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Moduli spaces of SUSY curves
and their operads

Enno Keßler Yuri I. Manin Yingying Wu

To Marianne and Xenia, from Enno and Yuri, with all our love and gratitude.

This article is dedicated to the generalization of the operad of moduli
spaces of curves to SUSY curves. SUSY curves are algebraic curves with
additional supersymmetric or supergeometric structure. Here, we focus on
the description of the relevant category of graphs and its combinatorics as
well as the construction of dual graphs of SUSY curves and the supermodular
operad taking values in a category of moduli spaces of SUSY curves with
Neveu–Schwarz and Ramond punctures.

1 Introduction and summary
In the earlier works (cf. Losev and Manin 2004 and references therein), it was shown that
operadic constructions developed in Getzler 1995 can be extended to include additional
data on algebraic curves. In Borisov and Manin 2007 a general formalism of labeled
graphs and generalized operads was developed. Here, we combine both techniques to
construct an operad that encodes geometric properties of moduli spaces of SUSY curves
with Neveu–Schwarz and Ramond punctures.

SUSY curves, also called super Riemann surfaces or super curves, are supergeometric
generalizations of algebraic curves with spin structure that have been introduced in the
context of superstring theory, see Friedan 1986. Their most distinctive feature for the
context of this work is that families of SUSY curves may develop two types of nodes
as was argued in Deligne 1987. The two types of nodes are now called Neveu–Schwarz
and Ramond nodes and one also considers markings of those two types: Neveu–Schwarz
punctures and Ramond punctures. Compact moduli spacesMg,kNS ,kR of stable SUSY
curves of genus g with kNS Neveu–Schwarz and kR Ramond punctures have been
constructed in Felder, Kazhdan, and Polishchuk 2020 as smooth Deligne–Mumford
superstacks.

To achieve a combinatorial description of stable SUSY curves and the boundary strata
of the moduli stackMg,kNS ,kR , we introduce in Definition 2.3.1 below the category of
SUSY graphs SGr. SUSY graphs are modular graphs with an additional coloring of the
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edges and tails to encode if nodes or markings are of Neveu–Schwarz or Ramond type.
In Definition 3.3.1, we show how a stable SUSY curve has a stable SUSY graph as dual
graph.
The main result of the paper is

Theorem 4.3.2. The map

τ 7→
∏
v∈Vτ
Mg(v),#Fτ,NS(v),#Fτ,R(v)

can be extended to a symmetric monoidal functor O : SGrst → G such that O is an operad,
that is, sends graftings to isomorphisms.

Using this Theorem, one obtains a descriptions of the moduli space of SUSY curves with
prescribed dual graph in terms of gluing data and its dimension. This is a generalization of
a description ofM0,kNS ,0 via trees and as a stratified superorbifold in Keßler, Sheshmani,
and Yau 2020.

The structures, upon which we focus in this study, are partly motivated by the study of
“phylogenetic trees” in Wu and Yau 2020. Y. Wu and S.-T. Yau describe combinatorially
various patterns of degeneration of generically smooth projective curves of genus zero
with marked points at the boundaries of moduli spaces of such curves.

The paper is organized as follows: We start the Section 2 with a systematic description
of the formalism of graphs as a language for describing the combinatorics of degeneration
of various types of algebraic/analytic curves and SUSY curves. The Section 3 recalls the
notions of stable SUSY curve with Neveu–Schwarz and Ramond punctures from Felder,
Kazhdan, and Polishchuk 2020 and describes how a stable SUSY graph is obtained from
stable SUSY curves. Finally, Section 4 contains the main new results of this paper, the
construction of the supermodular operad, its symmetry properties and relationship to
the modular operad.

2 SUSY Graphs
2.1 Graphs, their morphisms and categories
We accept the general framework of Borisov and Manin 2007, stressing the difference
between the formal definitions of graphs on the one side, and their geometric realizations
on the other side.

A graph τ is a family of structures (just sets or structured sets and maps between them
in the simplest cases) (Fτ , Vτ , ∂τ , jτ ). Elements of Fτ , resp. Vτ , are called flags, resp.
vertices of τ . The map ∂τ : Fτ → Vτ associates to each flag a vertex, called its boundary.

The map jτ : Fτ → Fτ must satisfy the condition j2
τ = id, identical map of Fτ to itself.

Flags fixed by jτ are called tails; we denote the set of tails of τ by Tτ . Two-element
orbits of jτ are called edges of τ ; we denote the set of edges of τ by Eτ .
For a discussion of their geometric meaning, and of many marginal (“degenerate”)

cases, see Borisov and Manin 2007.
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A morphism of graphs h : τ → σ is a triple of maps(
hF : Fσ → Fτ , hV : Vτ → Vσ, jh : Fτ \ hF (Fσ)→ Fτ \ hF (Fσ)

)
,

where hF is an injective contravariant map, hV is a surjective covariant map, and jh is
an involution, satisfying a list of additional restrictions: cf. Borisov and Manin 2007,
Definition 1.2.1.
Thus defined, graphs form a category Gr, with monoidal structure corresponding to

the disjoint union ∐ of geometric realizations of graphs.
Remark 2.1.1. The definition of Gr in this article is particularly suited for the study of
dual graphs of curves and differs from other texts, for example, Bridson and Haefliger
1999. In particular, graphs in Gr can have tails, multiple but undirected edges, loops
and disconnected components. Graph morphisms allow graftings, that is connecting two
tails to form an edge, contractions of edges and virtual contractions, that is contraction
of a pair of tails. But on the other hand, morphisms cannot break edges into tails and
inclusions of subgraphs are not necessarily graph morphisms.
Remark 2.1.2. It is pretty clear, that in the definitions above one may replace (structured)
sets by objects of a category, maps of sets by morphisms between objects of this category
etc. Of course, one then should take care about various compatibility restrictions, lifted
to the level of a (small) category.

