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ON SIMPLE LEFT-SYMMETRIC ALGEBRAS

Alexandr Pozhidaev ', Ualbai Umirbaev?, and Viktor Zhelyabin *

ABSTRACT. We prove that the multiplication algebra M (A) of any simple finite-dimensional
left-symmetric nonassociative algebra A over a field of characteristic zero coincides with
the right multiplication algebra R(A). In particular, A does not contain any proper right
ideal. These results immediately give a description of simple finite-dimensional Novikov
algebras over an algebraically closed field of characteristic zero [29].

The structure of finite-dimensional simple left-symmetric nonassociative algebras from
a very narrow class A of algebras with the identities [[z,¥], [2,t]] = [z,y]([z,t]u) = 0 is
studied in detail. We prove that every such algebra A admits a Zs-grading A = Ay P A,
with an associative and commutative Ag. Simple algebras are described in the following
cases: (1) A is four dimensional over an algebraically closed field of characteristic not 2,
(2) Ag is an algebra with the zero product, and (3) Ag is simple; in the last two cases,
the description is given in terms of root systems. A necessary and sufficient condition
for A to be complete is given.

Mathematics Subject Classification (2020): 17D25, 17B05, 16D60.

Key words: left-symmetric algebra; pre-Lie algebra; Lie-solvable algebra; Novikov
algebra; nilpotent algebra; simple algebra.

1. Introduction

An algebra A over a field F' is called left-symmetric (or pre-Lie) if it satisfies the identity
(zy)z — z(yz) = (yz)z — y(z2). (1.1)

This means that the associator (z,y, z) := (xy)z — z(yz) is symmetric with respect to two
left arguments, i. e.,

(z,y,2) = (y,z, 2). (1.2)
Left-symmetric algebras arise in many different areas of mathematics and physics (for
example, see [7]).
The variety of left-symmetric algebras is Lie-admissible, i. e., each left-symmetric alge-
bra A with the operation [x,y] := xy — yz is a Lie algebra. We denote this Lie algebra
by A7) and call it the adjoint Lie algebra of A.
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A linear basis for free left-symmetric algebras was given by D. Segal in 1994 [21]. The
identities of left-symmetric algebras were studied by V. Filippov [10], and he proved that
any left-nil left-symmetric algebra over a field of characteristic zero is left nilpotent. An
analogue of the PBW basis Theorem for the universal (multiplicative) enveloping algebra
of a right-symmetric algebra was given in [14]. The Freiheitssatz and the decidability of
the word problem for one-relator right-symmetric algebras were proven in [15].

The left-symmetric Witt algebras £,, [25] are one of the most important series of infinite-
dimensional simple left-symmetric algebras over fields of characteristic zero. These alge-
bras are very convenient to describe some famous problems of affine algebraic geometry,
including the Jacobian Conjecture, in purely ring theoretic terms [25]. Some results on
the identities of the left-symmetric Witt algebras £,, are proven in [16].

The class of left-symmetric algebras is a wide extension of the class of associative alge-
bras, and it contains the class of assosymmetric algebras, Novikov algebras, and (—1,0)-
algebras. Recall that an assosymmetric algebra is a left-symmetric algebra, which is
right-symmetric as well, i.e., it also satisfies the identity

(z,y,2) = (2, 2,y).

In 1957 E. Kleinfeld [12] proved that if R is an assosymmetric ring of characteristic differ-
ent from 2 and 3 and without zero-product ideals then R is associative. A Nowikov algebra
is a left-symmetric algebra with commuting right multiplications, i.e., the Novikov alge-
bras satisfy the identity (zy)z = (xz)y in addition to the left-symmetric identity (1.1).
In 1987 E. Zelmanov [29] proved that any finite-dimensional simple Novikov algebra over
an algebraically closed field of characteristic zero is one-dimensional. V. Filippov con-
structed a wide class of simple Novikov algebras of characteristic p > 0 [9]. J. Osborn
[17, 18, 19] and X. Xu [27, 28] continued the study of simple finite-dimensional Novikov
algebras over fields of positive characteristic and simple infinite-dimensional Novikov al-
gebras over fields of characteristic zero. A complete classification of finite-dimensional
simple Novikov algebras over algebraically closed fields of characteristic p > 2 is given
in [27]. Some interesting results on the structure of nilpotent, solvable, and Lie solvable
Novikov algebras were recently obtained in [22, 24, 26, 31, 30].

The class of (—1,0)-algebras is a part of the class of (v, d)-algebras introduced by
A. Albert [1]. It is well known [13] that every simple finite-dimensional algebra of type
(—1,0) of characteristic not equal to 2 and 3 is associative.

In contrast to assosymmetric algebras, Novikov algebras, and (—1, 0)-algebras, the class
of simple (finite-dimensional) non-associative left-symmetric algebras is immense. For
example, as it was shown in [20], starting from an arbitrary (finite-dimensional) nontrivial
left-symmetric algebra A, one can construct a simple (finite-dimensional) left-symmetric
algebra, which contains A as a subalgebra.

There exist infinitely many non-isomorphic simple left-symmetric structures on the Lie
algebra gl,, [5]; they are classified in [5] as deformations of the associative matrix algebra
structure. A classification of 2 and 3-dimensional simple left-symmetric algebras over C
was obtained in [6]. Classification of 4-dimensional simple left-symmetric algebras are
already quite complicated. However, it is feasible for complete left-symmetric algebras
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[6]. Recall that a left-symmetric algebra A is called complete if the operator Id + R(x) is
bijective for all z € A (this condition arises naturally in the context of affine transforma-
tions).

It is well known that the adjoint Lie algebra of a left-symmetric algebra cannot be
semisimple [4] and the adjoint Lie algebra of a simple left-symmetric algebra cannot be
nilpotent [6]. There are many examples of simple left-symmetric algebras with solvable
and reductive adjoint Lie algebras. The adjoint Lie algebra of a complete left-symmetric
algebra is always solvable [3].

This paper is devoted to the study of simple finite-dimensional left-symmetric algebras
over algebraically closed fields of characteristic zero. We prove that the multiplication
algebra M(A) of any simple finite-dimensional left-symmetric nonassociative algebra A
over a field of characteristic zero coincides with the right multiplication algebra R(A)
and A is an irreducible R(A)-module. In particular, A does not contain any proper right
ideal. Recall that a similar result holds for (—1,0) and (1, 1)-algebras (see [13]). Moreover,
these results can be immediately applied to get the description of simple finite-dimensional
Novikov algebras over an algebraically closed field of characteristic zero given in [29].

The remaining part of the paper is focused on the study of finite-dimensional simple
left-symmetric nonassociative algebras from a very narrow variety 90U of algebras with
the identities [[z,y], [z, t]] = [z, y]([z,t]u) = 0. We establish that in some sense 9 is the
smallest reasonable variety of the left-symmetric algebras such that 991 contains nontrivial
finite-dimensional simple algebras. We show that even this smallest class contains a huge
number of simple algebras. We prove that every simple finite-dimensional algebra A € 9t
admits a Zs-grading A = Ay & A; with an associative and commutative Agy. Simple
algebras are described in the following cases: (1) A is four dimensional, (2) Ay is an
algebra with the zero product, and (3) Ay is simple; in the last two cases the description
is given in terms of root systems. A necessary and sufficient condition for A to be complete
is given.

The paper is organized as follows. In the preliminary Section 2 we give some construc-
tions of ideals of left-symmetric algebras. In Section 3 we prove that the multiplication
algebra of any simple finite-dimensional left-symmetric nonassociative algebra coincides
with the right multiplication algebra and show that such an algebra is right simple. In
Section 4 we define a very small variety of algebras 9 such that 9t contains simple finite-
dimensional Lie-metabelian algebras, and we define the class of simple algebras A in 9.
In particular, every algebra A in A admits a Zs-grading A = Ay @ A;. In Section 5 we
give a necessary and sufficient condition for A € A to be complete. In Section 6 we study
root decompositions for algebras in A. In Section 7, using the obtained results, we give
a complete description of simple four-dimensional algebras in A. Section 8 is devoted to
the study of algebras A € A when either A, is an algebra with the zero product or Ay is
simple.



