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MODEL INDEPENDENCE OF (∞, 2)-CATEGORICAL NERVES

LYNE MOSER, VIKTORIYA OZORNOVA, AND MARTINA ROVELLI

Abstract. For most models of (∞, 2)-categories an embedding of the ∞-category of
2-categories into that of (∞, 2)-categories has been constructed in the form of a nerve
construction of some flavor. We prove that all those nerve embeddings induce equiv-
alent functors, modulo change of model. We also show that all the nerve embeddings
realize the ∞-category of 2-categories as the sub-∞-category of (∞, 2)-categories that
are local with respect to a certain class of maps.
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Introduction

It has become apparent that many phenomena of interest, such as the cobordism hy-
pothesis, can only be properly formalized using the language of higher categories, often in
the form of (∞, n)-categories for n ≥ 0, and this paper is concerned with (∞, 2)-categories.
The structure of an (∞, 2)-category could be summarized as a weakening of the structure
present in a traditional 2-category. It consists of objects, 1- and 2-morphisms that com-
pose suitably, as well as higher weakly invertible morphisms in dimension higher than 2
that serve as witnesses for relations between lower dimensional morphisms.

Many mathematical objects have been proposed to formalize (∞, 2)-categories, each
model presenting its own advantages and disadvantages. These include Barwick’s 2-fold
complete Segal spaces [Bar05], Verity’s saturated 2-complicial sets [Ver08b, Ver17, Rie18,
OR20b, RV22], Lurie’s∞-bicategories [Lur09b], Rezk’s complete Segal Θ2-spaces [Rez10],
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Key words and phrases. (∞, 2)-categories, 2-categories, complicial sets, complete Segal Θ2-spaces, ∞-

bicategories, scaled simplicial sets.
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Ara’s 2-quasi-categories [Ara14], and 2-comical sets [CKM20, DKM21], as well as cat-
egories strictly enriched over a model of (∞, 1)-categories [Lur09b, BR13, BR20]. In
the past few years, the proof that all models are equivalent was completed, combining
work by Lurie [Lur09b], Bergner–Rezk [BR13, BR20], Ara [Ara14], Gagna–Harpaz–Lanari
[GHL22], Campion–Doherty–Kapulkin–Maehara [CKM20, DKM21].

It is often the case that the same construction gets implemented independently into
two or more models. It is then necessary to verify that they indeed encode the same
construction, modulo a change of model given by a direct comparison or a zigzag of
such. In this paper, we specifically address the compatibility of several embeddings of the
homotopy theory of 2-categories into that of (∞, 2)-categories that have been constructed
for different models.1

By design, the idea of an (∞, 2)-category is supposed to weaken and generalize the no-
tion of a strict 2-category. In particular, it is expected that any question about the homo-
topy theory of 2-categories should be equivalently addressable in the world of 2-categories
or in that of (∞, 2)-categories. This requirement, which is even partially axiomatized in
the abstract setup by Barwick–Schommer-Pries [BSP21], could be phrased by expecting
an embedding of the homotopy theory of 2-categories into that of (∞, 2)-categories. Beside
for providing a consistency check, the embedding of 2-categories into (∞, 2)-categories is
crucial in that several structural components of (∞, 2)-categories, such as pasting schemes,
are parametrized by strict 2-categories.

The analog question for (∞, 0)-categories (a.k.a. ∞-groupoids) and (∞, 1)-categories
(a.k.a. ∞-categories) is equally valid although easier to address and by now fairly under-
stood. In essentially all models for (∞, 0)- and (∞, 1)-categories one can easily identify
or find in the literature a simple nerve construction for 0-categories (a.k.a. sets) and
1-categories and prove that this nerve construction realizes an embedding of homotopy
theories into (∞, 0)- and (∞, 1)-categories, respectively.

For (∞, 2)-categories the situation is more subtle. For instance, when one works with
model categories, one technical difficulty is the fact that most models don’t admit a ho-
motopical nerve embedding that is at once fully faithful at the pointset level and a right
Quillen functor at the model categorical level. In the recent years a well-behaved embed-
ding has also been constructed in most models of (∞, 2)-categories presented by model
categories in the form of a homotopical functor that is homotopically fully faithful, which is
in addition either right Quillen or fully faithful (but generally not both). This was achieved
by the second and third author [OR21] for 2-complicial sets, by Campbell [Cam20] for 2-
quasi-categories, by Gagna–Harpaz–Lanari for scaled simplicial sets [GHL22], and by the
first author [Mos20] for 2-fold complete Segal spaces. For (∞, 2)-categories presented by
categories enriched over a model of (∞, 1)-categories, this can be done by base-change
along a suitable 1-dimensional nerve.

The first result of this paper, proven as Theorem 1.3 is to check that all the mentioned
nerve constructions (along with a few more that we add) are compatible with each other
via the known model comparisons.

Theorem A. The aforementioned nerve embeddings of 2-categories into (∞, 2)-categories
constructed in different model categories are compatible with each other via known equiv-
alences of models.

1In the past, many ways to associate to any 2-category a classifying space – namely an (∞, 0)-category,
as opposed to an (∞, 2)-category – have been provided by Street [Str87], Duskin [Dus02], Bullejos–Cegarra
[BC03], Lack–Paoli [LP08]–and the equivalence of such constructions as spaces is proven in [CCG10].
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At the level of ∞-categories, as part of a more general machinery Gepner–Haugseng
[GH15] identified that the ∞-category of 2-categories can be understood as a localization
of the∞-category of (∞, 2)-categories. More precisely, 2-categories are exactly the (∞, 2)-
categories that are local with respect to the 2-fold 2-point suspension of the inclusion of a
point into a positive-dimensional sphere.

We prove as Theorem 1.12 that all the considered nerve embeddings induce at the level
of ∞-categories precisely the inclusion of 2-categories as local objects amongst (∞, 2)-
categories with respect to the class of maps from the previous paragraph.

Theorem B. The aforementioned nerve embeddings of 2-categories into (∞, 2)-categories
constructed in different model categories implement the embedding of 2-categories as local
(∞, 2)-categories.

While overall expected, the compatibility of the nerve constructions in different models
is a fundamental verification for the consistency of the theory, and a necessary ingredient
in phrasing model independently many statements originally proven in a specific model.

To mention one example, in the paper [HORR21] the second and third author proved
with Hackney and Riehl an (∞, 2)-dimensional pasting theorem for (∞, 2)-categories mod-
eled by categories enriched over quasi-categories, and it is there explained how the com-
patibility of nerves which is the subject of the current paper is necessary to conclude that
the pasting theorem holds in all other models.

The compatibility of nerves is expected to play a similar role in other circumstances,
for instance in work in progress by the first and third author with Rasekh with the goal
of developing a model independent theory of weighted limits valued in (∞, 2)-categories.

Beside the novel result, we are also taking this project as an opportunity to write an
accessible paper that surveys over the different nerve constructions and how they relate to
each other, helping a non-specialist navigate the complex literature of (∞, 2)-categories.

Acknowledgements. We are thankful to Rune Haugseng and Lennart Meier for valuable
conversations, and to tslil clingman for their help with LATEX and TikZ. This work was
completed while the authors visited the Instituto de Matemáticas de UNAM in Cuernavaca
for the program Higher categories – Part 2, supported by the National Science Foundation
under Grant No. DMS-1928930. The third author is grateful for support from the National
Science Foundation under Grant No. DMS-2203915.

1. Organization of the paper

1.1. Model categorical framework. In this paper, we use the language of model cate-
gories to formalize the∞-categories of (∞, 2)-categories presented by different models. We
refer the reader to e.g. [Hov99, Hir03] for the basic definitions from model category theory.
We also assume familiarity with the basics of∞-categories in the form of quasi-categories,
see e.g. [Lur09a]. Here, we only briefly recall the key facts needed to interpret the model
categorical statements as statements about homotopy theories and ∞-categories.
• Any model categoryM has an underlying∞-category [M]∞. Explicitly, the∞-category

[M]∞ is obtained as the homotopy coherent nerve of a fibrant replacement of the Ham-
mock localization of M; see e.g. [DK80a, DK80b] or Appendix A for more details. For
this specific model of [M]∞, the set of objects is the same as the sets of objects ofM;

• Any homotopical functor F :M→M′, i.e. a functor that preserves weak equivalences,
induces a functor of∞-categories [F ]∞ : [M]∞ → [M′]∞. It can be computed on objects
as [F ]∞(X) = F (X).
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• Any right (resp. left) Quillen functor F : M → M′ induces right (resp. left) adjoint
functor of ∞-categories [F ]∞ : [M]∞ → [M′]∞, as proven in [MG16, Thm 2.1]. It can
be computed on objects as [F ]∞(X) ≃ F (Xfib) (resp. [F ]∞(X) ≃ F (Xcof)). Here, Xfib

(resp. Xcof) denotes a fibrant (resp. cofibrant) replacement of X in M.
• Any right (resp. left) Quillen embedding2 F : M → M′ induces a fully faithful right

adjoint (resp. left adjoint) of ∞-categories [F ]∞ : [M]∞ → [M′]∞.
• Any left (resp. right) Quillen equivalence F :M → M′ induces an equivalence of ∞-

categories [F ]∞ : [M]∞ → [M′]∞, as a consequence of what discussed in [MG16, §A.2]
and [Lur18, §1.3.4]. In particular, a zigzag of Quillen equivalences induces an equivalence
of ∞-categories.

• If a functor F :M → M′ is such that it induces a functor [F ]∞ : [M]∞ → [M′]∞ in
more than one way, for instance it is both left and right Quillen, or it is both right
Quillen and homotopical, the resulting functors are canonically equivalent.

• If functors F :M → M′ and F ′ :M′ → M′′ and their composite F ′ ◦ F :M → M′′

induce functors of ∞-categories [F ]∞ : [M]∞ → [M′]∞, [F ′]∞ : [M′]∞ → [M′′]∞, and
[F ′]∞ ◦ [F ]∞ : [M]∞ → [M′′]∞ each computed using any of the rules described above,
then there is a canonical equivalence [F ′ ◦ F ]∞ ≃ [F ′]∞ ◦ [F ]∞.

1.2. Models of (∞, 2)-categories. We briefly recall also the main different approaches to
modeling (∞, 2)-categories that will be relevant for the paper. For each of the approaches,
it is possible to realize the homotopy theory of (∞, 2)-categories by means of a model
structure in which the (∞, 2)-categories are precisely the fibrant objects.

(a) Globular models: based on presheaves over Joyal’s disk category Θ2 [Joy97] or vari-
ants of it. They include Ara’s 2-quasi-categories [Ara14] and Rezk’s complete Segal
Θ2-spaces [Rez10]. The supporting model structures SetΘ

op
2

(∞,2) and sSetΘ
op
2

(∞,2) will be
recalled in more detail in Theorems 2.2 and 2.4.

(b) Bisimplicial models: based on presheaves over ∆×∆. They include Barwick’s 2-fold
complete Segal spaces [Bar05] and Bergner–Rezk’s Segal precategories [BR13]. The
supporting model structures sSet (∆×∆)op

(∞,2) and PCat(sSet∆op

)(∞,2) will be recalled in
more detail in Theorem 3.3 and Section 3.4.

(c) Enriched models: based on categories strictly enriched over a model of (∞, 1)-cate-
gories. They include categories enriched over Joyal’s quasi-categories [Joy08a], over
Rezk’s complete Segal spaces [Rez01] and over Lurie’s marked simplicial sets [Lur09a].
The supporting model structures CatsSet(∞,1)

, CatsSet∆op

(∞,1)
and CatsSet+

(∞,1)
will be re-

called in more detail in Theorem 4.2.
(d) Simplicial models: based on presheaves over variants of the simplex category ∆.

They include Verity’s saturated 2-complicial sets [Ver17, OR20b, RV22], Lurie’s ∞-
bicategories [Lur09b], and saturated 2-precomplicial sets [OR20b] by the second and
third author. The supporting models structures msSet (∞,2), sSetsc(∞,2) and Set t∆op

(∞,2)

will be recalled in more detail in Theorems 5.3, 5.6 and 5.8.

2By a right Quillen embedding we mean a right Quillen functor in which the derived counit of any
fibrant object is a weak equivalence. This is the right Quillen functor occurring in what is known in
the literature as a Quillen reflection or homotopy reflection introduced in [Joy08b, §6.3]. A left Quillen
embedding is defined dually.
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(e) Cubical models: based on presheaves over a suitable category of cubes. The main
incarnation is given by Doherty–Kapulkin–Maehara’s 2-comical sets [DKM21], sup-
ported by the model structure mcSet (∞,2), which is a variant of a previous version by
Campion–Kapulkin–Maehara [CKM20].

We know that these models of (∞, 2)-categories have equivalent homotopy theories
because the supporting model structures are connected by the following zigzags of Quillen
equivalences3.

SetΘ
op
2

(∞,2)

sSetΘ
op
2

(∞,2)

sSet (∆×∆)op

(∞,2)

PCat(sSet∆op

)(∞,2) CatsSet∆op

(∞,1)
CatsSet(∞,1)

CatsSet+
(∞,1)

sSetsc(∞,2)

msSet (∞,2)mcSet (∞,2)

Set t∆op

(∞,2)

(−)•,0 [Ara14]

d∗ [BR20]

R [BR20]

[BR13]

R ((−)•,0)∗ U∗

Nsc[Lur09b]

U[GHL22]

Refl[OR20b]

T

[DKM21]

1.3. Models of (∞, 2)-categorical nerves. The canonical homotopy theory of strict
2-categories is presented by the following model structure, due to Lack.

Theorem 1.1 ([Lac02, Lac04]). The category 2Cat of small 2-categories and 2-functors
admits a model structure in which
• all 2-categories are fibrant,
• the weak equivalences are precisely the biequivalences, and
• the trivial fibrations are precisely the 2-functors that are surjective on objects, full on
1-morphisms, and fully faithful on 2-morphisms.

Several nerve constructions for 2-categories valued in a model of (∞, 2)-categories have
been constructed in the form of a right Quillen embedding.4

(a) Nerve into 2-quasi-categories: A functor

NΘ2 : 2Cat → sSetΘ
op
2

(∞,2)

was first considered by Leinster [Lei02, Def. J] and later shown by Campbell [Cam20,
Rmk 5.16, Thm 5.10] to be a right Quillen embedding. This nerve and its properties
will be recalled in Construction 2.6 and Theorem 2.7.

(b) Nerve into 2-fold complete Segal spaces: A functor

N∆×∆ : 2Cat → sSet (∆×∆)op

(∞,2)

3Three of these Quillen equivalences are denoted R in the original sources. To distinguish them in this
paper, we are using R, Refl and R.

4Given the numerous nerve constructions considered in this paper, for the sake of exposition we decided
to change some of their notations to something more evocative of which model they refer to. We point
out when these constructions are recalled what is the notation used in the original sources.
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was constructed and shown to be a right Quillen embedding by the first author in
[Mos20, §5.1, Thms 6.1.1, 6.1.3]. This nerve and its properties will be recalled in
Construction 3.6 and Theorem 3.7.

(c) Nerve into categories enriched over quasi-categories: A functor

N∗ : 2Cat → CatsSet(∞,1)

obtained by base-change along the usual nerve functor, is used e.g. in [RV22, §1.4.2],
and can be shown to be a right Quillen embedding. This nerve and its properties will
be recalled in Construction 4.4.

(d) Nerve into ∞-bicategories: A functor

Nsc : 2Cat → msSetsc(∞,2)

was considered by Harpaz–Nuiten–Prasma in [HNP19, §2] and shown to be a right
Quillen embedding by Gagna–Harpaz–Lanari in [GHL22, Prop. 8.2, 8.3]. This nerve
and its properties will be recalled in Construction 5.12 and Theorem 5.14.

(d’) Nerve into 2-precomplicial sets: A functor

Nt∆ : 2Cat → Set t∆
op

(∞,2)

was constructed and shown to be a right Quillen embedding by the second and third
authors in [OR21, Thm 4.12, Cor. 4.13]. This nerve and its properties will be recalled
in Construction 5.10 and Theorem 5.13.

1.4. Equivalences of the nerve constructions. The goal of this paper is to study how
all those nerve constructions interact with the model comparison functors and prove the
compatibility. In practice, this amounts to considering the following diagram of (model)
categories,

(1.2)

SetΘ
op
2

(∞,2)

sSetΘ
op
2

(∞,2)

sSet (∆×∆)op

(∞,2)

PCat(sSet∆op

)(∞,2) CatsSet∆op

(∞,1)
CatsSet(∞,1)

CatsSet+
(∞,1)

sSetsc(∞,2)

msSet (∞,2)

Set t∆op

(∞,2)

2Cat

(−)•,0

d∗

R

R ((−)•,0)∗ U∗

Nsc

U

Refl
NΘ2

N∆×∆

N∗

Nsc

Nt∆

built using some of the model comparison functors and the aforementioned nerve construc-
tions, and show that all regions induce commutative diagrams at the level of underlying
∞-categories.

Theorem 1.3. The diagram of underlying ∞-categories induced by (1.2) commutes up to
equivalence.
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[SetΘ
op
2

(∞,2)]∞

[sSetΘ
op
2

(∞,2)]∞

[sSet (∆×∆)op

(∞,2) ]∞

[PCat(sSet∆op

)(∞,2)]∞ [CatsSet∆op

(∞,1)
]∞ [CatsSet(∞,1)

]∞ [CatsSet+
(∞,1)

]∞

[sSetsc(∞,2)]∞

[msSet (∞,2)]∞

[Set t∆op

(∞,2)]∞

[2Cat ]∞

[(−)•,0]∞

[d∗]∞

[R]∞

[R]∞ [((−)•,0)∗]∞ [U∗]∞

[Nsc]∞

[U ]∞

[Refl]∞

[NΘ2 ]∞

[N∆×∆]∞

[N∗]∞

[Nsc]∞

[Nt∆]∞

(1)

(2) (3)

(4)

Outline of the proof. We address the commutativity of each of the regions as follows.

• The fact that the region (1) commutes is addressed as Corollary 3.16.
• The fact that the region (2) commutes is addressed as a combination of Corollaries 4.5

and 4.12.
• The fact that the region (3) commutes is addressed as a combination of Corollaries 4.5

and 5.20.
• The fact that the region (4) commutes is addressed as Corollary 5.18. □

1.5. Universal property of nerve embeddings. In the following diagram of adjunc-
tions of ∞-categories, Theorem 1.3 guarantees that the diagram involving the functors
induced by the nerve construction functors commutes up to equivalence. Hence so does
the one involving the left adjoints to the functors induced by the nerve constructions.

