# Max-Planck-Institut für Mathematik Bonn 

## Representations and cohomologies of Kleinian 4-rings

by

Yuriy Drozd


Max-Planck-Institut für Mathematik Preprint Series 2022 (30)

# Representations and cohomologies of Kleinian 4-rings 

by<br>Yuriy Drozd

Max-Planck-Institut für Mathematik Vivatsgasse 7
53111 Bonn
Germany

Institute of Mathematics
National Academy of Science of Ukraine
Tereschenkivska str. 3
01024 Kyiv
Ukraine

# REPRESENTATIONS AND COHOMOLOGIES OF KLEINIAN 4-RINGS 

YURIY DROZD


#### Abstract

We introduce a new class of algebras over discrete valuation rings, called Kleinian 4-rings, which generalize the group algebra of the Kleinian 4-group. For these algebras we describe the lattices and their cohomologies. In the case of regular lattices we obtain an explicit form of cocycles defining the cohomology classes.


## Introduction

Integral representations of the Kleinian 4-group $G$ (or $G$-lattices) were described by Nazarova [9]. Another description was proposed by Plakosh [10]. In the papers [6] and [7] cohomologies of these lattices were calculated. In this paper we consider a class of rings that generalizes group rings of the Kleinian 4 -group. We call them Kleinian 4 -rings. We give a description of lattices over such rings and calculate cohomologies of these lattices. In a special case of regular lattices we obtain an explicit form of cocycles defining cohomology classes.

## 1. Lattices over Kleinian 4-Rings

In what follows $R$ denotes a complete discrete valuation ring with a prime element $p$, the field of fractions $Q$ and the field of residues $\mathbb{k}=R / p R$. We write $\otimes$ instead of $\otimes_{R}$. If $A$ is an $R$-algebra, we call an $A$-module $M$ an $A$-lattice if it is finitely generated and free as $R$ module. Then we identify $M$ with its image $1 \otimes M$ in the vector space $Q \otimes M$ and an element $v \in M$ with $1 \otimes v \in Q \otimes M$. We denote by $A$-lat the category of $A$-lattices.

Definition 1.1. The Kleinian 4 -ring over $R$ is the $R$-algebra $K=$ $R[x, y] /(x(x-p), y(y-p))$.

2010 Mathematics Subject Classification. 16E40, 16H20, 16G70.
Key words and phrases. 4-rings, lattices, cohomology, Auslander-Reiten quiver, regular lattices.

This paper was prepared during the stay of the author at the Max-PlankInstitute for Mathematics (Bonn).

Note that if $p=2$ this is just the group algebra over $R$ of the Kleinian 4 -group $G=\left\langle a, b \mid a^{2}=b^{2}=1, a b=b a\right\rangle$. One has to set $x=a+1, y=b+1$.

One easily sees that $Q \otimes K$ is isomorphic to $Q^{4}$ : just map $x$ to $\bar{x}=(p, p, 0,0)$ and $y$ to $\bar{y}=(p, 0, p, 0)$. We consider $K$ as embedded into $Q^{4}$ identifying $x$ with $\bar{x}$ and $y$ with $\bar{y}$. We also set $z=(p, 0,0,0) \in Q^{4}$ (note that $z \notin K$ and $z^{2}=x y$ ). The maximal ideal $\mathfrak{r}$ of $K$ is $(p, x, y)$ and $K / \mathfrak{r} \simeq \mathbb{k}$. Let $A=\left\{a \in Q^{4} \mid a \mathfrak{r} \subset K\right\}$. One easily verifies that $A=K+R z$ and $A / K \simeq \mathbb{k}$. Hence $K$ is a Gorenstein ring [3, Proposition 6], i.e. inj. $\operatorname{dim}_{K} K=1$. Therefore, $A$ is its unique minimal over-ring and every $K$-lattice is isomorphic to a direct sum of a free $K$ module and an $A$-lattice (see [5, Lemma 2.9] or [4, Lemma 3.2]). Note that the ring $A$ is also local with the maximal ideal $\mathfrak{m}=(p, x, y, z)$ and $A / \mathfrak{m} \simeq \mathbb{k}$. Moreover, as the submodule of $Q^{4}, \mathfrak{m}=p A^{\sharp}=\operatorname{rad} A^{\sharp}$, where $A^{\sharp}=R^{4}$ is hereditary. Thus $A$ is a Backström order in the sense of [11]. Therefore, $A$-lattices can be described by the representations of the quiver

over the field $\mathbb{k}$. Namely, denote by $R_{\alpha \beta}$, where $\alpha, \beta \in\{0, p\}$ the $A$ lattice such that $R_{\alpha \beta}=R$ as $R$-module, $x v=\alpha v$ and $y v=\beta v$ for all $v \in R_{\alpha \beta}$. For any $A$-lattice $M$ and $\alpha, \beta \in\{0, p\}$ set $M_{\alpha \beta}=\{v \in M \mid$ $x v=\alpha v, y v=\beta v\}$. If $M$ is an $A$-lattice, $M^{\sharp}=A^{\sharp} M$ is an $A^{\sharp}$-module, hence $M^{\sharp}=\bigoplus_{\alpha, \beta} M_{\alpha \beta}^{\sharp}$. Let $V_{\bullet}=M / \mathfrak{m} M$ and $V_{\alpha \beta}=M_{\alpha \beta}^{\sharp} / p M_{\alpha \beta}^{\sharp}$. Note that $M^{\sharp} \supset M \supset \mathfrak{m} M=p M^{\sharp}$. So the natural maps $f_{\alpha \beta}: V_{\bullet} \rightarrow V_{\alpha \beta}$ are defined and we obtain a representation $V$ of the quiver $\Gamma$ :


We denote this representation by $\Phi(M)$. It gives a functor $\Phi: A$-lat $\rightarrow$ rep $\Gamma$. The next result follows from [11].

