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VERONESE SUBALGEBRAS AND VERONESE MORPHISMS FOR A CLASS OF

YANG-BAXTER ALGEBRAS

TATIANA GATEVA-IVANOVA

Abstract. We study d-Veronese subalgebras A(d) of quadratic algebras AX = A(k, X, r) related to

finite nondegenerate involutive set-theoretic solutions (X, r) of the Yang-Baxter equation, where k is

a field and d ≥ 2 is an integer. We find an explicit presentation of the d-Veronese A(d) in terms

of one-generators and quadratic relations. We introduce the notion of a d-Veronese solution (Y, rY ),

canonically associated to (X, r) and use its Yang-Baxter algebra AY = A(k, Y, rY ) to define a Veronese

morphism vn,d : AY → AX . We prove that the image of vn,d is the d-Veronese subalgebra A(d), and

find explicitly a minimal set of generators for its kernel. The results agree with their classical analogues

in the commutative case, which corresponds to the case when (X, r) is the trivial solution. Finally, we

show that the Yang-Baxter algebra A(k, X, r) is a PBW algebra if and only if (X, r) is a square-free

solution. In this case the d-Veronese A(d) is also a PBW algebra.

1. Introduction

It was established in the last three decades that solutions of the linear braid or Yang-Baxter equations

(YBE)

r12r23r12 = r23r12r23

on a vector space of the form V ⊗3 lead to remarkable algebraic structures. Here r : V ⊗ V −→ V ⊗ V,
r12 = r ⊗ id, r23 = id ⊗ r is a notation and structures include coquasitriangular bialgebras A(r), their

quantum group (Hopf algebra) quotients, quantum planes and associated objects, at least in the case of

specific standard solutions, see [?, ?]. On the other hand, the variety of all solutions on vector spaces

of a given dimension has remained rather elusive in any degree of generality. It was proposed by V.G.

Drinfeld [?], to consider the same equations in the category of sets, and in this setting numerous results

were found. It is clear that a set-theoretic solution extends to a linear one, but more important than

this is that set-theoretic solutions lead to their own remarkable algebraic and combinatoric structures,

only somewhat analogous to quantum group constructions. In the present paper we continue our study

of set-theoretic solutions and the associated quadratic algebras and monoids that they generate.

In this paper ”a solution” means ”a nondegenerate involutive set-theoretic solution of YBE”, see

Definition ??.

The Yang-Baxter algebras AX = A(k, X, r) related to solutions (X, r) of finite order n will play a

central role in the paper. It was proven in [?] and [?] that these are quadratic algebras with remarkable

algebraic, homological and combinatorial properties: they are noncommutative, but preserve the good

properties of the commutative polynomial rings k[x1, · · · , xn]. Each such an algebra AX has finite global

dimension and polynomial growth, it is Koszul and a Noetherian domain. In the special case when (X, r)

is square-free, AX is a PBW algebra (has a basis of Poincaré-Birkhoff-Witt type) with respect to some

enumeration X = {x1, . . . , xn}, of X. More precisely, AX is a binomial skew polynomial ring in the sense

of [?] which implies its good combinatorial and computational properties (the use of noncommutative

Gröbner bases). Conversely, every binomial skew polynomial ring in the sense of [?] defines via its

quadratic relations a square-free solutions (X, r) of YBE. The algebras AX = A(k, X, r) associated

to multipermutation (square-free) solutions of level two were stdudied in [?], we referred to them as
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’quantum spaces’. In this special case a first stage of noncommutative geometry on AX = A(k, X, r)

was proposed, see [?], Section 6. It will be interesting to find more analogues coming from commutative

algebra and algebraic geometry.

Given a finitely presented quadratic algebra A it is a classical problem to find presentations of its

Veronese subalgebras in terms of generators and relations. This problem was solved in [?] for a class of

particular quadratic PBW algebra called ”noncommutative projective spaces”, and analogues of Veronese

morphisms between noncommutative projective spaces were introduced and studied. In the present paper

we consider the following problem.

Problem 1.1. (1) Given a finite nondegenerate symmetric set (X, r) of order n and an integer

d ≥ 2, find a presentation of the d-Veronese A(d) of the Yang-Baxter algebra A = A(k, X, r) in

terms of one-generators and quadratic relations.

(2) Introduce analogues of Veronese maps for the class of Yang-Baxter algebras of finite nondegen-

erate symmetric sets. In particular, study the special case when (X, r) is a square-free solution.

The problem is solved completely. Our approach is entirely algebraic and combinatorial. Our main

results are Theorem ??, Theorem ?? and Theorem ??. Theorem ?? shows that the Yang-Baxter algebra

AX = A(k, X, r) of a finite solution (X, r) is PBW if and only if (X, r) is a square-free solution.

In Theorem ?? we find a presentation of the d-Veronese A(d) in terms of explicit one-generators and

quadratic relations. We introduce an analogue of Veronese morphisms for quantum spaces related to

finite nondegenerate symmetric sets. Theorem ?? shows that the image of the Veronese map vn,d is the

d-Veronese subalgebra A(d)
X and describes explicitly a minimal set of generators for its kernel. Moreover,

it follows from Theorem ?? and Corollary ?? that analogues of Veronese morphisms between Yang-Baxter

algebras related to square-free solutions are not possible.

The paper is organized as follows. In Section 2 we recall basic definitions and facts used throughout

the paper. In Section ?? we consider the quadratic algebra A(k, X, r) of a finite nondegenerate symmetric

set (X, r). We fix the main settings and conventions and collect some of the most important properties of

the Yang-Baxter algebras AX = A(k, X, r) used throughout the paper. We prove one of the main results

of the paper Theorem ??. Proposition ?? gives more information on a special case of PBW quadratic

algebras. In Section ?? we study the d-Veronese A(d) of AX = A(k, X, r). We use the fact that the

algebra A and its Veronese subalgebras are intimately connected with the braided monoid S(X, r).

To solve the main problem we introduce successively three isomorphic solutions associated naturally to

(X, r), and involved in the proof of our results. The first and the most natural of the three is the monomial

d-Veronese solution (Sd, rd) associated with (X, r). It is induced from the graded braided monoid (S, rS)

and depends only on the map r and on d. The monomial d-Veronese solution is intimately connected with

the d-Veronese A(d) and its quadratic relations, but it is not convenient for an explicit description of the

relations. We define the normalized d-Veronese solution (Nd, ρd) isomorphic to (Sd, rd), see Definition

??, we use it to describe the relations of the d-Veronese A(d) and prove Theorem ??. In Section ?? we

introduce and study analogues of Veronese maps between Yang-Baxter algebras of finite solutions and

prove Theorem ??. In Section ?? we consider two special cases of solutions. We consider Yang-Baxter

algebras A(k, X, r) of square-free solutions (X, r) and their Veronese subalgebras. In this case A is a

binomial skew polynomial ring and has an explicit k- basis- the set of ordered monomials (terms) in n

variables. Then for every d ≥ 2 the d-Veronese subalgebra A(d) is also a PBW algebra with an explicitly

given standard finite presentation in terms of generators and quadratic relations, see Corollary ??. The

important result in this section is Theorem ?? which shows that if (X, r) is a finite square-free solution

and d ≥ 2, then the monomial d-Veronese solution (Sd, rd) is square-free if and only if (X, r) is a trivial

solution. This implies that the notion of Veronese morphisms for the class of Yang-Baxter algebras of

finite solutions can not be restricted to the subclass of algebras associated to finite square-free solutions.

Finally we consider the particular case when (X, r) is a finite permutation solution. In Section ?? we

present two examples which illustrate the results of the paper.
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2. Preliminaries

Let X be a non-empty set, and let k be a field. We denote by 〈X〉 the free monoid generated by

X, where the unit is the empty word denoted by 1, and by k〈X〉-the unital free associative k-algebra

generated by X. For a non-empty set F ⊆ k〈X〉, (F ) denotes the two sided ideal of k〈X〉 generated

by F . When the set X is finite, with |X| = n, and ordered, we write X = {x1, . . . , xn}, and fix the

degree-lexicographic order < on 〈X〉, where we set x1 < · · · < xn. As usual, N denotes the set of all

positive integers, and N0 is the set of all non-negative integers.

We shall consider associative graded k-algebras. Suppose A =
⊕

m∈N0
Am is a graded k-algebra such

that A0 = k, ApAq ⊆ Ap+q, p, q ∈ N0, and such that A is finitely generated by elements of positive

degree. Recall that its Hilbert function is hA(m) = dimAm and its Hilbert series is the formal series

HA(t) =
∑
m∈N0

hA(m)tm. In particular, the algebra k[Xn] of commutative polynomials satisfies

hk[Xn](d) =

(
n+ d− 1

d

)
=

(
n+ d− 1

n− 1

)
and Hk[Xn] =

1

(1− t)n
. (2.1)

We shall use the natural grading by length on the free associative algebra k〈X〉. For m ≥ 1, Xm will

denote the set of all words of length m in 〈X〉, where the length of u = xi1 · · ·xim ∈ Xm will be denoted

by |u| = m. Then

〈X〉 =
⊔
m∈N0

Xm, X0 = {1}, and XkXm ⊆ Xk+m,

so the free monoid 〈X〉 is naturally graded by length.

Similarly, the free associative algebra k〈X〉 is also graded by length:

k〈X〉 =
⊕
m∈N0

k〈X〉m, where k〈X〉m = kXm.

A polynomial f ∈ k〈X〉 is homogeneous of degree m if f ∈ kXm. We denote by

T = T (X) := {xα1
1 · · ·xαn

n ∈ 〈X〉 | αi ∈ N0, i ∈ {1, . . . , n}}

the set of ordered monomials (terms) in 〈X〉 and by

Td = T (X)d :=

{
xα1
1 · · ·xαn

n ∈ T |
n∑
i=1

αi = d

}
the set of ordered monomials of length d. It is well known that the cardinality |T (X)d| is given by the

Hilbert function hk[X](d) of the (commutative) polynomial ring in the variables x1, · · · , xn:

|T (X)d| =
(
n+ d− 1

n− 1

)
= hk[X](d). (2.2)

2.1. Gröbner bases for ideals in the free associative algebra. In this subsection X = {x1, . . . , xn}.
Suppose f ∈ k〈X〉 is a nonzero polynomial. Its leading monomial with respect to the degree-lexicographic

order < will be denoted by LM(f). One has LM(f) = u if f = cu+
∑

1≤i≤m ciui, where c, ci ∈ k, c 6= 0

and u > ui in 〈X〉, for every i ∈ {1, . . . ,m}. Given a set F ⊆ k〈X〉 of non-commutative polynomials,

LM(F ) denotes the set

LM(F ) = {LM(f) | f ∈ F}.
A monomial u ∈ 〈X〉 is normal modulo F if it does not contain any of the monomials LM(f), f ∈ F as

a subword. The set of all normal monomials modulo F is denoted by N(F ).

Let I be a two sided graded ideal in K〈X〉 and let Im = I∩kXm. We shall assume that I is generated

by homogeneous polynomials of degree ≥ 2 and I =
⊕

m≥2 Im. Then the quotient algebra A = k〈X〉/I is

finitely generated and inherits its grading A =
⊕

m∈N0
Am from k〈X〉. We shall work with the so-called

normal k-basis of A. We say that a monomial u ∈ 〈X〉 is normal modulo I if it is normal modulo LM(I).

We set

N(I) := N(LM(I)).

In particular, the free monoid 〈X〉 splits as a disjoint union

〈X〉 = N(I) t LM(I). (2.3)
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The free associative algebra k〈X〉 splits as a direct sum of k-vector subspaces

k〈X〉 ' SpankN(I)⊕ I,

and there is an isomorphism of vector spaces A ' SpankN(I).

It follows that every f ∈ k〈X〉 can be written uniquely as f = h + f0, where h ∈ I and f0 ∈ kN(I).

The element f0 is called the normal form of f (modulo I) and denoted by Nor(f) We define

N(I)m = {u ∈ N(I) | u has length m}.

Then Am ' SpankN(I)m for every m ∈ N0.

A subset G ⊆ I of monic polynomials is a Gröbner basis of I (with respect to the ordering <) if

(1) G generates I as a two-sided ideal, and

(2) for every f ∈ I there exists g ∈ G such that LM(g) is a subword of LM(f), that is LM(f) =

aLM(g)b, for some a, b ∈ 〈X〉.
A Gröbner basis G of I is reduced if (i) the set G \ {f} is not a Gröbner basis of I, whenever f ∈ G; (ii)

each f ∈ G is a linear combination of normal monomials modulo G \ {f}.
It is well-known that every ideal I of k〈X〉 has a unique reduced Gröbner basis G0 = G0(I) with

respect to <. However, G0 may be infinite. For more details, we refer the reader to [?, ?, ?].

The set of leading monomials of the reduced Gröbner basis G0 = G0(I)

W = {LM(f) | f ∈ G0(I)} (2.4)

is also called the set of obstructions for A = k〈X〉/I, in the sense of Anick, [?]. There are equalities of

sets N(I) = N(G0) = N(W ).

Bergman’s Diamond lemma [?, Theorem 1.2] implies the following.

Remark 2.1. Let G ⊂ k〈X〉 be a set of noncommutative polynomials. Let I = (G) and let A = k〈X〉/I.
Then the following conditions are equivalent.