(1.4)

[SetΘ
op
2

(∞,2)]∞

[sSetΘ
op
2

(∞,2)]∞

[sSet (∆×∆)op

(∞,2) ]∞

[PCat(sSet∆op

)(∞,2)]∞ [CatsSet∆op

(∞,1)
]∞ [CatsSet(∞,1)

]∞ [CatsSet+
(∞,1)

]∞

[sSetsc(∞,2)]∞

[msSet (∞,2)]∞

[Set t∆op

(∞,2)]∞

[2Cat ]∞

⊢

[NΘ2 ]∞

⊢

[N∆×∆]∞

⊣

[N∗]∞

⊢

[Nsc]∞

⊢

[Nt∆]∞

Any of the ∞-categories underlying one of the model structures for (∞, 2)-categories
from Section 1.2 can be taken to be the ∞-category of (∞, 2)-categories C at(∞,2), and
all others are equivalent to this one – explicitly via the equivalences of ∞-categories
given by the mentioned Quillen equivalences. Also, if C at2 denotes the ∞-category of 2-
categories, then there is an equivalence of∞-categories C at2 ≃ [2Cat ]∞. The many models
of nerves discussed in Section 1.3, all induce equivalent right adjoint functors between the
∞-category of (∞, 2)-categories C at(∞,2) and the ∞-category [2Cat ]∞ of 2-categories:

(1.5) C at(∞,2) ≃ [M]∞ ⇄ [2Cat ]∞ ≃ C at2.
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One may argue at this point that, although it was shown that those functors do the same
thing, do they actually do the right thing?

To address this question, we first observe the compatibility of the embedding C at2 ↪→
C at(∞,2) with Barwick–Schommer-Pries’ framework from [BSP21].

Remark 1.6. In [BSP21, §7], Barwick–Schommer-Pries identified an axiomatic setup that
guarantees that an ∞-category M (with extra structure) models correctly the theory of
(∞, 2)-categories, satisfying in particular M ≃ C at(∞,2) and deserving the name of a
model for (∞, 2)-categories. Given a model of (∞, 2)-categories M , the extra structure
that is required is an embedding

(1.7) G aunt2 ↪→M ≃ C at(∞,2)

of the ∞-category G aunt2 of gaunt5 2-categories into the ∞-category M . If we take
e.g. M := [M]∞, forM any of the model categories of (∞, 2)-categories from Section 1.3
for which a nerve construction was described, then the embedding (1.7) can be taken to
be the restriction

G aunt2 ↪→ C at2 ≃ [2Cat ]∞ ↪→ [M]∞ ≃ C at(∞,2)

of the functor from (1.5), for a suitably chosen equivalence [2Cat ]∞ ≃ C at2. This could
be seen by employing [BSP21, Lem. 10.2].

Next, we address how the equivalent adjunctions C at2 ⇄ C at(∞,2) from (1.5) relate to
work by Gepner–Haugseng [GH15, §6].

Remark 1.8. In [GH15, Prop. 6.1.7], Gepner–Haugseng identify a universal property that
relates the ∞-category of 2-categories C at2 and the ∞-category C at(∞,2) of (∞, 2)-
categories. More precisely, the former can be understood as a localization of the latter
with respect to the class of maps

Σ2Λ := {Σ2∆[0] ↪→ Σ2Sk | k > 0},
where Sk denotes the k-th sphere as an object of the ∞-category S of spaces, and

(1.9) Σ2 : S → C at(∞,2)

implements a suitable 2-fold 2-point suspension, constructed in [GH15, Def. 4.3.21]. From
this, one deduces the existence of an adjunction

(1.10) C at(∞,2) ⇄ LΣ2ΛC at(∞,2) ≃ C at2

with left adjoint being reflector and right adjoint being inclusion.

Our goal in Section 6 is to prove that, for compatibly chosen equivalences of ∞-
categories, the incarnation

(1.11) [c∗]∞ : C at(∞,2) ≃ [CatsSet(∞,1)
]∞ ⇄ [2Cat ]∞ ≃ C at2 : [N∗]∞

induces precisely the adjunction (1.10). This will show that, hence, all the adjunctions of
∞-categories (1.4) have the correct universal property and do the right thing.

Theorem 1.12. The adjunctions of ∞-categories (1.10) and (1.11) are equivalent.

Outline of the proof. The proof involves three steps.

5A 2-category is gaunt or rigid if it has no non-identity 2-isomorphisms and no non-identity 1-
equivalences (or equivalently no non-identity 1- and 2-isomorphisms).
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• First, in Remark 6.25, we will discuss why the functor between model categories

Σ2 : sSet (∞,0) → CatsSet(∞,1)

from Proposition 6.24 induces at the level of underlying ∞-categories the functor from
(1.9), where sSet (∞,0) is the Kan-Quillen model structure.

• Then, in Theorem 6.36 we will show that the Quillen pair

c∗ : CatsSet(∞,1)
⇄ 2Cat : N∗

and the left Bousfield localization adjunction

Id : CatsSet(∞,1)
⇄ LΣ2Λ(CatsSet(∞,1)

) : Id

induce equivalent adjunctions at the level of underlying ∞-categories.
• Finally, in Remark 6.37 we use the previous two steps, as well as other results from the

literature, to establish that the functor of ∞-categories (1.11) is indeed equivalent to
(1.10), as desired. □

2. Nerves in Θ2-models

We devote this section to briefly recalling the main globular models of (∞, 2)-categories,
namely those based on Joyal’s cell category Θ2, and the relevant nerve constructions.

We refer the reader to [Joy97] for the category Θ2, which is a full subcategory of 2Cat
[Ber02, MZ01]. The generic object of Θ2 is a 2-category of the form θ = [i|j1, . . . , ji] for
i ≥ 0 and jk ≥ 0 for k = 1, . . . , i. For example, the 2-category [4|2, 0, 3, 1] is the 2-category
generated by the following data.

0 1 2 3 4

The canonical inclusion Set ↪→ sSet of sets as discrete simplicial sets induces a canonical
inclusion SetΘ

op
2 ↪→ sSetΘ

op
2 , which preserves limits and colimits. In particular, we often

regard Θ2-sets as discrete Θ2-spaces without further specification.
For any object θ in Θ2, we denote by Θ2[θ] the Θ2-set represented by θ via the Yoneda

embedding Θ2 ↪→ SetΘ
op
2 .

2.1. The models. The following mathematical object was identified by Rezk [Rez10] as
a model for (∞, 2)-categories. We recall the definition for completeness, but it will not be
needed in this paper.

Definition 2.1. A complete Segal Θ2-space is a Θ2-space X : Θop
2 → sSet that is local6

with respect to the class of maps

6Given any small category C, there are well-defined derived mapping spaces Maph
sSetCop (B,X) with

respect to the homotopical structure on sSetCop
given by levelwise weak equivalences in sSet(∞,0). For

an explicit construction see e.g. [Rez10, §2.8]. We then say that a presheaf X : Cop → sSet(∞,0) is local
with respect to a set of maps S of sSetCop

if for every f : A → B in S the induced map on derived map-
ping spaces Maph

sSetCop (f,X) : Maph
sSetCop (B,X) → Maph

sSetCop (A,X) with respect to levelwise weak
homotopy equivalences is a weak equivalence of Kan complexes.
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(1) for all i, j1, . . . , ji ≥ 0, the horizontal Segality extension

Θ2[1|j1] ⨿
Θ2[0]

. . . ⨿
Θ2[0]

Θ2[1|ji]→ Θ2[i|j1, . . . , ji]

induced by the inclusions [⟨s− 1, s⟩|js] : [1|js]→ [i|j1, . . . , ji] where ⟨s− 1, s⟩ : [1]→ [i]
sends 0 7→ s− 1 and 1 7→ s, for 1 ≤ s ≤ i;

(2) for all j ≥ 0 the vertical Segality extension

Θ2[1|1] ⨿
Θ2[1|0]

. . . ⨿
Θ2[1|0]

Θ2[1|1]→ Θ2[1|j]

induced by the inclusions [1|⟨t − 1, t⟩] : [1|1] → [1|j] where ⟨t − 1, t⟩ : [1] → [j] sends
0 7→ t− 1 and 1 7→ t, for 1 ≤ t ≤ j;

(3) the horizontal completeness extension

Θ2[0]→ Θ2[0] ⨿
Θ2[1|0]

Θ[3|0, 0, 0] ⨿
Θ2[1|0]

Θ2[0],

where the right-hand side is the colimit of the diagram

Θ2[0] Θ2[1|0] Θ2[3|0, 0, 0] Θ2[1|0] Θ2[0]
! ⟨0, 2⟩ ⟨1, 3⟩ !

and the map is induced by the inclusion ⟨0⟩ : [0]→ [3];
(4) the vertical completeness extension7

Θ2[1|0]→ Θ2[1|0] ⨿
Θ2[1|1]

Θ[1|3] ⨿
Θ2[1|1]

Θ2[1|0],

where the right-hand side is the colimit of the diagram

Θ2[1|0] Θ2[1|1] Θ2[1|3] Θ2[1|0] Θ2[1|0]
[1|!] [1|⟨0, 2⟩] [1|⟨1, 3⟩] [1|!]

and the map is induced by the inclusion [1|⟨0⟩] : [1|0]→ [1|3].

The following model structure is obtained as a left Bousfield localization of the injective
model structure on sSetΘ

op
2 .

Theorem 2.2 ([Rez10, Thm 8.1]). The category sSetΘ
op
2 of Θ2-spaces admits a model

structure, denoted sSetΘ
op
2

(∞,2), in which

• the fibrant objects are the injectively fibrant complete Segal Θ2-spaces, and
• the cofibrations are the monomorphisms, and in particular every object is cofibrant.

The following mathematical object was envisioned by Joyal [Joy97] and formalized by
Ara [Ara14, §5] as a model for (∞, 2)-categories.

Definition 2.3. A 2-quasi-category is a Θ2-set X : Θop
2 → Set that has the right lifting

property with respect to the class of maps (1)-(4) from Definition 2.1.

Theorem 2.4 ([Ara14, §5.17]). The category SetΘ
op
2 of Θ2-sets admits a model structure,

denoted SetΘ
op
2

(∞,2), in which

• the fibrant objects are the 2-quasi-categories, and
• the cofibrations are the monomorphisms, and in particular every object is cofibrant.

7While the completeness conditions are not the same as in [Rez10, §11.4], one can use [Rez10, §4.4,§10]
to see that the two descriptions localizations are defining the same model structure.
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Ara showed as [Ara14, Thm 8.4] that the functor (−)0 : sSet → Set , which extracts the
0-th component, induces a right Quillen equivalence

(2.5) (−)•,0 : sSet
Θop

2

(∞,2) → Set
Θop

2

(∞,2).

2.2. The nerve. A nerve construction NΘ2D for any 2-category D was identified by
Leinster [Lei02, Def. J] and further studied by Campbell8 [Cam20]. Its construction is
based on the notion of a normal pseudofunctor, which we recall later as Definition C.1.
Roughly speaking, those are maps between 2-categories that preserve identities strictly
and preserve compositions up to coherent isomorphism.

Construction 2.6 ([Lei02, Def. J]). Let D be a 2-category. The nerve NΘ2D is the Θ2-set
given for any θ ∈ Θ2 by the set of normal pseudofunctors from θ to D

NΘ2

θ D := (NΘ2D)θ := 2Catnps(θ,D).

The assignment extends to a functor NΘ2 : 2Cat → SetΘ
op
2 .

The homotopical properties of these nerve constructions follow from a combination of
work by Campbell [Cam20] and Lack [Lac04], as explained in [Cam20, Rmk 5.16].

Theorem 2.7. The functor NΘ2 : 2Cat → SetΘ
op
2

(∞,2) is a right Quillen embedding, and in
particular a right Quillen and homotopical functor.

3. Nerves in bisimplicial models

We devote this section to briefly recalling the main bisimplicial models of (∞, 2)-
categories, and the relevant nerve constructions and model comparisons with the material
from the previous section. We also prove the compatibility with the nerve construction
from the previous section.

The canonical inclusion Set ↪→ sSet of sets as discrete simplicial sets induces a canonical
inclusion Set (∆×∆)op ↪→ sSet (∆×∆)op , which preserves limits and colimits. In particular, we
often regard bisimplicial sets as discrete bisimplicial spaces without further specification.

For any [i, j] in ∆×∆, we denote by ∆[i, j] the bisimplicial set represented by [i, j] via
the Yoneda embedding ∆×∆ ↪→ Set (∆×∆)op .

3.1. The first model. The following mathematical object was identified by Barwick
[Bar05, §2.3] as a model of (∞, 2)-categories. It was also further studied with slightly
different presentations, by Lurie [Lur09b, Def. 1.3.6], Johnson-Freyd–Scheimbauer [JFS17,
§2] and Bergner–Rezk [BR20, Def. 5.3]. See also [Hau13, §2.2.2] and [Mos20, §4.2]. We
recall the definition for completeness, but it will not be needed in this paper.

Definition 3.1. A 2-fold complete Segal space is a bisimplicial space X : (∆×∆)op → sSet
that is local with respect to the all maps of the following types:
(1) for all i, j ≥ 0, the horizontal Segality extension

∆[1, j] ⨿
∆[0,j]

. . . ⨿
∆[0,j]

∆[1, j]→ ∆[i, j]

induced by the inclusions ⟨s− 1, s⟩ : [1]→ [i] sending 0 7→ s− 1, 1 7→ s, for 1 ≤ s ≤ i;

8In the original source, the nerve is denoted ND, as opposed to NΘ2D.
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(2) for all i, j ≥ 0, the vertical Segality extension

∆[i, 1] ⨿
∆[i,0]

. . . ⨿
∆[i,0]

∆[i, 1]→ ∆[i, j]

induced by the inclusions ⟨t− 1, t⟩ : [1]→ [j] sending 0 7→ t− 1, 1 7→ t, for 1 ≤ t ≤ j;
(3) for all j ≥ 0 the horizontal completeness extension

∆[0, j]→ ∆[0, j] ⨿
∆[1,j]

∆[3, j] ⨿
∆[1,j]

∆[0, j],

where the right-hand side is defined similarly to Definition 2.1(3);
(4) for all i ≥ 0 the vertical completeness extension

∆[i, 0]→ ∆[i, 0] ⨿
∆[i,1]

∆[i, 3] ⨿
∆[i,1]

∆[i, 0],

where the right-hand side is defined similarly to Definition 2.1(3);
(5) for all j ≥ 0, the vertical homotopical constantness extension

∆[0, 0]→ ∆[0, j]

induced by the inclusion ⟨0⟩ : [0]→ [j].

Remark 3.2. If X is a 2-fold complete Segal space, the fact that X is local with respect
to maps of the form 1 implies that for any i, j ≥ 0 the simplicial space X•,j is local with
respect to the map

∆[1] ⨿
∆[0]

. . . ⨿
∆[0]

∆[1]→ ∆[i]

induced by the inclusion ⟨s − 1, s⟩ : [1] → [i] for 1 ≤ s ≤ i. In particular, X•,j is a Segal
space.

Theorem 3.3 ([Bar05, Ch. 2]). The category sSet (∆×∆)op of bisimplicial spaces admits a
model structure, denoted sSet (∆×∆)op

(∞,2) , in which
• the fibrant objects are the injectively fibrant 2-fold complete Segal spaces, and
• the cofibrations are the monomorphisms, and in particular every object is cofibrant.

Precomposition with the functor d : ∆×∆→ Θ2, given on objects by [i, j] 7→ [i|j, . . . , j],
induces a functor d∗ : sSetΘ

op
2 → sSet (∆×∆)op . Explicitly,

(d∗X)i,j := Xd[i,j] = X[i|j,...,j].

This functor admits a right adjoint d∗, which was proven by Bergner–Rezk as [BR20,
Cor. 7.1] to be a right Quillen equivalence

(3.4) d∗ : sSet (∆×∆)op

(∞,2) → sSetΘ
op
2

(∞,2).

3.2. The nerve. A homotopically well-behaved nerve construction for bisimplicial models
was studied by the first author in [Mos20], relying on the language of double categories.
In this paper we aim at giving a presentation that is self-contained in the 2-categorical
world, so we take a slightly different viewpoint in recalling the necessary ingredients to
describe the aforementioned nerve construction.

Three functors involving the category DblCat of double categories, namely the functors
L,L≃ : DblCat → 2Cat and C : sSet∆×∆op → DblCat , are considered in [Mos20, §§2,5,6].
The composite functors LC, L≃C : sSet (∆×∆)op ∼= Set (∆×∆×∆)op → 2Cat are described
more explicitly in [Mos20, Descr. 6.3.1, 6.3.2]. The following relation between the two
functors is discussed in the proof of [Mos20, Thm 6.2.5].
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Proposition 3.5. For i, j, k ≥ 0, there is a natural biequivalence of 2-categories

L≃C∆[i, j, k]→ LC∆[i, j, k].

The following nerve construction N∆×∆D for any 2-category D was constructed by the
first author9 [Mos20, §5.1] using the functor L≃C.

Construction 3.6 ([Mos20, §5.1]). Let D be a 2-category. The nerve N∆×∆D is the
bisimplicial space given for any i, j, k ≥ 0 by

N∆×∆
i,j,k D := (N∆×∆D)i,j,k := 2Cat(L≃C∆[i, j, k],D).

The assignment extends to a functor N∆×∆ : 2Cat → sSet (∆×∆)op , which is the right
adjoint to the functor L≃C : sSet (∆×∆)op → 2Cat .

Theorem 3.7 ([Mos20, Thms 6.1.1, 6.1.3]). The functor N∆×∆ : 2Cat → sSet (∆×∆)op

(∞,2) is
a right Quillen embedding, and in particular a homotopical and right Quillen functor.

Although the functor L≃C is the one actually featuring in the definition of the nerve
N∆×∆ from Construction 3.6, for the purpose of this paper it will be sufficient to have
an explicit description of its easier version, the functor LC. In order to give such a
description, which is achieved in Proposition 3.13, we first need to discuss preliminary
material, including the 2-categories O∼

2 [i] and Õ2[k], and several flavors of tensor products
between 2-categories.

We denote by Σ[1] = [1|1] the free-living 2-cell, by ΣI the free-living 2-isomorphism, and
by O2[i] the i-th 2-truncated oriental; see e.g. [Mos20, Def. 5.1.1] for an explicit description
of this 2-category.10

Notation 3.8 ([Mos20, Def. 5.1.1]). For i ≥ 0, let O∼
2 [i] be the 2-category obtained by glu-

ing an invertible 2-cell ΣI on each generating 2-cell Σ[1] of the 2-truncated i-oriental O2[i];
it can be expressed as the pushout of 2-categories∐

([i][2])
Σ[1]

∐
([i][2])

ΣI

O2[i]

O∼
2 [i]
⌜

where the coproducts are indexed over the set of generating 2-cells of O2[i].

We denote by [1] the free-living 1-cell, and by E the free adjoint equivalence; see
e.g. [Lac04, §6] or [OR21, Not. 1.9] for an explicit description of this 2-category.

Notation 3.9 ([Mos20, Def. 5.1.1]). For k ≥ 0, let Õ2[k] be the 2-category obtained by
gluing an adjoint equivalence E on each generating 1-cell [1] of the 2-category O∼

2 [k]; it
can be expressed as the pushout of 2-categories

9In the original source, the nerve is denoted NH≃D, as opposed to N∆×∆D.
10As simplicial categories, there is an isomorphism N∗O2[i] ∼= C∆[i], where C : sSet → sCat is the left

adjoint to the homotopy coherent nerve functor.
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([k]
[1])

[1]

∐
([k]
[1])
E

O∼
2 [k]

Õ2[k]
⌜

where the coproducts are indexed over the set of generating 1-cells of O∼
2 [k].