Theorem 1.2. Let $\mathrm{rep}_{+} \Gamma$ be the full subcategory of rep $\Gamma$ consisting of such representations $V$ that all maps $f_{\alpha \beta}$ are surjective and the map $f_{+}: V_{\bullet} \rightarrow V_{+}$is injective. The image of the functor $\Phi$ is in $\operatorname{rep}_{+} \Gamma$ and, considered as the functor $A$-lat $\rightarrow \operatorname{rep}_{+} \Gamma$, the functor $\Phi$ is an epivalence.

Recall that the term epivalence means that $\Phi$ is full, maps nonisomorphic objects to non-isomorphic and every representation $V \in$ rep $_{+} \Gamma$ is isomorphic to some $\Phi(M)$ (then $\Phi$ maps indecomposable objects to indecomposable). Actually, this $M$ can be reconstructed as follows. Set $d_{\alpha \beta}=\operatorname{dim} V_{\alpha \beta}, V_{+}=\bigoplus_{\alpha \beta} V_{\alpha \beta}$ and $\bar{V}$ be the image of the map $V_{\bullet} \rightarrow V_{+}$with the components $f_{\alpha \beta}$. Then $V_{+} \simeq M^{\sharp} / p M^{\sharp}$, where $M^{\sharp}=\bigoplus_{\alpha \beta} R_{\alpha \beta}^{d_{\alpha \beta}}$. Let $\Psi(V)$ be the preimage of $V_{+}$in $M^{\sharp}$. It is an $A$-lattice and $\Phi(M) \simeq V$. Moreover, $M^{\sharp}=A^{\sharp} M$. Note also that the kernel of the map $\operatorname{Hom}_{A}(M, N) \rightarrow \operatorname{Hom}_{\Gamma}(\Phi(M), \Phi(N))$ coincides with $\operatorname{Hom}_{A}(M, \mathfrak{m} N)$.

The quintuple $\left(d_{\bullet} \mid d_{p p}, d_{p 0}, d_{0 p}, d_{00}\right)$, where $d_{\bullet}=\operatorname{dim} V_{\bullet}$, is called the vector dimension of the representation $V$. We also call it the vector rank of the lattice $M=\Psi(V)$ and denote it by Rk $M$. For instance, $\operatorname{Rk} R_{p p}=(1 \mid 1,0,0,0)$ and $\operatorname{Rk} A=(1 \mid 1,1,1,1)$. Note that the rank of $M$ as of $R$-module equals $\sum_{\alpha \beta} d_{\alpha \beta}$, while $d_{\bullet}=\operatorname{dim}_{\mathfrak{k}} M / \mathfrak{m} M$.

Remark 1.3. Note that the only indecomposable representations of $\Gamma$ that do not belong to rep $\Gamma$ are "trivial representations" $V^{j}$, where $j \in\{\bullet, \alpha \beta \mid \alpha, \beta \in\{0, p\}\}$ such that $V_{j}^{j}=\mathbb{k}$ and $V_{j^{\prime}}^{j}=0$ if $i \neq j$. Therefore, the $A$-lattices are indeed classified by the representations of the quiver $\Gamma$.

Let $\tau_{K}\left(\tau_{A}\right)$ denote the Auslander-Reitentranslate in the category $K$-lat (respectively, $A$-lat). Recall that $\tau_{K} M$ for a non-projective indecomposable $K$-lattice $M$ is an indecomposable $K$-lattice $N$ such that there is an almost split sequence $0 \rightarrow N \rightarrow E \rightarrow M \rightarrow 0$ [1]. The next result follows from [4].

Proposition 1.4. (1) $\tau_{K} M \simeq \tau_{A} M$ for any indecomposable $A$ lattice $M \nleftarrow A$.
(2) $\tau_{K} A \simeq \mathfrak{r}$ and it is a unique indecomposable $A$-lattice $N$ such that inj. $\cdot \mathrm{dim}_{N}=1$.
(3) $\tau_{K} M \simeq \Omega M$ for any $A$-lattice $M$, where $\Omega M$ denote the syzygy of $M$ as of $K$-module.

