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NORMALITY OF CIRCULAR β-ENSEMBLE

RENJIE FENG, GANG TIAN AND DONGYI WEI

Abstract. We will prove the Berry-Esseen theorem for the number counting

function of the circular β-ensemble (CβE), which will imply the central limit
theorem for the number of points in arcs of the unit circle in mesoscopic and

macroscopic scales. We will prove the main result by estimating the character-

istic functions of the Prüfer phases and the number counting function, which
will imply the the uniform upper and lower bounds of their variance. We also

show that the similar results hold for the Sineβ process. As a direct applica-

tion of the uniform variance bound, we can prove the normality of the linear
statistics when the test function f(θ) ∈W 1,p(S1) for some p ∈ (1,+∞).

1. Introduction

The circular β-ensemble (measure µβ,n, β > 0) is a random process on the unit
circle and the joint density of its eigenangles θj ∈ [0, 2π), 1 ≤ j ≤ n with respect
to the Lebesgue measure is

J(θ1, · · · , θn) =
1

Cβ,n

∏
j<k

|eiθj − eiθk |β ,

where β > 0 and Cβ,n = (2π)n Γ(1+βn/2)
(Γ(1+β/2))n is the normalization constant [8].

There are many results regarding the normality of CβE and GβE (we refer to
[8] for the definition of GβE). For CβE, Killip [14] proved the central limit theorem
for the number of points in the fixed arcs, and the variance is logarithmic in n,
where the result can be considered as the macroscopic statistics. For GβE, Costin-
Lebowitz proved the normality of eigenvalues in the particular cases β ∈ {1, 2, 4}
and the variance is also logarithmic with respect to the mean [5]. These results can
be extended to more general point processes, we refer to [2, 3, 4, 7, 9, 10, 11, 12,
13, 17, 18, 19, 21, 22, 23, 24] and the references therein.

Recently, in [20], Najnudel-Virág proved the uniform upper bounds on the vari-
ance of the number of points in intervals for both CβE and GβE. Their bounds are
uniform in n which cover microscopic, mesoscopic and macroscopic scales. And if
one rescales the interval or the arc in such a way that the average spacing between
the points has order 1, then the upper bounds are logarithmic in the length of the
interval or the arc. To be more precise, in the case of CβE, let’s write Nn(a, b) for
the number of points in a sample from µβ,n that lie in the arc between a and b,
Najnudel-Virág proved the following uniform upper bound

(1) E[|Nn(0, θ)− nθ/(2π)|2] ≤ Cβ ln(2 + nθ).

In this paper, we will study the normality of the number counting function and
the linear statistics for CβE. Our first main result is the following Berry-Esseen
theorem for the number counting function, which is novel and not proved elsewhere.

1



2 FENG, TIAN AND WEI

Theorem 1. Let θ ∈ (0, π] that may depend on n, we have the uniform estimate

sup
x∈R

∣∣∣∣∣P
[√

π2β

2 ln(2 + nθ)

[
Nn(0, θ)− nθ

2π

]
≤ x

]
−
∫ x

−∞

e−t
2/2

√
2π

dt

∣∣∣∣∣ ≤ C

(ln(2 + nθ))
1
2

,

here C > 0 is a constant depending only on β.

As a direct consequence of Theorem 1, we have the following central limit theo-
rem for the number of points in arcs of the unit circle for CβE in both mesoscopic
and macroscopic scales.

Corollary 1. Let θn ∈ (0, π], nθn → +∞, then√
π2β

2 ln(2 + nθn)
[Nn(0, θn)− nθn

2π
]

converges in law to a Gaussian random variable of mean zero and variance one.

Notice that, Corollary 1 is the main result proved in [14] for the case where
θn = θ is fixed.

To show the key steps to prove Theorem 1, we begin with some preliminary
results proved in [15]. Let γj ∼ Θβ(j+1)+1 be independent random variables for
j ≥ 0 and let η be a uniform variable on [0, 2π) independent of (γj)j≥0. We define
the so-called Prüfer phases (ψk(θ))θ∈R,k≥0 as follows: ψ0(θ) = θ and for k ≥ 0,

ψk+1(θ) = ψk(θ) + θ + 2Im ln

(
1− γk

1− γkeiψk(θ)

)
.

Then the random set

{θ ∈ R, ψn−1(θ) ≡ η(mod 2π)}
has the same law as the set of all determinations of the arguments of the n points
of a CβE. Here, a complex random variable X with values in the unit disk D is
Θν-distributed (for ν > 1) if

E[f(X)] =
ν − 1

2π

∫∫
D
f(z)(1− |z|2)(ν−3)/2d2z.

Simple computations show [14, 15]

E[X] = 0, E[|X|2] =
2

ν + 1
, E[|X|4] =

8

(ν + 1)(ν + 3)

and

E[(− ln(1− |X|2))m] =
ν − 1

2

∫ ∞
0

tme−(ν−1)t/2dt = Γ(m+ 1)

(
2

ν − 1

)m
,(2)

where we change the variable e−t = 1− |X|2.
The above result tells us that

Nn(0, θ)
d
= bψn−1(θ)− η

2π
c+ 1

for θ ∈ (0, 2π). Here X
d
= Y means that the random variables X,Y have the same

distribution, we also used the fact that ψn−1(0) = 0, and that ψn−1(θ) is increasing
with respect to θ. By rotational invariance we have

E[Nn(0, θ)] = nθ/(2π)
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and

Nn(0, 2π − θ) d
= Nn(θ, 2π) = n−Nn(0, θ),

i.e., there is a natural symmetry between θ and 2π − θ, therefore, it is enough to
study the case θ ∈ (0, π].

Throughout the article, we will use C > 0 to denote a universal constant de-
pending only on β which may change from line to line.

To prove Theorem 1, the key lemma is the following estimate regarding the
characteristic function of the Prüfer phases.

Lemma 1. Let θ ∈ (0, π], λ ∈ R, λ2 ≤ β/8. There exists a constant C > 0
depending only on β such that

|E[eiλ(ψn−1(θ)−nθ)]− e−(4λ2/β) ln(2+nθ)| ≤ Cλ2e−(4λ2/β) ln(2+nθ).

Moreover, as a consequence of Lemma 1, we can prove the following uniform
bound first for the variance of ψn−1(θ), then for the variance of Nn(0, θ).

Corollary 2. There exists a constant C > 0 depending only on β such that for
θ ∈ (0, π], n ∈ Z, n > 0, λ ∈ [−2π

√
β/8, 2π

√
β/8], we have

(3) |E[(ψn−1(θ)− nθ)2]− (8/β) ln(2 + nθ)| ≤ C,

(4) |E[eiλ(Nn(0,θ)−nθ/(2π))]− e−λ
2/(βπ2)·ln(2+nθ)| ≤ Cλ2,

(5)

∣∣∣∣∣E
[∣∣∣∣Nn(0, θ)− nθ

2π

∣∣∣∣2
]
− 2 ln(2 + nθ)

π2β

∣∣∣∣∣ ≤ C.
The inequality (5) gives both the upper and lower uniform variance bounds which

improves the estimate (1).
The Sineβ point process is the scaling limit of the CβE, and its central limit

theorem has been proved in [16]. In this article, we can further prove the following
uniform variance bound and the Berry-Esseen theorem for the Sineβ point process.
Let’s denote Card(A) the cardinality of a set A.

