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AN EFFECTIVE CRITERION FOR NIELSEN–SCHREIER VARIETIES

VLADIMIR DOTSENKO AND UALBAI UMIRBAEV

To the memory of V. A. Artamonov (1946–2021)

ABSTRACT. All algebras of a certain type are said to form a Nielsen–Schreier
variety if every subalgebra of every free algebra is free. Using methods of the
operad theory, we propose an effective combinatorial criterion for that prop-
erty in the case of algebras over a field of zero characteristic. Using this crite-
rion, we show that the variety of all pre-Lie algebras is Nielsen–Schreier, and
that, quite surprisingly, there are already infinitely many Nielsen–Schreier va-
rieties of algebras with one binary operation and identities of degree three.

1. INTRODUCTION

Algebras satisfying certain identities are said to form a Nielsen–Schreier vari-
ety of algebras if all subalgebras of all free algebras are free; this generalises for
algebras over a field the celebrated property of groups established by Nielsen [56]
and Schreier [62]. The problem of classifying all varieties having this property
was originally recorded in the 1976 edition of Dniester Notebook by V. A. Par-
fenov (see the easily accessible English translation of a later edition [1, Ques-
tion 1.179]), and then reiterated in [10, Problem 1.1] and in [54, Problem 11.3.9].
Additionally, the same question is raised in the survey on “niceness theorems”
by Hazewinkel [32], who writes (about the existing general freeness result of
Fresse [28]):

I don’t think it can be made to take care of the subobject free-
ness theorems; but there probably is a general theorem, yet to be
formulated and proved, that can take care of those.

The Dniester Notebook question of Parfenov also asked whether there existed
Nielsen–Schreier varieties of algebras with one binary operation other than all
algebras (Kurosh [42]), all Lie algebras (Shirshov and Witt [70, 72]), all commu-
tative or anticommutative algebras (Shirshov [71]), and all algebras with zero
product. This latter question was answered by the second author [67] who proved
the Nielsen–Schreier property for the variety of all algebras satisfying the iden-
tity xx2 = 0.

The Nielsen–Schreier property of a variety has been perceived as very rare.
For instance, among varieties of Lie algebras only the variety of all Lie algebras
and the variety of Lie algebras with zero Lie bracket are Nielsen–Schreier (Bakh-
turin [11]). If one considers more general structure operations, the Nielsen–
Schreier property was proved for varieties of algebras with structure operations
that satisfy no identities (Kurosh [43]), and for varieties of algebras with struc-
ture operations whose only identities are particular symmetries under permu-
tations of arguments (Polin [59]); more recently, a similar but more compli-
cated result was established by Shestakov and the second author [64] for the
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2 VLADIMIR DOTSENKO AND UALBAI UMIRBAEV

so called Akivis algebras. The Nielsen–Schreier property is also true for a num-
ber of varieties closely related to that of all Lie algebras: the varieties of all Lie
p-algebras (Witt [72]), of Lie superalgebras (Mikhalev and Shtern [50, 65]), and
of Lie p-superalgebras (Mikhalev [51]). Finally, there is an elegant observation
of Mikhalev and Shestakov [53] that one can get new Nielsen–Schreier varieties
by forming PBW-pairs with known ones; this gives new proofs for many of the
above cases, as well as for the variety of Sabinin algebras, first proved to be
Nielsen–Schreier in [19].

The second author established [67, 69] that over a field of zero characteristic
a variety M is Nielsen–Schreier if and only if the following two conditions hold:

(1) for every free M-algebra A, its universal multiplicative enveloping alge-
bra UM(A) is a free associative algebra,

(2) for every homogeneous subalgebra H of every freeM-algebra A, the uni-
versal multiplicative enveloping algebra UM(A) is a free UM(H)-module.

These conditions are not very easy to check, so this criterion has not been used
to advance in classification of Schreier varieties. In our present work we prove a
criterion of a completely different flavour that is easy to check and at the same
time holds for many “new ”varieties of algebras. Our main result is the following
effective combinatorial criterion expressed in terms of Gröbner bases for oper-
ads [15, 24].

Theorem (Th. 4.1). Suppose that the operad O encoding the given variety of al-
gebras M defined over a field k of zero characteristic satisfies the following two
properties:

• for the reverse graded path-lexicographic ordering, each leading term of
the reduced Gröbner basis of the corresponding shuffle operad O f has the
minimal leaf directly connected to the root,

• for the graded path-lexicographic ordering, each leading term of the re-
duced Gröbner basis of the corresponding shuffle operad O f is a left comb
with the maximal leaf directly connected to the root.

Then the variety M has the Nielsen–Schreier property.

Among the new varieties that we show to have the Nielsen–Schreier property
using this criterion, the following examples are perhaps most interesting:

• the variety of pre-Lie (also known as right-symmetric) algebras,
• the variety of nonassociative algebras satisfying the identity

xx2 +αx2x = 0,

for every given α 6= 1,
• the variety of nonassociative algebras satisfying the identity

x(x(· · · (xx2))) = 0.

The last two examples, both of which generalize the identity xx2 = 0 of [67], show
that, over a field of zero characteristic, the set of Nielsen–Schreier varieties of al-
gebras with just one binary operation is infinite in two different ways, containing
both countable families with growing degrees of identities and parametric fam-
ilies with fixed degrees of identities; this suggests that Nielsen–Schreier varieties
are not as rare as they were thought to be.
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Our work should be viewed as another step in the programme of applying op-
eradic methods to classical questions about varieties of algebras, in the spirit of
the first author’s work with Tamaroff [25] on a functorial criterion for PBW-pairs
of varieties. While our methods may look “foreign” to the reader whose intuition
comes from classical ring theory, a big advantage of them lies in applicability of
the wealth of methods not available on the level of algebras. That said, using
operads forces us to only work with identities equivalent to multilinear ones,
and so we focus on varieties of algebras over a field of zero characteristic; devel-
oping systematic methods for treating the Nielsen–Schreier property in positive
characteristic remains an open problem.

The paper is organized as follows. In Section 2, we give the necessary back-
ground, making emphasis on basics of the operad theory for the reader whose
intuition comes from the ring theory. In Section 3, we explain a homological
approach to Nielsen–Schreier varieties, which in particular provides the reader
with useful intuition for the requirements imposed by our combinatorial crite-
rion. In Section 4, we state and prove our combinatorial criterion. Finally, in
Sections 5–10, we present numerous applications of our result, exhibiting many
new Nielsen–Schreier varieties of algebras.

2. CONVENTIONS AND RECOLLECTIONS

All vector spaces in this paper are defined over a field k of zero characteristic.
We use somewhat freely the language of category theory [47], but go into great
detail to explain basics of the operad theory to the reader whose intuition comes
from the ring theory. Further details are available in the monographs [15, 46].

2.1. Nielsen–Schreier varieties of algebras. Let M be a variety of algebras, that
is a class of algebras over k with certain structure operations satisfying certain
identities. We shall assume that the set of basic structure operations of M does
not include any elements of arity 0 or 1 and has finitely many operations of each
arity; thus, we shall not consider unital associative algebras or Rota–Baxter type
algebras (which are always equipped with a Rota–Baxter operator R of arity one),
or vertex algebras (where one has infinitely many binary operations). Since we
work over a field of zero characteristic, every system of identities is equivalent to
a system of multilinear ones; sometimes we shall use non-multilinear identities
for brevity, and we shall freely move between multilinear and non-multilinear
descriptions of the same variety.

For a set X , we shall denote by FM〈X 〉 the free M-algebra generated by X . It
has a grading with respect to which all elements of X have degree one. For an el-
ement f ∈ FM〈X 〉, we denote by f̂ the nonzero homogeneous component of f of
maximal degree. A system of elements f1, . . . , fp ∈ FM〈X 〉 is said to be irreducible

if no element f̂i belongs to the subalgebra generated by f̂ j with j 6= i . Such a sys-
tem of elements is said to be algebraically independent if the obvious map from
the free algebra on p generators to the subalgebra these elements generate is an
isomorphism.

Proposition 2.1 ([8, 44]). Over an infinite field, the following properties of a va-
riety M are equivalent:

• every irreducible system of elements in every freeM-algebra is algebraically
independent,
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• every subalgebra of every free M-algebra is free.

We call a variety M satisfying either of these equivalent properties a Nielsen–
Schreier variety. The following necessary and sufficient condition for the Nielsen–
Schreier property was proved by the second author.

