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NORMALITY OF CIRCULAR B-ENSEMBLE

RENJIE FENG, GANG TIAN AND DONGYI WEI

ABSTRACT. We will prove the Berry-Esseen theorem for the number counting
function of the circular 8-ensemble (CSE), which will imply the central limit
theorem for the number of points in arcs of the unit circle in mesoscopic and
macroscopic scales. We will prove the main result by estimating the character-
istic functions of the Priifer phases and the number counting function, which
will imply the the uniform upper and lower bounds of their variance. We also
show that the similar results hold for the Sineg process. As a direct applica-
tion of the uniform variance bound, we can prove the normality of the linear
statistics when the test function f(0) € W1P(S!) for some p € (1, +00).

1. INTRODUCTION

The circular S-ensemble (measure pg ,, > 0) is a random process on the unit
circle and the joint density of its eigenangles 6; € [0,27), 1 < j < n with respect
to the Lebesgue measure is

1 o
J(@l’...ﬁn):c H|6297f€0’“|ﬁ,

B.n j<k

where 8 > 0 and Cg, = (2w)"% is the normalization constant [8].

There are many results regarding the normality of CSE and GSE (we refer to
[8] for the definition of GSE). For CAE, Killip [14] proved the central limit theorem
for the number of points in the fixed arcs, and the variance is logarithmic in n,
where the result can be considered as the macroscopic statistics. For GGE, Costin-
Lebowitz proved the normality of eigenvalues in the particular cases 8 € {1,2,4}
and the variance is also logarithmic with respect to the mean [5]. These results can
be extended to more general point processes, we refer to [2, 3, 4, 7, 9, 10, 11, 12,
13, 17, 18, 19, 21, 22, 23, 24] and the references therein.

Recently, in [20], Najnudel-Virdg proved the uniform upper bounds on the vari-
ance of the number of points in intervals for both CSE and GSE. Their bounds are
uniform in n which cover microscopic, mesoscopic and macroscopic scales. And if
one rescales the interval or the arc in such a way that the average spacing between
the points has order 1, then the upper bounds are logarithmic in the length of the
interval or the arc. To be more precise, in the case of CSE, let’s write N,,(a,b) for
the number of points in a sample from pg , that lie in the arc between a and b,
Najnudel-Virag proved the following uniform upper bound

(1) E[IN(0,0) — n6/(2m)|"] < CpIn(2 + no).

In this paper, we will study the normality of the number counting function and
the linear statistics for CSE. Our first main result is the following Berry-Esseen
theorem for the number counting function, which is novel and not proved elsewhere.

1
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Theorem 1. Let 0 € (0,x] that may depend on n, we have the uniform estimate

7{'25 no - /2
P[ WW[N"(O’G)%}SI] \ﬁ

here C' > 0 is a constant depending only on (3.

C
1n(2 +nb))z

sup
zeR

)

As a direct consequence of Theorem 1, we have the following central limit theo-
rem for the number of points in arcs of the unit circle for CSE in both mesoscopic
and macroscopic scales.

Corollary 1. Let 0,, € (0,7], nb,, — +oo, then

w23

[ nb,,
21n(2 + nby)

Nn(oaen) - ﬁ

]

converges in law to a Gaussian random variable of mean zero and variance one.

Notice that, Corollary 1 is the main result proved in [14] for the case where
0,, = 0 is fixed.

To show the key steps to prove Theorem 1, we begin with some preliminary
results proved in [15]. Let v; ~ ©g(11)41 be independent random variables for
j >0 and let n be a uniform variable on [0, 27) independent of (v;);>0. We define
the so-called Priifer phases (15 (0))ocr k>0 as follows: 1o(0) = 0 and for k > 0,

1=y
Yi+1(0) = Pi(0) + 0 + 2ImIn <1_%M> .
Then the random set
{0 € R, ¢,,—1(0) = n(mod 27)}

has the same law as the set of all determinations of the arguments of the n points
of a COE. Here, a complex random variable X with values in the unit disk D is
O, -distributed (for v > 1) if

E[f _ )1 — |2[2) 3)/2 42
1000 = 5= [[ 10— ez

Simple computations show [14, 15]

2
v+1

8

E[X] =0, E[|X|?] = +1D)(v+3)

. E[lX[') =
and
@ Bl m( - xRy = S5 [T et =t ()

where we change the variable et = 1 — | X|?.
The above result tells us that

Ny (0,6) =

d

1
2 +

I

for 0 € (0,27). Here X 2 ¥ means that the random variables X,Y have the same
distribution, we also used the fact that 1,,_1(0) = 0, and that ), () is increasing
with respect to 6. By rotational invariance we have

E[N,(0,0)] = nb/(27)
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and
N, (0,27 — 0) L N, (0,27) = n — N,,(0,6),

i.e., there is a natural symmetry between 6 and 2w — 6, therefore, it is enough to
study the case 6 € (0,7].

Throughout the article, we will use C' > 0 to denote a universal constant de-
pending only on  which may change from line to line.

To prove Theorem 1, the key lemma is the following estimate regarding the
characteristic function of the Priifer phases.

Lemma 1. Let § € (0,7], A € R, \2 < /8. There exists a constant C > 0
depending only on B such that
|E[ei>\(wn_1(9)—n9)] _ e—(4A2/5) 1n(2+m9)| < C)\Qe—(4A2/5) ln(2+m9).

Moreover, as a consequence of Lemma 1, we can prove the following uniform
bound first for the variance of ,,_1 (), then for the variance of N,(0,0).