(1) The set G is a Gröbner basis of I.

(2) Every element f ∈ k〈X〉 has a unique normal form modulo G, denoted by NorG(f).

(3) There is an equality N(G) = N(I), so there is an isomorphism of vector spaces

k〈X〉 ' I ⊕ kN(G).

(4) The image of N(G) in A is a k-basis of A. In this case A can be identified with the k-vector

space kN(G), made a k-algebra by the multiplication a • b := Nor(ab).

In this paper, we focus on a class of quadratic finitely presented algebras A associated with set-

theoretic nondegenerate involutive solutions (X, r) of finite order n. Following Yuri Manin, [?], we call

them Yang-Baxter algebras.

2.2. Quadratic algebras. A quadratic algebra is an associative graded algebra A =
⊕

i≥0Ai over a

ground field k determined by a vector space of generators V = A1 and a subspace of homogeneous

quadratic relations R = R(A) ⊂ V ⊗ V. We assume that A is finitely generated, so dimA1 < ∞. Thus

A = T (V )/(R) inherits its grading from the tensor algebra T (V ).

Following the classical tradition (and a recent trend), we take a combinatorial approach to study A.

The properties of A will be read off a presentation A = k〈X〉/(<), where by convention X is a fixed

finite set of generators of degree 1, |X| = n, and (<) is the two-sided ideal of relations, generated by a

finite set < of homogeneous polynomials of degree two.

Definition 2.2. A quadratic algebra A is a Poincarè–Birkhoff–Witt type algebra or shortly a PBW

algebra if there exists an enumeration X = {x1, · · · , xn} of X, such that the quadratic relations < form

a (noncommutative) Gröbner basis with respect to the degree-lexicographic ordering < on 〈X〉. In this

case the set of normal monomials (mod <) forms a k-basis of A called a PBW basis and x1, · · · , xn
(taken exactly with this enumeration) are called PBW-generators of A.

4



The notion of a PBW algebra was introduced by Priddy, [?]. His PBW basis is a generalization of

the classical Poincaré-Birkhoff-Witt basis for the universal enveloping of a finite dimensional Lie algebra.

PBW algebras form an important class of Koszul algebras. The interested reader can find information

on quadratic algebras and, in particular, on Koszul algebras and PBW algebras in [?]. A special class of

PBW algebras important for this paper, are the binomial skew polynomial rings.

The binomial skew polynomial rings were introduced by the author in [?], initially they were called

”skew polynomial rings with binomial relations”. They form a class of quadratic PBW algebras with

remarkable properties: they are noncommutative, but preserve the good algebraic and homological

properties of the commutative polynomial rings k[x1, · · · , xn], each such an algebra A is a Noetherian

Artin-Schelter regular domain, it is Koszul. Moreover, each skew polynomial ring defines via its relation

a solution of the Yang-Baxter equation, see [?], [?], and Fact ??. We recall the definition.

Definition 2.3. [?, ?] A binomial skew polynomial ring is a quadratic algebra A = k〈x1, · · · , xn〉/(<0)

with precisely
(
n
2

)
defining relations

<0 = {fji = xjxi − cijxi′xj′ | 1 ≤ i < j ≤ n} (2.5)

such that (a) cij ∈ k×; (b) For every pair i, j, 1 ≤ i < j ≤ n, the relation xjxi − cijxi′xj′ ∈ <0, satisfies

j > i′, i′ < j′; (c) Every ordered monomial xixj , with 1 ≤ i < j ≤ n occurs (as a second term) in

some relation in <0; (d) <0 is the reduced Gröbner basis of the two-sided ideal (<0), with respect to the

degree-lexicographic order < on 〈X〉, or equivalently the overlaps xkxjxi, with k > j > i do not give rise

to new relations in A.

Note that the leading monomial of each relation in (??) satisfy

LM(fji) = xjxi, 1 ≤ i < j ≤ n,

so a monomial u is normal modulo the relations <0 if and only if u ∈ T .

Example 2.4. Let A = k〈x1, x2, x3, x4〉/(<0), where

<0 = {x4x2 − x1x3, x4x1 − x2x3, x3x2 − x1x4, x3x1 − x2x4, x4x3 − x3x4, x2x1 − x1x2}.

The algebra A is a binomial skew-polynomial ring. It is a PBW algebra with PBW generators X =

{x1, x2, x3, x4}. The relations of A define in a natural way a solution of YBE.

2.3. Quadratic sets and their algebraic objects. The notion of a quadratic set was introduced in

[?], see also [?], as a set-theoretic analogue of quadratic algebras.

Definition 2.5. [?] Let X be a nonempty set (possibly infinite) and let r : X × X −→ X × X be a

bijective map. In this case we use notation (X, r) and refer to it as a quadratic set. The image of (x, y)

under r is presented as

r(x, y) = (xy, xy).

This formula defines a “left action” L : X × X −→ X, and a “right action” R : X × X −→ X, on

X as: Lx(y) = xy, Ry(x) = xy, for all x, y ∈ X. (i) (X, r) is non-degenerate, if the maps Lx and

Rx are bijective for each x ∈ X. (ii) (X, r) is involutive if r2 = idX×X . (iii) (X, r) is square-free if

r(x, x) = (x, x) for all x ∈ X. (iv) (X, r) is a set-theoretic solution of the Yang–Baxter equation (YBE)

if the braid relation

r12r23r12 = r23r12r23

holds in X ×X ×X, where r12 = r × idX , and r23 = idX × r. In this case we refer to (X, r) also as a

braided set. (v) A braided set (X, r) with r involutive is called a symmetric set. (vi) A nondegenerate

symmetric set will be called simply a solution.

(X, r) is the trivial solution on X if r(x, y) = (y, x) for all x, y ∈ X.

Remark 2.6. [?] Let (X, r) be quadratic set. Then r obeys the YBE, that is (X, r) is a braided set iff

the following three conditions hold for all x, y, z ∈ X:

l1 : x(yz) =
xy(x

y

z), r1 : (xy)
z

= (x
yz)y

z

, lr3 : (xy)
(x

y
z)

= (x
yz)(yz).

The map r is involutive iff

inv :
xy(xy) = x, and (xy)x

y

= y.
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Convention 2.7. In this paper we shall always assume that (X, r) is nondegenerate. ”A solution”

means ”a non-degenerate symmetric set” (X, r), where X is a set of arbitrary cardinality.

As a notational tool, we shall identify the sets X×m of ordered m-tuples, m ≥ 2, and Xm, the set of

all monomials of length m in the free monoid 〈X〉. Sometimes for simplicity we shall write r(xy) instead

of r(x, y).

Definition 2.8. [?, ?] To each quadratic set (X, r) we associate canonically algebraic objects generated

by X and with quadratic relations < = <(r) naturally determined as

xy = y′x′ ∈ <(r) iff r(x, y) = (y′, x′) and (x, y) 6= (y′, x′) hold in X ×X.

The monoid S = S(X, r) = 〈X; <(r)〉 with a set of generators X and a set of defining relations <(r) is

called the monoid associated with (X, r). The group G = G(X, r) = GX associated with (X, r) is defined

analogously. For an arbitrary fixed field k, the k-algebra associated with (X, r) is defined as

A = A(k, X, r) = k〈X〉/(<0) ' k〈X; <(r)〉, where <0 = {xy − y′x′ | xy = y′x′ ∈ <(r)}.

Clearly, A is a quadratic algebra generated by X and with defining relations <0(r), which is isomorphic

to the monoid algebra kS(X, r). When (X, r) is a solution of YBE, following Yuri Manin, [?], the algebra

A = A(k, X, r) is also called an Yang-Baxter algebra, or shortly YB algebra.

Suppose (X, r) is a finite quadratic set. Then A = A(k, X, r) is a connected graded k-algebra (naturally

graded by length), A =
⊕

i≥0Ai, where A0 = k, and each graded component Ai is finite dimensional.

Moreover, the associated monoid S = S(X, r) is naturally graded by length:

S =
⊔
i≥0

Si, where S0 = 1, S1 = X, Si = {u ∈ S | |u| = i}, Si.Sj ⊆ Si+j . (2.6)

In the sequel, by ”a graded monoid S”, we shall mean that S is generated by S1 = X and graded by

length. The grading of S induces a canonical grading of its monoid algebra kS(X, r). The isomorphism

A ∼= kS(X, r) agrees with the canonical gradings, so there is an isomorphism of vector spaces Am ∼=
SpankSm.

By [?, Proposition 2.3.] If (X, r) is a nondegenerate involutive quadratic set of finite order |X| = n

then the set <(r) consists of precisely
(
n
2

)
quadratic relations. In this case the associated algebra A =

A(k, X, r) satisfies dimA2 =
(
n+1
2

)
.

Remark 2.9. [?] Let (X, r) be an involutive quadratic set, and let S = S(X, r) be the associated

monoid.

(i) By definition, two monomials w,w′ ∈ 〈X〉 are equal in S iff w can be transformed to w′ by a finite

sequence of replacements each of the form

axyb −→ ar(xy)b, where x, y ∈ X, a, b ∈ 〈X〉.

Clearly, every such replacement preserves monomial length, which therefore descends to S(X, r).

Furthermore, replacements coming from the defining relations are possible only on monomials of length

≥ 2, hence X ⊂ S(X, r) is an inclusion. For monomials of length 2, xy = zt holds in S(X, r) iff

zt = r(xy) is an equality of words in X2.

(ii) It is convenient for each m ≥ 2 to refer to the subgroup Dm = Dm(r) of the symmetric group

Sym(Xm) generated concretely by the maps

rii+1 : Xm −→ Xm, rii+1 = idXi−1 × r × idXm−i−1 , i = 1, · · · ,m− 1. (2.7)

One can also consider the free groups

Dm(r) = gr〈rii+1 | i = 1, · · · ,m− 1〉,

where the rii+1 are treated as abstract symbols, as well as various quotients depending on the further

type of r of interest. These free groups and their quotients act on Xm via the actual maps rii+1, so that

the image of Dm(r) in Sym(Xm) is Dm(r). In particular, D2(r) = 〈r〉 ⊂ Sym(X2) is the cyclic group

generated by r. It follows straightforwardly from part (i) that w,w′ ∈ 〈X〉 are equal as words in S(X, r)
6



iff they have the same length, say m, and belong to the same orbit ODm
of Dm(r) in Xm. In this case

the equality w = w′ holds in S(X, r) and in the algebra A(k, X, r).

An effective part of our combinatorial approach is the exploration of the action of the groupD2(r) = 〈r〉
on X2, and the properties of the corresponding orbits. In the literature a D2(r)-orbit O in X2 is often

called ”an r-orbit” and we shall use this terminology.

In notation and assumption as above, let (X, r) be a finite quadratic set with S = S(X, r) graded by

length. Then the order of of each component Sm, in (??) equals the number of Dm(r)-orbits in Xm.

Notation 2.10. [?] Suppose (X, r) is a quadratic set. The element xy ∈ X2 is an r-fixed point if

r(x, y) = (x, y). The set of r-fixed points in X2 will be denoted by F(X, r):

F(X, r) = {xy ∈ X2 | r(x, y) = (x, y)}. (2.8)

The following corollary is a consequence of [?, Lemma 3.7]

Corollary 2.11. Let (X, r) be a nondegenerate symmetric set of finite order |X| = n.

(1) For every x ∈ X there exists a unique y ∈ X such that r(x, y) = (x, y), so F = F(X, r) =

{x1y1, · · · , xnyn}. In particular, |F(X, r)| = |X| = n. In the special case, when (X, r) is a

square-free solution, one has F(X, r) = ∆2, the diagonal of X2.

(2) The number of non-trivial r-orbits is exactly
(
n
2

)
.

(3) The set X ×X splits into
(
n+1
2

)
r-orbits.

3. The quadratic algebra A(k, X, r) of a finite nondegenerate symmetric set (X, r)

It was proven through the years that the Yang-Baxter algebras A(k, X, r) coresponding to finite

nondegenerate symmetric sets have remarkable algebraic and homological properties. They are noncom-

mutative, but have many of the ”good” properties of the commutative polynomial ring k[x1, · · · , xn],

see Facts ?? and ??. This motivates us to look for more analogues coming from commutative algebra

and algebraic geometry.