Theorem 2.2 ([67, Th. 1]). Over a field of zero characteristic, a varietyM is Nielsen–
Schreier if and only if the following two conditions hold:

(1) for every free M-algebra A, its universal multiplicative enveloping alge-
bra UM(A) is a free associative algebra,

(2) for every homogeneous subalgebra H of every free M-algebra A, the uni-
versal multiplicative enveloping algebra UM(A) is a free UM(H)-module.

One interesting consequence of the Nielsen–Schreier property is the follow-
ing general theorem of Lewin describing the group of automorphisms of a finitely
generated free algebra.

Theorem 2.3 ([44, Th. 4]). Let M be a Nielsen–Schreier variety of algebras, and let
A = FM〈x1, . . . , xn〉 be a finitely generated free algebra in this variety. The group of
automorphisms of A is generated by the permutations of x1, . . . , xn together with
the automorphisms

xi 7→
{
αxi , i = 1,

xi , i 6= 1,
xi 7→

{
x1 +w(x2, . . . , xn), i = 1,

xi , i 6= 1.

In other words, every automorphism of a finitely generated freeM-algebra is tame.

Moreover, a result of the second author shows that in this case it is possible
to describe the automorphism group of each free algebra by generators and re-
lations [68].

In the case of Lie algebras, one can also use freeness of subalgebras of free
Lie algebras to perform certain cohomology computations [31], and to estab-
lish analogues of the Schreier formula for groups [58]. It would be interesting
to explore similar applications for numerous varieties whose Nielsen–Schreier
property is proved in this paper. We hope to address this elsewhere.

2.2. The language of symmetric operads. It is well known that over a field of
characteristic zero every system of algebraic identities is equivalent to multilin-
ear ones. Let us briefly explain how this leads to the notion of an operad. To
a variety of algebras M without constants (operations of zero arity), one may
associate the datum

O =OM := {O(n)}n≥1,

where O(n) is the Sn-module of multilinear elements (that is, elements of multi-
degree (1,1, . . . ,1)) in the free algebra FM〈x1, . . . , xn〉. We note that the underlying
vector space of each free algebra can be reconstructed from this datum as

O(V ) := ⊕
n≥1

O(n)⊗kSn V ⊗n ,

where V is the vector space spanned by the generators of that algebra.
Each individual free algebra only has its own algebra structure. If we consider

all free algebras at the same time, there is something new that emerges: in the
language of category theory, we have a monad. To see what this means, we re-
gard the assignment to a vector space V the free algebra generated by V as a
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functor from the category of vector spaces to itself. Nothing prevents us from
applying that functor twice, considering FM〈FM〈V 〉〉; elements of that vector
space are all possible substitution schemes of M-polynomials into each other.
Of course, there is a canonical linear map

τV : FM〈FM〈V 〉〉→ FM〈V 〉,
which says that for a substitution scheme, we can actually perform a substitu-
tion, and write a M-polynomial of M-polynomials as a M-polynomial. This
map τ gives our functor a monad structure, meaning that it is associative: if we
apply our functor three times, forming the gigantic algebra

FM〈FM〈FM〈V 〉〉〉,
there are two different maps to FM〈V 〉, depending on the order of substitutions,
and those give the same result. (Strictly speaking, to talk about a monad, one
should also discuss the unitality, but the compatibility of the maps τV with the
obvious embedding maps ıV : V → FM〈V 〉 is too trivial to spend time on it.) This
structure can be restricted to multilinear elements, and it defines what is called
an operad structure on the sequence {O(n)}n≥1. In the language of operads, our
above constraints on varieties of algebras are as follows. Absence of structure
operations of arity 0 is described by the word “reduced”, absence of structure
operations of arity 1 is described by the word “connected” (note that there al-
ways exists one “trivial” operation of arity 1, which is identical on every element
of every algebra; this operation is not regarded as a structure operation and is
permitted). Thus, throughout this paper we work with reduced connected oper-
ads.

One key difference between the language of varieties and the language of op-
erads may have already become apparent. Namely, in terms of varieties of al-
gebras, properties like commutativity and associativity are on the same ground:
both express certain identities in algebras. In terms of operads, commutativity
of an operation is a symmetry type, a consequence of the fact that an operad
is in particular a sequence of Sn-modules, while associativity of an operation
is an identity: a relation between results of substitution of operations into one
another. This distinction will be very important for us. A clean interpretation
of how an operad structure formalizes the notion of substitutions of multilinear
maps uses the language of linear species, which we shall now recall.

The theory of species of structures originated at the concept of a combina-
torial species, invented by Joyal [35] and presented in great detail in [13]. The
same definitions apply if one changes the target symmetric monoidal category;
in particular, if one considers the category of vector spaces, one obtains what is
called a linear species. Let us recall some key definitions, referring the reader
to [2] for further information.

A linear species is a contravariant functor from the groupoid of finite sets (the
category whose objects are finite sets and whose morphisms are bijections) to
the category of vector spaces. This definition is not easy to digest at a first glance,
and a reader with intuition coming from varieties of algebras is invited to think
of the value S(I ) of a linear species S on a finite set I as of the set of multi-
linear operations of type S (accepting arguments from some vector space V1

and assuming values in some vector space V2) whose inputs are indexed by I .
A linear species S is said to be reduced is S(∅) = 0; this means that we do not



6 VLADIMIR DOTSENKO AND UALBAI UMIRBAEV

consider “constant” multilinear operations. (This is perhaps the only situation
where several different terminologies clash in our paper: we use the word “re-
duced” for linear species to indicate that the value on the empty set is zero, and
for Gröbner bases to indicate that we consider the unique Gröbner basis of a
certain irreducible form.)

Sometimes, a “skeletal definition” is preferable: the category of linear species
is equivalent to the category of symmetric sequences {S(n)}n≥0, where each
S(n) is a right Sn-module, a morphisms between the sequences S1 and S2 in
this category is a sequence of Sn-equivariant maps fn : S1(n) → S2(n). While
this definition may seem more appealing, the functorial definition simplifies the
definitions of operations on linear species: it is harder to comprehend the two
following definitions skeletally.

The Cauchy product of two linear species S1 and S2 is defined by the formula

(S1 ·S2)(I ) := ⊕
I=I1tI2

S1(I1)⊗S2(I2).

One may consider monoids with respect to the Cauchy product which are called
twisted associative algebras [15], and are useful when working with universal
multiplicative enveloping algebras of algebras in different varieties of algebras;
we shall use them meaningfully below. Additionally, the crucial composition
product of linear species is compactly expressed via the Cauchy product as

S1 ◦S2 := ⊕
n≥0

S1({1, . . . ,n})⊗kSn S ·n
2 ,

that is, if one unwraps the definitions,

(S1 ◦S2)(I ) = ⊕
n≥0

S1({1, . . . ,n})⊗kSn

( ⊕
I=I1t···tIn

S2(I1)⊗·· ·⊗S2(In)

)
.

The linear species 1 which vanishes on a finite set I unless |I | = 1, and whose
value on I = {a} is given by ka is the unit for the composition product: we have
1◦S =S ◦1=S .

Formally, a symmetric operad is a monoid with respect to the composition
product. It is just the multilinear version of substitution schemes of free algebras
discussed above, but re-packaged in a certain way. The advantage is that exist-
ing intuition of monoids and modules over them, available in any monoidal cat-
egory [47], can be used for studying varieties of algebras. In particular, one can
talk about left or right modules over operads, a notion which does not emerge
too frequently in the context of varieties of algebras (though right ideals of an op-
erad have been extensively studied in the theory of PI-algebras under the name
“T-spaces”).

The free symmetric operad generated by a linear species X is defined as fol-
lows. Its underlying linear species is the species T (X ) for which T (X )(I ) is
spanned by decorated rooted trees (including the rooted tree without internal
vertices and with just one leaf, which corresponds to the unit of the operad): the
leaves of a tree must be in bijection with I , and each internal vertex v of a tree
must be decorated by an element of X (Iv ), where Iv is the set of incoming edges
of v . Such decorated trees should be thought of as tensors: they are linear in
each vertex decoration. The operad structure is given by grafting of trees onto
each other. We remark that if one prefers the skeletal definition, one can talk
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about the free operad generated by a collection of Sn-modules, but the formulas
will become heavier.