Corollary 2. There exists a constant C > 0 depending only on B such that for
e (0,7], n€Z, n>0, A€ [-2m/3/8,2m\/[/8], we have

(3) [E[(vn-1(0) = n6)*] = (8/6) In(2 + nd)| < C,
(4) ‘E[ei)\(Nn(O,O)—nG/(Qw))] _ 8_)\2/(5ﬁ2).1n(2+n6)| < C)\Q,
nd|’ 2In(2 4 nb)
- — - < (.
(5) E Uzvn(o,e) = ] 3y <0

The inequality (5) gives both the upper and lower uniform variance bounds which
improves the estimate (1).

The Sineg point process is the scaling limit of the CSE, and its central limit
theorem has been proved in [16]. In this article, we can further prove the following
uniform variance bound and the Berry-Esseen theorem for the Sineg point process.
Let’s denote Card(A) the cardinality of a set A.

Corollary 3. Let L be the Sineg point process, there exists a constant C > 0
depending only on B such that for x > 0, we have

(6) [E[(Card(L N [0,2]) — 2/(2m))*] = 2/(67*) - In(2 + z)| < C,
w20 x v —t?/2
(7) Zlelg P T+ 1) {Card(L N[0, z]) — %} <yl — N ﬁdt

< C(In(2+ 1)) 2.

In the end, as a direct application of the uniform variance bound (5), we can
prove the normality of the linear statistics for CSE when the test function is in
Whr(S1) for some p € (1,+00), and p will be fixed. Let’s denote

&= b,
j=1

the empirical measure of a sample from pg ,,, and we consider the linear statistics

(Enr £) =D £(65).
j=1
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We will prove the following result.

Theorem 2. Let f € WHP(S1) be real valued and periodic function with f(0) =
f(2m), and fo x)dx = 0 where p € (1,400), then (&, ) converges in law to a
Gausszan mndom vamable of mean zero and variance 202, where

B ZJ\aJ\Q 271_ f( Ye~Y9%dx, j € 7.

To prove Theorem 2, we will need the variance estimate of the linear statistics
(see Lemma 14 in §6) which is based on the uniform variance bound (5). The
rest proof makes use of Lemma 16 (proved in [9]) and the approximation of the
W1r(S1) space by the Féjer kernel.

There are also some known results on the normality of linear statistics for CSE,
we refer to [6, 7, 9, 10, 11, 19, 25] for more details.

The organization of the article is as follows. In §2, we will review some known
results on COE which are proved in [14, 15]. In §3, we will derive Lemma 1 and
prove Corollary 2. In §4, we will finish the proof of Theorem 1. In §5, we will prove
Corollary 3 for the Sineg process. In §6, as an application of the uniform variance
bound (5), we will prove Theorem 2.

2. PRELIMINARY RESULTS

In this section, we will collect several properties regarding CSE proved in [14, 15]
which will be useful in the proof of Theorem 1.
Now we introduce
+oo

T(¢,a) = —2ImIn[1 — ae™] = Im 2;—1: Tetval,
and

Tl(dja ) (¢7 ) (0 a)
Then we have [15]

Vi41(0) = Pr(0) + 0 + Ty (Pr(0), k).
We have the following estimates about T (Lemma 2.5 in [14]).

Lemma 2. Suppose ¢, € R and o ~ O,,. If T(i/), a) = 2Im[ae®™], then
E[Y(¢), )] = E[Y (¢, )] =

E[Y (4, a)Y(¢,0)] = —— cos(¥) — @),
=~ 48
E[Y(¢,a)"] = CEDICEE)
B[ T(0.0) = T0.0)] £ oot
B T(6, 0] < .

By rotational invariance, we also have E[a?®] = E[|a|?a] = 0, which implies

(8) E[(Y(¢,0) — T(¢,@))*] =0
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We apply Plancharel’s theorem to the power series of T to get

(9) E[(T (¢, @) — T(,a))T(4,a)] = 0.

We also have the following estimate on Y (see Proposition 2.3 in [15]),

27
(10) / 110, Y1 (6, ) S| < 2(J + Jol) In ., ¥ r € [0,1)

The following estimates are proved in Corollary 2.4 in [15}.

Lemma 3. For s > 0, we have

E[ys(0)] = (s +1)0, E[|¢s(0)]] = (s + 1)]6),

and for 0 < k < m, we have
m—1
E([thm (0) — ¢(60) — (m = k)0]] = > B[ T1(5(8),7) ]
s=k

By Lemma 3, we can further prove

Lemma 4. For 0 < k < m, we have

El[tom(0) = ¥n(0) — (m — k)0|*] < 8(m — k)[0]/5.

In particular, for k =0 we have
[/t (6) — (m +1)0]°] < 8m|6]/5.

Proof. Using Lemma 3, by (2), (10) and the rotational invariance we have

E[[¢m (8) — 91 (60) — (m — k)6]7] ZE Y1 (%s(6),75) ]
m—1 1 m—1 1
< STUE | |0s(0) |10 ——— | = ST 4R (|1 (0)| E |In ———
<3 [OEr— > 4840 [nlw}
! 2 80 8(m— k)6
A(s+ 1)) = S 20 Bm = W
<2 A6+ DlgTy =2 5 3
Here, we take v = 3(s+ 1) + 1 for «,. This completes the proof. O

3. THE CHARACTERISTIC FUNCTION AND THE UNIFORM VARIANCE BOUND
Let’s define the characteristic function of the Priifer phases
ap(N) = agp(\, 0, B) = E[e*Wr(@O=(k+Do)]

Then |ag(A)] < 1 for A € R. In this section, we will derive several estimates
regarding the sequence {ay(\)};25, then we can prove Lemma 1 and Corollary 2.
We first have

