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SIMPLE COMPLEX TORI OF ALGEBRAIC DIMENSION 0

TATIANA BANDMAN AND YURI G. ZARHIN

Abstract. Using Galois theory, we construct explicitly (in all complex
dimensions ≥ 2) an infinite family of simple g-dimensional complex tori
T that enjoy the following properties.
• The Picard number of T is 0; in particular, the algebraic dimension

of T is 0.
• If T∨ is the dual of T then Hom(T, T∨) = {0}.
• The automorphism group Aut(T ) of T is isomorphic to {±1} ×

Zg−1.
• The endomorphism algebra End0(T ) of T is isomorphic to a purely

imaginary number field of degree 2g.

1. Introduction

It is known that a “very general” complex torus T of complex dimension
dim(T ) = g ≥ 2 has the algebraic dimension a(T ) = 0. But the explicit
examples of such tori with g > 2 are very scarce. For g = 2 one may find
the explicit examples of complex tori with algebraic dimension zero in [EF,
Appendix] and [BL, Example 7.4]. (All the tori of complex dimension 1
have algebraic dimension 1.)

The aim of this paper is to provide explicit examples of simple complex
tori T with a(T ) = 0 in all complex dimensions g ≥ 2.

The tori we construct have some interesting additional properties and may
be viewed as non-algebraic analogues of abelian varieties of CM type, see
[LangCM, pp. 12–13 and Th. 4.1 on p. 15]. They also played an important
role in C. Voisin’s construction of counterexamples to Kodaira’s algebraic
approximation problem [Vo04, Vo06], see also [GS]. (We discuss her results
about tori in Remark 1.6 below.) We start with the following definitions.

Definition 1.1. A positive-dimensional complex torus X is called simple if
{0} and X are the only complex subtori of X (see, e.g., [BL, Chapter I,
Section 7]).

Definition 1.2. A complex torus T of dimension g ≥ 2 is called special if
it enjoys the following properties.
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(a) T is simple and has algebraic dimension 0. In addition, its endo-
morphism algebra End0(T ) = End(T )⊗Q is isomorphic to a purely
imaginary number field of degree 2g.

(b) The Picard number ρ(T ) of T is 0.
(c) If T∨ is the dual of T then Hom(T, T∨) = {0}. In particular, complex

tori T and T∨ are not isogenous.
(d) Let Aut(T ) be the automorphism group of the complex Lie group T .

Then Aut(T ) is isomorphic to {1,−1}×Zg−1. In particular, Aut(T )
is an infinite commutative group, whose torsion subgroup is a cyclic
group of order 2.

Our main result is the following

Theorem 1.3. Let g ≥ 2 be an integer and E a degree 2g number field that
enjoys the following properties.

(i) E is purely imaginary;
(ii) E has no proper subfields except Q.

Choose any isomorphism of R-algebras

Ψ : ER := E ⊗Q R→ ⊕gj=1C = Cg (1)

and a Z-lattice Λ of rank 2g in E ⊂ ER. Isomorphism Ψ provides ER with
the structure of a g-dimensional complex vector space.

Then the complex torus T = TE,Ψ,Λ := ER/Λ is special and its endomor-

phism algebra End0(T ) is isomorphic to E.

We present explicit examples of such fields (see Sections 6, 7, 8) for all
g ≥ 2.

Remark 1.4. Some authors call number fields that enjoy the property (ii)
of Theorem 1.3 primitive. One may view Proposition 2.1 below as a justifi-
cation of this terminology.

Remark 1.5. Suppose that g ≥ 2 and a degree 2g number field E enjoys
the properties (i)-(ii) of Theorem 1.3. Let Γ be an integer lattice of rank
2g in E and T0 = TE,Ψ,Γ the corresponding complex torus of dimension g.
If Λ is any subgroup of finite index in Γ then it is also an integer lattice
of rank 2g in E ⊂ ER. By Theorem 1.3, all complex tori T = TE,Ψ,Λ are

special and End0(T ) ∼= E. On the other hand, the set of of all tori TE,Ψ,Λ is
precisely the isogeny class of T0 (up to an isomorphism). Let Xg → Bg be
a versal family of complex tori of dimension g that was constructed in [BL,
Sect. 10]. (Every complex torus of dimension g appears as its fiber.) Its
base Bg is a homogeneous GL2g(R)-space. Each isogeny class is a GL2g(Q)-
orbit in Bg, which is a dense subset of Bg , because GL2g(Q) is a dense
subgroup of GL2g(R). Therefore each isogeny class is dense in the moduli
space Bg/GL2g(Z) of complex tori of dimension g. This implies that the
subset of all g-dimensional special tori is dense in the moduli space.
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Remark 1.6. Let T = V/Γ be a complex torus of dimension g ≥ 2 where
V is a g-dimensional complex vector space and Γ is a discrete lattice of rank
2g in V . Let φT be a holomorphic endomorphism of the complex Lie group
T and φΓ is the endomorphism of Γ induced by φT . Let f(x) ∈ Z[x] be
the characteristic polynomial of φΓ, which is monic of degree 2g. Suppose
that the polynomial f(x) is separable, has no real roots and its Galois group
Gal(f) over Q is the full symmetric group S2g. Such a pair (T, φT ) is called
a scenic torus in [GS, Sect. 3, p. 271]. C. Voisin [Vo04, Sect. 1] proved
that a scenic T is not algebraic and its Picard number is 0. It follows from
Theorem 1.3 that T is actually special. Indeed, let E be the Q-subalgebra
of End0(T ) generated by φT . The conditions on f(x) and Gal(f) imply that
f(x) is irreducible and E ∼= Q[x]/f(x)Q[x] is a purely imaginary number
field of degree 2g. The condition on Gal(f) implies (thanks to Example
2.3 below) that E has no proper subfields except Q. Thus all conditions of
Theorem 1.3 are met.

The proof of Theorem 1.3 is based on results of [OZ]. Properties (b), (c),
(d) of Definition 1.2 are consequences of the following assertions concerning
the endomorphism algebra

End0(T ) = End(T )⊗Q
of T. Recall [OZ] that End0(T ) is a finite-dimensional (not necessarily semisim-
ple) Q-algebra.

Proposition 1.7. Let T be a complex torus of dimension g ≥ 2. Suppose
that End0(T ) is a degree 2g number field that does not contain a subfield of
degree g. Then

(a) T is a simple complex torus of algebraic dimension 0;
(b) The Picard number ρ(T ) of T is 0, i.e., its Néron-Severi group

NS(T ) = {0}.

