma 3.2. Since it does not
appear in the literature (but see the discussion at https://mathoverflow.net/q/396462), we
write it down here:

Conjecture 3.6. In the situation of Lemma 3.5, if R/(π) is F -finite and F -injective, and R[π−1]
is pseudo-rational, then R is pseudo-rational.

https://mathoverflow.net/q/396462


SINGULARITIES OF LOCAL MODELS 11

3.3. Rational singularities. Here we follow [Kov17], especially Section 9.
Let X be a Noetherian excellent scheme which admits a dualizing complex. We say X has

resolution-rational singularities if there exists a proper birational morphism f : Y → X with Y
a regular scheme (in which case we say X has a resolution of singularities), with the additional
properties that the natural maps OX→Rf∗OY and f∗ωY→ωX are isomorphisms, and Rif∗ωY =
0 for i > 0. Such a scheme X is necessarily Cohen–Macaulay by [Kov17, Corollary 8.3]. We say
that X has rational singularities if X is normal, Cohen–Macaulay, and is such that whenever
f : Y → X is a locally projective birational morphism with Y Cohen–Macaulay, the natural
map OX → Rf∗OY is an isomorphism. When in addition Y is regular, we say Y is a rational
resolution of X.

We shall use the following basic facts linking the notions of pseudo-rational singularities,
resolution-rational singularities, and rational singularities.

Proposition 3.7. Suppose X is a Noetherian excellent scheme which admits a dualizing complex.
Then:

(1) The scheme X has pseudo-rational singularities if and only if X has rational singularities.
(2) The scheme X has resolution-rational singularities if and only if X has rational singu-

larities and has a resolution of singularities.

Proof. This follows from the proof of [Kov17, Corollary 9.13]. A key ingredient is [Kov17,
Theorem 8.6], which together with [Kov17, Lemma 9.8] proves pseudo-rational singularities are
rational. �

Remark 3.8. It is worth noting that the meaning of rational singularities here differs, at least
a priori, from its meaning in some earlier literature. For example, in [PR08, Proposition 9.7 (d)]
and [HR22, Proposition 3.1], the term rational singularities which appears is, in light of [Kov17,
Lemma 8.2], equivalent to what we now call resolution-rational singularities.

4. Schubert varieties

Let k be an algebraically closed field of characteristic p > 0, K = k((t)) be the corresponding
Laurent series field and O = k[[t]] the power series ring.

Let G be a reductive K-group. For each facet f ⊂ B(G,K) of the Bruhat–Tits building, we
denote by G = Gf the associated parahoric O-group scheme extending G, see [BT84, Définition
5.2.6 ff.].

The loop group LG, respectively positive loop group L+G, is the functor on the category of
k-algebras R given by LG(R) = G(R((t))), respectively L+G(R) = G(R[[t]]). Then L+G ⊂ LG is
a subgroup functor, and the (twisted partial) affine flag variety is the étale quotient

F`G = LG/L+G, (4.1)

which is represented by an ind-projective k-ind-scheme by [PR08, Theorem 1.4].
In the following, we fix two facets f , f ′ ⊂ B(G,K) and denote by G = Gf , G′ = Gf ′ the

associated parahorics. Given an element w ∈ L+G′(k)\LG(k)/L+G(k), the Schubert variety Sw
is the reduced L+G′-orbit closure of w̃ ·e in F`G , where w̃ ∈ LG(k) is any representative of w and
e the base point of F`G , see [PR08, Definition 8.3] and compare with [HR22, Section 3]. Then
Sw is a projective k-variety admitting the L+G′-orbit Cw of ẇ · e as a dense open subset. This
induces a presentation on reduced ind-schemes

(F`G)red = colimSw, (4.2)

where w runs through the double cosets as above, and all transition maps Sv → Sw are closed
immersions.
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4.1. F -singularities of seminormalized Schubert varieties. Let S̃w → Sw be the semi-
normalization [Sta21, 0EUK], that is, the initial scheme mapping universally homeomorphically
to Sw with the same residue fields. In this subsection we show the following result for general
reductive K-groups:

Theorem 4.1. The seminormalized Schubert varieties S̃w are normal, Cohen–Macaulay, com-

patibly F -split and have resolution-rational singularities. Furthermore, the S̃w are globally F -
regular, hence have F -rational singularities.

Here compatibly F -split means the following: By functoriality of seminormalizations [Sta21,

0EUS], there are maps S̃v → S̃w lifting the closed immersions Sv → Sw from (4.2), yielding the
(a priori non-strict) ind-scheme

F̃`G = colim S̃w. (4.3)

In the course of the proof of Theorem 4.1, we show that S̃v → S̃w are closed immersions (see

Lemma 4.5) and that S̃w is F -split compatibly with all closed subvarieties S̃v.

Remark 4.2. The methods from [Fal03, Theorem 8], [PR08, Theorem 8.4] and [Cas22, Theorem
1.4] essentially imply Theorem 4.1 for all groups whose adjoint simple factors are Weil restrictions
of scalars of tamely ramified groups. Theorem 4.1 is new whenever one of the absolutely simple
factors is wildly ramified, therefore covering general reductive K-groups.

Remark 4.3. There exist surfaces which have resolution-rational, but not F -rational, singu-
larities [HW96, Example 2.11]. Further, we note that by the proof of Lemma 3.1, we know

something slightly stronger than F -rationality, namely, the local rings of S̃w are F -regular.

4.1.1. Preliminary reductions for the proof of Theorem 4.1. Recall the notation G = Gf , G′ = Gf ′ .
Let S be a maximal K-split torus with f , f ′ ⊂ A (G,S,K), see [BT72, Theorem 7.4.18 (i)]. Fix an
alcove a in the apartment containing f in its closure, and denote by I = Ga the associated Iwahori
O-group scheme. The affine Weyl group Waf (respectively, its subgroup WG) is the Coxeter group
generated by the simple reflections along the hyperplanes meeting the closure of a (respectively,
passing through f). There is a natural bijection Waf/WG ∼= L+I(k)\LG0(k)/L+G(k) where LG0

denotes the neutral component. In order to prove Theorem 4.1, we may and do assume without
loss of generality that G′ = I and w ∈ Waf/WG , as every Schubert variety is isomorphic to one
of this particular form by [HR22, Section 3.1, Corollary 3.2].

In the following we identify the Bruhat order on the coset space Waf/WG compatibly with
the Bruhat order on the subset of right WG-minimal representatives in Waf , see [Ric13, Lemma
1.6]. Suppose w ∈Waf is right WG-minimal. Fix a reduced decomposition as a product of simple
reflections ẇ = s1 · . . . · sd in Waf . Denote by Dẇ the Demazure variety for ẇ, denoted D(w̃) in
[PR08, Proposition 8.8]. By [HR22, Section 3.3], there is a projective morphism

Dẇ → Sw, (4.4)

which is an isomorphism over the open Schubert cell Cw, hence birational and surjective. For
any v ≤ w in the Bruhat order, the reduced decomposition ẇ induces a (not necessarily unique)
reduced decomposition v̇ of v, so there exists a closed immersion Dv̇ → Dẇ covering Sv → Sw.
The following lemma makes the connection to the normalized Schubert varieties appearing in
[HLR18, HR22]:

Lemma 4.4. The seminormalized Schubert varieties S̃w are normal.

Proof. The normalization morphism Snor
w → Sw is a universal homeomorphism [HR22, Propo-

sition 3.1 i)], which induces an isomorphism over Cw (because it is regular). By the universal
property of seminormalizations, it remains to show that Snor

w → Sw induces an isomorphism
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on all residue fields. We observe that there are transition maps Snor
v → Snor

w lifting the closed
immersions Sv → Sw, see the proof of [PR08, Proposition 9.7 (b)] using the functoriality of the
Demazure resolution (4.4). Now, given a point x ∈ Sw lying in some cell Cv, it induces a tower
of residue field extensions κ(Snor

v , x) ⊃ κ(Snor
w , x) ⊃ κ(Sw, x) = κ(Cv, x). As Snor

v → Sv is an
isomorphism over Cv, all inclusions are equalities which implies the lemma. �

Lemma 4.4 implies that (4.4) factors through S̃w → Sw inducing the birational projective
morphism

f : Dẇ → S̃w, (4.5)

with the property f∗ODẇ = OS̃w , compare [HR22, Section 3.3]. The proof of the next lemma

follows the arguments from [LRPT06, Cas22]:

Lemma 4.5. Assume that the Demazure variety Dẇ is stably compatibly F -split with the closed
subvarieties Dv̇ for all subwords v̇ of ẇ of colength 1. Then Theorem 4.1 holds true.

Proof. Firstly, stably compatibly F -split varieties are compatibly F -split by [BS13, Lemmas
5.0.3, 6.0.4]. Now, if Dẇ is compatibly F -split with the divisors Dv̇ for v̇ of colength 1, then
Dẇ is compatibly F -split both with their union ∂Dẇ and Dv̇ for all subwords v̇ of ẇ by [BK05,
Proposition 1.2.1].

Compatibility with ∂Dẇ implies that Dẇ is globally F -regular (following the second part of the

argument in [Cas22, Proposition 5.8] which applies verbatim) and hence S̃w is globally F -regular

applying [LRPT06, Lemma 1.2] to the map (4.5). Lemma 3.1 implies that S̃w has F -rational

singularities. Then by Lemma 3.4, S̃w is pseudo-rational, and in particular, is Cohen–Macaulay.

Hence, (4.5) is a rational resolution by Proposition 3.7, so S̃w is resolution-rational as Dẇ is
regular.

Compatibility with all Dv̇ implies that S̃v → S̃w are closed immersions for all v ≤ w and

that S̃w is compatibly F -split by push forward of the F -splitting along (4.5), compare with the
argument in [PR08, Proposition 9.7 (b)]. This proves the lemma. �

Remark 4.6. The map Gsc → G from the simply connected group extends to the Iwahori O-
models, and the induced map on Demazure varieties Dsc,ẇ → Dẇ is an isomorphism, see [HR22,
Proof of Lemma 3.8]. Further, Dsc,ẇ factors as a product of Demazure varieties according to the
almost simple factors of Gsc, and products of (stably) compatibly F -split varieties are (stably)
compatibly F -split [BK05, Section 1.3.E (8)]. Therefore, in order to verify the assumption of
Lemma 4.5, we may assume whenever convenient that G = Gsc is simply connected and (by the
Weil restriction of scalars case in [HR22, Lemma 3.9]) absolutely almost simple and that G = I
is the Iwahori group scheme.