Lemma 5. Suppose ¢, A\ € R and o ~ O, then
2(1 — 2 4
‘E[eMTl(‘i’va)] 1y 4X\*(1 — cos qS)' < 64\% + 416\
v+1 v+ 1)(v+3)

and

2
ooy 1| < 10
“v+1
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Proof. Let X =T1(¢,a), X1 =T(¢,a) = T(0,0), X3 =T(¢,0) - T(¢,a), X4 =
T(0,a) — Y(0,a), Xo = X3+ Xy, here T (1), ) = 2Im[ae’¥] for every ¥ € R, then
we have X = X1 + X3+ X4y = X1 + X5. By Lemma 2 we have

(11) E[X,] = E[X3] = E[X4] =0, E[X,]=E[X]=0,

(12) EI%P < orpoTs BN oot
(13) (LX) < (X" + X < e

(14) B(X Y < SB[T(0.0)*+ T(0.0)'] € i,
a9 P = g < 2

By (8), (9) we have E[X?] = E[X; X2] = 0. Notice that
eAX _ gAXs AN (X )
=X (X2 _AX, — 1) 4 (M —iAX] — 1)(IAX0) 4+ iIAXo(iAX + 1),
and that |e®® — iz — 1| < |2|?/2 for & € R by Taylor expansion, we have
e — e AXL(IAX + 1)] < [AXa[2/2 4+ AX 2N X2 /2,

which together with E[X3] = E[X;X3] = 0 and (13), (14) gives

(16) B[ — e X1)| = |E[e?Y — ™M — iAX5(iAX] + 1))
<E[IAX2[?/2 + [AX1[2[AX2[/2] < E[AXa|* + [AX:1[*/2]
6422 384\

SvEDw+3) T LD+

Since |e™® + iz®/6 + 2%/2 — iz — 1| < |z|*/24 for z € R by Taylor expansion and
E[X}] = E[X1] = 0, by (14) we have

B[] — 1+ N°E[|X1]%]/2] = |E[e? +iX3X3/6 + A2 X7 /2 —idX, — 1]
32\

<E[JAXq[*]/24 < m7

which together with (15), (16) gives
4X\2(1 — cos ¢)

E IAX -1

[ =1+ ——r

<[E[e™* — ™| + B[] — 1+ NE[1X:[%)/2]
6407 + 384)\* 3221 _640% + 416X

ST Dw+3) i De 13 wrDw+3)
This completes the proof of the first inequality. Since |e'* — iz — 1| < |z|?/2 for
x € R by Taylor expansion and E[X] = 0, by (15) we have
1622
v+ 1
This completes the proof of the second inequality. ([

Ee¥] 1] = [E[e™X — iAX - 1]| < E[AX /2] <

We need the following estimate of the sequence {aj(\)}/25.
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Lemma 6. Let 6 € (0,7, A € R, then we have

A2(4 2\) — 2¢i(k+1)6 A4+1)—2 —i(k+1)6 A—1
() — a3 ¢ V) =260 (34 1) e 0, (4 — 1)

Blk+1)+2
_ 6472 4 41614
~ (Bk+1)+2)(B(k+1)+4)
and 1672
e ()

Proof. Let Xy := ¢x(0), Yy := T1(¢5(0),7k), then
Xpr1 =X +0+ Y.
For the sigma algebras
M1 =000, s Vh—1)s
i is independent of My_; and X} is measurable in Mj_1. By Lemma 5 we have
(taking v = B(k+ 1) + 1 for )
4\2(1 — cos X},) < 6422 + 41624

A7) B Ml =14 = < BRI D 1 DGR LD 1 )

and

, 16)2
Ele™*  Mp_1] - 1| < —"F .
(Bl Mia] =1 < 5=y

Let’s denote
Zk()\) = ez’)\(Xk—(k—i-l)O)’

then we have
Zi(A) = eMOeO=F00) =70 1 (N) = €M Zi(N), ar(N) = E[Zi(N)]
and
2Zk()\) cos X = Zk()\)(eixk + e_iXk) _ ei()\+1)Xk—i/\(k+1)9 + ei()\—l)Xk—iA(k-i-l)G
_ Zk()\ 4 l)ei(k+1)9 + Zk()\ _ 1)€_i(k+1)0.

Let’s denote

Vo) = Zia () — Ze(3) + 2, 2 U eos )

Blk+1)+2
—eNYZ,(\) - AN(1 — cos Xy)
=M 7, (\) = Ze(N) + Zi(N) RS
_ N2(4Z(\) — 275, (\ + 1)€i(k+1)0 —2Z,(A — l)e—i(k+1)9)
=Zp41(N) — Zk(A) + TS .

Then by (17) and the fact that |Z(A)| = 1, ax(X) = E[Zk()\)] we have

4X2(1 — cos Xj)
Blk+1)+2

4X2(1 — cos Xj) < 6427 + 416)*
Bk+1)+2 |~ (Bk+1)+2)(Bk+1)+4)

|E [Vie(N)[Mpa]| = [E[e™* My 1] Zk(N) = Zi(A) + Zi(N)