Proposition 1.8. Let T be a complex torus of dimension g ≥ 2. Suppose
that End0(T ) is a degree 2g number field that does not contain a proper
subfield except Q.

If T∨ is the dual of T then Hom(T, T∨) = {0}. In particular, T is not
isogenous to T∨.

Proposition 1.9. Let T be a complex torus of positive dimension. Suppose
that the endomorphism algebra End0(T ) is a purely imaginary number field
of degree 2s that does not contain roots of unity except {1,−1}. Let Aut(T )
be the automorphism group of the complex Lie group T .

Then Aut(T ) is isomorphic to {±1} × Zs−1. In particular, Aut(T ) is
commutative and its torsion subgroup is a cyclic group of order 2.

As a by-product we get examples of poor manifolds for any dimension.
The notion of a poor manifold was introduced in [BZ20]. It is a complex

compact connected manifold containing neither rational curves nor analytic
subsets of codimension 1 (and, a fortiori, having algebraic dimension 0).
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It was proven in [BZ20] that for a P1−bundle X over a poor manifold Y
the group Bim(X) of its bimeromorphic selfmaps coincides with the group
Aut(X) of its biholomorphic automorphisms; the latter has the commutative
identity component Aut0(X) and the order of any finite subgroup of the
quotient Aut(X)/Aut0(X) is bounded by a constant depending on X only.

As it was mentioned in [BZ20], a complex torus T has algebraic dimension
a(T ) = 0 if and only if it is poor. There exists an explicit example of a K3
surface that does not contain analytic subsets of codimension 1 ([McM]) and
therefore is poor. We prove the following

Theorem 1.10. Let T be a complex torus of dimension g ≥ 2. Suppose
that End0(T ) contains a a degree 2g number field E with the same 1 such
that E does not contain a CM subfield.

Then T has algebraic dimension 0 and therefore is poor. In addition,
there exist a simple complex torus S and a positive integer r such that T is
isogenous to the self-product Sr of S.

Remark 1.11. Let us note an additional property of special tori. The
notion of the invariant Brauer group BrT (T ) of a complex toris T was in-
troduced in [OSVZ] (see also [Cao]). This group is a finite abelian group of
exponent 2.

We claim that BrT (T ) = {0} if T is special. Indeed, BrT (T ) is isomorphic
to a subquotient of Hom(T, T∨) [OSVZ, Sect. 3.3, displayed formula (13)
and Prop. 3.19]. Since Hom(T, T∨) = {0} for special T , the group BrT (T )
is also {0}.

The paper is organized as follows. In Section 2 we give some background.
Section 3 contains proofs of main results. In Section 4 we prove Theo-
rem 1.10. In Sections 5, 6, 7, 8, 9 we present a plenty of explicit examples
of certain number fields that give rise to special tori. (Notice that explicit
examples of simple complex 2-dimensional tori T with a(T ) = 0 and Picard
number 0 were given in [EF, Appendix] and [BL, Example 7.4] in terms of
their period lattices.)

Acknowledgements. We are grateful to the referee, whose thoughtful
comments helped to improve the exposition.

2. A construction from the Galois Theory

As usual, Z,Q,R,C stand for the ring of integers and fields of rational,
real, and complex numbers respectively. We write Q̄ for an algebraic closure
of Q.

Let us recall the properties of a purely imaginary number field E.
We may view it as E = Q(α), where α ∈ E and there is an irreducible over

Q polynomial f(x) ∈ Q[x] of degree 2g such that f(α) = 0. The property
of E to be purely imaginary means that f(x) has no real roots in C. Let
α1, α1 . . . , αg, αg be roots of f(x) (here αj stands for the complex conjugate
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of αj). There are 2g field embeddings E ↪→ C, namely, two for every j, 1 ≤
j ≤ g :

σj : 1→ 1, α→ αj

and

σj : 1→ 1, α→ αj .

For every choice of g−tuple (τ1, . . . , τg), where each τj is either σj or σj we
define an injective Q-algebra homomorphism

Ψ : E ↪→ ⊕gj=1C = Cg, E 3 e 7→ (τ1(e), . . . , τg(e)) ∈ Cg (2)

that extends by R-linearity to a homomorphism Ψ : ER → Cg of R-algebras
(we keep the notation Ψ). Actually, Ψ is an isomorphism of R-algebras.
Indeed, let {β1, . . . , β2g} be a basis of the 2g-dimensional Q-vector space E.
It is proven in [LangCM, Proof of Th. 4.1 on pp. 15–16] that the 2g-element
set

{Ψ(β1), . . . ,Ψ(β2g)} ⊂ Cg

is linearly independent over R. It follows that the image Ψ(ER) has R-
dimension 2g. Since

dimR(ER) = 2g = dimR(Cg),
Ψ : ER → Cg is an isomorphism of R-algebras. There are precisely 2g

isomorphisms of R-algebras ER and Cg of the form Ψ = (τ1, . . . , τg), where
τi are defined in (2). We will use these isomorphisms in order to construct
complex tori ER/Γ with needed properties where Γ is a discrete lattice of
maximal rank in E. We will need the following elementary construction
from Galois theory.

Let n ≥ 3 be an integer and f(x) ∈ Q[x] a degree n irreducible polynomial.
This means that the Q-algebra

Kf = Q[x]/f(x)Q[x]

is a degree n number field. Let Rf ⊂ Q̄ be the n-element set of roots of
f(x). If α ∈ Rf then there is an isomorphism of Q-algebras

Φα : Kf = Q[x]/f(x)Q[x] ∼= Q(α), x 7→ α (3)

where Q(α) is the subfield of Q̄ generated by α. Clearly, Kf (and hence,
Q(α)) is purely imaginary if and only if f(x) has no real roots.

Let Q(Rf ) ⊂ Q̄ be the splitting field of f(x), i.e., the subfield of Q̄
generated by Rf . Then Q(Rf ) ⊂ Q̄ is a finite Galois extension of Q con-
taining Q(α). We write G = Gal(f) for the Galois group Gal(Q(Rf )/Q)
of Q(Rf )/Q, which may be viewed as a certain subgroup of the group
Perm(Rf ) of permutations of Rf . The irreducibility of f(x) means that
Gal(f) is a transitive permutation subgroup of Perm(Rf ). Let us consider
the stabilizer subgroup

Gα = {σ ∈ G | σ(α) = α} ⊂ G. (4)
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Clearly, Gα coincides with the Galois group Gal(Q(Rf )/Q(α)) of Galois
extension Q(Rf )/Q(α). If one starts to vary α in Rf then all the subgroups
Gα constitute a conjugacy class in G.