Corollary 3. Let L be the Sineβ point process, there exists a constant C > 0
depending only on β such that for x > 0, we have

(6) |E[(Card(L ∩ [0, x])− x/(2π))2]− 2/(βπ2) · ln(2 + x)| ≤ C,

sup
y∈R

∣∣∣∣∣P
[√

π2β

2 ln(2 + x)

[
Card(L ∩ [0, x])− x

2π

]
≤ y

]
−
∫ y

−∞

e−t
2/2

√
2π

dt

∣∣∣∣∣(7)

≤ C(ln(2 + x))−
1
2 .

In the end, as a direct application of the uniform variance bound (5), we can
prove the normality of the linear statistics for CβE when the test function is in
W 1,p(S1) for some p ∈ (1,+∞), and p will be fixed. Let’s denote

ξn =

n∑
j=1

δθj

the empirical measure of a sample from µβ,n, and we consider the linear statistics

〈ξn, f〉 =

n∑
j=1

f(θj).
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We will prove the following result.

Theorem 2. Let f ∈ W 1,p(S1) be real valued and periodic function with f(0) =

f(2π), and
∫ 2π

0
f(x)dx = 0 where p ∈ (1,+∞), then 〈ξn, f〉 converges in law to a

Gaussian random variable of mean zero and variance 2σ2, where

σ2 =
2

β

+∞∑
j=1

j|aj |2, aj =
1

2π

∫ 2π

0

f(x)e−ijxdx, j ∈ Z.

To prove Theorem 2, we will need the variance estimate of the linear statistics
(see Lemma 14 in §6) which is based on the uniform variance bound (5). The
rest proof makes use of Lemma 16 (proved in [9]) and the approximation of the
W 1,p(S1) space by the Féjer kernel.

There are also some known results on the normality of linear statistics for CβE,
we refer to [6, 7, 9, 10, 11, 19, 25] for more details.

The organization of the article is as follows. In §2, we will review some known
results on CβE which are proved in [14, 15]. In §3, we will derive Lemma 1 and
prove Corollary 2. In §4, we will finish the proof of Theorem 1. In §5, we will prove
Corollary 3 for the Sineβ process. In §6, as an application of the uniform variance
bound (5), we will prove Theorem 2.

2. Preliminary results

In this section, we will collect several properties regarding CβE proved in [14, 15]
which will be useful in the proof of Theorem 1.

Now we introduce

Υ(ψ, α) = −2Im ln[1− αeiψ] = Im

+∞∑
l=1

2

l
eilψαl,

and
Υ1(ψ, α) = Υ(ψ, α)−Υ(0, α).

Then we have [15]

ψk+1(θ) = ψk(θ) + θ + Υ1(ψk(θ), γk).

We have the following estimates about Υ (Lemma 2.5 in [14]).

Lemma 2. Suppose φ, ψ ∈ R and α ∼ Θν . If Υ̃(ψ, α) = 2Im[αeiψ], then

E[Υ(ψ, α)] = E[Υ̃(ψ, α)] = 0,

E[Υ̃(ψ, α)Υ̃(φ, α)] =
4

ν + 1
cos(ψ − φ),

E[Υ̃(ψ, α)4] =
48

(ν + 1)(ν + 3)
,

E[|Υ(ψ, α)− Υ̃(ψ, α)|2] ≤ 16

(ν + 1)(ν + 3)
,

E[|Υ(ψ, α)|2] ≤ 8

ν + 1
.

By rotational invariance, we also have E[α3] = E[|α|2α] = 0, which implies

E[(Υ̃(ψ, α)− Υ̃(φ, α))3] = 0.(8)
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We apply Plancharel’s theorem to the power series of Υ to get

E[(Υ(ψ, α)− Υ̃(ψ, α))Υ̃(φ, α)] = 0.(9)

We also have the following estimate on Υ1 (see Proposition 2.3 in [15]),∣∣∣∣∫ 2π

0

Υ1(ψ, reiθ)Υ1(φ, reiθ)
dθ

2π

∣∣∣∣ ≤ 2(|ψ|+ |φ|) ln
1

1− r2
, ∀ r ∈ [0, 1).(10)

The following estimates are proved in Corollary 2.4 in [15].

Lemma 3. For s ≥ 0, we have

E[ψs(θ)] = (s+ 1)θ, E[|ψs(θ)|] = (s+ 1)|θ|,
and for 0 ≤ k ≤ m, we have

E[|ψm(θ)− ψk(θ)− (m− k)θ|2] =

m−1∑
s=k

E[|Υ1(ψs(θ), γs)|2].

By Lemma 3, we can further prove

Lemma 4. For 0 ≤ k ≤ m, we have

E[|ψm(θ)− ψk(θ)− (m− k)θ|2] ≤ 8(m− k)|θ|/β.
In particular, for k = 0 we have

E[|ψm(θ)− (m+ 1)θ|2] ≤ 8m|θ|/β.

Proof. Using Lemma 3, by (2), (10) and the rotational invariance we have

E[|ψm(θ)− ψk(θ)− (m− k)θ|2] =

m−1∑
s=k

E[|Υ1(ψs(θ), γs)|2]

≤
m−1∑
s=k

4E
[
|ψs(θ)| ln

1

1− |γs|2

]
=

m−1∑
s=k

4E [|ψs(θ)|]E
[
ln

1

1− |γs|2

]

≤
m−1∑
s=k

4(s+ 1)|θ| 2

β(s+ 1)
=

m−1∑
s=k

8|θ|
β

=
8(m− k)|θ|

β
.

Here, we take ν = β(s+ 1) + 1 for γs. This completes the proof. �

3. The characteristic function and the uniform variance bound

Let’s define the characteristic function of the Prüfer phases

ak(λ) := ak(λ, θ, β) = E[eiλ(ψk(θ)−(k+1)θ)].

Then |ak(λ)| ≤ 1 for λ ∈ R. In this section, we will derive several estimates
regarding the sequence {ak(λ)}+∞k=0, then we can prove Lemma 1 and Corollary 2.