3.1. Basic facts about the YB algebras A(k, X, r) of finite solutions (X, r). Suppose (X, r) is a

finite solution of order n, and let A be its Yang-Baxter algebra. In the case, when (X, r) is square-free

there exists an enumeration X = {x1, · · · , xn}, so that A is a binomial skew-polynomial ring, see Fact

??, and by convention we shall always fix such an enumeration of X. If (X, r) is not square-free then

the algebra A is not PBW with respect to any enumeration of X, see Theorem ??, so by convention

we fix an arbitrary enumeration X = {x1, · · · , xn}. We extend the fixed enumeration on X to the

degree-lexicographic ordering < on 〈X〉.
By definition the Yang-Baxter algebra A = AX = A(k, Xn, r) is presented as

A = A̧(k, X, r) = k〈X〉/(<0) ' k〈X; <(r)〉, where

<0 = <0(r) = {xy − y′x′ | r(x, y) = (y′, x′), and xy > y′x′.}. (3.1)

Consider the two-sided ideal I = (<0) of k〈X〉, let G = G(I) be the unique reduced Gröbner basis of I

with respect to <. It follows from the shape of the relations <0 that G(I) is finite, or countably infinite,

and consists of homogeneous binomials fj = uj − vj , with LM(fj) = uj > vj , |uj | = |vj |.
The set of all normal monomials modulo I is denoted by N . As we mentioned in Section 2, N =

N (I) = N (G). An element f ∈ k〈X〉 is in normal form (modulo I), if f ∈ SpankN . The free monoid

〈X〉 splits as a disjoint union 〈X〉 = N tLM(I). The free associative algebra k〈X〉 splits as a direct sum

of k-vector subspaces k〈X〉 ' SpankN ⊕ I, and there is an isomorphism of vector spaces A ' SpankN .
We define

Nm = {u ∈ N (I) | u has length m}. (3.2)

Then Am ' SpankNm for every m ∈ N0. In particular dimAm = |Nm|, ∀m ≥ 0.

Note that since <0 consists of a finite set of homogeneous polynomials, the elements of the reduced

Gröbner basis G = G(I) of degree ≤ m can be found effectively, (using the standard strategy for

constructing a Gröbner basis) and therefore the set of normal monomials Nm can be found inductively

for m = 1, 2, 3, · · · . Here we do not need an explicit description of the reduced Gröbner basis G(I) of I.
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We can also determine the set Nm of normal monomials of degree m in a natural (and direct) way

using the discussion in Remark ?? and avoiding the standard Gröbner basis techniques. Recall that

in our settings the normal form of a monomial v ∈ 〈X〉 is a monomial of the same length, there is an

equality in A (and in S) v = Nor(v) and v ≥ Nor(v), as words in Xm. Consider the set of all distinct

Dm(r)-orbits in Xm, say Oi = OiDm
, 1 ≤ i ≤ p, where p = |Sm| = dimAm. Each orbit is finite and has

unique minimal element ui ∈ O (w.r.t. <). Then ui ∈ Nm, and every v ∈ Oi satisfies v ≥ ui (as words),

Nor(v) = ui, and the equality v = ui holds in A (and in S). In particular,

Nm = {ui | ui is a minimal element of Oi, 1 ≤ i ≤ p}.

The following conventions will be kept in the sequel.

Convention 3.1. Let (X, r) be a finite nondegenerate symmetric set of order n, and Let A = A(k, X, r)

be the associated Yang-Baxter algebra, with presentation (??). (a) If (X, r) is not square-free we fix an

arbitrary enumeration X = {x1, · · · , xn} on X and extend it to degree-lexicographic ordering < on 〈X〉;
(b) If (X, r) is square-free we fix an enumeration such that X = {x1, · · · , xn} is a set of PBW generators

of A.

Let N be the set of normal monomials modulo the ideal I = (<0). It follows from Bergman’s Diamond

lemma, [?, Theorem 1.2], that if we consider the spase kN endowed with multiplication defined by

f • g := Nor(fg), for every f, g ∈ kN

then (kN , •) has a well-defined structure of a graded algebra, and there is an isomorphism of graded

algebras

A = A(k, Xn, r) ∼= (kN , •). (3.3)

By convention we shall identify the algebra A with (kN , •). Similarly, we consider an operation • on

the set N , with a • b := Nor(ab), for every a, b ∈ N and identify the monoid S = S(X, r) with (N , •),
see [?], Section 6.

In the case when (X, r) is square-free, the set of normal monomials is exactly T , so A is identified

with (kT , •) and S(X, r) is identified with (T , •).

The identification (??) gives

A =
⊕
m∈N0

Am ∼=
⊕
m∈N0

kNm.

We shall recall some important properties of the Yang-Baxter algebras which will be used in the

sequel, but first we need a lemma.

Lemma 3.2. Suppose (X, r) is a nondegenerate involutive quadratic set (not necessarily finite). Then

the following condition hold

O: Given a, b ∈ X there exist unique c, d ∈ X, such that r(c, a) = (d, b). Furthermore, if a = b then

c = d.

In particular, r is 2-cancellative.

Proof. Let (X, r) be a nondegenerate involutive quadratic set (not necessarily finite). Let a, b ∈ X. We

have to find unique pair c, d, such that r(c, a) = (d, b). By the nondegeneracy there is unique c ∈ X, such

that ca = b. Let d = ca, then r(c, a) = (ca, ca) = (d, b), as desired. It also follows from the nondegeneracy

that the pair c, d with this propery is unique. Assume now that a = b. The equality r(c, a) = (d, a)

implies (ca, ca) = (d, a), so ca = a. But r is involutive, thus (c, a) = r(d, a) = (da, da), and therefore

da = a. It follows that ca = da, and, by the nondegeneracy, c = d. �

The following results are extracted from [?].

Facts 3.3. Suppose (X, r) is a nondegenerate symmetric set of order n, X = {x1, · · · , xn}, let S =

S(X, r) be the associated monoid andA = A(k, X, r) the associated Yang-Baxter algebra (A is isomorphic

to the monoid algebra kS). Then the following conditions hold.

(1) S is a semigroup of I-type, that is there is a bijective map v : U 7→ S, where U is the free

n-generated abelian monoid U = [u1, · · · , un] such that v(1) = 1, and such that

{v(u1a), · · · , v(una)} = {x1v(a), · · · , xnv(a)}, for all a ∈ U .
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(2) The Hilbert series of A is HA(t) = 1/(1− t)n.
(3) [?, Theorem 1.4] (a) A has finite global dimension and polynomial growth; (b) A is Koszul; (c)

A is left and right Noetherian; (d) A satisfies the Auslander condition and is is Cohen-Macaulay,

(e) A is finite over its center.

(4) [?, Corollary 1.5] A is a domain, and in particular the monoid S is cancellative.

Note that (1) is a consequence of Theorem 1.3 in [?] the second part of which states: if (X, r) is an

involutive solution of YBE, which satisfies condition O, see Lemma ??, then S is a semigroup of I-type.

Lemma ?? shows that even weaker assumptions that (X, r) is a nondegenerate and involutive quadratic

set imply the needed condition O, so S is a semigroup of I-type. Part (2) is straightforward from (1).

Corollary 3.4. In notation and convensions as above. Let (X, r) be a nondegenerate symmetric set of

order n. Then for every integer d ≥ 1 there are equalities

dimAd =

(
n+ d− 1

d

)
= |Nd|. (3.4)

We recall some important properties of the square-free solutions, especially interesting is the implica-

tion (??)=⇒ (??).

Fact 3.5. [?, Theorem 1.2] Suppose (X, r) is a nondegenerate, square-free, and involutive quadratic

set of order |X| = n, and let A = A(k, X, r) be its quadratic algebra. The following conditions are

equivalent:

(1) (X, r) is a solution of the Yang-Baxter equation.

(2) A is a binomial skew polynomial ring, with respect to an enumeration of X.

(3) A is an Artin–Schelter regular PBW algebra, that is

(a) A has polynomial growth of degree n (equivalently, GKdimA = n);

(b) A has finite global dimension gl dimA = n;

(c) A is Gorenstein, meaning that ExtqA(k, A) = 0 if q 6= n and ExtnA(k, A) ∼= k.

(4) The Hilbert series of A is HA(t) = 1/(1− t)n.
Each of these conditions implies that A is Koszul and a Noetherian domain.

Question 3.6. Suppose (X, r) is a finite non-degenerate symmetric set, and assume that the Yang-

Baxter algebra A = A(k, X, r) is PBW, where X = {x1, x2, · · · , xn} is a set of PBW generators. Is it

true that (X, r) is square-free?

3.2. Every finite solution (X, r) whose Yang-Baxter algebra A(k, X, r) is PBW is square-free.

In this subsection we give a positive answer to Question ??.

Suppose (X, r) is a finite non-degenerate symmetric set, and assume that the Yang-Baxter algebra

A = A(k, X, r) is PBW, where X = {x1, x2, · · · , xn} is a set of PBW generators. Then A = k〈X〉/(<0),

where the set of (quadratic) defining relations <0 of A coinsides with the reduced Gröbner basis of the

ideal (<0) modulo the degree-lexicographic ordering on 〈X〉. Recall that the set of leading monomials

W = {LM(f) | f ∈ <0} (3.5)

is called the set of obstructions for A, in the sense of Anick, [?], see (??).

Lemma 3.7. Suppose (X, r) is a nondegenerate symmetric set of order n, and assume the Yang-Baxter

algebra A = A(k, X, r) is PBW, where X = {x1, x2, · · · , xn} is a set of PBW generators. Then there

exists a permutation

y1 = xs1 , y2 = xs2 , · · · , yn = xsn of x1, x2, · · · , xn,
such that the following conditions hold.

(1) The set of obstructions W = {LM(f) | f ∈ <0} consists of
(
n
2

)
monomials given below

W = {yjyi | 1 ≤ i < j ≤ n}. (3.6)

(2) The normal k-basis of A modulo I = (<0) is the set

N = {yα1
1 yα2

2 · · · yαn
n | αi ≥ 0, for 1 ≤ i ≤ n}. (3.7)
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Proof. Let W be the set of obstructions defined via (??) and let AW be the associated monomial algebra

defined as

AW := k〈X〉/(W ) (3.8)

It is well known that a word u ∈ 〈X〉 is normal modulo I = (<0) iff u is normal modulo the set of

obstructions W . Therefore the two algebras A and AW share the same normal k-basis N = N (I) =

N (W ) and their Hilbert series are equal. By Facts ?? part (2), The Hilbert series of A is HA(t) =

1/(1− t)n, therefore

HAW
(t) = HA(t) = 1/(1− t)n. (3.9)

Thus the Hilbert series of AW satisfies condition (5) of [?, Theorem 3.7] (see page 2163), and it follows

from the theorem that there exists a permutation y1 = xs1 , y2 = xs2 , · · · , yn = xsn of the generators

x1, x2, · · · , xn, such that the set of obstructions W satisfies (??). The Diamond Lemma, [?] and the

explicit description (??) of the obstruction set W imply that the set of normal words N = N (I) = N (W )

is described in (??). �

It is clear that if the permutation given in the lemma is not trivial there is an inversion, that is a pair

i, j with i < j and yj < yi.

Theorem 3.8. Suppose (X, r) is a nondegenerate symmetric set of order n, and A = A(k, X, r) is its

Yang-Baxter algebra. Then A is a PBW algebra with a set of PBW generators X = {x1, x2, · · · , xn}
(enumerated properly) if and only if (X, r) is a square-free solution.

Proof. It well known that if (X, r) is square-free then there exists an enumeration X = {x1, · · · , xn}, so

that A is a binomial skew-polynomial ring in the sense of [?], and therefore A is PBW, see Fact ??

Assume now that (X, r) is a finite solution of order n whose YB-algebra A = A(k, X, r) is PBW,

where X = {x1, x2, · · · , xn} is a set of PBW generators. We have to show that (X, r) is square-free that

is r(x, x) = (x, x) , for all x ∈ X.
It follows from our assumptions that in the presentation A = k〈X〉/(<0) the set of (quadratic)

defining relations <0 of A is the reduced Gröbner basis of the ideal (<0) modulo the degree-lexicographic

ordering on 〈X〉. By Lemma ?? there exists exists a permutation y1 = xs1 , y2 = xs2 , · · · , yn = xsn of

x1, x2, · · · , xn such that the obstruction set W = {LM(f) | f ∈ <0} satisfies (??) and the set of normal

monomials N described in (??) is a PBW basis of A.

We use some properties of (X, r) and the relations of A listed below.

(i) (X, r) is 2-cancellative. This follows from Lemma ??; (ii) There are exactly n fixed points xy ∈ X2

with r(x, y) = (x, y). This follows from [?, Lemma 3.7], part (3), since (X, r) is nondegenerate and

2-cancellative. (iii) Every monomial of the shape yjyi, 1 ≤ i < j ≤ n is the leading monomial of some

polynomial fji ∈ <0. (It is possible that yj < yi for some j > i.) It follows from [?, Proposition 2.3.]

that for a nondegenerate involutive quadratic set (X, r) of order n the set <0 consists of exactly
(
n
2

)
relations. (iv) Therefore the algebra A has a presentation

A = k〈x1, · · · , xn〉/(<0)

with precisely
(
n
2

)
defining relations

<0 = {fji = yjyi − uij | 1 ≤ i < j ≤ n} (3.10)

such that

(1) For every pair i, j, 1 ≤ i < j ≤ n, the monomial uij satisfies uij = yi′yj′ , where i′ ≤ j′, and

yj > yi′ (since LM(fji) = yjyi > yi′yj′ , and since (X, r) is 2-cancellative);

(2) Each monomial yiyj with 1 ≤ i ≤ j ≤ n occurs at most once in <0 (since r is a bijective map).

(3) <0 is the reduced Gröbner basis of the two-sided ideal (<0), with respect to the degree-lexicographic

order < on 〈X〉.
In terms of the relations <0 our claim that r(x, x) = (x, x), for all x ∈ X, is equivalent to

uij 6= xx, where x ∈ X, and 1 ≤ i < j ≤ n. (3.11)
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So far we know that (X, r) has exactly n fixed points, and each monomial yjyi, 1 ≤ i < j ≤ n is not a

fixed point. Therefore it will be enough to show that a monomial yiyj , with 1 ≤ i < j ≤ n, can not be a

fixed point.