:zgmwﬁwﬂﬂﬂu_ﬂ—1+

and

A2 (dag(N) — 2etFHD0q, (X 4 1) — 21 (k+D0g, (X 1))’
B(k+1)+2

ak+1(N) —ap(N\) +
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6472 4 41624
Blk+1)+2)(Bk+1)+4)’

which is the first inequality. Similarly, we have

|ak1(A) = ar(A)] = [E[Zr11(N) = ZeW]| S E[E [Z)1(A) = Zi(M)[Mie—1]|

=EViN]| <E[E [Vi(A)| M| <

. . 162
=E |E [eY* | My_1] Z(\) = Z(N)| = E|E[eM* I Mp_q] — 1| < ———
which is the second inequality. This completes the proof. (I
Lemma 7. Let 0 € (0,7], § € [-m, 7]\ {0}, A € R, then we have
Z a] 2 + 16)\2//8
ﬁ +2 - |1 ev(Bk+1)+2)
Proof. Let €; =1/(8(j +1) +2), a; = a;()\), using summation by parts
n-l ol idbe () — D g
iis e;ai;(N) —e €ja;(N)
Do) =)
— =
:eikéﬁkak —c™enan z_: €j41— €)e'UT)q; n i ¢ e’ (a; —%_1)’
1—e 1—6“S 1—ei

=k j=k+1

and using |a;(A)] <1 we have

— -1
”Zleijée e el +lenl + 270 41 16 — €1l + 2000 e (a;(A) — aj—1(N))]
17 = |1 767;5‘ :
Jj=k

Since €;_1 > €; > 0, we have

n
g le; —€j—1| = €x —€p

j=k+1

and

n
k] + lenl + > lej —€j-1] = 26
j=k+1

By Lemma 6 we have
la;(A) — a;—1(A)] < 16X%€; 1,
this together with €;,_1 — ¢; = Be;_1€; > 0 implies that

n—1 n—1
D leila;(N) —a; 1 (W) <D 16X 3Jeje; 1] = (16X3°/B) (e — €n)-
=k j=k
Summing up we conclude that
y 2 162 2+ 16)2
Z 6”66jaj()\ < €k + ( _5/6)616 _ '§+ /6 )
= [1— €] |1 —e®|(B(k+1)+2)

This completes the proof. [
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Lemma 8. Given complex valued sequences €;, aj;, bj, ¢;j andn € Z, n >0, A€ R
such that |a;| <1, €; >0, aj41 — a; + AN*(eja; — bj) = ¢, let s, = Zf;é €, ty =
Z;:; b;, then we have (for k € [0,n—1]NZ)

n—1
Nk, — X g, | < e’\2s’“)\2|tk| + Z e>‘251+1(|c]-| + )\465/2 + AMejts)).
j=k
Proof. By the definition of ¢;, we have b; = t; —t;1, inserting this into the equation
of c; we have aj+1 + /\th+1 —a; + /\2(Eja]’ — tj) =cj. Let &j =a; + >\2tj then
aj+1 — 67/\2€j5j = Cj =+ (1 — )\26]‘ — 67)\263')0,]' =+ )\2(1 — 67)\26]‘ )tj.
Since |1 — 2z — e™*| < |2]?/2, |1 —e™®| < |z| for > 0 by Taylor expansion and
la;| <1, we have
~ N2~
(@1 — eI < fej| + AT /2 4+ Aejty ).
By the definition of s we have s; 11 = s; + €5, thus

n—1 n—1

|€/\25"5k _ 6A257”6n| < Z |€>‘28j+15j+1 _ e>\2sja~j| _ Z e)\25j+1 ‘Eij+1 _ e_,\%jaj
j=k j=k
n—1
(18) < N7 Mo+ Ate2 /2 + Mgt ).
j=k

. ~ 2 ~ 2 2 2
Notice that t, = 0, €X' %), — e*5n @, = X %k ay — e\ 5na, + e \2t;, and
2 2 2 2, 24 ~
le* Sk ay, — e na,| < €M ARt 4 e TR Ay — e ),
which together with (18) concludes the proof. O

Lemma 9. Let 6 € (0,7], AeR, e, =4/(B(k+1) +2), s = Zf;é €j, then (for
nkeZ n>k>0)

2

C = s
e>‘25’“ak()\) o 6)\ S"an()\) < ()\2 + )\4)6)‘28k€k + g(}\2 + )\6) Z 6A253+16?’

=k

=|Q

here C' > 0 is a constant depending only on [3.

26k 10 g, (A 4 1) 4 2e~ i ETD0q, (X — 1)
Proof. L = =
roof. Let ar = ap(X), by B(k+1)+2

ap41 — ax + A*(egar — by), by Lemma 6 we have |cx| < (4\? + 26A%)e2. We can
write t, = Z?;,i bj = 2(t,1 + ty,2) such that

, and ¢ =

e e g0 )
ot BG+1)+2

1= . ) tk,Q -
= AU+ +2 =

By Lemma 7 we have
2+16(A+1)2/B
11— e (B(k+1)+2)

24 16()—1)2/8
1—e0|(Bk+1)+2)

ltr1| < ltro| <

thus
2+16(\2+1)/8 - C(A% + 1)ey,
[1—e?|(B(k+1)+2) = [1—e®|

[te] < 2([tk1| + [tr2]) < 4-
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Summing up we have

CMe(M\? +1)
|1 — et

S CN+ M6 + OXE(N+1)/0 < C(X* 4 X0)e /6.

(lejl + )\46?/2 + /\4|ejtj|) < (4/\2 + 26/\4)e§ + )\46?/2 +

By Lemma 8 we have

n—1
AN rap(N) — e ma, (V)| < N N2t + Y Nl | + A2 /2 + Nejty)

j=k
22s, O (N 4 ey, - Nsir1 (22 4 \6)e2
SO T HOL AN/
j=k

This completes the proof.

Lemma 10. Lete, = 4/(8(k+1)+2), s = Z;:é €;, then |sp—(4/6) In(k+1)| < C,
here C' > 0 is a constant depending only on [3.