We first have

Lemma 5. Suppose φ, λ ∈ R and α ∼ Θν , then∣∣∣∣E[eiλΥ1(φ,α)]− 1 +
4λ2(1− cosφ)

ν + 1

∣∣∣∣ ≤ 64λ2 + 416λ4

(ν + 1)(ν + 3)

and ∣∣∣E[eiλΥ1(φ,α)]− 1
∣∣∣ ≤ 16λ2

ν + 1
.
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Proof. Let X = Υ1(φ, α), X1 = Υ̃(φ, α)− Υ̃(0, α), X3 = Υ(φ, α)− Υ̃(φ, α), X4 =

Υ̃(0, α)−Υ(0, α), X2 = X3 +X4, here Υ̃(ψ, α) = 2Im[αeiψ] for every ψ ∈ R, then
we have X = X1 +X3 +X4 = X1 +X2. By Lemma 2 we have

E[X1] = E[X3] = E[X4] = 0, E[X2] = E[X] = 0,(11)

E[|X3|2] ≤ 16

(ν + 1)(ν + 3)
, E[|X4|2] ≤ 16

(ν + 1)(ν + 3)
,(12)

E[|X2|2] ≤ 2E[|X3|2 + |X4|2] ≤ 64

(ν + 1)(ν + 3)
,(13)

E[|X1|4] ≤ 8E[Υ̃(0, α)4 + Υ̃(φ, α)4] ≤ 768

(ν + 1)(ν + 3)
,(14)

E[|X1|2] =
8(1− cosφ)

ν + 1
, E[|X|2] ≤ 32

ν + 1
.(15)

By (8), (9) we have E[X3
1 ] = E[X1X2] = 0. Notice that

eiλX − eiλX1 = eiλX1(eiλX2 − 1)

=eiλX1(eiλX2 − iλX2 − 1) + (eiλX1 − iλX1 − 1)(iλX2) + iλX2(iλX1 + 1),

and that |eix − ix− 1| ≤ |x|2/2 for x ∈ R by Taylor expansion, we have

|eiλX − eiλX1 − iλX2(iλX1 + 1)| ≤ |λX2|2/2 + |λX1|2|λX2|/2,

which together with E[X2] = E[X1X2] = 0 and (13), (14) gives

|E[eiλX − eiλX1 ]| = |E[eiλX − eiλX1 − iλX2(iλX1 + 1)]|(16)

≤E[|λX2|2/2 + |λX1|2|λX2|/2] ≤ E[|λX2|2 + |λX1|4/2]

≤ 64λ2

(ν + 1)(ν + 3)
+

384λ4

(ν + 1)(ν + 3)
.

Since |eix + ix3/6 + x2/2 − ix − 1| ≤ |x|4/24 for x ∈ R by Taylor expansion and
E[X3

1 ] = E[X1] = 0, by (14) we have

|E[eiλX1 ]− 1 + λ2E[|X1|2]/2| = |E[eiλX1 + iλ3X3
1/6 + λ2X2

1/2− iλX1 − 1]|

≤ E[|λX1|4]/24 ≤ 32λ4

(ν + 1)(ν + 3)
,

which together with (15), (16) gives∣∣∣∣E[eiλX ]− 1 +
4λ2(1− cosφ)

ν + 1

∣∣∣∣
≤|E[eiλX − eiλX1 ]|+ |E[eiλX1 ]− 1 + λ2E[|X1|2]/2|

≤ 64λ2 + 384λ4

(ν + 1)(ν + 3)
+

32λ4

(ν + 1)(ν + 3)
=

64λ2 + 416λ4

(ν + 1)(ν + 3)
.

This completes the proof of the first inequality. Since |eix − ix − 1| ≤ |x|2/2 for
x ∈ R by Taylor expansion and E[X] = 0, by (15) we have

|E[eiλX ]− 1| = |E[eiλX − iλX − 1]| ≤ E[|λX|2/2] ≤ 16λ2

ν + 1
.

This completes the proof of the second inequality. �

We need the following estimate of the sequence {ak(λ)}+∞k=0.
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Lemma 6. Let θ ∈ (0, π], λ ∈ R, then we have∣∣∣∣ak+1(λ)− ak(λ) +
λ2(4ak(λ)− 2ei(k+1)θak(λ+ 1)− 2e−i(k+1)θak(λ− 1))

β(k + 1) + 2

∣∣∣∣
≤ 64λ2 + 416λ4

(β(k + 1) + 2)(β(k + 1) + 4)

and

|ak+1(λ)− ak(λ)| ≤ 16λ2

β(k + 1) + 2
.

Proof. Let Xk := ψk(θ), Yk := Υ1(ψk(θ), γk), then

Xk+1 = Xk + θ + Yk.

For the sigma algebras
Mk−1 := σ(γ0, · · · , γk−1),

γk is independent of Mk−1 and Xk is measurable in Mk−1. By Lemma 5 we have
(taking ν = β(k + 1) + 1 for γk)∣∣∣∣E[eiλYk |Mk−1]− 1 +

4λ2(1− cosXk)

β(k + 1) + 2

∣∣∣∣ ≤ 64λ2 + 416λ4

(β(k + 1) + 2)(β(k + 1) + 4)
(17)

and ∣∣E[eiλYk |Mk−1]− 1
∣∣ ≤ 16λ2

β(k + 1) + 2
.

Let’s denote
Zk(λ) := eiλ(Xk−(k+1)θ),

then we have

Zk(λ) = eiλ(ψk(θ)−(k+1)θ), Zk+1(λ) = eiλYkZk(λ), ak(λ) = E[Zk(λ)]

and

2Zk(λ) cosXk = Zk(λ)(eiXk + e−iXk) = ei(λ+1)Xk−iλ(k+1)θ + ei(λ−1)Xk−iλ(k+1)θ

= Zk(λ+ 1)ei(k+1)θ + Zk(λ− 1)e−i(k+1)θ.

Let’s denote

Vk(λ) := Zk+1(λ)− Zk(λ) + Zk(λ)
4λ2(1− cosXk)

β(k + 1) + 2

=eiλYkZk(λ)− Zk(λ) + Zk(λ)
4λ2(1− cosXk)

β(k + 1) + 2

=Zk+1(λ)− Zk(λ) +
λ2(4Zk(λ)− 2Zk(λ+ 1)ei(k+1)θ − 2Zk(λ− 1)e−i(k+1)θ)

β(k + 1) + 2
.

Then by (17) and the fact that |Zk(λ)| = 1, ak(λ) = E[Zk(λ)] we have

|E [Vk(λ)|Mk−1]| =
∣∣∣∣E[eiλYk |Mk−1]Zk(λ)− Zk(λ) + Zk(λ)

4λ2(1− cosXk)

β(k + 1) + 2

∣∣∣∣
=|Zk(λ)|

∣∣∣∣E[eiλYk |Mk−1]− 1 +
4λ2(1− cosXk)

β(k + 1) + 2

∣∣∣∣ ≤ 64λ2 + 416λ4

(β(k + 1) + 2)(β(k + 1) + 4)

and ∣∣∣∣ak+1(λ)− ak(λ) +
λ2(4ak(λ)− 2ei(k+1)θak(λ+ 1)− 2e−i(k+1)θak(λ− 1))

β(k + 1) + 2

∣∣∣∣
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=|E[Vk(λ)]| ≤ E |E [Vk(λ)|Mk−1]| ≤ 64λ2 + 416λ4

(β(k + 1) + 2)(β(k + 1) + 4)
,

which is the first inequality. Similarly, we have

|ak+1(λ)− ak(λ)| = |E[Zk+1(λ)− Zk(λ)]| ≤ E |E [Zk+1(λ)− Zk(λ)|Mk−1]|

=E
∣∣E [eiλYk |Mk−1

]
Zk(λ)− Zk(λ)

∣∣ = E
∣∣E[eiλYk |Mk−1]− 1

∣∣ ≤ 16λ2

β(k + 1) + 2
,

which is the second inequality. This completes the proof. �

Lemma 7. Let θ ∈ (0, π], δ ∈ [−π, π] \ {0}, λ ∈ R, then we have∣∣∣∣∣∣
n−1∑
j=k

eijδaj(λ)

β(j + 1) + 2

∣∣∣∣∣∣ ≤ 2 + 16λ2/β

|1− eiδ|(β(k + 1) + 2)
.

