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POINCARÉ DUALIZATION AND FORMAL DOMINATION

A. MILIVOJEVIĆ, J. STELZIG, AND L. ZOLLER

Abstract. We consider the question of whether formality of the domain of a non-zero
degree map of closed manifolds implies formality of the target. Though there are various
situations where this is indeed the case, we show the answer is negative in general, with a
counterexample given by a non-zero degree map from a formal manifold to one that carries a
non-vanishing quadruple Massey product. This violates a general heuristic that the domain
of a non-zero degree map should be more complicated than its target. For the construction
of the counterexample we introduce a method to turn a cdga into one that satisfies Poincaré
duality, which is natural in certain situations.
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1. Introduction: Formality and non-zero degree maps

The existence of non-zero degree maps between closed manifolds, giving a relation going
by the name of domination or Gromov’s partial order, has been of substantial interest going
back at least to work of Gromov, Milnor, and Thurston in the 1970’s, see [CT89, p.173]. The
general empirical observation is that the domain of a non-zero degree map should be “more
complicated” than its target, see e.g. loc. cit. In view of this heuristic, one might expect
that rational homotopy theoretic formality is preserved under such maps.

Indeed, formal spaces are those having the “simplest” rational homotopy type with a given
cohomology algebra, where simplicity refers to the vanishing of certain higher structures on
the cohomology, the most prominent incarnation of which are Massey products.

This embeds into the more general question of under which circumstances a map Y → X of
topological spaces with formal domain Y lets us deduce something about the formality of X,
or at least about the vanishing of certain Massey products on X. A naive first guess could be
that positive conclusions can be drawn as soon as the map on cohomology H(X) → H(Y ) is
injective, since then the vanishing Massey products on H(Y ) together with naturality might
imply the vanishing of Massey products on H(X). However, while this certainly works for
the binary product, i.e. the cup product, it is not hard to see that the argument fails in
general for triple and higher products, due to the presence of indeterminacy (see Remark
3.3).
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2 A. MILIVOJEVIĆ, J. STELZIG, AND L. ZOLLER

If we restrict ourselves to the more geometric setting of closed orientable manifolds (or
more generally rational Poincaré duality spaces) and non-zero degree maps between them,
then, as predicted by the aforementioned heuristic of domination, there are indeed a number
of positive results in the above direction:

• Taylor [Ta10] proved that a non-vanishing Massey triple product on X pulls back to
a non-vanishing Massey triple product on Y .

• By the argument in [DGMS75, Theorem 5.22], if Y → X is a holomorphic map of
compact complex manifolds of non-zero degree, and Y satisfies the ∂∂-lemma, then
X also satisfies the ∂∂-lemma; recall from loc. cit. that a manifold satisfying the
∂∂-lemma is formal.

• Suppose we have a non-zero degree map Y
f−→ X of rational Poincaré duality spaces of

dimension ≤ 5n+2, where X is rationally n–connected. Then Y being formal implies
that X is formal. Indeed, by [CN20], formality of X is equivalent to the Bianchi–
Massey tensor vanishing; a non-trivial Bianchi–Massey tensor pulls back non-trivially,
obstructing formality of Y .

We add to this by giving an alternative proof of the aforementioned result from [Ta10], as
well as by showing that formality is preserved under non-zero degree maps of closed manifolds
of dimension ≤ 4 when the domain has trivial rational cup product H1 ⊗H1 → H2.

Despite the above evidence and the general heuristic, we show that formality of the domain
does not imply formality of the target in full generality. We prove the following, our main
result:

Theorem A. There exists a non-zero degree map Y → X between smooth, simply-connected,
closed manifolds, such that Y is formal andX admits a non-trivial quadruple Massey product.

The strategy is to start on the algebraic level and construct a suitable map between com-
mutative differential graded algebras (cdga’s) whose cohomology satisfies Poincaré duality.
This can then be realized geometrically by using results from [Su77]. To construct our al-
gebraic example, we develop a procedure to modify any cdga (satisfying suitable finiteness
conditions) into one whose cohomology satisfies Poincaré duality and study naturality proper-
ties of the construction. We refer to this procedure as Poincaré dualization; the construction
depends on a fixed integer n. We believe this might prove to be a useful technical tool to
construct manifold examples from general cdga phenomena, akin to taking the boundary or
double of a thickening of a cell complex in Euclidean space.

Theorem B. There is an association of cdga’s A 7→ PnA such that

(1) A is naturally a sub-cdga of PnA and the inclusion induces an injection in cohomology.
(2) If A is cohomologically connected and has finite dimensional cohomology concentrated

in degrees between 0 and n, then PnA is a Poincaré duality cdga.
(3) Pn is functorial for pairs (f, r) where f : A→ B is a map of cdga’s and r : B → A is

a map of dg-A-modules.
(4) If A admits a non-vanishing Massey product, the induced Massey product in PnA is

non-trivial.
(5) If A is a Sullivan cdga that is cohomologically connected, has finite dimensional

cohomology concentrated in degrees between 0 and n/2 and is formal, then PnA is
also formal.

In view of the above, the following questions are natural to ask and remain to be system-
atically addressed:
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Question. Let Y → X be a non-zero degree map of rational Poincaré duality spaces, and
suppose Y is formal. Under what conditions does it follow thatX is formal? Ifm is some non-
vanishing obstruction to formality on X that can be pulled back to Y , under what conditions
is the pullback f∗m non-vanishing?