Assume on the contrary, that r(yi, yj) = (yi, yj), for some 1 ≤ i < j ≤ n. We claim that in this case

<0 contains two relations of the shape

(a) ypyq − yjyj , where p > q, yp > yj , and (b) ysyt − yiyi, where s > t, ys > yi. (3.12)

Consider the increasing chain of left ideals of A

I1 ⊆ I2 ⊆ · · · ⊆ Ik ⊆ · · · ,

where for k ≥ 1, Ik is the left ideal

Ik = A(yiyj , yiy
2
j , · · · yiykj ).

By [?, Theorem 1.4], see also Facts ?? (3) the algebra A is left Noetherian hence there exists k > 1, such

that Ik−1 = Ik = Ik+1 = · · · , and therefore yiy
k
j ∈ Ik−1. This implies

w • (yiy
r
j ) = yiy

k
j ∈ N , for some r, 1 ≤ r ≤ k − 1, and some w ∈ N , |w| = k − r. (3.13)

It follows from (??) that the monomial v0 = yiy
k
j can be obtained from the monomial w(yiy

r
j ) by

applying a finite sequence of replacements (reductions) in 〈X〉. More precisely, there exists a sequence

of monomials

v0 = yiy
k
j , v1, · · · , vt−1, vt = w(yiy

r
j ) ∈ 〈X〉

and replacements

vt → vt−1 → · · · → v1 → v0 = yiy
k
j ∈ N , (3.14)

where each replacement comes from some quadratic relation fpq = ypyq − uqp in (??) and has the shape

a[ypyq]b→ a(uqp)b, where n ≥ p > q ≥ 1, a, b ∈ 〈X〉.

We have assumed that yiyj is a fixed point, so it can not occur in a relation in (??). Thus the rightmost

replacement in (??) is of the form

u1 = yiyj · · · yj [ypyq] · · · yj → yiyj · · · yj(uqp) · · · yj = yiyj · · · yj(yjyj) · · · yj = v0

where p, q is a pair with, 1 ≤ q < p ≤ n, uqp = yjyj and yp > yj . In other words the set <0 contains a

relation of type (a) ypyq − yjyj , where p > q, yp > yj .

Analogous argument proves the existence of a relation of the type (b) in (??). This time we con-

sider an increasing chain of right ideals I1 ⊆ I2 ⊆ · · · ⊆ Ik ⊆ · · · , where Ik is the right ideal

Ik = (yiyj , y
2
i yj , · · · , yki yj)A and apply the right Noetherian property of A.

Consider now the subset of fixed points

F0(X, r) = {yiyj ∈ X2 such that i < j and r(yi, yj) = (yi, yj)},

which by our assumtion is not empty. Then F0(X, r) has cardinality m ≥ 1 and <0 contains at least

m+ 1 (distinct) relations of the type

ypyq − xx, where x ∈ X, p > q and yp > x. (3.15)

The set N2 of normal monomials of length 2 contains
(
n
2

)
elements of the shape ysyt, 1 ≤ s < t ≤ n, and

we have assummed that m of them are fixed. Then there are
(
n
2

)
−m distinct monomials yiyj ∈ N2, 1 ≤

i < j ≤ n, which are not fixed. Each of these monomials occurs in exactly one relation

ysyt − yiyj , where r(ys, yt) = (yi, yj), s > t, ys > yi.

Thus <0 contains
(
n
2

)
−m distinct square-free relations and at least m+1 relations which contain squares

as in (??) . Therefore the set of relations has cardinality

|<0| ≥
(
n

2

)
−m+m+ 1 >

(
n

2

)
,

which is a contradiction.
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We have shown that a monomial yiyj with 1 ≤ i < j ≤ n can not be a fixed point, and therefore

occurs in a relation in <0. But (X, r) has exactly n fixed points, so these are the elements of the diagonal

of X2 , xixi, 1 ≤ i ≤ n. It follows that (X, r) is square-free. �

Proposition 3.9. Let (X, r) be a finite non-degenerate involutive quadratic set, and let A = A(k, X, r) =

k〈X〉/(<0) be its quadratic algebra. Assume that there is an enumeration X = {x1, x2, · · · , xn} of X

such that the set

N = {xα1
1 xα2

2 · · ·xαn
n | αi ≥ 0 for 1 ≤ i ≤ n}

is a normal k-basis of A modulo the ideal I = (<0). Then A = A(k, X, r) is a PBW algebra, where

X = {x1, x2, · · · , xn} is a set of PBW generators of A and the set of relations R0 is a quadratic Gröbner

basis of the two-sided ideal (<0). The following conditions are equivalent.

(1) The algebra A is left and right Noetherian.

(2) The quadratic set (X, r) is square-free.

(3) (X, r) is a solution of YBE.

(4) A is a binomial skew polymomial ring in the sense of [?].

Proof. The quadratic set (X, r) and the relations of A satisfy conditions similar to those listed in the

proof of Theorem ??. More precisely: (i) (X, r) is 2-cancellative. This follows from Lemma ??; (ii) There

are exactly n fixed points xy ∈ X2 with r(x, y) = (x, y). This follows from [?, Lemma 3.7], part (3), since

(X, r) is nondegenerate and 2-cancellative. (iii) It follows from the hypothesis that every monomial of

the shape xjxi, 1 ≤ i < j ≤ n, is not in the normal k -basis N , and therefore it is the highest monomial

of some polynomial fji ∈ <0. [?, Proposition 2.3.] implies that if (X, r) is a nondegenerate involutive

quadratic set of order n then the set <0 consists of exactly
(
n
2

)
relations. Therefore the algebra A has a

presentation

A = k〈x1, · · · , xn〉/(<0)

with precisely
(
n
2

)
defining relations

<0 = {fji = xjxi − xi′xj′ | 1 ≤ i < j ≤ n} (3.16)

such that

(a) For every pair i, j, 1 ≤ i < j ≤ n, one has i′ ≤ j′, and j > i′ (since LM(fji) = xjxi > xi′xj′ ,

and since (X, r) is 2-cancellative);

(b) Each ordered monomial (term) of length 2 occurs at most once in <0 (since r is a bijective map).

(c) <0 is the reduced Gröbner basis of the two-sided ideal (<0), with respect to the degree-lexicographic

order < on 〈X〉, or equivalently the overlaps xkxjxi, with k > j > i do not give rise to new

relations in A.
We give a sketch of the proof of the equivalence of conditions (1) through (4).

(1)⇒ (2) . The proof is analogous to the proof of Theorem ??. It is enough to show that a monomial

xixj with 1 ≤ i < j ≤ n, can not be a fixed point. Assuming the contrary, and applying an argument

similar to the proof of Theorem ??, in which we involve the left and right Noetherian properties of A,

we get a contradiction. Thus every monomial xixj with 1 ≤ i < j ≤ n occurs in a relation in <0. At the

same time the monomials xjxi with 1 ≤ i < j ≤ n are also involved in the relations <0, hence they are

not fixed points. But (X, r) has exactly n fixed points, so these are the elements of the diagonal of X2 ,

xixi, 1 ≤ i ≤ n. It follows that (X, r) is square-free.

(2)⇒ (4). If (X, r) is square-free then the relations <0 given in (??) are exactly the defining relations

of a binomial skew polynomial ring, which form a reduced Gröbner basis, thereforeA is a skew polynomial

ring with binomial relations in the sence of [?].

The implication (4) ⇒ (3) follows from [?, Theorem 1.1].

The implication (3) ⇒ (1) follows from [?, Theorem 1.4], see also Facts ?? (3). �

4. The d-Veronese subalgebra A(d) of A(k, X, r), its generators and relations

In this section (X, r) is a finite solution (a nondegenerate symmetric set) , d ≥ 2 is an integer. We shall

study the d-Veronese subalgebras A(d) of the Yang-Baxter algebra A = A(k, X, r). This is an algebraic
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construction which mirrors the Veronese embedding. Some of the first results on Veronese subalgebras

of noncommutative graded algebras appeared in [?] and [?]. Our main reference here is [?, Section 3.2].

The main result of this section is Theorem ?? which presents the d-Veronese subalgebra A(d) in terms

of generators and quadratic relations.

4.1. Veronese subalgebras of graded algebras. We recall first some basic definitions and facts about

Veronese subalgebras of general graded algebras.

Definition 4.1. Let A =
⊕

k∈N0
Ak be a graded algebra. For any integer d ≥ 1, the d-Veronese

subalgebra of A is the graded algebra

A(d) =
⊕
k∈N0

Akd.

By definition the algebra A(d) is a subalgebra of A. However, the embedding is not a graded algebra

morphism. The Hilbert function of A(d) satisfies

hA(d)(t) = dim(A(d))t = dim(Atd) = hA(td).

It follows from [?, Proposition 2.2, Chapter 3] that if A is a one-generated quadratic Koszul algebra,

then its Veronese subalgebras are also one-generated quadratic and Koszul.

Corollary 4.2. Let (X, r) be a solution of order n, and let A = A(k, X, r) be its Yang-Baxter algebra,

let d ≥ 2 be an integer. (1) The d-Veronese algebra A(d) is one-generated, quadratic and Koszul. (2)

A(d) is a Noetherian domain.

Proof. (1) If (X, r) is a solution of order n then, by definition the Yang-Baxter algebra A = A(k, X, r)

is one-generated and quadratic. Moreover, A is Koszul, see Facts ??. It follows straightforwardly from

[?, Proposition 2.2, Ch 3] that A(d) is one-generated, quadratic and Koszul. (2) The d-Veronese A(d) is

a subalgebra of A which is a domain, see Facts ??. Theorem ?? implies that A(d) a homomorphic image

of the Yang-Baxter algebra AY = A(k, Y, rY ), where (Y, rY ) is the d-Veronese solution associated with

(X, r). The algebra AY is Noetherian, since the solution (Y, rY ) is finite, see Facts ??. �

In the assumptions of Corollary ??, it is clear, that the d-Veronese subalgebra A(d) satisfies

A(d) =
⊕
m∈N0

Amd ∼=
⊕
m∈N0

kNmd. (4.1)

Moreover, the normal monomials w ∈ Nd of length d are degree one generators of A(d), and by Corollary

?? there are equalities

|Nd| = dimAd = n+ d− 1d.

We set

N =

(
n+ d− 1

d

)
and order the elements of Nd lexicographically:

Nd := {w1 < w2 < · · · < wN}. (4.2)

The d-Veronese A(d) is a quadratic algebra (one)-generated by w1, w2, . . . , wN . We shall find a minimal

set of quadratic relations for A(d), each of which is a linear combination of products wiwj for some

i, j ∈ {1, . . . , N}. The relations are intimately connected with the properties of the braided monoid

S(X, r). As a first step we shall introduce a nondegenerate symmetric set (Sd, rd) of order N , induced

in a natural way by the braided monoid S(X, r).

4.2. The braided monoid S = S(X, r) of a braided set. Matched pairs of monoids, M3-monoids

and braided monoids in a most general setting were studied in [?], where the interested reader can find

the necessary definitions and the original results. Here we extract only some facts which will be used in

the paper.

Fact 4.3. ([?], Theor. 3.6, Theor. 3.14.) Let (X, r) be a braided set and let S = S(X, r) be the

associated monoid. Then
13



(1) The left and the right actions ( )◦ : X ×X −→ X, and ◦( ) : X ×X −→ X defined via r can

be extended in a unique way to a left and a right action

( )◦ : S × S −→ S, (a, b) 7→ ab, and ◦( ) : S × S −→ S, (a, b) 7→ ab

which make S a strong graded M3-monoid. In particular, the following equalities hold in S for

all a, b, u, v ∈ S.

ML0 : a1 = 1, 1u = u; MR0 : 1u = 1, a1 = a

ML1 : (ab)u = a(bu), MR1 : a(uv) = (au)v

ML2 : a(u.v) = (au)(a
u

v), MR2 : (a.b)u = (a
bu)(bu)

M3 : uvuv = uv.

(4.3)

These actions define an associated bijective map

rS : S × S −→ S × S, rS(u, v) = (uv, uv)

which obeys the Yang-Baxter equation, so (S, rS) is a braided monoid. In particular, (S, rS) is a

set-theoretic solution of YBE, and the associated bijective map rS restricts to r.

(2) The following conditions hold.

(a) (S, rS) is a graded braided monoid, that is the actions agree with the grading of S:

|au| = |u| = |ua|,∀ a, u ∈ S. (4.4)

(b) (S, rS) is non-degenerate iff (X, r) is non-degenerate.

(c) (S, rS) is involutive iff (X, r) is involutive.

(d) (S, rS) is square-free iff (X, r) is a trivial solution.

Let (X, r) be a non-degenerate symmetric set, let (S, rS) be the associated graded braided monoid,

where we consider the natural grading by length given in (??):

S =
⊔
d∈N0

Sd, S0 = {1}, S1 = X, and SkSm ⊆ Sk+m.