2. Preliminaries

Let A be an arbitrary left-symmetric algebra over a field F'. Given a € A, we define the
operators L, : x — ax and R, : x — za of the left and right multiplication, respectively.
By (1.1) we get

(L., Ly] = Lz (2.1)
and
L, Ry| = Ryy — Ry R, (2.2)

Let End(A) be the algebra of linear mappings of the vector space A. The subalgebra
M = M(A) of End(A) that is generated by the operators L, and R,, where a € A, is
called the multiplication algebra of A. The left multiplication algebra L = L(A) and the
right multiplication algebra R = R(A) are some subalgebras of M(A) generated by the
operators L, and R,, respectively, where a ranges over A.

Lemma 2.1. Let A be a left-symmetric algebra, and let Ann(A) = {z € A: zA = 0}.
Then Anny(A) is an ideal of A.

Proof. It suffices to prove that Ann;(A) is a left ideal of A. Take z € Ann;(A) and
a € A. Then for every b € A we have

(bx)a = (b,z,a) = (z,b,a) = (zb)a — x(ba) = 0
by (1.2). Therefore, bx € Ann;(A). Consequently, Ann;(A) is an ideal of A. O
Lemma 2.2. RLC LR+ R and LR+ R is an ideal of M.

Proof. Notice that every element of L is a linear combination of elements of the form
u=2Lg ...Ly ,n>1,
and every element of R is a linear combination of elements of the form
v=~R, ...R, ,m>1

Using (2.2) we can represent the product vu as a linear combination of elements of the
form

Lo ... Ly Ry, ... Rp,,s > 1.
Consequently, RL C LR+ R and LR + R is an ideal of M. O

Lemma 2.3. Let I be an ideal of R such that [L,,I| C I for allz € A. Then K = LI+1
s an ideal of M.

Proof. By Lemma 2.2,
RK =R(LI+1I)CRLI+RICLRI+RI+1ICK,

since [ is an ideal of R. Clearly, LK C K. Hence, K is a left ideal of M.
Show that K is a right ideal of M. For any x € A we get

IL, C Lyl + [Ly, 1) C LI + 1.
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Therefore,
KL, CLIL,+IL, CLL, I+LI+L,I+1CK.

Clearly, KR C K, since [ is an ideal of R. Hence, K is a right ideal of M. This proves
that K is an ideal of M. O

Corollary 2.1. If e is a central idempotent of R then LRe + Re is an ideal of M and e
1s a central idempotent of M.

Proof. We have
(Lo, €] = [La, €] = €[Ly, €] + Ly, €]le = 2[ L, €]e
for all « € A, since [L,, e] € R by (2.2). Consequently,
[Le,ele = 2[L,, e]le* = 2[L,, ele.

Hence, [L,,ele = 0 and [L,,e] = 0. Thus, e is a central idempotent of M. Moreover, Re
is an ideal of R and

[L., Re] C [L,, Rle+ R[L.,e] C Re.
Hence, LRe + Re is an ideal of M. O

3. The multiplication algebra of a simple left-symmetric algebra

We may assume that A is a left M-module regarding the action w - a = w(a), where
w € M,a € A. Similarly, we can consider A as a left R-module. Obviously, A is a faithful
M-module and A is a faithful R-module.

Recall that an arbitrary algebra A is simple if A does not contain nontrivial ideals and
A? £ 0.

Now, let A be a simple finite-dimensional left-symmetric algebra over a field F. Then
its multiplication algebra M is a matrix algebra over a skew-field. Hence, M = LR+ R
by Lemma 2.2. Let e be the identity element of M and let B = (id — e) - A. Obviously,
w-B =0 for all w € M. Consequently, B is an ideal of A and either B =0 or B = A,
since A is simple. If B = A then we get A> = 0. Hence, B = 0, and A is a unitary
M-module.

Let Cy(R) be the centralizer of the subalgebra R in M, i.e.,

Cyu(R)={zx €M :[z,a] =0Va € R}.

Lemma 3.1. Let J be the Jacobson radical of R. Then the following assertions hold:
(1) iof [Ly,J] € J for all z € A then J =0, R is a simple subalgebra of M, and R
contains the identity element of M;
(2) if F is an algebraically closed field then M = R ® Cy(R);
(3) if F' is of characteristic zero then [Ly, J] C J for every x € A.

Proof. Assume that J # 0. Then LJ + J is a nonzero ideal of M by Lemma 2.3, since
L., J] C Jforall z € A. Hence, M = LJ+ J, since M is simple. The Jacobson radical J
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of the finite-dimensional algebra R is nilpotent. Suppose that J* = 0 and J"~! # 0. Then
MJ1 C LJ" + J* = 0. Consequently, J*~! = 0. This contradiction implies J = 0.
Therefore,

R=R &...8R;

is the direct sum of some simple algebras.

Let e be the identity element of R;. Then e is a central idempotent of R. Set K =
LRe + Re. By Corollary 2.1, K is an ideal of M and e is a central idempotent of M.
Therefore, M = LRe+ Re, since M is simple. Hence, e is the identity element of M, and
R = Ry, i.e., R is simple.

Let F' be an algebraically closed field. Then the center Z(R) of R coincides with F.
Therefore, M = R @ Cy(R) by the coordinatization theorem [11].

Let F' be a field of characteristic zero. By (2.2), [L,,R] C R for all z € A, and
ad(L,) : R — R, which maps r into [L,,r], is a derivation of R. It is well known that
the Jacobson radical is closed under derivations in characteristic zero [2] (see also [23]).

Hence, [L,, J] C J for all z € A. O
Notice that an arbitrary algebra satisfies the identity
a(b,c,d) — (ab,c,d) — (a,b,cd) + (a,be,d) + (a, b, c)d = 0, (3.1)
and every left-symmetric algebra satisfies the identity
(a,b,c) = [ab, ] — alb, c] — [a, c]b. (3.2)

Theorem 3.1. Let A be a finite-dimensional simple left-symmetric algebra over an alge-
braically closed field F' of characteristic zero. Then either A is associative or R = M =
M, (F), where n = dimp A, and A is a simple R-module.

Proof. By Lemma 3.1, A is a unitary R-module, and R is a simple finite-dimensional
algebra. Therefore,

A=A46... 0 A,

is the direct sum of some irreducible R-modules. Notice that A; is a right ideal of A.
Assume that m > 1. If ¢ # j then

(A;, Aj,A) = (A;, A, A) CANA =0.
By (3.1),
Ai(Aj, A A) C(AA;LALA) + (A AjALA) + (AL A AJA) + (A A, A)A C
(A, Aj, A) + (A, Aj, A)A = 0.
Therefore, R, .4;4) € Anng(A;). Since Anng(4;) is an ideal of R and R is simple by
Lemma 3.1; therefore, either Anng(A;) = R or Anng(A;) = 0. Clearly, Anng(A;) # R.
Hence, Anng(A;) = 0 and Ra, a;,4) = 0, i.e., A(A;,A;,A) = 0forall j =1,...,m.
Consequently,
A(A A A) © 7 A(A; Ay A) = 0.
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Applying (3.1) again, we get
(AA,A)AC A(A A A) + (A A A) C (A A A).

Thus, (A, A, A) is an ideal of A. Therefore, either (A, A, A) =0 or (4, A, A) = A.

If A= (A, A A) then we get A2 = A(A, A, A) = 0. Consequently, (4, A, A) =
A is an associative algebra.