2.2 Labeled graphs
In what follows we will need graphs with different labelings. Abstractly, a category of
labeled graphs Γ comes with a functor ψ : Γ→ Gr satisfying several properties, see Borisov
and Manin 2007, 1.3 Definition. As mentioned there, a labeled graph σ ∈ Γ can be
imagined as the underlying graph ψ(σ) together with some additional data on vertices,
flags or edges. Some examples:
Example 2.2.1 (genus labeled graphs, see Example 1.3.2c) in Borisov and Manin 2007).
A genus labeling on a graph τ = (Fτ , Vτ , ∂τ , jτ ) is a map g : Vτ → Z≥0 A morphism of
genus labeled graphs is a morphism of graphs such that the genus of a vertex in the
image is given by the sum of the genera of the vertices in the preimage plus the number
of contracted loops at that vertex.
The genus of a connected graph τ is given by

gτ =
∑
v∈Vτ

(g(v)− 1) + #Eτ + 1,

where #Eτ is the cardinality of the set of edges of τ . The genus of disconnected graphs
is the sum of the genera of its connected components.
A tree is a genus labeled graph of genus zero. We say that the genus labeled graph τ

is stable if for every vertex v ∈ Vτ it holds 2g(v)− 2 + #Fτ (v) > 0.
Example 2.2.2 (colored graphs, see Example 1.3.2.d) in Borisov and Manin 2007). A
colored graph is a graph where edges and half-edges are assigned a color. More precisely,
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an I-coloring on τ = (Fτ , Vτ , ∂τ , jτ ) is a map c : Fτ → I to some fixed-finite set I whose
elements are called colors such that c ◦ jτ = c. Morphisms h : τ → σ of I-colored graphs
preserve the color of edges, that is cτ ◦ hF = cσ and cτ ◦ jh = cτ |Fτ\hF (Fσ).
Example 2.2.3 (k-labeled graphs). Let k ∈ Z≥0 be a non-negative integer. A k-labeling
on a graph τ is given by a bijective map lτ : {1, . . . , k} → Tτ , that is, a numbering of the
tails. A morphism h : τ → σ between k-labeled graphs either

• is bijective on tails and preserves the labeling, that is, lτ ◦ hF |Tσ = lσ

• or if h grafts or virtually contracts pairs of tails, the labeling lσ is obtained from
lτ by deleting the labels of tails not in the image and renumbering consecutively
while preserving the order.

Note that the symmetric group Sk acts on k-labeled graphs by renumbering.

Definition 2.2.4. Let MGr be the category of modular graphs consisting of the graphs
with a genus labeling and a k-labeling of tails. The morphisms in MGr are compatible with
the genus labeling and the k-labeling in the sense of Example 2.2.1 and Example 2.2.3.
We furthermore consider the full subcategories of stable graphs MGrst, modular

trees MTr and stable modular trees MTrst.

2.3 Graphs relevant to the encoding of SUSY curves
Definition 2.3.1. Choose a pair, consisting of a non-negative integer kNS and an
even non-negative integer kR. A (kNS , kR)–SUSY graph is a graph τ = (Fτ , Vτ , ∂τ , jτ ),
endowed with

(i) a genus labeling gτ : Vτ → Z≥0;

(ii) a coloring cτ : Fτ → {NS,R} such that for every vertex v ∈ Vτ the number of
adjacent flags with color R must be even;

(iii) two separate labelings of NS-tails and R-tails: bijections

lτ,NS : {1, . . . , kNS} → Tτ,NS := Fτ,NS ∩ Tτ ,
lτ,R : {1, . . . , kR} → Tτ,R := Fτ,R ∩ Tτ .

The coloring cτ induces partitions of the set of all flags Fτ = Fτ,NS ∪ Fτ,R, the set
of flags adjacent to a vertex v Fτ (v) = Fτ,NS(v) ∪ Fτ,R(v), tails Tτ = Tτ,NS ∪ Tτ,R and
edges Eτ = Eτ,NS ∪ Eτ,R into those with color NS and those with color R. We denote
elements of Fτ,NS Neveu–Schwarz flags and elements of Fτ,R Ramond flags which we
sometimes abbreviate as NS-flags and R-flags respectively. Similarly for edges and tails.
If we do not specify the numbers kNS and kR we just use the short-hand SUSY graph.

Definition 2.3.2. A morphism of SUSY graphs is a morphism between graphs that
preserves the genus labeling as well as the coloring of flags and is compatible with the
labeling of Neveu–Schwarz tails and Ramond tails, compare Examples 2.2.1, 2.2.2, 2.2.3.
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Notice that the number of Neveu–Schwarz tails (resp. Ramond tails) of the image of a
morphisms of SUSY graphs may be lower than the number of Neveu–Schwarz tails (resp.
Ramond tails) of the domain. Morphisms between SUSY graphs can graft tails of the
same color and virtually contract pairs of tails of the same color.

Definition 2.3.3. We denote the category of SUSY graphs by SGr. The category SGr is
a symmetric monoidal category with respect to the disjoint union of SUSY graphs.
We denote the full subcategory of SGr where objects are stable graphs by SGrst. The

full subcategory of SGr where objects are trees is denoted by STr and the category of
stable SUSY trees by STrst.

There is a forgetful functor F : SGr→ MGr that restricts to forgetful functors SGrst →
MGrst, STr → MTr and STrst → MTrst. The functor F is constructed as follows: The
SUSY graph τ with genus labeling gτ , coloring cτ and labelings lτ,NS , lτ,R is sent to the
modular graph σ which coincides with τ as a genus labeled graph. The labeling lσ of
the tails is defined as lσ|Tτ,NS = lτ,NS and lσ|Tτ,R = kNS + lτ,R. With this convention,
any morphism h : τ → σ between SUSY graphs is also a morphism between the modular
graphs F(h) : F(τ)→ F(σ).

2.4 Directed and oriented SUSY graphs
Denote by N0 the family of subsets of natural numbers {0}, {0, 1}, {0, 1, 2}, . . . ,
{0, 1, 2, . . . , n}, . . . .