Each of the graded components Sd, d ≥ 1, is rS-invariant, that is rS(Sd × Sd) ⊆ Sd × Sd.
Consider the restriction rd = (rS)|Sd×Sd

, where rd is the map rd : Sd × Sd −→ Sd × Sd.

Corollary 4.4. In notation as above the following conditions hold.

(1) For every positive integer d ≥ 1, (Sd, rd) is a nondegenerate symmetric set. Moreover, if (X, r)

is of finite order n, then (Sd, rd) is a finite nondegenerate symmetric set of order

|Sd| =
(
n+ d− 1

d

)
= N. (4.5)

(2) The number of fixed points is |F(Sd, rd)| = N.

Definition 4.5. We call (Sd, rd) the monomial d-Veronese solution associated with (X, r).

The monomial d-Veronese solution (Sd, rd) depends only on the map r and on d, it is invariant with

respect to the enumeration of X. Although it is intimately connected with the d-Veronese A(d) and its

quadratic relations, this solution is not convenient for an explicit description of the relations. Its rich

structure inherited from the braiding in (S, rS) is used in the proof of Theorem ??.

The solution (Sd, rd) induces in a natural way an isomorphic solution (Nd, ρd) and the fact that Nd
is ordered lexicographically makes this solution convenient for our description of the relations of A(d).

Note that the set Nd, as a subset of the set of normal monomials N , depends on the initial enumeration

of X. We shall construct (Nd, ρd) below.

Remark 4.6. Note that given the monomials a = a1a2 · · · ap ∈ Xp, and b = b1b2 · · · bq ∈ Xq we can find

effectively the monomials ab ∈ Xq and ab ∈ Xp. Indeed, as in [?], we use the conditions (??) to extend

the left and the right actions inductively:
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c(b1b2 · · · bq) = (cb1)(c
b1
b2) · · · ((c

(b1···bq−1))bq)), for all c ∈ X

(a1a2···ap)b = a1((a2···ap)b).

(4.6)

We proceed similarly with the right action.

Lemma 4.7. Notation as in Remark ??. Suppose a, a1 ∈ Xp, a1 ∈ ODp(a), and b, b1 ∈ Xq, b1 ∈ ODq (b),

(1) The following are equalities of words in the free monoid 〈X〉:

Nor(a1b1) = Nor(ab), Nor(a1
b1) = Nor(ab). (4.7)

In partricular, if a, a1 ∈ Xp and b, b1 ∈ Xq the equalities a = a1 in S and b = b1 in S imply that
a1b1 = ab and ab11 = ab hold in S.

(2) The following are equalities in the monoid S:

ab = abab = Nor(ab)Nor(ab). (4.8)

Proof. By Remark ?? there is an equality a = a1 in S iff a1 ∈ ODp
(a), in this case ODp

(a) = ODp
(a1).

At the same time a = a1 in S iff Nor(a1) = Nor(a) as words in Xp, in particular, Nor(a) ∈ ODp
(a).

Similarly, b1 = b in S iff b1 ∈ ODq
(b), and in this case Nor(b) = Nor(b1) ∈ ODq

(b). Part (1) follows from

the properties of the actions in (S, rS) studied in [?], Proposition 3.11.

(2) (S, rS) is an M3- braided monoid, see Fact ??, so condition M3 implies the first equality in (??).

Now (??) implies the second equality in (??). �

Definition-Notation 4.8. In notation and conventions as above. Let d ≥ 1 be an integer. Suppose

(X, r) is a solution of order n, A = A(k, X, r), is the associated Yang-Baxter algebra, and (S, rS) is the

associated braided monoid. By convention we identify A with (kN , •) and S with (N , •). Define a left

”action” and a right ”action” on Nd as follows.

. : Nd ×Nd −→ Nd, a.b := Nor(ab) ∈ Nd, ∀a, b ∈ Nd
/ : Nd ×Nd −→ Nd, a/b := Nor(ab) ∈ Nd, ∀a, b ∈ Nd.

(4.9)

It follows from Lemma ?? (1) that the two actions are well-defined.

Define the map

ρd : Nd ×Nd −→ Nd ×Nd, ρd(a, b) := (a.b, a/b). (4.10)

For simplicity of notation (when there is no ambiguity) we shall often write (Nd, ρ), where ρ = ρd.

Definition 4.9. We call (Nd, ρd) the normalized d-Veronese solution associated with (X, r).

Proposition 4.10. In assumption and notation as above.

(1) Let ρd : Nd × Nd −→ Nd × Nd be the map defined as ρd(a, b) = (a.b, a/b). Then (Nd, ρd) is a

nondegenerate symmetric set of order N =
(
n+d−1

d

)
.

(2) The symmetric sets (Nd, ρd) and (Sd, rd) are isomorphic.

Proof. (1) By Corollary ?? (Sd, rd) is a nondegenerate symmetric set. Thus by Remark ?? the left and

the right actions associated with (Sd, rd) satisfy conditions l1, r1, lr3, and inv. Consider the actions .

and / on Nd, given in Definition-Notation ??. It follows from (??) and Lemma ?? that these actions also

satisfy l1, r1, lr3 and inv. Therefore, by Remark ?? again, ρd obeys YBE, and is involutive, so (Nd, ρd)
is a symmetric set. Moreover, the nondegeneracy of (Sd, rd) implies that (Nd, ρd) is nondegenerate. By

Corollary ?? there are equalities |Nd| = |Sd| =
(
n+d−1

d

)
= N .

(2) We shall prove that the map Nor : Sd −→ Nd, u 7→ Nor(u) is an isomorphism of solutions. It is

clear that the map is bijective. We have to show that Nor is a homomorphism of solutions, that is

(Nor×Nor) ◦ rd = ρd ◦ (Nor×Nor). (4.11)

Let (u, v) ∈ Sd × Sd, then the equalities u = Nor(u) and v = Nor(v) hold in Sd, so

Nor(uv) = Nor(Nor(u)Nor(v)), Nor(uv) = Nor(Nor(u)
Nor(v)

)
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and by by (??)

(Nor×Nor) ◦ rd(u, v) = Nor×Nor(uv, uv) = (Nor(uv),Nor(uv))

= (Nor(u).Nor(v),Nor(u)/Nor(v)) = ρd(Nor(u),Nor(v)).

This implies (??). �

Recall that the monomials in Nd are ordered lexicographically, see ??, and wi < wj iff i < j,

1 ≤ i, j ≤ N .

Notation 4.11. Denote by H(n, d) the set

H(n, d) = {(j, i), 1 ≤ i, j ≤ n | ρd(wj , wi) = (wi′ , wj′), where wj > wi′ holds in 〈X〉}. (4.12)

Equivalently, H(n, d) is the set of all pairs (j, i) such that (wj , wi) ∈ (Nd×Nd)\F(Nd, ρd), and wj.wi <

wj . Here F(Nd, ρd) is the set of fixed points defined in (??).

Clearly, wj > wi′ implies that wjwi > wi′wj′ in 〈X〉.

Proposition 4.12. In assumption and notation as above. Let (Nd, ρd) be the normalized d-Veronese

solution, see Definition ??. Then the Yang-Baxter algebra B = A(k,Nd, ρd) is generated by the set Nd
and has

(
N
2

)
quadratic defining relations given below:

< = {gji = wjwi − wi′wj′ | (j, i) ∈ H(n, d), 1 ≤ i, j ≤ n}. (4.13)

Moreover,

(i) for every pair (a, b) ∈ (Nd ×Nd) \ F(Nd, ρd) the monomial ab occurs exactly once in <;

(ii) for every pair (j, i) ∈ H(n, d) the equality LM(gji) = wjwi holds in k〈X〉.

Proof. There is a one-to-one correspondence between the set of relations of the algebra B and the set of

nontrivial orbits of ρd. Each nontrivial relation of B corresponds to a nontrivial orbit of ρd, say

O = {(wj , wi), ρd(wj , wi) = (wi′ , wj′)} = {(wi′ , wj′), ρd(wi′ , wj′) = (wj , wi)},

so without loss of generality we may assume that the relation is

wjwi − wi′wj′ , where wjwi > wi′wj′ .

By Lemma ?? (2) the equality wjwi = wi′wj′ holds in S. The monoid S = S(X, r) is cancellative,

see Facts ??. hence an assumption that wj = wi′ would imply wi = wj′ , a contradiction. Therefore

wj > wi′ , and so (j, i) ∈ H(n, d).

Conversely, for each (j, i) ∈ H(n, d), one has ·ρ(wj , wi) = wi′wj′ 6= wjwi hence gji is a (nontrivial)

relation of the algebra B = A(k,Nd, ρd).
Clearly, wj > wi′ implies wjwi > wi′wj′ in 〈X〉, so LM(gji) = wjwi, and the number of relations gji

is exactly |H(n, d)| =
(
N
2

)
, see (??). �

4.3. The d-Veronese A(d) presented in terms of generators and relations. We shall need more

notation. For convenience we add in the list some of the notation that are already in use.

Notation 4.13.

·(a, b) := ab, ∀a, b ∈ 〈X〉,
N :=

(
n+d−1

d

)
N := N (X) is the set of normal monomials in 〈X〉.
Nd = {w1 < w2 < · · · < wN}, the set of normal monomials of length d.

(Nd, ρ) = (Nd, ρd) is the normalized d-Veronese solution see Definition ??.

H(n, d) = {(j, i), 1 ≤ i, j ≤ n | ρ(wj , wi) = (wi′ , wj′), where wj > wi′ in 〈X〉}
P(n, d) = {(i, j) | ·(ρ(wi, wj)) ≥ wiwj , wi, wj ∈ Nd}
C(n, d) = {(i, j) ∈ P(n, d) | wiwj ∈ N2d}
MV(n, d) = {(i, j) ∈ P(n, d) | wiwj /∈ N2d}.

(4.14)

Clearly, ·ρ(wj , wi) = wi′wj′ , whenever ρ(wj , wi) = (wi′ , wj′).

The following lemma is a generalization of [?, Lemma 4.4].
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Lemma 4.14. In notation ?? the following conditions hold.

(1) The map

Φ : C(n, d)→ N2d (i, j) 7→ wiwj

is bijective. Therefore

|C(n, d)| = |N2d| =
(
n+ 2d− 1

n− 1

)
=

(
n+ 2d− 1

2d

)
. (4.15)

(2) The set of all pairs {(i, j) | 1 ≤ i, j ≤ n} splits as a union of disjoint sets:

{(i, j) | 1 ≤ i, j ≤ n} = H(n, d) t P(n, d).

Every nontrivial ρ-orbit has exactly one element (wj , wi) with (j, i) ∈ H(n, d) and a second

element (wi′ , wj′) = ρ(wj , wi), with (i′, j′) ∈ P(n, d). For each one-element ρ-orbit {(wi, wj) =

ρ(wi, wj)} one has (i, j) ∈ P(n, d).

(3) The set P(n, d) is a disjoint union

P(n, d) = C(n, d) tMV(n, d).

(4) The following equalities hold:

|H(n, d)| =
(
N
2

)
, |P(n, d)| =

(
N+1
2

)
, and |MV(n, d)| =

(
N+1
2

)
−
(
n+2d−1
n−1

)
. (4.16)

Proof. By Proposition ?? (Nd, ρ) is a nondegenerate symmetric set of order N =
(
n+d−1

d

)
.

(1) Given wi, wj ∈ Nd, the word w = wiwj belongs to N2d if and only if (i, j) ∈ C(n, d), hence Φ is

well-defined. Observe that every w ∈ N2d can be written uniquely as

w = xi1 . . . xidxj1 . . . xjd , where all xik , xjk ∈ X. (4.17)

It follows that w has a unique presentation as a product w = wiwj , where

wi = xi1 . . . xid ∈ Nd, wj = xj1 . . . xjd ∈ Nd, and (i, j) ∈ C(n, d).

This implies that Φ is a bijection, and ( ??) holds.

(2) and (3) are clear.

(4) Note that the set P(n, d) contains exactly one element of each ρ-orbit. Indeed, the map ρ is

involutive, so every non-trivial ρ - orbit in Nd × Nd consists of two elements: (wi, wj) and ρ(wi, wj),

where (wi, wj) 6= ρ(wi, wj). Without loss of generality we may assume that wiwj < ·ρ(wi, wj) in 〈X〉,
in this case (i, j) ∈ P(n, d). By definition a pair (wi, wj) ∈ F iff it belongs to a one-element ρ-orbit,

and in this case (i, j) ∈ P(n, d). Therefore each ρ - orbit determines unique element (i, j) ∈ P(n, d), and,

conversely, each (i, j) ∈ P(n, d) determines unique ρ-orbit in Nd ×Nd. Hence the order |P(n, d)| equals

the total number of ρ-orbit in Nd×Nd. By Corollary ?? (3) the set Nd×Nd has exactly
(
N+1
2

)
ρ-orbits,

thus

|P(n, d)| =
(
N + 1

2

)
. (4.18)

The order |H(n, d)| equals the number of nontrivial ρ-orbit, and since by Corollary ?? there are exactly

N one-element orbits, one has |H(n, d)| =
(
N+1
2

)
−N =

(
N
2

)
.