2.3. Shuffle operads and Gröbner bases. We shall now recall how to develop a
workable theory of normal forms in operads using the theory of Gröbner bases
developed by the first author and Khoroshkin [24]. It is important to emphasize
that it is in general extremely hard to find convenient normal forms in free alge-
bras for a given variety M. However, focusing on multilinear elements simplifies
the situation quite drastically: for instance, for a basis in multilinear elements
for the operad controlling Lie algebras one may take all left-normed commuta-
tors of the form

[[[a1, ai2 ], · · · ], ain ],

where i2,. . . , in is a permutation of 2,. . . ,n; by contrast, all known bases in free
Lie algebras [60] are noticeably harder to describe.

To define Gröbner bases for operads, one builds, step by step, an analogue
of the theory of Gröbner bases for noncommutative associative algebras. To do
this, one has to abandon the universe that has symmetries, for otherwise there
is not even a good notion of a monomial that leads to a workable theory. The
kind of monoids that have a good theory of Gröbner bases are shuffle operads. A
rigorous definition of a shuffle operad uses ordered species [13], which we shall
now discuss in the linear context.

An ordered linear species is a contravariant functor from the groupoid of finite
ordered sets (the category whose objects are finite totally ordered sets and whose
morphisms are order preserving bijections) to the category of vector spaces. In
terms of the intuition with multilinear maps, this more or less corresponds to
choosing a basis of multilinear operations whose inputs are indexed by an or-
dered set I . An ordered linear species S is said to be reduced is S(∅) = 0.

The shuffle Cauchy product of two ordered linear species S1 and S2 is defined
by the same formula as in the symmetric case:

(S1 ·X S2)(I ) := ⊕
I=I1tI2

S1(I1)⊗S2(I2).

One may consider monoids with respect to the Cauchy product; they are called
shuffle algebras [15, 61] or permutads [45]. Moreover, even in the absence of
symmetric group actions, the extra datum of an order in our category allows
one to define divided powers of reduced ordered linear species by

S (n)(I ) := ⊕
I=I1t···tIn ,
I1,...,In 6=∅,

min(I1)<···<min(In )

S(I1)⊗·· ·⊗S(In).

Using those, the shuffle composition product of two reduced ordered linear species
S1 and S2 is defined by the formula

S1 ◦X S2 := ⊕
n≥1

S1({1, . . . ,n})⊗S (n)
2 ,
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that is, if one unwraps the definitions,

(S1 ◦X S2)(I ) = ⊕
n≥1

S1({1, . . . ,n})⊗

 ⊕
I=I1t···tIn ,
I1,...,In 6=∅,

min(I1)<···<min(In )

S2(I1)⊗·· ·⊗S2(In)

 .

The linear species 1 discussed above may be regarded as an ordered linear species;
as such, it is the unit of the shuffle composition product.

Formally, a shuffle operad is a monoid with respect to the shuffle composition
product. As we shall see below, each symmetric operad gives rise to a shuffle
operad, and that is the main reason to care about shuffle operads. However, we
start with explaining how to develop a theory of Gröbner bases of ideals in free
shuffle operads.

To describe free shuffle operads, we first define shuffle trees. Combinatorially,
a shuffle tree is a planar rooted tree whose leaves are indexed by a finite ordered
set I in such a way that the following “local increasing condition” is satisfied: for
every vertex of the tree, the minimal leaves of trees grafted at that vertex increase
from the left to the right. The free shuffle operad generated by an ordered linear
species X can be defined as follows. It is an ordered linear species TX (X ) for
which TX (X )(I ) is spanned by decorated shuffle trees: each internal vertex v of
a tree must be decorated by an element of X (Iv ), where Iv is the set of incoming
edges of v , ordered from the left to the right according to the planar structure.
Such decorated trees should be thought of as tensors: they are linear in each
vertex decoration. The operad structure is given by grafting of trees onto each
other. One particular class of shuffle trees we shall consider are the so called left
combs: trees for which all vertices appear on the unique path from the root to
the minimal leaf. For instance, among the shuffle trees

1 2

3 ,

1 3

2 ,

2 3

1 ,

1 2 3 4

the first two are left combs, and the last two are not.
Given a basis of the vector space of an ordered linear species X , one may

consider all shuffle trees whose vertices are decorated by those basis elements.
Such shuffle trees with leaves in a bijection with the given ordered set I form a
basis of TX (X )(I ), and we shall think of them as monomials in the free shuffle
operad.

The next step in developing a theory of Gröbner bases is to define divisibility
of monomials. Suppose that we have a shuffle tree S. We can insert another
shuffle tree S′ into an internal vertex of S, and connect its leaves to the children
of that vertex so that the order of leaves agrees with the left-to-right order of the
children. We say that the thus obtained shuffle tree is divisible by S′, and use
this notion of divisibility to define divisibility of decorated shuffle trees, that is
of monomials in the free operad. For example, if we work in the free operad
generated by the ordered linear species X such that X (I ) is nonzero only for
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|I | = 2, and is spanned by one element x, we may insert the tree U =

1 3

x 2

x

into the ternary vertices of the trees

1 4

x 2 3

and

1 3 4

2

x

.

We obtain

1 4

x 2 3

U

=

1 4

x 3

x 2

x

=

1 3 4

U 2

x

.

Once divisibility is understood, the usual Gröbner–Shirshov method of com-
puting S-polynomials (in the language of Shirshov, one would say “composi-
tions”, which has the huge disadvantage in the case of operads where the same
word is used to talk about the monoid structure), normal forms, etc. works in
the usual way, if one has an admissible ordering of monomials, that is a total or-
dering of shuffle trees with the given set of leaf labels which is compatible with
the shuffle operad structure. Such orderings exist, and we invite the reader to
consult [15, 22] for definitions and examples. For us the so called graded path-
lexicographic ordering and reverse graded path-lexicographic ordering will be
of particular importance. With respect to the former, the trees are first com-
pared by the depth of their leaves, while with respect to the latter, one reverses
the comparison with respect to the depth of the leaves (in both cases, leaves
are considered one by one in their given order). Throughout the paper, we say
“the (reverse) graded path-lexicographic ordering” (with the definite article),
though such an ordering depends on some ordering of generators, which one
may choose freely.

2.4. From symmetric operads to shuffle operads. Note that there is a forgetful
functor S 7→ S f from all linear species to ordered linear species; it is defined
by the formula S f (I ) := S(I f ), where I is a finite totally ordered set and I f is
the same set but with the total order ignored. The reason to consider ordered
linear species, shuffle algebras and shuffle operads is explained by the following
proposition.

Proposition 2.4 ([15, 24]). For any two linear species S1 and S2, we have ordered
linear species isomorphisms

(S1 ·S2) f ∼=S f
1 ·X S f

2 ,

(S1 ◦S2) f ∼=S f
1 ◦X S f

2 .
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In particular, applying the forgetful functor to a twisted associative algebra pro-
duces a shuffle algebra, and applying a forgetful functor to a reduced symmetric
operad gives a shuffle operad. The forgetful functor sends modules over symmetric
operads to modules over shuffle operads, ideals to ideals, free symmetric operads
to free shuffle operads, etc.

As an example, let us suppose that we consider multilinear operations that
one may define starting from one binary operation a1, a2 7→ [a1, a2] which is
skew-symmetric. Then we work with binary trees (each vertex is either a leaf
or has two children), and each binary vertex is now decorated by our only struc-
ture operation. Applying the forgetful functor means rewriting each such tree
in terms of monomials in the free shuffle operad, using the skew-symmetry of
the operation. For instance, the “Jacobiator” (the element encoding the Jacobi
identity)

[[a1, a2], a3]+ [[a2, a3], a1]+ [[a3, a1], a2]

corresponds to the element

1 2

[−,−] 3

[−,−]
+

2 3

[−,−] 1

[−,−]
+

3 1

[−,−] 2

[−,−]

in the free symmetric operad, and then to the element

J :=

1 2

[−,−] 3

[−,−]
−

2 3

1 [−,−]

[−,−]
−

1 3

[−,−] 2

[−,−]

in the free shuffle operad. (For an operation f (a1, a2) without symmetries, one
has to introduce another operation f ◦(a1, a2) := f (a2, a1) to perform such rewrit-
ing: in the world of shuffle operads, we work with k-modules, not kSn-modules.)
There exists an admissible ordering for which the last of the three monomials in
J is the largest one, and in order to compute the Gröbner basis, we should form
the S-polynomial corresponding to the self-overlap T of that leading monomial
with itself, which is

1 4

[−,−] 2 3

J
−

1 3 4

J 2

[−,−]
.