Following [12], we can also restore the Auslander-Reiten quiver $\mathcal{Q}(A)$ of the category $A$-lat from the Auslander-Reiten quiver $\mathcal{Q}(\Gamma)$ r of the category rep $\Gamma$. Recall that the quiver $\mathcal{Q}(\Gamma)$ consists of the preprojective, preinjective and regular components. The quiver $\mathcal{Q}((A)$ is obtained from $\mathcal{Q}(\Gamma)$ by glueing the preprojective and preinjective components omitting trivial representations. The resulting preprojectivepreinjective component is the following:


Here $M^{k}$ denotes $\tau_{K}^{k} M$. Note that $A^{1} \simeq \mathfrak{r} \simeq A^{\vee}$, where $M^{\vee}=$ $\operatorname{Hom}_{K}(M, K)$. The representations belonging to this component are uniquely determined by their vector-ranks. One can verify that

$$
\begin{aligned}
\operatorname{Rk} A^{k} & = \begin{cases}(2 k-1 \mid k, k, k, k) & \text { if } k>0, \\
(1-2 k \mid 1-k, 1-k, 1-k, 1-k) & \text { if } k<0 ;\end{cases} \\
\operatorname{Rk} R_{p p}^{k} & = \begin{cases}\left(k+1 \left\lvert\,\left[\frac{k}{2}\right]-(-1)^{k}\right.,\left[\frac{k}{2}\right],\left[\frac{k}{2}\right],\left[\frac{k}{2}\right]\right) & \text { if } k>0, \\
\left(-k \left\lvert\,\left[\frac{1-k}{2}\right]+(-1)^{k}\right.,\left[\frac{1-k}{2}\right],\left[\frac{1-k}{2}\right],\left[\frac{1-k}{2}\right]\right) & \text { if } k<0 .\end{cases}
\end{aligned}
$$

$\mathrm{Rk} R_{\alpha \beta}^{k}$ is obtained from $\mathrm{Rk} R_{p p}^{k}$ by permutation of $d_{p p}$ with $d_{\alpha \beta}$.
The remaining (regular) components are tubes, where $\tau_{K}$ acts periodically. They are parametrized by the set

$$
\mathbb{P}=\{\text { irreducible unital polynomials } f(t) \in \mathbb{k}[t]\} \cup\{\infty\} .
$$

Actually, it is the set of closed points of the projective line over the field $\mathbb{k}$, that is of the projective scheme $\operatorname{Proj} \mathbb{k}[x, y]$. If $f(t)=t-\lambda$ $(\lambda \in \mathbb{k})$, we write $\mathcal{T}^{\lambda}$ instead of $\mathcal{T}^{f}$.

If $f \in \mathbb{P} \backslash\{t, t-1, \infty\}$, the corresponding tube $\mathcal{T}^{f}$ is homogeneous, which means that $\tau_{K} M \simeq M$ for all $M \in \mathcal{T}^{f}$. It has the form

$$
T_{1}^{f} \rightleftarrows T_{2}^{f} \rightleftarrows T_{3}^{f} \rightleftarrows \cdots
$$

and $\operatorname{Rk} T_{n}^{f}=(2 d n \mid d n, d n, d n, d n)$, where $d=\operatorname{deg} f(t)$. In this diagram all maps $T_{n}^{f} \rightarrow T_{n+1}^{f}$ are monomorphisms with the cokernels $T_{1}^{f}$, while all maps $T_{n+1}^{f} \rightarrow T_{n}^{f}$ are epimorphisms with the kernels $T_{1}^{f}$.

The exceptional tubes $\mathcal{T}^{\lambda}(\lambda \in\{0,1, \infty\})$ are of he form


Here $\tau_{K} T_{n}^{\lambda 1}=T_{n}^{\lambda 2}$ and $\tau_{K} T_{n}^{\lambda 2}=T_{n}^{\lambda 1}$. In this diagram all maps $T_{n}^{\lambda i} \rightarrow$ $T_{n+1}^{\lambda i}$ are monomorphisms with the cokernels $T_{1}^{\lambda j}$, where $j=i^{n}$ if $n$ is even and $j \neq i$ if $n$ is odd. All maps $T_{n+1}^{\lambda i} \rightarrow T^{\lambda j}(j \neq i)$ are epimorphisms with the kernels $T_{1}^{\lambda i}$.

For $\lambda=1$ we have

$$
\begin{align*}
& \operatorname{Rk} T_{2 m}^{1 j}=(2 m \mid m, m, m, m) \text { for both } j=1 \text { and } j=2, \\
& \operatorname{Rk} T_{2 m-1}^{11}=(2 m-1 \mid m, m, m-1, m-1),  \tag{3}\\
& \operatorname{Rk} T_{2 m-1}^{12}=(2 m-1 \mid m-1, m-1, m m) .
\end{align*}
$$

The vector-ranks for the tubes $\mathcal{T}^{0}$ and $\mathcal{T}^{\infty}$ are obtained from those for $\mathcal{T}^{1}$ by permutation of $d_{p 0}$, respectively, with $d_{00}$ and with $d_{0 p}$.