Hence, if A is not associative then m = 1. Consequently, A is an irreducible R-module.
Let ¢ be a nonzero element in C;(R). Note that ¢- A is an R-submodule of the R-module
A. Since A is a faithful and irreducible R-module; therefore, ¢ - A = A. Consequently,
Cr(R) is a skew-field. Taking into account that Cy/(R) is finite-dimensional and F' is an
algebraically closed field we get Cy/(R) = F. By Lemma 3.1 we obtain R = M. OJ

0, i.e.,

Corollary 3.1. Every finite-dimensional simple left-symmetric algebra over an alge-
braically closed field of characteristic zero does not contain any nontrivial right ideal.

Theorem 3.1 immediately implies Zel'manov’s result [29] on finite-dimensional simple
Novikov algebras of characteristic 0.

Corollary 3.2. [29] Let N be a finite-dimensional simple Novikov algebra over a field F
of characteristic zero. Then N is a field.

Proof. By Lemma 3.1, the right multiplication algebra R = R(N) is simple. This
implies that R is a field, since R is commutative in the case of Novikov algebras.

Let z € N. Then the map w € R + [L,,w| € R is a derivation of R. Let w € R.
Let f(t) € F[t] be a polynomial of minimal degree such that f(w) = 0. Then f'(t) =
% # 0 and f'(w) # 0. On the other hand, 0 = [L,, f(w)] = f'(w)[L,,w]. Consequently,
[L,,w] =0 for all w € R. Hence, R,, — RyR, = [L,, R, = 0 for all z,y € N by (2.2).
Therefore, (z,z,y) = (RyR; — Ryy)(2) =0, i.e., N is a simple associative algebra. Then
N possesses a unity. Since R, R, = R, R, for all x,y € N; therefore, 2y = yx. Thus, N
is a field. 0J

4. The class A of simple Lie-metabelian algebras

Lemma 4.1. Let A be a left-symmetric algebra over a field F. Then I = [A, A]+[A, A]A
is an ideal of A.

Proof. By (3.2), we have
TAC A, AJA + ([A, AJA)A C [A, AJA + ([A, A], A, A) C
(A, AJA + [[A, AJA, A] + [A, AJ[A, A] + [[A, A], AJA C [A, A] + [A, AJA C .
Consequently, I is a right ideal of A. Since AT C [A,I] 4+ [ A, I is a left ideal of A. O

In this section, we always assume that A is a finite-dimensional simple left-symmetric
nonassociative algebra over an algebraically closed field F' of characteristic 0. Denote by
g = A the adjoint Lie algebra of A by g = A7), It is well known [6] that g cannot be
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nilpotent. But there exist many examples of simple algebras with solvable g [6]. We also
assume that g is a solvable Lie algebra.
For a subspace V' of A, we set

LV:{LJ;IZL'EV}.

Lemma 4.2. There exists a natural number n such that LFA,A] = 0 and L?A”flﬂ # 0.
Furthermore,
n—1
A= Liy4lA Al
i=0

Proof. By (2.1), L, is a Lie subalgebra of M = M(A) and the map g — L, that is
defined by x + L, is an epimorphism of Lie algebras. Consequently, L4 is solvable. By
the Lie theorem [8], [L4, L4] = L{a 4 is nilpotent. Assume that L, , = 0 and Lﬁi&] #0
for some natural n.

We have [A, A] # 0, since A is nonassociative. By Lemma 4.1, we get

A=[A Al +[A, A]A.
Therefore,
A C[A Al +[A A|([A, Al + [A, AJA) C[A Al + Lia ag[A, Al + Lia ) Lia,a)A.

Continuing this process we obtain
n—1

A= Liy4lA Al O

i=0
Corollary 4.1. The algebra A cannot contain an identity element.

Proof. By Lemma 4.2, we may assume that Liy 4y = 0 and Lﬁ;iﬂ # 0.
Let e be the identity element of A. Then

L ylA A C LYy Liaa(e) = Ly 4(e) = 0.
Then, by Lemma 4.1, we get
Lﬁ;i]A = Lﬁ,lq] [A, A] = 0.
Hence, Lﬁ;ll = 0, which is a contradiction. O

Corollary 4.2. The space [A, A] is left nilpotent but not nilpotent.

Proof. By Lemma 4.2, [A, A] is left nilpotent. Suppose that [A, A]* = 0 and [A, A]*~! #
0. Lemma 4.1 implies that [A, A]*~! is contained in the left annihilator of A and Lemma
2.1 gives that [A, AJ*~! = 0. O

Taking into account these results we define a reasonable minimal class of simple finite-
dimensional left-symmetric algebras with solvable adjoint Lie algebras such that it con-
tains a nonassociative algebra. Let A be the class of all simple finite-dimensional left-
symmetric nonassociative algebras over an algebraically closed field F' of characteristic 0
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satisfying the identities

[z, 9], [z, 1] = 0 (4.1)
and

[z, y]([z, tju) = 0. (4.2)
Thus, if A € A then g = A is a metabelian Lie algebra by (4.1). The metabelian
Lie algebras form a minimal solvable variety of Lie algebras that is not nilpotent. Note

that (4.2) is equivalent to [z, y]([z,t][u,v]) = 0 for A € A, and it can be rewritten also as
L?, ., =0.
[A,4]

Proposition 4.1. Let A € A. Set Ay = [A,A]*>, Ay = [A,A]. Then the following
assertions hold:

(1) A= Ay ® Ay is a Zy-graded algebra;

(ZZ) AlA() = 0, [AlaAl] == O, AO == A%, and Al == AOAl;

(1ii) Ag is an associative commutative algebra and A is an associative right Ag-module;
(iv)

a(zy) = (ax)y + z(ay) (4.3)
forall a € Ay and x,y € Ay.

Proof. We have L[QA,A] = 0 by (4.2). Then Lemma 4.2 implies that A = Ay + A;.
We have A} = [A, A][A, A] = Ag. We get A;Ag = 0 by (4.2) and [A;, A;] = 0 by (4.1).
Obviously,

AgAr C [Ag, A+ A1 Ap C [Ag, A1) C [A Al = Ay

By (2.1), we obtain

Af C Ag(A1 A1) C Ai(AgAr) + [Ag, A4 C AA; = A,.
Consequently, Ay is a subalgebra of A.

Set I = AomAl. Then IAO - A()AO - Ao, and ]A() - A1A0 - Al. Therefore, IAO - I.
Similarly, TA; C I. Consequently, I is a right ideal of A. Analogously, I is a left ideal of
A. Since A is simple, either A =1 or [ = 0.

If A=1 then A= Ay = A,. Since A1 Ay = 0, A2 = A Ay = 0. Therefore, Ay N A, =
I =0. Thus, A= Ay @ A, is a Zy-graded algebra.

Since A% = A and A; Ay = 0, we have A = A%+ A2 + AyA;. Consequently, A; = AgA;.

Take arbitrary a,b € Ag. Then [a,b] € Ao N A; = 0. Hence, Ay is a commutative
algebra, whence A, is associative by (3.2).

Since A1 Ag = 0, we get

Thus, A is an associative Ag-module.
Now, let a € Ag and =,y € A;. Then

a(zy) = x(ay) + (ax)y
by (1.2), since za = 0. O



5. A bilinear form and complete left-symmetric algebras

Let A be a finite-dimensional left-symmetric algebra. Consider the symmetric bilinear
form

[z, y) = tr(R. Ry)
on A. By (2.2), we have
tr(Ryy) = tr([Ls, Ry + RyR,) = tr(RyR,) = tr(R,Ry).
Therefore, tr(R,,) = tr(R,;). Consequently, tr(R,,) = 0 for all z,y € A.

Lemma 5.1. For all a,b,c € A we have

f(la,b],¢) = f(a, be) = (b, ac).
Proof. By definition, f(ab,c) = tr(Ra).). By (3.2),
t

(
f(ab, c) = tr(Rp)e) = tr(Ragpe)) + tr(Riav,e) — tr(Rap.) — tr(Rja,qp)
= [(a,be) = f(a, [ o) = f(la, d],b) = f(a,cb) = f(la, ], b).
Consequently, f([a,c|,b) = f(a,cb) — f(c,ab). O
Let T(A) = {z € A : tr(R;) = 0}. The largest left ideal of A which is contained in

T(A) is called the radical of A, and it is denoted by rad (A). A left-symmetric algebra A
is called complete if A =rad (A).