Proof. By definition we have so = 0 and s — sg_1 = €x_1 for k > 1. Let s, =
s — (4/8) In(k + 1), then we have Sp = 0 and 5 — Sp_1 = €x—1 — (4/8) In(1 +1/k)
for k£ > 1. Thus
Sk — Sk—1] < lex—1 — 4/(Bk)| + [4/(Bk) — (4/8) In(1 + 1/k)|
=4/(Bk +2) —4/(Bk)| + (4/8)|In(1 + 1/k) — 1/k]
<8/(8k)* + (4/B)(1/k)*/2 = (8/8° +2/B) /K",

and
k k
sk — (4/8) In(k + 1)| = [8u] < D155 — 51| < D (8/8° +2/8)/5
j=1 j=1
< (8/8% +2/B)(n*/6).
This completes the proof. ([

Lemma 11. Let 0 € (0,7], A€ R, A> < B/8, ex = 4/(B(k+1)+2), s, =305 ;.
then (forn,k € Z, n>k>0)

ek ap(A) — X5 ma, (V)] < CAZeN s /(0(k + 1)),
here C' > 0 is a constant depending only on 3.

Proof. If n = k the result is clearly true, now we assume n > k > 0. By Lemma 10
we have

n—1 n—1 n—1
S g SOY G H G S oY G4 pE
j=k j=k j=k

< Ok 4+ WOV < 0esr (k4 1)1
Here we used the fact that A2 < 3/8, (4/8)A? < 1/2 < 1, which also implies that
A2+ A < ON%, A2+ 08 < C)%. By Lemma 9 we have

n—1
e)\Zskak()\) N 6/\25'"&”()\) < %(}\2 + )\4)6/\2Sk6k + %()\2 + )\6) Ze)\zsj+1€‘?

J=k
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C 2 C 2 C)\2€)‘2S""
< 7}\2 sy k41 -1 7)\2 AZsg k+1 -1 <~ )
S e TR g DTS e
This completes the proof. ([l

Lemma 12. Let 0 € (0,7, A € R, then
lar(X) — 1] < 4X%k|6]/5.

Proof. Let Xj, = ¢r(0) — (k + 1)0. By Lemma 3 and Lemma 4 we have E[X;] =
0, E[X?] < 8k|A|/B, which together with Taylor expansion | — iz — 1| < |z|?/2
for z € R gives
lar(N) — 1| = [E[e?**] — 1| = [E[e™** — idXy — 1]| < E[|AXk|?/2] < 4X%k|6]/8.
This completes the proof. ([
3.1. Proof of Lemma 1. Now we are ready to prove Lemma 1. The proof relies
on Lemma 11 and Lemma 12 with n replaced by n — 1.
Proof. Let’s denote
k—1
be(N) = e~ (/B In(2+k0) 4Bk +1)+2), sp = Zeﬂ'
j=0
for every k € Z, k > 0.
If nf < 2, by Lemma 12 we have
lan—1(N) — 1] < 4X(n — 1)[6]/8 < 8)2/5.
By Taylor expansion we have
ba(X) — 1] < (47%/8) In(2 + nf) < (402/8) In4 < (1/2) In4
and
6(4,\2/19) In(24n0) < e(1/2)Ind _ o
Thus we have
|E[eiA(¥n-1(6)=n0)] _ o= (42?/B) m@4n0)| = |g, 1 (A) — bp(N)]

<lan—1(A) = 1|+ [ba(A) — 1] < 8X2/B + (43?/5) In4
§(8 + 41114)()\2/@(26—(4,\2/,5)1n(2+n9)) < C)\ze—(4,\2//3) In(2+n0)
If n > 2, we take k = |1/0], then we have 0 < k < 1/0 <n/2 < n, thus k <n-—1.
By Lemma 12 we have
lan(X) — 1] < 4X?k[0]/8 < 40%/p.
By Lemma 10 we have
[(sn—1 = sx) — (4/B) In(n/(k + 1))| < C.

We also have k0 < 1 < (k+1)0 <1460 <1+m 0<In((k+1)0) <
In(2/(nf) +1) <In2, and |In(2 +nb) —In(n/(k+1))| = |In(2/(n0) + 1) +
1)8)| < C, thus

C, 0
In((k

+ IA

|($n—1 = sr) — (4/8) In(2 + nfd)| < C,
therefore, we have
|e>\2(3k73n71) _ 67(4)\2/,8) 1n(2+n0)| < C>\2€7(4)‘2/5) In(24n0)
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By Lemma 11, we have
[N ar(A) — X a1 (V)] < ONN T/ (0(k + 1)),
and thus we have
X (om0 0y (A) = a1 ()] < OAZN CEm50-0) /(G (k + 1))
SO}\26A2(sk—sn,1) < C)\Qe—(4A2/B) In(2+n0)

Now we have (recall b, (\) = e~ (43" /B)n(2+n8) anq |q,(N) — 1| < 4X2/B)
[ X Dag (4) = ()] < [N by ()] [ X @y (A) — 1)
< CNby(N) 4 Cbp(N|ar (V) — 1] < CA?b,(N)
and
X r=5n-D) 1 (A) = a1 (N)] < CAZb,(N).
Therefore, we have
lan—1(A) = by (V)] < CA%b, (V).
Now the result follows by the definitions of a,,—1(\) and b, (X). O