4.1.2. Picard groups of perfected Schubert varieties. In this subsection, for any v ∈ Waf we

consider the corresponding (I,G)-Schubert variety Sv and its seminormalization S̃v. For the
right WG-minimal element w above, we fix a choice of reduced expression ẇ = s1 · . . . · sd and

consider the Demazure resolution f : Dẇ → S̃w as in (4.5). For each simple reflection s ∈ Waf

and any choice of isomorphism of Dṡ
∼= P1

k, the degree of line bundles induces a well-defined
isomorphism deg : Pic(Dṡ) ∼= Z.

Lemma 4.7. There is an isomorphism

Pic(Dẇ)
∼=−→ Zd, L 7→ (deg(L|Dṡi ))i=1,...,d. (4.6)

Proof. The method of [HZ20, Proposition 3.4] applies as follows. Writing ẇ = ṡ · v̇ with ṡ = s1,
v̇ = s2 · . . . · sd induces an étale locally trivial fibration Dẇ → Dṡ with general fiber Dv̇. The
fibration is Zariski locally trivial by [PR08, Proposition 8.7 (b)]. Hence, [Mag75, Theorem 5]
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gives an exact sequence 0 → Pic(Dṡ) → Pic(Dẇ) → Pic(Dv̇) → 0, which splits by using the
section Dṡ → Dẇ. The lemma follows by induction. �

The universal homeomorphism S̃v → Sv induces an isomorphism on perfections [BS17, Lemma
3.8], and we denote by Spf

v its common value. For each simple reflection s ∈ Waf\WG , we have

an isomorphism Ss = S̃s = Dṡ
∼= P1

k, and the degree map uniquely extends to an isomorphism

deg : Pic(Spf
s ) ∼= Z[p−1] (see [BS17, Lemma 3.5]); further Pic(S̃s) ∼= Pic(Spf

s ) = 0 if s ∈WG , since

S̃s ∼= Ss ∼= Spec(k) in that case.

Lemma 4.8. There is an isomorphism

Pic(Spf
w )

∼=−→
⊕
s

Z[p−1], L 7→ (deg(L|Spf
s

))s (4.7)

where the sum runs over all s ∈ {s1, . . . , sd} with s 6∈WG. Further, the pullback map Pic(S̃w)→
Pic(Spf

w ) is injective, and its image is a Z-lattice.

Proof. The argument in [HZ20, Proposition 3.9] applied to f : Dẇ → S̃w translates verbatim,

and we sketch it for convenience. The pullback map Pic(S̃w) → Pic(Dẇ) is injective using the
projection formula and the relation f∗ODẇ = OS̃w from (4.5). Under the isomorphism Pic(Dẇ) ∼=
Zd from Lemma 4.7, it is in the i-th component, for all i = 1, . . . , d, given by L 7→ deg(L|Ssi ) if

si 6∈ WG and L 7→ 0 else. (Note that if s ≤ w and iṡ : Dṡ → Dẇ covers is : S̃s ↪→ S̃w, then the

map Pic(S̃w) → Pic(Dẇ)
i∗ṡ→ Pic(Dṡ) factors as Pic(S̃w)

i∗s→ Pic(S̃s) → Pic(Dṡ), hence is zero if
s ∈WG .) For any qcqs Fp-scheme X one has Pic(Xpf) = Pic(X)[p−1] by [BS17, Lemma 3.5]. So,

passing to perfections implies injectivity of (4.7) and that Pic(S̃w) defines a Z-lattice in Pic(Spf
w ).

For surjectivity of (4.7), let (λs) ∈ ⊕sZ[p−1] ⊂ Z[p−1]d. This induces a line bundle D = D(λs)

on Dpf
ẇ . By factoring fpf as partial Demazure resolutions having one-dimensional fibers as in

[HZ20, Proposition 3.9], one proves that D is trivial along the fibers of fpf , thus descends to Spf
w

by v-descent for vector bundles on perfect varieties [BS17, Theorem 6.13]. �

As perfections preserve closed immersions [BS13, Lemma 3.4 (viii)], there is a strict k-ind-
scheme

F`pf
G = colimSpf

w (4.8)

lying over F̃`G = colim S̃w from (4.3). Their Picard groups are defined as the limit of the Picard
groups of the respective Schubert varieties.

Corollary 4.9. There is an isomorphism

Pic(F`0,pf
G )

∼=−→
⊕
s

Z[p−1], L 7→ (deg(L|Spf
s

))s (4.9)

where F`0G denotes the neutral component and the sum runs over all simple reflections s ∈
Waf\WG. The pullback map Pic(F̃`G)→ Pic(F`pf

G ) is injective.

Proof. This is immediate from Lemma 4.8: For v ≤ w in Waf with large enough length, the
pullback map Pic(Spf

w )→ Pic(Spf
v ) is an isomorphism, which is the identity map under (4.7). �

4.1.3. The central charge. We assume in this subsection (for simplicity) that G is almost simple
and simply connected, compare with Remark 4.6. In particular, the affine flag variety F`G is
connected.

The quotient L+G → Gk induces maps F`G = LG/L+G → [Spec k/L+G]→ [Spec k/Gk] to the
respective quotient stacks. Passing to Picard groups we obtain

X∗(Gk) ∼= X∗(L+G)→ Pic(F`G) (4.10)
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Here, the first isomorphism holds because the kernel of L+G → Gk is pro-unipotent. The Picard
groups of the quotient stacks are the respective character groups because giving a line bundle
on such a stack is the same as giving a 1-dimensional representation of the group, that is, a
character.

Lemma 4.10. The group Pic([LG\F`G ]) of isomorphism classes of line bundles on F`G equipped
with an LG-equivariant structure naturally identifies with X∗(Gk) via the induction map

µ 7→ L(µ) := LG×L
+G Oµ, (4.11)

where Oµ is the equivariant line bundle on L+G attached to µ.

Proof. This is immediate from the isomorphisms in (4.10): the inverse to the induction map is
given by pullback of LG-equivariant line bundles to the origin of F`G , noticing that they carry
an action of L+G, that is, [LG\F`G ] = [Spec k/L+G] in terms of (étale) stacks. �

We now pass to perfections in order to make the map (4.10) explicit, compare Corollary 4.9.
So choosing any presentation of LG by affine schemes, we denote by LGpf the colimit of the
perfections of the constituents. As k is perfect, we can equivalently use the relative Frobenius
over k to form LGpf , so it is naturally an ind-affine k-group ind-scheme.

After perfection, we deduce from Lemma 4.10 and Equation (4.10) the homomorphism

X∗(Gk)[p−1]→ Pic(F`pf
G ), (4.12)

whose image identifies with the line bundles admitting an LGpf -equivariant structure. In order to

explicitly describe (4.12), we fix the standard basis εi = (0, . . . , 1, . . . , 0) of Pic(F`pf
I ) ∼= ⊕sZ[p−1]

(see Corollary 4.9 for G = I being the Iwahori). It will be convenient for us to fix a certain
enumeration of the simple reflections.

Lemma 4.11. There exists a simple reflection s0 such that the unique standard maximal para-
horic G0 with s0 /∈ WG0 satisfies the following: the reductive quotient of the special fiber G0,k is
simply connected and its root system equals the non-multipliable roots of ΦG.

Proof. For any positive simple affine root αs in the affine root system ΨG in the sense of [KP21,
Definition 4.3.4] associated with a simple reflection s, let as ∈ ΦG be the gradient of αs. For any
enumeration s0, . . . , sn of the simple reflections, we write ai := asi for i = 0, . . . , n. We claim
that there exists a choice of enumeration such that the ai for i > 0 form a basis of Φnm

G , the
sub-root system of non-multipliable roots. In order to see that this is possible, we consider the
folowing cases: either ΦG is reduced, and this amounts to the choice of a special vertex in the
fundamental alcove not fixed by s0; or ΦG is not reduced, and we need to ensure the existence of
special vertices which are not extra special in the sense of [KP21, Proposition 1.5.39], which can
be verified in [KP21, Table 1.5.51]. From now on, we fix such an enumeration and claim that
the standard maximal parahoric G0 attached to s0 satisfies the conditions in the lemma.

In what follows, we canonically identify the character and cocharacter groups of the K-split
torus S with those of the special fiber Sk of its connected Néron O-model S. Note that Sk
defines a maximal split torus of the reductive quotient of G0,k, because k is algebraically closed.
By construction, the ai for i > 0 define roots of the reductive quotient of G0,k. In particular, the
coroots a∨i for i > 0 (which are non-divisible) form a basis of the dual root system Φ∨G and hence
of X∗(S) by our assumption on G. �

From now on, we fix an enumeration s0, s1, . . . , sn of the simple reflections with s0 being as
in Lemma 4.11. With our numbering system above in terms of our choice of special vertex, this
has the following explicit description: for i > 0, ai is the non-multipliable relative root whose
reflection is si, and a0 is the negative of the highest multipliable relative root.
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Lemma 4.12. Let a∨i ∈ X∗(S) be the coroot associated to the root ai as defined above. Under
the isomorphism (4.9), the map (4.12) is given by

µ 7→
∑
〈a∨i , µ〉εi, (4.13)

where the sum runs over all i = 0, . . . , n with si 6∈WG. Thus, (4.12) is injective and has cokernel
free over Z[p−1] of rank 1.