Definition 2.4.1. We say that a SUSY graph τ is oriented and directed if it is equipped
with

(i) Another partition of Fτ into two disjoint subsets: a map Fτ → {in, out} such that
halves of any edge get different labels. In the geometric realization, the flag labeled
by in (resp. out) is oriented towards (resp. outwards) its vertex. Such a labeling
determines an orientation of τ , and τ is then called an oriented graph.

(ii) A binary relation among vertices of an oriented graph “v is higher than v′”, such
that each flag becomes oriented downwards with respect to this relation: from a
higher vertex to a lower one.

(iii) For all v, a choice of bijection Fτ (v) with an element of N0, such that all flags of
this set, not labeled by 0, are either inputs, or outputs, so that 0 labels the only
output, resp. input.

A corolla is a graph, having one vertex. In the Definition 2.4.1 of oriented and directed
SUSY graph above, property (ii) implies that only one tail is oriented towards (or
outwards) the vertex, in which case all other tails are oriented outwards (resp. towards).
So, in particular, a geometric realization of an oriented and directed SUSY corolla can
be embedded into a real plane, with coordinates (x, y), so that the vertex becomes (0, 0),
the 0-tail goes down along the y-axis, and the structural ordering of all other tails agrees
with their ordering with respect to clock-wise ordering.
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Lemma 2.4.2. A geometric realization of an oriented SUSY graph τ can me embedded
into real plane in such a way that each corolla of it is embedded as above.

Proof. It is sufficient to consider τ with connected geometric realization, having at least
two different vertices (one-vertex graphs are corollas, and this case was already treated
above). Choose in it the highest vertex, and consider the only oriented flag leading from
this vertex downwards. It is half of an edge, oriented downwards. We may cut this edge,
and τ will be the result of grafting a corolla and a SUSY graph with a smaller amount of
flags. This allows us to make an inductive step.

Note that there are SUSY graphs which cannot be oriented and directed: For example
the graph consisting of four vertices of genus zero and a Neveu–Schwarz edge from every
vertex to every other.

2.5 Stable SUSY trees
Recall that stable SUSY trees are SUSY graphs of genus zero such that every vertex has
at least three adjacent flags. The forgetful functor F : STrst → MTrst sends a stable SUSY
tree to a stable modular tree. Conversely, we will now show that a modular tree can be
given the structure of a SUSY graph by coloring the tails. The color of the edges can be
inferred using the parity condition at every vertex.

Lemma 2.5.1. Let σ be stable modular tree with k numbered tails and k = kNS + kR
for non-negative integer kNS and a non-negative even integer kR. There is a unique
stable (kNS , kR)-SUSY tree τ such that F(τ) = σ.

Proof. The stable SUSY graph τ coincides with the modular graph σ as a genus labeled
graph. We need to construct the partition of the flags of τ into Neveu–Schwarz and
Ramond flags as well as the labeling of the Neveu–Schwarz and Ramond tails from the
labeling lσ of the tails. The partition of the tails Tτ = Tτ,NS ∪ Tτ,R is given by

Tτ,NS = {t ∈ Tτ | lσ(t) ≤ kNS} Tτ,R = {t ∈ Tτ | lσ(t) > kNS}

The numbering of the Neveu–Schwarz and Ramond tails of τ is induced from the
numbering of the tails of σ as follows:

lτ,NS = lσ|Tτ,NS , lτ,R = lσ|Tτ,R − kNS .

The partition of the edges is obtained from the parity condition by induction over the
number of edges: If the tree τ has no edges there is nothing to show. Every tree τ with
at least one edge has a vertex v which is the boundary of precisely one edge e. Stability
implies that v has at least two tails. If the number of Ramond tails bounding to v is
even the edge e needs to be be a Neveu–Schwarz edge. If the number of Ramond tails
bounding v is odd the edge e needs to be an Ramond edge. We can now proceed by
inductively considering the tree τ ′ obtained from tau by cutting the edge e and deleting
the vertex v as well as its adjacent flags.
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3 Stable SUSY curves with punctures and their dual graph
In this section we recall the notions of stable SUSY curves with punctures and their
respective moduli spaces. Furthermore we give the construction of the dual graph of a
super curve with punctures as a SUSY graph.

The definition of super Riemann surfaces or SUSY curves appeared first in the context
of super string theory, see, for example, Friedan 1986. SUSY curves are superschemes of
dimension 1|1 with an additional structure and generalize, in many aspects, algebraic
curves to supergeometry. Particular examples of SUSY curves can be constructed from
algebraic curves together with a spinor bundle.
Early studies of the moduli spaces of SUSY curves are LeBrun and Rothstein 1988;

Crane and Rabin 1988. It was argued in Deligne 1987 that families of SUSY curves may
degenerate in SUSY curves with two distinct types of nodes, called Neveu–Schwarz (NS)
nodes and Ramond (R) nodes. While Neveu–Schwarz nodes are transversal intersections
of SUSY curves, Ramond nodes have an additional degeneration of the spinor bundle.

The role of marked points on purely even algebraic curves is played by “punctures” on
a SUSY curve. Punctures are likewise divided into two classes, called Neveu–Schwarz
and Ramond punctures. For a family of stable SUSY curves M → B, Neveu–Schwarz
punctures are given by sections B →M , whereas Ramond punctures are relative Cartier
divisors R ⊂ M such that the projection R → B is smooth of dimension 0|1 together
with additional structural conditions.

For modern accounts on stable SUSY curves with punctures and their moduli spaces
we refer to Felder, Kazhdan, and Polishchuk 2020; Ott and Voronov 2019.

3.1 SUSY curves with punctures
We assume familiarity with algebraic supergeometry as, for example, in Manin 1988. The
following definition of SUSY curve with punctures is taken from Felder, Kazhdan, and
Polishchuk 2020, Def. 2.3 in Sec. 2.2.