The following assertion is certainly well known but we failed to find a
suitable reference.

Proposition 2.1. The following conditions are equivalent.
(i) Kf has no proper subfields except Q.
(ii) Q(α) has no proper subfields except Q.
(iii) Gα is a maximal subgroup in G.
(iv) G is a primitive permutation subgroup of Perm(Rf ).

Remark 2.2.
(1) A transitive permutation group G is primitive if and only if the

stabilizer of a point is a maximal subgroup of G [Pa, Prop. 3.4 on
p. 15].

(2) Every 2-transitive permutation group is primitive [Pa, Prop. 3.8 on
p. 18].

Proof of Proposition 2.1. It follows from (3) that (i) and (ii) are equivalent.
It follows from Remark 2.2(1) that (iii) and (iv) are equivalent.

Let us prove that (ii) and (iii) are equivalent. Let H be a subgroup of G
that contains Gα. Let us consider the subfield of H-invariants

F := Q(Rf )H = {e ∈ Q(Rf ) | σ(e) = e ∀σ ∈ H} ⊂ Q(Rf ).

Clearly F is contained Q(Rf )Gα = Q(α).
There is a bijection between the set of subfields Q(Rf ) and the set of the

subgroups of G (see e.g., [Lang, Chapter VI, Theorem 1.1]). If H is neither
Gα nor G (i.e., Gα is not maximal) then F is neither Q(α) nor Q(Rf )G = Q.
This means if (iii) does not hold then (ii) does not hold as well.

Conversely, let F be a field that lies strictly between Q(α) and Q. Then
the Galois group H := Gal(Q(Rf )/F ) is a proper subgroup of G that con-
tains Gα but does not coincide with it. Hence Gα is not maximal. This
means that if (ii) does not hold then (iii) does not hold as well. This ends
the proof. �

Example 2.3. Suppose that n ≥ 4. Let Alt(Rf ) be the only index two
subgroup of Perm(Rf ), which is isomorphic to the alternating group An.
Then both Perm(Rf ) and Alt(Rf ) are doubly transitive permutation groups
[Pa] and therefore are primitive. It follows from Proposition 2.1 that if
Gal(f) coincides with either Perm(Rf ) or Alt(Rf ) then Kf does not contain
a proper subfield except Q. In other words, Kf does not contain a proper
subfield except Q if Gal(f) is isomorphic either to the full symmetric group
Sn or to the alternating group An. (The case of Sn was discussed earlier in
[LO, Sect. 3, p. 51].)
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3. Proofs of main results

If X is a complex torus then its endomorphism algebra End0(X) =
End(X) ⊗ Q will be denoted also by D(X) in order to be consistent with
the notation in [OZ].

In the following definition, smCM is short for sufficiently many Complex
Multiplications: this terminology is inspired by a similar notion for abelian
varieties introduced by F. Oort [O].

Definition 3.1. Let T be a positive-dimensional complex torus and E a
number field of degree 2 dim(T ). We say that T is a smCM-torus or a
smCM-torus with multiplication by E if there is a Q-algebra embedding
E ↪→ D(T ) that sends 1 ∈ E to the identity automorphism of E.

The following assertion is contained in [OZ, Corollary 1.7 on p. 15]. 1

Proposition 3.2. Let T be a positive-dimensional smCM-torus with mul-
tiplication by a number field E.

Then there are a simple complex torus S and a positive integer r such
that

(1) r divides 2 dim(T );
(2) T is isogenous to Sr;
(3)

[D(S) : Q] = 2 dim(S); (5)

(4) the field E contains a subfield, HDG(T ), that is isomorphic to D(S),
and

r =
2 dim(T )

dimQ(HDG(T ))
. (6)

The next lemma is an almost immediate corollary of Proposition 3.2.

Lemma 3.3. Let T be a positive-dimensional complex torus with smCM
by a field E ⊂ D(T ). Suppose that at least one of the following conditions
holds.

(i) D(T ) = E.
(ii) E has no proper subfields except Q.

Then T is a simple torus and D(T ) = E.

Proof of Lemma 3.3. By Proposition 3.2, there are a simple complex torus
S and a positive integer r with properties (1-4) of Proposition 3.2.

This implies that D(T ) is isomorphic to the matrix algebra Matr(D(S))
of size r over D(S). In particular, D(T ) is not a field if r > 1. This implies
readily that in case (i) of Lemma 3.3 r = 1 and therefore T is isogenous to
simple S and therefore is simple itself; by assumption, D(T ) = E.

1There is a typo in the assertion 2 of this Corollary. Namely, one should read in the
displayed formula [D(S) : Q] (not [E : Q]).
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Let us do the case (ii). The absence of intermediate subfields in E implies
that either D(S) = Q or D(S) ∼= E. In light of (5), [D(S) : Q] is even,
which implies that D(S) ∼= E and, therefore,

dimQ(HDG(T )) = [E : Q] = [D(S) : Q] = 2g = 2 dim(T ). (7)

It follows that dimQ(HDG(T )) = 2 dim(T ). Now (6) implies that r = 1,
hence, T is isogenous to simple S and, therefore, is a simple torus itself. In
addition,

D(T ) ∼= D(S) ∼= E. (8)

So, the Q-algebra D(T ) is isomorphic to its subfield E and therefore coin-
cides with E. �

Lemma 3.4. Let T be a simple complex torus of positive dimension g such
that its endomorphism algebra D(T ) is a degree 2g number field E that is
not CM. Then a(T ) = 0.

Proof. Every complex torus T admits a maximal quotient abelian variety Ta
such that dimTa = a(T ) ([BL, Ch. 2, Sect. 6]). The (connected) kernel of
the surjective homomorphism T → Ta is a (complex) subtorus of T. Thus,
if T is simple, either it is an abelian variety or a(T ) = 0. Suppose T is
an abelian variety. Then Albert’s classification of endomorphism algebras
of simple complex abelian varieties [Mum, Section 1, Application I] implies
that E = D(T ) has degree [E : Q] ≤ 2g; if the equality holds then E is a CM
field. Since E has degree 2g but is not a CM field, we get a contradiction
that proves that a(T ) = 0. �

Remark 3.5. If T is a torus with smCM by a field E, g = dim(T ) > 1,
and condition (ii) of Lemma 3.3 holds then E is not a CM field, because a
degree 2g CM field contains a (totally) real subfield of degree g.