Proof. Let Pi be the minimal standard parahoric such that L+Pi/L+I = Ssi . The reductive
quotient of the special fiber of Pi has simply connected cover isomorphic to SL2 with positive
coroot a∨i . Therefore, the pullback to Spf

si of the equivariant line bundle L(µ) attached to a weight

µ ∈ X∗(S)[p−1] ∼= X∗(Ik)[p−1] is isomorphic to O(〈a∨i , µ〉), hence (4.13) holds. It is well-known
from the theory of algebraic groups that X∗(Gk) is a direct summand of X∗(S), compare with
[CGP15, Corollary A.2.7]. Hence, to deduce injectivity of (4.12) and freeness of its cokernel,
we may and do assume that G = I is the Iwahori. Due to the fact that Sk identifies with a
maximal torus in the reductive quotient of G0,k, which is simply connected with roots Φnm

G , the
coroots a∨i for i > 0 form a basis of X∗(S). So its dual basis ωi form a basis of X∗(S), and
thus (4.13) admits a section. Finally, to see that the cokernel has rank 1 for arbitrary G, we
proceed as follows. First, we notice that for any i = 0, . . . , n, the set aj for j 6= i forms a basis of
X∗(S)Q, because otherwise the affine reflections sj for j 6= i would have a positive-dimensional
intersection in A (G,S). Suppose WG contains exactly m < n + 1 many simple reflections and
notice that the associated relative roots are still linearly independent in X∗(S)Q by our previous
observation. Let Sder

k denote the maximal torus of the derived subgroup of Gred
k and notice that

X∗(Sder
k ) has rank m. We deduce that the cokernel X∗(Gk)Q of X∗(Sder

k )Q → X∗(S)Q has rank

n−m, whereas Pic(F`pf
G ) has rank n+ 1−m by Equation (4.9). �

Using that (4.12) is injective and has free cokernel of rank 1 (see Lemma 4.12), we construct
a homomorphism

Pic(F`pf
G )→ Z[p−1], L 7→ cL, (4.14)

called the central charge homomorphism, uniquely characterized by the following properties: its

kernel is X∗(Gk)[p−1]; it factors through Pic(F`pf
G )→ Pic(F`pf

I ); for G = I the standard Z-lattice

⊕sZ ⊂ ⊕sZ[p−1] ∼= Pic(F`pf
I ) (see Corollary 4.9) maps onto Z ⊂ Z[p−1], preserving positive

degrees. Note that (4.14) is surjective when G = I is the Iwahori, but usually not for general
parahorics, see [Zhu14, Section 2.2, page 12].

Lemma 4.13. Let ωi ∈ X∗(S) for i = 1, . . . , n be the dual basis to a∨i . Under the isomorphism
(4.9), the map (4.14) is given by

(λi) 7→ λ0 −
∑
i>0

〈a∨0 , ωi〉λi, (4.15)

where we use the convention that λi = 0 whenever si ∈ WG. In particular, the coefficients 1
and −〈a∨0 , ωi〉 are the numbers attached in [Kac90, Section 6.1] to the vertices of the dual affine
Dynkin diagram of G.

Proof. The proof of Lemma 4.12 shows that L(ωi) is the image of 〈a∨0 , ωi〉ε0 + εi under the
bijection (4.9). Hence, we get c(εi) = −〈a∨0 , ωi〉c(ε0). So c(⊕sZ) ⊂ Zc(ε0) and by our choice of
normalization c(ε0) = 1, thus c(εi) = −〈a∨0 , ωi〉 for i > 0.

Finally, for the comparison with Kac–Moody theory, this can be seen by inspecting [Kac90,
Theorem 4.8, Tables Aff 1-3] or the construction of the central charge for untwisted and twisted
Kac–Moody algebras, see [Kac90, Theorems 7.4 and 8.3]. Alternatively, we may observe that
these coefficients are combinatorial data that do not really depend on the arithmetic properties
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of G, so we may assume the latter to be tamely ramified, in which case F`G identifies with a
Kac–Moody flag variety, see [PR08, 9.h and Proposition 10.1] and also [Lou19, Annexe A]. �

Recall that for G = GLn we have an ample line bundle Ldet = O(1) on F`GLn such that
c(Ldet) = 1. Pulling it back along the adjoint representation ad: F`G → F`GL(LieG), we get an
ample line bundle Lad on F`G whose central charge can still be determined:

Lemma 4.14. The central charge c(Lad) of the adjoint line bundle is equal to 2h∨, where h∨ is
the dual Coxeter number of the split form of G.

Proof. We invoke [Zhu14, Lemma 4.2] at Iwahori level, which shows that Lad has degree 2 when
restricted to every Ssi , and which does not use any tameness assumptions. But it is well known
that the sum 1−

∑
〈ωi, a∨0 〉 equals the dual Coxeter number. For general parahoric level, there is

a reduction step in the remaining paragraphs of the proof of [Zhu14, Proposition 4.1] that follow
the Iwahori lemma cited above. �

A key property of (4.14) is its constancy along the fibers of Beilinson–Drinfeld Grassmannians,
and we extend the results [Hei10, Lemma 18, Remark 19] and [Zhu14, Proposition 4.1, Corollary
4.3] from tamely ramified groups to general reductive groups as follows. Let GrG → Spec(O)
be the Beilinson–Drinfeld Grassmannian, see [Ric16, Definition 2.3] and [Ric19, Section 0.3]
for a definition independent of auxiliary choices. Then GrG → Spec(O) is an ind-projective
ind-scheme, its generic fiber GrG,K is equivariantly isomorphic to the affine Grassmannian GrG
formed using an additional formal parameter [Ric19, Section 0.2], whereas its special fiber GrG,k is
equal to F`G . Looking ahead to the proof of Lemma 4.15 below, we note that the line bundle Lad

above extends to a line bundle on GrG , by the same construction (use [Ric16, §2.5]); we denote
the extension also by Lad. By our assumptions on the group, we can write G = ResL/KG0 for
some finite, separable field extension L/K and some absolutely almost simple, simply connected
reductive L-group G0. Given a scheme X, let Pic(X)Q denote the rationalized Picard group of
X. For an ind-scheme X, we define Pic(X)Q as the limit of the Pic(Xi)Q along a presentation
(in all cases considered in this paper, this will match the Q-localization of Pic(X)).

Lemma 4.15. The following properties hold:

(1) The map Pic(GrG)Q → Pic(F`G)Q is surjective.
(2) Every L ∈ Pic(GrG)Q has geometric generic fiber isomorphic to O(cLk), the cLk -th tensor

power of �[L:K]O(1) on GrG,K̄
∼=
∏

[L:K] GrG0,K̄ .

Proof. There is a natural map GrG → [Spec k/Gk] to the classifying stack of Gk-bundles over
k, given by forgetting the modification and then restricting the torsor to the subscheme de-
fined by the principal ideal t. This map factors the map F`G → [Spec k/Gk] (compare Equa-
tion (4.10)) under the identification GrG,k = F`G . Passing to Picard groups, we get maps
X∗(Gk) → Pic(GrG) → Pic(F`G) whose composition is (4.10). After rationalizations, the maps
are injective. Further, Lad and ker(c)Q = X∗(Gk)Q generate the Q-vector space Pic(F`G)Q by
Corollary 4.9. This shows (1).

For (2), we start by noticing that its conclusion is satisfied by the image of X∗(Gk)Q →
Pic(GrG)Q. Indeed, the map GrG,K̄ → [Spec k/Gk] factors through the trivial torsor by Beauville–
Laszlo gluing, so it must induce the zero map on the rationalized Picard group. Moreover, the
conclusion holds as well for Lad defined over GrG again by pulling back Ldet along the adjoint
map to the Lie algebra. Indeed, on the geometric generic fiber GrG,K̄

∼=
∏

[L:K] GrG0,K̄ , the

line bundle Lad becomes isomorphic to O(2h∨), where h∨ is the dual Coxeter number of G0,
by Lemma 4.14 applied to each of the factors G0. On the special fiber F`G , we also know by
Lemma 4.14 that cLad

= 2h∨.
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Since the previous explicitly given rationalized line bundles generate Pic(F`G)Q as seen already,
we may and do assume that our abstract rationalized line bundle L on GrG has trivial special
fiber Lk = O. Let µ be a conjugacy class of cocharacters in GK̄ with reflex field E ⊃ K. Let
MG,µ be the orbit closure of SG,µ over OE , see Definition 5.1, and suppose that µ is supported
on exactly one almost simple factor of GK̄ . Then, Pic(SG,µ,K̄)Q is 1-dimensional by Lemma 4.8.
Assume for the sake of contradiction that LK̄ is anti-ample on SG,µ,K̄ (if not, take its inverse).

It is therefore equal to the restriction of L−q
ad,K̄

for some q ∈ Q>0. Replacing L by its product

with Lqad, we may now ensure that Lk is ample and LK̄ is trivial on GrG,µ,K̄ . This contradicts
openness of the ample locus of L on MG,µ, see [Gro66, Corollaire 9.6.4]. In particular, we conclude
that LK̄ must be trivial on SG,µ,K̄ . Letting µ run over all coweights with irreducible support,
we deduce from Corollary 4.9 that LK̄ is trivial. �

Suppose we are given a map f : G1 → G2 of parahoric O-models of simply connected, almost
simple K-groups G1 and G2. We have an induced pull-back map

f∗ : Pic(F`pf
G2)→ Pic(F`pf

G1) (4.16)

that sends equivariant line bundles with respect to LGpf
2 to those with respect to LGpf

1 . In
particular, we get a homomorphism of cokernels defined by their central charges and it follows
that c1(f∗L) = d(f)c2(L) where d(f) ∈ Z≥0 is independent of L and ci denote the central
charges of the respective Picard groups. Here, the non-negativity of d(f) holds because pullback
preserves semi-ampleness, and d(f) is an integer because the map of Picard groups also exists
on the non-perfected affine flag varieties.

From the constancy of the central charge, we draw the following consequence:

Corollary 4.16. Let L/K be a finite separable extension and consider the natural map

f : G → ResOL/OK (G̃), (4.17)

extending the unit of adjunction for ResL/K , where G̃ is the associated parahoric OL-model of
GL induced by the map B(G,K)→ B(G,L). Then d(f) = [L : K].