The article is organized as follows: in Section 2 we review the necessary concepts from
(rational) homotopy theory we discuss. In Section 3 we give the aforementioned alternative
argument to Taylor’s theorem on triple Massey products pulling back non-trivially, and prove
the mentioned results on manifolds of dimension ≤ 4. In Section 4 we introduce the Poincaré
dualization construction and prove some basic properties. We then use this machinery in
Section 5 to construct a non-zero degree map of Poincaré duality cdga’s with a quadruple
Massey product on the domain, and formal target. This then translates, using results of
Sullivan, into a geometric map of closed manifolds where a non-trivial quadruple Massey
product pulls back trivially.
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2. Preliminaries

We recall the concepts used in the introduction and throughout, and set notation. LetK be
a field. We will consider graded commutative algebras (A, d) over K, where we allow entries
in negative degrees, i.e. A =

⊕
k∈ZA

k, but most of the time we restrict to cohomologically

connected cdga’s, i.e. those where Hk(A) = 0 for k < 0 and H0(A) = K. If Ak = 0 for
k < 0 and A0 = K, we say A is connected. We call A a K–Poincaré duality cdga if its
cohomology satisfies Poincaré duality. That is, there is an index n such that Hn(A, d) ∼= K
and the pairing

Hk(A, d)⊗Hn−k(A, d) → Hn(A, d) ∼= K

given by
α⊗ β 7→ αβ

is non-degenerate.
Restricting to the case of K = Q, a commutative differential graded algebra (cdga) is said

to be formal if there is a chain of quasi-isomorphisms of cdga’s

(B1, d) · · · (H, 0)

(A, d) (B2, d) (Br, d)

connecting (A, d) to a cdga with trivial differential. For A cohomologically connected, one
may pick a Sullivan model (ΛV, d) → A, i.e. a connected cdga that is free as an algebra, sat-
isfying a nilpotence condition (c.f. [FHT12]), with a quasi-isomorphism to A. One may even
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pick (ΛV, d) to be minimal, i.e. d(ΛV ) ⊆ Λ≥2V ; [FHT12, p.191]. In terms of such a model,
formality of A is equivalent to the existence of a quasi-isomorphism (ΛV, d) → (H(A), 0).
(That is, we may replace the chain of quasi-isomorphisms by a single ‘roof’.) This reformu-
lation of formality can be further rephrased as saying that one may pick a complement N to
the space of closed generators C ⊆ V such that the ideal generated by N in ΛV is acyclic. We
will also consider the following weakening of the notion of formality (c.f. [FM05]): A minimal
Sullivan cdga (ΛV, d) is called s–formal, where s ∈ Z≥1 if for each i ≤ s the closed generators
Ci ⊆ V i have a complement N i such that any closed element in the ideal I ⊆ Λ≤sV generated
by

⊕
i≤sN

i is exact in ΛV . Then an arbitrary (cohomologically connected) cdga is called
s-formal if its minimal Sullivan model is s–formal.

Computable obstructions to formality are given by (ad hoc) Massey products [M58, Sec-
tion 2]. Given three pure-degree classes [x], [y], [z] ∈ H(A) such that xy = da, yz = db,

the element az − (−1)|x|xb is closed and therefore gives rise to a cohomology class. Mod-
ulo the ideal generated by [x] and [y], this class is well-defined and independent of the
choices of representatives and primitives. It is called the triple Massey product and denoted
⟨[x], [y], [z]⟩ := [az − (−1)|x|xb] ∈ H(A)/([x], [y]).

Quadruple Massey products are defined similarly: Given four classes [w], [x], [y], [z] ∈
H(A), which for simplicity we assume to have pure even degree (which will be the case
for us below), a defining system for the quadruple product ⟨[w], [x], [y], [z]⟩ ⊆ H(A) is a
collection of pure-degree elements a, b, c, f, g such that da = wx, db = xy, dc = yz and
df = ay − wb and dg = bz − xc. For any such defining system, one obtains a cohomology
class [wg + ac + zf ] ∈ H(A). The quadruple Massey product ⟨[w], [x], [y], [z]⟩ ⊆ H(A) is
then defined to be the collection of classes obtained from all such defining systems. Again,
this collection is independent of the chosen representatives for the classes. The quadruple
product is said to be trivial (or vanish) if 0 ∈ ⟨[w], [x], [y], [z]⟩. The definitions for quintuple
and higher products are similar; we refer the reader to [K66].

Massey products are invariants of the quasi-isomorphism type of a cdga, and on formal
cdga’s all Massey products vanish.

To a topological spaceX we can associate its connected cdga APL(X) of rational piecewise-
linear forms [Su77], [DGMS75]; this cdga computes the rational cohomology of X (see e.g.
[DGMS75, Theorem 2.1], [H07, Theorem 1.21]). We say the space X is formal if APL(X)
is formal as a cdga [DGMS75, p.260], [H07, Definition 2.1]. A space is a rational Poincaré
duality space if its rational cohomology satisfies Poincaré duality.

3. Some positive results

In this section, K = Q and H(X) denotes rational cohomology. First let us give an
alternative proof of Taylor’s theorem [Ta10] mentioned above.

Proposition 3.1. Let Y → X be a non-zero degree map between rational Poincaré duality
spaces and let a, b, c ∈ H(X) with ab = bc = 0. If

m := ⟨a, b, c⟩ ≠ 0 ∈ H(X)

a ∪H(X) +H(X) ∪ c
,

then also

f∗(m) ̸= 0 ∈ H(Y )

f∗a ∪H(Y ) +H(Y ) ∪ f∗c
.

Proof. The map f∗ : H(X) → H(Y ) has a one-sided inverse given by f ′∗ := 1
deg f f∗, i.e.

f ′∗f
∗ = IdH(X). Here f∗ denotes the pushforward, determined by f∗ and Poincaré duality.
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This yields a splitting

H(Y )
(f ′∗,pr)−→ H(X)⊕H(Y )/f∗H(X).