Definition 3.1.1. A be a super Riemann surface over the base B with kNS Neveu–
Schwarz punctures and kR Ramond punctures is a tuple (M, {si},R,D) where

• π : M → B is a smooth, proper morphism of superschemes of relative dimension 1|1
generic fibers,

• si : B → M for i = 1, . . . , kNS are sections of π such that their reductions are
distinct, called Neveu–Schwarz punctures,

• R is an unramified relative effective Cartier divisor of codimension 0|1 in M of
degree kR whose labeled components ri, i = 1, . . . , kR are called the Ramond
punctures

• the line bundle D is a subbundle D ⊂ TM of rank 0|1 such that the commutator of
vector fields induces an isomorphism

D ⊗D →
(
TM�D

)
(−R).
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Considering the quotient of the structure sheaf of M by the ideal of nilpotent elements
one obtains the reduction ired : Mred → M . The family Mred → Bred is a smooth and
proper family of curves over Bred. The reduction of the Neveu–Schwarz punctures si yields
marked points of Mred. The reduction of the Ramond punctures yields a divisor Rred
which are equivalent to further marked points of Mred. That is, we can see Mred → Bred
as a smooth and proper family of curves with kNS + kR marked points.

But it is also interesting to make a distinction between the Neveu–Schwarz punctures
and the Ramond punctures in the reduced case: The pullback S = i∗D is a spinor bundle
on M with a degeneration over Rred, or more precisely

S ⊗ S = TMred
(−Rred) (3.1.2)

The familyMred → Bred together with the spinor bundle S as in Equation (3.1.2) is called
a spin curve with kNS punctures of type 0 and kR punctures of type 1 in Abramovich
and Jarvis 2003.
A SUSY curve over B = C0|0 is equivalent to the data of (Mred, S, {si,red},Rred)

satisfying Equation (3.1.2).
If M is irreducible of genus g the Theorem of Riemann Roch implies

2 degS = deg TMred
− degRred = 2− 2g − degRred.

that is, the number of Ramond punctures needs to be even.
Remark 3.1.3. SUSY curves are sometimes also called super Riemann surfaces or super
curves, especially if the number of Ramond punctures is zero. We will use in this work
exclusively the name SUSY curve.

3.2 Stable SUSY curves with punctures
Intuitively, a stable SUSY curve is a generalization of SUSY curves with punctures to
include nodes such that its reduced space is a stable curve. To make this precise, it is
necessary to reformulate the non-integrability condition of D as was argued in Deligne
1987.

Dualizing the exact sequence 0 → D → TM/B → TM/B�D = D⊗2(R) → 0, we get
0 → D−2(−R) → ΩM/B → D−1 → 0. This shows that D−1(−R) is isomorphic to the
Berezinian of ΩM/B, denoted ωM/B = Ber ΩM/B, and in turn produces the derivation
δ : OM → ωM/B(R), trivial on lifts of OB. The data of δ is equivalent to the data of the
line bundle D.

Definition 3.2.1. Consider a superscheme B. A family of stable SUSY curves with
punctures over B is a tuple (M, {si},R, δ) consisting of

• a proper, flat and relatively Cohen–Macaulay superscheme π : M → B

• si : B → M for i = 1, . . . , kNS are sections of π such that their reductions are
different, called Neveu–Schwarz punctures,
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• R is an unramified relative effective Cartier divisor of codimension 0|1 in M of
degree kR whose labeled components ri, i = 1, . . . , kR are called the Ramond
punctures

• A derivation δ : OM → ωM/B(R), trivial on lifts of OB to M .

These data must satisfy the following conditions:

(i) M contains an open fiberwise dense subset U , such that U/B is smooth of relative
dimension 1|1, and all si and ri are contained in U .

(ii) The tuple (U, {si},R, δ) is equivalent to a SUSY curve in the sense of Defini-
tion 3.1.1.

(iii) The reduction Mred → Bred is a stable family of marked curves.

Notice that, in general, M can be reducible and consist of several components. Each
irreducible component Mi contains a fiberwise dense open subset Ui = Mi ∪ U which
carries the structure of an open SUSY curve with punctures. The SUSY curve structure
on Ui can be completed uniquely to a smooth SUSY curve with punctures M̃i on Mi. We
call the punctures of M̃i special points of Mi. A special point of Mi is either a puncture
of M or represents a node of M . Every special point is either a Neveu–Schwarz special
point or a Ramond special point. The number of Ramond special points on an irreducible
component is even.
The reduction Mred of a stable SUSY curve M is a stable algebraic curve of genus g

with marked points s1, . . . skNS and marked points r1, . . . rkR . The pullback S = i∗redD
of D along the reduction map ired : Mred →M is a locally free sheaf of rank one with a
morphism

S ⊗ S → TMred
(−
∑
i

ri) (3.2.2)

which is an isomorphism away from the nodes.

3.3 The dual graph of a stable SUSY curve with punctures
To a given algebraic curve with marked points one associates a dual graph, see Kontsevich
and Manin 1994; Arbarello, Cornalba, and Griffiths 2011, Chapter X, §2; Combe and
Manin 2019. We are going to generalize the concept of dual graph to SUSY curves by
adding additional labels to edges and half-edges as follows:

Definition 3.3.1. Let (M, {si},R,D) be a stable SUSY curve with kNS Neveu–Schwarz
punctures and kR Ramond punctures over B such that Bred = pt. The dual graph of
(M, {si},R,D) consists of a (kNS , kR)-SUSY graph τ ∈ SGrst where

(i) The set of vertices Vτ is the set of irreducible components of M .

(ii) The vertex v ∈ Vτ representing the irreducible component Mi has an adjacent flag
for each special point of Mi. This determines Fτ and ∂τ .
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(iii) The map jτ maps flags associated to punctures to itself and flags associated to
nodes to the flag that represents the same node on the intersecting irreducible
component.

(iv) The genus labeling sends the vertex v representing the irreducible component Mi to
the genus of Mi. The stability of the SUSY curve implies that τ is a stable graph.

