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INFINITELY MANY ARITHMETIC HYPERBOLIC RATIONAL
HOMOLOGY 3–SPHERES THAT BOUND GEOMETRICALLY

L. FERRARI, A. KOLPAKOV, AND A. W. REID

Abstract. In this paper we provide the first examples of arithmetic hyperbolic 3–manifolds
that are rational homology spheres and bound geometrically either compact or cusped hy-
perbolic 4–manifolds.

1. Introduction

Bordism properties of closed manifolds have been a classical and important topic in topol-
ogy. To mention but one result, Rohklin showed that all closed orientable 3–manifolds bound
a compact 4–manifold.

In [22] the notion of bounding geometrically was introduced: namely whether a connected
closed orientable hyperbolic n–manifold M could arise as the totally geodesic boundary of
a compact hyperbolic (n+ 1)–manifold W . One could weaken this to merely asking that M
bound a finite volume hyperbolic (n + 1)–manifold with cusps. Another variation of this is
to ask can a flat n–manifold could arise as the cusp cross–section of a finite volume 1–cusped
hyperbolic (n+ 1)–manifold.

In [19] another question was considered: whether a given connected closed orientable
hyperbolic n–manifold M could embed geodesically, that is arise as an embedded totally
geodesic codimension 1 submanifold of a hyperbolic (n+ 1)–manifold W .

Although there are obstructions to bounding in certain dimensions, it is now known that
in every dimension n ≥ 2 there are many examples of closed hyperbolic n–manifolds which
bound geometrically. However, less is known in the case of flat n–manifolds. We refer the
reader to [6, 16, 17, 18, 21, 22, 23] for details about constructions of examples, and for
description of possible obstructions. In particular, in dimension 3, although many examples
of closed orientable hyperbolic 3–manifolds are known to bound geometrically, all the known
examples have positive first Betti number. Motivated by this, the third author [28] asked
whether there are closed orientable hyperbolic 3–manifolds M which bound geometrically
and have H1(M,Z) finite. By virtue of Poincaré duality, such M are rational homology 3–
spheres, i.e. Hq(M,Q) ∼= Hq(S3,Q) for all integers q ≥ 0. The main results of this paper
answer this question.

Theorem A. There are infinitely many hyperbolic rational homology 3–spheres Mj which
bound geometrically a compact hyperbolic 4–manifold Wj. Moreover, there are infinitely
many compact hyperbolic 4–manifolds Wj for which Mj = ∂Wj.

L.F. and A.K. were supported by the Swiss National Science Foundation, project no. PP00P2–202667.
A.W.R. was supported by the National Science Foundation and the Max–Planck–Institut für Mathematik.
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Theorem B. There are infinitely many hyperbolic rational homology 3–spheres Xj which
bound geometrically a cusped hyperbolic 4–manifold Yj. Moreover, there are infinitely many
cusped hyperbolic 4–manifolds Yj for which Xj = ∂Yj.

A common property to both families of manifolds Mj and Xj is that they are all arithmetic
of simplest type (see §2.2 for details). That the manifolds are arithmetic of simplest type
allows us to use [19] to embed these manifolds in closed or cusped arithmetic hyperbolic
4–manifolds. A further common property of the manifolds Mj and Xj that will be crucial
in arranging them to bound (see Lemma 3.1) is that Mj and Xj all double cover other
rational homology 3–spheres. The manifolds Mj are commensurable with the arithmetic
rational homology 3–spheres that were constructed in [4] and [2], and the manifolds Xj are
commensurable with the group generated by reflections in the right–angled dodecahedron in
H3.

The key observation that is needed in the proof that Mj and Xj bound geometrically is
Lemma 3.1, which together with Lemma 3.6, essentially “reduces” our task to group theory.
However, the resulting computations rely heavily on Magma [1].

Using more combinatorial and geometric methods via the theory of colourings (see §7)
we can produce some “sporadic” examples of closed hyperbolic 3–manifolds Xj which are
rational homology 3–spheres and which bound geometrically. In contrast to the former
construction, this argument can be made by the “power of pure thought” and in a “computer–
free” way. This was confirmed by computer as part of a tree-search that found all the
possible classes of rational homology 3–spheres that could be built using colourings of the
dodecahedron of lowest rank which bound geometrically.

We end the Introduction by pointing out that both constructions given in the paper
can only produce rational homology 3–spheres that bound geometrically a non–orientable
hyperbolic 4–manifold. It remains open as to whether one can arrange the 4–manifold to be
orientable (as in the constructions of [22] for example). This can be traced to Lemma 3.1,
which in our setting cannot be applied to produce an orientable 4–manifold for which the 3–
manifold bounds geometrically. Futhermore, by Lemma 7.10, a rational homology sphere of
odd dimension cannot have an orientation–reversing, fixed point free involution, since then it
would double–cover a closed non–orientable manifold with trivial reduced rational homology.
Such a manifold cannot exist by an Euler characteristic argument: closed manifolds of odd
dimension must have χ = 0, but a manifold with trivial reduced rational homology has
χ = 1. In connection with this, we note that arithmetic rational homology spheres do not
exist in any dimension ≥ 6 [9].

Acknowledgements: The authors are grateful to the Vinberg Distinguished Lecture Series
for the opportunity of fruitful scientific exchange. L.F. and A.K. thank Bruno Martelli for
helpful comments on the initial version of the manuscript. A.W.R. thanks Eamonn O’Brien
for many hours of Magma tutoring, and thanks the Max–Planck–Institut für Mathematik,
Bonn, for its hospitality during the preparation of this work.

2. Arithmetic hyperbolic manifolds

For the reader’s convenience we recall some facts about arithmetic hyperbolic manifolds.
One may find further details in [25].
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2.1. Arithmetic hyperbolic 3–manifolds. Let M = H3/Γ be a hyperbolic 3–manifold of
finite volume. Then M is called arithmetic if the group Γ is commensurable with a group
Γ1
O as described below.
Let k be a number field with one complex place, B/k a quaternion algebra over k, O ⊂ B

an order. Let O1 denote the elements of O of norm 1, and let ρ : B → M(2,C) be an
embedding. Then the group Γ1

O = Pρ(O1) ⊂ PSL(2,C) is a Kleinian group of finite co-
volume.