Proof of Proposition 1.7. We are given that E = D(T ) is a number field of
degree 2g, hence T is a smCM torus and condition (i) of Lemma 3.3 holds.
Thus T is a simple complex torus of positive dimension g. The absence of
degree g subfields in E implies that E is not a CM field (see Remark 3.5).
It follows from Lemma 3.4 that T has algebraic dimension 0.

Suppose that NS(T ) 6= {0}. Then there exists a holomorphic line bundle
L on T , whose first Chern class c1(L ) 6= 0. Then L gives rise to a nonzero
morphism of complex tori

φL : T → T∨

where the g-dimensional complex torus T∨ = Pic0(T ) is the dual of T (see
[BL, Ch. 2, Sect. 3]).

Since T is simple and both T and T∨ have the same dimension g, the
nonzero morphism φL is an isogeny of complex tori. This means that T is
a nondegenerate complex torus [BL, Ch. 2, Prop. 3.1] in the terminology of
[BL]. Since T is simple, L is a “polarization” on T (see [BL, Proposition
1.7, Ch. 2, Sect. 1]).
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Let
End0(T )→ End0(T ), u 7→ u′

be the Rosati involution attached to L [BL, Ch. 2, Sect. 3]. If it is
nontrivial then the subalgebra of its invariants is a degree g subfield of the
field E = End0(T ) (see [Lang, Theorem 1.8, Chapter VI]). However, by our
assumption, such a subfield does not exist. This implies that the Rosati
involution is the identity map. It follows from [BL, Ch. 5, Prop. 1.2, last
assertion] that 2g = [E : Q] divides g, which is nonsense. The obtained
contradiction implies that c1(L ) is always 0, i.e., NS(T ) = {0}. �

Proof of Proposition 1.8. Let us present complex torus T as the quotient

T = V/Γ

where V is a g-dimensional complex vector space and Γ a discrete additive
subgroup of rank 2g. Let

ΓQ := Γ⊗Q, ΓR := Γ⊗ R
be 2g-dimensional Q- and R-vector spaces, respectively.

Note that V ∼= Cg coincides with ΓR endowed with complex structure.
Namely, there is

J ∈ EndR(ΓR),

which is multiplication by i =
√
−1 in the C-vector space V.

Moreover,

EndR(V ) = EndR(ΓR), EndC(V ) = {u ∈ EndR(ΓR) | uJ = Ju}.
We have

J2 = −1, J−1 = −J. (9)

It is known ([Ha, Proposition 5.2.11]) that End(T ) ⊂ End(Γ) and

End(T )⊗Z R = End0(T )⊗Q R = {u ∈ EndR(ΓR) | uJ = Ju}. (10)

In particular, the 2g-dimensional Q-vector space ΓQ carries the natural
structure of a faithful End0(T )-module. Recall that E = End0(T ) is a
number field of degree 2g. Hence, ΓQ becomes the one-dimensional E-vector
space and therefore E coincides with its own centralizer in EndQ(ΓQ). This
implies that if we put

ER = E ⊗Q R ⊂ EndQ(ΓQ)⊗Q R = EndR(ΓR)

then ΓR becomes the free ER-module of rank 1 and therefore ER coincides
with its own centralizer in EndR(ΓR). This implies that J ∈ ER.

Lemma 3.6. Let B : Γ × Γ → Z be a Z-bilinear form. Let us extend it by
R-linearity to the R-bilinear form

ΓR × ΓR → R,
which we continue to denote by B. Suppose that

B(Jv1, Jv2) = B(v1, v2) ∀v1, v2 ∈ ΓR. (11)
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Then B ≡ 0.

Proof of Lemma 3.6. Clearly,

B(ΓQ,ΓQ) ⊂ Q. (12)

The J-invariance of B means that

B(Jv1, v2) = B(v1, J
−1v2) = −B(v1, Jv2) ∀v1, v2 ∈ ΓR (13)

because J−1 = −J (since J2 = −1). It follows that the R-vector subspace

E−R = {u ∈ ER | B(u(v1), v2) = −B(v1, u(v2)) ∀v1, v2 ∈ ΓR}
of ER is not zero. In light of (12), there is a nonzero Q-vector subspace E−

of E such that
E−R = E− ⊗Q R.

Clearly, E− = E−R
⋂
E and

E− = {u ∈ E | B(u(v1), v2) = −B(v1, u(v2)) ∀v1, v2 ∈ ΓQ.}
Let u− be a nonzero element of E−. Clearly,

u− 6∈ Q ⊂ E.
On the other hand,

u+ := u2
− ∈ E

also does not lie in Q, because otherwise Q+Q ·u− is a quadratic subfield of
E, which does not contain quadratic subfields. (Recall that [E : Q] = 2g >
2.) Notice that

B(u+(v1), v2) = B(v1, u+(v2)) ∀v1, v2 ∈ ΓQ.

Let us consider

E+ = {u ∈ ER | B(u(v1), v2) = B(v1, u(v2)) ∀v1, v2 ∈ ΓR}.
Clearly, E+ is a subfield of E that contains u+ and therefore does not
coincide with Q. This implies that E+ = E. It follows that for all u ∈ ER

B(u(v1), v2) = B(v1, u(v2)) ∀v1, v2 ∈ ΓR.

Since J ∈ ER, it follows from (13) that

B(Jv1, v2) = 0 ∀v1, v2 ∈ ΓR.

Since J is an automorphism of ΓR, we get B ≡ 0. �

We continue to prove Proposition 1.8. Let us recall a description of the
dual complex torus T∨ of T ([BL, Ch. 1, Sect. 4], [Ke, Sect. 1.4]). Namely,
T∨ = V ∨/Γ∨ where V ∨ is the complex vector space of all C-antilinear maps
l : V → C while

Γ∨ = {l ∈ V ∨ | Im (l(Γ)) ⊂ Z}.
The structure of a complex vector space on V ∨ is defined by the operator
J∨ ∈ EndR(V ∨) such that J∨(l) = il, i.e. J∨(l)(v) = il(v). By construction,

J∨(l) = −l ◦ J ∀l ∈ V ∨ (14)
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(recall that l is antilinear).
Let f : T → T∨ be a morphism of complex tori (viewed as complex Lie

group). Then (see [BL, Ch. 1, Sect. 1, p. 4] and [OSVZ, Sect. 3.3]) there
exists (a lifting of f , i.e.,) a C-linear map F : V → V ∨ such that F (Γ) ⊂ Γ∨

and

f(v + Γ) = F (v) + Γ∨ ∈ V ∨/Γ∨ = T∨ ∀v + Γ ∈ V/Γ = T.