Proof. Thanks to Lemma 4.15, we can read off the integer d(f) from the map of affine Grass-
mannians GrG → GrResL/KGL after base changing to K̄. But then ResL/KGL splits over K̄ as

a product of [L : K]-many copies of GK̄ , so O(1) = �[L:K]O(1) pulls back to O([L : K]) as
desired. �

4.1.4. The Demazure variety is stably compatibly F -split. In order to finish the proof of The-
orem 4.1, it remains to show that the assumption of Lemma 4.5 holds, that is, the Demazure
variety Dẇ is stably compatibly F -split with Dv̇ for all v̇ of colength 1 in ẇ. By Remark 4.6, we
may and do assume that G is simply connected, absolutely almost simple and that G = I is the
Iwahori group scheme. As in [PR08, Section 8] (for the first part) and [Cas22, Section 5] (for the
second part), we aim to apply the Mehta–Ramanathan splitting criterion, see [BS13, Theorem

5.3.1] and [BK05, Proposition 1.3.11], to Dẇ together with its divisors Dv̇. Let f : Dẇ → S̃w be
the Demazure resolution, compare (4.5). The canonical line bundle admits the formula

ωDẇ = O(−∂Dẇ)⊗ L−1
crit (4.18)

by the argument of [BK05, Proposition 2.2.2]. Here, the critical line bundle Lcrit is the square

root of the line bundle f∗Lad|S̃w . For π : F`pf
G → F`G note that the pullback π∗Lad to F`pf

G

restricts to O(2) on every Spf
s , so it admits a square root (π∗Lad)1/2 ∈ Pic(F`pf

G ) of central

charge equal to h∨, see Corollary 4.9 and Lemma 4.14. It follows that both (π∗Lad)1/2 and Lcrit

pull back to the same line bundle on Dpf
ẇ by Lemma 4.7.
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As required by the Mehta–Ramanathan criterion, see [BS13, Theorem 5.3.1] and [Cas22, Proof
of Theorem 5.8], we produce a section of the (pe − 1)-th power of Lcrit (for some e > 0). We are

reduced to seeing that the square root of π∗Lp−1
ad descends (not necessarily uniquely) to a line

bundle L on F̃`G . Indeed, the pullback f∗L would be isomorphic to Lp−1
crit by torsion-freeness of

Pic(Dẇ), see Lemma 4.7. Since any sufficiently large power of L is very ample on S̃w, we deduce

that L p
e−1

crit will be basepoint free on Dẇ for e � 0. Moreover, it follows from Lemma 4.10 and

Lemma 4.12 that ker(c) ∩ ⊕sZ already lies in Pic(F̃`G), so we only need to verify the inclusion

c(Pic(F̃`G)) ⊃ (p− 1)h∨Z, (4.19)

where we recall the normalization of c from (4.14). In order to verify (4.19)1 let e ≤ 3 denote

the degree of the smallest extension L/K whose Galois hull L̃/K splits G. By Corollary 4.16,

we obtain the inclusion e!Z ⊂ c(Pic(F̃`G)). Looking at the classification of [Bou68, Planches],
we see that e! always divides (p − 1)h∨, unless p = 2 and G = SU2n+1 is an odd-dimensional
unitary group.

Finally, if G = SU(V, q) is a unitary group, where V is a L-vector space and q : V → L is a
semi-regular L-hermitian form, we follow the implicit argument that had already been covered
in [Zhu14, Lemma 8.3] for p > 2, but now for all primes. Namely, we claim that the natural map
of K-groups

SU(V, q)→ SL(KV ) (4.20)

factors through some SO(KV, r), where KV is V regarded as a K-vector space and r : KV → K is
a certain non-degenerate quadratic form, whose existence is guaranteed by Lemma 4.17. Notice
this solves our problem of constructing a line bundle L satisfying c(L) = 1, since the determinant
has a square root given by the Pfaffian, see [BD91, Section 4.2] and especially [BD91, Section
4.2.16] when p = 2.

Lemma 4.17. Let L/K be a quadratic extension, V a L-vector space and q : V → L a semi-
regular L-hermitian form. There is a non-degenerate quadratic form r : KV → K such that
SU(V, q) lies inside SO(KV, r).

Proof. If p > 2, this is a well-known result in the theory of L-sesquilinear and K-bilinear forms,
see [PR09, Section 1.2.2], so from now on we assume p = 2.

Decomposing into orthogonal summands, we may assume either

(V, q) = (L, x 7→ N(x)) (4.21)

is one-dimensional semi-regular, or

(V, q) = (L2, (x, y) 7→ xσ(y) + σ(x)y) (4.22)

is a two-dimensional regular hermitian hyperbolic plane.
In the first case, taking

r = tr(λq) : (x1, x2) 7→ x2
1 + x1x2 +N(λ)x2

2, (4.23)

where tr(λ) = 1, gives us a regular symmetric K-hyperbolic plane, as 1 − 4N(λ) = 1 6= 0 as
p = 2. As for the second case, the quadratic form

r = tr(λq) : (x1, x2, y1, y2) 7→ x2y1 + x1y2 (4.24)

clearly decomposes into the orthogonal sum of two regular symmetric K-hyperbolic planes. �

1Notice that, if G is a tamely ramified group, we already have an equality ⊕sZ = Pic(F̃`G) by [Lou19, Corollary

4.3.10], finishing the proof. However, the argument relies on the theory of negative loop groups, which is not
available for wildly ramified groups in general.
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4.1.5. Picard groups of seminormalized Schubert varieties. Using the already proven Theorem 4.1,
we can actually upgrade the previous results on Picard groups to seminormalized Schubert vari-
eties.

Lemma 4.18. There is an isomorphism

Pic(S̃w)
∼=−→
⊕
s

Z, L 7→ (deg(L|Ss))s (4.25)

where the sum runs over all s ∈ {s1, . . . , sd} with s 6∈WG.

Proof. Recall the notation f : Dẇ → S̃w for the Demazure resolution from (4.5) and the computa-

tion of Pic(Dẇ) from Lemma 4.7. As explained in Lemma 4.8, the pullback map Pic(S̃w)→
⊕

s Z
is injective. For surjectivity, let (λs) ∈ ⊕sZ and denote by D = D(λs) the corresponding line
bundle on Dẇ.

We show that L := f∗D is a line bundle, and that the canonical map f∗L → D is an isomor-
phism. As in the proof of Lemma 4.8 we factor f into successive partial Demazure resolutions
each having one-dimensional fibers. By induction we replace f by one of those maps. By the
proof of Lemma 4.8, we already know that the restriction of D to the one-dimensional fibers of
f has trivial degrees after passing to perfections. By Theorem 4.1, our varieties have rational
singularities2, so [Lip69, Theorem 12.1 (i)] applies to show that D is Zariski locally trivial on
the base. Using rational singularities again shows f∗D is a line bundle, and that f∗L → D is an
isomorphism. �

Corollary 4.19. There is an isomorphism

Pic(F̃`
0

G)
∼=−→
⊕
s

Z, L 7→ (deg(L|Ss))s (4.26)

where F̃`
0

G denotes the neutral component and the sum runs over all simple reflections s ∈
Waf\WG.

Proof. This is immediate from Lemma 4.18, as Pic(S̃w) is again independent of w for sufficiently
large lengths by (4.25). �

Lemma 4.18 admits the following slight generalization (see Proposition 4.21) which is used in
Section 5. We first need an elementary lemma:

Lemma 4.20. Finite unions of seminormalized Schubert varieties in F̃`G are seminormal and
stable under finite intersections.

Proof. Due to the compatible F -splitting of seminormalized Schubert varieties from Theorem 4.1,
their finite union (and, finite intersection) is again F -split, hence F -injective (and reduced)
and therefore seminormal by [Sch09, Theorem 4.7]. In particular, if Sw1

, . . . , Swn ⊂ F`G are

Schubert varieties, then the maps ∪ni=1S̃wi → ∪ni=1Swi and ∩ni=1S̃wi → ∩ni=1Swi are universal
homeomorphisms and induce isomorphisms on all residue fields, and so identify the respective
sources as the seminormalizations of their targets. The lemma follows. �

Proposition 4.21. Let w1, . . . , wn ∈ W̃ be right WG-minimal. There is an isomorphism

Pic

(
n⋃
i=1

S̃wi

)
∼=−→
⊕
s

Z, L 7→ (deg(L|Ss))s (4.27)

where the sum runs over all s ∈ W̃\WG of length 1 such that s ≤ wi for some i = 1, . . . , n.

2Strictly speaking, Theorem 4.1 only refers to the S̃w and not their partial Demazure resolutions, but the
proof given in the previous section proceeds by descent from Dẇ, so those also have rational singularities.
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Proof. Without loss of generality, we may and do assume that
⋃n
i=1 S̃wi is connected and con-

tained in the neutral component F̃`
0

G . Next, we proceed by induction on n ≥ 1. For n = 1,

this is Lemma 4.18. For the induction step, let X = ∪n−1
i=1 S̃wi and Y = S̃wn viewed as closed

subschemes of F̃`G . The sequence of sheaves of abelian groups on F̃`G

1 −→ ιX∪Y,∗O×X∪Y −→ ιX,∗O×X × ιY,∗O
×
Y

(a,b)7→ab−1

−→ ιX∩Y,∗O×X∩Y −→ 1 (4.28)

is exact as is easily checked on stalks, where ι(-) denotes the respective closed immersion into F̃`G .

Since X ∩Y is reduced (because seminormal) by Lemma 4.20, we see H0(X ∩Y,O×X∩Y ) = k× by
connectedness and projectivity of X ∩ Y . Hence, the long exact (Zariski) cohomology sequence
associated with (4.28) identifies Pic(X ∪ Y ) = H1(X ∪ Y,O×X∪Y ) with Pic(X)×Pic(X∩Y ) Pic(Y ).
One easily deduces (4.27) which finishes the induction step. �

4.1.6. Vanishing of higher coherent cohomology of seminormalized Schubert varieties. Another
consequence of Theorem 4.1 is the following result, to be used in Section 5 below:

Lemma 4.22. Let w1, . . . , wn ∈ Waf be right WG-minimal, and consider X = ∪ni=1S̃wi . Then

Hj(X,OX) = 0 for all j ≥ 1.

Proof. By Lemma 4.20 finite unions of seminormalized Schubert varieties are stable under inter-
sections. Hence, a Mayer–Vietoris argument similar to that in Proposition 4.21 reduces the claim

to the case n = 1. Consider the Demazure resolution f : Dẇ → S̃w from (4.5). Now, S̃w has ratio-

nal singularities by Theorem 4.1, so Hj(S̃w,OS̃w) = Hj(Dẇ,ODẇ) using Rf∗ODẇ = OS̃w . Since

Dẇ is an iterated P1
k-bundle, the vanishing of higher cohomology follows by a straightforward

induction argument. �

4.2. Normality of Schubert varieties. In this subsection, we extend the normality theorem
for Schubert varieties to some wildly ramified groups. Previously, this was proved by Faltings for
split groups, see [Fal03, Theorem 8], and by Pappas–Rapoport for Weil-restricted tame groups,
see [PR08, Theorem 8.4]. These results were inspired by similar ones in Kac–Moody theory
found in [Mat89], but we stress that wildly ramified groups are in principle unrelated to that
theory, compare with [Lou19, Annexe A]. The prime-to-p hypothesis on the order of π1(Gder) is
essential, due to [HLR18, Theorem 2.5].

Theorem 4.23. Under Hypothesis 2.1, all Schubert varieties Sw are normal if and only if p
does not divide the order of π1(Gder).

We need the following auxiliary lemma:

Lemma 4.24. If G is simply connected and satisfies Hypothesis 2.1, then F`G is reduced.