Proof. Let εj = 1/(β(j + 1) + 2), aj = aj(λ), using summation by parts

n−1∑
j=k

eijδεjaj(λ) =

n−1∑
j=k

eijδεjaj(λ)− ei(j+1)δεjaj(λ)

1− eiδ

=
eikδεkak − einδεnan

1− eiδ
+

n−1∑
j=k

(εj+1 − εj)ei(j+1)δaj
1− eiδ

+

n∑
j=k+1

εj
eijδ(aj − aj−1)

1− eiδ
,

and using |aj(λ)| ≤ 1 we have∣∣∣∣∣∣
n−1∑
j=k

eijδεjaj

∣∣∣∣∣∣ ≤ |εk|+ |εn|+
∑n
j=k+1 |εj − εj−1|+

∑n−1
j=k |εj(aj(λ)− aj−1(λ))|

|1− eiδ|
.

Since εj−1 > εj > 0, we have

n∑
j=k+1

|εj − εj−1| = εk − εn

and

|εk|+ |εn|+
n∑

j=k+1

|εj − εj−1| = 2εk.

By Lemma 6 we have

|aj(λ)− aj−1(λ)| ≤ 16λ2εj−1,

this together with εj−1 − εj = βεj−1εj > 0 implies that

n−1∑
j=k

|εj(aj(λ)− aj−1(λ))| ≤
n−1∑
j=k

16λ2|εjεj−1| = (16λ2/β)(εk − εn).

Summing up we conclude that∣∣∣∣∣∣
n−1∑
j=k

eijδεjaj(λ)

∣∣∣∣∣∣ ≤ 2εk + (16λ2/β)εk
|1− eiδ|

=
2 + 16λ2/β

|1− eiδ|(β(k + 1) + 2)
.

This completes the proof. �
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Lemma 8. Given complex valued sequences εj , aj , bj , cj and n ∈ Z, n > 0, λ ∈ R
such that |aj | ≤ 1, εj > 0, aj+1 − aj + λ2(εjaj − bj) = cj, let sk =

∑k−1
j=0 εj , tk =∑n−1

j=k bj, then we have (for k ∈ [0, n− 1] ∩ Z)∣∣∣eλ2skak − eλ
2snan

∣∣∣ ≤ eλ2skλ2|tk|+
n−1∑
j=k

eλ
2sj+1(|cj |+ λ4ε2j/2 + λ4|εjtj |).

Proof. By the definition of tk we have bj = tj−tj+1, inserting this into the equation
of cj we have aj+1 + λ2tj+1 − aj + λ2(εjaj − tj) = cj . Let ãj = aj + λ2tj then

ãj+1 − e−λ
2εj ãj = cj + (1− λ2εj − e−λ

2εj )aj + λ2(1− e−λ
2εj )tj .

Since |1 − x − e−x| ≤ |x|2/2, |1 − e−x| ≤ |x| for x ≥ 0 by Taylor expansion and
|aj | ≤ 1, we have

|ãj+1 − e−λ
2εj ãj | ≤ |cj |+ λ4ε2j/2 + λ4|εjtj |.

By the definition of sk we have sj+1 = sj + εj , thus

|eλ
2sk ãk − eλ

2sn ãn| ≤
n−1∑
j=k

|eλ
2sj+1 ãj+1 − eλ

2sj ãj | =
n−1∑
j=k

eλ
2sj+1 |ãj+1 − e−λ

2εj ãj |

≤
n−1∑
j=k

eλ
2sj+1(|cj |+ λ4ε2j/2 + λ4|εjtj |).(18)

Notice that tn = 0, eλ
2sk ãk − eλ

2sn ãn = eλ
2skak − eλ

2snan + eλ
2skλ2tk, and

|eλ
2skak − eλ

2snan| ≤ eλ
2skλ2|tk|+ |eλ

2sk ãk − eλ
2sn ãn|,

which together with (18) concludes the proof. �

Lemma 9. Let θ ∈ (0, π], λ ∈ R, εk = 4/(β(k + 1) + 2), sk =
∑k−1
j=0 εj, then (for

n, k ∈ Z, n > k ≥ 0)∣∣∣eλ2skak(λ)− eλ
2snan(λ)

∣∣∣ ≤ C

θ
(λ2 + λ4)eλ

2skεk +
C

θ
(λ2 + λ6)

n−1∑
j=k

eλ
2sj+1ε2j ,

here C > 0 is a constant depending only on β.

Proof. Let ak = ak(λ), bk =
2ei(k+1)θak(λ+ 1) + 2e−i(k+1)θak(λ− 1)

β(k + 1) + 2
, and ck =

ak+1 − ak + λ2(εkak − bk), by Lemma 6 we have |ck| ≤ (4λ2 + 26λ4)ε2k. We can

write tk =
∑n−1
j=k bj = 2(tk,1 + tk,2) such that

tk,1 =

n−1∑
j=k

ei(j+1)θaj(λ+ 1)

β(j + 1) + 2
, tk,2 =

n−1∑
j=k

e−i(j+1)θaj(λ− 1)

β(j + 1) + 2
.

By Lemma 7 we have

|tk,1| ≤
2 + 16(λ+ 1)2/β

|1− eiθ|(β(k + 1) + 2)
, |tk,2| ≤

2 + 16(λ− 1)2/β

|1− e−iθ|(β(k + 1) + 2)
,

thus

|tk| ≤ 2(|tk,1|+ |tk,2|) ≤ 4 · 2 + 16(λ2 + 1)/β

|1− eiθ|(β(k + 1) + 2)
≤ C(λ2 + 1)εk

|1− eiθ|
.
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Summing up we have

(|cj |+ λ4ε2j/2 + λ4|εjtj |) ≤ (4λ2 + 26λ4)ε2j + λ4ε2j/2 +
Cλ4ε2j (λ

2 + 1)

|1− eiθ|
≤ C(λ2 + λ4)ε2j + Cλ4ε2j (λ

2 + 1)/θ ≤ C(λ2 + λ6)ε2j/θ.

By Lemma 8 we have∣∣∣eλ2skak(λ)− eλ
2snan(λ)

∣∣∣ ≤ eλ2skλ2|tk|+
n−1∑
j=k

eλ
2sj+1(|cj |+ λ4ε2j/2 + λ4|εjtj |)

≤ eλ
2sk

Cλ2(λ2 + 1)εk
|1− eiθ|

+ C

n−1∑
j=k

eλ
2sj+1(λ2 + λ6)ε2j/θ.

This completes the proof. �

Lemma 10. Let εk = 4/(β(k+1)+2), sk =
∑k−1
j=0 εj, then |sk−(4/β) ln(k+1)| ≤ C,

here C > 0 is a constant depending only on β.