Next, we explore choices of tensor products for 2-categories.

Remark 3.10. We consider several choices to form a 2-category of 2-functors between two
2-categories B and D, which all have 2-functors from B to D as objects, and modifications
as 2-cells, but differ in the 1-cells.
(0) The 2-category [B,D] consists of 2-functors, (strict) natural transformations, and mod-

ifications.
(1) The 2-category [B,D]ps consists of 2-functors, pseudonatural transformations, and

modifications.
(2) The 2-category [B,D]lax consists of 2-functors, lax11 natural transformations, and

modifications.
(3) The 2-category [B,D]ic consists of 2-functors, icons, and modifications. We recall that

an icon is a lax natural transformation for which each component is an identity.
The first three notions were first discussed by Gray in [Gra74, §I.2], and the last one by
Lack in [Lac10]. We refer the reader to the recent paper by Johnson–Yau [JY21, Ch. 4]
for explicit definitions. The definition of the different kinds of natural transformations
appears as [JY21, Def. 4.2.1], where they call pseudonatural transformations “strong”, the
one of icons as [JY21, Def. 4.6.2], and the one of modifications as [JY21, Def. 4.4.1].

There are canonical and natural maps of 2-categories

[B,D] ↪→ [B,D]ps ↪→ [B,D]lax ←↩ [B,D]ic.

Those constructions define functors

[−,−], [−,−]ps, [−,−]lax, [−,−]ic : 2Catop × 2Cat → 2Cat

Each of those constructions is the internal hom functor for a corresponding tensor
product which is part of a two-variable adjunction 2Cat × 2Cat → 2Cat , some of which are
discussed in [Gra74, Thm I.4.9, Thm I.4.14, Cor. I.4.17], and [Gur13, Thm 3.16].

The corresponding tensor products

×,⊗ps,⊗,⊗ic : 2Cat × 2Cat → 2Cat .

are, respectively:
(0) the cartesian product of 2-categories A× B;
(1) the pseudo Gray tensor product of 2-categories A⊗ps B;
(2) the lax Gray tensor product of 2-categories A⊗ B; and
(3) a construction that we may call the icon tensor product of 2-categories A⊗ic B.

11There are different conventions in the literature for the meaning of the word lax (as opposed to oplax
or colax), with equivalent resulting theories. The convention that we follow in this paper is consistent
with the one used in e.g. in [Lac10, JFS17, Hau21], and it is opposite to the conventions of e.g. [Gur13,
AL20, AM20].
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They are related via canonical and natural maps of 2-categories

A× B ← A⊗ps B ← A⊗ B → A⊗ic B.
Here, the left-pointing maps are classical (see e.g. [Gra74, §I.4.24] and [Gur13, Cor. 3.22]),
and the right-pointing map is a consequence of Lemma 3.11.

To highlight the difference between the four flavors, the four tensor products of the
category [1] with itself, or equivalently the corresponding naturality square, look as follows.

•

•

•

•
[1]× [1]

(0)

•

•

•

•

∼=

[1]⊗ps [1]

(1)

•

•

•

•
[1]⊗ [1]

(2)

•

•

•

•
[1]⊗ic [1]

(3)

Recall that the inclusion functor Set ↪→ Cat that regards every set as a discrete category
admits left and right adjoint functors π0,Ob: Cat → Set . They send a category D to the
set π0D of equivalence classes of its objects modulo the relation of being connected by
a zigzag of 1-morphisms, and to the set of objects ObD of D, respectively. The functor
Ob: Cat → Set also admits a right adjoint functor ch: Set → Cat , which sends a set S to
the 1-category chS whose set of objects is S and which has exactly one morphism between
any pair of objects.

These functors induce by base-change functors (π0)∗,Ob∗ : 2Cat → Cat which are left
and right adjoint to the inclusion functor Cat ↪→ 2Cat that regards every category as a
discrete 2-category. They send a 2-category D to the category (π0)∗D with the same
objects as D and hom-sets between two objects c, d in D given by π0(D(c, d)), and to its
underlying category Ob∗D obtained by forgetting the 2-morphisms, respectively.12 By
base-change, we also get a right adjoint ch∗ : Cat → 2Cat for the functor Ob∗ : 2Cat → Cat ,
which sends a category C to the 2-category ch∗ C whose underlying category is C and which
has exactly one 2-cell between any pair of parallel 1-cells.

Lemma 3.11. For any 2-categories A and B there is a pushout of 2-categories
Ob∗A⊗ObB

π0(Ob∗A)⊗ObB

A⊗ B

A⊗ic B .
⌜

Proof. The statement follows formally from the fact that for any 2-categories B and D the
commutative square

[B,D]ic

∏
ObB

ObD

[B,D]lax

∏
ObB

ch∗ Ob∗D

⌟

is a pullback of 2-categories. □

The following lemma can be understood as a special instance of [AL20, Prop. 4.5].

12The constructions Ob C, π0C, Ob∗ D and (π0)∗D correspond to τb≤0C, τ i≤0C, τb≤1D, and τ i≤1D,
respectively, following [AM20, §1.2], for a category C and a 2-category D.
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Lemma 3.12. Given any 2-category A in which any 1-morphism is an equivalence, and
any 2-category B, the canonical map is an isomorphism of 2-categories

A⊗ B
∼=−→ A⊗ps B.

Proof. First, observe we have the following commutative diagram of 2-categories.∐
MorA×MorB

Σ[1]

∐
MorA×MorB

ΣI

∐
MorA×MorB

[1]⊗ [1]

∐
MorA×MorB

[1]⊗ps [1]

A⊗ B

A⊗ps B
⌜ ⌜

Here, the external and left-hand commutative squares are pushouts, so the right-hand one
is too. If B meets the assumptions of the lemma, the map

∐
[1] ⊗ [1] → A ⊗ B factors

through the canonical inclusion
∐
[1] ⊗ [1] →

∐
E ⊗ [1] and we obtain a lift in the above

right-hand square, constructed as follows.

∐
MorA×MorB

[1]⊗ [1]

∐
MorA×MorB

[1]⊗ps [1]

∐
MorA×MorB

E ⊗ [1]

∐
MorA×MorB

E ⊗ps [1]

A⊗ B

A⊗ps B

It follows from the universal property of pushouts that in any pushout square that admits
a diagonal lift the right vertical map is an isomorphism of 2-categories, which concludes
the proof. □

With the following proposition, we can now give an explicit description of the functor L
on representable presheaves ∆[i, j, k]. It could be taken as a definition by the reader who
encounters it for the first time, or as a statement for the reader who is familiar with the
double categorical framework, whose necessary ingredients we recall in the proof.

Proposition 3.13. For i, j, k ≥ 0 there is a natural isomorphism of 2-categories

LC∆[i, j, k] ∼= O∼
2 [j]⊗ic (O∼

2 [i]⊗ps Õ2[k]).

Proof. First, we recall the relevant constructions and definitions from [Mos20] needed to
prove the desired claim.
(Recall 1) The horizontal and vertical embeddings H,V : 2Cat → DblCat , which regard any

2-category D as a horizontal and vertical double category, recalled as [Mos20,
Def. 2.1.7, Rmk 2.1.10].

(Recall 2) Their respective right adjoint functors H,V : DblCat → 2Cat , namely the un-
derlying horizontal and vertical 2-category functors, are discussed in [Mos20,
Def. 2.1.8, Rmk 2.1.10].

(Recall 3) The functor C : Set (∆×∆×∆)op → DblCat from [Mos20, Prop. 5.1.4].
(Recall 4) The left adjoint functor L : DblCat → 2Cat of H, discussed in [MSV22, §6].
(Recall 5) The pseudo hom double category J−,−K : DblCatop × DblCat → DblCat from

[Böh20, §2.2].
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(Recall 6) The corresponding pseudo Gray tensor product of double categories of [Böh20]
⊗dbl

ps : DblCat ×DblCat → DblCat .
Next, we collect a few important facts that we will use.
(Obs. 1) For any 2-categories B and D, there is a natural isomorphism of 2-categories

VJHB,HDK ∼= [B,D]ic.

This can be deduced from a careful analysis of the involved 2-categories.
(Obs. 2) For i, j, k ≥ 0, by [Mos20, Def. 2.2.4, Def. 5.1.3] the value of C at ∆[i, j, k] is

given by the 2-category

Xi,j,k = C∆[i, j, k] = VO∼
2 [j]⊗dbl

ps HO∼
2 [i]⊗dbl

ps HÕ2[k].

(Obs. 3) By [MSV22, Lem. 7.8], for any 2-categories A and B, there is an isomorphism of
double categories

HA⊗dbl
ps HB ∼= H(A⊗ps B).

Now, for any 2-category D and i, j, k ≥ 0, we obtain natural bijections

2Cat(LC∆[i, j, k],D) ∼= DblCat(C∆[i, j, k],HD) (Recall 4)

∼= DblCat(VO∼
2 [j]⊗dbl

ps HO∼
2 [i]⊗dbl

ps HÕ2[k],HD) (Obs. 2)

∼= DblCat(VO∼
2 [j]⊗dbl

ps H(O∼
2 [i]⊗ps Õ2[k]),HD) (Obs. 3)

∼= DblCat(VO∼
2 [j], JH(O∼

2 [i]⊗ps Õ2[k]),HDK) (Recall 5)

∼= 2Cat(O∼
2 [j],VJH(O∼

2 [i]⊗ps Õ2[k]),HDK) (Recall 2)

∼= 2Cat(O∼
2 [j], [O∼

2 [i]⊗ps Õ2[k],D]ic) (Obs. 1)

∼= 2Cat(O∼
2 [j]⊗ic (O∼

2 [i]⊗ps Õ2[k]),D). Rmk 3.10

The claim then follows from the Yoneda lemma. □

3.3. Nerve comparison. We study the compatibility between N∆×∆ and NΘ2 .

Lemma 3.14. For any 2-category θ in Θ2 there is an isomorphism of bisimplicial sets

d∗Θ2[θ] = d∗NΘ2θ ∼= N∆×∆
i,j,0 θ.

Proof. As a preliminary observation, there is a canonical map

O∼
2 [j]⊗ic O∼

2 [i]→ [j]⊗ic [i] ∼= [i|j, . . . , j],

that can be seen by inspection to be a biequivalence.
Given that the 2-category θ is gaunt, namely it does not have any non-identity 2-

isomorphisms and any non-identity 1-equivalences, the functor 2Cat(−, θ) sends biequiva-
lences to bijections, and the functors 2Cat(−, θ) and 2Catnps(−, θ) are isomorphic. Hence,
for any i, j ≥ 0 we find natural bijections

(d∗NΘ2θ)i,j = NΘ2

d[i,j]θ = NΘ2

[i|j,...,j]θ
∼= 2Catnps([i|j, . . . , j], θ)

∼= 2Cat([i|j, . . . , j], θ) ∼= 2Cat(O∼
2 [j]⊗ic O∼

2 [i], θ)

∼= 2Cat(LC∆[i, j, 0], θ) ∼= N∆×∆
i,j,0 θ,

as desired. □
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Theorem 3.15. For any 2-category D there is a natural isomorphism of Θ2-sets

d∗N
∆×∆
•,0 D ∼= NΘ2D.

The crucial technical computation occurring in the proof is proven later as Proposi-
tion C.8.

Proof of Theorem 3.15. For any 2-category D and any object θ in Θ2 there is a natural
bijection

d∗N
∆×∆
θ,0 D ∼= sSetΘ

op
2 (Θ2[θ], d∗N

∆×∆D)
∼= sSet (∆×∆)op(d∗Θ2[θ],N

∆×∆D) d∗ ⊣ d∗
∼= sSet (∆×∆)op(d∗NΘ2θ,N∆×∆D) Lemma 3.14
∼= sSet (∆×∆)op(N∆×∆θ,N∆×∆D) Lemma 3.14
∼= 2Catnps(θ,D) Proposition C.8
∼= NΘ2

θ D,

as desired. □

Recall the right Quillen equivalences from (2.5) and (3.4) and the nerve constructions
from Constructions 2.6 and 3.6.

Corollary 3.16. The diagram of ∞-categories

[2Cat ]∞

[sSetΘ
op
2

(∞,2)]∞[sSet (∆×∆)op

(∞,2) ]∞ [SetΘ
op
2

(∞,2)]∞

[N∆×∆]∞ [NΘ2 ]∞

[d∗]∞ [(−)•,0]∞

commutes up to equivalence.

Proof. The corollary is an application of the “right Quillen” version of Lemma A.1 to the
diagram

2Cat

sSetΘ
op
2

(∞,2)
sSet (∆×∆)op

(∞,2) SetΘ
op
2

(∞,2) .

N∆×∆ NΘ2

d∗ (−)•,0

The fact that all the assumptions of the lemma are met is from Theorems 2.7, 3.7 and 3.15.
□

3.4. A further model. Alternative models of (∞, 2)-categories, due to Bergner–Rezk,
arises as the class of fibrant objects of two model structures on the category PCat(sSet∆op

),
see [BR13, §6.7, §6.11]. Here, PCat(sSet∆op

) denotes the full subcategory of sSet (∆×∆)op

spanned by the bisimpicial spaces X for which X0 is a set. We refer to those as precategory
objects in simplicial spaces.13 One is referred to as the injective-like model structure on

13In the original source those are referred to as Segal precategories in simplicial spaces.
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PCat(sSet∆op

), and one as the projective-like. In this paper, we make use of the projective-
like, which we denote PCat(sSet∆op

)(∞,2). We will never need an explicit description of
this model structure, and we only use the fact that it comes with two Quillen equivalences,
which will be recalled as (3.17) and (4.6).

The canonical inclusion functor I : PCat(sSet∆op

) ↪→ sSet (∆×∆)op admits a right ad-
joint R, which was proven by Bergner–Rezk as [BR20, Prop. 9.5, Thm 9.6] to be a right
Quillen equivalence

(3.17) R : sSet (∆×∆)op

(∞,2) → PCat(sSet∆
op

)(∞,2).

The functor I : PCat(sSet∆op

)(∞,2) → sSet (∆×∆)op

(∞,2) reflects weak equivalences between
precategories, in the sense of the following lemma.

Lemma 3.18. The functor I : PCat(sSet∆op

)(∞,2) → sSet (∆×∆)op

(∞,2) reflects weak equiv-
alences. That is, if f : X → Y is a map in PCat(sSet∆op

)(∞,2) such that its image
If : IX → IY is a weak equivalence in sSet (∆×∆)op

(∞,2) , then f : X → Y is a weak equiv-
alence in PCat(sSet∆op

)(∞,2).

This statement already occurs in the proof of [BR20, Thm 9.6], recalling from [BR13,
§6.7, §6.11] that the weak equivalences of the two model structures from [BR13, §6] con-
sidered on PCat(sSet∆op

) coincide. We recollect an outline of the argument here for the
reader’s convenience.

Proof. Bergner–Rezk introduce a functor L : PCat(sSet∆op

)→ PCat(sSet∆op

) and natural
weak equivalence X ≃−→ LX in sSet (∆×∆)op

(∞,2) for every X in PCat(sSet∆op

), in [BR13, §6.7].
By construction, LX is an injectively fibrant Segal space. It is discussed in [BR13, §6.7,
§6.11] that the functor L detects weak equivalences of PCat(sSet∆op

)(∞,2) in the following
sense: a map f : X → Y in PCat(sSet∆op

) is a weak equivalence in PCat(sSet∆op

)(∞,2) if
and only if the induced map Lf : LX → LY is a Dwyer–Kan equivalence in the sense of
[BR20, Def. 8.2].

Now assume a map f : X → Y in PCat(sSet∆op

) is a weak equivalence viewed as
If : IX → IY in sSet (∆×∆)op

(∞,2) . We consider the commutative diagram

X

LX

Y

LY .

By assumption and by construction of L, all but possibly the lower horizontal map are
weak equivalences in sSet (∆×∆)op

(∞,2) . By 2-out-of-3, the lower horizontal map must also be.
Now once again by construction, its source and target are (injectively fibrant) Segal spaces.
By [BR20, Thm 8.18], this being a weak equivalence in sSet (∆×∆)op

(∞,2) is equivalent to being a
Dwyer–Kan equivalence, thus showing that f is a weak equivalence in PCat(sSet∆op

)(∞,2),
as desired. □

From [BR20, §9], for any bisimplicial space X, the value RX of the right adjoint R to
the inclusion of PCat(sSet∆op

) into trisimplicial sets can be understood as the following
pullback in trisimplicial sets.
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(3.19)

RX

X

cosk0(X0,0,0)

cosk0(X0,•)

⌟

Here, cosk0 : sSet∆
op → sSet∆×∆op

denotes the 0-th coskeleton functor used in [BR20, §9].
We give an alternative description of RX.

Remark 3.20. For i, j, k ≥ 0, let ∆[i, j, k] denote the following pushout of bisimplicial
spaces. ∐

i+1

∆[0, j, k]

∐
i+1

∆[0, 0, 0]

∆[i, j, k]

∆[i, j, k]
⌜

Notice that, although not all objects occurring in the span belong to PCat(sSet∆op

), the
pushout ∆[i, j, k] does in fact belong to PCat(sSet∆op

).
Given the pullback (3.19), we deduce that for any bisimplicial space X there is a natural

bijection
(RX)i,j,k ∼= sSet (∆×∆)op(∆[i, j, k], X).

Remark 3.21. For any j, k ≥ 0 there is an isomorphism of bisimplicial spaces

∆[0, j, k] ∼= ∆[0, 0, 0].

3.5. The nerve. In the remainder of this subsection, we study the bisimplicial space
RN∆×∆D, which will be relevant in addressing the compatibility of the nerve constructions
for bisimplicial and enriched models.

Remark 3.22. Observe that for any i, j, k ≥ 0 and D a 2-category there is a natural
bijection

(RN∆×∆D)i,j,k ∼= sSet (∆×∆)op(∆[i, j, k],N∆×∆D) ∼= 2Cat(L≃C∆[i, j, k],D).

Proposition 3.23. For any i, j, k ≥ 0 there is a natural isomorphism of 2-categories

L≃C∆[i, j, k] ∼= LC∆[i, j, k].

In particular, for any 2-category D and i, j, k ≥ 0 there is a natural bijection

(RN∆×∆D)i,j,k ∼= 2Cat(L≃C∆[i, j, k],D) ∼= 2Cat(LC∆[i, j, k],D).

The proof relies on the following lemma.

Lemma 3.24. For any i, j, k ≥ 0 there is a pushout of 2-categories∐
i+1

∐
k+1

L≃C∆[0, j, 0]

∐
i+1

∐
k+1

[0]

L≃C∆[i, j, k]

LC∆[i, j, k] .
⌜

Proof. Let P be the pushout of the span of 2-categories
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i+1

∐
k+1

[0]
∐
i+1

∐
k+1

L≃C∆[0, j, 0] L≃C∆[i, j, k] .