## 2. Cohomologies

A Kleinian 4 -ring is a supplemented $R$-algebra in the sense of [2, Ch. X] with respect to the surjection $\pi: K \rightarrow K /(x-p, y-p) \simeq$ $R$. Therefore, for any $K$-module $M$ the homologies $H_{n}(K, M)=$ $\operatorname{Tor}_{N}^{K}(R, M)$ and cohomologies $H^{n}(K, M)=\operatorname{Ext}_{K}^{n}(R, M)$ are defined. Moreover, if we consider $M$ as $K$-bimodule setting $m x=m y=p m$ for all $m \in M$, they coincide with the Hochschild homologies and cohomologies:

$$
H_{n}(K, M) \simeq H H_{n}(K, M) \text { and } H^{n}(K, M) \simeq H H^{n}(K, M)
$$

(see [2, Theorem X.2.1]).
Remark 2.1. We have chosen the augmentation $K \rightarrow R$ such that if $p=2$, hence $K \simeq R G$ for the Kleinian 4 -group $G$, it coincides with the usual augmentation $R G \rightarrow R$ mapping all elements of the group to 1 . Thus in this case $H_{n}(K, M)=H_{n}(G, M)$.
Proposition 2.2. For every $K$-module $M$ and $n \neq 0$

$$
x y H_{n}(K, M)=x y H^{n}(K, M)=p^{2} H^{n}(K, M)=p^{2} H_{n}(K, M)=0
$$

Proof. The map $\mu: r \mapsto r x y$ is a homomorphism of $K$-modules $R \rightarrow K$ such that $\pi \mu: R \rightarrow R$ is the multiplication by $x y$ or, the same, by $p^{2}$. Therefore, the multiplication by $x y$ or by $p^{2}$ in $\operatorname{Ext}_{K}^{n}(R, M)$ or in $\operatorname{Tor}_{n}^{K}(R, M)$ factors, respectively, through $\operatorname{Ext}_{K}^{n}(K, M)=0$ or through $\operatorname{Tor}_{n}^{K}(K, M)=0$.

Note that $K \simeq \bar{K} \otimes_{R} \bar{K}$, where $\bar{K}=R[x] /(x(x-p))$ A projective resolution $\overline{\mathbf{P}}$ for $R$ as of $\bar{K}$-module, where $x r=p r$ for all $r \in R$, is obtained if we set $\bar{P}_{n}=\bar{K} u^{n}$ and

$$
d u^{n}=C_{n}(x) u^{n-1}, \text { where } C_{i}(x)= \begin{cases}x & \text { if } n \text { is even }, \\ x-p & \text { if } n \text { is odd }\end{cases}
$$

Then $\mathbf{P}=\overline{\mathbf{P}} \otimes_{R} \overline{\mathbf{P}}$ is a projective resolution of $R$ as of $K$-module. Here $P_{n}$ is the module of homogeneous polynomials of degree $n$ from $K[u, v]$ and

$$
d\left(x^{i} y^{j}\right)=C_{i}(x) u^{i-1} v^{j}+(-1)^{i} C_{j}(y) u^{i} v^{j-1} .
$$

Denote $H_{n}(\bar{K}, M)=\operatorname{Tor}_{n}^{\bar{K}}(R, M)$. Then

$$
H_{n}(\bar{K}, M)= \begin{cases}M /(x-p) M & \text { if } n=0 \\ \operatorname{Ker}(x-p)_{M} / x M & \text { if } n \text { is odd } \\ \operatorname{Ker} x_{M} /(x-p) M & \text { if } n \text { is even }\end{cases}
$$

where $a_{M}$ denotes the multiplication by $a$ in the module $M$. Let $R_{0}=$ $\bar{K} /(x), R_{p}=\bar{K} /(x-p)$. Then $R_{\alpha \beta} \simeq R_{\alpha} \otimes_{R} R_{\beta}$. As the ring $R$ is hereditary, the Künneth formula [2, Theorem VI.3.2] implies that

$$
\begin{aligned}
H_{n}\left(K, R_{\alpha \beta}\right) & \simeq\left(\bigoplus_{i+j=n} H_{i}\left(\bar{K}, R_{\alpha}\right) \otimes_{R} H_{j}\left(\bar{K}, R_{\beta}\right)\right) \oplus \\
& \oplus\left(\bigoplus_{i+j=n-1} \operatorname{Tor}_{1}^{R}\left(H_{i}\left(\bar{K}, R_{\alpha}\right), H_{j}\left(\bar{K}, R_{\beta}\right)\right)\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& H_{n}\left(\bar{K}, R_{0}\right)= \begin{cases}0 & \text { if } n \text { is odd } \\
\mathbb{k} & \text { if } n \text { is even }\end{cases} \\
& H_{n}\left(\bar{K}, R_{p}\right)= \begin{cases}R & \text { if } n=0 \\
\mathbb{k} & \text { if } n \text { is odd } \\
0 & \text { if } n \text { is even }\end{cases}
\end{aligned}
$$

we obtain

$$
H_{n}\left(K, R_{p p}\right)= \begin{cases}R & \text { if } n=0  \tag{4}\\ (R / p)^{[(n+3) / 2]} & \text { if } n \text { is odd } \\ (R / p)^{n / 2} & \text { if } n \text { is even }\end{cases}
$$

and if $(\alpha, \beta) \neq(p, p)$

$$
\begin{equation*}
H_{n}\left(K, R_{\alpha \beta}\right)=(R / p)^{[(n+2) / 2]} . \tag{5}
\end{equation*}
$$