Proof. By definition we have s0 = 0 and sk − sk−1 = εk−1 for k ≥ 1. Let s̃k =
sk − (4/β) ln(k+ 1), then we have s̃0 = 0 and s̃k − s̃k−1 = εk−1 − (4/β) ln(1 + 1/k)
for k ≥ 1. Thus

|s̃k − s̃k−1| ≤ |εk−1 − 4/(βk)|+ |4/(βk)− (4/β) ln(1 + 1/k)|
=|4/(βk + 2)− 4/(βk)|+ (4/β)| ln(1 + 1/k)− 1/k|
≤8/(βk)2 + (4/β)(1/k)2/2 = (8/β2 + 2/β)/k2,

and

|sk − (4/β) ln(k + 1)| = |s̃k| ≤
k∑
j=1

|s̃j − s̃j−1| ≤
k∑
j=1

(8/β2 + 2/β)/j2

≤ (8/β2 + 2/β)(π2/6).

This completes the proof. �

Lemma 11. Let θ ∈ (0, π], λ ∈ R, λ2 ≤ β/8, εk = 4/(β(k+1)+2), sk =
∑k−1
j=0 εj,

then (for n, k ∈ Z, n ≥ k ≥ 0)

|eλ
2skak(λ)− eλ

2snan(λ)| ≤ Cλ2eλ
2sk/(θ(k + 1)),

here C > 0 is a constant depending only on β.

Proof. If n = k the result is clearly true, now we assume n > k ≥ 0. By Lemma 10
we have

n−1∑
j=k

eλ
2sj+1ε2j ≤ C

n−1∑
j=k

(j + 2)(4/β)λ2

(j + 1)−2 ≤ C
n−1∑
j=k

(j + 2)(4/β)λ2−2

≤ C(k + 1)(4/β)λ2−1 ≤ Ceλ
2sk(k + 1)−1.

Here we used the fact that λ2 ≤ β/8, (4/β)λ2 ≤ 1/2 < 1, which also implies that
λ2 + λ4 ≤ Cλ2, λ2 + λ6 ≤ Cλ2. By Lemma 9 we have∣∣∣eλ2skak(λ)− eλ

2snan(λ)
∣∣∣ ≤ C

θ
(λ2 + λ4)eλ

2skεk +
C

θ
(λ2 + λ6)

n−1∑
j=k

eλ
2sj+1ε2j
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≤ C

θ
λ2eλ

2sk(k + 1)−1 +
C

θ
λ2eλ

2sk(k + 1)−1 ≤ Cλ2eλ
2sk

θ(k + 1)
.

This completes the proof. �

Lemma 12. Let θ ∈ (0, π], λ ∈ R, then

|ak(λ)− 1| ≤ 4λ2k|θ|/β.

Proof. Let Xk = ψk(θ) − (k + 1)θ. By Lemma 3 and Lemma 4 we have E[Xk] =
0, E[X2

k ] ≤ 8k|θ|/β, which together with Taylor expansion |eix − ix − 1| ≤ |x|2/2
for x ∈ R gives

|ak(λ)− 1| = |E[eiλXk ]− 1| = |E[eiλXk − iλXk − 1]| ≤ E[|λXk|2/2] ≤ 4λ2k|θ|/β.
This completes the proof. �

3.1. Proof of Lemma 1. Now we are ready to prove Lemma 1. The proof relies
on Lemma 11 and Lemma 12 with n replaced by n− 1.

Proof. Let’s denote

bk(λ) = e−(4λ2/β) ln(2+kθ), εk = 4/(β(k + 1) + 2), sk =

k−1∑
j=0

εj

for every k ∈ Z, k ≥ 0.
If nθ ≤ 2, by Lemma 12 we have

|an−1(λ)− 1| ≤ 4λ2(n− 1)|θ|/β ≤ 8λ2/β.

By Taylor expansion we have

|bn(λ)− 1| ≤ (4λ2/β) ln(2 + nθ) ≤ (4λ2/β) ln 4 ≤ (1/2) ln 4

and

e(4λ2/β) ln(2+nθ) ≤ e(1/2) ln 4 = 2.

Thus we have

|E[eiλ(ψn−1(θ)−nθ)]− e−(4λ2/β) ln(2+nθ)| = |an−1(λ)− bn(λ)|
≤|an−1(λ)− 1|+ |bn(λ)− 1| ≤ 8λ2/β + (4λ2/β) ln 4

≤(8 + 4 ln 4)(λ2/β)(2e−(4λ2/β) ln(2+nθ)) ≤ Cλ2e−(4λ2/β) ln(2+nθ).

If nθ ≥ 2, we take k = b1/θc, then we have 0 ≤ k ≤ 1/θ ≤ n/2 < n, thus k ≤ n−1.
By Lemma 12 we have

|ak(λ)− 1| ≤ 4λ2k|θ|/β ≤ 4λ2/β.

By Lemma 10 we have

|(sn−1 − sk)− (4/β) ln(n/(k + 1))| ≤ C.
We also have kθ ≤ 1 ≤ (k + 1)θ ≤ 1 + θ ≤ 1 + π, 0 ≤ ln((k + 1)θ) ≤ C, 0 ≤
ln(2/(nθ) + 1) ≤ ln 2, and | ln(2 + nθ)− ln(n/(k + 1))| = | ln(2/(nθ) + 1) + ln((k +
1)θ)| ≤ C, thus

|(sn−1 − sk)− (4/β) ln(2 + nθ)| ≤ C,
therefore, we have

|eλ
2(sk−sn−1) − e−(4λ2/β) ln(2+nθ)| ≤ Cλ2e−(4λ2/β) ln(2+nθ).
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By Lemma 11, we have

|eλ
2skak(λ)− eλ

2sn−1an−1(λ)| ≤ Cλ2eλ
2sk/(θ(k + 1)),

and thus we have

|eλ
2(sk−sn−1)ak(λ)− an−1(λ)| ≤ Cλ2eλ

2(sk−sn−1)/(θ(k + 1))

≤Cλ2eλ
2(sk−sn−1) ≤ Cλ2e−(4λ2/β) ln(2+nθ).

Now we have (recall bn(λ) = e−(4λ2/β) ln(2+nθ) and |ak(λ)− 1| ≤ 4λ2/β)

|eλ
2(sk−sn−1)ak(λ)− bn(λ)| ≤ |eλ

2(sk−sn−1) − bn(λ)|+ |eλ
2(sk−sn−1)(ak(λ)− 1)|

≤ Cλ2bn(λ) + Cbn(λ)|ak(λ)− 1| ≤ Cλ2bn(λ)

and

|eλ
2(sk−sn−1)ak(λ)− an−1(λ)| ≤ Cλ2bn(λ).

Therefore, we have
|an−1(λ)− bn(λ)| ≤ Cλ2bn(λ).