Using the naturality of the map in Proposition 3.5, we get an induced commutative diagram
of 2-categories. ∐

i+1

∐
k+1

L≃C∆[0, j, 0]

∐
i+1

∐
k+1

[0]

L≃C∆[i, j, k]

P

LC∆[i, j, k]

⌜

In the diagram, the left vertical map is a coproduct of the biequivalence

L≃C∆[0, j, 0]→ LC∆[0, j, 0] ∼= O∼
2 [j]⊗ic (O∼

2 [0]⊗ps Õ2[0]) ∼= [0],

built using Propositions 3.5 and 3.13, so it is a biequivalence itself.
Also, the top horizontal map is obtained by applying the composite left Quillen functor

L≃C : sSet (∆×∆)op → 2Cat from Theorem 3.7 to the cofibration∐
i+1

∐
k+1

∆[0, j, 0]→ ∆[i, j, k],

so it is a cofibration itself.
Since the model structure on 2Cat is left proper by [Lac02, Thm 6.3] (see also [Lac04,

§2]), it follows that the bottom horizontal map

L≃C∆[i, j, k]→ P

is also a biequivalence. Since the map L≃C∆[i, j, k] → LC∆[i, j, k] is a biequivalence by
Proposition 3.5, then by 2-out-of-3 the comparison map

P → LC∆[i, j, k]

is also a biequivalence. Using the explicit description from [Mos20, Desc. 6.3.1], we now see
that this comparison map is an isomorphism on underlying 1-categories, which is sufficient
to conclude that it must in fact be an isomorphism of 2-categories, as biequivalences are
in particular isomorphisms on 2-morphisms. □

We can now prove the proposition.

Proof of Proposition 3.23. We argue that for any i, j, k ≥ 0 there is an isomorphism of
2-categories

(3.25) L≃C∆[i, j, k] ∼= LC∆[i, j, k]

that is natural in i, j, k.
To this end, we consider the following commutative diagram in of 2-categories.
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i+1

∐
k+1

[0]
∐
i+1

∐
k+1

[0]
∐
i+1

∐
k+1

[0]

∐
i+1

∐
k+1

[0]
∐
i+1

∐
k+1

L≃C∆[0, j, 0]
∐
i+1

∐
k+1

L≃C∆[0, j, 0]

∐
i+1

[0]
∐
i+1

L≃C∆[0, j, k] L≃C∆[i, j, k]

The colimit of this diagram can be equivalently computed by either taking the colimit of
the colimit of each row, or by taking the colimit of the colimit of each column.

On the one hand, by Remark 3.20 and using the fact that L≃ is a left adjoint functor,
the colimit of each row produces the span of 2-categories∐

i+1

∐
k+1

[0]

∐
i+1

∐
k+1

[0]

L≃C∆[i, j, k]

whose pushout is L≃C∆[i, j, k].
On the other hand, by Lemma 3.24 we see that the pushout of each column produces

the following span of 2-categories∐
i+1

[0]
∐
i+1

LC∆[0, j, k] LC∆[i, j, k]

and by Remark 3.20 and using the fact that L and C are left adjoint functors, its colimit
is LC∆[i, j, k].

Hence, the isomorphism (3.25) follows. □

Remark 3.26. Given any 2-category D, combining Theorem 3.7 and (3.17) we know that
RN∆×∆D is fibrant in PCat(sSet∆op

)(∞,2). By Remark 3.2, for any j ≥ 0 we know that
(RN∆×∆D)•,j is a Segal space. It follows that for any i, j ≥ 0 we have a weak equivalence
of spaces

(RN∆×∆D)i,j ≃ (RN∆×∆D)1,j ×
(RN∆×∆D)0,j

. . . ×
(RN∆×∆D)0,j

(RN∆×∆D)1,j .

This motivates us to understand better the sets (RN∆×∆D)0,j,k and (RN∆×∆D)1,j,k,
which we achieve in Propositions 3.27 and 3.30.

Proposition 3.27. For any 2-category D and j, k ≥ 0 there is a natural bijection

(RN∆×∆D)0,j,k ∼= ObD.
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Proof. By Remarks 3.20 and 3.21, for any j, k ≥ 0, we have a natural bijection

(RN∆×∆D)0,j,k ∼= sSet (∆×∆)op(∆[0, j, k],N∆×∆D)
∼= sSet (∆×∆)op(∆[0, 0, 0],N∆×∆D)
∼= N∆×∆

0,0,0 D ∼= 2Cat([0],D) ∼= ObD,
as desired. □

We now proceed to describing (RN∆×∆D)1,j,k, which requires some extra work.
Given any category A, we denote by ΣA the 2-point suspension of A, which consists of

two distinct objects and a single interesting hom-category given by A. The construction
extends to a left adjoint functor Σ: Cat → 2Cat∗,∗.

Lemma 3.28. For any 2-category A there is a pushout of 2-categories

A⨿A

A⊗ [1]

[0]⨿ [0]

Σ(π0)∗A .
⌜

Proof. If we denote by PA the following pushout of 2-categories,

A⨿A

A⊗ [1]

[0]⨿ [0]

PA
⌜

this construction can also be regarded as a left adjoint functor P : 2Cat → 2Cat∗,∗. At the
same time, also Σ(π0)∗ defines a left adjoint functor Σ(π0)∗ : 2Cat → 2Cat∗,∗. One can
now prove by direct inspection that for any i-cell Σi[1] for i = 0, 1, 2, there is a natural
isomorphism of bipointed 2-categories

PΣi[1] ∼= Σ(π0)∗Σ
i[1].

It follows by cocontinuity that for every 2-category A there is an isomorphism of (bi-
pointed) 2-categories

PA ∼= Σ(π0)∗A,
concluding the proof. □

For j, k ≥ 0, we let [̃k] denote the unique contractible groupoid with k + 1 objects,
namely the category with k+ 1 objects and a unique morphism between any two objects,
and Σ([j] × [̃k]) the 2-point suspension of the 1-category [j] × [̃k]. This is the 2-category
with two objects and a single interesting hom-category given by [j]× [̃k].

Lemma 3.29. For any j, k ≥ 0 there is a pushout of 2-categories

LC∆[0, j, k]⨿ LC∆[0, j, k]

LC∆[1, j, k]

[0]⨿ [0]

Σ([j]× [̃k]) .
⌜
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Proof. Denote by P the following pushout of 2-categories.

LC∆[0, j, k]⨿ LC∆[0, j, k]

LC∆[1, j, k]

[0]⨿ [0]

P
⌜

Consider the following commutative diagram of 2-categories.

π0(Ob∗O∼
2 [j])⊗Ob([1]⊗ps Õ2[k])

∐
2
π0(Ob∗O∼

2 [j])⊗Ob Õ2[k]
∐
2
[0]

Ob∗O∼
2 [j]⊗Ob([1]⊗ps Õ2[k])

∐
2
Ob∗O∼

2 [j]⊗Ob Õ2[k]
∐
2
[0]

O∼
2 [j]⊗ ([1]⊗ps Õ2[k])

∐
2
O∼

2 [j]⊗ Õ2[k]
∐
2
[0]

∼=

∼=

The colimit of this diagram can be equivalently computed by either taking the colimit of
the colimit of each row, or by taking the colimit of the colimit of each column.

By doing pushouts of each column first, we get using Lemma 3.11 the pushout of the
span

O∼
2 [j]⊗ic ([1]⊗ps Õ2[k])

∐
2
O∼

2 [j]⊗ic Õ2[k]
∐
2
[0] .

By Proposition 3.13, we identify the pushout to be computed as the pushout of the span

LC∆[1, j, k]
∐
2
LC∆[0, j, k]

∐
2
[0]

which gives precisely P.
Now note that there are natural isomorphisms of 2-categories

O∼
2 [j]⊗ ([1]⊗ps Õ2[k]) ∼= O∼

2 [j]⊗ (Õ2[k]⊗ps [1]) symmetry of ⊗ps

∼= O∼
2 [j]⊗ (Õ2[k]⊗ [1]) Lemma 3.12

∼= (O∼
2 [j]⊗ Õ2[k])⊗ [1]. associativity of ⊗

By doing pushouts of each row, we get using the above isomorphism and Lemma 3.28
applied to A = O∼

2 [j]⊗ Õ2[k] the pushout of the span
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i+1

[0]

∐
i+1

[0]

Σ(π0)∗(O∼
2 [j]⊗ Õ2[k])

which gives precisely Σ(π0)∗(O∼
2 [j] ⊗ Õ2[k]). Combining [AM20, Prop. A.27, §A.31], re-

membering that (π0)∗D ∼= τ i≤1D, we obtain that for any j, k ≥ 0, there are natural
isomorphisms of 2-categories

Σ(π0)∗(O∼
2 [j]⊗ Õ2[k]) ∼= Σ(((π0)∗O∼

2 [j])× ((π0)∗Õ2[k]))

∼= Σ([j]× [̃k]).

So the desired isomorphism follows. □

We can now describe (RN∆×∆D)1,j,k.

Proposition 3.30. For any j, k ≥ 0 there is a natural isomorphism of 2-categories

LC∆[1, j, k] ∼= Σ([j]× [̃k]).

In particular, for any 2-category D and j, k ≥ 0 there is a natural bijection

(RN∆×∆D)1,j,k ∼= 2Cat(L≃C∆[1, j, k],D) ∼= 2Cat(Σ([j]× [̃k]),D).

Proof. We show that for j, k ≥ 0 there is a natural isomorphism of 2-categories

(3.31) LC∆[1, j, k] ∼= Σ([j]× [̃k]).

By Remark 3.20, we know that ∆[1, j, k] is the pushout of the span

∆[0, 0, 0]⨿∆[0, 0, 0] ∆[0, j, k]⨿∆[0, j, k] ∆[1, j, k] .

Since L and C are left adjoint functors, we obtain that LC∆[1, j, k] is the pushout of the
span

[0]⨿ [0] LC∆[0, j, k]⨿ LC∆[0, j, k] LC∆[1, j, k] .

By Lemma 3.29, its pushout is Σ([j]× [̃k]). Hence, the isomorphism (3.31) follows.
The second part of the statement is a consequence of the above isomorphism and Propo-

sition 3.23. □

4. Nerves in categories enriched over (∞, 1)-categories

We refer the reader to [Lur09a, Def. A.3.2.16] for the definition of an excellent monoidal
model category. The following cases are relevant in this paper.
(0) Let V = Cat be the canonical model structure on the category Cat of small categories

(see e.g. [Rez96]), which is seen to be excellent using the fact that the ordinary nerve
functor N : Cat → sSet (∞,1) creates weak equivalences and commutes with filtered
colimits.
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(1) Let V = sSet (∞,1) be the Joyal model structure on the category sSet of simplicial sets
from [Joy08b, Thm 6.12], which is excellent by [Lur09a, Ex. A.3.2.23].

(2) Let V = sSet∆op

(∞,1) being the Rezk model structure from [Rez01, Thm 7.2] on the
category sSet∆op

of simplicial spaces, which is discussed to be excellent in [BR13,
Thm 3.11].

(3) Let V = sSet+(∞,1) be the Lurie model structure on the category sSet+ of marked
simplicial sets from [Lur09a, Prop. 3.1.3.7], which is excellent by [Lur09a, Ex. A.3.2.22].

4.1. The models. All enriched models of (∞, 2)-categories will be a special case of the
following.

Definition 4.1. Let V be an excellent monoidal model category. A locally fibrant V-
category is a V-category D for which for any pair of objects c, d in D the hom-object
D(c, d) is fibrant in V.

Theorem 4.2 ([Lur09a, Thm A.3.2.24]). Let V be an excellent monoidal model category.
The category of small categories enriched over V admits a model structure in which
• the fibrant objects are the locally fibrant V-categories, and
• the trivial fibrations are precisely the V-functors that are surjective on objects, and locally

a trivial fibration in V.
We denote this model structure by CatV .

We specialize this construction to the following cartesian model categories.
(0) Let V = Cat be the canonical model structure. We then obtain precisely the model

category CatCat = 2Cat from Theorem 1.1, as discussed in [BM13, Ex. 1.8], in which
every object is fibrant.

(1) Let V = sSet (∞,1) be the Joyal model structure. We then obtain the model cate-
gory CatsSet(∞,1)

, in which the fibrant objects are the categories enriched over quasi-
categories.

(2) Let V = sSet∆op

(∞,1) being the Rezk model structure. We then obtain the model category
CatsSet∆op

(∞,1)
, in which the fibrant objects are the categories enriched over complete Segal

spaces.
(3) Let V = sSet+(∞,1) be the Lurie model structure on the category sSet+. We then

obtain the model category CatsSet+
(∞,1)

, in which the fibrant objects are the categories
enriched over naturally marked quasi-categories.

We recall from [Cru09, Thm 4.2.4] or [EK66] that any lax monoidal functor F : V → V ′

induces a base-change functor F∗ : CatV → CatV′ . This is in particular the case when
F is (strong) monoidal. For any V-category D, the V ′-category F∗D has the same set
of objects as D, and for any two objects c, d in D the hom-categories are defined by
(F∗D)(c, d) := F (D(c, d)). If F : V → V ′ is a right adjoint functor with a monoidal left
adjoint functor L : V ′ → V, then L∗ is the left adjoint of F∗.

Proposition 4.3. Let V, V ′ be excellent monoidal model categories, and F : V → V ′ a
right adjoint functor whose left adjoint functor is monoidal. Denote by F∗ : CatV → CatV′

the induced base-change functor.
(1) If F is a right Quillen functor, then F∗ is a right Quillen functor.
(2) If F is a right Quillen embedding, then F∗ is a right Quillen embedding.
(3) If F is a Quillen equivalence, then F∗ is a Quillen equivalence.
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Proof. Parts (1) and (3) are treated in [Lur09a, Rmk. A.3.2.6], while Part (2) can easily
be verified as a variant of (3). □

As special cases, we obtain the following model comparison functors.
(a) The functor (−)•,0 : sSet∆

op → sSet is shown to be a right Quillen equivalence in
[JT07, §4] and its left adjoint is product-preserving because it is a right adjoint itself,
as discussed e.g. in [JT07, §2]. We then obtain a right Quillen equivalence

((−)•,0)∗ : CatsSet∆op

(∞,1)
→ CatsSet(∞,1)

.

(b) The underlying simplicial set functor U : sSet+ → sSet is a right Quillen equivalence
by [Lur09a, Thm 3.1.5.1] and its left adjoint, given by the functor (−)♭ : sSet → sSet+
which marks a simplicial set minimally, preserves finite products. We then obtain a
right Quillen equivalence

U∗ : CatsSet+
(∞,1)

→ CatsSet(∞,1)
.

4.2. The nerves. The proposition can also be used to produce valuable nerve construc-
tions.

Construction 4.4. All the following base-change functors are special instances of Propo-
sition 4.3.
(1) The ordinary nerve functor N : Cat → sSet is a right Quillen embedding and its left

adjoint functor preserves finite products by [Joy08b, Prop. B.0.15], there attributed
to Gabriel–Zisman. We then obtain a right Quillen embedding

N∗ : 2Cat → CatsSet(∞,1)
.

(2) The natural nerve functor 14 N♮ : Cat → sSet+ from [GHL22, Formula (1.1)] is a right
Quillen embedding by [GHL22, Lem. 1.9] and its left adjoint preserves finite products
by [GHL22, §1.1]. We then obtain a right Quillen embedding

N♮
∗ : 2Cat → CatsSet+

(∞,1)
.

(3) The Rezk nerve functor15 NR : Cat → sSet∆op

from [Rez01, §3.5]and recalled in Ap-
pendix B is a right Quillen embedding by Proposition B.3 and we verify that its
left adjoint preserves finite products in Lemma B.2. We then obtain a right Quillen
embedding

NR
∗ : 2Cat → CatsSet∆op

(∞,1)
.

The three nerve constructions are compatible with each other, as the next corollary
shows.

Corollary 4.5. The diagram of ∞-categories

[2Cat ]∞

[CatsSet(∞,1)
]∞[CatsSet∆op

(∞,1)
]∞ [CatsSet+

(∞,1)
]∞

[NR
∗ ]∞ [N♮

∗]∞

[((−)•,0)∗]∞ [U∗]∞

[N∗]∞

14In the original source, N♮D is obtained as the value of a composite functor N+ιD.
15In the original source, NRC is the classifying diagram of C, denoted ND.
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commutes up to equivalence.

Proof. The corollary is an application of the “right Quillen” version of Lemma A.1 to the
following diagram.

2Cat

CatsSet(∞,1)CatsSet∆op

(∞,1)
CatsSet+

(∞,1)

NR
∗ N♮

∗

((−)•,0)∗ U∗

N∗

The fact that the diagram commutes up to isomorphism is a consequence of the fact that
the diagram

Cat

sSet (∞,1)sSet∆op

(∞,1) sSet+(∞,1)

NR N♮

((−)•,0) U

N

commutes up to isomorphism. □

4.3. Nerve comparison. Bergner–Rezk consider an enriched nerve functor in [BR13,
Def. 7.3], obtained by regarding a bisimplicial category as a simplicial object in simplicial
spaces, and show that it defines a right Quillen equivalence

(4.6) R : CatsSet∆op

(∞,1)
→ PCat(sSet∆

op

)(∞,2).

If Q is a category enriched over simplicial spaces with object set Q0, and Q1 denotes the
simplicial space

Q1 =
∐

a,b∈Q0

Q(a, b),

by definition of R (as given in [BR13, Def. 7.3]) there are isomorphisms of bisimplicial sets

(RQ)0 ∼= Q0 and (RQ)1 ∼= Q1,

and for any i ≥ 0

(4.7) (RQ)i ∼= Q1 ×
Q0

Q1 ×
Q0

. . . ×
Q0

Q1︸ ︷︷ ︸
i

.

First, we aim at giving an explicit description for (RNR
∗ D)i,j,k, which we achieve in

Proposition 4.9.
Given any category A and i ≥ 0, we define inductively a 2-category ΣiA, called the

(i + 1)-point suspension of A. We set Σ0A := [0], and for i ≥ 1 the 2-category ΣiA can
be understood as the pushout of 2-categories

[0]

ΣA

Σi−1A

ΣiA .
⌜

The construction extends to a functor Σi : Cat → 2Cat∗,∗.
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Lemma 4.8. Given a category A and i ≥ 1 there is a pushout of 2-categories∐
i+1

A

A⊗ [i]

∐
i+1

[0]

Σi(π0)∗A .
⌜

Proof. The statement can be proven by induction on i ≥ 1. The basis of the induction,
namely the case i = 1, is precisely Lemma 3.28, and we now show the inductive step.

For i > 1, denote by P the following pushout.∐
i+1

A

A⊗ [i]

∐
i+1

[0]

P
⌜

Consider the following commutative diagram of 2-categories.