(If we denote [−,−] by x, we note that we saw these monomials when discussing
divisibility.) The leading terms in an S-polynomial always cancel, and one needs
to check if it has a non-zero reduced form with respect to the existing elements:
if it does, that reduced form needs to be adjoined to the existing elements in the
course of computing the Gröbner basis. In our particular case, the S-polynomial
gets reduced to zero, and so the Jacobiator forms a Gröbner basis.
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To conclude this section, the forgetful functor from symmetric operads to
shuffle operads allows one to go from the universe of “interesting” objects (ac-
tual varieties of algebras) to the universe of “manageable” objects (shuffle op-
erads). Besides the symmetric group actions, it does not really lose any infor-
mation, and, in particular, if certain properties can be expressed by saying that
certain vector spaces are equal to zero, one can prove that in the context of shuf-
fle operads (zero is zero with or without the symmetric group actions). For in-
stance, all results on freeness (of operads or modules over operads) are like that,
as we shall see in the next section.

2.5. Homological criterion of freeness. We shall now recall an important tech-
nical tool, a homological criterion of freeness of operadic modules. We refer the
reader to [29] for details on operadic modules and their homotopy theory.

Recall that for an operad O, its left module L, and its right module R, there
is a two-sided bar construction B•(R,O,L). In somewhat concrete terms, it is
spanned by rooted trees where for each tree the root vertex is decorated by an
element of R, the internal vertices whose all children are leaves are decorated
by elements of L, and other internal vertices are decorated by elements of O;
the differential contracts edges of the tree and uses the operadic composition
and the module action maps. For an operad with unit, B•(O,O,O) is acyclic;
moreover, for an augmented operad O with the augmentation ideal O+, the
two-sided bar construction B•(O,O+,O) is acylic. This leads to a free resolu-
tion of any left O-module L as

B•(O,O+,O)◦OL∼=B•(O,O+,L).

This resolution can be used to prove the following result. (A similar result for
right modules is slightly simpler, it was proved and used in [25].)

Proposition 2.5. Let O be a (reduced connected) operad, and let L be a left O-
module. Then L is free as a left O-module if and only if the positive degree homol-
ogy of the bar constructionB•(1,O+,L) vanishes; in the latter case, R is generated
by the degree zero homology of B•(1,O+,L).

Proof. This immediately follows from the existence and uniqueness up to iso-
morphism of the minimal free O-module resolution of L, which, for connected
operads over a field of characteristic zero, is done similarly to the case of mod-
ules over rings in [27], even though the category of leftO-modules is not abelian.

�

In particular, if L f is free as a left O f -module, this means that the vanishing
condition of this criterion holds, and we may use that very condition in the uni-
verse of symmetric operads to conclude that L is free as a left O-module. This
idea, first indicated in [21], is one of the key features of our approach.

2.6. Universal multiplicative enveloping algebras. For any variety of algebras
M and any M-algebra A, one can define the universal multiplicative enveloping
algebra UM(A) to consist of all actions of elements of A: formally, one keeps one
dedicated slot of an operation open, and inserts elements of A in all other slots.
This object has a natural associative algebra structure; moreover, the category of
left modules over that algebra is equivalent to the category ofM-bimodules over
the algebraA. A classical exposition is given in [34, Sec. II.7] and in [73, §3.3], and
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a presentation in the language of operads is available in [30, Sec. 1.6]. In fact, it is
possible to view the universal multiplicative enveloping algebra as the arity one
part of the enveloping operad, see [12] and [29, Chapter 4].

We shall use the viewpoint on universal multiplicative enveloping algebras
and on enveloping operads that encodes them via particular right operadic mod-
ules, mainly following [29, Chapter 10], but slightly re-casting it in the language
of linear species.

Let us recall that the derivative ∂(S) of a species S is defined by the formula

∂(S)(I ) :=S(I t {?}),

so that in the case of linear species of multilinear operations of some type, it
forms multilinear operations with one extra dedicated input that does not mix
with the others. In the view of the above discussion of multiplicative universal
envelopes, this is very appropriate. If O is an operad, then ∂(O) has two struc-
tures: it is a right O-module (via substitutions into the non-dedicated input)
and a twisted associative algebra, that is a left module over the associative op-
erad (via concatenating operations, substituting them into the dedicated inputs
of one another). These two structures commute: ∂(O) is a twisted associative
algebra in the symmetric monoidal category of right O-modules. The universal
enveloping algebra is obtained from this via a relative composite product con-
struction [29, 36]:

UO(A) ∼= ∂(O)◦O A.

This has been used in a crucial way in [38] to establish the following result: there
is a PBW type theorem for universal multiplicative enveloping algebras over the
given operad O if and only if ∂(O) is free as a right O-module. Moreover, in this
case, for the linear species Y that freely generates that right module we have an
isomorphism

UO(A) ∼=Y (A)

that is functorial with respect to O-algebra morphisms.
Similarly to the passage from symmetric operads to shuffle operads, it is pos-

sible to pass from left modules over the associative operad to a certain shuffle
version. We shall not discuss this passage in detail, but rather briefly explain
what this means for ∂(O). In the symmetric context, the operation ∂ makes one
of the inputs of the operation “special”. Once we apply the forgetful functor to
ordered linear species, the inputs are linearly ordered. A good “canonical” way to
make one of them special is take the first one. We shall recall the corresponding
construction, referring the reader to [38] for a slightly different viewpoint. For a
shuffle operad P , we let ∂X (P )(I ) =P ({−∞I }t I ), where −∞I denotes a new
element that is smaller than all elements of I . For each ordered set K partitioned
as K = I t J , the product

µI ,J : ∂X (P )(I )⊗∂X (P )(J ) → ∂X (P )(K ),

is defined as follows. Suppose that

α⊗β ∈ ∂X (P )(I )⊗∂X (P )(J ) =P ({−∞I }t I )⊗P ({−∞J }t J }).

We set
µI ,J (α⊗β) =α◦−∞I β.

(Strictly speaking, this way one obtains an element in P (−∞J }tK }), and one
has to use the unique bijection of ordered sets to land in P (−∞K }tK ).) We also
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obtain a designated element in ∂X (P )(∅) = P ({−∞∅}) corresponding to the
operadic unit.

Proposition 2.6. For each shuffle operad P , the thus defined map

∂X (P ) ·X ∂X (P ) → ∂X (P )

satisfies the associativity axiom and the unitality axiom with respect to the des-
ignated elements, so ∂X (P ) becomes a shuffle algebra. Moreover, if the shuffle
operad P is of the form P =O f , where O is a symmetric operad, then the shuffle
algebra ∂X (P ) is isomorphic to ∂(O) f .

Proof. Both the associativity and the unitality immediately follow from the cor-
responding axioms for shuffle operads. (Note that since we compose only at
minima, only the sequential axiom of the operad, corresponding to the genuine
associativity, will be used.) The statement about the forgetful functor is essen-
tially tautological and holds by direct inspection. �

3. A HOMOLOGICAL APPROACH TO THE NIELSEN–SCHREIER PROPERTY

Before we move on to proving our main result, let us discuss a homological
interpretation of the criterion of Theorem 2.2, which will allow us to see that this
criterion is much stronger than one would a priori expect. Recall that according
to that theorem, the Nielsen–Schreier property of the variety M is equivalent to
the following two conditions:

(1) for every free M-algebra A, the universal multiplicative enveloping alge-
bra UM(A) is a free associative algebra,

(2) for every homogeneous subalgebra H of every freeM-algebra A, the uni-
versal multiplicative enveloping algebra UM(A) is a free UM(H)-module.

Let us make two additional assumptions on the variety of algebras that we are
considering:

(i) there is a homology theory for M-algebras leading to a homological cri-
terion of freeness of positively graded M-algebras, that is, a positively
graded M-algebra A is free if its homology with trivial coefficients van-
ishes in degree two and higher,

(ii) the homology can be computed via the Tor functors over the universal
multiplicative enveloping algebra UM(A).

