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 LOJASIEWICZ-SIMON GRADIENT INEQUALITIES FOR ANALYTIC AND

MORSE-BOTT FUNCTIONALS ON BANACH SPACES AND

APPLICATIONS TO HARMONIC MAPS

PAUL M. N. FEEHAN AND MANOUSOS MARIDAKIS

Abstract. We prove two abstract versions of the  Lojasiewicz-Simon gradient inequality for an
analytic functional on a Banach space (stated earlier without proof as [52, Theorem 2.4.5]) that
generalize previous abstract versions of this inequality, significantly weakening their hypotheses
and, in particular, the well-known infinite-dimensional version of the gradient inequality due to
 Lojasiewicz [66] proved by Simon as [80, Theorem 3]. We also prove that the optimal exponent of
the  Lojasiewicz-Simon gradient inequality is obtained when the functional is Morse-Bott and not
necessarily analytic, improving on similar results due to Chill [18, Corollary 3.12], [19, Corollary
4], Haraux and Jendoubi [44, Theorem 2.1], and Simon [82, Sections 3.12 and 3.13].

We apply our abstract  Lojasiewicz-Simon gradient inequality to prove a  Lojasiewicz-Simon
gradient inequality for the harmonic map energy functional using Sobolev spaces which im-
pose minimal regularity requirements on maps between closed, Riemannian manifolds. Our
 Lojasiewicz-Simon gradient inequality for the harmonic map energy functional significantly gen-
eralizes those of Kwon [60, Theorem 4.2], Liu and Yang [64, Lemma 3.3], Simon [80, Theorem 3],
[81, Equation (4.27)], and Topping [89, Lemma 1].
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1. Introduction

Since its discovery by  Lojasiewicz in the context of analytic functions on Euclidean spaces [66,
Proposition 1, p. 92] and subsequent generalization by Simon to a class of analytic functionals
on certain Hölder spaces [80, Theorem 3], the  Lojasiewicz-Simon gradient inequality has played
a significant role in analyzing questions such as a) global existence, convergence, and analysis
of singularities for solutions to nonlinear evolution equations that are realizable as gradient-
like systems for an energy functional, b) uniqueness of tangent cones, and c) energy gaps and
discreteness of energies. For applications of the  Lojasiewicz-Simon gradient inequality to gradient
flows arising in geometric analysis, beginning with the harmonic map energy functional, we refer
to Irwin [54], Kwon [60], Liu and Yang [64], Simon [81], and Topping [88, 89]; for gradient flow
for the Chern-Simons functional, see Morgan, Mrowka, and Ruberman [68]; for gradient flow for
the Yamabe functional, see Brendle [13, Lemma 6.5 and Equation (100)] and Carlotto, Chodosh,
and Rubinstein [16]; for Yang-Mills gradient flow, we refer to our monograph [30], R̊ade [74], and
Yang [92]; for mean curvature flow, we refer to the survey by Colding and Minicozzi [24]; and for
Ricci curvature flow, see Ache [2], Haslhofer [47], Haslhofer and Müller [48], and Kröncke [59, 58].

For applications of the  Lojasiewicz-Simon gradient inequality to proofs of global existence,
convergence, convergence rate, and stability of non-linear evolution equations arising in other
areas of mathematical physics (including the Cahn-Hilliard, Ginzburg-Landau, Kirchoff-Carrier,
porous medium, reaction-diffusion, and semi-linear heat and wave equations), we refer to the
monograph by Huang [52] for a comprehensive introduction and to the articles by Chill [18, 19],
Chill and Fiorenza [20], Chill, Haraux, and Jendoubi [21], Chill and Jendoubi [22, 23], Feireisl and
Simondon [35], Feireisl and Takáč [36], Grasselli, Wu, and Zheng [40], Haraux [42], Haraux and
Jendoubi [43, 44, 45], Haraux, Jendoubi, and Kavian [46], Huang and Takáč [53], Jendoubi [55],
Rybka and Hoffmann [76, 77], Simon [80], and Takáč [86]. For applications to fluid dynamics, see
the articles by Feireisl, Laurençot, and Petzeltová [34], Frigeri, Grasselli, and Krejč́ı [38], Grasselli
and Wu [39], and Wu and Xu [91]