We say that Γ as above is derived from a quaternion algebra if Γ < Γ1
O.

2.2. Arithmetic manifolds of simplest type. For the most part, this paper is focused on
hyperbolic manifolds of dimension 3. However, we will need to discuss certain 4–dimensional
hyperbolic manifolds, namely arithmetic hyperbolic manifolds of simplest type, whose defi-
nition we recall below.

Let ` be a totally real number field of degree d over Q equipped with a fixed embedding
into R which we refer to as the identity embedding. Let R` denote the ring of integers of
`. Let V be an (n + 1)–dimensional vector space over ` equipped with a non–degenerate
quadratic form f defined over ` which has signature (n, 1) at the identity embedding, and
signature (n+ 1, 0) at the remaining d− 1 embeddings.

Given this, the quadratic form f is equivalent over R to the standard Lorentzian form
Jn = x2

0 + x2
1 + . . . + x2

n−1 − x2
n, and for any non–identity Galois embedding σ : ` → R,

the quadratic form fσ (obtained by applying σ to each entry of f) is equivalent over R to
x2

0 + x2
1 + . . .+ x2

n−1 + x2
n. Such a quadratic form is called admissible.

Let F be the symmetric matrix associated to f, and let O(f) and SO(f) denote the linear
algebraic groups defined over k as O(f) = {X ∈ GL(n + 1,C) |X tFX = F} and SO(f) =
{X ∈ SL(n+1,C) |X tFX = F}. For a subring L ⊂ C, let the L–points of O(f), resp. SO(f),
be denoted by O(f, L), resp. SO(f, L).

Note that, given an admissible quadratic form f defined over ` of signature (n, 1), there
exists T ∈ GL(n + 1,R) such that T−1SO(f,R)T = SO(n, 1). Let Isom+(Hn) denote the
full group of orientation–preserving isometries of Hn. This can be identified with the group
SO+(Jn,R) = SO+(n, 1), which is the subgroup of SO(n, 1) preserving the upper half–sheet
of the hyperboloid {v ∈ V | vTJnv = −1}.

A subgroup Γ < Isom+(Hn) is called arithmetic of simplest type if Γ is commensurable
with the image in Isom+(Hn) of SO(f, R`) under the conjugation map described above. An
arithmetic hyperbolic n–manifold M = Hn/Γ is called arithmetic of simplest type if Γ is of
simplest type.

The relevance of arithmetic manifolds of simplest type is the following result of [19] (see
[19, Proposition 4.1] and its proof together with [19, Section 7]). For convenience, in the
notation established above, we will say that an orientable arithmetic hyperbolic n–manifold
of simplest type M = Hn/Γ is `–located if Γ = TΛT−1 and Λ < SO(f, `).

Theorem 2.1. Let M = Hn/Γ be arithmetic of simplest type which is `–located. Then M
embeds in a hyperbolic (n + 1)–manifold N . If ` = Q and n ≥ 3, then N is a non–compact
hyperbolic (n+ 1)–manifold. Moreover, infinitely many distinct commensurability classes of
N can be constructed.

Remark 2.2. For n even, all arithmetic hyperbolic n–manifolds are of simplest type [32].
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Remark 2.3. If n = 3, then the class of arithmetic hyperbolic 3–manifolds of simplest type
can be described as precisely those that contain one (and hence infinitely many) totally
geodesic surfaces [25, Chapters 9, 10]. In this case the quaternion algebra B/k as in §2.1
can be described as B = A ⊗` k where ` is a totally real number field with [k : `] = 2,
and A is a quaternion algebra associated to an immersed totally geodesic surface (see [25,
Theorem 9.5.4]). The field ` is the field of definition of the admissible quadratic form f in
the description of M as a manifold of simplest type.

Remark 2.4. If M = H3/Γ contains a totally geodesic surface and Γ is derived from a
quaternion algebra, then it follows from [25, Chapter 10.2] that Γ is `–located (where ` is
the maximal totally real subfield of the invariant trace-field of Γ), and hence satisfies the
hypothesis of Theorem 2.1.

3. A criterion for bounding

In this section we describe a general construction to arrange for hyperbolic rational 3–
spheres to bound geometrically.

3.1. Geodesic embeddings and geometric boundaries. We begin by describing a way
of promoting geodesic embeddings to bounding geometrically.

Lemma 3.1. Let M be an orientable hyperbolic n-manifold that has a fixed point free invo-
lution ϕ ∈ Isom(M). If M embeds geodesically then it also bounds geometrically.

Proof. Let M embed into an orientable manifold N ′ as a totally geodesic submanifold of
codimension 1. Let us denote by N the manifold obtained by cutting N ′ along M and
taking a connected component. Then either ∂N = M and we are done, or ∂N = M tM ,
and we can quotient out one copy of M in ∂N by self-identifying it via ϕ. Given that ϕ is a
fixed point free involution, the resulting metric space Nϕ will be a hyperbolic manifold with
a single boundary component isometric to M . Moreover, Nϕ is orientable or not depending
on whether ϕ is orientation-reversing or not. tu

Below we provide two illustrative examples: though none of them is of a hyperbolic man-
ifold bounding another, they give a picture that is easy to visualise.

Example 3.2 (The 2-torus). Let N ′ = C/Γ, where Γ = 〈z → z + 1, z → z + i〉. Then
N ′ ∼= S1 × S1 is a flat torus. Let M ∼= S1 be embedded into N ′ as the image of the interval
J = {i · t | t ∈ [0, 1]} ⊂ i ·R. Then M is a totally geodesic non-separating submanifold of N ′.

By cutting N ′ along M , we get the manifold N ∼= S1× [0, 1], with ∂N = M tM . Consider
then the antipodal map ϕ on M = S1, which is an orientation-preserving fixed point free
involution. The resulting manifold Nϕ is the Möbius strip. This is a non-orientable flat
2-manifold with only one boundary component M .