3.2. Proof of Corollary 2. As a consequence of Lemma 1, we now give the proof
of Corollary 2.

Proof. Let X = ,_1(0) —nb, Z = Lw"%gf)_nj + 1, then N, (0,6) 4 Z. Taking
the real part in Lemma 1 we have
|E[cos(AX)] — e—(4)\2/,6)1n(2+n9)| < O \2e~(42?/B) In(2+n0) < 0N,
[E[(1 = cos(AX))/X?] = (1 — e~ (/0 mEn0)) /x2) <
for A € [—\/5/8,+/8/8] \ {0}. Letting A — 0 we conclude that
[E[X?/2] - (4/8) In(2 +n)| < C,

which implies (3). Since 7 is a uniform variable on [0, 27), we have

x

Bll—n/(zn)) + 1] = 5 [ (lz=w/@m) + Din= [ (L) + Dy

r—1

x| T
= [ by [ () 0y = L)) 1) () ) L) =

-1 x|

for € R. Since 7 is independent of ¢, _1(6) and N, (0, 0) dz-= L%%Wj +1,
we have E[Z|Y,-1(0)] = ¥n-1(0)/(27). Let Z1 :== Z — 1,_1(0)/(27) then |Z1] <
1, E[Z1|¢n-1(6)] = 0. For A € R we first have
|]E[6M(Z—n9/(2w))] — ]E[eik(wnfl(«?)—w)/(%)]| = |E[e* — ei/\wnil(a)/(%)“
SElE[eiAZ . ei)\wn71(9)/(2w)|wn_1(9)}| — E|(E[6i)\21|wn—l(0)] _ 1>6i)\wn,1(9)/(27r)|
=[E[e"™ [¢n-1(0)] — 1] = [E[e™ — 1 —iXZ1|¢n-1(0)]]
<E[(AZ1)?/2[1hn-1(0)] < X?/2.
On the other hand, for A\ € [-27+/3/8,27+/B/8], let A1 = \/(27) then \? < 3/8,

by Lemma 1 we have
|E[eiA(¥n-1(0)=nb)/(2m)] _ e—/\2/(,6’w2)'1n(2+n9)|
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:|E[ei)\1(1/)n,1(9)—n9)} _ e—(4X;’/B)~1n(2+n9)‘ < C)\%e—(uf/ﬁ)-ln(ﬂne) < C)x? < O)N2.
Therefore, we have
|]E[€i)\(Z7n0/(27r))] _ ef)\2/(67r2)~1n(2+n0)‘ < C«/\Z7
which implies (4). We also have
(19) E[|N.(0,6) — né/(2m)[*) = E[|Z —nf/(2m)
=E[(¢pn-1(0) —n8)*/(27)*] + E[|Z — ¢n-1(0)/(27)|"]

and
(20) 0 <E[|Z — o1 (6)/ @2 = E(Z1[?) < 1.
Using (3), (19) and (20), we conclude (5). O

4. PROOF OF THEOREM 1

In this section, we will finish the proof of Theorem 1.
Let F'(x) be the distribution function of a random variable X and let

(21) G(z) == \/12?/ e /24t

be the Gaussian distribution function. Let’s denote

M = sup |F(z) — G(z)|, 6 = M(x/2)"/?
and let
6(t) = E[ei*X] = /R AR (z), (t) = /R ¢t G (z) = et/

be the characteristic functions.
For every T' > 0 we have the following bound (see (30) in [1])

(22) A1) < /O T(T—t)wdt <7 /0 ’ 160 — v,

where

A(u) = 2m)V2 - u- <3 /Ou ﬂd:ﬁ - 7r> .
Now we take
T = /In2+n0), X = /B/8(tn-1(0) — nd)/T,
for 0 € (0,7]. Let ar(\) = E[e?¥rO)=(+10)] 35 in §3, then we have
¢(t) = Ele"™] = an_1(v/B/8t/T).
By Lemma 1 we have (for A € R, \2 < 3/8)
lan_1(\) — 67(4,\2/@ ln(2+n0)| < C’/\Qe*(4’\2/5) In(2+n6)

Notice that if ¢ € [0,T], A = +/B/8t/T, then \? < 3/8, (4\?/B)In(2 + nb) = t2/2.
Thus we have

|6(t) — (t)] = |an_1(v/B/8L/T) — e /2| < CBL2/(8T?) - e~/
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and

T T
T/ Mdt < CT/ 5t2/(8T2) e P2y <C/T<C.
t 0

0
By (22) we have A(T6) < C. As lirj{l A(u) = 400, we have T'§ < C. Recall that
U—r+00

§ = M(n/2)Y?, we have § < C/T, M < C/T. Recall that T = 1/In(2 +nb), M =
sup,eg | F(z) — G(2)], F(z) = PIX < a], X = /B/8(¢n-1(0) —nb)/T, now we

have proven the following result.

Lemma 13. Let 6 € (0,7], n >0, n € Z, then
sup [P[v/B/(8In(2 + n6))(¢n_1(0) — nb) < z] — G(x)| < C(In(2 + nh))~1/2.
z€R

Here, C > 0 is a constant depending only on (.

4.1. Proof of Theorem 1. Now we give the proof of Theorem 1.

Proof. Since N, (0, 0) L7 for 7 = Lw"%ﬂf)ﬂ’] + 1 and n € [0,27), we have
2= 22O <1 Let Ty = ) 5ry gy then we have T1 /(27) = /B/(8 (2 + nf)).

Thus for x € R, by Lemma 13 we have
P[T}(N,(0,0) —nb/(27)) < z] = P[T1(Z — nb/(27)) < x]
<P[T1(¢n-1(0)/(27) — 1 —nb/(27)) < ]
=P[T1/(27) - (Yn-1(0) —nb) < z+ T1] < G(z +T1) + C(In(2 + nh)) /2
<G(z) +T1/V2r 4+ C(In(2 + nb)) "2 < G(z) + C(In(2 + nh)) /2,
here we used the fact that 0 < G'(z) = e~ /2/y/27 for x € R which implies that
|G(x) — G(y)| < |= —y|/V2r for 2,y € R. Similarly, we have
P[Ty(Nn(0,0) —n/(2m)) < x] > P[T1/(27) - (Yn-1(0) — nb) <z —T]
>G(z —T1) — C(In(2 4 nd)) "2 > G(z) — C(In(2 + nd)) /2.
Combining the upper and lower bounds we conclude that

sup |P[T1 (N, (0,0) —nb/(2n)) < x] — G(z)| < C(In(2 + nh))~ /2

This completes the proof of Theorem 1 by the definitions of 77 and G(x). (]
5. RESULTS FOR SINEg PROCESS
Now we give the proof of Corollary 3.