By the projection formula

f∗(f
∗x ∪ y) = x ∪ f∗y for x ∈ H(X), y ∈ H(Y ),

this (additive) splitting is compatible with the natural H(X)-module structures on both sides
(given by f∗ on the left and (Id, f∗) on the right). Therefore, writing K := H(Y )/f∗H(X),
the domain of definition of the Massey product decomposes as

H(Y )

f∗a ∪H(Y ) +H(Y ) ∪ f∗c
∼−→ H(X)

a ∪H(X) +H(X) ∪ c
⊕ K

f∗a ∪K +K ∪ f∗c
,

and under this splitting, we have f∗(m) = (m, 0). □

Remark 3.2. The above proof works for maps of Poincaré duality cdga’s over any field, as
long as we interpret deg f ̸= 0 to mean that deg f is invertible.

Often in examples one has a subalgebra of invariant forms, satisfying Poincaré duality, and
containing an invariant volume form, in the algebra of all forms AX on a closed manifold
X. By duality, this algebraic map is injective on cohomology. Then the same argument as
above applies to show that a non-vanishing triple Massey product calculated on the invariant
subalgebra continues to be non-vanishing on AX ; that is, if there is some defining system for
the triple product on AX making it trivial, then there was a defining system on the subalgebra
making it trivial to begin with.

Remark 3.3. Without the Poincaré duality assumption, it is generally easy to find examples
of cohomologically injective maps of cdga’s such that a non-vanishing triple Massey product
in the domain vanishes in the target. For example, consider the inclusion of cdga’s

A := (Λ(x, y, z), dz = xy) ↪→ B := (Λ(x, y, z, u, v), dz = xy, dv = xz − yu) ,

where all generators are in degree 1. This induces an inclusion A′ := A/A≥3 ↪→ B′ := B/B≥3

which is injective on cohomology. Now, ⟨x, x, y⟩ is a non-vanishing triple product in A′, while
in B′ it is represented by [xz] = [yu], which lies in the indeterminacy.

We also record the following result in which formality is preserved under a non-zero degree
map.

Proposition 3.4. Let Y
f−→ X be a cohomologically injective map of topological spaces,

where the cup product H1(Y ) ⊗ H1(Y ) → H2(Y ) is trivial. If Y is 1–formal, then X is
1–formal.

By [FM05, Theorem 3.1], a closed manifold in dimensions ≤ 4 is formal if and only if it is
1–formal. This directly implies the following:

Corollary 3.5. Let Y
f−→ X be a non-zero degree map of orientable closed n-manifolds (or

more generally rational Poincaré duality spaces) where n ≤ 4 and the cup product H1(Y )⊗
H1(Y ) → H2(Y ) is trivial. If Y is formal then so is X.

Notice that our assumptions imply that H1(X) ⊗ H1(X) → H2(X) is trivial as well.
Indeed, suppose ab ̸= 0 for some a, b ∈ H1(X). Then we would have (f∗a)(f∗b) = f∗(ab) ̸= 0
by the injectivity of f∗.

Remark 3.6. (The condition of having trivial H1(Y )⊗H1(Y )
∪−→ H2(Y ) on 3–manifolds)

There exist both formal and non-formal closed 3–manifolds satisfying this condition, e.g.
connected sums of S1 × S2, resp. Heisenberg manifolds.
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By a theorem of Sullivan [Su75], for any finite–dimensional rational vector space H and
any skew–symmetric trilinear form H⊗3 → Q, there is an oriented 3–manifold M realizing
this data as the trilinear form H1(M)⊗3 → Q. In the case of 3–manifolds, our result applies
to the case of the zero form.

If there were a, b ∈ H1(M) such that ab ̸= 0, then by Poincaré duality we could choose c ∈
H1(M), linearly independent of a and b, such that abc ̸= 0. Choosing integral representatives
of non-zero multiples of a, b, c hence gives us a non-zero degree map M → T 3.

Proof of Proposition 3.4. Take minimal models MX = (ΛV X , d) and MY = (ΛV Y , d) for X
and Y . We will argue that MX is 1–formal. Namely, we will show there is a splitting of
the space of degree 1 generators V X

1 = CX1 ⊕ NX
1 , where CX1 = ker d, such that any closed

element in Λ(V X
1 ) in the ideal generated by NX

1 is exact in MX .
Before doing that, let us show that V X

1 injects into V Y
1 under the induced map on models,

which we also denote by f∗. Certainly CX1 injects (into CY1 ) since f∗ is injective on coho-
mology. Consider the increasing filtration of V X

1 given by F 0 = CX1 and F i = d−1(Λ2F i−1)
for i ≥ 1. This filtration is exhaustive and preserves the differential by nilpotency. Now take
a non-closed element in F 1 (if it is closed, it pulls back non-trivially); then the image of its
differential under f∗ is non-zero by freeness, and hence the image of the element is non-zero.
Inductively we obtain our claim. In fact, we have shown that the cdga

(
ΛV X

1 , d
)
injects into

MY .
Now we observe that, in general, on a 1–formal minimal cdga (ΛV, d) with trivial cup

product H1 ⊗H1 → H2, we can choose any complement to the closed elements in degree 1
in the definition of 1–formality. Indeed, by 1–formality we have some splitting V1 = C1 ⊕N1

with the desired properties. Choose another complement N ′
1 to C1, and take a closed element

in ΛV1 in the ideal generated by N ′
1. We can write this element as a sum of an element in the

ideal of N1 and a product of elements in C1. Since the latter is closed, the former is closed
as well, and hence it is exact in (ΛV, d) by assumption. The product of elements in C1 is also
exact in (ΛV, d) by the assumption on the cup product.