Example 3.3 (The twisted I–bundle). A higher–dimensional generalisation of the previous
example is the following. Let ϕ be the free (orientation–preserving) involution of a genus 3
orientable surface S that quotients it down to a genus 2 surface. Let N = S × [0, 1]. When
we quotient out N × {1} by ϕ, then we obtain Nϕ that is a twisted I–bundle over S, and
thus cannot be orientable.
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Remark 3.4 (Rokhlin’s theorem). If M is a topological closed 3–manifold that admits a
fixed point free involution ϕ, then the proof of Rokhlin’s theorem can be reduced to a trivial
construction. Namely, taking W = M × [0, 1], so that we can quotient out, say, M ×{1} by
ϕ, and get the desired Nϕ with ∂Nϕ = M × {0}.
3.2. Towers of rational homology spheres. The main ideas of the construction build on
the works [2] and [4]. To state the result that we will make use of, we need to recall some of
[4, Section 6].

For an odd prime p, a finite p–group S is powerful if S/Sp is Abelian, where Sp is the
subgroup of S generated by all p–th powers of its elements. When p = 2, the condition is
that S/S4 is Abelian.

A finitely generated group Γ is called p–powerful if every finite p–group quotient of Γ is
powerful.

Proposition 3.5. [4] Let Γ be a finitely generated group which is p–powerful. If H1(Γ,Z) is
finite, then H1(H,Z) is finite for any subgroup H ⊂ Γ of p–power index.

Let G be a group: its mod p lower central series is defined inductively as γp1(G) = G,
with γpn+1(G) = 〈(γpn(G))p, [G, γpn(G)]〉 ⊆ γpn(G) for n ≥ 1. Then G is residually–p if we have⋂
n≥1 γ

p
n(G) = {1}.

Lemma 3.6. Let M = H3/Γ be an arithmetic hyperbolic rational homology 3–sphere of
simplest type arising from an admissible quadratic form over a totally real field ` with the
following properties:

(1) Γ is `–located;
(2) Γ is p–powerful for some odd prime p;
(3) Γ is residually–p;
(4) M has a double cover M ′ = H3/∆ which is a rational homology 3–sphere, and ∆ is

p–powerful.

Then there exists a tower of rational homology 3–spheres Mj = H3/∆j which are regular
p–power coverings of M ′ that bound geometrically a hyperbolic 4–manifold Wj. In the case
when ` = Q, the manifold Wj has cusps.

Proof. By hypotheses, Γ is p–powerful and residually–p, so Proposition 3.5 implies that there
exists an infinite tower of p–power index normal subgroups ΓjCΓ for which all the manifolds
H3/Γj are rational homology 3-spheres. Set ∆j = ∆ ∩ Γj.

Since [Γ : ∆] = 2, it is clear that ∆j C Γj. Indeed,

Γj/∆j = Γj/Γj ∩∆ ∼= ∆Γj/∆ ⊂ ∆Γ/∆ = Γ/∆ ∼= Z/2Z.
Note that ∆ is not a subgroup of Γj for any j since [Γ : ∆] = 2, while [Γ : Γj] = pk for

an odd prime p and some integer k > 0. Thus [Γj : ∆j] = 2 for all j. By construction,
Γj C Γ with quotient a finite p–group, hence ∆j C ∆ with quotient a finite p–group. The
residually–p condition implies that

⋂
j≥1 Γj = 1, and so

⋂
j≥1 ∆j = 1.

Putting all of this together, since ∆ is p–powerful, and each Mj = H3/∆j is a p–power
regular cover of N , Proposition 3.5 applies to show that each Mj is a rational homology
3-sphere. In addition, each Mj double covers the rational homology 3-sphere M ′

j = H3/Γj.
By assumption, Γ and thus Γj and ∆j are all arithmetic of simplest type and `–located.

Hence Theorem 2.1 applies to embed all of the manifolds Mj in an arithmetic hyperbolic
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4–manifold Nj. Note that if ` = Q then Nj is necessarily cusped (see [19] for example).
Regardless, Lemma 3.1 applies to the Mj to promote it from being embedded to bounding
geometrically. tu

Remark 3.7. As discussed in [4, Remark 6.5], whether a group is p–powerful for a given
odd prime p can be readily checked, and it reduces to checking whether the maximal finite
p–group quotient of nilpotency class 2 is powerful. This can be done in Magma [1] via the
pQuotient routine, and a test routine IsPowerful (see §8 for examples).

4. Bounding compact hyperbolic 4–manifolds

For the case of bounding a compact manifold, we work with the commensurability class
of the group generated by reflections in the faces of the right–angled dodecahedron D in H3.
This in turn is commensurable with the tetrahedral group T = T4[2, 2, 3; 3, 5, 2] (which is
T4 in [25, Chapter 13.1]). Indeed, the dodecahedron D can be split into 120 copies of its
fundamental orthoscheme T ′ with Schläfli symbol [5, 3, 4] (which is T2 in [25, Chapter 13.1]).
Two copies of T ′ glued along an appropriate face produce T : one may also think of reflecting
T ′ in one of its faces. We use T instead of T ′ because it gives rise to a group that is the unit
group of a maximal order, and is more convenient for our computations.

Let Γ denote the subgroup of index 2 in the group generated by reflections in the faces of
T consisting of orientation–preserving isometries. A presentation for Γ is given by

〈x, y, z |x2 = y2 = z3 = (yz)3 = (zx)5 = (xy)2 = 1〉.

The arithmetic information associated to Γ is the following. From [24], Γ = Γ1
O where

O is a maximal order (unique up to B∗–conjugacy) of the quaternion algebra B/k, where
k = Q(θ), with θ4−θ2−1 = 0, is a degree 4 complex extension of Q with two real places, and
B is ramified at both of them. Note that the maximal totally real subfield of k is ` = Q(

√
5)

and, since Γ is derived from a quaternion algebra, it follows from Remarks 2.3 and 2.4 that
Γ is `–located.

The ring Rk contains two prime ideals of norm 11. We will use reduction modulo one of
these prime ideals, which will be denoted by P , to get an epimorphism φ : Γ→ PSL(2,F11),
the kernel Γ1 of which will provide the initial rational homology 3–sphere M = H3/Γ1 to
apply Lemma 3.6. From §8.1, we see that H1(M,Z) ∼= (Z/2Z)7 ⊕ (Z/22Z)3. The Magma
routine in §8.1 establishes that Γ1 is 11–powerful. By reducing modulo Pn we get a tower
of normal subgroups Γj of 11–power index in Γ1 with

⋂
j≥1 Γj = {1}. In particular, Γ1 is

residually–11.
There are 1023 subgroups of index 2 in Γ1, and we get Magma to test which of these index

2 subgroups also have finite abelianisation (there are 363 of them). We choose one of these
as our subgroup ∆ to apply Lemma 3.6. Two examples M1 and M3 are taken from this list
and Magma certifies that Lemma 3.6 can be indeed applied.