Let us consider the sesquilinear form

H : V × V → C, v1, v2 7→ F (v1)(v2)

and its imaginary part (which is a R-bilinear form)

B = Im(H) : V × V → R, v1, v2 7→ Im ((F (v1)(v2)) .

Clearly,

B(Γ,Γ) ⊂ Z, H(Jv1, Jv2) = H(v1, v2) ∀v1, v2 ∈ V = ΓR.

This implies that

B(Jv1, Jv2) = B(v1, v2) ∀v1, v2 ∈ V = ΓR.

By Lemma 3.6, B ≡ 0. This implies that H ≡ 0 and therefore F = 0. It
follows that f = 0, which ends the proof. �

Proof of Proposition 1.9. Clearly, End(T ) is an order in the purely imagi-
nary number field E = End(T ) ⊗ Q of degree 2s; its group of invertible
elements (units) End(T )∗ coincides with Aut(T ). It is also clear that the
roots of unity in End(T ) are precisely 1 and −1. Now the desired result fol-
lows from Dirichlet’s theorem about units [BS, Ch. II, Sect. 4, Th. 5]. �

Proof of Theorem 1.3. We keep the notation of Theorem 1.3. Let us put
T := TE,Ψ,Λ and consider

O := {u ∈ E | u · Λ ⊂ Λ} ⊂ E. (15)

Then O is an order in E [BS, Ch. VII, Sect. 2, Th. 3]. Multiplications by
elements of O in ER give rise to the ring embedding

O ↪→ End(T ), (16)

which extends by Q-linearity to the Q-algebra embedding

E = O ⊗Q ↪→ End(T )⊗Q = D(T ). (17)

This allows us to view E as a certain Q-subalgebra of D(T ). Note that 1 ∈ E
is mapped to 1 ∈ D(T ). Recall that

[E : Q] = 2g = 2 dim(T ).

Appying Lemma 3.3, we conclude that T is simple and D(T ) = E.
Recall that dim(T ) ≥ 2. Applying Lemma 3.4 to T and taking into

account Remark 3.5, we obtain that the algebraic dimension of T is 0. It
follows from already proven Propositions 1.7 and 1.8 that NS(T ) = {0} and
Hom(T, T∨) = {0}.
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In order to prove assertion (d), notice that E does not contain any roots
of unity except {1,−1}. Indeed, if this is not the case then either E contains
a primitive fourth root of unity

√
−1 or a primitive pth root of unity ζ where

p is an odd prime. In all these cases E contains a quadratic subfield that
is either Q(

√
−1) or Q(

√
−p) (if p is congruent to 3 mod 4) or Q(

√
p) (if p

is congruent to 1 mod 4). Since E does not contain a quadratic subfield, it
does not contain any roots of unity except {1,−1}. Now the assertion (d)
follows readily from Proposition 1.9.

�

Example 3.7. Let T = V/Γ be a complex torus of dimension g ≥ 2 where
V is a g-dimensional complex vector space and Γ is a discrete lattice of rank
2g in V . Let φT be a holomorphic endomorphism of the complex Lie group
T that enjoys the following properties.

If φΓ is the endomorphism of Γ induced by φT and f(x) ∈ Z[x] the
characteristic polynomial of φΓ (which is monic of degree 2g) then it is
separable, has no real roots and its Galois group Gal(f) over Q is a transitive
primitive subgroup of the full symmetric group S2g.

Let E be the Q-subalgebra of End0(T ) generated by φT . The conditions
on f(x) and Gal(f) imply that f(x) is irreducible and E ∼= Q[x]/f(x)Q[x]
is a purely imaginary number field of degree 2g. In light of Proposition 2.1,
the condition on Gal(f) implies that E has no proper subfields except Q.
Applying Theorem 1.3, we conclude that T is a special torus and End0(T ) =
E.

4. Poor tori

Definition 4.1 (See [BZ20]). We say that a compact connected complex
manifold Y of positive dimension is poor if it enjoys the following properties.

• The algebraic dimension a(Y ) of Y is 0.
• Y does not contain analytic subspaces of codimension 1.
• Y contains no rational curve, i.e., an image of a non-constant holo-

morphic map P1 → X. (In other words, every holomorphic map
P1 → Y is constant.)

Let Y be a poor manifold. Obviously, dim(Y ) ≥ 2. For a surface, poor
means the absence of any curve C ⊂ Y. An explicit example of a K3 surface
having this property may be found in [McM] and in [BHPV, Proposition
3.6, Chapter VIII]). Explicit examples of complex 2-dimensional tori Y with
a(Y ) = 0 are given in [BL, Example 7.4]. It is proven in [CDV, Theorem 1.2]
that if a compact Kähler 3-dimensional manifold has no nontrivial subvariety
then it is a complex torus.

On the other hand, a complex torus T with dim(T ) ≥ 2 and a(T ) = 0 is
a poor Kähler manifold. Indeed, a complex torus T is a Kähler manifold
that does not contain rational curves. If a(T ) = 0, it contains no analytic
subsets of codimension 1 [BL, Corollary 6.4, Chapter 2]. Thus a complex
torus T is poor if and only if a(T ) = 0.
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We will use the following properties of poor manifolds.

Lemma 4.2. Let X,Y be two complex compact connected manifolds and let
f : X → Y be a surjective holomorphic map. Assume that Y is poor. Then

(1) if Fy := f−1(y) is finite for every y ∈ Y then X is poor;
(2) if Fy := f−1(y) is a poor manifold with dim(Fy) = dim(X)−dim(Y )

for every y ∈ Y then X is poor.

In particular, the direct product of poor manifolds is a poor manifold.

Proof. For proving (1), let us note that f is an unramified cover of Y. Indeed,
the image R under f of the ramification locus is either empty or has pure
codimension 1 in Y ([DG, Section 1, 9], [Pe, Theorem1.6], [Re]). Since Y is
poor, R is empty. Now statement (1) follows from [BZ20, Lemma 3.1].