For applications of the  Lojasiewicz-Simon gradient inequality to proofs of energy gaps and dis-
creteness of energies for Yang-Mills connections, we refer to our articles [29, 28]. A key feature of
our version of the  Lojasiewicz-Simon gradient inequality for the pure Yang-Mills energy functional
[30, Theorem 22.8] is that it holds for W 1,p Sobolev norms and thus considerably weaker than the
C2,α Hölder norms originally employed by Simon in [80, Theorem 3] and this affords considerably
greater flexibility in applications. For example, when (X, g) is a closed, four-dimensional, Rie-
mannian manifold, the W 1,2 Sobolev norm on (bundle-valued) one-forms is (in a suitable sense)
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quasi-conformally invariant with respect to conformal changes in the Riemannian metric g. In
particular, that observation is exploited in our proof of [28, Theorem 1], which asserts discrete-
ness of L2 energies of Yang-Mills connections on arbitrary G-principal bundles over X, for any
compact Lie structure group G. In our companion article [32], we apply Theorem 1 to prove
 Lojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functionals.

There are essentially three approaches to establishing a  Lojasiewicz-Simon gradient inequality
for a particular energy functional arising in geometric analysis or mathematical physics: 1) es-
tablish the inequality from first principles, 2) adapt the argument employed by Simon in the
proof of his [80, Theorem 3], or 3) apply an abstract version of the  Lojasiewicz-Simon gradient
inequality for an analytic or Morse-Bott functional on a Banach space. Most famously, the first
approach is exactly that employed by Simon in [80], although this is also the avenue followed by
Kwon [60], Liu and Yang [64] and Topping [88, 89] for the harmonic map energy functional and
by R̊ade for the Yang-Mills energy functional. Occasionally a development from first principles
may be necessary, as discussed by Colding and Minicozzi in [24]. However, in almost all of the
remaining examples cited, one can derive a  Lojasiewicz-Simon gradient inequality for a specific
application from an abstract version for an analytic or Morse-Bott functional on a Banach space.
For this strategy to work well, one desires an abstract  Lojasiewicz-Simon gradient inequality with
the weakest possible hypotheses and a proof of such a gradient inequality (Theorem 1) is the one
purpose of the present article. We also prove an abstract  Lojasiewicz-Simon gradient inequality,
with the optimal exponent, for a Morse-Bott functional on a Banach space, generalizing and
unifying previous versions of the  Lojasiewicz-Simon gradient inequality with optimal exponent
obtained in specific examples.

Moreover, we establish versions of the  Lojasiewicz-Simon gradient inequality for the harmonic
map energy functional (Theorem 4), using systems of Sobolev norms in these applications that
are (as best we can tell) as weak as possible. Our gradient inequality for the harmonic map energy
functional is a significant generalization of previous inequalities due to Kwon [60, Theorem 4.2],
Liu and Yang [64, Lemma 3.3], Simon [80, Theorem 3], [81, Equation (4.27)], and Topping [89,
Lemma 1]. When the source manifold is a Riemann surface, our gradient inequality for the
harmonic map L2 energy functional uses the quasi-conformally invariant W 2,1 norm for harmonic
maps from a Riemann surface into a Riemannian manifold of arbitrary dimension.

While our abstract versions of the  Lojasiewicz-Simon gradient inequality (Theorems 1 and 3
and Corollary 2) are versatile enough to apply to many problems in geometric analysis, math-
ematical physics, and applied mathematics, it is worth noting that there are situations where
it appears difficult to derive a  Lojasiewicz-Simon gradient inequality for a specific application
from an abstract version. For example, a gradient inequality due to Feireisl, Issard-Roch, and
Petzeltová applies to functionals that are not C2 [33, Proposition 4.1 and Remark 4.1]. Colding
and Minicozzi describe certain gradient inequalities [24, Theorems 2.10 and 2.12] employed in
their work on non-compact singularities arising in mean curvature flow that do not appear to
follow from abstract  Lojasiewicz-Simon gradient inequalities or even the usual arguments under-
lying their proofs [24, Section 1]. Nevertheless, that should not preclude consideration of abstract
 Lojasiewicz-Simon gradient inequalities with the broadest possible application.