Remark 4.1. The smallest volume of one of the rational homology 3-spheres constructed
above equals 4 · |PSL(2,F11)| · Vol(T ) which is approximately 189.4464 . . .
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5. Bounding cusped hyperbolic 4-manifolds: building on the examples of [4]
and [2]

We begin by recalling the arithmetic rational homology 3-spheres of [4] and [2]. Thus, let B
be the quaternion division algebra over Q(

√
−2) ramified at the prime ideals P = 〈1+

√
−2〉

and P = 〈1−
√
−2〉 of Z[

√
−2] of norm 3. Let O ⊂ B be a maximal order (which is unique

up to B∗–conjugacy since the type number is 1), and let Γ1
O denote the image in PSL(2,C)

of the elements of norm 1.
In [4], Calegari and Dunfield construct a tower of finite index subgroups Γj in Γ1

O with
the following properties:

(1) Γ1 = Γ1
O and Γj+1 ⊂ Γj;

(2) Γj+1 C Γj and Γj C Γ1 for all j;
(3) Γj/Γj+1

∼= (Z/3Z)2, resp. ∼= Z/3Z, when j is odd, resp. j is even;
(4)

⋂
j≥1 Γj = 1;

(5) Mj = H3/Γj is a rational homology 3–sphere for j ≥ 2.

Note that in the construction of the manifolds Mj in [4], the fact they were rational
homology 3–spheres was conditional on the Generalised Riemann Hypothesis and part of
the Langlands Program, but this was established unconditionally in [2].

Another important feature of the commensurability class of Γ1
O is that each group Γ

commensurable with Γ1
O contains arithmetic Fuchsian subgroups, and so if Γ is torsion-free,

the manifold H3/Γ contains immersed totally geodesic surfaces (see [25, Theorem 9.5.4]). In
particular, all the manifolds Mj, j ≥ 2, contain immersed totally geodesic surfaces. Hence,
by Remark 2.3 each of the manifolds Mj are of simplest type, and since the totally real
subfield of index 2 is Q, these are simplest type for admissible quadratic forms defined over
Q. In addition, since each of the groups Γj are derived from a quaternion algebra, Remark
2.4 applies to each of the groups Γj (so they satisfy the hypothesis of Theorem 2.1), and so
the manifolds Mj embed in a cusped hyperbolic 4–manifold Xj.

We will now build a second tower of arithmetic rational homology 3–spheres Nj with
Nj → Mj a double cover. The discussion above concerning Mj applies equally well to Nj,
and so we can deduce that each of the manifolds Nj, j ≥ 2, embeds in a cusped hyperbolic
4–manifold. The point about passing to the Nj is that by construction, they admit a free
involution and so Lemma 3.6 will apply to arrange bounding. Below we provide the necessary
details.

In fact our starting point is the group Γ2. We will make use of a presentation of Γ2

computed from that given for Γ1 in §8.2 (as in [4] and [2]). As above, we will make use of
Magma [1] in what follows, and the Magma routine including all the calculations is included
in §8.2. That Γ2 is 3–powerful is already established in [4] and [2], and from the properties
of the groups Γj listed above, we see that Γ2 is residually–3.

Referring to §8.2, we see that H1(Γ2,Z) ∼= Z/6Z ⊕ Z/6Z ⊕ Z/36Z, and so Γ2 has 7
subgroups of index 2. We will choose one of these subgroups, namely L4 (from the Magma
routine in §8.2), which we define as ∆2. The construction of our new tower of rational
homology 3–spheres will be completed by applying Lemma 3.6 once we establish that ∆2 is
3–powerful. As before this is certified using Magma [1] via the pQuotient routine, and the
routine IsPowerful. We refer the reader to §8.2.
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Remark 5.1. Using the calculations of [4] it can be shown that the smallest volume of one
of the rational homology 3–spheres constructed above is approximately 144.5531 . . ., which is
of the same order of magnitude as the example in Remark 4.1.

6. Examples of 4–manifolds using Theorem 2.1

We briefly describe how to implement Theorem 2.1 to provide infinitely many commen-
surability classes of closed and cusped hyperbolic 4–manifolds Yj and Wj for which Xj and
Nj embeds, thereby allowing us to conclude the proof of Theorems A and B. To do this, we
need to construct an admissible quadratic form over a totally real field.

Closed case. As follows from [3] the group Γ is a subgroup in the group O(f, R`) of the

admissible quadratic form f = x2
1 +x2

2 +x2
3− 1+

√
5

2
x2

4 over the field ` = Q(
√

5) with the ring of

integers R` = Z[1+
√

5
2

]. Let q = x2
0 +f . The separability arguments from [19] can be adopted

so that we produce a tower of manifold coverings N ′i → H4/SO(q, R`), for i = 1, 2, . . ., of
ever increasing degrees (and thus having different volumes), such that Mj = H3/Γj embeds
in each N ′i . By applying Lemma 3.1 to each N ′i we get an an infinite sequence W ′

i with
∂W ′

i = Mj. Thus, in Theorem A, we can set Wj = W ′
i , for any i = 1, 2, . . .

Cusped case. The quaternion algebra B/Q(
√
−2) used by [4] can be described via a Hilbert

symbol as

(
−1,3
Q

)
⊗Q Q(

√
−2). Using [24] or [25, Chapter 10.2], an admissible quadratic

form is f = x2
1 + 6x2

2 + 6x2
3 − 2x2

4. Now let q = x2
0 + f and apply the above argument to

get infinitely many rational homology 3–spheres Xj embedding each into infinitely many
manifolds N ′i , and thus each bounding infinitely many W ′

i ’s. The only difference being that
W ′
i are each cusped. Then we can set Yj = W ′

i for any i = 1, 2, . . .