Let us prove (2). Assume that C ⊂ Y is a rational curve. If C ⊂ Fy
for some y ∈ Y then Fy is not poor, which is not the case. Thus f(C) is a
rational curve in Y which is also impossible, since Y is poor. Assume that
D ⊂ Y is an analytic irreducible subspace of codimension 1 and y ∈ Y. If
D ∩ Fy 6= ∅, then D ⊃ Fy, since otherwise D ∩ Fy would have codimension
one in Fy. Thus f(D) is an analytic subspace of Y ([Re], [Nar, Theorem 2,
Chapter VII]) and

dim(f(D)) = dim(D)− dim(Fy) = dim(Y )− 1,

which is impossible since Y is poor. Thus, X is poor: it contains neither
rational curves nor analytic subspaces of codimension 1. �

Remark 4.3. Let X be as in Lemma 4.2. The fact that a(X) = 0 follows
also from [Ue, Theorem 3.8]).

Proof of Theorem 1.10. Notice that T is a torus with smCM by E. Thanks
to Proposition 3.2, T is isogenous to Sr where S is a simple torus such that its
endomorphism algebra D(S) is isomorphic to a subfield of E. Hence, D(S)
is not a CM field. Applying Lemma 3.4, we conclude that the algebraic
dimension of S is 0. According to Lemma 4.2, this implies that a(T ) = 0 as
well.

�

5. Explicit examples

Our goal is to describe an explicit construction of simple complex tori
T with algebraic dimension 0 in all complex dimensions g ≥ 2. In order
to apply Theorem 1.3 and Proposition 2.1, let us find a degree 2g monic
irreducible polynomial f(x) ∈ Q[x] such that

• f(x) has no real roots;
• Gal(f) is primitive.

Suppose that we are given such a f(x) (see this section below). Then the
quotient E = Q[x]/f(x)Q[x] is a degree 2g purely imaginary field that does
not contain proper subfields except Q. We write x̃ for the image of x in E.
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Then {1, x̃, x̃2, . . . , x̃2g−1} is a basis of the Q-vector space E of dimension
2g. It follows that

Λ = Z[x̃] = Z · 1 + Z · x̃+ · · ·+ Z · x̃2g−1 ⊂ E
is a free Z-module of rank 2g with the basis

{1, x̃, x̃2, . . . , x̃2g−1}.
Let α1, . . . , αg ∈ C be all the roots of f(x) with positive imaginary part.

Then
{α1, ᾱ1, . . . , αg, ᾱg}

is the set of all complex roots of f(x). Let

τj : E = Q[x]/f(x)Q[x] ↪→ C, u(x) + f(x)Q[x] 7→ u(αj)

be the Q-algebra homomorphism that sends x̃ ∈ E to αj (1 ≤ j ≤ g). As
in the beginning of Section 2, the direct sum of all τi defines an injective
Q-algebra homomorphism

Φ : E ↪→ Cg, β 7→ (τ1(β), . . . τg(β)),

which extends to the isomorphism Φ : ER ∼= Cg of R-algebras. If β ∈ E ⊂ ER
then

Φ(β) = (τ1(β), . . . τg(β)) ∈ Cg.
In particular,

Φ(1) = (1, . . . , 1),Φ(x̃) = (α1, . . . , αg)

and therefore
Φ(x̃k) = (αk1 , . . . , α

k
g)

for all nonnnegative integers k. This implies that the 2g-element set

(1, . . . , 1), (α1, . . . , αg), (α
2
1, . . . , α

2
g), . . . , (α

2g−1
1 , . . . , α2g−1

g )

is a basis of the lattice Φ(Λ) ⊂ Cg.
Let us consider the g-dimensional complex torus

T (f) := Cg/Φ(Λ).

It follows from Theorem 1.3 combined with and Proposition 2.1 that T (f)
is a special torus and End0(T (f)) ∼= Q[x]/f(x)Q[x].

Below we present such polynomials for every even degree 2g ≥ 2. (See
also an explicit example for g = 4 in [GS, Sect. 3A, pp. 271–272].)

6. Truncated exponents

Let n ≥ 1 be an integer. Let us consider the truncated exponent

expn(x) =

n∑
j=0

xj

j!
∈ Q[x] ⊂ R[x].

Notice that its derivative

exp′n(x) = expn−1(x) = expn(x)− xn

n!
∀n ≥ 2.
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Lemma 6.1. If n ≥ 2 is an even integer then expn(x) has no real roots.

Proof. Since expn(x) is an even degree polynomial with positive leading
coefficient, it takes on the smallest possible value on R at a certain x0 ∈ R.
Then

0 = exp′n(x0) = expn(x0)− xn0
n!

and therefore

expn(x0) =
xn0
n!
. (18)

If x0 = 0 then 1 = expn(0) = 0, which is not the case. This implies that
x0 6= 0. Taking into account that n is even, we obtain from (18) that
expn(x0) > 0. Since expn(x0) is the smallest value of the function expn on
the whole R, the polynomial expn takes on only positive values on R and
therefore has no real roots. �

By a theorem of Schur [Col], Gal(expn(x)) = Sn or An. It follows from
Example 2.3 combined with Lemma 6.1 that if n = 2g is even then

E = Kg := Q[x]/ exp2g(x)Q[x]

is a degree 2g purely imaginary field that has no proper subfields except Q.
Now the construction of Section 5 applied to f(x) = exp2g(x) gives us for

all g ≥ 2 a special g-dimensional complex torus T (exp2g) with endomorphism
algebra Kg = Q[x]/ exp2g(x)Q[x].

7. Selmer polynomials

Another series of examples is provided by polynomials

selm2g(x) = x2g + x+ 1 ∈ Z[x] ⊂ Q[x] ⊂ R[x]. (19)

Notice that selm2g(x) takes on only positive values on the real line R, hence,
it does not have real roots. Indeed, if a ∈ R, |a| ≥ 1 then a2g + a ≥ 0 and
therefore

selm2g(a) = (a2g + a) + 1 ≥ 1 > 0.

If a ∈ R, |a| < 1 then a+ 1 > 0 and therefore

selm2g(a) = a2g + (a+ 1) ≥ a+ 1 > 0.