A⊗ [1] A⨿A [0]⨿ [0]

A A [0]

A⊗ [i− 1]
∐
i

A
∐
i

[0]

The colimit of this diagram can be equivalently computed by either taking the colimit of
the colimits of each row, or by taking the colimit of the colimits of each column. Following
the first procedure, the resulting 2-category is the pushout of the span

A⊗ [i]
∐
i+1

A
∐
i+1

[0]

which gives precisely P.
Instead, following the second procedure, the resulting 2-category is by induction hy-

pothesis the pushout of the span

Σ(π0)∗A

[0]

Σi−1(π0)∗A
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which is Σi(π0)∗A. So the desired isomorphism follows. □

For i, j, k ≥ 0, let Σi([j]× [̃k]) denote the (i+ 1)-point suspension of [j]× [̃k], which is
obtained by gluing i consecutive copies of Σ([j]× [̃k]).

Proposition 4.9. For any 2-category D and i, j, k ≥ 0 we have a natural bijection

(RNR
∗ D)i,j,k ∼= 2Cat(Σi([j]× [̃k]),D).

Proof. For any i ≥ 0 we have a natural isomorphism of bisimplicial spaces(
RNR

∗ D
)
i
∼= (NR

∗ D)1 ×
(NR

∗ D)0

(NR
∗ D)1 ×

(NR
∗ D)0

. . . ×
(NR

∗ D)0

(NR
∗ D)1

∼= (NR
∗ D)1 ×

ObD
(NR

∗ D)1 ×
ObD

. . . ×
ObD

(NR
∗ D)1

∼=
∐

d0,...,di∈ObD

NRD(d0, d1)×NRD(d1, d2)× . . .×NRD(di−1, di)

induced by the Segal maps. So for any j, k ≥ 0 we get a natural bijection(
RNR

∗ D
)
i,j,k
∼=

∐
d0,...,di∈ObD

NRD(d0, d1)j,k × . . .×NRD(di−1, di)j,k

∼=
∐

d0,...,di∈ObD

Cat([j]× [̃k],D(d0, d1))× . . .× Cat([j]× [̃k],D(di−1, di))

∼= 2Cat(Σi([j]× [̃k]),D),

as desired. □

Next, we show the comparison between RNR
∗ D and RN∆×∆D.

Theorem 4.10. For any 2-category D there is a natural map of bisimplicial spaces

RNR
∗ D → RN∆×∆D

that is a weak equivalence in sSet (∆×∆)op

(∞,2) and in PCat(sSet∆op

)(∞,2).

First, we give a more general version of Lemma 3.29.

Lemma 4.11. For any i, j, k ≥ 0 there is a pushout of 2-categories∐
i+1

O∼
2 [j]⊗ic Õ2[k]

O∼
2 [j]⊗ic ([i]⊗ps Õ2[k])

∐
i+1

[0]

Σi([j]× [̃k]) .
⌜

Proof. The proof is similar to Lemma 3.29 replacing [1] with [i] and using Lemma 4.8. □

We can now prove the theorem.

Proof of Theorem 4.10. We first build the desired map. To this end, consider the following
map of spans.
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O∼
2 [j]⊗ic (O∼

2 [i]⊗ps Õ2[k])
∐
i+1

O∼
2 [j]⊗ic Õ2[k]

∐
i+1

[0]

O∼
2 [j]⊗ic ([i]⊗ps Õ2[k])

∐
i+1

O∼
2 [j]⊗ic Õ2[k]

∐
i+1

[0]

By Proposition 3.13, the top row is given by the span

LC∆[i, j, k]
∐
i+1

LC∆[0, j, k]
∐
i+1

LC∆[0, 0, 0]

and using Remark 3.20 and the fact that LC commutes with colimits, its pushout is
precisely LC∆[i, j, k]. By Lemma 4.11 the pushout of the bottom row is Σi([j] × [̃k]).
Hence the map of spans yields the unique induced map of pushouts

LC∆[i, j, k]→ Σi([j]× [̃k]).

Composing with the map in Proposition 3.5, we get a map

L≃C∆[i, j, k]→ LC∆[i, j, k]→ Σi([j]× [̃k])

which induces by Propositions 3.23 and 4.9 a map of sets

(IRNR
∗ D)i,j,k = (RNR

∗ D)i,j,k → N∆×∆
i,j,k D

which induces a map of bisimplicial spaces

IRNR
∗ D → N∆×∆D

which induces a map in PCat(sSet∆op

)

RNR
∗ D → RN∆×∆D

as desired.
We now argue this map is a levelwise weak equivalence. By Propositions 3.27, 3.30

and 4.9, it induces isomorphisms in sSet for i = 0, 1 and j ≥ 0

(NR
∗ D)0,j = (RNR

∗ D)0,j
∼=−→ (RN∆×∆D)0,j , (NR

∗ D)0,1 = (RNR
∗ D)1,j

∼=−→ (RN∆×∆D)1,j .

Using the fact that RN∆×∆D and RNR
∗ D are Segal objects by Remark 3.26 and (4.7), it

follows that for any i, j ≥ 0 it induces a weak equivalence in sSet (∞,0)

(RNR
∗ D)i,j → (RN∆×∆D)i,j ,

showing that the desired map is a weak equivalence in sSet (∆×∆)op

(∞,2) .
Finally, the fact that the desired map is a weak equivalence in PCat(sSet∆op

)(∞,2) is a
consequence of Lemma 3.18. □

Finally, we compare the nerves from Construction 4.4.

Corollary 4.12. The diagram of ∞-categories
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[2Cat ]∞

[PCat(sSet∆op

)(∞,2)]∞[sSet (∆×∆)op

(∞,2) ]∞ [CatsSet∆op

(∞,1)
]∞

[N∆×∆]∞ [NR
∗ ]∞

[R]∞ [R]∞

[RN∆×∆]∞

commutes up to equivalence.

Proof. The corollary follows from applying twice the “right Quillen” version of Lemma A.1
to the following diagram.

2Cat

PCat(sSet∆op

)(∞,2)sSet (∆×∆)op

(∞,2)
CatsSet∆op

(∞,1)

N∆×∆ NR
∗

R R

RN∆×∆

The fact that all the assumptions of the lemma are met are from Theorems 3.7 and 4.10
and Construction 4.4. □

5. Nerves in simplicial models

5.1. The models. Verity envisioned a model of (∞, 2)-categories (part of a family of
(∞, n)-categories for general n) based on simplicial sets endowed with a subset of distin-
guished simplices.

Definition 5.1. A simplicial set with marking16 is a simplicial set with a set of dis-
tinguished simplices – called marked – in positive dimension and containing degenerate
simplices.

Amongst all simplicial sets with marking, the following identify those that are (∞, 2)-
categories. The following mathematical object was identified by Verity [Ver17] as a model
for (∞, 2)-categories, and was further studied in [Rie18, §3.3], [OR20b, §1.3] and [RV22,
App. D].

Definition 5.2. A saturated 2-complicial set17 is a simplicial set that has the right lifting
property with respect to all maps of the following kinds:
(1) for m > 1 and 0 < k < m, the complicial inner horn extension

Λk[m]→ ∆k[m];

here, ∆k[m] is the standard m-simplex in which a non-degenerate simplex is marked
if and only if it contains the vertices {k − 1, k, k + 1} ∩ [m], and Λk[m] is the regular
sub-simplicial set with marking of ∆k[m] whose simplicial set is the k-horn Λk[m];

(2) for m ≥ 2 and 0 < k < m, the complicial thinness extension

∆k[m]′ → ∆k[m]′′;

here, ∆k[m]′ is the standard m-simplex with marking obtained from ∆k[m] by addi-
tionally marking the (k−1)-st and (k+1)-st face of ∆[m], and ∆k[m]′′ is the standard

16Originally referred to as stratified simplicial set e.g. in [Ver08a, Def. 96], simplicial sets with normality
[Str82] and hollow simplicial sets [Str87].

17Sometimes for brevity referred to as 2-complicial set.
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m-simplex with marking obtained from ∆k[m]′ by additionally marking the k-th face
of ∆[m];

(3) for m > 2, the triviality extension

∆[m]→ ∆[m]t;

here, ∆[m] is the minimally marked m-simplex, and ∆[m]t is the thin m-simplex in
which the only non-degenerate simplex marked is the unique m-simplex;

(4) for m ≥ −1, the complicial saturation extension

∆[3]eq ⋆∆[m]→ ∆[3]♯ ⋆∆[m];

here, ∆[3]eq is the standard 3-simplex with marking given by all simplices in dimension
at least 2, as well as the 1-simplices [0, 2] and [1, 3], and ∆[3]♯ is the standard 3-simplex
with the maximal marking.

See e.g. [OR20b, Def. 1.19] for more details. We refer the reader to [Ver08a] for the join
⋆ : msSet ×msSet → msSet of marked simplicial sets.

The following model structure is obtained as an application of Verity’s machinery from
[Ver08b, Thm 100], and was further studied in [Rie18, §4.3], and [OR20b, Thm 1.25].

Theorem 5.3. The category msSet of simplicial sets with marking admits a model struc-
ture, denoted msSet (∞,2), in which
• the fibrant objects are the saturated 2-complicial sets, and
• the cofibrations are the monomorphisms (of underlying simplicial sets), and in particular

every object is cofibrant.

Lurie proposed a simplified variant of this idea that focuses on the study of (∞, 2)-
categories (as opposed to (∞, n)-categories for general n), based on simplicial sets with
marking only in dimension 2.

Definition 5.4 ([Lur09b, Def. 3.1.1]). A scaled simplicial set is a simplicial set with a
scaling, namely a set of distinguished 2-simplices – called marked or thin – containing
degenerate 2-simplices.

Amongst all scaled simplicial sets, the following identify those that are (∞, 2)-categories.
To recall this definition, we use the author’s original convention that we denote a simplicial
set with marking by listing a pair (X,T ) where X is the underlying simplicial set, and T
is the set of non-degenerate scaled simplices.

Definition 5.5 ([Lur09b, Def. 4.1.1]). An ∞-bicategory18 is a simplicial set that has the
right lifting property with respect to all maps indicated in [Lur09b, Def. 3.1.3], namely
(1) for m ≥ 2 and 0 < k < m the scaled inner horn extension

(Λk[m], {[k − 1, k, k + 1]})→ (∆[m], {[k − 1, k, k + 1]});

(2) for n ≥ 3 the scaled outer horn extension

(Λ0[m] ⨿
∆[1]

∆[0], {[0, 1, n]})→ (∆[m] ⨿
∆[1]

∆[0], {[0, 1, n]}),

where the pushouts are induced by the map ⟨0, 1⟩ : ∆[1]→ ∆[m];

18This was originally referred to as a weak ∞-bicategory, but was shown by Gagna–Harpaz–Lanari in
[GHL22, Thm 5.1] to agree with the original definition of ∞-bicategory from [Lur09b, Def. 4.2.8]



34 LYNE MOSER, VIKTORIYA OZORNOVA, AND MARTINA ROVELLI

(3) the scaled saturation extension

(∆[4], T )→ (∆[4], {T ∪ {[0, 3, 4], [0, 1, 4]}),
where T = {[0, 2, 4], [1, 2, 3], [0, 1, 3], [1, 3, 4], [0, 1, 2]}.

The following model structure is obtained as an application of Smith Theorem.

Theorem 5.6 ([Lur09b, Thm 4.2.7]). The category sSetsc of scaled simplicial sets admits
a model structure, denoted sSetsc(∞,2), in which
• the fibrant objects are the ∞-bicategories, and
• the cofibrations are the monomorphisms (of underlying simplicial sets), and in particular

every object is cofibrant.

Gagna–Harpaz–Lanari prove in [GHL22, Thm 7.9] that the canonical forgetful functor
defines a right Quillen equivalence

U : msSet (∞,2) → sSetsc(∞,2),

A further variant of Verity’s original framework is given by working with t∆-sets, where
t∆ is an enlargement of the ordinary simplex category ∆. More precisely, the category t∆
contains ∆ as a non-full subcategory, and in addition to the objects [n] for n ≥ 0 it also
contains objects of the form [n]t together with a map [n]→ [n]t for each n ≥ 1. We refer
the reader to [OR20b, Not. 1.1] or [RV22, Not. D.1.4] for more details on the category t∆.

Any t∆-set X : t∆op → Set can be seen as a simplicial set with multiple marking. The
underlying simplicial set of X is the restriction of X along the inclusion ∆op → t∆op,
so X([n]) = Xn is the set of n-simplices, while X([n]t) is the set of marked n-simplices;
by definition, there is a structure map X([n]t) → X([n]) = Xn for every n ≥ 1, that
remembers which simplex each marking belongs to. Notice that an n-simplex can be
marked multiple times, namely, multiple elements of X([n]t) can map to the same element
in Xn. According to this interpretation, simplicial sets with marking are precisely the
t∆-sets for which all structure maps X([n]t) → X([n]) = Xn are monomorphisms19, and
there is an inclusion msSet ↪→ Set t∆op

.

Definition 5.7 ([OR20b, Def. 1.23]). A 2-precomplicial set20 is a t∆-set that has the right
lifting property with respect to the maps of the kinds (1)-(4) from Definition 5.2.

The following model structure is an application of Cisinski’s machinery from [Cis06,
§1.3].

Theorem 5.8 ([OR20b, Thm 1.28]). The category Set t∆op

of simplicial sets with multiple
marking admits a model structure, denoted Set t∆op

(∞,2), in which
• the fibrant objects are the saturated 2-precomplicial sets, and
• the cofibrations are the monomorphisms (of underlying simplicial sets), and in particular

every object is cofibrant.

The inclusion msSet ↪→ Set t∆op

admits a left adjoint Refl, which was proven by the
second and third author as [OR20b, Prop. 1.31] to be a left Quillen equivalence

(5.9) Refl: Set t∆
op

(∞,2) → msSet .

19This approach looks more complicated at first glance, but offers certain technical advantages because,
unlike the category of simplicial sets with marking, the category of t∆-sets is a category of presheaves.

20We warn the reader that the same terminology is also used in [Ver08a, §6] to mean something
unrelated.
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Given a t∆-set X, the functor Refl preserves the underlying simplicial set, so that we have
(ReflX)n = Xn = X([n]), and the set of marked n-simplices (ReflX)([n]t) is determined
by the epi-mono factorization of the structure map

X([n]t)↠ (ReflX)([n]t) ↪→ X([n]).

This means that an n-simplex is marked in ReflX if and only if it has at least one marking
in X.

5.2. The nerves. Nerve constructions have been identified for the three discussed simpli-
cial models of (∞, 2)-categories, and they are all based on the same underlying simplicial
set: the Duskin nerve21 NDD of a 2-category D from [Dus02, §6].

The Duskin nerve NDD of a 2-category D is the (3-coskeletal) simplicial set in which
the set of n-simplices is given by

(NDD)n := 2Cat(O2[n],D).
The assignment extends to a functor ND : 2Cat → sSet . In particular,
(0) a 0-simplex consists of an object x of D;
(1) a 1-simplex consists of a 1-morphism a : x→ y of D;
(2) a 2-simplex consists of a 2-cell φ : c⇒ b ◦ a of D of the form

x

y

z ;

a b

c

φ

(3) a 3-simplex consists of four 2-cells of D that satisfy the following pasting equality.

x

y z

w

a

b

d

f

c

x

=

y z

w

a

b

d

f

e

The face maps can be read off from the pictures.
Construction 5.10 ([OR21, Const. 4.8]). Let D be a 2-category. The nerve Nt∆D is the
simplicial set NDD with marking given by the following:
(1) all 1-simplices inhabited by equivalences, each marked as many times as ways of com-

pleting the equivalence to an adjoint equivalence;
(2) all 2-simplices inhabited by isomorphisms, each marked uniquely;
(3) all simplices in dimension higher than 2, each marked uniquely.
This assignment extends to a functor Nt∆ : 2Cat → Set t∆op

.
Remark 5.11. Given D a 2-category, ReflNt∆D is the simplicial set NDD endowed with
the marking described in [Rie18, Prop. 3.1.10]. Essentially, the difference between Nt∆D
and ReflNt∆D is that in the former each 1-equivalence is marked many times, while in
the latter it is marked only once (without remembering the data of any specific adjoint
equivalence).22

21In the original source, NDD is denoted NerD.
22Another marking on Nt∆D considered in the literature is the Roberts–Street nerve from e.g. [Ver08a],

for which the marked simplices are those inhabited by an identity cell. This nerve has important properties,
but is not homotopically well-behaved, and does not play a role in this paper.
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Construction 5.12 ([GHL22, Def. 8.1]). Let D be a 2-category. The nerve23 NscD
is the simplicial set NDD with scaling given by the set of all 2-simplices inhabited by
isomorphisms. The assignment extends to a functor Nsc : 2Cat → sSetsc.

These nerve constructions are well behaved homotopically.

Theorem 5.13 ([OR21, Thms 4.10,4.12]). The functor Nt∆ : 2Cat → sSet t∆op

(∞,2) is a right
Quillen embedding, and in particular a homotopical and right Quillen functor.

Theorem 5.14 ([GHL22, Prop. 8.2, 8.3]). The functor Nsc : 2Cat → sSetsc(∞,2) is a right
Quillen embedding, and in particular a homotopical and right Quillen functor.

Remark 5.15. The functor ReflNt∆ : 2Cat → msSet is not a right adjoint functor. Indeed,
if it admitted a left adjoint L : msSet → 2Cat , then we would have a natural bijection for
any 2-category D

2Cat(L∆[1]t,D) ∼= msSet(∆[1]t,ReflN
t∆D) ∼= (ReflNt∆D)([1]t) ∼= eqD,

where eqD denotes the set of equivalences in D. However, one can use e.g. [Rie17, Prop.
2.4.8] to see that the functor eq: 2Cat → Set given by D 7→ eqD is not corepresentable,
obtaining a contradiction.

Proposition 5.16. The functor ReflNt∆ : 2Cat → msSet (∞,2) is homotopical and induces
a fully faithful functor at the level of ∞-categories.

Proof. The functor ReflNt∆ : 2Cat → msSet (∞,2) is the composite of the right Quillen
functor Nt∆ : 2Cat → Set t∆op

(∞,2) from Theorem 5.13, followed by the left Quillen func-
tor Refl: Set t∆op

(∞,2) → msSet (∞,2) from (5.9), which are both in particular homotopical
and homotopically fully faithful. Hence, ReflNt∆ is homotopical and homotopically fully
faithful. □

5.3. Nerve comparisons. The nerve constructions are compatible with each other as
follows.

Proposition 5.17. For any 2-category D there is an isomorphism of scaled simplicial sets

NscD ∼= UReflNt∆D.

Proof. The two scaled simplicial sets NscD and UReflNt∆D have the same underlying
simplicial set, given by the Duskin nerve NDD, and by reading through the relevant
definitions and the explicit description of the reflector one can see that the marked 2-
simplices are precisely those inhabited by a 2-isomorphism of D. □

Corollary 5.18. The diagram of ∞-categories

[2Cat ]∞

[msSet (∞,2)]∞[Set t∆op

(∞,2)]∞ [sSetsc(∞,2)]∞

[Nt∆]∞ [Nsc]∞

[Refl]∞ [U ]∞

[ReflNt∆]∞

commutes up to equivalence.