Proof. Since the Sineg point process is the scaling limit of the CSE, by Skorokhod’s
representation theorem, one can construct point processes L, and L such that
the point measure corresponding to L, converges locally weakly to the measure
corresponding to L almost surely [20], and

Card(L,, N[0, z]) 4 Np(0,z/n), 0 <z <2mn.

Let z > 0, X € [-27+/53/8,2m+/B3/8]. Since L almost surely does not contain the
points 0 and x, we have almost surely

Card(L,, N [0,z]) — Card(L N[0, z]),
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and

eiA(Card(Lnﬂ[O,:E] )—xz/(27)) N ei)\(Ca.rd(Lﬂ[O,w])—;ﬂ/(27r)) )

By dominated convergence theorem we have

[ NCard(Lanl0,2]) =2/ (2m)) _y R[iM(Card(Ll0z])=/(2m)),
For n > x/m we have mn > x, and by (4) in Corollary 2 we have
[E[¢iMCard(Lan[0])—/(2m)| _ =A%/ () In(2 ),

=|E[eMNn(0:/m)—2/(2m)] _ e*>\2/(ﬁﬂ'2)-1n(2+m)| < O\,
which implies

‘E[em(card(m[o,z])ﬂ/(zw))] . 67)\2/(,37T2)'1n(2+w)| < C)2.
Taking the real part we have

IE[(1 — cos(\(Card(L N [0, 2]) —a/(2m))))/A?] — (1 — e~ A/ Fr ) m@Ha)y 32| < ¢
for X € [~2m+/B/8,27m+/B/8] \ {0}. Letting A — 0 we conclude that
|E[(Card(L N [0,z]) — z/(2m))?/2] — 1/(B7*) - In(2 + z)| < C,

which implies (6).
Now let x > 0, y € R, X,, = Card(L, N[0,z]), X = Card(L N [0,z]), Ty =

,/%, then we have X,, — X almost surely. For n > /7 we have mn > z,
and X, 4 N, (0,2/n), by Theorem 1, we have
IP[T1(Xn — x/(27)) < y] = G(y)] < CIn(2 +2)) /2,
where the function G is defined in (21). For every a > 0 we have
PITy(X — /(7)) < ] < liminf BTy (X, — /(7)) <y +a]
< Gy +a)+ C(In(2 4 z))~V/2.

Since G is continuous we have

P[T1(X — z/(27)) < y] < G(y) + C(In(2 + 2)) /2.
Similarly, we have

PIT3(X — 2/(2m)) < 4] > G(y) — C(n(2 + 2)) 2.
Combining the upper and lower bounds we conclude that

sup IP[T1(X —«/(27)) <y - G(y)| < CIn(2 + )"/,

which gives (7) by the definitions of 7, X and G(y). This completes the proof. O

6. APPLICATION: NORMALITY OF LINEAR STATISTICS

In this section, we will prove Theorem 2.
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6.1. Variance bound. We first need the following estimate on the variance of the
linear statistics. We write ||gllLr = [|9]lLr(0,27)-

Lemma 14. Let f € WHP(SY) be real valued and fozﬂ f(x)dx =0, then
E[{n, /)] = 0, E[&n, /) < CIf 170,
here p € (1,+00), and C > 0 is a constant depending only on (3, p.

To prove Lemma 14, we first need the following lemma which is the consequence
of the uniform variance bound (5) in Corollary 2.

Let N, (a,b) = Ny(a,b)—n(b—a)/(27), Np(b,a) = —Np(a,b) for 0 < a < b < 2.
As Ny(a,b) = N,(0,b) — N,(0,a), for 0 < a < b < 27w, we have N,(a,b) =
N, (0,b) — N, (0,a) for a,b € [0,27).

Lemma 15. For a,b € [0,27), a # b we have
|]E[]\~fn(a,b)2] —2Inn/(x*B)| < C(1 — Insin(|a — b]/2)),
here C' > 0 is a constant depending only on 5.

Proof. By symmetry we only need to consider the case 0 < a < b < 2m. For
€ (0,], by (5) in Corollary 2 we have

IE[N,,(0,2)%] — 2In(2 + nz)/(x28)| < C.
Thus we have
E[N,.(0,2)?] < 2In(2 + nz)/(728) + C < 2In(2 + nx) /(x28) + C
< 2In(6n)/(72B) + C < 2Inn/(x?p) + C
and
E[N,(0,2)%] > 2In(2 + nz)/(x28) — C > 2In(nz)/(x*B) — C
> 2Inn/(72B) + 2In(2sin(x/2))/(7*B) — C
> 2Inn/(7?B) — C(1 — Insin(z/2)),

here we used the fact that sin(z/2) < 1, 2sin(z/2) < z, Insin(x/2) < 0. Combining
the upper and lower bounds we conclude that

(23) IE[N,,(0,2)?] — 2Inn/(x%8)] < C(1 — Insin(z/2))
for z € (0, 7). If z € [, 27), by rotational invariance we have N,, (0, 2) = — N, (z, 2)