(v) The flags Fτ are partitioned into Neveu–Schwarz flags Fτ,NS and Ramond flags Fτ,R
according to the special point they represent. As the number of Ramond special
points on each irreducible component is even, we have that for every vertex v the
number #Fτ,R(v) of Ramond flags at v is even.

(vi) The labeling lτ,NS (resp. lτ,R) sends the tail corresponding to the i-th Neveu–
Schwarz puncture (resp. Ramond puncture) to i.

For different B and B′ such that Bred = pt the dual graph is invariant under base
change. In particular, we can assume without loss of generality that we consider the dual
graph of a super Riemann surface over B = C, that is equivalently, a spin curve.
Remark 3.3.2. The dual graph of a SUSY curve of genus zero is a SUSY tree. More
generally, the genus of a stable SUSY curve and its dual graph coincide.

The Definition 3.3.1 of dual graphs of SUSY curves is compatible with the definition of
dual graphs of algebraic nodal curves. Indeed, the definition of dual graphs of algebraic
nodal curves coincides with the points (i)–(iv) of Definition 3.3.1 and has a simplified
version of (vi). This yields:

Proposition 3.3.3. Let M be a stable SUSY curve with kNS Neveu–Schwarz and kR
Ramond punctures. Its reduction Mred is a stable nodal curve with k = kNS + kR marked
points obtained from the reduction of Neveu–Schwarz and Ramond punctures. The marked
points are labeled in the order of the punctures of M with Neveu–Schwarz punctures
followed by Ramond punctures. Then for the dual graph τ of M and the dual graph σ of
Mred it holds σ = F(τ).

4 The supermodular operads
In this section, we construct the supermodular operads.

Recall from Borisov and Manin 2007 that a generalized operad is a symmetric monoidal
functor F : Γ → G from a category of graphs to a “ground category” G that maps
graftings to isomorphisms. All operads in this sections are generalized operads in the
sense of Borisov and Manin 2007.

The supermodular operads we will construct are supergeometric generalizations of the
modular operad

o : MGrst → M
σ 7→

∏
v∈Vσ

Mgσ(v),#Fσ(v)
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that sends stable modular graphs to products of moduli stacks Mgσ(v),#Fσ(v) of stable
algebraic curves with genus gσ(v) and #Fσ(v) marked points. Central to the proof of
functoriality of o are the gluing maps that allow to glue stable curves along marked
points and yield maps

Mg,k+1 ×Mg′,k′+1 →Mg+g′,k+k′ Mg,k+2 →Mg+1,k

The operad o is known to encode interesting data about the geometry and topology of
the compact moduli stack Mg,k. For further information about the modular operads,
see Getzler and Kapranov 1998; Manin 1999; Combe and Manin 2019; Combe, Manin,
and Marcolli n.d.
The challenge in the construction of the supermodular operads is that SUSY curves

cannot be uniquely glued along Ramond punctures. This is why we first introduce a
restricted supermodular operad Or : SGrst,r → Gr that only needs to glue along Neveu–
Schwarz punctures. In a second step, we generalize the notion of morphism in Gr to
obtain a category G that can accommodate an operad O : SGrst → G
In Section 4.1 we recall the necessary background on moduli stacks of stable SUSY

curves with punctures and gluings. The restricted supermodular operad Or is constructed
in Section 4.2 whereas the operad O is constructed in Section 4.3. It is then shown in
Section 4.4 that this operad is bi-symmetric with respect to permutations of the labelings
of tails.

4.1 Moduli spaces of stable SUSY curves
In Felder, Kazhdan, and Polishchuk 2020 it was proved (Theorem A), that for each pair
(kNS , kR) as in Definition 2.3.1 above, the functor of families of stable SUSY curves of
genus g with respective numbers of punctures is represented by a smooth and proper
Deligne–Mumford superstackMg,kNS ,kR . The reader can find a categorical background
of stacks in Olsson 2016. Basic geometric definitions of the theory of superstacks are
presented in Bruzzo and Ruipérez 2019.

The stackMg,kNS ,kR is endowed with a boundary Cartier divisor ∆ = ∆NS + ∆R, with
normal crossings, see Section 8 of Felder, Kazhdan, and Polishchuk 2020. The boundary
divisor ∆NS encodes stable SUSY curves with at least one Neveu–Schwarz node and the
boundary divisor ∆R encodes stable SUSY curves with at least one Ramond node.

Stable SUSY curves can be glued along punctures of the same type, as was worked out
in Felder, Kazhdan, and Polishchuk 2020, Section 8. Two Neveu–Schwarz punctures can
be uniquely glued. Gluing a stable SUSY curve of genus g with kNS + 1 Neveu–Schwarz
punctures and kR Ramond punctures to a stable SUSY curve of genus g′ and k′NS + 1
Neveu–Schwarz punctures and k′R Ramond punctures along the Neveu–Schwarz punctures
with numbers j and j′ respectively yields a stable SUSY curve of genus g + g′ with
kNS + k′NS Neveu–Schwarz punctures and kR + k′R Ramond punctures. On the level of
moduli spaces this gluing yields an embedding of codimension 1|0, see Felder, Kazhdan,
and Polishchuk 2020, Lemma 8.10:

glNS(j, j′) : Mg,kNS+1,kR ×Mg′,k′
NS+1,k′

R
→Mg+g′,kNS+k′

NS ,kR+k′
R

(4.1.1)
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Gluing the two Neveu–Schwarz punctures with label j and j′ of a stable SUSY curve
of genus g with kNS + 2 Neveu–Schwarz punctures and kR Ramond punctures yields a
stable SUSY curve of genus g + 1 and kNS Neveu–Schwarz punctures and kR-Ramond
punctures. On the level of moduli space this gluing yields an embedding:

glNS(j, j′) : Mg,kNS+2,kR →Mg+1,kNS ,kR (4.1.2)