23In the original source, NscD is denoted N2D.
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Proof. The commutativity of the left triangle is an application of the “left Quillen” version
of Lemma A.1 to the diagram

2Cat

msSet (∞,2)Set t∆op

(∞,2)

Nt∆

Refl

ReflNt∆

where the assumptions of the lemma are met by Theorem 5.13 and Proposition 5.16. Then,
the commutativity of the right triangle is an application of the “right Quillen” version of
Lemma A.1 to the diagram

2Cat

msSet (∞,2) sSetsc(∞,2)

Nsc

U

ReflNt∆

where the assumptions of the lemma are met by Theorem 5.14 and Propositions 5.16
and 5.17. □

We now discuss how the nerve constructions of simplicial models compare with those
from the enriched models. Lurie showed as [Lur09b, Thm 0.0.3] that the scaled homo-
topy coherent nerve24 functor introduced as [Lur09b, Def. 3.1.10] defines a right Quillen
equivalence

Nsc : CatsSet+(∞,1)
→ sSetsc(∞,2).

Proposition 5.19 ([GHL22, Prop. 8.2]). For any 2-category D there is an isomorphism
of scaled simplicial sets

NscN♮
∗D ∼= NscD.

Corollary 5.20. The diagram of ∞-categories

[2Cat ]∞

[CatsSet+
(∞,1)

]∞ [sSetsc(∞,2)]∞

[N♮
∗]∞ [Nsc]∞

[Nsc]∞

commutes up to equivalence.
Proof. The corollary is an application of the “right Quillen” version of Lemma A.1 to the
following diagram.

2Cat

CatsSet+
(∞,1)

sSetsc(∞,2)

N♮
∗ Nsc

Nsc

The fact that all the assumptions of the lemma are met are from Construction 4.4, Propo-
sition 5.19, and Theorem 5.14. □

24In the original source, NscD is denoted NscD.
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6. Nerves of 2-categories as local (∞, 2)-categories

The goal of this subsection is to prove Theorem 1.12, which will be completed in Sec-
tion 6.3. The ingredients for the proof are Remarks 6.25 and 6.37 and Theorem 6.36. We
also use some of their 0-dimensional analogs – Proposition 6.4 and Remark 6.6 – and 1-
dimensional analogs – Theorem 6.18 and Remark 6.19 – which are treated in Sections 6.1
and 6.2, respectively.

6.1. The 0-dimensional case. The goal of this subsection is to show that the Quillen
pair

π0 : sSet (∞,0) ⇄ Set : disc
is equivalent to the left Bousfield localization of the Kan–Quillen model structure sSet (∞,0)

with respect to a set Λ of maps. We also discuss in Remark 6.6 that this entails that the
discrete embedding realizes sets as local (∞, 0)-categories with respect to the set of maps Λ.

Recall from e.g. [AC22] that there is a canonical model structure on Set in which the
weak equivalences are the bijections, and every object is fibrant and cofibrant. Recall from
[Qui67] that the category sSet of simplicial sets admits the Kan–Quillen model structure
sSet (∞,0), in which the weak equivalences are the weak homotopy equivalences, everything
is cofibrant and the fibrant objects are precisely the Kan complexes.

The functor disc : Set → sSet that regards each set as a discrete simplicial set admits
a left adjoint given by the functor π0 : sSet → Set that takes a simplicial set to its set of
connected components. The following is a straightforward verification.

Proposition 6.1. The functor disc : Set → sSet (∞,0) is a right Quillen embedding.

In particular, we have a Quillen reflection pair

π0 : sSet (∞,0) ⇄ Set : disc.

Remark 6.2. The essential image of the functor [disc]∞ : [Set ]∞ → [sSet (∞,0)]∞ is the full
sub-∞-category of [sSet (∞,0)]∞ generated by the homotopically discrete (∞, 0)-categories.

For k > 0, let Sk := ∂∆[k] denote the simplicial k-sphere. Since the model structure
sSet (∞,0) is combinatorial and left proper, the following model structure exists.

Proposition 6.3. The category sSet admits the left Bousfield localization LΛsSet (∞,0) of
the model structure sSet (∞,0) with respect to the set Λ of maps of the form

∆[0] ↪→ Sk, for k > 0.

In particular, there is a Quillen reflection pair

Id : sSet (∞,0) ⇄ LΛsSet (∞,0) : Id.

The following is a straightforward verification.

Proposition 6.4. The functor disc : Set → LΛsSet (∞,0) defines a right Quillen equiva-
lence.

The following relates two approaches to localizations of ∞-categories and is classical,
but it is described e.g. in the proof of [Lur09a, Prop. A.3.7.8].

We refer the reader to [Lur09a, Def. 5.2.7.2, Prop. 5.5.4.15] for a discussion on the
localization LSQ of a quasi-category Q with respect to a set of edges S, and to [Hir03,
Ch. 3] for the left Bousfield localization LSM of a model category M with respect to a
set of morphisms S, namely the localization in the context of model categories.
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Proposition 6.5. Given a combinatorial left proper model category M and a set of
maps S, denote by LSM the left Bousfield localization and by LS [M]∞ the localization in
the sense of ∞-categories. Then there is a diagram of ∞-categories

[LSM]∞ LS [M]∞

[M]∞

≃

[IdM]∞

that commutes up to equivalence.

With the following remark we verify that the map of ∞-categories induced by Propo-
sition 6.4 does implement the inclusion of the ∞-category of sets into the ∞-category of
spaces considered by Gepner–Haugseng in [GH15, §6].

Remark 6.6. We know – and it is also mentioned in [GH15, §6] – that the underlying
∞-category of the Kan–Quillen model structure sSet (∞,0) models the established ∞-
category S of spaces, meaning there exists an equivalence of ∞-categories

(6.7) [sSet (∞,0)]∞ ≃ S .

Any such equivalence can be used to construct a specific equivalence of ∞-categories

[Set ]∞ ≃ [LΛsSet (∞,0)]∞ Proposition 6.4
≃ LΛ[sSet (∞,0)]∞ Proposition 6.5(6.8)
≃ LΛS (6.7)
≃ S et [GH15, Lem. 6.1.6(1)]

between the (∞-)category of sets S et and the underlying (∞-)category of the model
structure Set on sets. Via the chosen identifications (6.7) and (6.8), we see that the func-
tor [disc]∞ : [Set ]∞ → [sSet (∞,0)]∞ and the canonical inclusion S et ↪→ S from [GH15,
Def. 6.1.6(i)] are equivalent. Indeed, this is witnessed by the following diagram of ∞-
categories

[Set ]∞

[sSet (∞,0)]∞

[LΛsSet (∞,0)]∞

[sSet (∞,0)]∞

LΛ[sSet (∞,0)]∞

[sSet (∞,0)]∞

LΛS

S

S et

S

≃ ≃ ≃ ≃

≃

[disc]∞

which commutes up to equivalence, using Proposition 6.5 and [GH15, Lem. 6.1.6(i)].

6.2. The 1-dimensional case. The goal of this subsection is to show that the Quillen
pair given by the ordinary nerve–categorification adjunction

c : sSet (∞,1) ⇄ Cat : N

is equivalent to the left Bousfield localization of the Joyal model structure sSet (∞,1) with
respect to a set ΣΛ of maps. We also discuss in Remark 6.19 that this entails that the
nerve embedding realizes 1-categories as local (∞, 1)-categories with respect to the set of
maps ΣΛ.

The following is a well-known fact, and of straightforward verification.

Proposition 6.9. The functor N : Cat → sSet (∞,1) is a right Quillen embedding.
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In particular, we have a Quillen reflection pair

c : sSet (∞,1) ⇄ Cat : N.

Remark 6.10. The essential image of the functor [N]∞ : [Cat ]∞ → [sSet (∞,1)]∞ is the full
sub-∞-category of [sSet (∞,1)]∞ generated by the locally homotopically discrete (∞, 1)-
categories.

Recall that the (right-sided) suspension of simplicial sets defines a left adjoint functor
Σ: sSet → sSet∗,∗. Given a simplicial set X, the suspension can be understood as the
following pushout of simplicial sets.

X

∆[0]

X ⋆∆[0]

ΣX
⌜

Recall from [Hir21] that given any model categoryM, there is a model categoryM∗,∗
of bipointed objects in M, in which fibrations, cofibrations, and weak equivalences are
created by the forgetful functor M∗,∗ →M.

The proof of the following could be adapted from [OR20a, Lemma 2.7], using ideas from
[Joy08b, Prop. 6.29].

Proposition 6.11. The suspension functor Σ: sSet (∞,0) → (sSet (∞,1))∗,∗ is a left Quillen
functor.

Since the model structure sSet (∞,1) is combinatorial and left proper, the following model
structure exists.

Proposition 6.12. The category sSet admits the left Bousfield localization LΣΛsSet (∞,1)

of the Joyal model structure sSet (∞,1) with respect to the set ΣΛ of maps of the form

(6.13) Σ∆[0] ↪→ ΣSk, for k > 0.

So there is a Quillen reflection pair

Id : sSet (∞,1) ⇄ LΣΛsSet (∞,1) : Id.

To prove the desired result, we will show that the nerve functor induces a right Quillen
equivalence N : Cat → LΣΛsSet (∞,1).

Proposition 6.14. The nerve functor N : Cat → LΣΛsSet (∞,1) defines a right Quillen
embedding.

Remark 6.15. For every simplicial set X there is a natural isomorphism of categories

cΣX ∼= Σπ0cX ∼= Σπ0X.

Proof of Proposition 6.14. By [Hir03, Prop. 3.3.18] and Proposition 6.9, it is sufficient to
show that c sends all maps from (6.13) to (weak) equivalences in Cat .

Let k > 0. The functor c sends the map

Σ∆[0] ↪→ ΣSk

to the map
cΣ∆[0] ↪→ cΣSk,
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which is by Remark 6.15
Σπ0∆[0] ↪→ Σπ0S

k,

which is the identity isomorphism at Σ[0]. This concludes the proof that the desired
functor is right Quillen.

The fact that it is a right Quillen embedding follows directly from Proposition 6.9 as the
derived counits of N : Cat → sSet (∞,1) and N : Cat → LΣΛsSet (∞,1) coincide at a fibrant
object in LΣΛsSet (∞,1). □

Proposition 6.16. The suspension functor Σ: LΛsSet (∞,0) → (LΣΛ(sSet (∞,1)))∗,∗ is a
left Quillen functor.

Proof. As an instance of [Hir03, Theorem 3.3.20] combined with the fact that every object
is cofibration in sSet (∞,0), we know that

Σ: LΛsSet (∞,0) → LΣΛ((sSet (∞,1))∗,∗)

is a left Quillen functor. Further, since left Bousfield localizations commute with taking
bipointed model structures, the model structures

LΣΛ((sSet (∞,1))∗,∗) = (LΣΛ(sSet (∞,1)))∗,∗

are equal. This concludes the proof. □

The functor Σ: sSet → sSet∗,∗ admits a right adjoint HomR : sSet∗,∗ → sSet , used
e.g. in [Lur09a, §1.2.2]. For any simplicial set X with given vertices x and y we write
X(x, y) := HomR

X(x, y).

Remark 6.17. The following facts are of straightforward verifications. The first one uses
the explicit description from e.g. [BV73, Prop. 4.12] of the category cX in the case of X
being a quasi-category; see also [Joy08b, Prop. 1.11].
(1) For any quasi-category X with vertices x and y there is a bijection

π0(X(x, y)) ∼= (cX)(x, y).

(2) For any category C there is an isomorphism of simplicial sets

disc(C(x, y)) ∼= (NC)(x, y).

Theorem 6.18. The nerve functor N : Cat → LΣΛsSet (∞,1) defines a right Quillen equiv-
alence.

Proof. By Proposition 6.14, it remains to prove that the component of the derived unit at
every object X in LΣΛsSet (∞,1) is a weak equivalence. We do this by first proving it in
the case of X being fibrant in LΣΛsSet (∞,1), and then treating the general case.

Assume that X is fibrant in LΣΛsSet (∞,1). Then for any vertices x and y in X, the
tuple (X,x, y) is fibrant in (LΣΛ(sSet (∞,1)))∗,∗ so X(x, y) is fibrant in LΛsSet (∞,0) by
Proposition 6.16.

By Proposition 6.4, the (derived) unit at X(x, y) is a weak equivalence in LΛsSet (∞,0)

X(x, y) ≃ disc(π0(X(x, y))

∼= disc((cX)(x, y)) Remark 6.17(1)
∼= (NcX)(x, y). Remark 6.17(2)

between fibrant objects. Hence, it is already a weak equivalence in sSet (∞,0).
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This weak equivalence
X(x, y)→ (NcX)(x, y)

is precisely the map obtained by taking HomR of the (derived) unit of (X,x, y). This
means that the (derived) unit of X

X → NcX

is locally a weak equivalence of simplicial sets, as well as a bijection on objects. By the
fundamental theorem of (∞, 1)-categories, originally due to Joyal [Joy08b] and recalled
e.g. in [Cis19, Thm 3.9.7], we deduce that the (derived) unit is then a weak equivalence in
sSet (∞,1), so in particular in the localization LΣΛsSet (∞,1) as desired.

Now if X is more generally any (cofibrant) simplicial set, we consider a fibrant replace-
ment Xfib in LΣΛsSet (∞,1) and the following naturality diagram.

X NcX

Xfib Nc(Xfib)

Here, the left vertical map is a weak equivalence in LΣΛsSet (∞,1) by construction, the
right vertical map is a weak equivalence because both N and c are homotopical, and the
bottom horizontal arrow is a weak equivalence by the case that we already treated. It
follows by 2-out-of-3 that the top horizontal map, which is the (derived) unit of X, is a
weak equivalence, as desired. □

Remark 6.19. We know – and it is also mentioned in [Lur09a, Ch. 3] – that the underlying
∞-category of the Joyal model structure sSet (∞,1) models the established ∞-category
C at(∞,1) of ∞-categories, so there exists an equivalence of ∞-categories

(6.20) [sSet (∞,1))]∞ ≃ C at(∞,1).

Any such equivalence can be used to construct a specific equivalence of ∞-categories

[Cat ]∞ ≃ [LΣΛsSet (∞,1)]∞ Theorem 6.18
≃ LΣΛ[sSet (∞,1)]∞ Proposition 6.5(6.21)
≃ LΣΛC at(∞,1) (6.20)
≃ C at1 [GH15, Lem. 6.1.7(v)]

between the established ∞-category C at1 of categories and the underlying ∞-category of
the model structure Cat on categories. Via the chosen identifications (6.20) and (6.21),
we see that the functor [N]∞ : [Cat ]∞ → [sSet (∞,1)]∞ and the canonical inclusion functor
C at1 ↪→ C at(∞,1) from [GH15, Lem. 6.1.7(v)] – used with n = 1 – are equivalent. Indeed,
this is witnessed by the following diagram of ∞-categories

[Cat ]∞

[sSet (∞,1)]∞

[LΣΛsSet (∞,1)]∞

[sSet (∞,1)]∞

LΣΛ[sSet (∞,1)]∞

[sSet (∞,1)]∞

LΣΛC at(∞,1)

C at(∞,1)

C at1

C at(∞,1)

≃ ≃ ≃ ≃

≃

[N]∞

which commutes up to equivalence, using Proposition 6.5, [GH15, Lem. 6.1.9], and [GH15,
Lem. 6.1.7(i)].



MODEL INDEPENDENCE OF (∞, 2)-CATEGORICAL NERVES 43

6.3. The 2-dimensional case. The goal of this subsection is to show that the Quillen
reflection pair from Construction 4.4(1)

c∗ : CatsSet(∞,1)
⇄ 2Cat : N∗.

is equivalent to the left Bousfield localization of CatsSet(∞,1)
with respect to a set Σ2Λ of

maps. We also discuss in Remark 6.37 that this entails that the nerve embedding realizes
2-categories as local (∞, 2)-categories with respect to the set of maps Σ2Λ.

Remark 6.22. The essential image of the functor [N∗]∞ : [2Cat ]∞ → [CatsSet(∞,1)
]∞ is the

full sub-∞-category of [CatsSet(∞,1)
]∞ generated by the (∞, 2)-categories that are locally

equivalent to 1-categories.

Recall that there is a suspension functor Σ: sSet → (CatsSet)∗,∗ which is a left adjoint.
Given a simplicial set X, the simplicial category ΣX has two objects and a single non-
trivial hom-simplicial set given by X. The following is briefly discussed e.g. as [HORR21,
Lem. 4.1.5].

Proposition 6.23. The suspension functor Σ: sSet (∞,1) → (CatsSet(∞,1)
)∗,∗ is a left

Quillen functor.

We consider the composite functor

Σ2 : sSet Σ−→ sSet∗,∗
U−→ sSet Σ−→ (CatsSet)∗,∗.

Proposition 6.24. The 2-fold suspension functor Σ2 : sSet (∞,0) → (CatsSet(∞,1)
)∗,∗ is a

left Quillen functor.

Proof. It is a composite of the left Quillen (hence homotopical) functor

Σ: sSet (∞,0) → (sSet (∞,1))∗,∗

from Proposition 6.11 with the homotopical functor

U : (sSet (∞,1))∗,∗ → sSet (∞,1),

which just forgets the two base points, and with the left Quillen (hence homotopical)
functor

Σ: sSet (∞,1) → (CatsSet(∞,1)
)∗,∗

from Proposition 6.23. □

Remark 6.25. Let V = sSet (∞,1), so that in particular V = [V]∞ = [sSet (∞,1)]∞ ≃ C at∞.
The suspension functor from Proposition 6.23 is a left Quillen functor, and induces a
functor of ∞-categories

(6.26) [Σ]∞ : [V]∞ → [(CatV)∗,∗]∞.
In [GH15, Def. 4.3.21] Gepner–Haugseng consider a functor

(6.27) V → C at
{0,1}
V .

Here, C at
{0,1}
V denotes the ∞-category of ∞-categories enriched over V with fixed set of

objects {0, 1}, as defined in [GH15, Def. 5.4.3]. As shown in [Hau15, §5], this ∞-category
can be realized as the underlying∞-category [Cat{0,1}V ]∞ ≃ C at

{0,1}
V of the model category

Cat{0,1}V of V-categories with set of objects {0, 1}, considered in [Hau15, Lemma 3.20].
Via the canonical map

(6.28) [(CatV)∗,∗]∞ → [Cat{0,1}V ]∞ ≃ C at
{0,1}
V



44 LYNE MOSER, VIKTORIYA OZORNOVA, AND MARTINA ROVELLI

we will see in Proposition 6.29 that the two functors (6.26) and (6.27) are compatible, as
they fit in a diagram of ∞-categories that commutes up to equivalence.

Proposition 6.29. There is a diagram of ∞-categories

[(CatV)∗,∗]∞

C at
{0,1}
V

[V]∞

V

[Σ]∞

that commutes up to equivalence, where the functors involved are those of (6.26), (6.27),
and (6.28).