By part (3) P(n, d) = C(n, d)tMV(n, d) is a union of disjoint sets, which together with (??) and (??)

imply

|MV(n, d)| = |P(n, d)| − |C(n, d)| =
(
N + 1

2

)
−
(
n+ 2d− 1

n− 1

)
. �

Suppose (a, b) ∈ (Nd ×Nd) \ F then (a, b) 6= (ab, ab), and the equality ab = (ab)(ab) holds in A(d).

In Convention ?? and Notation ??, the following result describes the d-Veronese subalgebra A(d) of

the Yang-Baxter algebra A in terms of one-generators and quadratic relations.

Theorem 4.15. Let d ≥ 2 be an integer. Let (X, r) be a finite solution of order n, X = Xn =

{x1, · · · , xn}, let A = A(k, Xn, r) be the associated quadratic algebra, and let (Nd, ρ) be the normalized

d-Veronese solution from Definition ??.
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The d-Veronese subalgebra A(d) ⊆ A is a quadratic algebra with N =
(
n+d−1

d

)
one-generators, namely

the set Nd of normal monomials of length d, subject to N2 −
(
n+2d−1
n−1

)
linearly independent quadratic

relations R described below.

(1) The relations R split into two disjoint subsets R = Ra
⋃
Rb, as follows.

(a) The set Ra contains
(
N
2

)
relations corresponding to the non-trivial ρ-orbits:

Ra = {gji = wjwi − wi′wj′ | where (j, i) ∈ H(n, d), (wi′ , wj′) = ρ(wj , wi), wjwi > wi′wj′}. (4.19)

Each monomial wiwj, such that (wi, wj) is in a nontrivial ρ-orbit occurs exatly once in Ra.

In particular, for each (j, i) ∈ H(n, d), LM(gji) = wjwi > wi′wj′ .

(b) The set Rb contains
(
N+1
2

)
−
(
n+2d−1
n−1

)
relations

Rb = {gij = wiwj − wi0wj0 | (i, j) ∈ MV(n, d), (i0, j0) ∈ C(n, d)}, (4.20)

where for each (i, j) ∈ MV(n, d), wi0wj0 = Nor(wiwj) ∈ N2d is the normal form of wiwj.

In particular, LM(gij) = wiwj > wi0wj0 .

(2) The d-Veronese subalgebra A(d) has a second set of linearly independent quadratic relations, R1,

which splits into two disjoint subsets R1 = R1a

⋃
Rb as follows.

(a) The set R1a is a reduced version of Ra and contains exactly
(
N
2

)
relations

R1a = {fji = wjwi − wi′′wj′′ | (j, i) ∈ H(n, d), (i′′, j′′) ∈ C(n, d)}, (4.21)

where wi′′wj′′ = Nor(wjwi), for each (j, i) ∈ H(n, d), LM(fji) = wjwi > wi′′wj′′ ∈ N2d.

(b) The set Rb is given in (??).

(3) The two sets of relations R and R1 are equivalent: R ⇐⇒ R1.

Proof. By Convention ?? we identify the algebra A with (kN , •). We know that the d-Veronese subal-

gebra A(d) is one-generated and quadratic, see Corollary ??. Moreover, by (??)

A(d) =
⊕
m∈N0

Amd ∼=
⊕
m∈N0

kNmd.

The ordered monomials w ∈ Nd of length d are degree one generators of A(d), there are equalities

dimAd = |Nd| =
(
n+ d− 1

d

)
= N.

Moreover,

dim(A(d))2 = dim(A2d) = dim(kN2d) = |N2d| =
(
n+ 2d− 1

n− 1

)
.

We compare dimensions to find the number of quadratic linearly independent relations for the d-Veronese

A(d). Suppose R is a set of linearly independent quadratic relations defining A(d). Then we must have

|R|+ dimA(d)
2 = N2, so

|R| = N2 −
(
n+ 2d− 1

n− 1

)
. (4.22)

We shall prove that the set of quadratic polynomials R = Ra
⋃
Rb given above consists of relations of

A(d), it has order |R| = N2 −
(
n+2d−1
n−1

)
, and is linearly independent.

(a) Consider an element gji ∈ Ra, where (j, i) ∈ H(n, d). We have to show that wjwi − wi′wj′ = 0,

or equivalently, wjwi = wi′wj′ holds in A(d). SinceA(d) is a subalgebra of A = kS, it will be

enough to prove that

wjwi = wi′wj′ is an equality in S. (4.23)

Note that N is a subset of 〈X〉 and a = b in N is equivalent to a, b ∈ N and a = b as words in

〈X〉. Clearly, each equality of words in 〈X〉 holds also in S.

By assumption

ρ(wj , wi) = (wi′ , wj′) holds in Nd ×Nd. (4.24)

By Definition-Notation ??, see (??) and (??) one has

ρ(wj , wi) = (Nor(wjwi),Nor(wwi
j )), in Nd ×Nd (4.25)
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and comparing (??) with (??) we obtain that

Nor(wjwi) = wi′ , and Nor(wwi
j ) = wj′ are equalities of words in Nd ⊂ Xd. (4.26)

The equality u = Nor(u) holds in S and in A, for every u ∈ 〈X〉, therefore the following are

equalities in S:

Nor(wjwi) = wjwi, Nor(wwi
j ) = wwi

j

(Nor(wjwi))(Nor(wwi
j )) = (wjwi)(w

wi
j ).

(4.27)

Now (??) and (??) imply that

wi′wj′ = (wjwi)(w
wi
j ) holds in S. (4.28)

But S is an M3- braided monoid, so by condition (??) M3, the following is an equality in S :

wjwi = (wjwi)(w
wi
j ). (4.29)

This together with (??) imply the desired equality wjwi = wi′wj′ in S. It follows that gji =

wjwi − wi′wj′ is identically 0 in A and therefore in A(d).

Observe that for every (j, i) ∈ H(n, d) the leading monomial LM(gji) is wjwi, so the polyno-

mials gji are pairwise distinct relations. This together with (??) implies

|Ra| = |H(n, d)| =
(
N

2

)
. (4.30)

(b) Next we consider the elements gij ∈ Rb, where (i, j) ∈ MV(n, d). Each gij = wiwj − wi0wj0 is

a homogeneous polynomial of degree 2d which is identically 0 in A. Indeed, by the description

of MV(n, d) see (??), the monomial wiwj is not in normal form. Clearly, wiwj = Nor(wiwj)

is an identity in A, (and in (kN , •)). The normal form Nor(wiwj) is a monomial of length 2d,

so it can be written as a product Nor(wiwj) = wi0wj0 , where wi0 , wj0 ∈ Nd, moreover, since

wi0wj0 ∈ N2d is a normal monomial one has (i0, j0) ∈ C(n, d). It follows that

gij = wiwj − wi0wj0 = 0

holds in A(d), for every (i, j) ∈ MV(n, d).

Note that all polynomials in Rb are pairwise distinct, since they have distinct leading mono-

mials LM(gij) = wiwj , for every (i, j) ∈ MV(n, d). Thus, using (??) again we obtain

|Rb| = |MV(n, d)| =
(
N + 1

2

)
−
(
n+ 2d− 1

n− 1

)
. (4.31)

The sets Ra and Rb are disjoint, since {LM(g) | g ∈ Ra} ∩ {LM(g) | g ∈ Rb} = ∅. Therefore there

are equalities:

|R| = |Ra|+ |Rb| =
(
N

2

)
+ (

(
N + 1

2

)
−
(
n+ 2d− 1

n− 1

)
) = N2 −

(
n+ 2d− 1

n− 1

)
, (4.32)

hence the set R has exactly the desired number of relations given in (??). It remains to show that R
consits of linearly independent elements of k〈X〉.

Lemma 4.16. Under the hypothesis of Theorem ??, the set of polynomials R ⊂ k〈X〉 is linearly inde-

pendent.

Proof. It is well known that the set of all words in 〈X〉 forms a basis of k〈X〉 (considered as a vector

space), in particular every finite set of distinct words in 〈X〉 is linearly independent. All words occurring

inR are elements of X2d, but some of them occur in more than one relation, e.g. every wiwj , with (i, j) ∈
MV(n, d) which is not a fixed point occurs as a second term of a polynomial gpq = wpwq − wiwj ∈ Ra,

where ·ρ(wi, wj) = wpwq > wiwj , and also as a leading term of gij ∈ Rb. We shall prove the lemma in

three steps.

(1) The set of polynomials Ra ⊂ k〈X〉 is linearly independent.

Notice that the polynomials in Ra are in 1-to-1 correspondence with the nontrivial ρ-oprbits

in Nd × Nd: Each polynomial gji = wjwi − wi′wj′ is formed out of the two monomials in the
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nontrivial ρ-oprbit {(wj , wi), (wi′ , wj′) = ρ(wj , wi)}. But the ρ-orbits are disjoint, hence each

monomial ·(a, b), with (a, b) 6= ρ(a, b) occurs exactly once in Ra. A linear relation∑
(j,i)∈H(n,d)

α(j,i)gji =
∑

(j,i)∈H(n,d)

α(j,i)(wjwi − wi′wj′) = 0,where all α(j,i) ∈ k

involves only pairwise distinct monomials in X2d and therefore it must be trivial: α(j,i) =

0,∀(j, i) ∈ H(n, d). It follows that Ra is linearly independent.

(2) The set Rb ⊂ k〈X〉 is linearly independent.

Assume the contrary. Then there exists a nontrivial linear relation for the elements of Rb :∑
(i,j)∈MV(n,d)

β(i,j)gij =
∑

(i,j)∈MV(n,d)

β(i,j)(wiwj − wi0wj0) = 0, with β(i,j) ∈ k. (4.33)

Recall that the leading monomials LM(gij) = wiwj , (i, j) ∈ MV(n, d) are pairwise distionct. Let

gpq be the polynomial with β(p,q) 6= 0 whose leading monomial is the highest among all leading

monomials of polynomials gij , with β(i,j) 6= 0 , so we have

LM(gpq) = wpwq > LM(gij), for all (i, j) ∈ MV(n, d), where β(i,j) 6= 0. (4.34)

We use (??) to find the following equality in k〈X〉:

wpwq = wp0wq0 −
∑

(i,j)∈MV(n,d),LM(gij)<wpwq

β(i,j)

β(p,q)
gij .

It follows from (??) that the right-hand side of this equality is a linear combination of monomials

strictly less than wpwq, which is impossible. It follows that the set Rb ⊂ k〈X〉 is linearly

independent.

(3) The set R ⊂ k〈X〉 is linearly independent. Assume the polynomials in R satisfy a linear relation∑
(j,i)∈H(n,d)

α(j,i)gji +
∑

(i,j)∈MV(n,d)

β(i,j)gij = 0, where α(j,i), β(i,j) ∈ k. (4.35)

This gives the following equality in the free associative algebra k〈X〉:

S1 =
∑

(j,i)∈H(n,d)

α(j,i)wjwi =
∑

(j,i)∈H(n,d)

α(j,i)wi′wj′ −
∑

(i,j)∈MV(n,d)

β(i,j)gij = S2. (4.36)

The element S1 =
∑

(j,i)∈H(n,d) α(j,i)wjwi on the left-hand side of (??) is in the space V =

SpanB1, where B1 = {wjwi | (j, i) ∈ H(n, d)} is linearly independent. The element

S2 =
∑

(j,i)∈H(n,d)

α(j,i)wi′wj′ −
∑

(i,j)∈MV(n,d)

β(i,j)g(i,j)

on the right-hand side of the equality is in the space W = SpanB, where

B = {wi′wj′ | (j, i) ∈ H(n, d)} ∪ {wiwj , wi0wj0 | (i, j) ∈ MV(n, d)}.

Take a subset B2 ⊂ B which forms a basis of W . Note that B1 ∩B = ∅, hence B1 ∩B2 = ∅.
Moreover each of the sets B1, and B2 consists of pairwise distinct monomials and it is easy to

show that V ∩W = 0. Thus the equality S1 = S2 ∈ V ∩W = 0 implies a linear relation

S1 =
∑

(j,i)∈H(n,d)

α(j,i)wjwi = 0,

for the set of leading monomials of Ra which are pairwise distinct, and therefore independent. It

follows that α(j,i) = 0, for all (j, i) ∈ H(n, d). This together with (??) implies the linear relation∑
(i,j)∈MV(n,d)

β(i,j)gij = 0,

and since by (2) Rb is linearly independent we get again β(i,j) = 0,∀ (i, j) ∈ MV(n, d). It follows

that the linear relation (??) must be trivial, and therefore R is a linearly independent set of

polynomials.
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We have proven part (1) of the theorem.

Analogous argument proves part (2). Note that the polynomials of R1a are reduced from Ra using

Rb. It is not difficult to prove the equivalence R ⇐⇒ R1. �

5. Veronese maps

In this section we shall introduce an analogue of Veronese maps between quantum spaces (Yang-

Baxter algebras) associated to finite solutions of YBE. We keep the notation and all conventions from

the previous sections. As usual, (X, r) is a finite solution of order n, A = A(k, X, r) is the associated

algebra, where we fix an enumeration, X = Xn = {x1, · · · , xn} as in Convention ??, d ≥ 2 is an integer,

N =
(
n+d−1

d

)
, and Nd = {w1 < w2 < · · · < wN} is the set of all normal monomials of length d in Xd

ordered lexicographically, as in (??).