Similar gluing maps are not defined uniquely around Ramond punctures because
Ramond punctures are of dimension 0|1. According to Felder, Kazhdan, and Polishchuk
2020, Lemma 8.11, there is a principal fiber bundle Pj →Mg,kNS ,kR that parametrize
preferred coordinate systems of the j-th Ramond puncture. The structure group of Pj is
of the form Z2×C0|1. It follows from Felder, Kazhdan, and Polishchuk 2020, Lemma 8.13
that in order to glue two Ramond punctures j and j′ one needs to choose an isomorphism
between Pj and [i]∗Pj′ , where [i]∗Pj′ is the rescaling of the fibers of Pj′ by the complex
unity i. Hence there are bundles of isometries and gluing maps

Iso(Pj , [i]∗Pj′) Mg+1,kNS ,kR

Mg,kNS ,kR+2

glR(j,j′)

πjj′ (4.1.3)

Iso(Pj , [i]∗Pj′) Mg+g′,kNS+k′
NS ,kR+k′

R

Mg,kNS ,kR+1 ×Mg′,k′
NS ,k

′
R+1

glR(j,j′)

πjj′ (4.1.4)

In both cases the gluing maps glR(j, j′) are embeddings, see Felder, Kazhdan, and
Polishchuk 2020, Lemma 8.14.

The reduced space
(
Mg,kNS ,kR

)
red

is the moduli stack of pairs (Mred, S) consisting of
an algebraic stable curve Mred together with a twisted spinor bundle satisfying (3.2.2).
We denote the moduli stack of pairs (Mred, S) by M

spin
gkNS ,kR

=
(
Mg,kNS ,kR

)
red

. The
moduli space M spin

g,kNS ,kR
is a bundle over Mg,kNS+kR where the map

π : M spin
gkNS ,kR

→Mg,kNS+kR

forgets the spinor bundle, that is, sends (Mred, S) to Mred. In the case of genus zero the
map π is an isomorphism for all pairs (kNS , kR).

For further information about moduli superspaces, see Donagi and Witten 2015; Bruzzo
and Ruipérez 2019; Codogni and Viviani 2019; Keßler, Sheshmani, and Yau 2020.

4.2 Restricted Operad
In this section we will construct a restricted operad that allows gluing of Neveu–Schwarz
tails and (virtual) contraction of Neveu–Schwarz edges only. As the gluing maps along
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Neveu–Schwarz punctures are unique, we can proceed similar to the construction of the
classical operad o.

Definition 4.2.1. Let Gr be the full subcategory of the category of Deligne–Mumford
super stacks whose objects are finite products of compact moduli stacksMg,kNS ,kR .

The category Gr is a symmetric monoidal category with respect to the product of
stacks.

Definition 4.2.2. Let SGrst,r be the category of stable SUSY graphs with restricted
morphism which has the same objects as SGrst but allows only morphisms h : τ → σ such
that hF |Fσ,R : Fσ,R → Fτ,R is bijective and under this identification jτ |Fτ,R = jσ|Fσ,R .

That is, morphisms in SGrst,r do not graft Ramond tails or contract Ramond edges.
In this section we want to prove the following proposition:

Proposition 4.2.3. The map

τ 7→
∏
v∈Vτ
Mg(v),#Fτ,NS(v),#Fτ,R(v)

can be extended to a symmetric monoidal functor Or : SGrst,r → Gr such that Or is an
operad, that is, sends graftings to isomorphisms.

As graftings are bijective on vertices, one can already see that if the functor Or exists,
it sends graftings to isomorphisms. But in order to construct the functor, we need some
preparation:

Definition 4.2.4. Let σ be a SUSY graph. For every vertex v of σ we denote by ρσ(v)
the Ramond-connected component of v. The SUSY graph ρσ(v) consists of all vertices
{v′} that can be reached from v in one or more steps via Ramond edges together with
all flags of σ connected to any of the v′. The map jρσ(v) is given by the restriction of
jσ,R to Vρσ(v),R and jρσ(v),NS = id.

We denote the collection of Ramond-connected components by Rσ = {ρσ(v)}. Given a
SUSY graph σ the Neveu–Schwarz total grafting to be the morphism

◦σ,NS :
∐
ρ∈Rσ

ρ→ σ

in SGrst,r which is bijective on vertices and flags and grafts all Neveu–Schwarz edges.

Lemma 4.2.5. Given a morphism h : τ → σ in the category SGrst,r there is a commutative
diagram of the form ∐

ρ∈Rσ τρ
∐
ρ∈Rσ ρ

τ σ

∐
hρ

n ◦σ,NS
h

(4.2.6)

in SGrst,r where

13



• the graphs τρ are defined by

Vτρ = {v ∈ Vτ | hV (v) ∈ Vρ ⊂ Vσ} Fτρ = {f ∈ Fτ | hV (∂τf) ∈ Vρ}
∂τρ = ∂τ |Vτρ jτρ = jτ |τρ

• the morphism hρ : τρ → ρ is given by

hρ,V = hV |Vτρ hFρ = hF |Fρ jhρ = jh|Fτρ
and

• the morphism n is given by the grafting of τρ.

We call the commutative diagram (4.2.6) the Neveu–Schwarz atomization. The maps hρ
are contractions in the category SGrst,r, that is, they contract Neveu–Schwarz edges.

Now we are prepared for the

Proof of Proposition 4.2.3. By the existence of the Neveu–Schwarz atomization, see
Lemma 4.2.5, we can write any morphism h : τ → σ in SGrst,r as a composition of a
contraction and a grafting in SGrst,r.
If h is a grafting, it is bijective on the vertices and flags and hence the we define

Or(h) = id: Or =
∏
v∈Vτ
Mg(v),#Fτ,NS(v),#Fτ,R(v) → Or =

∏
w∈Vσ

Mg(w),#Fσ,NS(w),#Fσ,R(w).