Proof. This is proven in [PR08, Proposition 9.9] for tamely ramified groups and extends to
wildly ramified groups under Hypothesis 2.1. We recall the proof for convenience, following
closely [PR08, Proposition 9.9].

By [HLR18, Lemma 8.6], it is enough to show that every R-valued point x of F`G , with
R being Artinian and strictly Henselian, factors through the reduced locus. By the Bruhat
decomposition and formal smoothness of L+G, we can translate x such that it is supported at
the origin e ∈ F`G(k). After extending scalars, we may assume that the residue field of R equals
k. Moreover, we can use formal smoothness of L+G and the fact that R is strictly Henselian to lift
x to an R-valued point x̃ of LG supported at the identity. This corresponds to an R((t))-valued
point of G supported at the identity, so it factors through the big cell C = U− × T × U+. We
claim that x̃ is in the subgroup generated by LU±(R). Since the ind-schemes LU± are reduced,
they map to (F`G)red. Hence, we may and do assume that x̃ ∈ LT . But T factors as a product
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of induced tori indexed by its relative coroots, and thus we can further reduce to the case when
G has rank 1. Supressing the wildly ramified restrictions of scalars, then either G = SL2 or SU3

and p 6= 2 and the needed generation property is explicitly calculated in the proof of [PR08,
Proposition 9.3]. So x lies in the reduced locus, and the lemma follows. �

Proof of Theorem 4.23. The seminormalization S̃w → Sw is proper and surjective, hence an
isomorphism if and only if it is a monomorphism (as Sw is reduced). So all Schubert varieties
Sw are seminormal (hence normal by Lemma 4.4) if and only if the morphism of ind-schemes

F̃`G = colim S̃w → colimSw = (F`G)red ⊂ F`G (4.29)

is a monomorphism, or equivalently, its restriction to the neutral components is so. Using this
we prove the theorem as follows.

For the if clause, by [PR08, Section 6.a] we may and do assume that G is simply connected,
absolutely almost simple and G is an Iwahori model. In this case, we claim that (4.29) is
an isomorphism. Now observe that by Proposition 2.6, we can find a smooth affine W (k)[[t]]-
group G with connected fibers lifting G, such that it becomes parahoric as well over K0[[t]] with
K0 = W (k)[p−1]. Hence, (4.29) lifts to a morphism of W (k)-ind-schemes

F̃`G → F`G , (4.30)

where the left side is the ind-normalization of the right side. Indeed, that this commutes with
base change to k is a consequence of Theorem 4.1 thanks to the vanishing of higher coherent
cohomology of the Demazure resolution. Over K0, we get an isomorphism by Kac–Moody theory,
see [PR08, Section 9.f]. Integrally, we show that the map is formally smooth around the origin,
by virtue of an analogue of [Fal03, Lemma 10] or [PR08, Proposition 9.3]. This implies the claim
by [Fal03, page 53] or [PR08, Section 9.g].

The only if part follows from the argument in [HLR18, Section 2], because if p divides the
order of π1(Gder) then the kernel of Gsc → G is not étale. Hence, the induced morphism
F`Gsc → F`

0
G ⊂ F`G is not a monomorphism where Gsc denotes the parahoric O-model of Gsc

induced by G. By Lemma 4.24, F`Gsc is reduced, so (4.29) factors on neutral components as

F̃`
0

G
∼→ F`Gsc → (F`G)0

red. Now, if (4.29) were a monomorphism, then F`Gsc → F`
0
G would be a

monomorphism, which is a contradiction. �

4.3. Central extensions of line bundles. In the theory of loop groups and their flag varieties,
one is usually faced with the obstacle that not every line bundle on F`G is LG-equivariant.
However, this can partially remedied by considering a certain universal central extension of LG
that acts on every line bundle of F`G . This is a recurrent theme in Kac–Moody theory, see [Fal03,
page 54], [PR08, Remark 10.2] and [Lou19, Corollary 4.3.11], and also admits an incarnation for
the Witt vector Grassmannian by [BS17, Proposition 10.3]. In order to properly explain it, we
need to use the geometric results of the previous subsections.

Given a line bundle L on F`G , we form the group functor on the category of k-algebras R
defined by

LG{L}(R) = {(g, α) | g ∈ LG(R), α : L ∼= g∗L}. (4.31)

We can now prove the following lemma:

Lemma 4.25. Suppose G is an almost simple, simply connected K-group satisfying Hypothe-
sis 2.1. Then, the pre-sheaf LG{L} defines a central extension of LG by Gm,k in the category of
ind-affine k-group ind-schemes. The association L 7→ LG{L} induces a group homomorphism

Pic(F`G)→ Extcent(LG,Gm,k). (4.32)

with the same kernel as (4.14) restricted to Pic(F`G).
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Proof. Note that LG{L}(R) carries a natural group structure via (g1, α1)·(g2, α2) = (g1g2, g
∗
2α1◦

α2), thus having Gm,k(R) = {(1, c) | c ∈ R×} as a central subgroup. We claim moreover that
Gm,k(R) ⊂ LG{L}(R) is the kernel of the natural projection to LG(R). In other words, we claim
that the automorphism group Aut(LR) as a line bundle on F`G,R equals R×. After tensoring
with L−1, we may and do assume that L = O. Thus, it suffices to show that H0(F`G,R,O) = R
which is implied by Lemma 4.24.

Next, we study the action of LG(R) on the Picard groups. Note that Pic(F`G,R) is the direct
sum of Pic(R) and Pic(F`G), since the Picard functor of the flag variety is constant étale due
to [Kle05, Corollary 5.13] using Lemma 4.22. The action of LG(R) on Pic(R) is trivial, and
we claim that the same holds for the quotient Pic(F`G,R)/Pic(R). By Theorem 4.23 and (4.26),
that quotient is torsion-free and we may check triviality of the LG(R)-action on generators of
the associated Q-vector space. A set of generators is given by LG-equivariant line bundles, see
Lemma 4.10, and the adjoint line bundle. For an LG-equivariant line bundle, the claim is trivial
and we even see directly that LG{L} → LG splits and thus is the trivial extension. For the
adjoint line bundle, one sees that the difference

L−1
det · g

∗Ldet = det(t−aR[[t]]n/gR[[t]]n) ∈ Pic(F`SLn,R) (4.33)

for a � 0 is in the image of Pic(R), compare [Fal03, page 43], so the same remains true after
pulling back to F`G,R.

We can use the previous paragraph to show that any R-valued point of LG lifts along the
map LG{L} → LG after we replace SpecR by a finite union of affine opens. Indeed, we saw
above that L and g∗L differ by an element of Pic(R) which can be trivialized over an affine
open SpecS ⊂ SpecR. Replacing R by S, we may assume the existence of an isomorphism
α : L ∼= g∗L, thereby producing a lift in LG{L}(S). Letting SpecR run over sufficiently small
affine opens of a presentation of LG, the existence of lifts shows that LG{L} is representable
by an ind-affine k-group ind-scheme and that it is an extension of LG by Gm,k. Finally, it is
clear that the kernel of (4.32) consists of those L that admit an LG-equivariant structure, hence
coincides with the kernel of (4.14) after restricting the latter to Pic(F`G) thanks to Lemma 4.10.

�

The lemma implies that the image of (4.32) is a free Z-module of rank 1, see Lemma 4.12.
Identify the image with Z via the unique isomorphism sending ample line bundles to positive
integers.

Corollary 4.26. For any L ∈ Pic(F`G) with cL = 1, the resulting central extension L̂G :=

LG{L} has the property that every line bundle on F`G admits a L̂G-equivariant structure which
is unique up to multiplication by k×.

Proof. Using Lemma 4.10, the central charge induces a short exact sequence 0→ Pic([LG\F`G ])→
Pic(F`G)

c→ Z→ 0. The choice of L provides a splitting. So the corollary follows from the equal-
ity Aut(M) = k× for any line bundle M on F`G , see the proof of Lemma 4.25. �

5. Local models

In this final section, let O be a complete discretely valued ring with fraction field K and
perfect residue field k of characteristic p > 0. Let G be a reductive K-group, µ a (not necessarily
minuscule) geometric conjugacy class of cocharacters in G and G a parahoric O-model of G. The
reflex field E of µ is a finite separable field extension of K with ring of integers OE and residue
field kE .

Let Ŏ the completed strict Henselisation of O with fraction field K̆ and algebraically closed
residue field k̄. Let T be the centralizer of some maximal K̆-split torus S which is defined over
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K and contains a maximal K-split torus with apartment containing the facet associated with G,
see [BT84, Corollaire 5.1.12]. The connected Néron model T of T is a closed subgroup scheme
of G.

5.1. Equicharacteristic local models. Assume K = k((t)) is a Laurent series field with ring
of integers O = k[[t]]. Let us recall the definition of local models in equicharacteristic, which only
depend on the pair (G, µ) and not on additional auxiliary choices. Recall that we have defined
the Beilinson–Drinfeld Grassmannian GrG → SpecO before Lemma 4.15. Its generic fiber is
equivariantly isomorphic to the affine Grassmannian GrG → SpecK whereas its special fiber is
equal to the affine flag variety F`G → Spec k. Let SG,µ ⊂ GrG ×SpecK SpecE be the Schubert
variety attached to µ.

Definition 5.1. Let MG,µ denote the flat closure of SG,µ inside the Beilinson–Drinfeld Grass-

mannian GrG,OE := GrG ×SpecO SpecOE . We denote by M̃G,µ its seminormalization [Sta21,
0EUK].

Remark 5.2. The formation of orbit closures and their seminormalizations are functorial in the
following sense. A morphisms of pairs (G, µ)→ (G̃, µ̃) is a map of O-group schemes G → G̃ which

maps µ into µ̃ under the induced map of reductive K-groups G → G̃ in the generic fiber. Any

such map of pairs induces a map MG,µ → MG̃,µ̃ commuting over SpecOE → SpecOẼ where Ẽ

denotes the reflex field of µ̃. By functoriality of seminormalizations [Sta21, Tag 0EUS], we get a

map M̃G,µ → M̃G̃,µ̃ commuting over the map of orbit closures.

In order to describe the special fiber of the schemes from Definition 5.1, we recall the admissible
locus [PRS13, Section 4.3]. The Kottwitz homomorphism induces an isomorphism X∗(T )I ∼=
T (K̆)/T (Ŏ), λ̄ 7→ λ̄(t) where the source denotes the coinvariants of the cocharacter lattice X∗(T )
under the inertia subgroup I of the absolute Galois group of K. Note that the isomorphism does
not depend on the choice of uniformizer t.