5.1. The d-Veronese solution of YBE associated to a finite solution (X, r). We have shown

that the braided monoid (S, rS) associated to (X, r) induces the normalized d-Veronese solution (Nd, ρd)
of order N =

(
n+d−1

d

)
, see Definition ??. We shall use this construction to introduce the notion of a

d-Veronese solution of YBE associated to (X, r).

Definition-Notation 5.1. In notation as above. Let (X, r) be a finite solution, X = {x1, · · · , xn}, let

Nd = {w1 < w2 < · · ·wN} be the set of normal monomials of length d, and let (Nd, ρ) = (Nd, ρd) be the

normalized d-Veronese solution.

Let Y = {y1, y2, · · · , yN} be an abstract set and consider the quadratic set (Y, rY ) , where the map

rY : Y × Y −→ Y × Y is defined as

rY (yj , yi) := (yi′ , yj′) iff ρ(wj , wi) = (wi′ , wj′), 1 ≤ i, j, i′, j′ ≤ N. (5.1)

It is straightforward that (Y, rY ) is a nondegenerate symmetric set of order N isomorphic to (Nd, ρd).
We shall refer to it as the d-Veronese solution of YBE associated to (X, r).

By Corollary ?? the set Y × Y splits into
(
N
2

)
two-element rY - orbits and N one-element rY -orbits.

As usual, we consider the degree-lexicographic ordering on the free monoid 〈Y 〉 extending y1 < y2 <

· · · < yN . The Yang-Baxter algebra AY = A(k, Y, rY ) ' k〈Y ; RY 〉 has exactly
(
N
2

)
quadratic relations

which can be written explicitly as

RY = {γji = yjyi − yi′yj′ | (j, i) ∈ H(n, d), (yi′ , yj′) = rY (yj , yi)}, (5.2)

where H = H(n, d) is the set defined in (??), and each relation corresponds to a non-trivial rY -orbit.

The leading monomials satisfy LM(γji) = yjyi > yi′yj′ .

5.2. The Veronese map vn,d and its kernel.

Lemma 5.2. In notation as above. Let (X, r) be a solution of order n, AX = A(k, X, r), let d ≥ 2, be an

integer, and let N =
(
n+d−1

d

)
. Suppose (Y, rY ) is the associated d-Veronese solution, Y = {y1, · · · , yN},

and AY = A(k, Y, rY ), is the corresponding Yang-Baxter algebra.

The assignment

y1 7→ w1, y2 7→ w2, . . . , yN 7→ wN

extends to an algebra homomorphism vn,d : AY → AX .

Proof. Naturally we set vn,d(yi1 · · · yip) := wi1 · · ·wip , for all words yi1 · · · yip ∈ 〈Y 〉 and then extend this

map linearly. Note that for each polynomial γji ∈ RY one has

vn,d(γji) = gji ∈ Ra,

where the set Ra is a part of the relations of A(d)
X given in (??). Indeed, let γji ∈ RY , so (j, i) ∈ H(n, d)

and γji = yjyi − yi′yj′ , where (yi′ , yj′) = rY (yj , yi), see also (??). Then

vn,d(γji) = vn,d(yjyi − yi′yj′)
= wjwi − wi′wj′ , where (wi′ , wj′) = ρ(wj , wi),

= gji ∈ Ra.
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We have shown that gji equals identically 0 in AX , so the map vn,d agrees with the relations of the

algebra AX . It follows that vn,d : AY → AX is a well-defined homomorphism of algebras.

The image of vn,d is the subalgebra of AX generated by the normal monomials Nd, which by Theorem

?? is exactly the d-Veronese A(d)
X . �

Definition 5.3. We call the map vn,d from Lemma ?? the (n, d)-Veronese map.

Theorem 5.4. In assumption and notation as above. Let (X, r) be a solution of order n, with X = Xn =

{x1, · · · , xn}, let AX = A(k, Xn, r) be its Yang-Baxter algebra. Let d ≥ 2 be an integer, N =
(
n+d−1

d

)
,

and suppose that (Y, rY ) is the associated d-Veronese solution of YBE with corresponding Yang-Baxter

algebra AY = A(k, Y, rY ),

Let vn,d : AY → AX be the Veronese map (homomorphism of algebras) extending the assignment

y1 7→ w1, y2 7→ w2, . . . , yN 7→ wN .

Then the following conditions hold.

(1) The image of vn,d is the d-Veronese subalgebra A(d)
X of AX .

(2) The kernel K := ker(vn,d) of the Veronese map is generated by the set of
(
N+1
2

)
−
(
n+2d−1
n−1

)
linearly

independent quadratic binomials:

Rv
Y := {γij = yiyj − yi0yj0 | (i, j) ∈ MV(n, d), (i0, j0) ∈ C(n, d)}, (5.3)

where for each pair (i, j) ∈ MV(n, d), wi0wj0 = Nor(wiwj) ∈ N2d. In particular,

LM(γij) = yiyj > yi0yj0 .

Proof. (1) The image of vn,d is the subalgebra of AX generated by the normal monomials Nd, which by

Theorem ?? is exactly the d-Veronese subalgebra A(d)
X .

Part (2). We have to verify that the set Rv
Y generates K. Note first that Rv

Y ⊂ K. Indeed, by direct

computation, one shows that vn,d(Rv
Y ) = Rb, the set of relations of the d-Veronese (AX)(d) given in

(??), so Rv
Y ⊂ K. Moreover, for each pair (i, j) ∈ MV(n, d), the monomial yiyj occurs exactly once in

the set Rv
Y , namely in γij = yiyj − yi0yj0 . Here (i0, j0) ∈ C(n, d), and wi0wj0 = Nor(wiwj) ∈ N2d, see

Theorem ??.

The polynomials γij are pairwise distinct, since they have pairwise distinct highest monomials. There-

fore the cardinality of Rv
Y satisfies |Rv

Y | = |MV(n, d)|, and (??) implies

|Rv
Y | =

(
N + 1

2

)
−
(
n+ 2d− 1

n− 1

)
. (5.4)

The Yang-Baxter algebra AY is a quadratic algebra with N generators and
(
N
2

)
defining quadratic

relations which are linearly independent, so

dim(AY )2 = N2 −
(
N

2

)
=

(
N + 1

2

)
.

By the First Isomorphism Theorem (AY /K)2 ∼= (A(d)
X )2 = (AX)2d, hence

dim(AY )2 = dim(K)2 + dim(AX)2d.

We know that dim(AX)2d = |N2d| =
(
n+2d−1
n−1

)
, hence(

N + 1

2

)
= dim(K)2 +

(
n+ 2d− 1

n− 1

)
.

This together with (??) implies that

dim(K)2 =

(
N + 1

2

)
−
(
n+ 2d− 1

n− 1

)
= |Rv

Y |.

The set Rv
Y is linearly independent, since vn,d(Rv

Y ) = Rb, and by Lemma ?? the set Rb is linearly

independent. Thus the set Rv
Y is a basis of the graded component K2, and K2 = kRv

Y . But the ideal K

is generated by homogeneous polynomials of degree 2, therefore

K = (K2) = (Rv
Y ). (5.5)
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We have proven that Rv
Y is a minimal set of generators for the kernel K. �

6. Special cases

6.1. Veronese subalgebras of the Yang-Baxter algebra of a square-free solution. In this sub-

section (X, r) is a finite square-free solution of YBE of order n, d ≥ 2 is an integer. We keep the

conventions and notation from the previous sections. We apply Fact ?? and fix an appropriare enu-

meration X = Xn = {x1, · · · , xn}, such that the algebra the Yang-Baxter algebra A = A(k, X, r) is a

binomial skew polynomial ring. More precisely, A is a PBW algebra A = k〈x1, · · · , xn〉/(<0), where

<0 = <0(r) = {fji = xjxi − xi′xj′ | 1 ≤ i < j ≤ n}, (6.1)

is such that for every pair i, j, 1 ≤ i < j ≤ n, the relation fji = xjxi−xi′xj′ ∈ <0, satisfies j > i′, i′ < j′

and every term xixj , 1 ≤ i < j ≤ n, occurs in some relation in <0. In particular

LM(fji) = xjxi, 1 ≤ i < j ≤ n. (6.2)

The set <0 is a quadratic Gröbner basis of the ideal I = (<0) w.r.t the degree-lexicographic ordering

< on 〈X〉. It follows from the shape of the elements of the Gröbner basis <0, and (??) that the set

N = N (I) of normal monomials modulo I = (<0) coincides with the set T of ordered monomials (terms)

in X,

N = T = {xα1
1 · · ·xαn

n | αi ∈ N0, i ∈ {0, . . . , n}} . (6.3)

All definitions, notation, and results from Sections ?? and ?? are valid but they can be rephrased in

more explicit terms replacing the abstract sets N = N (I), Nd, and N2d with the explicit set of ordered

monomials T = T (X), Td, and T2d.
As usual, we consider the space kT endowed with multiplication defined by

f • g := Nor<0(fg), for every f, g ∈ kT .

Then there is an isomorphism of graded algebras

A = A(k, X, r) ∼= (kT , •), (6.4)

and we identify the PBW algebra A with (kT , •). Similarly, the monoid S(X, r) is identified with (T , •).
We order the elements of Td lexicographically, so

Td = {w1 = (x1)d < w2 = (x1)d−1x2 < · · · < wN = (xn)d}, where N =

(
n+ d− 1

d

)
(6.5)

The d-Veronese A(d) is a quadratic algebra (one)-generated by w1, w2, . . . , wN .

It follows from [?], Proposition 4.3, Ch 4, that if x1, · · · , xn is a set of PBW generators of a quadratic

algebra A, then the elements of the PBW-basis of degree d , taken in lexicographical order are PBW-

generators of the Veronese subalgebra A(d).

Corollary 6.1. Let (X, r) be a finite square-free solution of order n, let X = {x1, · · · , xn}, be enumerated

so that the algebra A = A(k, X, r) is a binomial skew polynomial ring. Let d ≥ 2 be an integer, and N =(
n+d−1

d

)
. The d-Veronese subalgebra A(d) ⊆ A is a quadratic PBW algebra with PBW generators the set

of ordered monomials (terms) in X of length d, Td = {w1 = xd1, · · · , wN = xdn}, ordered lexicographically

and N2 −
(
n+2d−1
n−1

)
linearly independent quadratic relations R = Ra ∪ Rb given in Theorem ??. Thus

A(d) has a standard finite presentation

A(d) ' k〈w1, · · · , wN 〉/(R),

where the set of defining relations R forms a Gröbner basis of the ideal (R) of k〈w1, · · · , wN 〉 (with

respect to the degree-lexicographic order on 〈w1, · · · , wN 〉).

For a square-free solution (X, r) as above, the normalized d-Veronese solution is denoted by (Td, ρd).
The d-Veronese solution (Y, rY ), associated to (X, r), is defined in Definition-Notation ??. One has

Y = {y1, y2, · · · , yN}, and the map rY : Y × Y −→ Y × Y is determined by

rY (yj , yi) := (yi′ , yj′) iff ρ(wj , wi) = (wi′ , wj′), 1 ≤ i, j, i′, j′ ≤ n. (6.6)
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By definition (Y, rY ) is isomorphic to the solution (Td, ρd) . Its Yang-Baxter algebra AY = A(k, Y, rY )

is needed to define the Veronese homomorphism

vn,d : AY → AX
extending the assignment

y1 7→ w1, y2 7→ w2, . . . , yN 7→ wN .

Theorem ?? shows that the image of vn,d is the d-Veronese subalgebra A(d) and determines a minimal

set of generators of its kernel.

Remark 6.2. The finite square-free solutions (X, r) form an important sublcass of the class of all finite

solutions, see for example [?]. It is natural to ask ”can we define analogue of Veronese morphisms between

Yang-Baxter algebras of square-free solutions?” In fact, it is not possible to restrict the defininition of

Veronese maps introduced for Yang-Baxter algebras of finite solutions to the subclass of Yang-Baxter

algebras of finte square-free solutions. Indeed, if we assume that (X, r) is square-free then the algebra

AY involved in the definition of the map vn,d is associated with the d-Veronese solution (Y, rY ), which,

in general is not square-free, see Corollary ??.

To prove the following result we work with the monomial d-Veronese solution (Sd, rd) keeping in mind

that it has special ”hidden” properties induced by the braided monoid (S, rS).

Theorem 6.3. Let d ≥ 2 be an integer. Suppose (X, r) is a finite square-free solution of order n ≥ 2,

(S, rS) is the associated braided monoid, and (Sd, rd) is the monomial d-Veronese solution induced by

(S, rS), see Def. ??. Then (Sd, rd) is a square-free solution if and only if (X, r) is a trivial solution.

Proof. Assume (Sd, rd) is a square-free solution. We shall prove that (X, r) is a trivial solution.

Observe that if (Z, rZ) is a solution, then (i) (Z, rZ) is square-free if and only if

zz = z, for all z ∈ Z;

and (ii) (Z, rZ) is the trivial solution if and only if

yx = x, for all x, y ∈ Z.