4 —N,(0,27 — z), 27 —z € (0, 7] and

[E[N(0,2)%] = 2lun/(x*8)| = [E[N,(0,2r — 2)°] = 2lun/(x*B)|
<C(1 —Insin((2r — x)/2)) = C(1 — Insin(z/2)).
Thus (23) is true for z € (0,27). Now for 0 < a < b < 27, by rotational invariance
we have N, (a,b) 4 N,(0,b — a), and by (23) we have
B[R (a,5)%] — 2100/ (x26)] =[E[N,(0,b — 0)*] — 2Inn/(x2)|
<C(1 —Insin((b — a)/2)).
This completes the proof. ([l

Now we give the proof of Lemma 14.
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Proof. By definition and fOQTr f(z)dz = 0 and integration by parts we have

2 2w

(s )= [ f(@)dNn(0,z) = ; f(@)d(Nn(0,z) = nz/(27))

0
/ F/(2) (N (0, ) — nar/ (2m))dv.

By rotational invariance we have E[N,,(0,z)] = nz/(27), which implies E[(§,, f)]
= 0. By the definition of N, (a,b) we have

en D) = [ " | @ )N (0,208, (0, )y
/% T P @) ) (Fa(0,2) — Fa(0,9))dedy
/ ” / . F@)f () N (0, 2) dedy
=—2/% %fuwwﬁw%m%m%

here we used the fact that f (y)dy = f(2m) — f(0) = 0, which also implies that

|60, S)? = — & / [ @ B0 dsdy
——5 [ [ @7 ER @0 - 20025 dedy.
By Lemma 15 we have
E[(&n, f)I? < 5/ ﬂ/ ! ||]E[ W (y, )% — 2Inn/(7*B)|dxdy
/ Tr/ ! |(1 — Insin(|z — y|/2))dzdy.
Notice that
/ 7r(1 — Insin(|z — y|/2))p,dy = / 7T(1 — lnsin(y/Q))p/dy = () < 400,
0 0

for « € [0, 2x], where p" = p/(p — 1) and C,, is a constant depending only on p. By
Holder’s inequality we have

2m
/0 @)1 = nsin(|z —y|/2))dy < || f']|-Cp Y7

for x € [0, 27], and

2
E[{&n, f)|* < CHf’IILpCé_l/p/ |/ (@)lda < ClLf e Cy P f | o
0

This completes the proof. [
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6.2. Proof of Theorem 2. Now we are ready to prove Theorem 2. The proof is
based on the following result of Jiang-Matsumoto for the case f(z) a finite sum of
{e™**} ez (see Corollary 3 in [9]).

Lemma 16. Let (61, ,0,) be a sample from pg,. Let g(z) = > -, ckz® with
fired m and ¢, € C for all k. Set X,, = 2?21 g(e%3). then X, — u, converges in
law to a complex Gaussian random variable ~ CN(0,0?), where

+oo
2 .
i = e, 0 = 2"l
j=1

Lemma 16 tells us that if cg = 0, f(x) = g(e™®) + g(e™*) then X,, + X,, = (&n, f)
converges in law to a real Gaussian random variable ~ N (0, 202).
Now we give the proof of Theorem 2.

Proof. Tt is enough to prove of the convergence of the characteristic functions

(24) lim E[e?M&nh)] = 2" v A eR.

n—-+00

Given a function f € Wl’p(Sl) we will prove that fn := f* Ky approximates f in
WP (S1), where f * fa(z fo f1(y) fa(x — y)dy, and Ky (x) is the Féjer kernel
N

KN(QT):Qlﬂ_j_z:N( —i,) eijngT(mY, N>0, NeZ

In fact Kn(x) >0, ||Knllzr =1, fjy = f' * Kn, and
. IKNLs2x-5) =0, V0 € (0,m).

The following results are classical

lg* Knllee < lgllee, lim |lg* Kn —gll» =0, V g € LP(0, 27).
N—+oc0

Thus we have
(25) 1 fxllee < 1 ee, Mim |l fr = fllze = 0.
—+o0

We also have
N

)= 3 (1B,

j=—N

where a; is defined in Theorem 2. Since f is real valued and f027r f(z)dx = 0, we have

ap =0, a_j = aj, fn(z) = gn(e) + gn(e®) with gn(z) = Z;‘vﬂ (1—-j/N)a;z’.
By Lemma 16, (£, fn) converges in law to Jy ~ N(0,20%;) as n — +oo for every
fixed N, where

9 N
UIQV:EZ (1= j/N)?|a;|?

with on41 > on. Thus

(26) lim E[eM&n/N)] = ¢ 2ok v A eR.

n—-+oo
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As ap =0, fozﬂ fn(x)dz = 0, by Lemma 14 and Fatou’s Lemma we have
2% = E[J3] < I nf [ (6. f)[%] < Ol 3.

which implies

ok <ClfxlLe < CIf 1L
Thus by monotone convergence theorem we have

(27) o= lim o% <C|f'|3 < +o0,
N—+o00

where ¢ is defined in Theorem 2. By Lemma 14 again we have

E[|(&ns fn) = (&ns ] < Cllfn = F1130,
and thus

[E[eiMenIx) — gMenD | < E[|A[[(€n, fi) = (Enr )] < CIIII SN = f/llies ¥ AER,
which together with (26) gives
(28)  limsup [E[eEnD] — e | < ON[|fi — flloe + e 7N — e

n——+oo

for every A€ R, N >0, N € Z. By (25), (27), (28) we have

lim sup |[E[e* ] — e N |
n—+oo
2

<limsup(CA||fiy = F'llze + e 7% —e ")) =0, VA R,
N—4oc0
which implies (24). This completes the proof. |
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