Let us assume that g is not congruent to 1 mod 3. Then 2g is not con-
gruent to 2 mod 3 and therefore, by a theorem of Selmer [Sel56, Th. 1],
selm2g(x) is irreducible over Q. Notice that the coefficient of the trinomial
selm2g(x) at x and its constant term are relatively prime, square free and
coprime to both 2g and 2g − 1. It follows from [NV] (see also [Os, Cor. 2
on p. 233]) applied to a0 = b0 = c = 1, n = 2g) that Gal(selm2g(x)) = S2g.

It follows from Example 2.3 that if a positive integer g is not congruent
to 1 mod 3 then

E = Mg := Kselm2g = Q[x]/selm2g(x)Q[x]

is a degree 2g purely imaginary field that has no proper subfields except Q.
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Now the construction of Subsection 5 gives us for all g ≥ 2 that are not
congruent to 1 mod 3, a g-dimensional special complex torus T (selm2g) with
endomorphism algebra Mg.

Notice that if g ≥ 5 is not congruent to 1 mod 3 then g-dimensional
special complex tori T (exp2g) and T (selm2g) are not isogenous. Indeed,
suppose that they are isogenous. Then their endomorphism algebras (which
are actually number fields) Kg and Mg are isomorphic. It follows from [Os,
the last assertion of Cor. 2 on p. 233] (applied to a0 = b0 = c = 1, n = 2g)
that all the ramification indices in the field extension Mg/Q do not exceed
2. On the other hand, it is proven in [Zar03, Sect. 5] that there is a prime
p that enjoys the following properties.

• g + 1 ≤ p ≤ 2g + 1 := n− 1.
• One of ramification indices over p in the field extension Kg/Q is

divisible by p. In particular, this index

≥ p ≥ g + 1 ≥ 5 + 1 = 6 > 2.

This implies that number fieldsKg andMg are not isomorphic. The obtained
contradiction proves that the tori T ( ˜exp2g) and T (selm2g) are not isogenous.

8. Polynomials with doubly transitive Galois group.

The following construction was inspired by so called Mori polynomials
[Mori, Zar16]. As above, g ≥ 2 is an integer, hence 2g − 1 ≥ 3. Let us fix

• a prime divisor l of 2g − 1;
• a prime p that is congruent to 1 modulo 2g − 1;
• an integer b that is not divisible by l and that is a primitive root

mod p;
• an integer c that is not divisible by l.

We call such a (l, p, b, c) a g-admissible quadruple.

Remark 8.1. Let g ≥ 2 and l be any prime divisor of 2g − 1. In light of
Dirichlet’s Theorem about primes in arithmetic progressions (which allows
us to choose p) and Chinese Remainder Theorem (which allows us to choose
b), there are infinitely many g-admissible quadruples (l, p, b, c).

Now let us consider a monic degree 2g polynomial

fg(x) = fg,l,p,b,c(x) := x2g − bx− pc

ll
∈ Z[1/l][x] ⊂ Q[x]. (20)

Lemma 8.2. (i) The polynomial fg(x) = fg,l,p,b,c(x) is irreducible over
the field Ql of l-adic numbers and therefore over Q.

(ii) The polynomial (fg(x) mod p) ∈ Fp[x] is a product x
(
x2g−1 − b mod p

)
of a linear factor x and an irreducible (over Fp) degree 2g − 1 poly-
nomial x2g−1 − (b mod p).

(iii) Let Gal(fg) be the Galois group of fg(x) over Q viewed as a transitive
subgroup of Perm(Rfg).
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Then transitive Gal(fg) contains a permutation σ that is a cy-
cle of length 2g − 1. In particular, Gal(fg) is a doubly transitive
permutation subgroup of Perm(Rfg).

(iv) The polynomial fg(x) has no real roots if and only if

c <
ll
(
b

2g

)1/(2g−1) (
b

2g − 1
)

p
. (21)

(v) Let ` be a prime that divides b, does not divide 2glp, and such that
c is congruent to ` modulo `2. Then the discriminant of the number
field Q[x]/fg(x)Q[x] is divisible by `.

(vi) Let ` be a prime that divides c and does not divide (2g− 1)pb. Then
the discriminant of the number field Q[x]/fg(x)Q[x] is not divisible
by `.

Remark 8.3. Let (l, p, b, c) be a g-admissible quadruple. LetN be a positive
integer such that

N >
ll
(
b

2g

)1/(2g−1) (
b

2g − 1
)

p
− c.

(1) Replacing c by c1 = c − Nlp, we get a g-admissible quadruple
(l, p, b, c1) such that the corresponding polynomial fl,g,p,b,c1(x) has
no real roots, in light of Lemma 8.2(iii) and (21).

(2) Let ` be a prime that satisfies conditions (v) (respectively (vi)) of
Lemma 8.2 with respect to (l, p, b, c). Let c2 = c − Nlp`2. Then
(l, p, b, c2) is also a g-admissible quadruple and fl,g,p,b,c1(x) has no
real roots, in light of the previous remark (applied to N`2 instead
of N). In addition, c2 is congruent to ` modulo `2 (respectively, is
not divisible by `). In other words, ` also satisfies the congruence
properties similar to conditions (v) (respectively to (vi)) of Lemma
8.2 where c is replaced by c2. It follows from Lemma 8.2(v) (respec-
tively (vi)) that the discriminant of Q[x]/fl,g,p,b,c1(x)Q[x] is divisible
by ` (respectively, not divisible by `).

Proof of Lemma 8.2. (i) The l-adic Newton polygon of fg(x) consists of one
segment that connects its endpoints (0,−l) and (2g, 0), which are its only
integer points, since prime l does not divide 2g. Now the irreducibility
of fg(x) follows from Eisenstein–Dumas Criterion ([Mott, Corollary 3.6, p.
316], [Gao, p. 502]).

(ii) The conditions on b and p imply that for each divisor d > 1 of 2g− 1
the residue b mod p is not a dth power md for any m ∈ Fp. It follows from
theorem 9.1 of [Lang, Ch. VI, Sect. 9] that the polynomial x2g−1 − (b
mod p) is irreducible over Fp and therefore its Galois group over Fp is a
cyclic group of order 2g − 1.

(iii) Let us consider the reduction

f̄g(x) = (fg(x) mod p) ∈ Fp[x]
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of fg(x) modulo p. Clearly, f̄g(x) = x(x2g−1 − (b mod p)) is a product in
Fp[x] of relatively prime linear x and irreducible x2g−1 − (b mod p). This
implies that Q

(
Rfg

)
/Q is unramified at p and a corresponding Frobenius

element in

Gal
(
Q(Rfg

)
/Q) = Gal(fg) ⊂ Perm

(
Rfg

)
is a cycle of length 2g − 1. This proves (iii).