Now choose any complement NX
1 to CX1 in V X

1 . Mapping over (injectively) to MY via
f∗, we can complete a basis of CX1 to a basis of CY1 , and a basis of NX

1 to a basis for a
complement to CY1 in V Y

1 . Suppose now that we have a closed element in Λ(V X
1 ) in the

ideal generated by NX
1 . Pulling back to MY , this is now a closed element in Λ(V Y

1 ) in the
ideal generated by NY

1 . By 1–formality of MY , it is exact. Hence, by the injectivity of f∗ on
cohomology, the element must have been exact in MX to begin with. □

4. Poincaré dualization

Motivated by the example in Remark 3.3, we detail a construction that “completes” any
cohomologically connected cdga to one satisfying Poincaré duality on its rational cohomology,
which in certain cases is functorial.

Fix a natural number n and a field K. Let (A, d) a complex of K-vector spaces. We define
the (n-th) dual complex DnA by (DnA)

k := (An−k)∨ with differential (DnA)
k → (DnA)

k+1

given on pure-degree elements φ ∈ DnA by d(φ)(a) := (−1)|φ|−1φ(da) for any a ∈ A. Clearly,
Dn is a contravariant functor and

Hk(DnA) = (Hn−k(A))∨.

Now let us assume A carries in addition the structure of a graded-commutative algebra,
such that d is a derivation (i.e. A is a cdga).

Definition 4.1. Let (A,∧, d) be as above. The n-th Poincaré dualization of A is given,
as a complex, by

PnA := A⊕DnA,
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with multiplication (extending that on A) defined on pure-degree elements a ∈ A, φ ∈ DnA
by the dual complex element given by

(a ∧ φ)(b) := (−1)|a||φ|φ(a ∧ b),
(φ ∧ a)(b) := φ(a ∧ b),

and setting φ ∧ ψ = 0 for φ,ψ ∈ DnA.

Lemma 4.2. The Poincaré dualization PnA is indeed a cdga.

Proof. Graded commutativity of the multiplication holds by definition. For associativity, we
only need to check the case φ ∈ DnA and a, b ∈ A as all other combinations of products of
three elements are either zero or entirely in A, where associativity holds since A is a cdga.
We compute, for c ∈ A:

((φ ∧ a) ∧ b)(c) = (φ ∧ a)(b ∧ c)
= φ(a ∧ b ∧ c)
= (φ ∧ (a ∧ b))(c).

That d is a derivation again only has to be checked on products of the form φ ∧ a with
φ ∈ DnA and a ∈ A. In this case, we compute:

(dφ ∧ a)(b) = dφ(a ∧ b)

= (−1)|φ|−1φ(d(a ∧ b))

= (−1)|φ|−1φ(da ∧ b)) + (−1)|φ|−1+|a|φ(a ∧ db)

= (−1)|φ|−1(φ ∧ da)(b) + (−1)|φ∧a|−1(φ ∧ a)(db)

= (−1)|φ|−1(φ ∧ da)(b) + d(φ ∧ a)(b). □

For simplicity, let us now further assume that A is cohomologically connected, H(A) is
finite-dimensional, and Hk(A) ̸= 0 at most for 0 ≤ k < n/2.

Lemma 4.3. The cohomology H(PnA) is finite dimensional and concentrated in degrees
0, ..., n. Further, PnA is a Poincaré duality cdga, i.e. for any integer k, the pairing

Hk(PnA)×Hn−k(PnA)
∧−→ Hn(PnA) ∼= K

is non-degenerate.

Proof. Without loss of generality, let k < n/2. By construction, Hk(PnA) = Hk(A) and
Hn−k(PnA) = Hn−k(DnA) = (Hk(A))∨, and the pairing is given (up to a non-zero scalar)
by evaluation. □

Remark 4.4. In fact, Pn(A) is an oriented differential Poincaré duality algebra in the sense
of [LS08] (though without the assumption of no elements in negative degree as therein), i.e.
it satisfies Poincaré duality already on the chain level and there is a canonical orientation
(i.e. an isomorphism (PnA)

n ∼= K) induced by the dual of the unit map K → A sending
1 7→ 1. However, we will not make use of this additional structure here.

Example 4.5.

• Let A =
(
Λ(x)/x2, d = 0

)
with |x| ≥ 1 and let n > |x|. Then

Pn(A) ∼=
(
Λ(x, y)/(x2, y2), d = 0

)
with |y| = n − |x|, i.e. we obtain the cohomology algebra of the product of spheres

S|x| × S|y|.
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• Take now, for example, A to be a minimal model for S2, i.e. A =
(
Λ(x, y), dy = x2

)
.

Then Pn(A) is generated as an algebra by x, y, and a dual basis {x̂k, x̂ky}k≥0 for
{xk, xky}, in degrees n− 2k and n− 2k − 3 respectively. satisfying

x̂ky ∧ xly = x̂k−l, x̂ky ∧ xl = x̂k−ly, x̂k ∧ xly = 0, x̂k ∧ xl = x̂k−l

for k ≥ l. All other products of dual elements with basis elements from A are zero.

The differential is determined by d(x̂) = 0 and d(x̂k) = −x̂k−2y for k ≥ 2. A quasi-
isomorphism from Pn(A) to

(
H(S2 × Sn−2), d = 0

)
is given by sending x and x̂ to

the volume classes of S2 and Sn−2 respectively (and 1 to 1), and all other generators
to zero.