Lemma 5.2. Let A € A and let A = Ay @ Ay be its Zy-grading from Proposition 4.1 (7).
If Ag is nilpotent then the form f is degenerate on A, i.e., f(A, A) =0.

Proof. Let a € Ag. We have R'(A) C Ry (A), since A is an associative right Ag-module
by Proposition 4.1 (iii). Consequently, R, is nilpotent, since a € Ay is nilpotent. Hence,
tr(R,) = 0. Consequently, for all a,b € Ay we have f(a,b) = tr(R,Ry) = tr(Ra) = 0.
Thus, f(A(), A()) =0.

Let a,b € Ag and = € A;. By Lemma 5.1 and Proposition 4.1 (i), we get

f(ax, b) = f([a7 ZL’],b) - f(a’vxb) - f(xvaZ)) - —f(x,ab).
It means that
F(L, AL Ag) C f(Ay, AGH)

for all n > 0. Since A; = L% A; by Proposition 4.1(i7) and Ay is nilpotent; therefore,
(A1, Ag) = 0.
If z,y € Ay then
f(z,y) = tr(R,Ry) = tr(R,y) =0,
since zy € Ag. Consequently, f(Aj, A1) = 0. Thus, f is degenerate on A. O

Theorem 5.1. Let A € A and let A= Aq @ Ay be the Zo-grading of A from Proposition
4.1(i). Then A is complete if and only if Ay is nilpotent.
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Proof. Assume that A is complete. Then by [6, Lemma 1.1], A is right nil, i.e., R,
is nilpotent for every x € A. Therefore, Aj is an associative and commutative finite-
dimensional nil algebra over a field of characteristic zero. Consequently, Aq is nilpotent.

If Ay is nilpotent then f(A, A) = 0 by Lemma 5.2. Hence, tr(R,R,) = 0for all z,y € A.
Then

tr(Ra) = tr(Ry2) = tr(RaR4) = 0,
since tr(R,,) = tr(R,R,) and A is simple. Therefore, T'(A) = A and A is complete. [

6. The root decomposition

Now, let F' be an algebraically closed field, and let A = Ag+ A; be a simple Zy-graded
finite-dimensional left-symmetric algebra such that Ay is an associative commutative al-
gebra, Ay = A2, A; = AgAy, [A1,A1] = 0, and A; Ay = 0. Notice that by (1.2) we
have

[va Ly] = L[ﬂﬁﬂ]'

The algebra Ag acts on the vector space A; by the left multiplication operators, where
1 = 0,1. Notice that for a,b € Ay the left multiplication operators L, and L; are com-
muting. Denote by Aj the dual space for A;. Take a € Ay, a € Aj, and ¢ = 0, 1.
Then

Ai(a) ={ve A : (L, —ala)id)"(v) =0, n € N}
are the root subspaces and a € Af are the roots provided that A;(a) # 0. Let ®; be the
system of roots of the algebra Ay on the vector space A;, where i = 0,1, i.e., &, = {a €
Af - Ai(a) # 0}. Since L, and L, are the commuting operators; therefore,

A = P Ai(a)
acd;

is the root decomposition of A; with respect to Ag, where i = 0,1. Clearly, AgA;(a) C
Ay («) for all @ € ®;. Then we have the following

Lemma 6.1. Giwen a € ®q, there exist 3,7 € ®; such that o = 3+ . Moreover,

Ao(a) = Z A1(B)Ar(v),

a:B'i_’Yv 5,76‘1’1

A1(0)=0, and A1(B)A1(y) is an ideal of Ag. If a, B € ®g and a# 5 then Ag(a)Ao(S)=0.
Proof. Take a € Ay, z,y € Ay, and 3,7 € ®;. Then by (4.3) we get

(La = (6 +7)(a)id)" (zy) = Z C}' (Lo — Bla)id)'(x)(La — v(a)id)" (1),

where C* are the binomial coefficients. Consequently, A;(5)A1(7) C Ao(8 + 7).
Since Ay = A%, we have

Ao= Y AB)A():

ﬁv'ye(bl
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Hence, there are 3, € ®; such that A;(5)A;(y) # 0. Therefore, 8+ v € ®y and

A= (D AB)Aa®m).

acdy Byed;
Btr=a

Since Ay = P Ap(a); therefore, for every oo € &y we have
Ao(a) = Z A (B)Ar1(v).

ByEPL, BHy=a

By (4.3), we get Ag(A1(8)A1(7)) € (AoA1(B))A1(7) + A1(B)(AoA1(7)) € Ai(B) A1 (7).
Consequently, A;(5)Ai(7y) is an ideal of Ay. Clearly, Ag(a)Ay(B) = 0 for distinct o, § €
Dy.

Prove that A;(0) = 0. Notice that every operator of left multiplication L,, where
a € Ay, acts nilpotently on A;(0). Since Ay is finite-dimensional and L, are pairwise

acdg

commuting; therefore, there exists n € N such that Ly, ... L,, A1(0) = 0forall ay,...,a, €
Ap. By Proposition 4.1, we have A; = AgA;. Consequently, A;(0) = AgA;(0). Therefore,
—_——

n

Lemma 6.2. Let Ay be a nilpotent algebra. Then

Ag =Y Ai(—a)Ai(a).

acd

Moreover, Ai;(a)A1(B) = 0 for all a, € Oy such that  # —a. Furthermore, —a € &4
for every a € ®y.

Proof. Since Ay is nilpotent, &y = 0. Take a € ®y. Then, by Lemma 6.1, there are
B,y € ®; such that o = 8 + . Therefore, g 4+ v = 0. Consequently,

A(] = @ Al(—Oé)Al(Oé).
acd
Let a, f € @ and § # —a. Then A;(a)A1(B) C Ag(a+F) = 0. Assume that —a € ;.
Then A;(a)A;(B) = 0forall § € ®;. Since AgA;(a) C Ay(a) and A;(a) Ay = 0; therefore,
Ai(«) is an ideal of A. Consequently, A;(a) = 0. Therefore, —a € @, for all « € ¢;. O

7. The four-dimensional Lie-solvable left-symmetric algebras in A

In this section, we describe the four-dimensional simple Zs-graded left-symmetric alge-
bras A = Ay + A; over an algebraically closed field F' of characteristic not 2 such that Ag
is an associative commutative algebra, Ag = A?, Ay = AgAy, [A1, A1] =0, and A; Ay = 0.

In what follows, (T)F is used for the linear span of a set T over a field F', where we
omit F'if the field is clear from the context.

Lemma 7.1. The algebra Aq is not nilpotent.
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Proof. Assume that Ay is nilpotent. Then, Ay = > .4, Ai1(—a)Ai(a) by Lemma 6.2,
and Ay =) .5, Ai1(a). By Lemma 6.1, a # 0 for all @ € ®;. Since dim A = 4; therefore,
®, = {a, —a}. By Lemma 6.2, dim A; = 3. Since A is nilpotent, A% = 0.

Let eg, €3, €4 be a basis for A;. We may suppose that A;(a) = (eq, e3), Aj(—a) = (ey).
By Lemma 6.2, A;(a)?> = 0. Then for all nonzero x € A;(a) we have ze, # 0, since
otherwise zA = 0. Hence, z € Ann;(A); a contradiction by Lemma 2.1. Consequently,
eseq # 0 and egeqy # 0. Then ezey = Pegey for some f € F, and (e3 — feg)ey = 0. It
means that if ®; = {a, —a} then A is not nilpotent. O

In what follows, we assume that Ag is not nilpotent.
Lemma 7.2. Let &, = {a}. Then dim A, = 1.