If h is a contraction, we may without loss of generality assume that h contracts a single
edge because any contraction can be written as a composition of contractions of single
edges. This single contracted edge can be either an edge connecting two different vertices
or a loop.
If h contracts the edge e, consisting of the flags f1 and f2, connecting the distinct

vertices v1 and v2 ∈ Vτ , both v1 and v2 are mapped by hV to the same w1 ∈ Vσ. It
holds g(w1) = g(v1) + g(v2) as well as #Fσ,NS(w1) = #Fτ,NS(v1) + #Fτ,NS(v2)− 2 and
#Fσ,R(w1) = #Fτ,R(v1) + #Fτ,R(v2). We consider the gluing map

glNS(f1, f2) : Mgτ (v1),#Fτ,NS(v1),#Fτ,R(v1) ×Mgτ (v2),#Fτ,NS(v2),#Fτ,R(v2)

→Mgσ(w1),#Fσ,NS(w1),#Fσ,R(w1).

see Equation (4.1.1). The restriction of hV to Vτ \{v1, v2} → Vσ \{w} and the restriction
of hF to

Fσ \ {f | ∂σf = w} → Fτ \ {f |∂τf 6= v1, v2}
is bijective. Hence we define

Or(h) = id×glNS(f1, f2) :
∏

v∈Vτ\{v1,v2}
Mgτ (v),#Fτ,NS(v),#Fτ,R(v)

×Mgτ (v1),#Fτ,NS(v1),#Fτ,R(v1) ×Mgτ (v2),#Fτ,NS(v2),#Fτ,R(v2)

→
∏

w∈Vσ\{w1}
Mgσ(w),#Fσ,NS(w),#Fσ,R(w) ×Mgσ(w1),#Fσ,NS(w1),#Fσ,R(w1).

14



If h contracts a loop e at the vertex v1 ∈ Vτ consisting of the flags f1 and f2, the map
hV is bijective and the restriction of hF to

Fσ \ {f | ∂σf = w1} → Fτ \ {f | ∂τf = v1}

is bijective and it holds gσ(w1) = gτ (v1) + 1 as well as #Fσ,NS(w1) = #Fτ,NS(v1) − 2
and #Fσ,R(w1) = #Fτ,R(v1). Using the gluing map

glNS(f1, f2) : Mgτ (v1),#Fτ,NS(v1),#Fτ,R(v1) →Mgσ(w1),#Fσ,NS(w1),#Fσ,R(w1)

from Equation (4.1.2) we define

Or(h) = id×gl(f1, f2) :
∏

v∈Vτ\{v1}
Mgτ (v),#Fτ,NS(v),#Fτ,R(v)×Mgτ (v1),#Fτ,NS(v1),#Fτ,R(v1)

→
∏

w∈Vσ\{w1}
Mgσ(w),#Fσ,NS(w),#Fσ,R(w) ×Mgσ(w1),#Fσ,NS(w1),#Fσ,R(w1).

With those definitions Or is obviously a symmetric monoidal functor that sends graftings
to isomorphisms.

4.3 Operad with Ramond gluing data
In the construction of the operad Or we had to restrict to the category SGrst,r instead of
the category SGrst effectively forbidding grafting of Ramond tails and the contraction of
Ramond edges. This was needed because the gluing of Ramond punctures is not unique
and but rather an additional parameter is needed for the identification of the Ramond
nodes with each other.

We now want to define an operad O : SGrst → G which also encodes grafting of Ramond
tails and contractions of Ramond edges. Heuristically, we will achieve this by adding the
gluing diagrams (4.1.3) and (4.1.4) as morphisms to G.

Definition 4.3.1. Let M and M ′ be objects of Gr. We say that a triangle of the form

P

M M ′
π

f

is a weak map from M to M ′ if P is a fiber bundle over M . Weak maps can be composed
in an obvious way that is also associative.

Let G be the category whose objects are objects of Gr, that is products of moduli stacks
of punctured SUSY curves. Morphisms in G are weak maps in the above sense.

One can verify that the category G is a symmetric monoidal category with respect to
the product of stacks.
We now prove the following theorem:
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Theorem 4.3.2. The map

τ 7→
∏
v∈Vτ
Mg(v),#Fτ,NS(v),#Fτ,R(v)

can be extended to a symmetric monoidal functor O : SGrst → G such that O is an operad,
that is, sends graftings to isomorphisms.

Proof. As argued in the proof of Proposition 4.2.3, every morphism of SUSY graphs can
be decomposed into graftings and contractions. The case of graftings and contractions
of Neveu–Schwarz edges has been treated there. Here, it remains to treat the case of
contraction of a Ramond loop and contraction of a Ramond edge between different
vertices. Both cases yield a weak morphism in G.

Let us first treat the case of a contraction h : τ → σ of a Ramond edge e connecting
the distinct vertices v1 and v2 ∈ V2. Both v1 and v2 are mapped to the same vertex
w1 ∈ Vσ and we denote the two flags of e by f1 and f2. Consider the projection

pe : O(τ)→Mgτ (v1),#Fτ,NS(v1),#Fτ,R(v1) ×Mgτ (v2),#Fτ,NS(v2),#Fτ,R(v2)

and the gluing map

Iso(Pf1 , [i]∗Pf2) Mgσ(w1),#Fσ,NS(w1),#Fσ,R(w1)

Mgτ (v1),#Fτ,NS(v1),#Fτ,R(v1) ×Mgτ (v2),#Fτ,NS(v2),#Fτ,R(v2)

glR(f1,f2)

πe

where g(w1) = g(v1) + g(v2) as well as #Fσ,NS(w1) = #Fτ,NS(v1) + #Fτ,NS(v2) and
#Fσ,R(w1) = #Fτ,R(v1) + #Fτ,R(v2)− 2. Then O(h) is given by the weak map

p∗e Iso(Pf1 , [i]∗Pf2) O(σ)

O(τ)

(id,glR(f1,f2))

Similarly, if h : τ → σ is the contraction of the loop e at the vertex v1, consider the
projection

pv1 : O(τ)→Mgτ (v1),#Fτ,NS(v1),#Fτ,R(v1)

and the gluing map

Iso(Pf1 , [i]∗Pf2) Mgσ(w1),#Fσ,NS(w1),#Fσ,R(w1)

Mgτ (v1),#Fτ,NS(v1),#Fτ,R(v1)

glR(f1,f2)

πe
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where gσ(w1) = gτ (v1) + 1 as well as #Fσ,NS(w1) = #Fτ,NS(v1) and #Fσ,R(w1) =
#Fτ,R(v1)− 2. Then O(h) is given by the weak map

p∗v1 Iso(Pf1 , [i]∗Pf2) O(σ)

O(τ)

(id,glR(f1,f2))

By construction, the restriction of O : SGrst → G to SGrst,r yields the operad Or from
Section 4.2.