Definition 5.3. The admissible locus AG,µ is the reduced kE-subscheme of F`G,kE given by the
kE-descent of the union of k̄-Schubert varieties Sλ̄(t), where λ ∈ X∗(T ) runs through the (finitely

many) representatives of µ and where λ̄ ∈ X∗(T )I denotes its image in the coinvariants under I.

We denote by ÃG,µ its seminormalization.

Note that AG,µ does not depend on the choice of the maximal torus T as above. Further,
AG,µ is geometrically connected and, by [Hai18, Theorem 4.2], its irreducible k̄-components are

the Schubert varieties Sλ̄(t) where λ runs through the K̆-rational representatives of µ in X∗(T ).

Let us now discuss finer geometric properties. It was shown in [HR21, Theorem 6.12] that the
reduced special fiber of MG,µ coincides with AG,µ, but we shall only need to use the inclusion of

AG,µ in the reduced special fibre, already proved in [Ric16, Lemma 3.12]. Note that (ÃG,µ)k̄ =

∪λS̃λ̄(t) by Lemma 4.20, where λ ranges over the K̆-rational representatives of µ in X∗(T ).

Since the F -split property for proper schemes can be descended from k̄ to kE , ÃG,µ is F -split.

It identifies moreover with the admissible locus AG̃,µ̃ associated with any z-extension G̃ of G

with simply connected derived group, and any lift µ̃ of µ, by Theorem 4.23, at least when
Hypothesis 2.1 holds.

Now, we may state our main result on the singularities of local models.

Theorem 5.4. Under Hypothesis 2.1, the local model M̃G,µ is Cohen–Macaulay, has rational
singularities (see Section 3.3) and reduced special fiber equal to the seminormalized admissible

locus ÃG,µ.
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Proof. The key step of the proof is showing that the special fibre is reduced and equal to ÃG,µ
from which the other properties follow by using the F -splitness of ÃG,µ; in fact, we shall prove

that M̃G,µ has F -rational singularities. This part of the proof essentially follows from [Zhu14,
Section 4.2], relying on Theorem 4.23 for wildly ramified groups. Here is an outline. By using

faithfully flat descent of F -rationality [DM20, Proposition A.5] we may reduce to the case O = Ŏ,
so G is quasi-split.

First, we show that for any finite field extension Ẽ/E the base change M̃G,µ⊗OEOẼ is normal

with reduced special fiber equal to ÃG,µ as follows. Passage to the adjoint group induces a map
of pairs (G, µ) → (Gad, µad) where Gad is the parahoric associated with Gad and µad is induced

by µ under G → Gad. The corresponding map M̃G,µ → M̃Gad,µad
⊗OEad

OE is a universal

homeomorphism inducing isomorphisms on residue fields by [HR22, Corollary 2.3 and its proof],
thus an isomorphism if the target is (semi-)normal. Without loss of generality, we reduce to the

case where G is adjoint. A similar argument shows that the formation of M̃G,µ commutes with
products in G, so we first assume that G is adjoint and simple, so G = ResL/K(G0) for a finite
separable field extension L/K (necessarily totally ramified) and an absolutely simple L-group
G0.

The simply connected cover Gsc → G induces a universally closed and universally injec-
tive morphism ι : GrGsc → GrG which gives on generic fibers the universal homeomorphism
GrGsc → GroG onto the neutral component. We consider the translate t−1

µ MG,µ ⊂ ι(GrGsc,OE ),
where tµ is an OE-valued point of LT lifting the corresponding section of GrT , and consider
the unique reduced closed subscheme MGsc,µ ⊂ GrGsc,OE with the topological space ι(MGsc,µ)
being the same as the translation. Likewise, we denote by AGsc,µ (respectively, SGsc,µ) the tµ-
translated admissible locus inside F`Gsc (respectively, GrGsc,E). These are also unions of trans-
lates of Schubert varieties for some choice of Iwahori group scheme. The induced finite universal

homeomorphism MGsc,µ → MG,µ factors on generic fibers as SGsc,µ
∼= S̃G,µ → SG,µ (hence is

birational).
We will prove that for all n ≥ 1, we have

dimkH
0(AGsc,µ ,L⊗nad ) = dimE H

0(SGsc,µ,L⊗nad ), (5.1)

where Lad denotes the pullback of the determinant line bundle along the adjoint representation,

compare Lemma 4.14. But before we do so let us explain how it implies that M̃G,µ has special

fiber equal to ÃG,µ. By [Ric16, Lemma 3.12], we have an inclusion of AGsc,µ in the reduced
special fibre of MGsc,µ. Since Lad is a relatively ample line bundle on MGsc,µ, (5.1) implies
that the special fibre of MGsc,µ is reduced and equal to AGsc,µ. By Serre’s criterion (see [PZ13,
Proposition 9.2]) it follows that MGsc,µ is normal. Consequently, as the map MGsc,µ → MG,µ
induces an isomorphism on every residue field, it identifies with the seminormalization, so induces

an isomorphism MGsc,µ
∼= M̃G,µ. Using the normality of Schubert varieties for simply connected

groups in Theorem 4.23 we then see that the special fibre of M̃G,µ is ÃG,µ.
It remains to prove (5.1). For this, consider the W (k)[[t]]-lift Gsc of Gsc provided by Propo-

sition 2.6 under our Hypothesis 2.1, which holds for ΦGsc
. Consider the affine flag scheme

F`Gsc over W (k). It admits the flat, closed subscheme AGsc,µ whose generic fiber is AG′sc,µ′ with

G′sc = Gsc⊗K0[[t]] and µ′ corresponding to µ using (2.11), and whose special fiber contains AGsc,µ.
As explained in the last paragraph of the proof of [Lou19, Théorème 5.2.1], one deduces from
the combinatorics of Schubert varieties and their compatible F -splitness an equality

dimkH
0(AGsc,µ,L⊗nad ) = dimK0 H

0(AG′sc,µ′ ,L
⊗n
ad ), (5.2)

for all n ≥ 1. Note that (5.2) uses again the normality of Iwahori Schubert varieties for simply
connected groups (Theorem 4.23) to deduce their F -splitness (Theorem 4.1). Likewise, the
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analogue of (5.2) also holds for SGsc,µ versus SG′sc,µ′ with G′sc = G′sc ⊗K0((t)). Appealing now to
the coherence theorem of [Zhu14] for the group G′sc in characteristic 0 (those are always tamely

ramified) finishes the proof of (5.1). Thus, M̃G,µ is normal and has reduced special fiber which is

equal to ÃG,µ, and the same holds for the base change M̃G,µ⊗OE OẼ by an application of Serre’s
criterion as the generic fiber is geometrically normal.

Since, as noted above, the formation of M̃G,µ commutes with products in G, it follows that

for general G the special fibre of M̃G,µ is reduced and is equal to ÃG,µ. We now prove the other
parts of the theorem by using results from the theory of F -singularities, see Section 3. Since

S̃G,µ,K̄
∼= Ssc

G,µ,K̄
is an Iwahori Schubert variety for the simply connected, split reductive group

Gsc,K̄ , it is Cohen–Macaulay and even F -rational by [Cas22, Theorem 1.4]. (Alternatively, these

properties of S̃G,µ,K̄ also follow directly from Theorem 4.1.) Hence, so is S̃G,µ by faithfully flat

descent of [DM20, Proposition A.5]. We already know that ÃG,µ is F -split by Theorem 4.1, so
it is F -injective in particular. We also note that all rings and schemes involved in our argument

are F -finite since k is algebraically closed. Then Lemma 3.2 implies that M̃G,µ is F -rational, so
pseudo-rational by Lemma 3.4 and in particular Cohen–Macaulay. �

Remark 5.5. There is an equality M̃G,µ = MG,µ if and only if ÃG,µ = AG,µ and S̃G,µ = SG,µ.
This is ensured, for instance, when p - |π1(Gder)|. If p | |π1(Gder)|, then the equality still holds
when µ̄ ∈ X∗(T )I is minuscule with respect to the échelonnage roots and the closure of f contains
a special vertex; see the proof of [HLR18, Proposition 9.1]. Otherwise the equality is false for
infinitely many values of µ, see [HLR18, Corollary 9.2].

Remark 5.6. Cass has proved somewhat stronger properties of the singularities of M̃G,µ when
the group G is a constant split reductive group and p > 2, see [Cas21, Theorem 1.6].

Remark 5.7. There is an alternative proof for the reducedness of the special fiber of M̃G,µ via
perfectoid geometry, see [GL22, Lemma 1.2, Theorem 1.3], without the need for Hypothesis 2.1.
We stress that it does not directly imply that the special fiber is seminormal and F -split as in
Theorem 5.4, upon which the last sentence of [GL22, Corollary 1.4] actually relies. On the other
hand, combining the results of [GL22] with Theorem 4.23 immediately yields an identification

between ÃG,µ and the special fiber of M̃G,µ, compare with the proof of [GL22, Theorem 2.1] or
the discussion surrounding [AGLR22, Conjecture 7.25].

We can also deduce the following facts on the Picard group of the local models.

Corollary 5.8. Under Hypothesis 2.1, the following properties hold:

(1) The restriction map Pic(M̃G,µ)→ Pic(ÃG,µ) is an isomorphism.
(2) Let Gi for i = 1, . . . ,m be an enumeration of the simple factors of Gad such that the

image µ̄i of µ in the group X∗(Ti)I attached to Gi is non-zero. Then the restriction map

m∏
i=1

Pic(F̃`
τi

Gi)→ Pic(ÃG,µ) (5.3)

is an isomorphism, where Gi is the associated parahoric O-model of Gi and the superscript
τi indicates the connected component attached to µi.
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(3) There is a commutative diagram:

Pic(M̃G,µ) Pic(S̃G,µ)

Pic(ÃG,µ)
∏m
i=1 Pic(S̃Gi,µi)

∏m
i=1 Pic(F̃`

τi

Gi) Zm,

∼ ∼

∏m
i=1 degi

∼

∏m
i=1 ci

(5.4)

where the maps of Picard groups are induced by functoriality, degi denotes the degree
homomorphism, and the ci are the central charge homomorphisms for F`Gi,sc translated
to the respective connected components.

Proof. By Theorem 5.4, the special fiber of M̃G,µ is equal to ÃG,µ = ∪λS̃λ̄(t), see Definition 5.3.