7. Colourings and rational homology 3–spheres

In this section we provide a more concrete construction of some ”sporadic” rational homol-
ogy 3–spheres that bound geometrically. These will be built from the all right dodecahedron
in H3, and will be commensurable with the examples in §4. The details are given in the
subsections below.

7.1. Colourings of right–angled polyhedra. A finite-volume polytope P ⊂ Xn (for Xn =
Sn,En,Hn being spherical, Euclidean and hyperbolic n–dimensional space, respectively, see
[27, Chapters 1–3]) is called right–angled if any two codimension 1 faces (or facets, for short)
are either intersecting at a right angle or disjoint. It is known that compact hyperbolic right-
angled polytopes cannot exist if n > 4 [26]. The only compact right-angled spherical and
Euclidean polytopes are the n–simplex and the n–parallelotope, respectively. A sufficient
condition for an abstract 3–polytope to be realisable as right–angled hyperbolic one is given
in [30, Theorem 2.4]. There is no such classification for right-angled n–polytopes with n ≥ 4.
We refer the reader to [8, 15, 26, 30] for more information on right–angled polytopes.

One of the important properties of hyperbolic right-angled polytopes is that their so-called
colourings provide a rich class of hyperbolic manifolds. By inspecting the combinatorics of
a colouring, one may obtain important topological and geometric information about the
associated manifold.
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Let P ⊂ Xn be a compact, right-angled polytope with the set of facets F . A colouring of
P is a map λ : F → W , where W an Z2–vector space. The map λ is called proper if, for
every vertex v = F1 ∩ . . . ∩ Fn, the vectors λ(F1), . . . , λ(Fn) are linearly independent.

If the polytope P or the vector space W are clear from the context, then we will omit
them and simply refer to λ as a colouring. The rank of λ is the Z2–dimension of imλ. We
will always assume that colourings are surjective, in the sense that the image of the map λ
is a generating set of vectors for W .

A colouring of a right-angled n–polytope P naturally defines a homomorphism, which
we still denote by λ without much ambiguity, from the associated right-angled Coxeter
group Γ(P), that is generated by reflections in all the facets of P , into W with its natural
group structure. Being a Coxeter polytope, P has a natural orbifold structure as the quotient
Xn/Γ(P).

Proposition 7.1 ([7], Proposition 1.7). If the colouring λ is proper, then kerλ < Γ(P) is
torsion-free, and Mλ = Xn/kerλ is a closed manifold.

Notice that if P ⊂ Xn is a compact right-angled polytope then P is necessarily simple and
its dual K = (∂P)∗ is a simplicial complex.

We say that a Zk2-colouring λ is orientable if the orbifold Mλ is orientable. We have the
following criterion for orientability.

Proposition 7.2 ([17], Lemma 2.4). The orbifold Mλ is orientable if and only if λ is
equivalent to a colouring that assigns to each facet a colour in W ∼= Zk2 with an odd number
of entries 1.

Given a right-angled polytope P ⊂ Xn with a Zk2–colouring λ, let us enumerate the facets
F of P in some order. Then we can assume that F = {1, 2, . . . ,m}. Let Λ be the defining
matrix of λ that consists of the column vectors λ(1), . . . , λ(m) exactly in this order. Hence
Λ is a matrix with k rows and m columns. More precisely, Λ represents the abelianisation
of λ, i.e. the former is a map such that Λ ◦ ab = λ, where ab : Γ→ Zm2 is the abelianisation
map that takes ri, the reflection of the facet i, to ei.

Let Row(Λ) denote the row space of Λ, while for a vector ω ∈ Row(Λ) let Kω be the
simplicial subcomplex of the complex K = KP spanned by the vertices i, also labelled by
the elements of {1, 2, . . . ,m}, such that the i–th entry of ω equals 1.

Then the rational cohomology of Mλ can be computed via the following formula, cf. [5,
Theorem 1.1].

(1) Hp(Mλ,Q) ∼=
⊕

ω∈Row(Λ)

H̃p−1(Kω,Q).

Moreover, the cup product structure is given by the maps [5, Main Theorem]:

(2) H̃p−1(Kω1 ,Q)⊗ H̃q−1(Kω2 ,Q) 7→ H̃p+q−1(Kω1+ω2 ,Q).

7.2. Colouring extensions. Let λ : F → Zk2 be any colouring. A (surjective) colouring
µ : F → Zk+1

2 is called an extension of λ if there is a linear projection p : Zk+1
2 → Zk2 such

that λ = p ◦ µ.
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Proposition 7.3. Let λ : F → Zk2 be any colouring and µ : F → Zk+1
2 its extension. Then

Mµ double-covers Mλ. Moreover, if λ is proper or orientable, so is µ.

Proof. Let Γ = Γ(P) be the reflection group associated with P . Let λ : Γ → Zk2 and
µ : Γ → Zk+1

2 be the homomorphisms induced by λ and µ, respectively. By definition, we
have that λ = p◦µ, and it follows that kerλ = ker (p◦µ) = µ−1(ker p). Moreover, Im p ∼= Zk2
and |ker p| = [Zk+1

2 : Im p] = 2. Thus ker p = {0, v0} for some v0 ∈ Zk+1
2 , v0 6= 0.

Since µ is surjective, there exists u0 ∈ µ−1(v0) 6= ∅. Since µ is a homomorphism, µ−1(v0) =
u0 + kerµ. Then kerλ = kerµ t (u0 + kerµ), and thus kerµ /2 kerλ. Hence Mµ is a double
cover of Mλ.

Finally, assume that {λ(F1), . . . , λ(Fs)} ⊂ Zk2 is a set of linearly independent colours. By
using the fact that λ = p◦µ, we easily obtain that µ(F1), . . . , µ(Fs) are linearly independent.
Hence, if λ is proper then µ is proper too. Also, if Mµ double-covers Mλ and the latter is
orientable, so is Mµ. tu

One direct application of Equation (1) to extensions of colourings is the following.

Proposition 7.4. Let λ : Γ→ Zk2 be a colouring and µ its extension. Let also Λ and M be
their respective defining matrices. Then, up to equivalence, M is the matrix obtained from
Λ by adding an extra row vector v ∈ Zm2 = ab(Γ), such that v /∈ Row(Λ). Moreover, if λ is
orientable, so is µ. Finally, for all p ≥ 0,

Hp(Mµ,Q) = Hp(Mλ,Q)⊕
⊕

ω∈Row(Λ)

H̃p−1(Kω+v,Q).