On the other hand, the exact sequence $0 \rightarrow K \rightarrow A \rightarrow \mathbb{k} \rightarrow 0$ implies that for $n>0$

$$
\begin{equation*}
H_{n}(K, A) \simeq H_{n}(K, \mathbb{k}) \simeq P_{n} \otimes_{K} \mathbb{k} \simeq \mathbb{k}^{n+1} \tag{6}
\end{equation*}
$$

since $H_{n}(K, K)=0$ and the differential in $\mathbf{P} \otimes_{K} \mathbb{k}$ is zero.
As $K$ is Gorenstein, the functor $M \mapsto M^{\vee}=\operatorname{Hom}_{K}(M, K)$ is an exact duality in the category $K$-lat, i.e. the natural map $M \mapsto M^{\vee \vee}$ is an isomorphism. If $P$ is projective, then $P \otimes_{K} M \simeq \operatorname{Hom}_{K}\left(P^{\vee}, M\right)$. Therefore, homologies of a module $M$ can be obtained as $H_{n}\left(\operatorname{Hom}_{K}\left(\mathbf{P}^{\vee}, M\right)\right.$. Note that the embedding $R \rightarrow P_{0}^{\vee} \simeq K$ maps 1 to $x y$. Hence, just as for finite groups, we can consider a full resolution $\hat{\mathbf{P}}$ setting

$$
\hat{P}_{n}= \begin{cases}P_{n} & \text { if } n \geq 0 \\ P_{-n-1}^{\vee} & \text { if } n<0\end{cases}
$$

and defining $d_{0}: K=\hat{P}_{0} \rightarrow \hat{P}_{-1} \simeq K$ as multiplication by $x y$. Thus the Tate cohomologies $\hat{H}^{n}(K, M)$ are defined as $H^{n}\left(\operatorname{Hom}_{K}(\hat{\mathbf{P}}, M)\right)$ with the usual properties

$$
\hat{H}^{n}(K, M)= \begin{cases}H^{n}(K, M) & \text { if } n>0 \\ H_{-1-n}(K, M) & \text { if } n<-1, \\ M_{p p} / x y M & \text { if } n=0 \\ \{m \mid x y m=0\} /((x-p) M+(y-p) M) & \text { if } n=-1,\end{cases}
$$

where $M_{p p}=\{m \mid x m=y m=p m\}$. In particular, $x y \hat{H}^{n}(K, M)=$ $p^{2} \hat{H}^{n}(K, M)=0$ for all $M$. Note also that, if $M$ is an $A$-lattice, $M_{p p}=\{m \mid z m=p m\}$ and $x y M=z^{2} M$.

A basis of $\hat{P}_{-n}(n>0)$ can be chosen as $\left\{\hat{u}^{i} \hat{v}^{j} \mid i+j=n-1\right\}$, where $\left(\hat{u}^{i} \hat{v}^{j}\right)\left(u^{k} v^{l}\right)=\delta_{i k} \delta_{j l}$. Then

$$
d\left(\hat{u}^{i} \hat{v}^{j}\right)=C_{i+1} \hat{u}^{i+1} \hat{v}^{j}+(-1)^{i} C_{j+1} \hat{u}^{i} \hat{v}^{j+1} .
$$

Proposition 2.3. If $M$ is an $A$-lattice that has no direct summands isomorphic to $R_{p p}$, then

$$
\hat{H}^{0}(K, M)=M_{p p} / p M_{p p} \simeq \mathbb{k}^{d_{p p}}
$$

where $\left(d_{\bullet} \mid d_{p p}, d_{p 0}, d_{0 p}, d_{00}\right)=\operatorname{Rk} M$.
Proof. Set $M^{\sharp}=A^{\sharp} M=\bigoplus_{\alpha \beta} M_{\alpha \beta}^{\sharp}$. Note that $x y A=R x y=x y A^{\sharp}$, hence $x y M=x y M^{\sharp}=p^{2} M_{p p}^{\sharp}$. On the other hand, $M_{p p}^{\sharp} \simeq R_{p p}^{d_{p p}}$ and $p M_{p p}^{\sharp} \subset M_{p p} \subset M_{p p}^{\sharp}$. If $M_{p p} \neq p M_{p p}^{\sharp}, M_{p p}$ contains a direct summand
$L \simeq R_{p p}$ of $M_{p p}^{\sharp}$. Then $M^{\sharp}=L \oplus L^{\prime}$ and $M=L \oplus\left(L^{\prime} \cap M\right)$, which is impossible. Therefore, $M_{p p}=p M_{p p}^{\sharp}, x y M=p M_{p p}$ and $\hat{H}^{0}(K, M)=$ $M_{p p} / p M_{p p} \simeq \mathbb{k}^{d_{p p}}$.

Denote $T=Q / R, D M=\operatorname{Hom}_{R}(M, T)$. It is the Matlis duality between noetherian and artinian $R$-modules, as well as $K$-modules [8]. We have the following dualities for cohomologies.