For (1), it is enough to prove that every line bundle on ÃG,µ lifts uniquely to M̃G,µ, or equiv-

alently to the formal scheme M̃G,µ ×Spec(OE) Spf(OE) by Grothendieck’s formal GAGA. Since

Hj(ÃG,µ,OÃG,µ) = 0 for j = 1, 2 by Lemma 4.22, obstruction theory (compare [Kle05, Proposi-

tion 5.19]) shows the existence and uniqueness of such lifts.
For (2), we may and do assume that k is algebraically closed by étale descent. We use

Proposition 4.21 which calculates Pic(ÃG,µ) as ⊕sZ where the sum runs over all s ∈ W̃ \WG
with l(s) = 1 and s ≤ λ̄(t) for some rational representative λ of µ in X∗(T ). In order to finish
the proof of the second part, we may and do assume that G is simple and µ is non-zero. We have

to show that the map Pic(F̃`
τµ

G ) → Pic(ÃG,µ) is an isomorphism where τµ denotes the unique

length 0 element in the admissible set Adm(µ) ⊂ W̃ . It is enough to show that every simple
reflection s ∈ Waf appears in τ−1

µ Adm(µ), see Corollary 4.19. Assume the contrary. Then the
subgroup generated by the simple reflections which do appear is a finite Coxeter group, say, W ′

containing τ−1
µ Adm(µ). Therefore, W ′ (hence τ−1

µ Adm(µ)) contains at most one representative
for each coset in the finite Weyl group W0 = Waf/X∗(Tsc)I : if there were two representatives,
their difference would be a non-trivial translation, so W ′ would not be finite. However, this
contradicts the fact that Adm(µ) contains always at least two different translations tµ̄ and tw0(µ̄)

because µ̄ 6= 0.
Part (3) is verified as follows. Since the groups involved are all torsion-free, we only need to

check commutativity after tensoring with Q. But then Lemma 4.15 applied to each of the simple

factors provides rationalized line bundles on M̃G,µ whose generic fiber is given by O(cLk), exactly
as claimed. �

Recall that Pappas–Rapoport’s coherence conjecture in [PR08], as corrected by Zhu in [Zhu14],
gives an equality of dimensions of certain cohomology groups, which we can now formulate and
prove in greater generality.

Corollary 5.9. Let L be an ample line bundle on ÃG,µ. Under Hypothesis 2.1, there is an
equality

dimk H0(ÃG,µ,L) = dimK̄ H0(S̃G,µ,K̄ ,O(cL)), (5.5)

where O(cL) := �iO(ci(L)) and the ci are the central charge homomorphisms of the simple
factors of Gad, compare with Corollary 5.8.
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Proof. Note that given a flat proper scheme X over a discrete valuation ring with F -split special
fiber, and an ample line bundle L on X, the dimension of the global sections of L on Xs and
Xη agree by the vanishing of higher cohomology (and constancy of the Euler characteristic).
Therefore, the statement follows directly from Theorem 4.1, Theorem 5.4, and Corollary 5.8.

Indeed, by Corollary 5.8 (1), L lifts uniquely to an ample line bundle over M̃G,µ with geometric
generic fiber equal to O(cL) by Corollary 5.8 (3) (note that the integers ci(L) are well defined
by Corollary 5.8 (2)). �

5.2. Mixed characteristic. In this subsection, we assume K/Qp is of characteristic 0, and fix a
uniformizer π ∈ K. Further, G is assumed to be adjoint, quasi-split and to satisfy Hypothesis 2.1.
Then G is a product of K-simple groups compatibly with the tori S ⊂ T , and we fix the data in
(2.1) for each factor. The resulting O[[t]]-group lift G of its parahoric model G is defined as the
product of the lifts from Proposition 2.8 of each simple factor. We denote G′ := G ⊗ k[[t]].

Let us recall the basic properties of the Beilinson–Drinfeld Grassmannian GrG → SpecO,
where the power series variable is z = t− π, compare with [PZ13, Section 6].

Proposition 5.10. The O-functor GrG is representable by an ind-projective ind-scheme. Its
generic fiber is isomorphic to GrG, whereas the special fiber is identified with F`G′ .

Proof. Representability by an ind-quasi-projective ind-scheme follows from [PZ13, Proposition
11.7], thanks to Proposition 2.6. Its special fiber is the affine flag variety associated to the k[[t]]-
group scheme G′, that is, GrG,k = F`G′ . As for the generic fiber, we have to find and choose
an identification between G ⊗K[[z]] and G ⊗K[[z]]. But the former group scheme is reductive,
so such an isomorphism exists by [Ric19, Lemma 0.2], which says that every reductive group
scheme over K[[z]] is constant.

Finally, we show projectivity by the same argument of [PZ13, Proposition 6.5]: it is enough
to verify the valuative criterion for GrT . Since T is a product of restrictions of scalars of the
multiplicative group along maps of the smooth O-curves in (2.18), this is a consequence of [HR20,
Corollary 3.6, Lemma 3.8]. �

Just as in [PZ13, Section 7], we introduce local models in mixed characteristic.

Definition 5.11. Let MG,µ denote the flat closure of SG,µ inside GrG,OE . We denote by M̃G,µ
its seminormalization.

The reader is referred to Remark 5.18 for the extension to not necessarily adjoint groups and
to Lemma 5.23 for the relation to the (modified) local models from [HPR20, Section 2.6]. In the
following paragraphs, we single out some important properties of the local models.

Lemma 5.12. The reduced special fiber of MG,µ contains the µ′-admissible locus AG′,µ′ in
equicharacteristic, where µ′ is the corresponding dominant absolute coweight of G′.

Proof. The proof is the same as the proof of [Ric16, Lemma 3.12]. This depends on [Ric16,
Lemma 2.21] which is formulated in an equicharacteristic setting, but the proof extends to the
mixed characteristic setting using that T is induced. �

Remark 5.13. Since our group lifts seldom coincide with the corresponding constructions of

[Lev16], our MG,µ and M̃G,µ might not generalize the local models from [Lev16], when µ is non-
minuscule. However, our arguments and results below hold for both objects. For minuscule µ,
both constructions do coincide by [AGLR22, Section 7].

Now, we may state our main result on the singularities of local models.
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Theorem 5.14. Under Hypothesis 2.1, the local model M̃G,µ is Cohen–Macaulay, and has a

reduced special fiber equal to ÃG′,µ′ . If the admissible locus is irreducible, then M̃G,µ has rational
singularities.

Proof. As in the proof of Theorem 5.4, we reduce to the case O = Ŏ, G simple and note that
MG,µ has a finite, birational, universally homeomorphic cover MGsc,µ isomorphic to a subscheme
of the Grassmannian GrGsc associated to the simply connected cover Gsc → G. In particular, by

Theorem 4.23, its generic fiber is isomorphic to SG,µ ∼= S̃G,µ (Schubert varieties in characteristic

0 are normal) and by Lemma 5.12 the special fiber contains ÃG′,µ′ .
Let Lad be the line bundle on GrGsc given by pullback of the determinant line bundle under

the adjoint representation. Its restriction to MGsc,µ is ample, by Proposition 5.10. By (5.1), we
get an equality

dimkH
0(ÃG′sc,µ′ ,L

⊗n
ad ) = dimE H

0(SGsc,µ,L⊗nad ). (5.6)

This implies that M̃G,µ is normal and its special fiber is reduced and equal to ÃG′,µ′ , compare

with the proof of Theorem 5.4. The Cohen–Macaulayness follows from flatness and that of ÃG′,µ′

proven in Theorem 5.4, see [HR22, Lemma 5.7]. Moreover, if ÃG′,µ′ = S̃G′,µ′ is irreducible, then
it has F -rational singularities by Theorem 4.1, so pseudo-rationality follows by Lemma 3.5, and
then rationality by Proposition 3.7. �

Remark 5.15. Again, there is an equality M̃G,µ = MG,µ if and only if ÃG′,µ′ = AG′,µ′ . (Note

that S̃G,µ = SG,µ because Schubert varieties in characteristic 0 are normal.) This is ensured, for
instance, when p - |π1(G)|, and may otherwise very well fail, see [HLR18, Corollary 9.2].

Remark 5.16. We note that, for µ minuscule, the Gk-scheme ÃG′,µ′ is related to the Witt vector
affine Grassmannian of G, see [AGLR22, Section 3].

Remark 5.17. If G is special parahoric, then the admissible locus is irreducible, so M̃G,µ has
(pseudo-)rational singularities. For a complete list of triples (G,µ,G) with G absolutely simple
and µ minuscule such that the associated admissible locus is irreducible, the reader is referred
to [HPR20, Theorem 7.1 (1)].

Remark 5.18. The local models constructed in [AGLR22] are invariant under passing to the
adjoint group. So, if G is not necessarily adjoint, we may define following [HR20, Section 7.1]

the local model as M̃Gad,µad
⊗OEad

OE where µad is induced by µ under G→ Gad and Ead ⊂ E
denotes its reflex field. Then Theorem 5.14 holds for this more general definition: this is clear if
E/Ead is unramified, and else follows from the method of proof.

We also get a complete description of the Picard group of the local model in mixed charac-
teristic.

Corollary 5.19. Under Hypothesis 2.1, the following properties hold:

(1) The restriction map Pic(M̃G,µ)→ Pic(ÃG′,µ′) is an isomorphism.
(2) Let Gi for i = 1, . . . ,m be an enumeration of the simple factors of G such that the image

µ̄i of µ in the group X∗(Ti)I attached to Gi is non-zero. Then the restriction map

m∏
i=1

Pic(F̃`
τi

G′i)→ Pic(ÃG′,µ′) (5.7)

is an isomorphism, where G′i is the associated parahoric k[[t]]-model of G′i and the super-
script τi indicates the connected component attached to µ′i.
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(3) There is a commutative diagram:

Pic(M̃G,µ) Pic(S̃G,µ)

Pic(ÃG′,µ′)
∏m
i=1 Pic(S̃Gi,µi)

∏m
i=1 Pic(F̃`

τi

G′i) Zm,

∼ ∼

∏m
i=1 degi

∼

∏m
i=1 c

′
i

(5.8)

where the maps of Picard groups are induced by functoriality, degi denotes the degree
homomorphism, and the c′i are the central charge homomorphisms for F`G′i,sc translated

to the other components.

Proof. The proof is the same as in Corollary 5.8, and we briefly explain the necessary changes.