Proof. Since ®; = {a}, &y = {2a}. Assume that dim A; = 2. Let z,y be a basis for

A; such that
az = a(a)z, ay = a(a)y + H(a)z,

where a € Ay, € Aj. Then dim Ay = 2 and Ay = (22, 2y, y?). By (4.3), az? = 2a(a)z?
for all a € Ag. Hence, (z?) is an ideal of A,.

Assume that 2% = 0. Then, by (4.3), for all a € Ay we get

a(zy) = (az)y + 2(ay) = 20(a)zy + B(a)2” = 2a(a)zy.

Therefore, (ry) is an ideal of Ay. Since

(zy)y* = 2a(zy)y* + 26 (zy)zy;
therefore, a(zy)y? € (xy). Since dim Ay = 2, a(zy) = 0 and (zy)? = 2a(zy)ry = 0. From
here we conclude that (zy, z) is an ideal of A, since (xy)y = B(xy)x. Thus, 2% # 0.
Now, let 2% # 0. By (4.3),
a(zy) = 2a(a)zy + Bla)a®, ay” = 2a(a)y” + 25(a)y
for all a € Ag. Since (x?) is an ideal of Ay; therefore, a(z?)xy € (2?) and a(z?)%*y? € (x?).
Consequently, a(x?) = 0, since otherwise dim Ay = 1.
From here we get z?(zy) = B(z*)z* On the other hand, x?(xy) = 2a(zy)z?. Then
B(z*) = 2a(zy). Similarly,
2’y* = 2B(2%)zy = 20(y*)z”.
If B(x?) = 0 then a(zy) = 0 and a(y*) = 0. Consequently, a(a) = 0 for all a € Ay. In
this case Ag is nilpotent. Hence, 8(z?) # 0, and a(xy) # 0. Since B(2?)zy = a(y?)x?;
therefore, zy € (?) and a(ry) = 0, a contradiction. O

Example 7.1. Let &, = {a} and Ag = (e1). Assume that L., is a semisimple operator
on Ay. Then the vector space Ay possesses a basis es, e3, e4 such that the algebra A has
the following multiplication table

2 2 2 2
e] = 2ej,e169 = €9, €163 = €3,61€4 = €4,€; = €3 = €; = €1, (7.1)

and all other products are zero.
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Proof. Since L., is semisimple; therefore, for some basis x,y, z of A; we have
e1T = QT, ey = Qy, e12 = Q.

Since &y = {2a} and Ay is not nilpotent, a # 0. Hence, we may assume that oo = 1.
Since e? = 2aey, €2 = 2e.

Suppose that 22 # 0. Then we may assume that 22 = e¢; and zy = S22, where 3 € F.
Therefore, x(y — fx) = 0. Hence, we may assume that xy = 0. Similarly, zz = 0.

Let 42 # 0. Then yz = By?, where 3 € F. Hence, we may suppose that oy = 1z =
yz = 0. In this case, 2% # 0, since otherwise (z) is an ideal of A. Since y? # 0; therefore,
y? = Bx?, B € F, and B # 0. Hence, we may assume that y?> = 2%, Similarly, 2% = 2.
Finally, in the case under consideration we arrive at the multiplication table (7.1).

Let y> = 22 = 0. If y2 = 0 then (y) is an ideal of A. Therefore, yz # 0 and
(H2)2 = £ £ 0. Since z - 22 = 0; therefore, replacing y by “2% we arrive to the case
considered above.

Let 22 = 0,9% = 0,22 = 0. Then either xy # 0 or xz # 0, since otherwise () is an
ideal of A. Repeating the previous argument, we get the required basis for A with the
multiplication table (7.1). O

In [6], the left-symmetric simple four-dimensional algebras I¢(a, 3,v) were introduced,
where a, 3,7 € F. The algebra of Example 7.1 is 1{(0,0,0).

Lemma 7.3. Let &1 = {a} and Ay = (e1). The case of non-semisimple L., with a
mainimal polynomial of degree two is impossible.

Proof. Assume that L., is not semisimple and its minimal polynomial is of degree two.
Then A; possesses a basis z, ¥y, z such that

T = ar, ey = oy, €12 = az + .
Let y? # 0. Then yz = By?, where 3 € F. Therefore, y(z — Sy) = 0. Moreover,
e1(z = By) = a(z — By) +v.

Hence, we may replace z by z — fy. Consequently, we may suppose that yz = 0. By
Proposition 4.1,

0=-e(yz) = (e1y)z + y(e12) = ayz + y(az + y) = 7,

which is a contradiction. Hence, % = 0.
Let y* = 0. Then either zy # 0 or yz # 0, since otherwise (y) is an ideal of A.
Let xy # 0 and xz = Bzy, where § € F. Then z(z — fy) = 0. Put u = z — Sx. Then

xu = 0. Moreover,
eu=e1(z— fBr)=alz —fx)+y=au+y.
By Proposition 4.1,
0= ei(zu) = (e12)u + x(e1u) = azu + z(au + y) = xy,

a contradiction. Therefore, xy = 0. Consequently, yz # 0.
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Let yz # 0. Then 22 = Byz, where 3 € F. Therefore, (2 — 2y)? = 0. Put u = 2 — 2y.
Then u? = 0, yu = yz, and

eu=e(z — gy) =a(z — gy)—l—y:aquy.
By Proposition 4.1,

0 = eru® = 2(eyu)u = 2(ou + y)u = yu = yz,
which is a contradiction. O
Example 7.2. Let &, = {a}, Ay = (e1), and let the minimal polynomial for L., be of
degree 3. Then Ay possesses a basis eq, €3, €4 such that A has the following multiplication

table

2
e = 2e1, e1eg =e3+eg, €163 = €4+ €3, €164 = €y, (7.2)

eg = fey, eg = —eq, €94 = €460 = €1, B EF,
and all other products are zero.
Proof. By the hypothesis, A; possesses a basis z,y, z such that
e1r =axr+y, ey =ay + 2,612 = Qz.

The root « is nonzero. Therefore, we may assume that o = 1. Since ®y = {2a}, e? = 2¢;.
Let 22 # 0. Then e;2? = 22% and yz = 322, where 3 € F. By Proposition 4.1,

e1(yz) = (ery)z +ylerz) = (y + 2)z +yz = 2yz + 2% = 282 + 22 = 2327,

whence 22 = 0.
Let yz # 0. Then e;(yz) = 2yz and y*> = Byz, where € F. By Proposition 4.1,

ey’ = 2(e1y)y = 2(y + 2)y = 2y° + 2yz = 2yz,
whence yz = 0. Thus, 22 = yz = 0. Therefore, zz # 0, since otherwise (z) is an ideal of

A. We may assume that zz = e;.
Since % = Be; with 8 € F; therefore, by Proposition 4.1 we have

err? = 2(e1x)r = 20* + 2xy = 2Be,
whence xy = 0. Then,

0=ei(zy) = (e12)y + z(ery) =2zxy +y* + 22 = y> + &

by Proposition 4.1. Therefore, y?> = —e;. Consequently, we arrive at (7.2). O
Let F' be a field of characteristic not 2, and let a € F'. Consider a new basis
f 1 0 0 0 e
2
f2 _ 0 { o — —1+a2 +ﬂi €9
f3 0 -1 ai —=of €3
Ja 0 0 =1 o} €4

for A from Example 7.2. Then A has the product of the algebra I¢(0,1,7) with respect
to the basis f17 f27 f37 f4-
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Lemma 7.4. The case ®1 = {«, 8} is impossible.
Proof. Let ®; = {«, f}. Assume that dim A; = 2. Then A; has a basis z, y such that

ax = a(a)x,ay = [(a)y
for all a € Ag. Then Ay = (x? xy,y?). Clearly, 22 # 0 or y* = 0, since dim Ay = 2.