Proposition 2.4. Let $M$ be a $K$-module. Then

$$
\begin{equation*}
\hat{H}^{n}(K, D M) \simeq D \hat{H}^{-n-1}(K, M) \tag{7}
\end{equation*}
$$

and if $M$ is a lattice

$$
\begin{align*}
& \hat{H}^{n}(K, D M) \simeq \hat{H}^{n+1}\left(K, M^{\vee}\right),  \tag{8}\\
& \hat{H}^{n}\left(K, M^{\vee}\right) \simeq D \hat{H}^{-n}(K, M) . \tag{9}
\end{align*}
$$

Proof. Note first that, since $K$ is local and Gorenstein, $\operatorname{Hom}_{R}(K, R) \simeq$ $K$, whence $M^{\vee} \simeq \operatorname{Hom}_{R}(M, R)$ and we identify these modules. As $T$ is an injective $R$-module,

$$
\operatorname{Ext}_{K}^{n}\left(R, \operatorname{Hom}_{R}(M, T)\right) \simeq \operatorname{Hom}_{R}\left(\operatorname{Tor}_{n}^{K}(R, M), T\right),
$$

(see [2, Proposition VI.5.1]), which is just (7).
The exact sequence $0 \rightarrow R \rightarrow Q \rightarrow T \rightarrow 0$ gives, for any lattice $M$, the exact sequence

$$
0 \rightarrow M^{\vee} \rightarrow \operatorname{Hom}_{R}(M, Q) \rightarrow D M \rightarrow 0
$$

As multiplication by $p^{2}$ is an automorphism of $\operatorname{Hom}_{R}(M, Q)$, Proposition 2.2 implies that $\hat{H}^{n}\left(\operatorname{Hom}_{R}(M, Q)\right)=0$. Then the long exact sequence for cohomologies implies (8).
(9) is a combination of (7) and (8).

Note also that $\hat{H}^{n}(K, F)=0$ for any projective (hence free) $K$ module $F$. Therefore, Proposition 1.4 implies that, for any indecomposable $A$-lattice $M$,

$$
\begin{equation*}
\hat{H}^{n}(K, M) \simeq \hat{H}^{n+1}\left(K, \tau_{K} M\right) \simeq \hat{H}^{n-1}\left(K, \tau_{K}^{-1} M\right) \tag{10}
\end{equation*}
$$

Hence from the formulae (4)-(6) and the duality (9) we obtain a complete description of cohomologies of $K$-lattices belonging to the preprojective-preinjective component.

## Theorem 2.5.

$$
\begin{aligned}
& \hat{H}^{n}\left(K, A^{k}\right) \simeq \begin{cases}\mathbb{k}^{n-k+1} & \text { if } n \geq k, \\
\mathbb{k}^{k-n} & \text { if } n<k ;\end{cases} \\
& \hat{H}^{n}\left(K, R_{p p}^{k}\right) \simeq \begin{cases}\mathbb{K}^{(|n-k| / 2+1)} & \text { if } n-k \neq 0 \text { is even, } \\
\mathbb{k}^{|n-k| / 2]} & \text { if } n-k \text { is odd, } \\
R / x y R & \text { if } n=k ;\end{cases} \\
& \hat{H}^{n}\left(K, R_{\alpha \beta}^{k}\right) \simeq \mathbb{k}^{[(|n-k|+1) / 2]} \\
& \text { if }(\alpha, \beta) \neq(p, p) .
\end{aligned}
$$

The description of cohomologies of $A$-lattices belonging to tubes are obtained from Proposition 2.3, since $\hat{H}^{n}(K, M) \simeq \hat{H}^{0}\left(K, \tau_{K}^{-n} M\right)$ and we know the action of $\tau_{K}$ in tubes.
Theorem 2.6. (1) If $f \notin\{t, t-1\}$, then $\hat{H}^{n}\left(K, T_{m}^{f}\right) \simeq \mathbb{k}^{d m}$, where

$$
d=\operatorname{deg} f .
$$

(2) If $\lambda \in\{0,1, \infty\}$, then

$$
\hat{H}^{n}\left(K, T_{m}^{\lambda i}\right) \simeq \begin{cases}\mathbb{k}^{m / 2} & \text { if } m \text { is even }, \\ \mathbb{K}^{\left(m-(-1)^{n+i}\right) / 2} & \text { if } m \text { is odd } .\end{cases}
$$

## 3. Regular lattices

An $A$-lattice $M$ is called regular if all its indecomposable direct summands belong to tubes. As neither regular lattice is projective, $\tau_{K} M=\tau_{A} M=\Omega M$. Note that if $M$ is regular, then

$$
\begin{equation*}
2 d_{\bullet}(M)=\sum_{\alpha \beta} d_{\alpha \beta}(M) \tag{11}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
d_{\bullet}(\Omega M)=d_{\bullet}(M) \text { and } d_{\alpha \beta}(\Omega M)=d_{\bullet}(M)-d_{\alpha \beta}(M) . \tag{12}
\end{equation*}
$$

These formulae imply the following fact.
Lemma 3.1. Every exact sequence of regular $A$-lattices $0 \rightarrow M \rightarrow$ $N \rightarrow L \rightarrow 0$ induces exact sequences

$$
\begin{align*}
& 0 \rightarrow \Omega M \rightarrow \Omega N \rightarrow \Omega L \rightarrow 0  \tag{13}\\
& 0 \rightarrow \Omega^{-1} M \rightarrow \Omega^{-1} N \rightarrow \Omega^{-1} L \rightarrow 0 \tag{14}
\end{align*}
$$

Proof. Obviously, there is an exact sequence $0 \rightarrow \Omega M \rightarrow \Omega N \oplus P \rightarrow$ $\Omega L \rightarrow 0$ for some projective module $P$. On the other hand, as $d_{\alpha \beta}(N)=$ $d_{\alpha \beta}(M)+d_{\alpha \beta}(L)$, the formulae (11) and (12) imply that $\operatorname{Rk} \Omega N=$ $\mathrm{Rk} \Omega M+\operatorname{Rk} L$. Hence $P=0$ and we obtain (13). By duality, we also have (14).