(iv). Since fg(x) has even degree and positive leading coefficient, it reaches
its smallest value on R at a certain real point that is zero of its derivative

f ′g(x) = 2gx2g−1 − b. The only real zero of f ′g(x) is β = (b/2g)
1

2g−1 . Hence,
fg(x) has no real roots if and only if fg(β) > 0. We have

fg(β) = β2g − bβ − pc

ll
=

(
b

2g

)2g/2g−1

− b
(
b

2g

)1/(2g−1)

− pc

ll
=

(
b

2g

)1/(2g−1)( b

2g
− 1

)
− pc

ll
.

This implies that fg(β) > 0 if and only if(
b

2g

)1/(2g−1)( b

2g
− 1

)
>
pc

ll
,

i.e.,

c <
ll

p

(
b

2g

)1/(2g−1)( b

2g
− 1

)
.

This proves (iv).
(v)-(vi). Let us consider the degree 2g number field E := Q[x]/fg(x)Q[x]

and its discriminant ∆E ∈ Z. The formula for the discriminant of a tri-
nomial [FS, Example 834] tells us that the discriminant Discr(fg) of fg(x)
is

Discr(fg) = (−1)g(2g−1)(2g)2g
(pc
ll

)2g−1
+ (−1)(2g−1)(g−1)(2g − 1)2g−1b2g =

(22)

±
( p
ll

)2g−1
(2g)2gc2g−1 ∓ (2g − 1)2g−1b2g ∈ Z[1/l].

Notice that there is a nonzero rational number r such that

r2 ·∆E = Discr(fg) (23)

(see, e.g., [BS, Algebraic Extensions, Sect. 2.3, especially, formula 2.12]
applied to k = Q and K = E).

In the case of (v), there are integers c1, b1 ∈ Z such that

c = `(1 + c1`), b = `b1.

It follows from (22) that

Discr(fg) = `2g−1 · u1 + `2gu2
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where u1 ∈ Z[1/l] is an `-adic unit and u2 ∈ Z is an integer. This implies
that Discr(fg) = `2g−1u where u ∈ Q is an `-adic unit. Since 2g − 1 is odd,
it follows from (23) that ∆E is divisible by `, which proves (v).

In the case of (vi), it follows from (22) that

Discr(fg) = `2g−1v1 + v2

where v1 ∈ Z[1/l] is an `-adic unit and v2 ∈ Z is an integer not divisible
by `. This implies that Discr(fg) ∈ Z[1/l] is an `-adic unit. Taking into
account that ` 6= l, we obtain that the reduction modulo `

fg(x) mod ` ∈ (Z[1/l]/`Z[1/l])[x] = F`[x]

of fg(x) is a degree 2g monic polynomial with coefficients in F` and without
repeated roots. It follows from [FS, Ch. III, Sect 2, Th. 23 on p. 129]
(applied to o = Z[1/l] and p = `Z[1/l]) that the prime ideal `Z[1/l] of the
Dedekind ring Z[1/l] is unramified in E. This means that the discriminant
ideal ∆E · Z[1/l] of Z[1/l] is not contained in `Z[1/l]. It follows that ∆E is
not divisible by `, which proves (vi). �

Now assume that we have chosen c in such a way that inequality (21)
holds. It can be done, in light of Remark 8.3. Then we have:

• fg(x) is irreducible over Q and has no real roots (Lemma 8.2(i));
• the group Gal(fg) is doubly transitive (Lemma 8.2(iii));
• the group Gal(fg) is primitive (Remark 2.2).

It follows from Lemma 8.2 that

E = Lg = Lg,l,p,b,c := Q[x]/fg,l,p,b,c(x)Q[x]

is a degree 2g purely imaginary field that has no proper subfields except Q.
Now the construction of Section 5 gives us for all g ≥ 2 a special g-

dimensional complex torus Tg,l,p,b,c := T (fg,l,p,b,c) with endomorphism alge-
bra Lg,l,p,b,c.

9. Isogeny classes.

Let g ≥ 2 be an integer. The aim of this section is to construct infinitely
many mutually non-isogenous special g-dimensional complex tori.

Let us choose a g-admissible quaduple (l, p, b, c) that satisfies (21). The

construction of Section 8 gives us a special complex torus T (1) := Tg,l,p,b,c
of dimension g. Suppose that n is a positive integer and we have already
constructed n mutually non-isogenous g-dimensional special complex tori

T (k) = Tg,l,p,bk,ck , 1 ≤ k ≤ n

where each (l, p, bk, ck) is a g-admissible quaduple such that fg,l,p,bk,ck(x) has

no real roots. In particular, the endomorphism algebra of T (k) is isomorphic
to the purely imaginary number field Lg,l,p,bk,ck .

Let us choose
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• an odd prime ` 6= l, p that does not divide g, and is unramified in
all number fields Lg,l,p,bk,ck (1 ≤ k ≤ n), i.e., does not divide the
discriminant of any Lg,l,p,bk,ck ;
• an integer bn+1 that is not divisible by l and is a primitive root

mod p.

Assume additionally, that bn+1 is divisible by `. Since all three primes l, p, `
are distinct, such a bn+1 does exist, thanks to Chinese Remainder Theorem.
Now let us choose an integer cn+1 that is not divisible by l and congruent to
` modulo `2. Then (l, p, bn+1, cn+1) is a g-admissible quadruple such that the
discriminant of the number field Lg,l,p,bn+1,cn+1 is divisible by `, thanks to
Lemma 8.2(v). According to Remark 8.3, one may also choose cn+1 in such
a way that fg,l,p,bn+1,cn+1(x) has no real roots., i.e., the field Lg,l,p,bn+1,cn+1

is purely imaginary. This gives us a special g-dimensional complex torus
T (n+1) = Tg,l,p,bn+1,cn+1 , whose endomorphism algebra End0(T (n+1)) is iso-
morphic to the field Lg,l,p,bn+1,cn+1 , which is ramified at `.

Our choice of ` implies that Lg,l,p,bn+1,cn+1 is not isomorphic to any of

Lg,l,p,bk,ck with k ≤ n. It follows that T (n+1) is not isogenous to any of T (k)

with k ≤ n. In light of results of Section 8, all T (1), . . . , T (n), T (n+1) . . . are
special g-dimensional mutually non-isogenous complex tori.
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