We may suppose that 22 # 0. Let y?> # 0. Then ®; = {2a,23} by Lemma 6.1.
Therefore, Ag(2a) = (x?) , Ag(28) = (y*), and Ag(a + ) =0, i.e., zy = 0. We also have
Ap(2a))Ap(28) = 0 by Lemma 6.1. Moreover, a(y?) = 3(x?) = 0. Then (2% z) is an ideal
of A. Consequently, y? = 0.

Let y> = 0. Then zy # 0. Hence, ®; = {2a,a + 8}, Ag(2a)A¢(a + ) = 0, and
a(zy) = 0, since 2y € Ag(a + ). Therefore, (zy,y) is an ideal of A. Consequently,

Thus, dim A; = 3, and A; has a basis z,y, z. Let A;(a) = (x) and A;(8) = (y, 2).

Assume that z? # 0. Then ®; = {2a}. Therefore,

Consequently, A;(5)A =0, i.e., A1(B) € Anny(A). Since A is simple, Ann;(A) = 0 by
Lemma 2.1. Hence, A;(a)? = 0.
Let Ay(B3)? # 0. Then ®; = {23}. Therefore,

A1<C¥)A1 Q Al(Oé>(A1(B) + Al(Oé)> Q Ao(Oé + B) + A0(20é) = 0.

Consequently, A;(a)A = 0. Hence, A;(3)? = 0.
Then Ay (a)Ai(B) # 0. Therefore, &g = {a + 5}. Let zy # 0. Then xz = yzy, where
v € F. From here we get z(z —vy) = 0. Hence, (z —yy) € Ann;(A), a contradiction. [

Example 7.3. Let &1 = {a, 8,7}, and let all the roots be different. Let Ag = (e1). Then
Ay possesses a basis ey, es, ey such that A has the following multiplication table

6% = 2ej,e169 = €9, €163 = Pes, 164 = (2 - 5)64; (7-3>

6% = €1, €364 = €4€3 = €7,
where B € F, 8 #0,1,2, and all other products are zero.

Proof. Let ®; = {a, 5,7}, and let all the roots be different. Then Ay = (e;). Choose
a basis z,y, z for A; such that

e1r = ax,e1y = Py, e1z = yz.
By Lemma 6.1 we have a, 3,7 # 0.

Let 22 = y? = 22 = 0. Then either zy # 0 or xz # 0, since otherwise xA = 0, which
is a contradiction by Lemma 2.1. We may assume that xy # 0. Hence, 2z = dxy, where
d € F. From here we get x(z — dy) = 0. If yz = 0 then y(z — dy) = z(z — dy) = 0.
Therefore, (z—dy)A = 0; a contradiction by Lemma 2.1. Consequently, yz # 0. Similarly,

xz # 0. Then &y = {a+ S} = {f+ 7} = {a +7}; a contradiction, since all the roots are
different. Therefore, the case 2% = y? = 22 = 0 is impossible.
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Let 22 # 0. Then ®) = {2a} and e¢? = 2ae;. Therefore, y* = zy = vz = 22 = 0, since
all the roots are different. Moreover, we may assume that 22 = e;. In this case, yz = de;,
where § € F' and § # 0, since otherwise (y) is an ideal of A. Therefore, we may suppose
that yz = e;. Then 2o = f + 7, since yz € Ag(f + ). Since a # 0; therefore, we may
assume that o = 1. Hence, 2 = § + . Put es = z,e5 = y,e4 = z. Then we arrive at

(7.3). O
Let F be a field of characteristic not 2. Consider a new basis
fi 10 0 O eq
fo o1 0 O €9
f3 o 0 0 _Z % 63
fa 00 1 3 €4

for A from Example 7.3. Then A has the product of 1¢(0,0,i(1 — 3)) with respect to the
basis fla f27 f37 f4-

Finally, we collect the results obtained in this section in the following

Theorem 7.1. Let A be a four-dimensional algebra in A over an algebraically closed field
of characteristic not 2. Then A is isomorphic to one of the algebras (7.1) — (7.3).

8. On algebras in A, whose even part is either simple or zero-product

8.1. Simplicity conditions. Let A = Ay® A; be a Zy-graded algebra such that A; Ay =
0, Ag and A; are commutative, and Ag is associative. Denote the class of such algebras
by B. The following lemma is immediate.

Lemma 8.1. Let A= Ay ® Ay € B. Then A is left-symmetric if and only if
azy) = (az)y +2(ay), a(be) = b(az)
hold for all a,b € Ay and z,y € A;.

Lemma 8.2. Let A = Ay & Ay € B be left-symmetric. Then A is simple if and only
if Ag = A2, Ay = AgAy, Ay lacks proper ideals I such that (IA1)A; C I, and Ay lacks
proper ideals of A.

Proof. Let A be simple. Since A2 <A and A? = A2 + AgA; + A2, we have A} = AgA;.
If A? # Ag then A? + A, is a proper right ideal of A, which is impossible. Let I be an
ideal of Ay such that (IA;)A; C I. Tt is easy to see that [ + I A; is a right ideal of A.
Therefore, Ay lacks proper ideals I such that (IA;)A; C I. Obviously, A; lacks proper
ideals of A.

Conversely, assume that I is an ideal of A. Let I, be the projection of I on Ay,
k=1,2. Then I C Iy + I, and IyAg C Iy, whence I is an ideal of Agy. Since (IpA;)A; C
Iy; therefore, either Iy = 0 or Iy = Ay. If Iy = 0 then I; is an ideal of A, whence
[1 =0. If [0 = AO then Al = AOAI - [1, whence [1 = Al- NOW, since AlAl = AO and
Aq(ly+ 1) C I, we have Ay C I, whence I = A. O
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Put Ap(a) := Aj(a)Ai(—a) for every a € ®;. We say that A;(«) is nondegener-
ate if for every z, € Aj(a) there is z_, € A;(—a) such that z° = z,x_, # 0. Put
Ao(oa, ..., a5) == >7  Ag(a;). We say that @, is nondegenerate if A;(a) is nondegen-
erate for every a € ®;, and ®; possesses a chain property provided that it is nonde-

generate and for every a; € ®; there is a chain of roots as,...,ar € ®; such that
asi1(Ao(ag, ... a5)) #0foralls=1,...,k—1and Ag(ay,...,ar) = Ap. The number n
of linearly independent roots of ®; is the rank of ®;. The chain ay, ..., ay is a CP-system

or an aj-system, and s is its length. Denote by C the class of left-symmetric algebras in
B such that AO = A% and Al = A()Al.

Proposition 8.1. Let A = Ag @ Ay be a left-symmetric algebra in C with a nilpotent
subalgebra Ay of dimension n such that the action of Ay on Ay is diagonalizable. Then A
1s simple if and only if ®1 is a root system of rank n with the chain property.

Proof. Let A be simple. If there are no n linearly independent roots in ®; then
I:=NKera; #0. Since a(r, - 7o) = 0 for every a € I by (4.3) and Ag = ) ¢, Ao();
therefore, aAy = 0 and I < A. Take a; € ®;. Then A;(ay) is nondegenerate, since
otherwise if xA;(—a;) = 0 for some = € Aj(ay) then (z) is a right ideal of A, which is
impossible.

Take z € Ag(ay). Then for every a € ®; we have (7 -x,)7_o = a(z)2?. If a(z) = 0 for
all @ € &1\ {1} then we may apply Lemma 8.2 to Iy = Ag(c;). Thus, either Ag(ay) = Ay
or there is ag € ®1\{ay} such that as(x) # 0 and as(Ag(y)) # 0. Continuing this process
we arrive at the assertion of the lemma.