Corollary 3.2. Every exact sequence of regular A-lattices $0 \rightarrow M \rightarrow$ $N \rightarrow L \rightarrow 0$ induces exact sequences of cohomologies

$$
0 \rightarrow \hat{H}^{n}(K, M) \rightarrow \hat{H}^{n}(K, N) \rightarrow \hat{H}^{n}(K, L) \rightarrow 0
$$

Proof. If $n=0$, it follows from Proposition 2.3. For other $n$ it is obtained by an easy induction using Lemma 3.1.

For regular lattices we can give an explicit form of cocycles defining cohomology classes. Namely, for an indecomposable regular lattice $M$ and an integer $n$ we set

$$
M(n)= \begin{cases}M_{p p} & \text { if } n \text { is even, } \\ M_{0 p} & \text { if } n \text { is odd and } M \notin \mathcal{T}^{\infty}, \\ M_{p 0} & \text { if } n \text { is odd and } M \in \mathcal{T}^{\infty} .\end{cases}
$$

For $n>0$ we define a homomorphism $M(n) \rightarrow \hat{H}^{n}(K, M)$ mapping an element $a \in M(n)$ to the class of the cocycle $\xi_{a}: P_{n} \rightarrow M$ defined as follows:

- If $M \notin \mathcal{T}^{\infty}$, then

$$
\xi_{a}\left(u^{k} v^{n-k}\right)= \begin{cases}a & \text { if } k=n \\ 0 & \text { otherwise }\end{cases}
$$

- If $M \in \mathcal{T}^{\infty}$, then

$$
\xi_{a}\left(u^{k} v^{n-k}\right)= \begin{cases}a & \text { if } k=0 \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 3.3. The map $a \mapsto \xi_{a}$ induces an isomorphism

$$
\xi: M(n) / p M(n) \simeq \hat{H}^{n}(K, M)
$$

for every $n>0$ and every regular indecomposable A-lattice $M$.
Proof. One easily sees that $\xi_{a}$ is a cocycle. Theorem 2.6 and formulae (3) show that $\hat{H}^{n}(K, M) \simeq M(n) / p M(n)$. Hence we only have to prove that $\xi_{a}$ is not a coboundary if $a \notin p M(n)$. First we check it for the lattices $T_{1}^{f}$ and $T_{1}^{\lambda i}$.

We consider the case when $n$ is even and $M=T_{1}^{f}$, where $\operatorname{deg} f=d$ and $f \notin\{t, t-1\}$. The other cases are quite similar or even easier.

The corresponding representation of the quiver $\Gamma$ is

where $I$ is $d \times d$ unit matrix and $F$ is the Frobenius matrix with the characteristic polynomial $f(t)$. Therefore, $M$ is the submodule of $\bigoplus_{\alpha \beta} M_{\alpha \beta}^{\sharp}$, where $M_{\alpha \beta}^{\sharp}=R_{\alpha \beta}^{d}$ and $M$ consists of the quadruples $a=\left(a_{p p}, a_{p 0}, a_{0 p}, a_{00}\right) \equiv\left(r, r^{\prime}, r+r^{\prime}, r+\tilde{F} r^{\prime}\right)(\bmod p)$, where $r, r^{\prime} \in R^{d}$ and $\tilde{F}$ is a $d \times d$ matrix over $R$ such that $F=\tilde{F}(\bmod p)$. Hence, $M_{\alpha \beta}=$ $p M_{\alpha \beta}^{\sharp}$. In particular, elements $a \in M(n)$ are of the form $(p r, 0,0,0)$. Let $\xi_{a}=d \gamma$, where $\gamma\left(x^{k-1} y^{n-k}\right)=\gamma_{k} \equiv\left(r_{k}, r_{k}^{\prime}, r_{k}+r_{k}^{\prime}, r_{k}+\tilde{F} r_{k}^{\prime}\right)(\bmod p)$ for $1 \leq k \leq n$. Then

$$
d \gamma\left(v^{n}\right)=0=y \gamma_{1} \equiv\left(p r_{1}, 0, p\left(r_{1}+r_{1}^{\prime}\right), 0\right) \quad\left(\bmod p^{2}\right)
$$

hence $\gamma_{1} \equiv 0(\bmod p)$. Suppose that $\gamma_{k-1} \equiv 0(\bmod p)$ for $1<k \leq n$. If $k$ is odd, then

$$
\begin{aligned}
d \gamma\left(u^{k-1} v^{n-k+1}\right)=0 & =x \gamma_{k-1}+y \gamma_{k} \equiv \\
& \equiv\left(p r_{k}, 0, p\left(r_{k}+r_{k}^{\prime}\right), 0\right) \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