• For a non-manifold example, consider the formal space S2 ∨ S3, with model(
Λ(x, y)/(x2, xy), d = 0

)
with |x| = 2, |y| = 3. Then for n ≥ 4, its n-th Poincaré dualization is the cohomology
ring of the manifold

(
S2 × Sn−2

)
#
(
S3 × Sn−3

)
equipped with trivial differential.

Note that for large enough n, the boundary of a thickening of S2 ∨ S3 in Rn is(
S2 × Sn−2

)
#
(
S3 × Sn−3

)
.

The above examples suggest that there is a certain quasi-isomorphism invariance in the
Poincaré dualization construction, and a geometric construction mirrored by it. It would be
interesting, but not necessary for the present purposes, to pursue these points further.

Now consider a cdga B, satisfying the same finiteness and connectedness conditions as A,
and a map of cdga’s f : A→ B. In general, it is not true that this can be extended to a map
PnA→ PnB. However, one has:

Lemma 4.6. Given a map r : B → A of dg-A-modules, i.e. a map of complexes satisfying
r(f(a) ∧ b) = a ∧ r(b), the map

f ⊕Dnr : PnA→ PnB

is a map of cdga’s. When r(1) = 1 (or equivalently r ◦f = id), the map f ⊕Dnr has non-zero
degree.

Proof. Because both f : A → B and Dnr : DnA → DnB are maps of complexes (the latter
follows from a direct calculation, using that r is a map of complexes), so is f ⊕Dnr, where
f and Dnr are extended trivially to all of PnA. It thus remains to show that the map is
compatible with the product. If both factors are in A ⊆ PnA, this is true since f is an algebra
map. If both entries are in DnA, their product is zero, and so is the product of their images
under Dnr. The remaining case, a ∈ A,φ ∈ DnA, follows from:

[(f ⊕Dnr)(φ ∧ a)](b) = Dnr(φ ∧ a)(b)
= (φ ∧ a)(r(b))
= φ(a ∧ r(b))
= φ(r(f(a) ∧ b))
= [Dnr(φ) ∧ f(a)](b)
= [(f ⊕Dnr)(φ) ∧ (f ⊕Dnr)(a)](b).

The statement about the degree follows since the top-degree cohomology in PnA and PnB is
generated by any class that evaluates non-trivially on 1. □
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Remark 4.7. Consider the category whose objects are cdga’s satisfying the conditions of A
above and morphisms A→ B given by pairs (f, r) as above, with composition (g, s)◦ (f, r) =
(g ◦ f, r ◦ s). Then Poincaré dualization Pn defines a functor from this category to that of
Poincaré duality cdga’s. Restricted to degree-wise finite dimensional cdga’s, it is fully faithful.

From now on, we will take our ground field K to be the rationals Q.

Proposition 4.8. Let (ΛV, d) be a formal Sullivan cdga. Assume that H(ΛV ) is finite
dimensional and concentrated in degree ≤ k with 2k < n. Then Pn(ΛV, d) is formal.

Proof. We assume first that (ΛV, d) is minimal. Consider the canonical map φ : (ΛV, d) →
Pn(ΛV, d) and note that φ induces an isomorphism in cohomology up until degree s := ⌊n/2⌋.
Following the usual algorithm for the construction of a minimal model (ΛW,d)

≃−→ Pn(ΛV, d)
(see [Su77, Section 5]), we may arrange that W≤s = V ≤s and that φ factors as

(ΛV, d)
ψ−→ (ΛW,d) → Pn(ΛV, d)

with ψ being the identity in degrees ≤ s. Note that though Pn(ΛV, d) may contain elements
in negative degree, due to it being cohomologically connected, the construction in [Su77,
Section 5] carries through verbatim.

Now since (ΛV, d) is formal we may write V = C ⊕N such that d(C) = 0, d|N is injective,
and every closed element in the ideal N · ΛV is exact [DGMS75, Theorem 4.1]. We claim
that the decomposition of W≤s = V ≤s into C≤s ⊕N≤s satisfies the condition of s-formality
for (ΛW,d). To check this we only need to verify that any closed element in N≤s · ΛV ≤s

becomes exact in (ΛW,d). But this holds since such an element lies in the image of ψ and
is already exact in (ΛV, d). Now by [FM05, Theorem 3.1], s-formality of (ΛW,d) already
implies formality (note that the theorem therein is stated for closed manifolds, but the proof
holds for rational Poincaré duality cdga’s).

Now, in general, if (ΛV, d) is only a Sullivan cdga, it decomposes (uniquely) as a tensor
product (ΛV, d) ∼= (ΛU, d)⊗ (Λ(C ⊕ dC), d) of a minimal cdga with a contractible one [Su77,
Theorem 2.2]. Note that the inclusion ι : (ΛU, d) → (ΛU, d) ⊗ (Λ(C ⊕ dC), d) admits a
retraction r which is the identity on U and sends C ⊕ dC to 0. The pair ι, r, satisfies the
requirements of Lemma 4.6 and thus induces a quasi–isomorphism Pn(ΛU, d) → Pn(ΛV, d).

□

Proposition 4.9. Let (A, d) be a cdga which admits a non-trivial Massey product. Then
also Pn(A, d) has a non-trivial Massey product.