Let x, y ∈ X,x 6= y and consider the monomial a = xd−1y ∈ Sd. Our assumption that (Sd, rd) is

square-free implies that aa = a holds in Sd, and therefore in S. It follows from Remark ?? that the

words a and aa (considered as elements of Xd) belong to the orbit O = ODd
(a) of a = xd−1y in Xd. We

analyze the orbit O = O(xd−1y) to find that it contains two type of elements:

u = (x
d−1

y)b, where b ∈ Xd−1; (6.7)

and

v = xic, where 1 ≤ i ≤ d− 1 and c ∈ Xd−i. (6.8)

A reader who is familiar with the techniques and properties of square-free solutions such as ”cyclic

conditions” and condition ”lri” may compute that b = (xy)d−1 and c = (x
d−i−1

y)(xy)d−i−1, but these

details are not used in our proof. We use condition ML2, see (??) to yield the following equality in S:

aa = (xd−1y)(xd−1y) = (x
d−1yx)((x

d−1y)xx) · · · ((x
d−1y)x

d−1

y) = ω (6.9)

The word ω, considered as an element of Xd is in the orbit O, and therefore two cases are possible.

Case 1. The following is an equality of words in Xd:

ω = (x
d−1yx)((x

d−1y)xx) · · · ((x
d−1y)x

d−1

y) = (x
d−1

y)b, b ∈ Xd−1.

Then there is an equality of elements of X:

(xd−1y)x = xd−1

y. (6.10)

Now we use condition ML1, see (??) to obtain

(xd−1y)x = (xd−1)(yx)

which together with (??) gives
(xd−1)(yx) = (xd−1)y. (6.11)

24



The nondegeneracy implies that yx = y. At the same time yy = y, since (X, r) is square-free, and using

the nondegeneracy again one gets x = y, a contradiction. It follows that Case 1 is impossible, whenever

x 6= y.

Case 2. The following is an equality of words in Xd :

ω = (x
d−1yx)((x

d−1y)xx) · · · ((x
d−1y)x

k−1

y) = xic, where 1 ≤ i ≤ d− 1, c ∈ Xd−i.

Then
(xd−1y)x = x. (6.12)

At the same time the equality xx = x and condition ML1 imply xd−1

x = x, which together with (??)

and ML1 (again) gives
xd−1

x = (xd−1y)x = xd−1

(yx).

Thus, by the nondegeneracy again yx = x. We have shown that yx = x, for all x, y ∈ X, y 6= x. But

(X, r) is square-free, so yy = y for all y ∈ X. It follows that yx = x holds for all x, y ∈ X and therefore

(X, r) is the trivial solution. �

By construction the (abstract) d-Veronese solution (Y, rY ) associated to (X, r) is isomorphic to the

normalized d-Veronese solution (Nd, ρd) and therefore it is isomorphic to the monomial d-Veronese solu-

tion (Sd, rd). Theorem ?? implies straightforwardly the following corollary.

Corollary 6.4. Let d ≥ 2 be an integer, suppose (X, r) is a square-free solution of finite order. Then

the d-Veronese solution (Y, rY ) is square-free if and only if (X, r) is a trivial solution.

It follows that the notion of Veronese morphisms introduced for the class of Yang-Baxter algebras of

finite solutions can not be restricted to the subclass of algebras associated to finite square-free solutions.

6.2. Involutive permutation solutions. Recall that a symmetric set (X, r) is an involutive per-

mutation solution of Lyubashenko (or shortly a permutation solution) if there exists a permutation

f ∈ Sym(X), such that r(x, y) = (f(y), f−1(x)). In this case we shall write (X, f, r), see [?], and [?], p.

691.

Proposition 6.5. Suppose (X, f, r) is an involutive permutation solution of finite order n defined as

r(x, y) = (f(y), f−1(x)), where f is a permutation of X and let A be the associated Yang-Baxter algebra.

(1) For every integer d ≥ 2 the monomial d-Veronese solution (Sd, rd) is an involutive permutation

solution.

(2) If the permutation f has order m then for every integer d divisible by m the monomial d-Veronese

solution (Sd, rd) is the trivial solution and the d-Veronese subalgebra A(d) of A is a quotient of

the commutative polynomial ring k[y1, y2, · · · , yN ], where N =
(
n+d−1

d

)
.

Proof. (1) The condition ML1 in (??) implies that

at = fq(t), and ta = f−q(t), for all monomials a ∈ Sq, and all t ∈ X. (6.13)

Moreover, since S is a graded braided monoid the monomials a, ba and ab have the same length, therefore

at = abt = fq(t), ta = t
ba = f−q(t) for all a ∈ Sq, b ∈ S, and all t ∈ X. (6.14)

It follows then from (??) ML2 that S acts on itself (on the left and on the right) as automorphisms.

In particular, for a, t1t2 · · · td ∈ Sd one has

a(t1t2 · · · td) = (at1)(at2) · · · (atd) = fd(t1)fd(t2) · · · fd(td).
(t1t2 · · · td)a = (t1

a)(t2
a) · · · (tda) = f−d(t1)f−d(t2) · · · f−d(td).

(6.15)

Therefore (Sd, rd) is a permutation solution, (Sd, fd, rd), where the permutation fd ∈ Sym(Sd) is defined

as fd(t1t2 · · · td) := fd(t1)fd(t2) · · · fd(td). One has f−1d (t2t2 · · · td) := f−d(t1)f−d(t2) · · · f−d(td).
(2) Assume now that d = km for some integer k ≥ 1, then fd = idX . It will be enough to prove that

the monomial d-Veronese solution (Sd, rd) is the trivial solution. It follows from (??) that if a ∈ Sd then

a(t1t2 · · · td) = t1t2 · · · td, where ti ∈ X, 1 ≤ i ≤ n. (6.16)
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This implies ab = b for all a, b ∈ Sd. Similarly, ab = a for all a, b ∈ Sd. It follows that (Sd, rd) is the

trivial solution. But the associated d-Veronese solution (Y, rY ) is isomorphic to (Sd, rd), hence (Y, rY ) is

also a trivial solution, and therefore its Yang-Baxter algebra A(k,Y, rY) is the commutative polynomial

ring k[y1, y2, · · · , yN ]. It follows from Theorem ?? that the d-Veronese subalgebra A(d) is isomorphic to

the quotient k[y1, y2, · · · , yN ]/(K) where K is the kernel of the Veronese map vn,d. �

7. Examples

We shall present two examples which illustrates the results of the paper. We use the notation of the

previous sections.

Example 7.1. Let n = 3, consider the solution (X, r), where

X = {x1, x2, x3},
r(x3, x1) = (x2, x3) r(x2, x3) = (x3, x1)

r(x3, x2) = (x1, x3) r(x1, x3) = (x3, x2)

r(x2, x1) = (x1, x2) r(x1, x2) = (x2, x1)

r(xi, xi) = (xi, xi), 1 ≤ i ≤ 3.

Then
A(k, X, r) = k〈X〉/(<0) where

<0 = <0(r) = {x3x2 − x1x3, x3x1 − x2x3, x2x1 − x1x2.}.
The algebra A = A(k, X, r) is a PBW algebra with PBW generators X = {x1, x2, x3}, in fact it is a

binomial skew-polynomial algebra.

We first give an explicit presentation of the 2-Veronese A(2) in terms of generators and quadratic

relations. In this case N =
(
3+1
2

)
= 6 and the 2-Veronese subalgebra A(2) is generated by T2, the

terms of length 2 in k〈x1, x2, x3〉. These are all normal (modulo <0) monomials of length 2 ordered

lexicographically:

T2 = {w1 = x1x1, w2 = x1x2, w3 = x1x3, w4 = x2x2, w5 = x2x3, w6 = x3x3}. (7.1)

Determine the normaized 2-Veronese solution (T2, ρ2) = (T2, ρ), where ρ(a, b) = (Nor(ab),Nor(ab)).

An explicit description of ρ is given below:

(x3x3, wi)←→ (wi, x3x3), 1 ≤ i ≤ 5

(x2x3, x2x3)←→ (x1x3, x1x3), (x2x3, x2x2)←→ (x1x1, x2x3),

(x2x3, x1x2)←→ (x1x2, x2x3), (x2x3, x1x1)←→ (x2x2, x2x3),

(x2x2, x1x3)←→ (x1x3, x1x1), (x2x2, x1x2)←→ (x1x2, x2x2),

(x2x2, x1x1)←→ (x1x1, x2x2), (x1x3, x2x2)←→ (x1x1, x1x3),

(x1x3, x1x2)←→ (x1x2, x1x3), (x1x2, x1x1)←→ (x1x1, x1x2).

(7.2)

The fixed points F = F(T2, ρ2) are the monomials ab determined by the one-element orbits of ρ, one

has (a, b) = (ab, ab). There are exactly 6 fixed points:

F = {w1w1 = (x1x1)(x1x1) ∈ T4, w4w4 = (x2x2)(x2x2) ∈ T4, w6w6 = (x3x3)(x3x3) ∈ T4,
w2w2 = (x1x2)(x1x2) /∈ T4, w3w5 = (x1x3)(x2x3) /∈ T4, w5w3 = (x2x3)(x1x3) /∈ T4.}.

(7.3)

There are exactly 15 =
(
N
2

)
nontrivial ρ-orbits in T2 ×T2 determined by (??). These orbits imply the

following equalities in A(2):

(x3x3)wi = wi(x3x3) ∈ T4, 1 ≤ i ≤ 5,

(x2x3)(x2x3) = (x1x3)(x1x3) /∈ T4, (x2x3)(x2x2) = (x1x1)(x2x3) ∈ T4,
(x2x3)(x1x2) = (x1x2)(x2x3) ∈ T4, (x2x3)(x1x1) = (x2x2, x2x3) ∈ T4,
(x2x2)(x1x3) = (x1x3)(x1x1) /∈ T4, (x2x2)(x1x2) = (x1x2)(x2x2) ∈ T4,
(x2x2)(x1x1) = (x1x1)(x2x2) ∈ T4, (x1x3)(x2x2) = (x1x1)(x1x3) ∈ T4,
(x1x3)(x1x2) = (x1x2)(x1x3) /∈ T4, (x1x2)(x1x1) = (x1x1)(x1x2) ∈ T4.

(7.4)

Note that for every pair (wi, wj) ∈ T2 × T2 \ F the monomial wiwj occurs exactly once in ( ??) .

Six additional quadratic relations of A(2) arise from (??), (??), and the obvious equality a = Nor(a) ∈
T , which hold in A(2) for every a ∈ X2. In this case we simply pick up all monomials which occur in
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(??), or (??) but are not in T4 and equalize each of them with its normal form. This way we get the six

relations which determine Rb:
(x1x2)(x1x2) = (x1x1)(x2x2), (x1x3)(x2x3) = (x1x1)(x3x3), (x2x3)(x1x3) = (x2x2)(x3x3)

(x1x3)(x1x3) = (x1x2)(x3x3), (x2x2)(x1x3) = (x1x2)(x2x3), (x1x2)(x1x3) = (x1x1)(x2x3).
(7.5)

The 2-Veronese algebra A(2) has 6 generators w1, · · · , w6 written explicitly in (??) and a set of 21

relations presented as a disjoint union R = Ra
⋃
Rb described below.

(1) The relations Ra are:

w6wi − wiw6, wiw6 ∈ T4, 1 ≤ i ≤ 5,

w5w5 − w3w3, w3w3 /∈ T4, w5w4 − w1w5, w1w5 ∈ T4,
w5w2 − w2w5, w2w5 ∈ T4, w5w1 − w4w5, w4w5 ∈ T4,
w4w3 − w3w1, w3w1 /∈ T4, w4w2 − w2w4, w2w4 ∈ T4,
w4w1 − w1w4, w1w4 ∈ T4, w3w4 − w1w3, w1w3 ∈ T4,
w3w2 − w2w3, w2w3 /∈ T4, w2w1 − w1w2, w1w2 ∈ T4.

(7.6)

(2) The relations Rb are:

w2w2 − w1w4, w3w5 − w1w6, w5w3 − w4w6,

w3w3 − w2w6, w3w1 − w2w5, w2w3 − w1w5.
(7.7)

The elements of Rb correspond to the generators of the kernel of the Veronese map.

Thus the 2-Veronese A(2) of the algebra A is a PBW algebra with a standard finite presentation

A(2) ' k〈w1, · · · , w6〉/(R),

where, w1, · · · , w6 is a set of PBW generators and R = Ra∪Rb is a set of defining relations which forms

a quadratic Gröbner basis of the ideal (R) in k〈w1, · · · , w6〉.
Another standard finite presentation is

A(2) ' k〈w1, · · · , w6〉/(R1),

where R1 = Ra1 ∪Rb, and the relations Ra1 are:

w6wi − wiw6, wiw6 ∈ T4, 1 ≤ i ≤ 5,

w5w5 − w2w6, w2w6 ∈ T4, w5w4 − w1w5, w1w5 ∈ T4,
w5w2 − w2w5, w2w5 ∈ T4, w5w1 − w4w5, w4w5 ∈ T4,
w4w3 − w2w5, w2w5 ∈ T4, w4w2 − w2w4, ∈ T4,
w4w1 − w1w4, w1w4 ∈ T4, w3w4 − w1w3, w1w3 ∈ T4,
w3w2 − w1w5, w1w5 ∈ T4, w2w1 = w1w2, w1w2 ∈ T4.

(7.8)
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