For the interested reader, we would like to clarify that we insist on the homologi-
cal criterion of freeness for positively graded algebras, since this is the best thing
to hope within the reach of current knowledge: even for Lie algebras freeness
of algebras of homological dimension one is an open question in characteristic
zero and is false in positive characteristic, as shown by Mikhalev, Zolotykh and
the second author [52].

Let us show how to re-prove Theorem 2.2 for a variety M satisfying these as-
sumptions. The crucial observation here is a generalization of the trick of Shir-
shov used in the case of Lie algebras [70]. Namely, let us consider the free M-
algebra Fn with generators y, x1, . . . , xn . This algebra admits an obvious homo-
morphism to the one-dimensional vector space spanned by y , viewed as an M-
algebra with zero structure operations. Let us denote by Hn the kernel of that
homomorphism, viewed as an M-subalgebra of the free algebra Fn .
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Proposition 3.1. If the M-algebra Hn is free for each n ≥ 0, the variety M has the
Nielsen–Schreier property.

Proof. Let H be a subalgebra of the free M-algebra F with k generators. With-
out loss of generality, we may assume H to be finitely generated by an irreducible
system of elements h1, . . . ,hq . We shall prove our claim by Noetherian induction
on (deg(h1), . . . ,deg(hq )) ∈ Nq , where we use the partial order of Nq for which
u < v if and only if u 6= v and all coordinates of v−u are nonnegative. The basis
of induction is the case of all degrees equal to one, in which case we consider a
subalgebra generated by several generators, and the claim is clear. Otherwise,
the system of elements h1, . . . ,hq cannot contain all generators of F ; we may as-
sume that it does not contain the generator xk , but that xk nontrivially appears
in some of the M-monomials used to define the elements h1, . . . ,hq , for other-
wise we could find a counterexample in a smaller free algebra. If we denote xk

by y , thus identifying our ambient free algebra F with the free algebra gener-
ated by y , x1,. . . , xk−1, we see that all elements h1, . . . ,hq belong to Hk−1. By our
assumption, this algebra is free; moreover, each element hi for which y nontriv-
ially appears in some of the M-monomials has smaller degree when expressed
in terms of generators of Hk−1, so the induction hypothesis applies. �

We are now ready to re-prove Theorem 2.2. Each algebra Hn is positively
graded, so to establish its freeness it is enough, according to our assumption
(i), to show that its homology with trivial coefficients vanishes in degree two and
higher. To establish that, we shall use our assumption (ii) and compute homol-
ogy via the Tor functors over universal multiplicative enveloping algebras. Since
UM(Fn) is a free associative algebra, its trivial coefficients (co)representation
has a free UM(Fn)-resolution supported in homological degrees 0 and 1. Since
UM(An) is a free UM(Hn)-module, this resolution is a free UM(Hn)-resolution.
Thus, the homology of Hn with trivial coefficients vanishes in degree two and
higher, and so Hn is free.

Let us look closely at the assumptions we made. First of all, a good homology
theory leading to criteria of freeness is not readily available for an arbitrary va-
riety of algebras, and some work is required here. More importantly, even when
such a homology theory is available, it is not necessarily the homology theory
computed via the Tor functors over the universal multiplicative enveloping al-
gebra. One possible condition of when this assumption is true is given in [29,
Th. 17.3.4], which, when applied to our situation (reduced connected operads
operads without differential concentrated in homological degree zero), requires
that the right O-module ∂(O) is free, meaning a PBW type theorem for univer-
sal multiplicative enveloping algebras. This suggests that, if one wishes to apply
operadic methods, it is probably reasonable to weaken the necessary and suffi-
cient conditions of Theorem 2.2. We take this observation on board, and do just
that in the next section. In the language of varieties of algebras, the our combi-
natorial criterion gives the following three sufficient conditions for the Nielsen–
Schreier property:

(1) for every free M-algebra A, its universal multiplicative enveloping alge-
bra UM(A) is a free associative algebra,

(2) the varietyMhas the PBW property for universal multiplicative envelop-
ing algebras,
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(3) for every M-algebra A with zero structure operations and every sub-
space H ⊂ A, the universal multiplicative enveloping algebra UM(A) is
a free UM(H)-module.

4. A COMBINATORIAL CRITERION FOR THE NIELSEN–SCHREIER PROPERTY

In this section, we prove the main theoretical result of this paper: a combi-
natorial criterion for the Nielsen–Schreier property in terms of Gröbner bases
for operads. The combinatorics of our criterion somewhat resembles that from
a work of Burgin [17] who introduced a certain “property (S)” of a variety of al-
gebras that he claimed to be equivalent to the Nielsen–Schreier property. We
begin our section by showing that this claim is not true at face value even un-
der the most lenient interpretation. (There are some doubts about this work
already in the MathReviews review [7] by Artamonov, who however questioned
the proof, not the result itself.) Our new combinatorial criterion for Nielsen–
Schreier varieties that is stated and proved below suggests that, once Gröbner
bases of operads are available as a technical tool, one can prove mathematically
sound statements that are superficially similar to the assertions of Burgin.

4.1. A non-criterion of Nielsen–Schreier varieties. Following [17], we say that
a variety of algebras has the property (S) if in every minimal identity (that is, an
identity that does not follow from identities of smaller degrees) each variable ap-
pears as an argument of the top level operation in at least one of the monomials
in the identity. The main result of [17] asserts that a homogeneous variety has
the property (S) if and only if it is a Nielsen–Schreier variety.

We start with highlighting one intrinsic issue of [17]. In the introduction to
that paper, it is claimed that the variety of (left) Leibniz algebras, that is algebras
satisfying the identity

a1(a2a3) = (a1a2)a3 +a2(a1a3),

satisfies the property (S). (At that point, the name “Leibniz algebras” was not yet
invented, but the corresponding variety of algebras was studied by Bloh in [14]
under the name “left D-algebras”.) This claim already makes the reader a little
bit concerned, since the identity above does satisfy the combinatorial condition
of the property (S), but its consequence of the same degree

(a1a2)a3 + (a2a1)a3 = 0

obviously fails the corresponding combinatorial condition. Indeed, the variety
of Leibniz algebras does not have the Nielsen–Schreier property, see [55].

The example of Leibniz algebras indicates an unfortunate ambiguity in how
one may interpet the property (S). There exists however an example of a variety
that does not have the Nielsen–Schreier property but satisfies the property (S),
whatever interpretation of that property one may choose. It is the variety of
mock Lie algebras [74], known also under the names Jordan–Lie algebras [57]
and Jacobi–Jordan algebras [16], defined as the variety of commutative algebras
satisfying the identity

(a1a2)a3 + (a2a3)a1 + (a3a1)a2 = 0,

resembling the Jacobi identity, but, due to the commutativity of the operation,
equivalent to the nil identity x2x = 0. In this case, the defining multilinear iden-
tity transforms under the action of S3 as the trivial representation, so the space
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of identities of degree 3 is one-dimensional, and the combinatorial condition of
the property (S) is satisfied; in fact, combinatorially there is no difference be-
tween the multilinear mock-Lie identity and the Jacobi identity. It is however
very easy to see that the variety of mock-Lie algebras does not have the Nielsen–
Schreier property. Indeed, let us consider the free algebra on one generator x.
Note that substituting a1 = a2 = x, a3 = x2 into the mock Lie identity gives us

x2x2 + (x(x2))x + (x2x)x = 0,

and since our operation is commutative and x2x = 0, we conclude that x2x2 = 0.
Thus, our free algebra is the two-dimensional vector space spanned by x and x2,
and the subalgebra generated by x2 is not free.

Let us remark that from the operad point of view, it is possible to unravel the
mystery behind this phenomenon: the mock-Lie identity does not form a Gröb-
ner basis of the corresponding operad! In fact, for one of the possible orderings,
the reduced Gröbner basis for that operad contains the element

((a1a2)a3)a4 + ((a1a2)a4)a3 + ((a1a3)a2)a4

+ ((a1a3)a4)a2 + ((a1a4)a2)a3 + ((a1a4)a3)a2

which fails the corresponding combinatorial condition. This suggests that per-
haps one can repair Burgin’s criterion by re-defining the word “follow” in “does
not follow from identities of smaller degrees” using Gröbner bases for oper-
ads, and then replacing the property (S) by a combinatorial condition of simi-
lar flavour. One possible implementation of this plan leads to the combinatorial
criterion proved below.

4.2. A criterion of Nielsen–Schreier varieties. We are now prepared and moti-
vated to state and prove the main result of this paper.