Proof. Up to isomorphism, we may assume the projection p : Zk+1
2 → Zk2 is just the canonical

projection onto the first k coordinates. Then, since p◦M = Λ, it is clear that M is the matrix
Λ with another row v ∈ Zm2 added. Moreover, µ is surjective if and only if M is surjective,
and the latter holds if and only if v /∈ Row(Λ). The colouring extensions can be seen in red
in the diagram below:

Γ Zk+1
2

Zm2 Zk2

µ

ab

λ

p

Λ

M

Clearly, Row(M) = Row(Λ) t
(
v + Row(Λ)

)
. We conclude by applying Equation (1). tu

Conversely, there is a criterion to tell whether a given colouring µ is an extension of some
other colouring λ.

Proposition 7.5. Let µ : Γ(P) → W be a proper colouring, and let Wp = µ
(
StabΓ(p)

)
for any vertex p of P . Then µ is an extension of some proper colouring if and only if⋃
pWp ( W .

Proof. Assume that there is a projection p : W ∼= Zk2 → Zk−1
2 such that p ◦ µ is a proper

colouring. Then, for any codimension s face f = F1∩. . .∩Fs of P we have (p◦µ)(F1)+. . .+(p◦
µ)(Fs) 6= 0. This means that µ(F1) + . . .+ µ(Fs) /∈ ker p. As in the proof of Proposition 7.3,
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we have that ker p = {0, v0} for some v0 ∈ W and, in particular, µ(F1) + . . .+µ(Fs) 6= v0 for
any face f = F1 ∩ . . . ∩ Fs. It follows that v0 /∈ Wf for any such face f and, in particular,
for any vertex q ∈ P .

Conversely, assume there is a vector v0 ∈ W \
⋃
qWq. Then µ(F1) + . . . + µ(Fs) 6= v0

for any codimension s face f = F1 ∩ . . . ∩ Fs of P . Let W ∼= Zk2 and p : Zk2 → Zk−1
2 be

the projection along v0. Since µ is proper, we also have that µ(F1) + . . . + µ(Fs) 6= 0 for
any face f = F1 ∩ . . . ∩ Fs, that is, µ(F1) + . . . + µ(Fs) /∈ {0, v0} = ker p. Let us then set
λ = p ◦ µ. This is a proper colouring since λ(F1) + . . .+ λ(Fs) /∈ p(ker p) = {0} for all faces
f = F1 ∩ . . . ∩ Fs. By definition, µ is an extension of λ. tu

Example 7.6 (The Hantzsche–Wendt colouring). Let λ be the colouring of the 3–cube
defined in [10, p. 8] such that Mλ is the Hantzsche–Wendt manifold [14]. In particular,
rankλ = 4. However, we have that

⋃
pWq = W , and it follows from Proposition 7.5 that λ

is not an extension of any colouring.

7.3. Rational homology 3–spheres. We say that a CW–complex is a rational homology
point if all its reduced Q–homology groups are trivial.

Let ε = (1, . . . , 1) ∈ Zm2 . By Proposition 7.2, we have that ε ∈ row Λ for every orientable
λ, since it’s given by the sum of rows of Λ. By applying Equation (1), we have the following.

Lemma 7.7. An orientable Mλ is a rational homology sphere if and only if for all ω ∈
Row(Λ) \ {0, ε}, Kω is a rational homology point.

Proof. The only non-trivial cohomology groups of Mλ are Hn(Mλ,Q) ∼= H0(Mλ,Q) ∼=
H̃−1(K0,Q) ∼= Q and H0(Mλ,Q) ∼= Hn(Mλ,Q) ∼= H̃n−1(Kε,Q) ∼= Q. Therefore, every
other simplicial subcomplex Kω must have trivial reduced homology groups. tu

By applying Equation (2), we get a useful consequence.

Lemma 7.8. Let Mλ be an orientable n–manifold and ω ∈ Row(Λ) \ {0, ε}. Then Kω is a
rational homology point if and only if Kε−ω is so.

Proof. Assume that Kω is not a rational homology point. Then H̃∗(Kω,Q) is non–trivial.

Let 0 6= α ∈ H̃ i(Kω,Q) for some i ∈ {0, . . . , n − 2}. By Equation (1), α ∈ H i+1(Mλ,Q).
By [13, Corollary 3.39], there exists β ∈ Hn−i−1(Mλ,Q) such that α ^ β is the generator

of Hn(Mλ,Q). Then, by Equation (1), α ^ β is the generator of H̃n−1(Kε,Q), since Kε is

homotopically Sn−1. Finally, by Equations (1)–(2), we obtain that 0 6= β ∈ H̃n−i−2(Kε−ω,Q),

since otherwise the product α ^ β would not belong to H̃n−1(Kε,Q). tu

Thus, we can improve Lemma 7.7 algorithmically by checking only the connectivity of
some graphs.

Corollary 7.9. An orientable 3–manifold Mλ is a rational homology sphere if and only if
for all ω ∈ Row(Λ) \ {0, ε} the 1–skeleton of Kω is connected.

Proof. If one proper subcomplex Kω has a non-trivial cycle then, by Lemma 7.8, the com-
plementary complex Kε−ω will be disconnected. It suffices therefore to check if all proper,
non-empty subcomplexes Kω are connected. Clearly the connectivity of Kω depends only
on the connectivity of its 1–skeleton. tu
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In the case of double covers, the transfer homomorphisms [13, Section 3.G] can be easily
used in order to obtain the following statement:

Lemma 7.10. Let Y be a closed manifold that is a double cover of another manifold X. If
Y is a rational homology sphere, then X is either a rational homology sphere or a rational
homology point.

Thus, if we want to obtain a colouring µ producing a 3–dimensional rational homology
sphere, such that µ is an extension of a proper colouring λ, then we need that the starting
colouring λ also produce a rational homology sphere. In this regard, we can use the following
algorithm.

Lemma 7.11. Let λ be a proper colouring such that the 3–manifold Mλ is a rational ho-
mology sphere. Let µ be any extension of λ, obtained by adding to Λ a row vector v /∈ row Λ.
Then Mµ is a rational homology sphere if and only if for every pair {ω, ε − ω} ⊂ Row(Λ),
we have that Kω+v is connected and has only trivial homology 1–cycles.