Conversely, assume that ®; is a root system of rank n with a chain property. Consider
a nonzero ideal I of A. If y = a + ZV@I z, € I with some z, # 0 then there is h € Ay
such that a(h) # 0, whence hy = ha+ >~ 4 v(R)xy € I, yh = ah = ha € I. Therefore,
we may assume that :Eg €. If y=a €I then a(a) # 0 for some a € ®, whence x, € [
and 22 € I. Thus, we may suppose that 22 € I for some oy € ®;. Take a such that
as(2? ) # 0. Then 29 x4, = as(2d )za, € I, whence Ag(az) C I. From here we may
assume initially that Ag(cy) € I. Continuing this process we arrive at the assertion of
the lemma. [

In the case of an arbitrary even part, we can prove an analogous statement, modifying

the definition of Ag(«) by
Ao(Oé,B) = AI(Q)AI(B)

We say that A;(«) is nondegenerate provided that for every z, € A;(a) there is x5 €
Ay(B) such that z,x5 # 0 (5 is a companion for «). Put Ag(a,f1,...,as, Bs) =
>oi_ Ao(ey, B;). We say that @, possesses a chain property provided that it is nondegener-
ate and for every pair aq, 81 € ®; there is a chain of roots as, fs, . . ., g, Br € P such that
Oés+1(A0(()é1, 51, o, O, 53» % 0 for all s = 1, ce k — 1 and Ao(Oél, 61, vy Oy ﬁk) = Ao,

where [; is a companion for «;.

Lemma 8.3. Let A = Ay @ Ay be a left-symmetric algebra in C with Ay of dimension n
such that the action of Ay on Ay is diagonalizable. Then A is simple if and only if ®, is
a root system of rank n with the chain property.
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Proof repeats one of Proposition 8.1. ([l

The following lemma and the examples below show the immensity of the class of alge-
bras, satisfying the hypothesis of Proposition 8.1.

Lemma 8.4. Let A= Ag@ A, € A, and let Ay be zero-product. Assume that Ay acts diag-
onally on Ay, dim Ay = n, and &1 = £{ay, ..., a,} consists of 2n roots, where ay, ..., ay,
are linearly independent. Let dim Ag(a) := 1 for all « € ®1. Then dim Ai(cy) =

dim Ay (—a;) = k; € N, Ay(ay) = <:cgf) cj=1,.. .,ki> for everyi=1,...,n, and

A= A(] D Z Al(Oél‘)

a; €Pq

with the following nonzero products

xg)x(j) — V) 20) = a; € Ao, aa:g) = oci(a)x(j)

foralla € Ay, a; € ®1,5 =1,..., k. In particular, dim A =n+2%""  k; > 3n.

Proof. By Proposition 8.1, the rank of ®; is n, and A;(«;) is nondegenerate for every
i = 1,...,n. Consider A;(a;). Assume that dim Ai(ay) # dim A;(—cay). Without
loss of generality, we may suppose that dim A;(aq) = k + 1, dim Ayj(—ay) = k. Let
Ai(oq) = (21, ... 1), A1(—aq) = (y1, ..., yk). Changing a base if needed, it is easy to
see that we may assume ;- y; = 6;;a1 for all 4,7 = 1,..., k, where §;; is Kronecker’s delta.
Let z511 - y; = ;a1 for some v; € F and for all e = 1,..., k. Then z := x5, — Zle Vi
satisfies = - A;(—ay) = 0, whence () is a right ideal of A. Therefore, dim A;(a;) =
ki = dim A;(—ay), and the product between A;(«;) and A;(—aq) satisfies the mentioned
relations. O

8.2. Examples of CP-systems. Note that the union of some systems with the chain
property is a system with the chain property. A CP-system « := {ay, ..., a,,} is minimal
if {o,...,am} \ {a;} is not a CP-system for every i = 1,...,m, a is invariant if £« is
a system with the chain property, and « is a base if it is minimal and invariant. Clearly,
every system with the chain property contains a base. Obviously, if a nondegenerate
system of roots I' contains a base then I' is a system with the chain property.

In what follows, {6;} is a dual basis for {e;}.
Example 8.1. Consider a cyclic system: o;(Ao(ci—1)) # 0, ai1(Ao(am)) # 0, 1 =

2,...,m. Write explicitly a minimal invariant CP-system of rank n, which is cyclic:
AQ((Sz) €1 | €2 | €3] ... €n
0; On | 01|02 | ... | Opt

The importance of cyclic systems is obvious. Every nondegenerate root system, which
contains a cyclic subsystem of rank n, is a system with the chain property. It is easy to
show, for example, that every system with the chain property of rank 2 contains a cyclic
subsystem of rank 2. Notice that it is easy to construct CP-systems with the root spaces
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Aj(a) and A;(—a) of distinct dimensions. Also, one may construct a base of rank n and
length greater than n.

Example 8.2. Give an example of a minimal invariant CP-system of rank n and length

n + 1 with n linearly independent roots a;, 1 =1,...,n:
A(](Oéi> €1 | €1 | €2 | ... | Ep_1 €En
o ap |loag las | ... | o, | 20

a; = 01+ ...+ 0;. Note that this system is embedded into a cyclic system or it may be
rewritten as a cyclic system: 2oy, Q. . ., Q.

The following lemma is obvious.

Lemma 8.5. Let A be a left-symmetric algebra in C with a nilpotent subalgebra Ay of
dimension n and a nondegenerate root system ®1. Fixz a set I' of n linearly independent
roots in ®1. Then ®q is a system with the chain property if and only if for every v € T’
there is a y-system in ;.

Note that the condition of diagonality of the action of Aq is essential for existence of
a system of rank n if dim Ay = n. Show, for example, existence of algebras in A with a
zero-product even part Ay of an arbitrary dimension and of rank 1 (in this case the action
of A is not diagonal).

Let Ay = (uy, ..., ug), Ao ={(v1,...,0s). Let A:= Ay ® A, ® A_, and the action of
Ag be the following

au; = aa)u; + uip, aup = a(a)ug, av; = —a(a)v; + viy1, avs = —a(a)vs.

It is easy to see that b(av) = a(bv) for all a,b € Ay, v € A;. Then from 0 = a(u;vs) =
(a(a)u; + w1 )vs — a(a)uvs we get u; v, = 0 for all i # k. Analogously, v;qur, = 0 for
all 7 # s. From

0 = a(uv;) = (a(@)u; + uip1)v; + wi(—ala)v; + vj)

we obtain u;1v;4+uvj41 = 0 foralli # k, j # s. Thus, upv; = up—s1vs = 0if £ > s, and
A is not simple. Further, assume that £ = s. From the obtained equalities we also see that
Ag # AnA_, if k < n. Thus, we assume that k =n, Ag = A, A, = (vju; i =1,...,n).
Finally, we have to require a(viu,) # 0 for the simplicity. Now, we may apply Lemma
8.2 to A in order to prove the simplicity of A. Thus, we have proved the following

Lemma 8.6. Let A= Ay® A, P A_, be as above with dim A, = dim A_, = dim Ay = n,
and a(viuy,) # 0. Then A € A.

8.3. On algebras in A with a simple even part. In this subsection we assume A
to be simple, whence dim Ay = 1 and Ap coincides with the main field F. In what
follows, for simplicity we assume F' to be algebraically closed. First, we suppose that
Ay acts diagonally on A;. We say that A;(a) and A;(1 — «) are dual provided that
Ai(a) = <x8), e ,x&k)>, Ai(l—a) = <x§12a, . ,q;gli)a>, and only the following products
aP x@a =1= x@a -2 are nonzero for all i = 1,... k.
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Lemma 8.7. Let A = Ay ® A1 € A, let Ay be simple, and let Ay act diagonally on A;.
Then one of the followmg cases holds

a;éz

A = FoAQR)o)Y (Ala)®A(l-a),
a;é2

where dim Ay(a) = dim A1(1 — «) for every a € &1, and Ai(«) and A;(1 — «) are dual.
Conversely, every such algebra belongs to A.