Theorem 4.1. Suppose that the operad O encoding the given variety of algebras
M satisfies the following two properties:

• for the reverse graded path-lexicographic ordering, each leading term of
the reduced Gröbner basis of the corresponding shuffle operad O f has the
minimal leaf directly connected to the root,

• for the graded path-lexicographic ordering, each leading term of the re-
duced Gröbner basis of the corresponding shuffle operad O f is a left comb
with the maximal leaf directly connected to the root.

Then the variety M has the Nielsen–Schreier property.

Before proving this theorem, let us give an example of how it can be applied.
Consider the operad encoding Lie algebras. It is immediate to check that the
shuffle Jacobi identity

1 2

[−,−] 3

[−,−]
−

1 3

[−,−] 2

[−,−]
−

2 3

1 [−,−]

[−,−]

forms the reduced Gröbner basis for both orderings; its last monomial is the
leading term for the reverse graded path-lexicographic ordering, and its first
monomial is the leading term for the graded path-lexicographic ordering, and
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the combinatorial conditions of our theorem clearly hold. Thus, our result in
particular gives a new one-line proof of the Shirshov–Witt theorem on subalge-
bras of free Lie algebras.

Proof. Let us begin with outlining the general plan of the proof. We shall use the
first combinatorial condition to prove that for every free M-algebra A, its uni-
versal multiplicative enveloping algebra UM(A) is a free associative algebra, one
half of the second combinatorial condition (the left comb condition) to prove
that the variety M has the PBW property for universal multiplicative enveloping
algebras, and the other half of the second combinatorial condition (the maxi-
mal leaf condition) to prove that for every M-algebra A with zero structure op-
erations and every subspace H ⊂ A, the universal multiplicative enveloping al-
gebra UM(A) is a free UM(H)-module. Finally, we shall combine the two latter
assertions to recover the second condition of Theorem 2.2.

Lemma 4.2. For every free O-algebra A, the universal multiplicative enveloping
algebra UO(A) is a free associative algebra.

Proof. For the free algebra A =O(V ), we have

UO(A) ∼= ∂(O)◦O A = ∂(O)◦OO(V ) ∼= ∂(O)(V ),

with the product of UO(A) induced from that of ∂(O) on the twisted associative
algebra level, so it is enough to show that ∂(O) is free as a twisted associative al-
gebra. To establish that, it is sufficient to consider the associated shuffle operad
O f and prove the corresponding result for the shuffle algebra ∂X (O f ). Indeed,
we are working with connected operads over a field of characteristic zero, so
the homological criterion of freeness implies that ∂(O) is a free twisted asso-
ciative algebra if and only if ∂(O) f is a free shuffle algebra, and we know that
∂(O) f ∼= ∂X (O f ).

Let us denote by Gr the reduced Gröbner basis of the shuffle operad O f for
the reverse graded path-lexicographic ordering, and by Nr the ordered species
of monomials that are normal with respect to Gr . From the definition of the
shuffle algebra structure on ∂X (O f ), it immediately follows that it is generated
by “min-indecomposable” elements of Nr , that is shuffle trees which have their
minimal leaf directly connected to the root. Moreover, if α ∈ ∂X (O f )(I ) and
β ∈ ∂X (O f )(J ) are two normal forms, then µI ,J (α⊗β) is a normal form. Indeed,
composing two normal forms at the minimal leaf of a normal form cannot create
an element divisible by a leading term of the Gröbner basis, by our assumption
on the leading terms. �

The following result follows from [38, Th. 5.16], but we give a proof to make
the exposition self-contained.

Lemma 4.3. The right O-module ∂(O) is free. Accordingly, there is a PBW-type
theorem for multiplicative universal envelopes of O-algebras: there exists a linear
species Y such that for every O-algebra V , the underlying vector space of UO(V )
is isomorphic to Y (V ) functorially with respect to O-algebra morphisms.
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Proof. Let us denote by Gl the reduced Gröbner basis of the shuffle operad O f

for the graded path-lexicographic ordering, by Nl the ordered species of mono-
mials that are normal with respect to Gl , and by N (0)

l ⊂ Nl the ordered sub-

species of normal monomials that are left combs. It is clear that the right O f -
module ∂X (O f ) is freely generated by ∂X (N (0)

l ). Indeed, this follows from the
fact that composing two normal forms at a non-minimal leaf cannot create an
element divisible by a leading term of the Gröbner basis, by our assumption on
the leading terms. Since we are working with connected operads over a field
of characteristic zero, the homological criterion of freeness implies that ∂(O) is
free as a right O-module, which in turn implies that the operad O has the PBW
property for universal multiplicative enveloping algebras: if ∂(O) ∼=Y ◦O, then

UO(V ) ∼= ∂(O)◦O V ∼= (Y ◦O)◦O V ∼=Y (V ).

�

The next result is perhaps the least obvious of the three key steps of the proof.

Lemma 4.4. For everyO-algebra A with zero operations and any subspace H ⊂ A,
viewed as a subalgebra with zero operations, the universal enveloping algebra
UO(A) is free as a UO(H)-module.

Proof. We already know that the right O-module ∂(O) is free, so that

∂(O) ∼=Y ◦O
for some linear species Y . To comprehend universal multiplicative envelopes
for algebras with zero operations functorially, it is convenient to think of such
an algebra A as 1(A), where 1 is given a left O-module structure via the aug-
mentation map. This way,

∂(O)◦O A = ∂(O)◦O (1◦ A) ∼= (∂(O)◦O 1)◦ A,

and we see that the suitable formula for the species Y is

Y := ∂(O)◦O 1;

this way, Y (A) literally corresponds to the universal envelope of the algebra with
zero operations. The advantage of this viewpoint is that Y is, by construction,
a twisted associative algebra, and the associative algebra structure of UO(A) ∼=
Y (A) is induced from that twisted associative algebra structure.

From the formula Y = ∂(O)◦O 1 it follows that any right action of a nontriv-
ial structure operation vanishes, so as a twisted associative algebra, Y is gen-
erated by ∂(X ), where X is the species of generators of O, and therefore as a
shuffle algebra, Y f is generated by ∂(X ) f . Let us describe a Gröbner basis of
relations for this shuffle algebra. To the Gröbner basis Gl , we may associate the
subset Ḡl of the free shuffle algebra generated by ∂(X ) f consisting of elements
obtained from elements of Gl by deleting all monomials that are not left combs.
It is clear that Ḡl consists of relations of Y f , since the deleted monomials vanish
in ∂(O)◦O 1. Moreover, according to our assumption about the leading terms of
Gl , the elements of Ḡl have the same leading terms for the appropriate graded
lexicographic order of monomials in the free shuffle algebra. This immediately
implies that Ḡl forms a Gröbner basis: the cosets of elements from ∂X (N (0)

l )

form a basis of Y f , and these are precisely the normal forms with respect to Ḡl .
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The last step of the proof requires to slightly extend the combinatorics with
which we work. We shall need the language of two-sorted linear species. Infor-
mally, a two-sorted linear species is a canonical rule to associate a vector space
to each pair of finite sets, see [13] for details. In our case, our goal is to prove that
for an algebra A with zero operations and its subspace H , viewed as a subalgebra
with zero operations, UO(A) is free as a UO(H)-module. We write A = H ⊕H ′ for
some subspace H ′, and we wish to make this splitting propagate in a certain way
to universal enveloping algebras. The universal enveloping algebra UO(A) can
be calculated as Y (A), and now we shall use two-sorted species to distinguish
between elements coming from H and from H ′.

To be precise, we consider the two-sorted species Y (2) and X (2) defined as

Y (2)(I , J ) =X ({?}t I t J ), X (2)(I , J ) =X ({?}t I t J )

The meaning of these species is as follows. The species Y (2) is a functorial ver-
sion of the universal multiplicative envelope UO(A) when written as UO(H⊕H ′).
The species X (2) is the functorial species of generators of that algebra: we con-
sider structure operations of our algebras for which we have a special input that
will be used to define the twisted associative algebra structure, some inputs of
the first type (where we shall later substitute elements of H), and some inputs
of the second type (where we shall later substitute elements of H ′). We have
X (2) =X (2)

0 ⊕X (2)
1 , where

X (2)
0 (I , J ) =

{
X (2)(I , J ), J =∅,

0, J 6=∅,
X (2)

1 (I , J ) =
{

0, J =∅,

X (2)(I , J ), J 6=∅.