Proof. Each of the functors of∞-categories involved in the diagram admits a right adjoint.
We prove that the diagram of right adjoints commutes up to equivalence:

[(CatV)∗,∗]∞

C at
{0,1}
V

[V]∞

V

[Hom]∞

H om

Building the desired commutative diagram out of smaller ones requires several ingredients,
for which we provide references for the interested reader. The diagram is:

[(CatV)∗,∗]∞

[Cat{0,1}V ]∞

C at
{0,1}
V

Alg∆op
{0,1}

(V )

Fun∆op(∆op
{0,1},V

⊗)

[V{0,1}×{0,1}]∞

[V]{0,1}×{0,1}
∞

V {0,1}×{0,1}

Alg(∆op
{0,1})triv

(V )

Fun∆op((∆op
{0,1})triv,V

⊗)

[V]∞

[V]∞

V

Fun({0, 1} × {0, 1},V )

Fun((∆op
{0,1})triv)[1],V )

(1)
(2)

(3)

H om

[Hom]∞

≃

η

≃

≃ ev(0,1)

∼=

ev(0,1)

ev(0,1)

ev(0,1)

τ∗
∆op

{0,1}

V

≃

The ∞-categories featuring in the diagram are the following:
• (CatV)∗,∗ is the bipointed model structure, obtained as an instance of [Hir21] applied to

the model structure from Theorem 4.2.
• Cat{0,1}V is the model category of V-categories with set of objects {0, 1}, considered in

[Hau15, Lem. 3.20].
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• V{0,1}×{0,1} is the category of functors endowed with the injective model structure.
• Alg∆op

{0,1}
(V ) is an instance of [GH15, §1.2] with the non-symmetric ∞-operad ∆op

{0,1}
from [Hau15, Def. 2.8].

• Alg(∆op
{0,1})triv

(V ) is an instance of [GH15, §1.2] with the non-symmetric ∞-operad
(∆op

{0,1})triv from [GH15, Def. 3.4.1].
• (∆op

{0,1})[1] is the fiber at [1], which is an object of ∆op of the map ∆op
{0,1} → ∆op.

The functors of ∞-categories featuring in the diagram are the following:
⋄ The functor ev(0,1) is given by evaluation at the object (0, 1) ∈ {0, 1} × {0, 1}.
⋄ The functor V is from [GH15, Proof of Prop. 5.2].
⋄ The functor τ∗

∆op
{0,1}

is the one considered in [GH15, §A.4, §3.4].

⋄ The functor η is constructed on the level of model categories in [Hau15, Proof of Prop.
5.2], and the functor induced at the level of ∞-categories is further described in [GH15,
Def. 4.3.1, Prop. 5.4.4].

We address the commutativity of each of the labeled regions as follows.
⋆ The fact that the region (1) commutes is addressed as [Hau15, Proof of Prop. 5.2].
⋆ The fact that the region (2) commutes is addressed as a combination of [Hau15, Lem.

3.20], [GH15, §3.4] and [GH15, §A.4].
⋆ The fact that the region (3) commutes is addressed in [GH15, §A.4, A.5].
This concludes the proof. □

Proposition 6.30. The category CatsSet has the left Bousfield localization LΣ2ΛCatsSet(∞,1)

of the model structure CatsSet(∞,1)
with respect to the set Σ2Λ of maps of the form

(6.31) Σ2∆[0] ↪→ Σ2Sk, for k > 0.

Proof. The Bousfield localization exists because the model category sSet (∞,1) is combina-
torial and left proper by [Lur09a, Prop. A.3.2.4]. □

So there is a Quillen reflection pair

Id : CatsSet(∞,1)
⇄ LΣ2ΛCatsSet(∞,1)

: Id.

To prove the desired result, we will show that the nerve functor induces a right Quillen
equivalence N∗ : 2Cat → LΣ2ΛCatsSet(∞,1)

. First, we prove the following.

Proposition 6.32. The nerve functor N∗ : 2Cat → LΣ2ΛCatsSet(∞,1)
defines a right Quillen

embedding.

Proof. By [Hir03, Prop. 3.3.18] and Construction 4.4(1), it is sufficient to show that c∗
sends all elementary maps from (6.31) to biequivalences of 2-categories.

Let k > 0. The functor c∗ sends the map

Σ2∆[0] ↪→ Σ2Sk

to the map
c∗Σ

2∆[0] ↪→ c∗Σ
2Sk,

which is the map
ΣcΣ∆[0] ↪→ ΣcΣSk,

which is the map
Σ2π0∆[0] ↪→ Σ2π0S

k,
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which is the identity at Σ2[0]. This concludes the proof that the desired functor is right
Quillen.

The fact that it is a right Quillen embedding follows directly from Construction 4.4(1) as
the derived counits of N∗ : 2Cat → CatsSet(∞,1)

and N∗ : 2Cat → LΣ2ΛCatsSet(∞,1)
coincide

at a fibrant object in LΣ2ΛCatsSet(∞,1)
. □

Proposition 6.33. The suspension functor Σ: LΣΛsSet (∞,1) → (LΣ2Λ(CatsSet(∞,1)
))∗,∗ is

a left Quillen functor.

Proof. As an instance of [Hir03, Theorem 3.3.20] combined with the fact that every object
is cofibration in sSet (∞,1), we know that

Σ: LΣΛsSet (∞,1) → LΣ2Λ((CatsSet(∞,1)
)∗,∗)

is a left Quillen functor. Further, since left Bousfield localizations commute with taking
bipointed model structures, the model structures

LΣ2Λ((CatsSet(∞,1)
)∗,∗) = (LΣ2Λ(CatsSet(∞,1)

))∗,∗

are equal. This concludes the proof. □

Lemma 6.34. The functor c∗ : CatsSet(∞,1)
→ 2Cat is homotopical.

Remark 6.35. A map f : Q → Q′ is a weak equivalence in CatsSet(∞,1)
if and only if the

following are satisfied.
(1) The map f is essentially surjective up to equivalence; namely it induces an essentially

surjective functor
τ∗f : τ∗Q → τ∗Q′,

where τ∗ : CatsSet → Cat is the base-change functor along Joyal’s functor τ : sSet → Set
from [Joy08b, §1] given by the composite

sSet c−→ Cat core−−→ Gpd π0−→ Set .

(2) The map f is a local weak equivalence; namely it induces a weak equivalence in
sSet (∞,1)

f : Q(x, y)→ Q′(f(x), f(y))

for any objects x and y in Q.

Proof of Lemma 6.34. Given a weak equivalence f : Q → Q′ in CatsSet(∞,1)
, we have a

weak equivalence in sSet (∞,1)

Q(x, y)→ Q′(x, y),

for any objects x and y in Q, by Remark 6.35(2). Then, since c is homotopical, there is
an induced equivalence of categories

(c∗Q)(x, y) = cQ(x, y)→ cQ′(x, y) = (c∗Q′)(x, y).

Moreover, by Remark 6.35(1) the functor

(π0)∗(core)∗c∗Q = τ∗Q → τ∗Q′ = (π0)∗(core)∗c∗Q′

is essentially surjective on objects. Hence we obtain that the 2-functor

c∗Q → c∗Q′

is a weak equivalence in 2Cat , as desired. □
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Theorem 6.36. The nerve functor N∗ : 2Cat → LΣ2ΛCatsSet(∞,1)
defines a right Quillen

equivalence.

Proof. By Proposition 6.32, it remains to prove that the component of the derived unit at
every object Q in LΣ2ΛCatsSet(∞,1)

is a weak equivalence. We do this by first proving it in
the case of Q being fibrant in LΣ2ΛCatsSet(∞,1)

, and then treat the general case.
Assume that Q is fibrant in LΣ2ΛCatsSet(∞,1)

. For any vertices x and y the tuple (Q, x, y)
is fibrant in (LΣ2ΛCatsSet(∞,1)

)∗,∗ so Q(x, y) is fibrant in LΣΛsSet (∞,1) by Proposition 6.33.
By Theorem 6.18, the (derived) unit at Q(x, y) is a weak equivalence in LΛsSet (∞,1)

Q(x, y) ≃ N(c(Q(x, y))
∼= N∗((c∗Q)(x, y)) Remark 6.17(1)
∼= (N∗c∗Q)(x, y). Remark 6.17(2)

between fibrant objects. Hence, it is already a weak equivalence in sSet (∞,1).
This weak equivalence

Q(x, y)→ (N∗c∗Q)(x, y)
is precisely the one obtained by taking Hom of the (derived) unit of (Q, x, y). This means
that the (derived) unit of Q

Q → N∗c∗Q
is locally a weak equivalence in sSet (∞,1), as well as a bijection on objects. By Remark 6.35
we deduce that the (derived) unit is then a weak equivalence in CatsSet(∞,1)

, so in particular
in the localization LΣ2ΛCatsSet(∞,1)

as desired.
Now if Q is more generally any (cofibrant) simplicial set, we consider a fibrant replace-

ment Qfib in LΣ2ΛCatsSet(∞,1)
and the following naturality diagram.

Q N∗c∗Q

Qfib N∗c∗(Qfib)

Here, the left vertical map is a weak equivalence in LΣ2ΛCatsSet(∞,1)
by construction, the

right vertical map is a weak equivalence because both N∗ and c∗ are homotopical by
Lemma 6.34 and Proposition 6.32, and the bottom horizontal arrow is a weak equivalence
by the case that we already treated. It follows by 2-out-of-3 that the top horizontal map,
which is the (derived) unit of Q, is a weak equivalence, as desired. □

Remark 6.37. By [Lur09b, Rmk 0.0.4], we know that the underlying ∞-category of the
model structure CatsSet(∞,1)

models the established ∞-category C at(∞,2) of (∞, 2)-cate-
gories, so there exists an equivalence of ∞-categories

(6.38) [CatsSet(∞,1)
]∞ ≃ C at(∞,2).

Any such equivalence can be used to construct a specific equivalence of ∞-categories

[2Cat ]∞ ≃ [LΣ2ΛCatsSet(∞,1)
]∞ Theorem 6.36

≃ LΣ2Λ[CatsSet(∞,1))]∞ Proposition 6.5(6.39)

≃ LΣ2ΛC at(∞,2) (6.38), Remark 6.25
≃ C at2 [GH15, Lem. 6.1.6(1)]
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between the established∞-category of 2-categories C at2 and the underlying∞-category of
the model structure 2Cat on 2-categories. Via the chosen identifications (6.38) and (6.39),
we see that the functor [N∗]∞ : [2Cat ]∞ → [CatsSet(∞,1)

]∞ and the canonical inclusion
C at2 ↪→ C at(∞,2) from [GH15, Lem. 6.1.6(v)] – for n = 2 – are equivalent. Indeed, this is
witnessed by the following diagram of ∞-categories

[2Cat ]∞

[CatsSet(∞,1)
]∞

[LΣ2ΛCatsSet(∞,1)
]∞

[CatsSet(∞,1)
]∞

LΣ2Λ[CatsSet(∞,1)
]∞

[CatsSet(∞,1)
]∞

LΣ2ΛC at(∞,1)

C at(∞,2)

C at2

C at(∞,2)

≃ ≃ ≃ ≃

≃

[N∗]∞

which commutes up to equivalence, using Proposition 6.5 and Remark 6.25 and [GH15,
Def. 6.1.7(v)].

Appendix A. The nerve comparison lemma

To assert the commutativity at the level of ∞-categories of each of the regions in the
diagram from Theorem 1.3, we will make use of the following lemma.

Lemma A.1 (Nerve comparison lemma). LetM andM′ be two model categories. Suppose
we are given the following:
• a left Quillen functor, resp. right Quillen functor, F :M→M′;
• a homotopical functor H : 2Cat → M that takes values in the subcategory of cofibrant,

resp. fibrant, objects in M;
• a homotopical functor H ′ : 2Cat →M′; and
• a natural weak equivalence FH ≃

=⇒ H ′.
Then, the diagram of categories on the left

2Cat

M M′

H H ′

F

[2Cat ]∞

[M]∞

⇝

[M′]∞

[H]∞ [H ′]∞

[F ]∞

induces a diagram of ∞-categories that commutes up to equivalence.25

Remark A.2. The second (resp. third) condition of Lemma A.1 is automatically satisfied
when H : 2Cat →M (resp. H ′ : 2Cat →M′) is right Quillen.

We choose to work with the following model of [M]∞ for a model categoryM, regarded
as a relative category (M,W) when equipped with its class of weak equivalences W.

Following e.g. [BSP21, Const. 15.1], given a relative category (C,W), the underlying
∞-category is

[C]∞ := N((LH(C,W))fib).

Here, the functor N : CatsSet(∞,0)
→ sSet (∞,1) denotes the homotopy coherent nerve functor

defined by [Cor82] and which is a right Quillen functor by [Lur09a, Thm 2.2.5.1], while
(−)fib : CatsSet(∞,0)

→ CatsSet(∞,0)
denotes any functorial fibrant replacement in the Bergner

model structure CatsSet(∞,0)
from [Lur09a, Thm 3.2.4, Ex. 3.2.23]; for instance, one could

take (Ex∞)∗ : CatsSet(∞,0)
→ CatsSet(∞,0)

.

25Meaning that the two functors are equivalent in the ∞-category of functors from [2Cat ]∞ → [M′]∞.
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The following fact is essentially discussed in [MG16, §A.3.1], following [DK80a, Prop.
3.3, 3.5].

Proposition A.3. Let G,G′ : (C,W)→ (C′,W ′) be homotopical functors of relative cate-
gories, and let α : G ≃

=⇒ G′ a natural weak equivalence. Then G and G′ induce equivalent
functors of quasi-categories

[G]∞ ≃ [G′]∞ : [C]∞ = N((LH(C,W))fib)→ N((LH(C′,W ′))fib) = [C′]∞.

We can now prove the lemma.

Proof of Lemma A.1. The lemma follows from Proposition A.3 by taking G = FH and
G′ = H ′. Indeed, we have equivalences of functors

[H ′]∞ ≃ [FH]∞ ≃ [F ]∞ ◦ [H]∞,

which concludes the proof. □

Appendix B. Complements on the Rezk nerve of categories

We collect in this appendix a series of elementary properties of the Rezk nerve that
we did not find in the literature. We denote by [̃k] the contractible groupoid with k + 1
objects.

Construction B.1 ([Rez01, §3.5]). Let C be a category. The Rezk nerve NRC is the
simplicial space given for any j, k ≥ 0 by

NR
j,kC := Cat([j]× [̃k], C).

The assignment extends to a functor NR : Cat → sSet∆op

.

Recall from [Rez01, Rmk 5.6] that the Rezk nerve has a left adjoint cR : sSet∆op → Cat .

Lemma B.2. The left adjoint cR : sSet∆op → Cat preserves finite products.

Proof. Since both Cat and sSet∆op

are cartesian closed, products commute with colimits,
hence it suffices to prove that for any j, k, j′, k′ ≥ 0 we have an isomorphism of bisimplicial
sets

cR(∆[j, k]×∆[j′, k′]) ∼= cR(∆[j, k])× cR(∆[j′, k′]).

We will prove that both sides are isomorphic to [j]× [j′]× ˜([k]× [k′]). For the right-hand
side, we have

cR(∆[j, k])× cR(∆[j′, k′]) ∼= [j]× [̃k]× [j′]× [̃k′]

∼= [j]× [j′]× [̃k]× [̃k′]

∼= [j]× [j′]× ˜[k]× [k′].

For the left-hand side, we need the following observations.
(1) For all j, k ≥ 0 there is an isomorphism of bisimplicial sets

∆[j, k] ∼= ∆[j, 0]×∆[0, k].

(2) The functor (̃−) : Cat → Gpd is left adjoint to the inclusion functor Gpd ↪→ Cat ; in
particular, the functor (̃−) preserves colimits.
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(3) The left adjoint c : sSet → Cat of the ordinary nerve functor preserves colimits, and it
also preserves finite products by [Joy08b, Prop. B.0.15], there attributed to Gabriel–
Zisman. Then, for any j, j′ ≥ 0 we obtain an isomorphism of categories

[j]× [j′] ∼= c∆[j]× c∆[j′] ∼= c(∆[j]×∆[j′])

∼= c( colim
∆↓∆[j]×∆[j′]

∆[a]) ∼= colim
∆↓∆[j]×∆[j′]

c∆[a]

∼= colim
∆↓∆[j]×∆[j′]

[a].

We then have the following isomorphisms of categories

cR(∆[j, k]×∆[j′, k′]) ∼= cR(∆[j, 0]×∆[j′, 0]×∆[0, k]×∆[0, k′]) Obs. (1)
∼= cR( colim

∆↓∆[j]×∆[j′]
∆[a, 0]× colim

∆↓∆[k]×∆[k′]
∆[0, b])

∼= cR( colim
∆↓∆[j]×∆[j′]

colim
∆↓∆[k]×∆[k′]

(∆[a, 0]×∆[0, b]))

∼= colim
∆↓∆[j]×∆[j′]

colim
∆↓∆[k]×∆[k′]

cR(∆[a, 0]×∆[0, b]) cR left adjoint

∼= colim
∆↓∆[j]×∆[j′]

colim
∆↓∆[k]×∆[k′]

cR(∆[a, b]) Obs. (1)

∼= colim
∆↓∆[j]×∆[j′]

colim
∆↓∆[k]×∆[k′]

[a]× [̃b]

∼= colim
∆↓∆[j]×∆[j′]

[a]× colim
∆↓∆[k]×∆[k′]

[̃b]

∼= colim
∆↓∆[j]×∆[j′]

[a]× ˜( colim
∆↓∆[k]×∆[k′]

[b]) Obs. (2)

∼= [j]× [j′]× ˜[k]× [k′], Obs. (3)

as desired. □

Proposition B.3. The Rezk nerve NR : Cat → sSet∆op

(∞,1) is a right Quillen embedding,
and in particular a right Quillen and homotopical functor.

Proof. We argue that the functor NR : Cat → sSet∆op

(∞,1) can be understood as the composite
of the ordinary nerve N : Cat → sSet (∞,1) of categories into simplicial sets, which is easily
seen to be a right Quillen embedding and the functor t! : sSet (∞,1) → sSet∆op

(∞,1) from [JT07,
§4], which is shown to be a right Quillen equivalence. It will then follow that NR is a right
Quillen embedding.

In order to prove the claim, we observe that for any category C and j, k ≥ 0 there is a
natural bijection

(t!NC)j,k ∼= sSet∆
op

(∆[j, k], t!NC) ∼= sSet(t!∆[j, k],NC)
∼= sSet(∆[j]×N[̃k],NC) ∼= sSet(N([j]× [̃k]),NC)
∼= Cat([j]× [̃k], C) ∼= NR

j,kC,

as desired. □
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Appendix C. Complements on the bisimplicial nerve of 2-categories

The homotopically correct nerve of 2-categories into 2-quasi-categories is based on the
notion of normal pseudofunctor, also referred to as normalized or strictly unital pseudo-
functor or homomorphism, or weak functor. Roughly speaking, a normal pseudofunctor
is a map between 2-categories that preserves identities strictly and preserves composition
up to coherent isomorphism. We now recall the main aspects of the definitions, referring
the reader to other sources, see e.g. Bénabou [Bén67, Rmk 4.2], Street [Str96, Ex. 9.7] or
Johnson–Yau [JY19, Def. 4.1], for a more detailed treatment.