Proof. Notice that the left-symmetry of A follows from Lemma 8.1 and the fact that
the action of Ay is diagonal. Under hypothesis of the lemma, Ay possesses the unique
root 1. For every root o on A; there is a unique root 5 on A; such that a + =1 and
Ay (a)A;(B) = F. Thus, in this case we arrive at the algebra structure from the assertion
of the lemma. In this case dim A;(a) = dim A;(1 — «) and the dual bases for A;(a) and
A;(1 — ) may be chosen as in Lemma 8.4. The converse statement follows immediately
from Lemmas 8.1 and 8.2. 0

Let A= Ag®A, 1= AT, € A, let Ay = (e) be simple, and let Ay act on Ay = (71,...,2,)
as follows:
e, =ar; +xi1, t=1,....,n—1, e-z, = ax,.

1
We say that w,, is a minimal vector and z; is a mazrimal vector for AT, . Denote A7,
by Ai,. In what follows, we say that an algebra A € C is degenerate if its odd part A;
contains a degenerate root subspace.

Lemma 8.8. The algebra A, ,, has the following product:

ri-x; = 0 ifi+7>n+1,
zi-x; = 0 ifi—j =1 (mod?2),
ziox; = (—1) (i) z%,,  otherwise.

2
In the case n = 2k, the algebra A; o is degenerate. In the case n = 2k + 1, the algebra
A ok41 is nondegenerate if and only if x7,, # 0.

Proof. Since ea = a for every a € Ay; therefore, by (4.3) for all i, j # n we have

zi- @y = e (@ 25) = (2 + Tir1)25 + 2a(525 + Tj),

Ti - Tjy1 + Tigq - x5 =0, (8.1)
iy =€ (1 x,) = (%xz + xi1)T, + %[El$n),

Tiy1 X, =0, (8.2)

whence z;2,41 = 0 for all ¢ # n and z; - z; =0if i+ j > n+ 1. Now, applying (8.1) we
see that ;- 2; =0if i —j =1 (mod2), and z; - z; = (—1)(22 )x(zﬂ) otherwise.
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In the case n = 2k the algebra A; o is degenerate, since z; - x,, = 0 for all 7. Show that
in the case n = 2k+1 the algebra A; o541 is nondegenerate if and only if 27, ; # 0. Indeed,
if Ay 9541 is nondegenerate then z1z, =, xiﬂ # 0. Conversely, if (Z?Zl a;z;)x = 0 for all
x then we obtain aq, ..., «a, = 0 putting consequentially x = x,,, z,_1,..., 2. 0]

Thus, to define the product in A;, we have to put 2? = S;e for some ; € F and for
allizl,...,["T“].
Assume that Af, and Aim possess a common even part Ay = (), AT, = (e, 71,...,7,),

and Aim = (€, Y15 Ym)-

Lemma 8.9. Let o, § # % The algebra AT, + Af’m has nonzero product of odd elements
only in the case a+ = 1. The product in A, + AP s such that

1,m
Yj1 - Ti T Yj - Tiv1 = 0, (8.3)
Yj4+1 - Tn = 0, Ym xipz1 =0 (8-4)

for all j # m,i #n. In particular, AT, + Aim 1s nondegenerate if and only if n = m and
Tnyr # 0.

Proof. Obviously, a + 5 = 1. Since ea = a for every a € Ay; therefore, by (4.3) for all
1 #n,j #m we have

ri-y; = e (- y;) = (aw + 2i41)y; + 2By + yj41),
T - Yjp1 + Tipr - Y5 =0,
T Ym = € (Ti * Ym) = (QTi + Tig1)Ym + BTiYrm,
Tn - Yy =€ (T Yj) = axny; + 2n(BY; + Yj1),
Tit1 " Ym = 0, Ty * yj-i-l =0.
Prove the non-degeneracy assertion. If n > m then
YTp =2 -+ =2 YmTn—m+1 = 07
whence :EnAf’m = 0. Thus, m =n and z,y; # 0. O]

Proposition 8.2. Let A = Ay® Ay be a nondegenerate finite-dimensional left-symmetric
algebra in C with the simple even part Ag acting non-diagonally on A,. Then

A= Al
iel
where the product is coordinated by the equalities (8.1) — (8.4). Let ey,...,e, be some
linearly independent set of minimal vectors of all AY, for every fived o € ®; and k € N,
and let fi,..., f, be the corresponding set of mazimal vectors in Aﬂa. Let e; - f; = yise.

The algebra A is simple if and only if the matriz I'y(c) := (745) is nondegenerate for all
such k and o.
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Proof. We need to prove only the simplicity condition, which is equivalent to the
non-degeneracy condition. Note that zA = 0 implies (ex)A = 0 by Lemma 2.1. Thus, if
r =) x, € Anny(A) then we may assume that every z, is a minimal vector for some fixed
root co. Furthermore, we may assume that x, has a fixed length £, since only the minimal
vectors of length k may give nonzero products with the corresponding maximal vectors
of length k. Thus, > 1" | ase; € Anny(A), i.e., (31, ase;)f; = 0 for all j. Considering
these equalities as a linear system with respect to «;, we see that this system possesses a
nontrivial solution if and only if I'y(«) = (i;) is degenerate. O

Remark 8.1. A similar assertion may be stated and proved for the algebras in A with a
zero-product even part Ay acting non-diagonally on Ay. In this case we have to modify
the condition on I'y(a) = (e; - f;) € My(Ap), considering I'y(a) as a linear operator from
Fy to Ay with the usual right action. Thus, we have to require the non-degeneracy of this
operator. Also, some non-degeneracy conditions for the set of roots should be required.

8.4. On algebras in A with an arbitrary even part. In this subsection we firstly
give an easy example of a simple left-symmetric algebra A in A such that its even part Ay
is the direct sum of a simple subalgebra S and a zero-product ideal N, i.e., Ag=S@ N,
and the action of N on A; is not diagonal. To this end we put

S={e), N={(a), Ay =V, ®V,,, Vo, ={v1,v}, Vi, = {u1,us},

and define nonzero product on A = Ay @ A; by the table

ev; = Qu; eu; = (1 — @)u; | viug = fe+va
avy = puy + Vg | aup = —puq + U | ViU = da
vy = PUy Aty = —Pus vouy = (B —0)a

where a, 5,7,0,p € F, a # %, p, 3,0 #0, B # . We see that
ajle) =a|ae)=1—a
ai(a) =p | as(a) = —p

Applying Lemmas 8.1 and 8.2, we infer that A is a simple left-symmetric algebra.

Proposition 8.3. Let k be the maximal order of Jordan blocks for L, on Ay, where a
ranges over Ag. Assume that Ay is nilpotent. Then L2~ =0 on Ay for every a € A,
Ay is a nil-algebra of index < 2k, and Ay is nilpotent of index < 4k*. In particular, if Ay
acts on Ay diagonally then Aq is zero-product. If Ay = S @ N, where S is a semisimple
subalgebra and N is a nilpotent ideal, then the nilpotency index of N is bounded by 4k?.

Proof. Take a € Ay, a € ;. Without loss of generality, we may assume that A, =
(uy,...,ug) and A_, = (v1,...,vs) are some Jordan blocks with respect to L., s < k.
Then from

a(uv;) = (ala)u; + wip1)vj + ui(—ala)v; +vj), t #k, j#s,
a(urvs) = (ala)ug)vs — ala)ugvs =0
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we have u;v; kg UV + UV e UV, + 22Uy + UV3 e ...0, and L?*' = 0 on 4y. In
particular, if Ay acts diagonally then £ = 1 and L, = 0 on Ay, i.e., Ag is zero-product.
By Razmyslov’s theorem, A is nilpotent of index < 4k2.

In the case when Ay = S @ N, where S is a semisimple subalgebra and N is a nilpotent
ideal, we proceed analogously. Take some Jordan blocks U = (uy,...,ux) € A, and
V = (v1,...,vs) € Ag of A;. Then from

a(uvy) = (ala)u; + ugr)vy +wi(B(a)v; +vj41), i £k, j# s,
a(upvs) = (a4 B)(a)ugvs

for every a € N we have (o + 5)(a) = 0, since N is nilpotent. Proceeding by analogy
with the previous case, we arrive at the required assertion. 0
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