In plain words, X (2)
0 will later correspond to the situation where all elements we

use are elements of H , and X (2)
1 (I , J ) will later correspond to the situation where

we use at least one element of H ′. The subalgebra UO(H) of UO(A) corresponds
to the subalgebra Y (2)

0 of Y (2) generated by X (2)
0 . Thus, we see that it is sufficient

to prove that the twisted associative algebra Y (2) is free as a Y (2)
0 -module: the

species of generators of that module, once evaluated on (H , H ′), will give the
free generators of UO(A) as a UO(H)-module.

We shall consider the two-sorted species in the shuffle context as follows: we
consider pairs of ordered sets (I , J ) as totally ordered sets for which all elements
of I are smaller than all elements of J . Let us examine closely a normal form
from N (0)

l (I , J ). Such normal forms, which are, by definition, left combs, come
in two types: those normal forms for which all leaves directly connected to the
root belong to I , and those normal forms which have a leaf from J directly con-
nected to the root. We claim that the normal forms of the second kind are free
generators of Y (2) as a Y (2)

0 -module. Indeed, every normal form can be repre-

sented as a shuffle product of several generators from X (2)
0 and a normal form

of the second kind we just described, so those normal forms generate Y (2) as
a Y (2)

0 -module. Freeness follows from our assumption on the leading terms: a

shuffle product of a normal form from Y (2)
0 and a normal form of the second

kind cannot be divisible by a leading term of the Gröbner basis. �

To conclude the proof of our theorem, we argue as follows. We just proved
that for any O-algebra A with zero operations and any subalgebra H ⊂ A, the
universal enveloping algebra UO(A) is free as a UO(H)-module. Because of the
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PBW property, the same is actually true for any algebra A and its subalgebra H :
we impose the usual filtration on UO(A) and take the associated graded algebra,
then the freeness holds after taking the associated graded algebras, and we may
lift the free generators to the original algebra. Thus, in particular, for every subal-
gebra H of every free algebra A, the universal multiplicative enveloping algebra
UO(A) is a free UO(H)-module. We also established that for every free algebra
A of our variety, the universal multiplicative envelope UO(A) is a free associa-
tive algebra. According to Theorem 2.2, these two properties together imply the
Nielsen–Schreier property. �

5. PRE-LIE ALGEBRAS

Recall that the variety of pre-Lie algebras [18], also known as right-symmetric
algebras, is defined by the identity

(a1a2)a3 −a1(a2a3) = (a1a3)a2 −a1(a3a2).

Existing results about pre-Lie algebras suggest that this variety might be Nielsen–
Schreier. For instance, according to a result of Kozybaev, Makar-Limanov and
the second author [41], two-generated subalgebras of free pre-Lie algebras are
free. Moreover, in the context of our general result, it is worth recalling the result
of Kozybaev and the second author [40] (see also [23, 38]) that the underlying
vector space of the universal multiplicative enveloping algebra of a pre-Lie alge-
bra L is isomorphic to T (L)⊗S(L), meaning that a PBW type theorem holds for
universal multiplicative envelopes. We shall now show how to use the operad
theory approach in this case.

Theorem 5.1. The variety of pre-Lie algebras has the Nielsen–Schreier property.

Proof. Let us consider the operationsα(a1, a2) = a1a2 andβ(a1, a2) = a2a1 which
generate the operad of right-symmetric algebras as a shuffle operad. In terms of
these operations, the right-symmetric identities correspond to vanishing of the
elements

1 2

α 3

α
−

2 3

1 α

α
−

1 3

α 2

α
+

2 3

1 β

α

,

1 2

β 3

α

−

1 3

α 2

β
−

2 3

1 α

β
+

1 3

β 2

β

,

1 3

β 2

α

−

1 2

α 3

β
−

2 3

1 β

β

+

1 2

β 3

β

.

For the reverse graded path-lexicographic ordering corresponding to the order-
ing α > β of generators, the defining relations form a Gröbner basis with the
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leading terms

2 3

1 α

α
,

2 3

1 α

β
, and

2 3

1 β

β

satisfying the first combinatorial condition of Theorem 4.1. For the graded path-
lexicographic ordering corresponding to the ordering β > α of generators, the
defining relations form a Gröbner basis with the leading terms

1 2

α 3

α
,

1 2

α 3

β
, and

1 2

β 3

β

satisfying the second combinatorial condition of Theorem 4.1. Both of these
statements are easy to verify using the following observation outlined in [21,
Corollary 1]. For a shuffle operad with quadratic relations G , the shuffle tree
monomials for which each quadratic divisor is a leading term of an element of G
span the Koszul dual operad, and G is a quadratic Gröbner basis if and only if the
number of such shuffle tree monomials with n leaves is equal to the dimension
of the arity n component of the Koszul dual operad. Combining them together
completes the proof. �

In [41], it is shown that automorphisms of two-generated free pre-Lie alge-
bras are tame. Theorem 5.1, combined with the result of Lewin mentioned in
Section 2.1, immediately implies the following generalization.

Corollary 5.2. Automorphisms of finitely generated free pre-Lie algebras are tame.

Let us remark that in [39] it is claimed that the variety of right-symmetric al-
gebras does not have the Nielsen–Schreier property. Unfortunately, there is an
issue with the two main proofs of that paper that rely on highly intricate com-
putations. We studied the arguments of [39] in detail, and we believe that we
identified the problematic parts. First, the claimed polynomial relation between
particular five elements of the free two-generated algebra does not hold (we
checked this using the albert software for computations in nonassociative al-
gebras [33]). Second, the proof of non-freeness of the multiplicative universal
envelope of the free one-generated right-symmetric algebra seems to start with
a correct identity but then makes a claim on algebraic independence that is false.

6. ALGEBRAS WITH TWO COMPATIBLE LIE BRACKETS

Recall that an algebra with two compatible Lie brackets is a vector space V
equipped with two operations a1, a2 7→ [a1, a2] and a1, a2 7→ {a1, a2} which are
skew-symmetric, satisfy the Jacobi identity individually, and additionally their
sum also satisfies the Jacobi identity. The latter condition is equivalent to the
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identity

[{a1, a2}, a3]− [{a1, a3}, a2]− [a1, {a2, a3}]+
+ {[a1, a2], a3}− {[a1, a3], a2}− {a1, [a2, a3]} = 0.

Since it is known [20] that the dimension of the n-th component of the operad
of two compatible Lie brackets is equal to nn−1, which is also the dimension
of the n-th component of the operad of right-symmetric algebras [18], the re-
sult of Theorem 5.1 suggests that the variety of algebras with two compatible Lie
brackets might have the Nielsen–Schreier property. We shall now show that it is
indeed the case.

Theorem 6.1. The variety of algebras with two compatible Lie brackets has the
Nielsen–Schreier property.

Proof. For the reverse graded path-lexicographic ordering corresponding to the
ordering

[−,−] > {−,−}

of generators, the defining relations form a Gröbner basis with the leading terms

2 3

1 [−,−]

[−,−]
,

2 3

1 {−,−}

{−,−}
, and

2 3

1 {−,−}

[−,−]

satisfying the first combinatorial condition of Theorem 4.1. For the graded path-
lexicographic ordering corresponding to the ordering

[−,−] > {−,−}

of generators, the defining relations form a Gröbner basis with the leading terms

1 2

[−,−] 3

[−,−]
,

1 2

{−,−} 3

{−,−}
, and

1 2

{−,−} 3

[−,−]

satisfying the second combinatorial condition of Theorem 4.1. (Both of these
statements easily follow from the observation quoted above, combined with the
known fact that the arity n component of the Koszul dual operad is equal to n.)
Combining these observations completes the proof. �

An almost identical proof works for Lie algebras with several compatible Lie
brackets [66].

7. VARIETIES WHOSE IDENTITIES DO NOT USE SUBSTITUTIONS OF OPERATIONS

In this section we record a generalization of the results of Kurosh and Polin
mentioned in the introduction.