Proof. By Proposition 7.4, we have that Mµ is a rational homology sphere if and only if
Kω+v is homologically trivial for every ω ∈ Row(Λ). By Lemma 7.8, Kω+v is homologically
trivial if and only if Kε−(ω+v) is so. Since ε− (ω+ v) = (ε−ω) + v and ε ∈ Row(Λ), we have
that also ε − ω ∈ Row(Λ). Therefore, it is enough to check whether Kω+v is homologically
trivial for each pair {ω, ε − ω} ⊂ Row(Λ). Since K is homeomorphic to S2 and Kω+v is a
proper subcomplex of K, then Kω+v is homologically trivial if and only if it is connected and
has only trivial homology 1–cycles. tu

7.4. A rational homology sphere from colouring that bounds geometrically.

Proposition 7.12. Let λ : Γ(P) → W be a proper colouring of the hyperbolic, compact,
right–angled 3–polytope P with arithmetic reflection group Γ = Γ(P). If

⋃
qWq ( W , then

Mλ bounds geometrically. Equivalently, any extension of a proper colouring of P bounds
geometrically.

Proof. By [29], and Γ is of simplest type, and by [31, Theorem 5] we have that Γ is also
k–located. Then Mλ = H3/Γλ is an arithmetic manifold with k–located Γλ, for any proper
colouring of P . Thus, Mλ embeds geodesically by Theorem 2.1.

If
⋃
qWq ( W then, by Proposition 7.5, λ is an extension of some colouring µ and, by

Proposition 7.3, we have that Mλ double-covers Mµ. Then Mλ has a fixed point free
involution and therefore bounds geometrically by Lemma 3.1. tu
Theorem 7.13. There is a colouring µ of the right-angled dodecahedron such that Mµ is
an arithmetic hyperbolic rational homology 3–sphere that bounds geometrically.

Proof. Let D be the right-angled dodecahedron and take the only orientable small cover λ
of D given in [12, p. 6]. Thus

Λ =

1 0 0 0 0 1 1 1 1 1 0 0
0 1 0 0 1 1 0 1 1 0 0 1
0 0 1 1 0 1 0 1 1 0 1 0

 ,

where the labeling of the faces of D is given in Figure 1. By Equation (1), Mλ is a rational
homology sphere. If we find an extension µ of λ such that Mµ is also a rational homology
sphere, then we are done by Proposition 7.12, since Γ(D) is arithmetic by [30, Lemma 3.8].
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3 4

5 6

7 8

9 10

11
12

Figure 1. The dodecahedron used in the proof of Theorem 7.13 with its face
labelling. The red, green, blue and yellow subcomplexes are K13, K14, K34

and Kv, respectively.

By Lemma 7.11, it is enough to find a row vector v ∈ Z12
2 \ Row(Λ) such that the com-

plexes Kω+v are connected and have only trivial homology 1–cycles for ω ∈ {0, eT1 Λ, (e1 +
e3)TΛ, eT3 Λ}.

Recall that Row(Λ) = {xTΛ | x ∈ Z3
2} and ε = (1, 1, 1)TΛ. Let ω = xTΛ for some

x ∈ Z3
2. Then for a face F of D we have that F ∗ ∈ Kω if and only if x · λ(F ) = 1. In

particular, this means that the subcomplexes Kij = K(ei+ej)T Λ for {i, j} ⊂ {1, 2, 3} are
exactly the subcomplexes of K with vertices coloured by ei and ej, while the subcomplexes
Ki4 = K(ei)T Λ are the subcomplexes of K with vertices coloured by ei and e1 + e2 + e3.

Due to the constraint that Kv be a rational homology point, the choice of vertices (Fi)
∗

in K such that µ(Fi)4 = 1 (or, equivalently, the choice of vi 6= 0) should define one such
subcomplex. By choosing Kv as the simplex {3, 7, 9} around which the three complexes K13,
K14, K34 are “wrapped”, we have precisely that all four subcomplexes Kv+ω are rational
homology points as shown in Figure 1.

Explicitly, the colouring µ with defining matrix

M =


1 0 0 0 0 1 1 1 1 1 0 0
0 1 0 0 1 1 0 1 1 0 0 1
0 0 1 1 0 1 0 1 1 0 1 0
0 0 1 0 0 0 1 0 1 0 0 0


is an extension of Λ by Proposition 7.4, and Mµ is a rational homology sphere by Equa-
tion (1). Hence, by Proposition 7.12, Mµ bounds geometrically. Finally, since Γ(D) is
arithmetic, it follows that Mµ is also arithmetic. tu
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Colouring vector H1(Mλ,Z) Symλ(P)
(1, 2, 4, 12, 10, 15, 9, 15, 7, 1, 4, 2) Z4

2 × Z6
4 trivial

(1, 2, 4, 12, 2, 15, 1, 7, 7, 9, 4, 2) Z8
2 × Z4

4 Z3

(1, 2, 4, 4, 10, 15, 1, 7, 7, 9, 4, 2) Z8
2 × Z4

4 trivial
(1, 2, 4, 12, 10, 15, 1, 15, 7, 9, 4, 2) Z4

2 × Z6
4 Z2

(1, 2, 4, 12, 10, 15, 1, 7, 15, 9, 4, 2) Z4
2 × Z6

4 trivial
(1, 2, 4, 4, 10, 7, 9, 15, 15, 9, 4, 2) Z8

2 × Z4
4 Z3

(1, 2, 4, 12, 10, 7, 1, 15, 7, 9, 12, 2) Z4
2 × Z6

4 Z2 × Z2

Table 1. Extensions of λ that produced rational homology spheres, as de-
scribed in Remark 7.14: highlighted in blue is the penultimate entry that
corresponds to µ.

Remark 7.14. A computer search among all possible extensions of the colouring Λ from
Theorem 7.13 returned that there are, up to DJ–equivalence [10, Definition 2.4], 7 extensions
which are rational homology 3–spheres. However, the number of equivalence classes up to
isometry might be smaller, given that the exact equivalence between isometry classes and
colouring classes of compact hyperbolic 3–polytopes holds only for small covers [30, Theorem
3.13].