If $k$ is even, then

$$
\begin{aligned}
d \gamma\left(u^{k-1} v^{n-k+1}\right)=0 & =(x-p) \gamma_{k-1}-(y-p) \gamma_{k} \equiv \\
& \equiv\left(0, p r_{k}^{\prime}, 0, p\left(r_{k}+\tilde{F} r_{k}^{\prime}\right)\right)\left(\bmod p^{2}\right)
\end{aligned}
$$

In both cases $\gamma_{k} \equiv 0(\bmod p)$. Therefore, $\gamma_{k} \equiv 0(\bmod p)$ for all $1 \leq$ $k \leq n$. Then

$$
d \gamma\left(u^{n}\right)=(a, 0,0,0)=x \gamma_{n} \equiv 0 \quad\left(\bmod p^{2}\right)
$$

so $a \in p M(n)$.
Suppose now that the theorem is valid for all $T_{k-1}^{f}$ and for all $T_{k-1}^{\lambda i}$. If $M=T_{k}^{f}$ or $M=T_{k}^{\lambda i}$, there is an exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow$ $M^{\prime \prime} \rightarrow 0$, where, respectively, $M^{\prime}=T_{1}^{f}, M^{\prime \prime}=T_{k-1}^{f}$ or $M^{\prime}=T^{\lambda i}, M^{\prime \prime}=$
$T_{k-1}^{\lambda j}(j \neq i)$. It gives a commutative diagram with exact rows


Using induction, we may suppose that the first and the third homomorphisms $\xi$ satisfy the theorem. Therefore, so does the second, which accomplishes the proof.

Dualizing this construction, we obtain an explicit description of Tate cohomologies with negative indices. Namely, for $n<0$ we define a homomorphism $M(n) \rightarrow \hat{H}^{n}(K, M)$ mapping an element $a \in M(n)$ to the class of the cocycle $\hat{\xi}_{a}: P_{n} \rightarrow M$ defined as follows:

- If $M \notin \mathcal{T}^{\infty}$, then

$$
\hat{\xi}_{a}\left(\hat{u}^{k} \hat{v}^{|n|-1-k}\right)= \begin{cases}a & \text { if } k=|n|-1, \\ 0 & \text { otherwise } .\end{cases}
$$

- If $M \in \mathcal{T}^{\infty}$, then

$$
\hat{\xi}_{a}\left(\hat{u}^{k} \hat{v}^{|n|-1-k}\right)= \begin{cases}a & \text { if } k=0 \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 3.4. The map $a \mapsto \hat{\xi}_{a}$ induces an isomorphism

$$
\hat{\xi}: M(n) / p M(n) \simeq \hat{H}^{n}(K, M)
$$

for every $n<0$ and every regular indecomposable $A$-lattice $M$.
The proof just repeats that of Theorem 3.3, so we omit it.

## References

[1] Auslander, M.: Isolated singularities and existence of almost split sequences. Notes by Louise Unger. Representation theory II, Groups and orders, Proc. 4th Int. Conf., Ottawa. 1984, Lect. Notes Math. 1178, 194-242 (1986)
[2] Cartan, H., Eilenberg, S.: Homological Algebra. Princeton University Press (1956)
[3] Drozd, Y.A.: Ideals of commutative rings. Mat. Sb., Nov. Ser. 101, 334-348 (1976)
[4] Drozd, Y.A.: Rejection lemma and almost split sequences. Ukr. Math. J. 73(6), 908-929 (2021). DOI 10.1007/s11253-021-01967-2
[5] Drozd, Y.A., Kirichenko, V.V.: On quasi-Bass orders. Izv. Akad. Nauk SSSR, Ser. Mat. 36, 328-370 (1972)
[6] Drozd, Y.A., Plakosh, A.I.: Cohomologies of the Kleinian 4-group. Arch. Math. 115(2), 139-145 (2020). DOI 10.1007/s00013-020-01451-6
[7] Drozd, Y.A., Plakosh, A.I.: Cohomologies of regular lattices over the Kleinian 4-group. arXiv:2201.11833 [mathRT] (2022). DOI 10.48550/arXiv.2201.11833
[8] Matlis, E.: Injective modules over Noetherian rings. Pac. J. Math. 8, 511-528 (1958). DOI 10.2140/pjm.1958.8.511
[9] Nazarova, L.A.: Integral representations of Klein's four-group. Dokl. Akad. Nauk SSSR 140, 1011-1014 (1961)
[10] Plakosh, A.I.: On weak equivalence of representations of Kleinian 4-group. Algebra Discrete Math. 25(1), 130-136 (2018)
[11] Ringel, C.M., Roggenkamp, K.W.: Diagrammatic methods in the representation theory of orders. J. Algebra 60, 11-42 (1979). DOI 10.1016/0021-8693(79)90106-6
[12] Roggenkamp, K.W.: Auslander-Reiten species of Bäckström orders. J. Algebra 85, 449-476 (1983). DOI 10.1016/0021-8693(83)90107-2

Institute of Mathematics, National Academy of Sciences of Ukraine, Tereschenkivska str. 3, 01024 Kyiv, Ukraine

E-mail address: y.a.drozd@gmail.com
$U R L$ : www.imath.kiev.ua/~ ${ }^{\text {drozd }}$