Now the result follows by the definitions of an−1(λ) and bn(λ). �

3.2. Proof of Corollary 2. As a consequence of Lemma 1, we now give the proof
of Corollary 2.

Proof. Let X = ψn−1(θ) − nθ, Z = bψn−1(θ)−η
2π c + 1, then Nn(0, θ)

d
= Z. Taking

the real part in Lemma 1 we have

|E[cos(λX)]− e−(4λ2/β) ln(2+nθ)| ≤ Cλ2e−(4λ2/β) ln(2+nθ) ≤ Cλ2,

|E[(1− cos(λX))/λ2]− (1− e−(4λ2/β) ln(2+nθ))/λ2| ≤ C,

for λ ∈ [−
√
β/8,

√
β/8] \ {0}. Letting λ→ 0 we conclude that

|E[X2/2]− (4/β) ln(2 + nθ)| ≤ C,
which implies (3). Since η is a uniform variable on [0, 2π), we have

E[bx− η/(2π)c+ 1] =
1

2π

∫ 2π

0

(bx− η/(2π)c+ 1)dη =

∫ x

x−1

(byc+ 1)dy

=

∫ bxc
x−1

bxcdy +

∫ x

bxc
(bxc+ 1)dy = bxc(bxc − x+ 1) + (bxc+ 1)(x− bxc) = x,

for x ∈ R. Since η is independent of ψn−1(θ) and Nn(0, θ)
d
= Z = bψn−1(θ)−η

2π c+ 1,
we have E[Z|ψn−1(θ)] = ψn−1(θ)/(2π). Let Z1 := Z − ψn−1(θ)/(2π) then |Z1| ≤
1, E[Z1|ψn−1(θ)] = 0. For λ ∈ R we first have

|E[eiλ(Z−nθ/(2π))]− E[eiλ(ψn−1(θ)−nθ)/(2π)]| = |E[eiλZ − eiλψn−1(θ)/(2π)]|

≤E|E[eiλZ − eiλψn−1(θ)/(2π)|ψn−1(θ)]| = E|(E[eiλZ1 |ψn−1(θ)]− 1)eiλψn−1(θ)/(2π)|

=|E[eiλZ1 |ψn−1(θ)]− 1| = |E[eiλZ1 − 1− iλZ1|ψn−1(θ)]|
≤E[(λZ1)2/2|ψn−1(θ)] ≤ λ2/2.

On the other hand, for λ ∈ [−2π
√
β/8, 2π

√
β/8], let λ1 = λ/(2π) then λ2

1 ≤ β/8,
by Lemma 1 we have

|E[eiλ(ψn−1(θ)−nθ)/(2π)]− e−λ
2/(βπ2)·ln(2+nθ)|
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=|E[eiλ1(ψn−1(θ)−nθ)]− e−(4λ2
1/β)·ln(2+nθ)| ≤ Cλ2

1e
−(4λ2

1/β)·ln(2+nθ) ≤ Cλ2
1 ≤ Cλ2.

Therefore, we have

|E[eiλ(Z−nθ/(2π))]− e−λ
2/(βπ2)·ln(2+nθ)| ≤ Cλ2,

which implies (4). We also have

E[|Nn(0, θ)− nθ/(2π)|2] = E[|Z − nθ/(2π)|2](19)

=E[(ψn−1(θ)− nθ)2/(2π)2] + E[|Z − ψn−1(θ)/(2π)|2]

and

0 ≤E[|Z − ψn−1(θ)/(2π)|2] = E(|Z1|2) ≤ 1.(20)

Using (3), (19) and (20), we conclude (5). �

4. Proof of Theorem 1

In this section, we will finish the proof of Theorem 1.
Let F (x) be the distribution function of a random variable X and let

G(x) :=
1√
2π

∫ x

−∞
e−t

2/2dt(21)

be the Gaussian distribution function. Let’s denote

M = sup
x∈R
|F (x)−G(x)|, δ = M(π/2)1/2

and let

φ(t) := E[eitX ] =

∫
R
eitxdF (x), ψ(t) :=

∫
R
eitxdG(x) = e−t

2/2

be the characteristic functions.
For every T > 0 we have the following bound (see (30) in [1])

A(Tδ) ≤
∫ T

0

(T − t) |φ(t)− ψ(t)|
t

dt ≤ T
∫ T

0

|φ(t)− ψ(t)|
t

dt,(22)

where

A(u) = (2π)1/2 · u ·
(

3

∫ u

0

1− cosx

x2
dx− π

)
.

Now we take

T =
√

ln(2 + nθ), X =
√
β/8(ψn−1(θ)− nθ)/T,

for θ ∈ (0, π]. Let ak(λ) = E[eiλ(ψk(θ)−(k+1)θ)] as in §3, then we have

φ(t) = E[eitX ] = an−1(
√
β/8t/T ).

By Lemma 1 we have (for λ ∈ R, λ2 ≤ β/8)

|an−1(λ)− e−(4λ2/β) ln(2+nθ)| ≤ Cλ2e−(4λ2/β) ln(2+nθ).

Notice that if t ∈ [0, T ], λ =
√
β/8t/T, then λ2 ≤ β/8, (4λ2/β) ln(2 + nθ) = t2/2.

Thus we have

|φ(t)− ψ(t)| = |an−1(
√
β/8t/T )− e−t

2/2| ≤ Cβt2/(8T 2) · e−t
2/2
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and

T

∫ T

0

|φ(t)− ψ(t)|
t

dt ≤ CT
∫ T

0

βt2/(8T 2) · e−t
2/2dt ≤ C/T ≤ C.

By (22) we have A(Tδ) ≤ C. As lim
u→+∞

A(u) = +∞, we have Tδ ≤ C. Recall that

δ = M(π/2)1/2, we have δ ≤ C/T, M ≤ C/T. Recall that T =
√

ln(2 + nθ), M =

supx∈R |F (x) − G(x)|, F (x) = P[X ≤ x], X =
√
β/8(ψn−1(θ) − nθ)/T, now we

have proven the following result.

Lemma 13. Let θ ∈ (0, π], n > 0, n ∈ Z, then

sup
x∈R
|P[
√
β/(8 ln(2 + nθ))(ψn−1(θ)− nθ) ≤ x]−G(x)| ≤ C(ln(2 + nθ))−1/2.

Here, C > 0 is a constant depending only on β.

4.1. Proof of Theorem 1. Now we give the proof of Theorem 1.

Proof. Since Nn(0, θ)
d
= Z for Z = bψn−1(θ)−η

2π c + 1 and η ∈ [0, 2π), we have

|Z−ψn−1(θ)
2π | ≤ 1. Let T1 =

√
π2β

2 ln(2+nθ) , then we have T1/(2π) =
√
β/(8 ln(2 + nθ)).

Thus for x ∈ R, by Lemma 13 we have

P[T1(Nn(0, θ)− nθ/(2π)) ≤ x] = P[T1(Z − nθ/(2π)) ≤ x]

≤P[T1(ψn−1(θ)/(2π)− 1− nθ/(2π)) ≤ x]

=P[T1/(2π) · (ψn−1(θ)− nθ) ≤ x+ T1] ≤ G(x+ T1) + C(ln(2 + nθ))−1/2

≤G(x) + T1/
√

2π + C(ln(2 + nθ))−1/2 ≤ G(x) + C(ln(2 + nθ))−1/2,

here we used the fact that 0 ≤ G′(x) = e−x
2/2/
√

2π for x ∈ R which implies that

|G(x)−G(y)| ≤ |x− y|/
√

2π for x, y ∈ R. Similarly, we have

P[T1(Nn(0, θ)− nθ/(2π)) ≤ x] ≥ P[T1/(2π) · (ψn−1(θ)− nθ) ≤ x− T1]

≥G(x− T1)− C(ln(2 + nθ))−1/2 ≥ G(x)− C(ln(2 + nθ))−1/2.