Let τ be a connected SUSY graph and let c : τ → σ be the full contraction. That is, σ
is a corolla of genus g(τ) with kNS Neveu–Schwarz flags and kR Ramond flags. Then
O(c) is given by a diagram of the form

P Mg(τ),kNS ,kR

∏
v∈VτMg(v),#Fτ,NS(v),#Fτ,R(v)

gl

π

The image of gl inMg(τ),kNS ,kR isMτ , the closed moduli space of SUSY curves of dual
graph τ . HereMτ is described as product over the moduli spaces of the vertices together
with the gluing data contained in P .

We can use the dimension of the bundle P to calculate the dimension of Mτ . The
fiber dimension of P is 0|#Eτ,R. The base space has the even dimension∑

v∈Vτ
(3gτ (v)− 3 + #Fτ,NS(v) + #Fτ,R)

which coincides with the even dimension of P . Using the formula for the genus of the
graph and that the number of flags coincides with the number of markings plus twice the
numbers of edges ∑

v∈Vτ
(gτ (v)− 1) = gτ − 1−#Eτ∑

v∈Vτ
#Fτ,NS(v) = #Fτ,NS = kNS + 2#Eτ,NS∑

v∈Vτ
#Fτ,R(v) = #Fτ,R = kR + 2#Eτ,R

Hence for the even dimension of P we have
de(P ) =

∑
v∈Vτ

(3gτ (v)− 3 + #Fτ,NS(v) + #Fτ,R)

= 3gτ − 3− 3#Eτ + kNS + 2#Eτ,NS + kR + 2#Eτ,R
= 3gτ − 3 + kNS + kR −#Eτ
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Similarly for the odd dimension of P , taking into account the fiber dimension

do(P ) =
∑
v∈Vτ

(
2gτ (v)− 2 + #Fτ,NS(v) + 1

2#Fτ,R
)

+ #Eτ,R

= 2gτ − 2− 2#Eτ + kNS + 2#Eτ,NS + 1
2kR + #Eτ,R + #Eτ,R

= 2gτ − 2 + kNS + 1
2kR

As all gluing maps are embeddings, it follows thatMτ ⊂ Mgτ ,kNS ,kR is a subspace of
codimension #Eτ |0.
The supermodular operad gives rise to another operad: Let Gred be the image of G

under the reduction functor Red that sends every superspace to its reduced space. That is
Gred is the full subcategory of smooth Deligne–Mumford stacks whose objects are products
of M spin

g,kNS ,kR
. Then Ored := Red ◦ O : SGrst → Gred is an operad because reductions sends

isomorphisms to isomorphism. This gives a new operad for moduli spaces of spin curves.
In the case of genus zero, we have isomorphisms M spin

g,kNS ,kR
' Mg,kNS+kR and hence

an equivalence of categories Gred = M. Using this equivalence we have an equality of
functors

STrst G

Gred

MTrst M

O

F

Ored Red

o

(4.3.3)

In the case of genus different from zero, there are projection maps π : M spin
g,kNS ,kR

→
Mg,kNS+kR such that for every g ∈ G we have an element π(g) ∈ M but this map π is
not a functor. Hence, in the case of arbitrary genus the above commutative diagram only
holds for objects of the respective categories.

4.4 Permutations of punctures and symmetric operad
The symmetric group Sk acts on algebraic stable curves with k marked points by
renumbering the marked points. This action descends to an action on the moduli
stack Mg,k of algebraic stable curves with k marked points. If k ≥ 3 all automorphisms
of M0,k are obtained in this way, and if k ≥ 5 the automorphisms are in bijection with
elements of Sn, see Combe and Manin 2019 and references therein.
Here we want to define analogously an action of SkNS × SkR on the moduli space of

SUSY curves with punctures.

Definition 4.4.1. We define the group of bi-permutations SkNS ,kR = SkNS × SkR . The
group SkNK ,kR acts on SGrkNS ,kR by renumbering the NS- and R-tails respectively. That
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is, the element s = (sNS , sR) ∈ SkNS ,kR acts on the labeling of tails of (kNS , kR)-SUSY
graphs by

lsτ,NS = sNS ◦ lτ,NS , lsτ,R = sR ◦ lτ,R.

Definition 4.4.2. Let s = (sNS , sR) ∈ SkNS ,kR be a bi-permutation and (M, {si},R, δ)
be a stable super curve with kNS Neveu–Schwarz punctures and kR Ramond punctures.
We denote by s(M, {si},R, δ) the stable super curve obtained from (M, {si},R, δ) by
renumbering the Neveu–Schwarz punctures by sNS and the Ramond divisors by sR. This
renumbering of the punctures yields an automorphism of the moduli stackMg,kNS ,kR .

From the definitions, the following is immediate:

Lemma 4.4.3. The operad O : SGrst → G commutes with the action of the group SkNS ,kR
of bi-permutations.

Hence, SkNS ,kR yields an automorphism of the moduli space Mτ for any (kNS , kR)-
SUSY graph τ .
Recall that the modular operad o : MTrst → M is symmetric, that is commutes with

the action of the symmetric group Sk. When viewing the element s ∈ SkNS ,kR as an
element of SkNS+kR the SkNS ,kR-symmetry of the supermodular operad O is compatible
with the SkNS+kR symmetry of the modular operad o, compare diagram (4.3.3).
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