Proof. By construction, PnA = A ⊕ DnA with A a subalgebra and DnA an ideal. Thus,
the inclusion of cdga’s i : A → PnA admits a one-sided inverse map of cdga’s r : PnA → A
with r ◦ i = id. Now for any non-trivial Massey product m ∈ H(A), i(m) is non-trivial as
(r ◦ i)(m) ⊆ m. Recall, we treat a Massey product as the set of cohomology classes obtained
via any possible defining system (see [K66]), with the Massey product being trivial if the zero
class is contained in this set. □

5. A counterexample

Our goal is to construct a non-zero degree map P1 → P2 between cohomologically con-
nected Poincaré duality cdga’s such that P2 is formal while P1 is not, as a counterexample
to the heuristic that domination should preserve formality. In view of Propositions 4.8, 4.9
and Lemma 4.6 it suffices to construct Sullivan cdga’s with finite-dimensional cohomology
A,B such that B is formal and A admits a non-trivial Massey product, together with a cdga
morphism f : A → B and a differential graded A-module homomorphism r : B → A sending
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1 7→ 1. Then the induced map Pn(A) → Pn(B) will have the desired properties for large
enough n.

Remark 5.1. In view of Proposition 3.1 the above datum f, r : A ⇆ B with B formal
should not exist in case A admits a non-trivial triple Massey product. Indeed, consider a
triple Massey product ⟨[x], [y], [z]⟩ in A. Then, as the Massey product ⟨[f(x)], [f(y)], [f(z)]⟩
vanishes in B, we can find a defining system a, b ∈ B with da = f(x)f(y), db = f(y)f(z)

such that af(z) − (−1)|x|f(x)b is exact. But then using that r is a dg-A-module morphism
we find that r(a), r(b) is a defining system for ⟨[x], [y], [z]⟩ and the representing cocycle

r(a)z − (−1)|x|xr(b) = r(af(z)− (−1)|x|f(x)b)

is exact. This shows triviality of the Massey product ⟨[x], [y], [z]⟩.
Hence in our counterexample we will need to construct at least a non-trivial quadruple

Massey product. In order to motivate what is happening in the counterexample it is rather
instructive to check where the above argument fails for quadruple Massey products. To this
end consider a quadruple Massey product ⟨[w], [x], [y], [z]⟩ in A. As before, choose a defining
system a, b, c, g, h for ⟨[f(w)], [f(x)], [f(y)], [f(z)]⟩ such that da = f(w)f(x), db = f(x)f(y),
dc = f(y)f(z), dg = f(a)y − f(w)b and dh = bf(z) − f(x)c. While it still holds that
r(a), r(b), r(c), r(g), r(h) is a defining system for ⟨[w], [x], [y], [z]⟩ it is in general no longer
true that the cocycles representing the Massey products get mapped to one another, i.e. we
might have

wr(h) + r(a)r(c) + zr(g) ̸= r(f(w)h+ ac+ f(z)g)

in case r(ac) ̸= r(a)r(c), which can happen since r is not fully multiplicative. In particular the
right hand side being exact does not force the left hand side to be so. In other words: while
a non-trivial triple Massey product would obstruct the construction of the module retract r
in the counterexample below, the freedom of choosing r(ac) will allow us to construct r even
in the presence of a non-trivial quadruple Massey product. □

We begin with the construction of A. Set (A, d) = (Λ(X,Y, a, b, c, e, f, h, i) ⊗ Λ(V ), d)
where

degree generators differential
2 X,Y X, Y 7→ 0
3 a, b, c a 7→ X2 b 7→ XY c 7→ Y 2

4 e, f e 7→ Y a−Xb f 7→ Y b−Xc
5 h, i h 7→ Xe+ ab i 7→ Y f + bc

and V = V ≥6 is a vector space which we construct inductively in order to eliminate all
cohomology in degrees ≥ 7. To be precise, we first choose cycles representing a basis for
degree 7 cohomology. Then for each these element introduce a generator in V 6 and map it
to the chosen cycle under the differential. The resulting algebra will have trivial degree 7
cohomology while cohomology in degrees ≤ 6 remains unchanged. Now repeat this process
inductively for all higher degrees.

Lemma 5.2. The cohomology of (A, d) is generated by the linearly independent cohomology
classes of the cocycles 1, X, Y,m, where m = Y e+ac+Xf . Furthermore the Massey product
⟨[X], [X], [Y ], [Y ]⟩ is non-trivial and represented by [m].

Proof. Clearly 1, X, Y generate cohomology in degrees ≤ 2. Furthermore A3 = ⟨a, b, c⟩ maps
isomorphically onto Λ2(X,Y ) so there is no cohomology in degree 3, 4 in Λ(X,Y, a, b, c). This
changes in degree 5, where the ker d is generated by Y a − Xb, Y b − Xc. Note that the
corresponding cohomology classes do indeed form a basis of H5(Λ(X,Y, a, b, c), d), since d
vanishes on the degree 4 span of the above generators. Thus after introducing e, f we obtain
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H5(Λ(X,Y, a, b, c, e, f), d) = 0 = H4(Λ(X,Y, a, b, c, e, f), d). At this point we compute that
the degree 6 part of ker d is ⟨Xe + ab,m, Y f + bc⟩ ⊕ Λ3(X,Y ). The differential maps the
degree 5 span of the above generators onto Λ3(X,Y ) so the cocycles in the left hand factor
yield a basis for the cohomology at this stage, after introducing h, i, V only the class of m
remains, generating H6(A). This proves the first part of the Lemma. The reader can also
verify this with the “Commutative Differential Graded Algebras” module in [Sage]:

A. < X, Y, a, b, c, e, f, h, i >= GradedCommutativeAlgebra(QQ, degrees = (2,2,3,3,3,4,4,5,5))

B = A.cdg algebra(a : X ∗ X, b : X ∗ Y, c : Y ∗ Y, e : Y ∗ a − X ∗ b, f : Y ∗ b − X ∗ c, h : X ∗ e + a ∗ b, i : Y ∗ f + b ∗ c)

[B.cohomology(i) for i in [1..7]]