Combining the upper and lower bounds we conclude that

sup
x∈R
|P[T1(Nn(0, θ)− nθ/(2π)) ≤ x]−G(x)| ≤ C(ln(2 + nθ))−1/2.

This completes the proof of Theorem 1 by the definitions of T1 and G(x). �

5. Results for Sineβ process

Now we give the proof of Corollary 3.

Proof. Since the Sineβ point process is the scaling limit of the CβE, by Skorokhod’s
representation theorem, one can construct point processes Ln and L such that
the point measure corresponding to Ln converges locally weakly to the measure
corresponding to L almost surely [20], and

Card(Ln ∩ [0, x])
d
= Nn(0, x/n), 0 < x < 2πn.

Let x > 0, λ ∈ [−2π
√
β/8, 2π

√
β/8]. Since L almost surely does not contain the

points 0 and x, we have almost surely

Card(Ln ∩ [0, x])→ Card(L ∩ [0, x]),
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and

eiλ(Card(Ln∩[0,x])−x/(2π)) → eiλ(Card(L∩[0,x])−x/(2π)).

By dominated convergence theorem we have

E[eiλ(Card(Ln∩[0,x])−x/(2π))]→ E[eiλ(Card(L∩[0,x])−x/(2π))].

For n > x/π we have πn > x, and by (4) in Corollary 2 we have

|E[eiλ(Card(Ln∩[0,x])−x/(2π))]− e−λ
2/(βπ2)·ln(2+x)|

=|E[eiλ(Nn(0,x/n)−x/(2π))]− e−λ
2/(βπ2)·ln(2+x)| ≤ Cλ2,

which implies

|E[eiλ(Card(L∩[0,x])−x/(2π))]− e−λ
2/(βπ2)·ln(2+x)| ≤ Cλ2.

Taking the real part we have

|E[(1− cos(λ(Card(L ∩ [0, x])− x/(2π))))/λ2]− (1− e−λ
2/(βπ2)·ln(2+x))/λ2| ≤ C,

for λ ∈ [−2π
√
β/8, 2π

√
β/8] \ {0}. Letting λ→ 0 we conclude that

|E[(Card(L ∩ [0, x])− x/(2π))2/2]− 1/(βπ2) · ln(2 + x)| ≤ C,

which implies (6).
Now let x > 0, y ∈ R, Xn = Card(Ln ∩ [0, x]), X = Card(L ∩ [0, x]), T1 =√
π2β

2 ln(2+x) , then we have Xn → X almost surely. For n > x/π we have πn > x,

and Xn
d
= Nn(0, x/n), by Theorem 1, we have

|P[T1(Xn − x/(2π)) ≤ y]−G(y)| ≤ C(ln(2 + x))−1/2,

where the function G is defined in (21). For every a > 0 we have

P[T1(X − x/(2π)) ≤ y] ≤ lim inf
n→+∞

P[T1(Xn − x/(2π)) ≤ y + a]

≤ G(y + a) + C(ln(2 + x))−1/2.

Since G is continuous we have

P[T1(X − x/(2π)) ≤ y] ≤ G(y) + C(ln(2 + x))−1/2.

Similarly, we have

P[T1(X − x/(2π)) ≤ y] ≥ G(y)− C(ln(2 + x))−1/2.

Combining the upper and lower bounds we conclude that

sup
y∈R
|P[T1(X − x/(2π)) ≤ y]−G(y)| ≤ C(ln(2 + x))−1/2,

which gives (7) by the definitions of T1, X and G(y). This completes the proof. �

6. Application: normality of linear statistics

In this section, we will prove Theorem 2.
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6.1. Variance bound. We first need the following estimate on the variance of the
linear statistics. We write ‖g‖Lp = ‖g‖Lp(0,2π).

Lemma 14. Let f ∈W 1,p(S1) be real valued and
∫ 2π

0
f(x)dx = 0, then

E[〈ξn, f〉] = 0, E|〈ξn, f〉|2 ≤ C‖f ′‖2Lp ,

here p ∈ (1,+∞), and C > 0 is a constant depending only on β, p.

To prove Lemma 14, we first need the following lemma which is the consequence
of the uniform variance bound (5) in Corollary 2.

Let Ñn(a, b) = Nn(a, b)−n(b−a)/(2π), Ñn(b, a) = −Ñn(a, b) for 0 ≤ a ≤ b < 2π.

As Nn(a, b) = Nn(0, b) − Nn(0, a), for 0 ≤ a ≤ b < 2π, we have Ñn(a, b) =

Ñn(0, b)− Ñn(0, a) for a, b ∈ [0, 2π).

Lemma 15. For a, b ∈ [0, 2π), a 6= b we have

|E[Ñn(a, b)2]− 2 lnn/(π2β)| ≤ C(1− ln sin(|a− b|/2)),

here C > 0 is a constant depending only on β.

Proof. By symmetry we only need to consider the case 0 ≤ a < b < 2π. For
x ∈ (0, π], by (5) in Corollary 2 we have

|E[Ñn(0, x)2]− 2 ln(2 + nx)/(π2β)| ≤ C.
Thus we have

E[Ñn(0, x)2] ≤ 2 ln(2 + nx)/(π2β) + C ≤ 2 ln(2 + nπ)/(π2β) + C

≤ 2 ln(6n)/(π2β) + C ≤ 2 lnn/(π2β) + C

and

E[Ñn(0, x)2] ≥ 2 ln(2 + nx)/(π2β)− C ≥ 2 ln(nx)/(π2β)− C
≥ 2 lnn/(π2β) + 2 ln(2 sin(x/2))/(π2β)− C
≥ 2 lnn/(π2β)− C(1− ln sin(x/2)),

here we used the fact that sin(x/2) ≤ 1, 2 sin(x/2) ≤ x, ln sin(x/2) ≤ 0. Combining
the upper and lower bounds we conclude that

|E[Ñn(0, x)2]− 2 lnn/(π2β)| ≤ C(1− ln sin(x/2))(23)

for x ∈ (0, π]. If x ∈ [π, 2π), by rotational invariance we have Ñn(0, x) = −Ñn(x, 2π)
d
= −Ñn(0, 2π − x), 2π − x ∈ (0, π] and

|E[Ñn(0, x)2]− 2 lnn/(π2β)| = |E[Ñn(0, 2π − x)2]− 2 lnn/(π2β)|
≤C(1− ln sin((2π − x)/2)) = C(1− ln sin(x/2)).

Thus (23) is true for x ∈ (0, 2π). Now for 0 ≤ a < b < 2π, by rotational invariance

we have Ñn(a, b)
d
= Ñn(0, b− a), and by (23) we have

|E[Ñn(a, b)2]− 2 lnn/(π2β)| =|E[Ñn(0, b− a)2]− 2 lnn/(π2β)|
≤C(1− ln sin((b− a)/2)).

This completes the proof. �

Now we give the proof of Lemma 14.
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Proof. By definition and
∫ 2π

0
f(x)dx = 0 and integration by parts we have

〈ξn, f〉 =

∫ 2π

0

f(x)dNn(0, x) =

∫ 2π

0

f(x)d(Nn(0, x)− nx/(2π))

= −
∫ 2π

0

f ′(x)(Nn(0, x)− nx/(2π))dx.