For (1), we use Theorem 5.14 to know that ÃG′,µ′ equals the special fiber of M̃G,µ. The structure
sheaf has vanishing higher cohomology by Lemma 4.22, so line bundles lift uniquely.

Part (2) follows directly from Corollary 5.8 (2).
For (3), we need to produce enough line bundles on the mixed characteristic local model

M̃G,µ, compare the proof of Lemma 4.15. We have already seen how to construct the adjoint
line bundle during Theorem 5.14. As for the kernel of the central charge, we define a map
GrG → [SpecO/Gt=0] by reducing torsors to the subscheme defined by the principal ideal t,
where Gt=0 denotes the reduction of the O[[t]]-group scheme G to O via t 7→ 0. Pulling back line

bundles of [SpecO/Gt=0] to M̃G,µ yields the desired lifts of ker c with trivial generic fiber. �

In the equicharacteristic case, we have seen in Theorem 5.4 that local models have rational
singularities, compare Section 3.3. Together with Theorem 5.14 at special level, this provides
some motivation for the following:

Conjecture 5.20. The local model M̃G,µ has rational singularities.

This would follow from Conjecture 3.6. For the purpose of proving Conjecture 5.20 for mi-
nuscule µ, that is, the case relevant to Shimura varieties, it would suffice (by Theorem 5.14) to
also assume in Conjecture 3.6 that R is Cohen–Macaulay and R[π−1] is regular (as in [FW89,
Proposition 2.13]), and F -injective can be replaced by F -split.

5.3. Functoriality of local models. In both equal and mixed characteristic, a morphism of

pairs (G, µ)→ (G̃, µ̃) is a map of O-group schemes G → G̃ which maps µ into µ̃ under the induced

map of reductive K-groups G→ G̃ in the generic fiber, compare Remark 5.2. In order to study
functoriality properties, it is useful to base change the local model to the absolute integral closure
Ō of O with fraction field denoted K̄.

In equal characteristic the formation of local models is functorial in the following sense:

Lemma 5.21. In equicharacteristic (Section 5.1), the association (G, µ) 7→ M̃G,µ ⊗OE Ō from
the category of pairs as above to the category of Ō-schemes is functorial. Under Hypothesis 2.1,
it commutes with finite products, and the map G → Gad induces an isomorphism of OE-schemes

M̃G,µ ∼= M̃Gad,µad,OE , (5.9)

where G → Gad is the map of parahoric O-models extending G → Gad and µad is the composite
of µ with GK̄ → Gad,K̄ .



SINGULARITIES OF LOCAL MODELS 31

Proof. This was proven in the course of Theorem 5.4, see especially the reduction in the beginning
of its proof. Recall that for the isomorphism (5.9) and the commutation with finite products,

the key fact is that M̃G,µ ⊗OE OẼ is normal for every finite field extension Ẽ ⊃ E. �

Remark 5.22. Using Remark 5.7, the special fiber of M̃G,µ ⊗OE Ō is always reduced, so the
base changed local model is normal and Lemma 5.21 holds without assuming Hypothesis 2.1.

In mixed characteristic (Section 5.2), functoriality of (G, µ) 7→MG,µ (or, its base change to Ō)
is subtle due to the auxiliary choices involved in the construction of the O[[t]]-group lift G. Here
we point out two particularly interesting cases of functoriality: canonical z-extensions, making
the connection to [HPR20, Section 2.6], and embeddings into the Weil restriction of the split
form, used in [AGLR22, Section 7].

5.3.1. Canonical z-extensions following [Lou19, Section 2.4]. Assume K/Qp is of characteristic
0 and use the notation introduced in Section 5.2. In particular, G satisfies Hypothesis 2.1,
is adjoint, quasi-split and equipped with a quasi-pinning. We lift the quasi-pinning along the
simply connected cover Gsc → G. This induces a map Gsc → G on the O[[t]]-lifts by functoriality
of extending birational group laws, compare Proposition 2.8. The maximal torus T acts by inner

automorphisms on Gsc, so we may form G̃ := Gsc o T . By [Lou19, Lemme 2.4.2], there is the
z-extension

1→ Tsc
t 7→(t,t−1)−→ G̃

(g,t)7→gt−→ G→ 1 (5.10)

with G̃der = Gsc and T ↪→ G̃, t 7→ (1, t) being a maximal torus. By functoriality of extensions of
birational group laws, the connected Néron model T acts on Gsc by inner automorphisms. This

allows us to define the O[[t]]-group scheme G̃ := Gsc o T , which equals the model birationally
glued from (Tsc×T , (Ua)a∈Φnd

G
) as in Proposition 2.8. Moreover, it fits in a short exact sequence

of O[[t]]-group schemes

1→ Tsc → G̃ → G → 1, (5.11)

as can be seen by showing that G and the fppf quotient G̃/Tsc are solutions to the same birational
group law, hence are isomorphic. The extension (5.11) is called the canonical z-extension of G.

The following lemma relates M̃G,µ to the construction of local models via z-extensions as in
[HPR20, Section 2.6]. Here we view µ as a geometric cocharacter of T .

Lemma 5.23. Under Hypothesis 2.1, the map G̃ → G from (5.10) induces an isomorphism of
OE-schemes

MG̃,µ̃
∼=−→ M̃G,µ, (5.12)

where µ̃ = (1, µ) is viewed as a geometric cocharacter of G̃ = Gsc o T .

Proof. Firstly, as T is a maximal torus in both G and G̃, the cocharacters µ, µ̃ have the same

reflex field E. Thus, G̃ → G induces a finite birational universal homeomorphism on orbit closures

MG̃,µ̃ →MG,µ, (5.13)

which is an isomorphism on residue fields, see [HR22, Corollary 2.3 and its proof]. As G̃der = Gsc,
the orbit closure MG̃,µ̃ is normal by the proof of Theorem 5.14. So the map (5.13) induces

MG̃,µ̃
∼= M̃G,µ because the latter is normal by Theorem 5.14. �
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5.3.2. Embedding into the Weil restriction of the split form. We record the following result con-
cerning the functoriality of the construction G 7→ G, used in [AGLR22]. Recall the notation from
Section 2 and consider the adjunction morphism

G = ResL/K(G0)→ ResL/KResK̃/L(H0 ⊗Z K) = ResK̃/K(H0 ⊗Z K) =: G̃, (5.14)

where K̃ contains the Galois hull of M/L and H0/Z is the split form of G0 induced by (2.1). We
assume the following:

Hypothesis 5.24. If p = 3, then G0 ⊗K K̆ is not a triality form of type D4.

Recall the O((t))-group lifts G from Lemma 2.7. We equip G̃ with the quasi-pinning induced

from the pinning of H0 ⊗Z K, leading to the O((t))-group lift G̃.

Lemma 5.25. Under Hypothesis 5.24, the map (5.14) lifts to a locally closed immersion of
O((t))-group schemes

G→ G̃, (5.15)

compatibly with reduction to κ((t)) for κ = k,K.

Proof. As the formation of G is compatible with restriction of scalars, we assume without loss of
generality that G = G0, so L = K. Hypothesis 5.24 ensures that the Galois hull of the fraction
fields of the ring extension O[[t]] → OMnr [[v]] is given by the fraction field of OK̃nr [[v]]. The
map (5.15) exists by definition of G over the étale locus U of O((t)) → OMnr((v)), compare with
Lemma 2.3. It can be further extended to SpecO((t)) by taking the obvious inclusions for the
models of the root groups (2.21), respectively the connected Néron models of tori, and by applying
functoriality of solutions to birational group laws, compare with [Lou19, Proposition 3.3.9]. This
constructs (5.15), which is a locally closed immersion by [BT84, Proposition 2.2.10]. �

Let S̃ ⊂ G̃ be the maximal split subtorus contained in ResK̃/K(S). The inclusion of apart-
ments

A (G,S,K) ⊂ A (G̃, S̃,K) (5.16)

is also compatible with the isomorphism (2.20). For a point x ∈ A (G,S,K), we denote its image

by x̃ ∈ A (G̃, S̃,K).

Corollary 5.26. For x ∈ A (G,S,K), the map (5.15) extends to a locally closed immersion of
the O[[t]]-group schemes

Gx → G̃x̃, (5.17)

constructed in Proposition 2.8. The map (5.17) reduces to the canonical map of parahoric group
schemes over O and κ[[t]] with κ = k,K.

Proof. Applying functoriality of solutions to birational group laws, it suffices to construct the
maps between the models of roots groups and of tori, following [Lou19, Proposition 3.4.8]. The
resulting map is again a locally closed immersion by [BT84, Proposition 2.2.10]. That its reduc-
tion over O, respectively κ[[t]], is the expected map on parahoric group schemes is clear from the
construction, compare Proposition 2.8. �

Let us briefly return to the situation illustrated in (5.14) of the closed embedding of G into

the associated Weil-restricted split form G̃. We denote by µ̃ the geometric conjugacy class of

cocharacters of G̃ obtained as the image of µ. The following compatibility at the level of local
models plays a role in the proof of [AGLR22, Theorem 7.23].
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Lemma 5.27. Under Hypothesis 2.1 and Hypothesis 5.24, the map G := Gx → G̃x̃ := G̃ from
(5.17) induces a finite morphism

M̃G,µ → M̃G̃,µ̃ (5.18)

factoring uniquely through its scheme-theoretic image via a universal homeomorphism.

Proof. By naturality of the Beilinson–Drinfeld Grassmannian, we obtain a map between the orbit
closures, and hence the map (5.18) by functoriality of seminormalizations [Sta21, Tag 0EUS].
By projectivity of local models, it is enough to show that (5.18) is injective on geometric points,
which in turn can be tested on orbit closures.

In the generic fiber, the map SG,µ → SG̃,µ̃ of Schubert varieties is a closed immersion because

(5.14) is so. In the reduced special fibers, the map is given by AG′,µ′ → AG̃′,µ̃′ on the respective

admissible loci and is induced from F`G′ → F`G̃′ .
It may happen that F`G′ → F`G̃′ is not a monomorphism, because G′ → G̃′ is a locally

closed immersion. But this difference amounts to passing to a finite étale quotient of F`G′
with isomorphic connected components (given by the affine flag variety of the flat closure of
the immersion), which embeds into F`G̃′ . Since AG′,µ′ is connected, this is enough to deduce
injectivity of AG′,µ′ → AG̃′,µ̃′ on geometric points. �
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phismes de schémas, Troisième partie. Publ. Math. IHÉS, 28:5–255, 1966. 18
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