When writing down a defining system for the Massey product ⟨[X], [X], [Y ], [Y ]⟩, there
is no choice for the primitives of X2, XY, Y 2, except for a, b, c. When choosing primitives
p1, p2 for the cocycles Y a−Xb and Y b−Xc, we get p1 = e+ α1, p2 = f + α2 for some αi ∈
(ker d)4 = Λ2(X,Y ). Then the resulting representative of ⟨[X], [X], [Y ], [Y ]⟩ ism+Y α1+Xα2.
Independent of the choice of αi, this is cohomologous to m. Hence we get a unique non-trivial
cohomology class representing ⟨[X], [X], [Y ], [Y ]⟩. □

Now we come to the construction of B. Consider first the algebras H1 = Λ(x, y)/Λ≥2(x, y)
with |x| = |y| = 2 and H2 = Λ(ã, c̃) with |ã| = |c̃| = 3. Our algebra B will be of the
formal rational type of the product1 of the augmented cdga’s H1 and H2, i.e. (H, d) =
(H1 ⊕Q H2, 0), where (H1 ⊕Q H2)

k = Hk
1 ⊕Hk

2 for k ≥ 1 and (H1 ⊕Q H2)
0 = ⟨(1, 1)⟩, with

multiplication (n1, n2) ∧ (m1,m2) = (n1m1, n2m2). However since we want to construct a
A-module retraction B → A, we will need a better representative of the quasi–isomorphism
type of H.

Consider f1 : A → H1 which sends X 7→ x, Y 7→ y and all other generators to 0. In order
to check that this morphism is compatible with the differential we only need to check that
for every generator v, we have f1(dv) = df1(v) = 0, which is clearly satisfied (note that while
we have not explicitly specified the differential on V , d(V ) lies in degrees ≥ 7 and thus maps
to 0). In the same fashion we check that the algebra morphism f2 : A → H2 which sends
a 7→ ã, c 7→ c̃, and all other generators to 0 is a morphism of cdga’s. These two morphisms
piece together to form the components of a cdga morphism f = (f1, f2) : A→ H, where e.g.
f(X) = (x, 0) and f(a) = (0, ã). The cdga B is now defined as the relative minimal model
of f . Thus we have a commutative diagram

(A, d)
f //

ι &&

(H, 0)

(A⊗ ΛW,d)

φ

OO

with φ a quasi isomorphism, ι being the standard inclusion and the bottom algebra being
defined as B. Since A1 = H1 = 0 there is an explicit degreewise inductive procedure (see
[Su77, §5]) to compute ΛW , φ, and the differential in terms of A and f . We will need to do
so up until degree 5. The result is shown in the following table.

degree generators differential image under φ
3 α, γ α, γ 7→ 0 α 7→ ã γ 7→ c̃
4 sXα, sY α, sXγ , sY γ s∗ 7→ ∗ s∗ 7→ 0
5 t1, . . . , t9 ti 7→ vi (as defined below) ti 7→ 0

1i.e. the pullback in the category of augmented cdga’s of the diagram (H1, 0) → (Q, 0) ← (H2, 0) of
augmentation maps
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Let us briefly reason that this is indeed the beginning of a relative minimal model of f . We
add new generators by induction over degree turning φ into a quasi isomorphism. The original
map f is cohomologically injective as can be seen by applying it to the generators of H(A)
described in Lemma 5.2 (note that the elementm maps to ãc̃). The only degree in which f∗ is
not an isomorphism is in degree 3 where coker(f∗) = ⟨ã, c̃⟩ (as the differential on A is injective
on ⟨a, c⟩) . Thus we introduce the generators α, γ to add to cohomology and map them onto
ã, c̃. At this point φ is cohomologically surjective so it remains to eliminate kerφ∗. The
introduction of α, γ has created new unwanted cohomology in degree 5 in form of the classes
of Xα, Y α, Xγ, and Y γ. Thus we introduce the generators sXα, sY α, sXγ , sY γ to make these
exact. Finally, we check that at this stage a basis of H6(A ⊗ Λ(α, γ, sXα, sY α, sXγ , sY γ), d)
is generated by m as well as the cocycles

v1 = m− αγ, v2 = Y sXα −XsY α, v3 = Y sXγ −XsY γ ,
v4 = aα−XsXα, v5 = bα−XsY α, v6 = cα− Y sY α,
v7 = aγ −XsXγ , v8 = bγ −XsY γ , v9 = cγ − Y sY γ ,

where the vi generate a basis of (kerφ∗)6. Hence we introduce new generators t1, . . . , t9 in
degree 5 with dti = vi. The procedure of course carries on indefinitely but we will not need
to describe W≥6 explicitly.

It remains to construct a dg-A-module retract of the map ι : A→ A⊗ΛW . In order to do
this we recall the following

Definition 5.3. Let A be a dga and (M,d) be a dg-A-module. Then a semi-free extension
of (M,d) is a dg-A-module of the form (M ⊕ (A⊗ V ), d), where V is a graded vector space
and d(1⊗ V ) ⊂M .

For us this concept is helpful due to the following standard Lemma. Part (1) is an imme-
diate observation, while part (2) is a more explicit form of [FHT12, Lemma 14.1] which will
prove useful when dealing with the explicit example.

Lemma 5.4. (1) Let f : M → N a morphism of dg-A-modules and (M ⊕ (A⊗ V ), d) a
semi-free extension ofM . Let (vi)i∈I be a basis of V , and let (αi)i∈I be a collection of
elements in N with dαi = f(dvi)). Then f extends to a morphism of dg-A-modules
M ⊕ (A⊗ V ) → N by setting f(vi) = αi.