Proposition 7.1. Suppose that all identities of the variety M are combinations
of structure operations (no substitutions are used). Then the variety M has the
Nielsen–Schreier property.
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Proof. In the language of operads, we are talking about free operads. Indeed,
each structure operation with k arguments a priori generates the regular rep-
resentation of the group Sk , and identities that are combinations of structure
operations give a collection of submodules in the regular modules which have
to be quotiented out. What remains is certain collection of representations of
symmetric groups that generates our operad freely. In particular, Theorem 4.1
applies tautologically, since there are no relations to consider. �

It turns out that this proposition implies the Nielsen–Schreier property for the
variety of Akivis algebras [3, 63], first proved in [64]. Recall that an Akivis algebra
is an algebra with one skew-symmetric binary operation [−,−] and one ternary
operation (−,−,−) satisfying the identitiy

[[a1, a2], a3]+ [[a2, a3], a1]+ [[a3, a1], a2] = ∑
σ∈S3

(−1)σ(aσ(1), aσ(2), aσ(3)).

Corollary 7.2. The variety of Akivis algebras has the Nielsen–Schreier property.

Proof. The six-dimensional space of ternary generators of the corresponding
operad is the regular representation of S3 generated by (−,−,−); as such, it splits
into a direct sum of one copy of the trivial representation, one copy of the sign
representation, and two copies of the two-dimensional irreducible representa-
tion. We note that the element∑

σ∈S3

(−1)σ(aσ(1), aσ(2), aσ(3)).

found in the right hand side of the defining identity of the Akivis algebras is pre-
cisely the generator corresponding to the copy of the sign representation, and
the Akivis identity allows one to eliminate this element, replacing it by the Jaco-
biator

[[a1, a2], a3]+ [[a2, a3], a1]+ [[a3, a1], a2].

This elimination implements an isomorphism between the operad of the Akivis
algebras and the free operad generated by one skew-symmetric binary oper-
ation [−,−] and a five-dimensional space of ternary operations where the S3-
action is the direct sum of the trivial representation and two copies of the two-
dimensional irreducible representation, so it has the Nielsen–Schreier property.

�

8. INTERSECTION OF NIELSEN–SCHREIER VARIETIES

Let us record a simple general observation that allows one to construct new
Nielsen–Schreier varieties from known ones.

Proposition 8.1. Suppose that two varieties with disjoint sets of structure opera-
tions both satisfy the combinatorial criterion of Theorem 4.1. THen the intersec-
tion of those varieties satisfy this condition as well. In particular, that intersection
has the Nielsen–Schreier property.

Proof. In the language of operads, the intersection of two varieties with dis-
joint sets of structure operations corresponds to the categorical coproduct, also
known as the free product, of the corresponding operads. The Gröbner basis
of such operad is the union of the two Gröbner bases, and so Theorem 4.1 ap-
plies. �
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Our first observation is that this result applies to Lie-admissible algebras [5].
Recall that a Lie-admissible algebra is an algebra with one binary operation sat-
isfying the identitiy∑

σ∈S3

(−1)σ
(
(aσ(1)aσ(2))aσ(3) −aσ(1)(aσ(2)aσ(3))

)= 0.

Corollary 8.2. The variety of Lie-admissible algebras has the Nielsen–Schreier
property.

Proof. In terms of the operations a1◦a2 = a1a2+a2a1 and [a1, a2] = a1a2−a2a1,
the Lie admissibility relation becomes the Jacobi identity for the second oper-
ation (this observation goes back to [48]). Thus, the variety of Lie-admissible
algebras is the intersection of the variety of Lie algebras and the variety of all
commutative algebras, both of which satisfy the combinatorial conditions of
Theorem 4.1. �

9. PARAMETRIC FAMILIES OF NIELSEN–SCHREIER VARIETIES

9.1. Deformation of right-normed third power nil identity. Our methods lead
to the following rather striking generalization of a result of the second author
who proved that the variety of algebras satisfying the identity xx2 = 0 has the
Nielsen–Schreier property.

Theorem 9.1. For every α 6= 1, the variety of algebras satisfying the identity

xx2 +αx2x = 0

has the Nielsen–Schreier property.

Proof. This identity is equivalent to the multilinear one∑
σ∈S3

(
aσ(1)(aσ(2)aσ(3))+α(aσ(1)aσ(2))aσ(3)

)= 0.

It will be convenient to present our variety via the symmetrized and the skew-
symmetrized operations a1 ◦a2 = a1a2 +a2a1 and [a1, a2] = a1a2 −a2a1. In the
language of shuffle operads, our identity becomes

(α+1)

2 3

1 ◦
◦

+ (α+1)

1 3

◦ 2

◦
+ (α+1)

1 2

◦ 3

◦

+(α−1)

1 2

◦ 3

[−,−]
−(α−1)

1 3

◦ 2

[−,−]
−(α−1)

2 3

1 ◦
[−,−]

= 0.

If α 6= 1, then this relation has the leading term

2 3

1 ◦
[−,−]



AN EFFECTIVE CRITERION FOR NIELSEN–SCHREIER VARIETIES 25

for the reverse graded path-lexicographic ordering corresponding to the order-
ing

[−,−] > (−◦−)

of generators, and the leading term

1 2

◦ 3

[−,−]

for the graded path-lexicographic ordering corresponding to the ordering

[−,−] > (−◦−)

of generators. Since these monomials have no self-overlaps, the given relation
forms a Gröbner basis in both cases. We note that the combinatorial conditions
of Theorem 4.1 are satisfied, completing the proof. �

In particular, setting α=−1, we see that the variety of algebras satisfying the
identity xx2 = x2x, that is the variety of third power associative algebras, has
the Nielsen–Schreier property. This obviously fails for the variety of all power
associative algebras, which is defined, by a remarkable result of Albert [4, 5] by
the above identity together with just one extra identity (x2x)x = x2x2.

9.2. Alia and one-sided alia algebras. Recall that alia (anti-Lie-admissible) al-
gebras [26] are the algebras with the following identity for the symmetrized and
the skew-symmetrized operations:

[a1, a2]◦a3 + [a2, a3]◦a1 + [a3, a1]◦a2 = 0.

In the same paper one finds the definition of a left alia algebra as the algebra
satisfying the identity

[a1, a2]a3 + [a2, a3]a1 + [a3, a1]a2 = 0,

and the “opposite” definition of a right alia algebra as the algebra satisfying the
identity

a3[a1, a2]+a1[a2, a3]+a2[a3, a1] = 0.

We shall show that the corresponding varieties have the Nielsen–Schreier prop-
erty, proving the following general result.

Theorem 9.2. For any α, the variety of algebras satisfying the identity

a3[a1, a2]+a1[a2, a3]+a2[a3, a1]+α([a1, a2]a3 + [a2, a3]a1 + [a3, a1]a2) = 0

has the Nielsen–Schreier property.

Proof. For α = −1, we obtain the variety of Lie-admissible algebras, so Corol-
lary 8.2 applies. Suppose that α 6= −1. Analogous to the proof of Theorem 9.1:
if we write everything in terms of the symmetrized and the skew-symmetrized
operations, we obtain, for the two orderings of interest, the leading terms

2 3

1 ◦
[−,−]

and

1 2

◦ 3

[−,−]
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respectively. In each case, there are no self-overlaps, so we obtain a Gröbner
basis, and Theorem 4.1 applies. �

10. INCREASING DEGREES OF IDENTITIES

One may also adapt the proof of Theorem 9.1 to establish the following result.

Theorem 10.1. For every degree n ≥ 1, the variety of algebras satisfying the right
nil identity

x(x(· · · (xx2))) = 0

has the Nielsen–Schreier property.

Proof. This identity is equivalent to the multilinear one∑
σ∈Sn

aσ(1)(aσ(2)(· · · (aσ(n−2)(aσ(n−1)aσ(n))))) = 0.

Let us use, once again, the symmetrized and the skew-symmetrized operations
a1 ◦ a2 = a1a2 + a2a1 and [a1, a2] = a1a2 − a2a1. For the reverse graded path-
lexicographic ordering corresponding to the ordering

[−,−] > (−◦−)

of generators, this identity has as the leading term the only right comb with all
the vertices but the one at the top labelled [−,−], and the top vertex labelled
−◦−. For the graded path-lexicographic ordering corresponding to the ordering

[−,−] > (−◦−)

of generators, this identity has as the leading term the left comb with all the
vertices but the one at the top labelled [−,−], the top vertex labelled −◦−, and
the leaves labelled 1,. . . , n in the planar order. In each case, there are no self-
overlaps, so we obtain a Gröbner basis, and Theorem 4.1 applies. �
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