Given a 2-category A, we denote by ObA, MorA, and 2MorA the sets of objects, 1-
morphisms, and 2-morphisms in A, respectively. We denote by s, t, i, and c the source, tar-
get, identity, and composition maps for 1-morphisms, and by s, t, i, ch, and cv the source,
target, identity, horizontal composition, and vertical composition maps for 2-morphisms.

We denote by CompA := 2Cat(O∼
2 [2],A), the set of 2-isomorphisms in A of the form

x

y

z ,

f g

h

∼=

which comes with three maps d0, d1, d2 : CompA → MorA picking each of the boundary
of the 2-isomorphisms, and two maps s0, s1 : MorA → CompA sending a 1-morphism to
its identity 2-morphism in the two usual ways.

Finally, we denote by 2 IsoA, the set of 2-isomorphisms in A. Note that there is a map
e : CompA → 2 IsoA, which extracts the 2-isomorphism component, e.g. it sends the
above picture to the corresponding 2-isomorphism h ∼= gf .

Definition C.1. A normal pseudofunctor F : A → B between two 2-categories A and B
consists of the following data

(0) an assignment on objects, namely a function F0 : ObA → ObB;
(1) an assignment on 1-morphisms, namely a function F1 : MorA → MorB;
(2) an assignment on 2-morphisms, namely a function F2 : 2MorA → 2MorB;
(3) a compositor of F , namely a function F̃ : MorA×ObA MorA → CompB;

with the requirement that the following axioms be satisfied.

(a) The assignments of F on objects, 1- and 2-morphisms commute with source, target,
and identities:

ObA

ObB

MorA

MorB

2MorA

2MorB

s

t

i

s

t

i

s

t

i

s

t

i

F0 F1 F2

This gives that the images under F of a 1-morphism f : x → y and a 2-morphism
α : f ⇒ g are of the form Ff : Fx→ Fy and Fα : Ff ⇒ Fg, respectively, and that
F (idx) = idFx and F (idf ) = idFf for any object x and any 1-morphism f .

(b) The boundaries of F̃ is determined by the following commutative diagram:
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MorA

MorB

MorA ×
ObA

MorA

CompB

MorA ×
ObA

MorA

MorB ×
ObB

MorB

c

d1

F1 × F1

(d2, d0)

F1 F̃

When evaluated at an element (f : x→ y, g : y → z) this gives a 2-isomorphism F̃f,g

of the following form.

Fx

Fy

Fz

Ff Fg

F (gf)

F̃f,g

(c) The compositor F̃ is compatible with identities in the sense that the following diagram
commutes:

MorA

MorB

MorA ×
ObA

MorA

CompB

MorA

MorB

(id, it)

s1

(is, id)

s0

F1 F̃
F1

When evaluated at an element f : x → y, this gives that the 2-isomorphisms F̃f,idy

and F̃idx,f are both the identity 2-morphism at f .
(d) The assignment of F on 2-morphisms commutes with vertical composition of 2-

morphisms:

2MorA ×
MorA

2MorA 2MorB ×
MorB

2MorB

2MorA 2MorB

cv cv

F2 × F2

F2

When evaluated at an element (α : f ⇒ g : x → y, β : g ⇒ h : x → y), this gives that
F (βα) = (Fβ)(Fα).

(e) The compositor F̃ is 2-natural in the sense that the following diagram commutes:

2MorA ×
ObA

2MorA CompB ×
MorB ×

ObB
MorB

(2MorB ×
ObB

2MorB)

2MorA ×
ObA

2MorA 2MorB

2MorA ×
MorA

(MorA ×
ObA

MorA) 2MorB ×
MorB

CompB

cv(id×ch)

(ch, t× t) cv

(F̃ (s× s), F2 × F2)

F2 × F̃
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When evaluated at an element (α : f ⇒ f ′ : x → y, β : g ⇒ g′ : y → z), this gives the
following pasting equality.

Fx

Fy Fz

Ff ′ Ff

Fg

Fg′

F (gf)

Fα

Fβ

F̃f,g

Fx

=

Fy Fz

Ff ′

Fg′

F (gf)

F (g′f ′)

F (βα)

F̃f ′,g′

(f) The compositor F̃ is compatible with composition of 1-morphisms in the sense that
the following diagram commutes:

(MorA ×
ObA

MorA) ×
MorA

(MorA ×
ObA

MorA) CompB ×
MorB

CompB

MorA ×
ObA

MorA ×
ObA

MorA 2MorB

(MorA ×
ObA

MorA) ×
MorA

(MorA ×
ObA

MorA) CompB ×
MorB

CompB

(id×c, !× id× id) ∼= φ

(id× id×!, c× id) ∼= ψ

F̃ × F̃

F̃ × F̃

where φ and ψ compute the total composite of the pasting diagrams. When evaluated
at an element (f : x → y, g : y → z, h : z → w), this gives the following pasting
equality.

Fx

Fy Fz

Fw

Ff

Fg

Fh

F (hgf)

F (gf)

F̃f,g

F̃gf,h

Fx

=

Fy Fz

Fw

Ff

Fg

Fh

F (hgf)

F (hg)

F̃g,h

F̃f,hg

The following can be deduced from [LP08, §3] or [Gur13, §2.3.3].

Remark C.2. If F : A → B is a normal pseudofunctor, the compositor F̃ can be seen as a
map into 2 IsoB by post-composing with e : CompB → 2 IsoB. Then, using (c) and (f),
this map can be uniquely extended to a function

MorA ×
ObA

. . . ×
ObA

MorA → 2 IsoB,

which sends a sequence of composable 1-morphisms f1, . . . , fk in A to a 2-isomorphism
in B of the form

F (fk) ◦ . . . ◦ F (f1) ∼= F (fk ◦ . . . ◦ f1).
Lemma C.3. Let T be a cofibrant 2-category, namely a 2-category whose underlying 1-
category Ob∗ T is free. Then any normal pseudofunctor F : A → B induces a function

F∗ : 2Cat(T ,A) −→ 2Cat(T ,B).
which is natural in A, B and cofibrant T with respect to strict 2-functors.
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Proof. Let G : T → A be a 2-functor. Consider the following data:
(0) (F∗G)0 : Ob T → ObB defined as F∗G(x) := F (G(x)) on an object x in T ;
(1) (F∗G)1 : Mor T → MorB defined as F∗G(f) := F (G(f)) on a generating 1-morphism f

in T , and extended appropriately to obtain a functor Ob∗ T → Ob∗A, taking advan-
tage of the fact that Ob∗ T is a free 1-category;

(2) (F∗G)2 : 2Mor T → 2MorB with F∗G(α) defined on a 2-cell α : fk◦. . .◦f1 ⇒ gl◦. . .◦g1
in T as the composite

F (G(fk)) ◦ . . . ◦ F (G(f1))

F (G(fk) ◦ . . . ◦G(f1))

F (G(fk ◦ . . . ◦ f1))

F (G(gl)) ◦ . . . ◦ F (G(g1))

F (G(gl) ◦ . . . ◦ (g1))

F (G(gl ◦ . . . ◦ g1))

∼=
=

∼=
=

F∗G(α)

F (G(α))

which involves the 2-isomorphisms for F from Remark C.2, and the fact that G pre-
serves compositions strictly.

It remains to see that this does indeed define a 2-functor F∗G. It is clear by construction
that F∗G preserves compositions of 1-morphisms. Then, it preserves horizontal composi-
tions of 2-morphisms by 2-naturality of F̃ , and vertical compositions of 2-morphisms since
both F and G preserve those strictly. Note that F∗G preserves 1- and 2-identities since
both F and G preserve them strictly.

The desired naturality follows from the definitions. □

Recall from e.g. [Rez10, §11] or [Ara14, §7.1] (resp. [BSP21, Def. 3.1]) that a 2-category
is said to be rigid (resp. gaunt) if it has no non-identity invertible 1- and 2-morphisms.
Examples of gaunt 2-categories to which we apply the following lemma in this paper are
the 2-categories θ which are objects of Θ2.

Throughout this section, we follow the notational convention that

[α∗, β∗] : N∆×∆
i′,j′,0A → N∆×∆

i,j,0 B

denotes the simplicial map induced by the simplicial operators α : [i]→ [i′], β : [j]→ [j′],
and id : [0]→ [0].

Proposition C.4. For any gaunt 2-category A and any 2-category B there is a natural
function

N∆×∆ : 2Catnps(A,B)→ sSet (∆×∆)op(N∆×∆A,N∆×∆B).

Proof. This follows directly from Lemma C.3 with T = L≃C∆[i, j, k], using that L≃C is
a left Quillen functor by [Mos20, Thm 6.1.1] and hence that every 2-category in its image
is cofibrant. □

Remark C.5. For a 2-category B, we give explicit relations between the sets N∆×∆
i,j,k B for

low values of i, j, k ≥ 0 with the structural data of B.
• For (i, j, k) = (0, 0, 0) there is a bijection

N∆×∆
0,0,0 B ∼= 2Cat([0],B) = ObB,

• For (i, j, k) = (1, 0, 0) there a bijection

N∆×∆
1,0,0 B ∼= 2Cat([1],B) = MorB,
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• For (i, j, k) = (1, 1, 0) there is an inclusion

N∆×∆
1,1,0 B ← 2Cat(O∼

2 [1]⊗ic O∼
2 [1],B) ∼= 2Cat(Σ[1],B) ∼= 2MorB

induced by the map L≃C∆[1, 1, 0] → LC[1, 1, 0] from Proposition 3.5; note that this
inclusion can also be obtained as the pullback

2MorB

N∆×∆
1,1,0 B

N∆×∆
0,0,0 B ×N∆×∆

0,0,0 B

N∆×∆
0,1,0 B ×N∆×∆

0,1,0 B([d1, id], [d0, id])

[s0, id]× [s0, id]

⌟

which only makes use of the simplicial structure of N∆×∆B.
• For (i, j, k) = (2, 0, 0) there is a bijection

N∆×∆
2,0,0 B ∼= 2Cat(O∼

2 [2],B) = CompB.

Remark C.6. If A is a gaunt 2-category, the following relations hold.
• For (i, j, k) = (1, 1, 0) there is a bijection

N∆×∆
1,1,0 A ∼= 2MorA,

• For (i, j, k) = (2, 0, 0) there is a bijection

N∆×∆
2,0,0 A ∼= MorA ×

ObA
MorA,

• For (i, j, k) = (2, 1, 0) there is a bijection

N∆×∆
2,1,0 A ∼= 2MorA ×

ObA
2MorA,

• For (i, j, k) = (3, 0, 0) there is a bijection

N∆×∆
3,0,0 A ∼= MorA ×

ObA
MorA ×

ObA
MorA,

• For (i, j, k) = (1, 2, 0) there is a bijection

N∆×∆
1,2,0 A ∼= 2MorA ×

MorA
2MorA.

Proposition C.7. For any gaunt 2-category A and any 2-category B there is a natural
function

γ : sSet (∆×∆)op(N∆×∆A,N∆×∆B)→ 2Catnps(A,B).

Proof. Given a map f : N∆×∆A → N∆×∆B in sSet (∆×∆)op , we produce a normal pseudo-
functor γf : A → B as follows:
(0) the assignment on objects, (γf)0 : ObA → ObB, is given by

f0,0,0 : N
∆×∆
0,0,0 A → N∆×∆

0,0,0 B;
(1) the assignment on 1-morphisms, (γf)1 : MorA → MorB, is given by

f1,0,0 : N
∆×∆
1,0,0 A → N∆×∆

1,0,0 B;
(2) the assignment on 2-morphisms, (γf)2 : 2MorA → 2MorB, is induced by

f1,1,0 : N
∆×∆
1,1,0 A → N∆×∆

1,1,0 B
by requesting that (γf)2 is the unique map that fits into the following commutative
diagram:



56 LYNE MOSER, VIKTORIYA OZORNOVA, AND MARTINA ROVELLI

2MorA

N∆×∆
1,1,0 A

2MorB

N∆×∆
1,1,0 B

(γf)2

∼=

f1,1,0

(3) the compositor γ̃f : MorA ×
ObA

MorA → CompB is induced by

f2,0,0 : N
∆×∆
2,0,0 A → N∆×∆

2,0,0 B

by requesting that γ̃f is the unique map that fits into the following commutative
diagram:

MorA ×
ObA

MorA

N∆×∆
2,0,0 A

CompB

N∆×∆
2,0,0 B

γ̃f

∼=

f2,0,0

∼=

We verify that γf does indeed define a normal pseudofunctor.
(a) The compatibility of γf with source, target, and identities follows from the commu-

tativity of the following diagrams:

N∆×∆
0,0,0 A

N∆×∆
0,0,0 B

N∆×∆
1,0,0 A

N∆×∆
1,0,0 B

N∆×∆
1,1,0 A

N∆×∆
1,1,0 B

[d1, id]

[d0, id]

[s0, id]

[d1, id]

[d0, id]

[s0, id]

[id, d1]

[id, d0]

[id, s0]

[id, d1]

[id, d0]

[id, s0]

f0,0,0 f1,0,0 f1,1,0

(b) The boundaries of γ̃f satisfy the required condition because of the commutativity of
the following diagram:

N∆×∆
1,0,0 A

N∆×∆
1,0,0 B

N∆×∆
2,0,0 A

N∆×∆
2,0,0 B

N∆×∆
1,0,0 A ×

N∆×∆
0,0,0 A

N∆×∆
1,0,0 A

N∆×∆
1,0,0 B ×

N∆×∆
0,0,0 B

N∆×∆
1,0,0 B

[d1, id]

[d1, id]

[(d2, d0), id]

∼=

[(d2, d0), id]

f1,0,0 f2,0,0 f1,0,0 × f1,0,0

(c) The compatibility of γ̃f with identities follows from the commutativity of the following
diagram:

N∆×∆
1,0,0 A

N∆×∆
1,0,0 B

N∆×∆
2,0,0 A

N∆×∆
2,0,0 B

N∆×∆
1,0,0 A

N∆×∆
1,0,0 B

[s1, id]

[s1, id]

[s0, id]

[s0, id]

f1,0,0 f2,0,0 f1,0,0
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(d) The fact that γf preserves vertical composition of 2-morphisms strictly follows from
the commutativity of the following diagram:

N∆×∆
1,1,0 A ×

N∆×∆
1,0,0 A

N∆×∆
1,1,0 A N∆×∆

1,1,0 B ×
N∆×∆

1,0,0 B
N∆×∆

1,1,0 B

N∆×∆
1,2,0 A N∆×∆

1,2,0 B

N∆×∆
1,1,0 A N∆×∆

1,1,0 B

[id, (d2, d0)] ∼= [id, (d2, d0)]

[id, d1] [id, d1]

f1,1,0 × f1,1,0

f1,2,0

f1,1,0

(e) The 2-naturality of γ̃f follows from the commutativity of the following diagram:

N∆×∆
2,0,0 A×

X
(N∆×∆

1,1,0 A ×
N∆×∆

0,0,0 A
N∆×∆

1,1,0 A) N∆×∆
2,0,0 B ×

Y
(N∆×∆

1,1,0 B ×
N∆×∆

0,0,0 B
N∆×∆

1,1,0 B)

N∆×∆
2,1,0 A N∆×∆

2,1,0 B

N∆×∆
1,1,0 A ×

N∆×∆
1,0,0 A

N∆×∆
2,0,0 A N∆×∆

1,1,0 B ×
N∆×∆

1,0,0 B
N∆×∆

2,0,0 B

([id, d1], [(d2, d0), id]) ∼= ([id, d1], [(d2, d0), id])

([d1, id], [id, d0]) ([d1, id], [id, d0])

f2,0,0×

(f1,1,0 × f1,1,0)

f2,1,0

f1,1,0 × f2,0,0

where

X = N∆×∆
1,0,0 A ×

N∆×∆
0,0,0 A

N∆×∆
1,0,0 and Y = N∆×∆

1,0,0 B ×
N∆×∆

0,0,0 B
N∆×∆

1,0,0 B.

The fact that we retrieve the diagram of Definition C.1(e) comes from the fact that
N∆×∆

2,1,0 B is the following pullback

N∆×∆
2,1,0 B N∆×∆

2,0,0 B ×
Y
(N∆×∆

1,1,0 B ×
N∆×∆

0,0,0 B
N∆×∆

1,1,0 B)

N∆×∆
1,1,0 B ×

N∆×∆
1,0,0 B

N∆×∆
2,0,0 B 2MorB

([id, d1], [(d2, d0), id])

([d1, id], [id, d0]) Φ

Ψ

⌟

where Φ and Ψ compute the total composite of the pasting diagrams.

(f) The compatibility of γ̃f with respect to composition of 1-morphisms follows from the
commutativity of the following diagram:
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N∆×∆
2,0,0 A ×

N∆×∆
1,0,0 A

N∆×∆
2,0,0 A N∆×∆

2,0,0 B ×
N∆×∆

1,0,0 B
N∆×∆

2,0,0 B

N∆×∆
3,0,0 A N∆×∆

3,0,0 B

N∆×∆
2,0,0 A ×

N∆×∆
1,0,0 A

N∆×∆
2,0,0 A N∆×∆

2,0,0 B ×
N∆×∆

1,0,0 B
N∆×∆

2,0,0 B

[(d2, d0), id] ∼= [(d2, d0), id]

[(d3, d1), id] ∼= [(d3, d1), id]

f2,0,0 × f2,0,0

f3,0,0

f2,0,0 × f2,0,0

The fact that we retrieve the diagram of Definition C.1(f) comes from the fact that
N∆×∆

3,0,0 B is the following pullback

N∆×∆
3,0,0 B N∆×∆

2,0,0 B ×
N∆×∆

1,0,0 B
N∆×∆

2,0,0 B

N∆×∆
2,0,0 B ×

N∆×∆
1,0,0 B

N∆×∆
2,0,0 B 2MorB

[(d2, d0), id]

[(d3, d1), id] φ

ψ

⌟

where φ and ψ compute the total composite of the pasting diagrams.
The desired naturality follows from the definitions. □

We will need the following auxiliary fact, asserting a type of fully faithfulness for N∆×∆

when restricted to certain 2-categories.

Proposition C.8. For any gaunt 2-category A and any 2-category B there is a natural
bijection

N∆×∆ : 2Catnps(A,B) ∼= sSet (∆×∆)op(N∆×∆A,N∆×∆B).

Proof. We now argue that given a map f : N∆×∆A → N∆×∆B in sSet (∆×∆)op we have

N∆×∆(γf) = f.

Since N∆×∆A is 3-coskeletal26 and N∆×∆
i,j,k A = N∆×∆

i,j,0 A for all i, j, k ≥ 0, it is enough
to check that N∆×∆

i,j,0 (γf) = fi,j,0 for any i, j ≥ 0 with i + j ≤ 2, which we see by direct
inspection.

We now argue that
γ(N∆×∆F ) = F.

For this, it is enough to observe that by definition F and γ(N∆×∆F ) agree on objects, 1-
and 2-morphisms, and on the compositors. □
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