In Table 1, we provide a representative of each colouring class, together with its first
integral homology group and coloured symmetry group (cf. [20, Section 2.3] for more in-
formation on coloured symmetries). Each colouring is represented by a colouring vector
v = (ci)

11
i=0 ∈ Z12 that assigns the colour ci to the facet Fi of the right-angled dodecahedron

in Figure 1. The colour ci is given in the binary notation: if ci = (x, y, z, t) ∈ Z4
2, then

we use the map ci 7→ x + 2y + 4z + 8t. The colouring µ in the proof of Theorem 7.13 is
equivalent to the penultimate entry in the table (highlighted in blue). We refer the reader
to the SageMath code available on GitHub [11].

8. Magma computations

8.1. Magma calculations for §4. Referring to the Magma [1] code below, g denotes the
group Γ, and K = K1 denotes the group Γ1.

> g<x,y,z>:=Group<x,y,z|x^2,y^2,z^3,(y*z)^3,(z*x)^5,(x*y)^2>;

> P:=PSL(2,11);

> H := Homomorphisms(g, P: Limit := 2);

> print H;

[

Homomorphism of GrpFP: g into GrpPerm: P, Degree 12, Order 2^2 * 3 * 5 * 11

induced by

x |--> (1, 9)(2, 12)(3, 6)(4, 7)(5, 11)(8, 10)

y |--> (1, 5)(2, 7)(3, 10)(4, 12)(6, 8)(9, 11)

z |--> (1, 8, 2)(3, 4, 7)(5, 12, 11)(6, 9, 10),

Homomorphism of GrpFP: g into GrpPerm: P, Degree 12, Order 2^2 * 3 * 5 * 11
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induced by

x |--> (1, 12)(2, 10)(3, 7)(4, 5)(6, 9)(8, 11)

y |--> (1, 5)(2, 7)(3, 10)(4, 12)(6, 8)(9, 11)

z |--> (1, 8, 2)(3, 4, 7)(5, 12, 11)(6, 9, 10)

]

> imgs:=[P!(1, 9)(2, 12)(3, 6)(4, 7)(5, 11)(8, 10),

P!(1, 5)(2, 7)(3, 10)(4, 12)(6, 8)(9, 11),

P!(1, 8,2)(3, 4, 7)(5, 12, 11)(6, 9, 10)];

> e := hom< g->P | imgs >;

e(g) eq P;

true

> K:=Kernel(e);

> print AbelianQuotientInvariants(K);

[ 2, 2, 2, 2, 2, 2, 2, 22, 22, 22 ]

> K1:=Rewrite(g,K);

> IsPowerful := function (G)

function> return DerivedGroup(G) subset Agemo (G, 1);

function> end function;

> H,A,B:=pQuotient(K1,11,2:Print:=1);

Lower exponent-11 central series for K1

Group: K1 to lower exponent-11 central class 1 has order 11^3

Group: K1 to lower exponent-11 central class 2 has order 11^6

> IsPowerful(H);

true

> l:=LowIndexSubgroups(K1,<2,2>);

> print #l;

1023

> M:=[x: x in l | not (0 in AbelianQuotientInvariants (x))];

> print #M;

363

> print AbelianQuotientInvariants(M[1]);

[ 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 44, 132, 132 ]

> M1:=Rewrite(K1,M[1]);

> HH,AA,BB:=pQuotient(M1,11,2:Print:=1);

Lower exponent-11 central series for M1

Group: M1 to lower exponent-11 central class 1 has order 11^3

Group: M1 to lower exponent-11 central class 2 has order 11^6

> IsPowerful(HH);

true
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> M3:=Rewrite(K1,M[3]);

> HH,AA,BB:=pQuotient(M3,11,2:Print:=1);

Lower exponent-11 central series for M3

Group: M3 to lower exponent-11 central class 1 has order 11^3

Group: M3 to lower exponent-11 central class 2 has order 11^6

> IsPowerful(HH);

true

8.2. Magma calculations for §5. Referring to the routine below, g is the group Γ1, and
K = K1 is the group Γ2.

g<a,b,c,d>:=Group<a,b,c,d|d^3,a*c*d*c*b^2*c*a*d^-1*c^-1,

a*c*b^2*d^-1*c^-1*a^-1*b^-1*d*b^-1,a*d^-1*a^-1*c^-1*b^-1*d*b*c,(b^2*d^-1)^3,

b*d^-1*b*c*a^-1*c*d*a^-1>;

> print AbelianQuotientInvariants(g);

[ 2, 6, 12 ]

H,A,B:=pQuotient(g,3,1:Print:=1);

Lower exponent-3 central series for g

Group: g to lower exponent-3 central class 1 has order 3^2

> K:=Kernel(A);

> print AbelianQuotientInvariants(K);

[ 6, 6, 36 ]

> K1:=Rewrite(g,K);

> l:=LowIndexSubgroups(K1,<2,2>);

> print AbelianQuotientInvariants(l[1]);

[ 3, 3, 3, 3, 6, 6, 6, 6, 18 ]

> print AbelianQuotientInvariants(l[2]);

[ 3, 3, 3, 3, 18, 18, 18, 0 ]

> print AbelianQuotientInvariants(l[3]);

[ 3, 3, 3, 3, 36, 36, 0 ]

> print AbelianQuotientInvariants(l[4]);

[ 10, 30, 60, 180 ]

> print AbelianQuotientInvariants(l[5]);

[ 3, 3, 3, 3, 18, 18, 18, 0 ]

> print AbelianQuotientInvariants(l[6]);

[ 3, 3, 3, 3, 9, 9, 18, 0, 0 ]

> print AbelianQuotientInvariants(l[7]);

[ 10, 30, 60, 180 ]

> L4:=Rewrite(K1,l[4]);

> H,A,B:=pQuotient(L4,3,2:Print:=1);
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Lower exponent-3 central series for L4

Group: L4 to lower exponent-3 central class 1 has order 3^3

Group: L4 to lower exponent-3 central class 2 has order 3^6

> IsPowerful := function (G)

function> return DerivedGroup(G) subset Agemo (G, 1);

function> end function;

> IsPowerful(H);

true
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