(2) Let A → A ⊗ ΛW be a relative minimal cdga with A1 = W 1 = 0. For 0 ≤ j ≤ i,
set V(i,j) = (Λi−jW )2i−j . Then ΛW =

⊕
0≤j≤i V(i,j) and for any (i, j) as above the

inclusion

A⊗

 ⊕
(k,l)<(i,j)

V(k,l)

 → A⊗

 ⊕
(k,l)≤(i,j)

V(k,l)


is a semi-free extension, where we use the lexicographical order on tuples.

Proof. Part (1) is straightforward verification. For the proof of part (2) we observe that due
to W =W≥2 we indeed have

ΛW =
⊕

0≤2k≤l
(ΛkW )l =

⊕
0≤j≤i

(Λi−jW )2i−j .

It remains to check that d(V(i,j)) ⊂ A ⊗
(⊕

(k,l)<(i,j) V(k,l)

)
. To see this, we investigate the

differential with respect to its bidegree A ⊗ ((ΛpW )q), where p is the wordlength degree in
W and q is the cohomological degree in ΛW . If p does not increase then q decreases by at
least 1 due to minimality and A1 = 0. Furthermore p can decrease by at most 1 in which
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case q decreases by 2 since d(W ) ∩A lies in degrees ≥ 3. Consequently

d
(
(Λi−jW )2i−j

)
⊂ A⊗

(
(Λ≥i−j+1W )≤2i−j+1 ⊕ (Λi−jW )≤2i−j−1 ⊕ (Λi−j−1W )≤2i−j−2

)
which proves the claim. □

Thus by this lemma, in order to define the retraction r : A ⊗ ΛW → A it suffices to
inductively specify images of a suitable basis of ΛW and extend A-linearly. In fact, even less
is sufficient by the following:

Lemma 5.5. Any morphism

r : A⊗

 ⊕
(i,j)≤(4,3)

V(i,j)

 → A

of dg-A-modules extends to A⊗ ΛW .

Proof. Recall that by part (1) of Lemma 5.4 the only obstruction to extend r over a new
generator v is that the class [r(dv)] ∈ H∗(A) has to vanish. By definition, for (i, j) > (4, 3)
the space V(i,j) is concentrated in cohomological degrees ≥ 6 (since V(i,i) = 0 for i ̸= 0) while
H(A) is concentrated in degrees ≤ 6. □

Furthermore note that for (i, j) ≤ (4, 3), we have V(i,j) ⊂ Λ(W≤5) which means we have
already computed all the required algebra generators. We define r according to the following
table, where we list all non-trivial V(i,j) with (i, j) ≤ (4, 3) in their order of occurrence.

extension generators image under r
V(0,0) 1 1 7→ 1
V(2,1) α, γ α, γ 7→ 0
V(3,1) sXα, sY α, sXγ , sY γ s∗ 7→ 0
V(4,2) αγ αγ 7→ m
V(4,3) t1, . . . , t9 ti 7→ 0

One checks that indeed for any of the generators v above we have r(dv) = dr(v). Then by
Lemmas 5.4, 5.5 we obtain the desired retraction r : A⊗ ΛW → A.

In conclusion, applying the Poincaré dualization construction, we have the desired result
of this section:

Theorem 5.6. There is a non-zero degree map of cohomologically connected rational Poincaré
duality cdga’s P1 → P2 such that P1 carries a non-trivial quadruple Massey product, and P2

is formal.

The above map of cdga’s can be realized, up to a lift of a non-zero grading automorphism
on the cohomology of P2, by a non-zero degree smooth map of closed manifolds. First of all,
there is a topological map of simply connected rational spaces MQ → NQ corresponding to
this map of cdga’s. For this, one checks that the algorithms for building a minimal model and
the induced map between the models [Su77, Section 5], [FHT12, Proposition 12.9], usually
stated for connected cdga’s, work essentially verbatim for cohomologically connected cdga’s
(we already made use of the former in Proposition 4.8). Thus, we may replace the map
between P1 and P2 by one between connected cdga’s and hence by one between rational
spaces. We choose n not divisible by 4, and apply the realization theorem [Su77, Theorem
13.2] to obtain simply connected closed smooth manifolds M and N with rationalization
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maps M →MQ and N → NQ. We hence consider the following lifting problem:

M N

MQ NQ

The obstructions to lifting (up to homotopy) the compositeM → NQ lie inH(M ;π∗−1(F )),
where F is the homotopy fiber of the map N → NQ. Since this map is a rationalization, the
homotopy groups of F are torsion. Now, sinceM has the homotopy type of a simply connected
finite complex, and is formal, there are sufficiently many endomorphisms of M that allow
us to surpass the obstructions to lifting, upon precomposing with such an endomorphism
[Su77, Theorem 12.2] (we remark that there is an implicit nilpotency assumption on the
space therein). We refer to [A15, Corollary 4.3] for full details of the argument. To see
that MQ satisfies the hypothesis of [A15, Corollary 4.3], i.e. that it admits a self-map with
kth multiples for all large enough k, see the proof of [A15, Corollary 4.4]. Namely, the map
in question is a lift of any grading automorphism on the cohomology; such a lift exists by
formality [Su77, Theorem 12.7].

Ultimately we obtain a non-zero degree endomorphism f of M and a homotopy commu-
tative diagram

M M N

MQ MQ NQ

f

giving us the following:

Corollary 5.7. There is a non-zero degree map from a formal closed smooth simply con-
nected manifold to a closed smooth simply connected manifold that has a non-trivial quadru-
ple Massey product.

Note that the smallest dimension in which our construction provides such an example is
thirteen.
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