By rotational invariance we have E[Nn(0, x)] = nx/(2π), which implies E[〈ξn, f〉]
= 0. By the definition of Ñn(a, b) we have

|〈ξn, f〉|2 =

∫ 2π

0

∫ 2π

0

f ′(x)f ′(y)Ñn(0, x)Ñn(0, y)dxdy

=− 1

2

∫ 2π

0

∫ 2π

0

f ′(x)f ′(y)(Ñn(0, x)− Ñn(0, y))2dxdy

+

∫ 2π

0

∫ 2π

0

f ′(x)f ′(y)Ñn(0, x)2dxdy

=− 1

2

∫ 2π

0

∫ 2π

0

f ′(x)f ′(y)Ñn(y, x)2dxdy,

here we used the fact that
∫ 2π

0
f ′(y)dy = f(2π)− f(0) = 0, which also implies that

E|〈ξn, f〉|2 = −1

2

∫ 2π

0

∫ 2π

0

f ′(x)f ′(y)E[Ñn(y, x)2]dxdy

=− 1

2

∫ 2π

0

∫ 2π

0

f ′(x)f ′(y)(E[Ñn(y, x)2]− 2 lnn/(π2β))dxdy.

By Lemma 15 we have

E|〈ξn, f〉|2 ≤
1

2

∫ 2π

0

∫ 2π

0

|f ′(x)f ′(y)||E[Ñn(y, x)2]− 2 lnn/(π2β)|dxdy

≤ C
∫ 2π

0

∫ 2π

0

|f ′(x)f ′(y)|(1− ln sin(|x− y|/2))dxdy.

Notice that∫ 2π

0

(1− ln sin(|x− y|/2))p
′
dy =

∫ 2π

0

(1− ln sin(y/2))p
′
dy = Cp < +∞,

for x ∈ [0, 2π], where p′ = p/(p− 1) and Cp is a constant depending only on p. By
Hölder’s inequality we have∫ 2π

0

|f ′(y)|(1− ln sin(|x− y|/2))dy ≤ ‖f ′‖LpC1−1/p
p

for x ∈ [0, 2π], and

E|〈ξn, f〉|2 ≤ C‖f ′‖LpC1−1/p
p

∫ 2π

0

|f ′(x)|dx ≤ C‖f ′‖LpC1−1/p
p ‖f ′‖Lp .

This completes the proof. �
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6.2. Proof of Theorem 2. Now we are ready to prove Theorem 2. The proof is
based on the following result of Jiang-Matsumoto for the case f(x) a finite sum of
{eikx}k∈Z (see Corollary 3 in [9]).

Lemma 16. Let (θ1, · · · , θn) be a sample from µβ,n. Let g(z) =
∑m
k=0 ckz

k with
fixed m and ck ∈ C for all k. Set Xn =

∑n
j=1 g(eiθj ). then Xn − µn converges in

law to a complex Gaussian random variable ∼ CN(0, σ2), where

µn = nc0, σ
2 =

2

β

+∞∑
j=1

j|cj |2.

Lemma 16 tells us that if c0 = 0, f(x) = g(eix) + g(eix) then Xn +Xn = 〈ξn, f〉
converges in law to a real Gaussian random variable ∼ N(0, 2σ2).

Now we give the proof of Theorem 2.

Proof. It is enough to prove of the convergence of the characteristic functions

lim
n→+∞

E[eiλ〈ξn,f〉] = e−λ
2σ2

, ∀ λ ∈ R.(24)

Given a function f ∈W 1,p(S1), we will prove that fN := f ∗KN approximates f in

W 1,p(S1), where f1 ∗ f2(x) :=
∫ 2π

0
f1(y)f2(x− y)dy, and KN (x) is the Féjer kernel

KN (x) =
1

2π

N∑
j=−N

(
1− |j|

N

)
eijx =

N

2π

(
sin(Nx/2)

N sin(x/2)

)2

, N > 0, N ∈ Z.

In fact KN (x) ≥ 0, ‖KN‖L1 = 1, f ′N = f ′ ∗KN , and

lim
N→+∞

‖KN‖L1(δ,2π−δ) = 0, ∀ δ ∈ (0, π).

The following results are classical

‖g ∗KN‖Lp ≤ ‖g‖Lp , lim
N→+∞

‖g ∗KN − g‖Lp = 0, ∀ g ∈ Lp(0, 2π).

Thus we have

‖f ′N‖Lp ≤ ‖f ′‖Lp , lim
N→+∞

‖f ′N − f ′‖Lp = 0.(25)

We also have

fN (x) =

N∑
j=−N

(
1− |j|

N

)
aje

ijx,

where aj is defined in Theorem 2. Since f is real valued and
∫ 2π

0
f(x)dx = 0, we have

a0 = 0, a−j = aj , fN (x) = gN (eix) + gN (eix) with gN (z) =
∑N
j=1 (1− j/N) ajz

j .

By Lemma 16, 〈ξn, fN 〉 converges in law to JN ∼ N(0, 2σ2
N ) as n→ +∞ for every

fixed N , where

σ2
N =

2

β

N∑
j=1

j (1− j/N)
2 |aj |2

with σN+1 ≥ σN . Thus

lim
n→+∞

E[eiλ〈ξn,fN 〉] = e−λ
2σ2

N , ∀ λ ∈ R.(26)
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As a0 = 0,
∫ 2π

0
fN (x)dx = 0, by Lemma 14 and Fatou’s Lemma we have

2σ2
N = E[J2

N ] ≤ lim inf
n→+∞

E[|〈ξn, fN 〉|2] ≤ C‖f ′N‖2Lp ,

which implies

σ2
N ≤ C‖f ′N‖2Lp ≤ C‖f ′‖2Lp .

Thus by monotone convergence theorem we have

σ2 = lim
N→+∞

σ2
N ≤ C‖f ′‖2Lp < +∞,(27)

where σ is defined in Theorem 2. By Lemma 14 again we have

E[|〈ξn, fN 〉 − 〈ξn, f〉|2] ≤ C‖f ′N − f ′‖2Lp ,

and thus

|E[eiλ〈ξn,fN 〉 − eiλ〈ξn,f〉]| ≤ E[|λ||〈ξn, fN 〉 − 〈ξn, f〉|] ≤ C|λ|‖f ′N − f ′‖Lp , ∀ λ ∈ R,

which together with (26) gives

lim sup
n→+∞

|E[eiλ〈ξn,f〉]− e−λ
2σ2

| ≤ C|λ|‖f ′N − f ′‖Lp + |e−λ
2σ2

N − e−λ
2σ2

|(28)

for every λ ∈ R, N > 0, N ∈ Z. By (25), (27), (28) we have

lim sup
n→+∞

|E[eiλ〈ξn,f〉]− e−λ
2σ2

|

≤ lim sup
N→+∞

(C|λ|‖f ′N − f ′‖Lp + |e−λ
2σ2

N − e−λ
2σ2

|) = 0, ∀ λ ∈ R,

which implies (24). This completes the proof. �
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