In the remainder of our Introduction, we summarize the principal results of our article, begin-
ning with a version of the abstract  Lojasiewicz-Simon gradient inequality for analytic functionals
on Banach spaces in Section 1.1 and  Lojasiewicz-Simon gradient inequalities for the harmonic
map L2 energy functional in Section 1.2.
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1.1.  Lojasiewicz-Simon gradient inequalities for analytic functionals on Banach spaces
and Morse-Bott functionals on Hilbert spaces. We begin with the following generalization
of Simon’s infinite-dimensional version [80, Theorem 3] of the  Lojasiewicz gradient inequality
[66]. Theorem 1 is stated by Huang as [52, Theorem 2.4.5] but no proof is given and it does not
follow from his less general [52, Theorem 2.4.2]. Huang cites [53, Proposition 3.3] for the proof of
Theorem 1 but the hypotheses of [53, Proposition 3.3] assume that X is a Hilbert space. That
distinction is important because we shall need Theorem 1 when X is a Banach space that may
not even be reflexive, as in our application to the harmonic map L2 energy functional in Section
1.2. The proof of Theorem 1 that we include in Section 2 is similar to that of Feireisl and Takáč
for their [36, Proposition 6.1] in the case of the Ginzburg-Landau energy functional. If X is a
Banach space, we let X ∗ denote its continuous dual space.

Theorem 1 ( Lojasiewicz-Simon gradient inequality for analytic functionals on Banach spaces).
Let X be a Banach space that is continuously embedded in a Hilbert space H . Let U ⊂ X be
an open subset, E : U → R be an analytic function, and x∞ ∈ U be a critical point of E , that
is, E ′(x∞) = 0. Assume that E ′′(x∞) : X → X ∗ is a Fredholm operator with index zero. Then
there are constants Z ∈ [1,∞), and σ ∈ (0, 1], and θ ∈ [1/2, 1), with the following significance. If
x ∈ U obeys

(1.1) ‖x− x∞‖X < σ,

then

(1.2) ‖E ′(x)‖X ∗ ≥ Z|E (x)− E (x∞)|θ.

Remark 1.1 (Index of a Fredholm Hessian operator on a reflexive Banach space). If X is a
reflexive Banach space in Theorem 1, then the hypothesis that E ′′(x∞) : X → X ∗ has index
zero can be omitted, since E ′′(x∞) is always a symmetric operator and thus necessarily has index
zero when X is reflexive by Lemma 2.3.

Surprisingly, it is possible to substantially weaken the traditional  Lojasiewicz-Simon neighbor-
hood condition (1.1). Indeed, by adapting the proof of a nice observation [36, Corollary 6.2] due
to Feireisl and Takáč for the Ginzburg-Landau energy functional we obtain the

Corollary 2 ( Lojasiewicz-Simon gradient inequality for C2 functionals on Banach spaces). Let
X be a Banach space that is continuously embedded in a Hilbert space H . Let U ⊂ X be
an open subset, E : U → R be a C2 function, and x∞ ∈ U be a critical point of E , that is,
E ′(x∞) = 0. Assume that there are constants, Z ∈ [1,∞), and σ ∈ (0, 1], and θ ∈ [1/2, 1), such
that the  Lojasiewicz-Simon gradient inequality (1.2) holds with constant Z for all x ∈ U obeying
the  Lojasiewicz-Simon neighborhood condition (1.1) with constant σ. If M ∈ [1,∞) is a constant,
then there are positive constants, Z0, σ0, with the following significance. If x ∈ U obeys

(1.3) |E (x)− E (x∞)| ≤M and ‖x− x∞‖H < σ0,

then (1.2) holds with Z replaced by Z0.

We note that unlike in the proof of [36, Corollary 6.2] in their application, we do not assume
compactness of the embedding X ⊂H in the hypotheses of Corollary 2, although this property
typically does hold in applications.

Remark 1.2 (Previous versions of the  Lojasiewicz-Simon gradient inequality for analytic func-
tionals on Banach spaces). The [18, Theorem 3.10 and Corollary 3.11] and [19, Corollary 3] due
to Chill provide versions of the  Lojasiewicz-Simon gradient inequality for an analytic functional
on a Banach space, but the hypotheses of Theorem 1 are considerably simpler and more general.
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The [45, Theorem 4.1] due to Haraux and Jendoubi is an abstract  Lojasiewicz-Simon gradi-
ent inequality which they argue is optimal based on examples that they discuss in [45, Section
3]. However, while the hypothesis in Theorem 1 is replaced by their alternative requirements
that Ker E ′′(x∞) be finite-dimensional and E ′′(x∞) obey a certain coercivity condition on the
orthogonal complement of Ker E ′′(x∞), they require X to be a Hilbert space.

In [52, Theorem 2.4.2], Huang provides a version of the  Lojasiewicz-Simon gradient inequality
for analytic functionals on Banach spaces in which boundedness of the gradient map E ′(x) : X →
H replaces boundedness of the gradient map E ′(x) : X →X ∗ and the Banach space dual norm
‖·‖X ∗ in (1.2) is replaced by the Hilbert space norm ‖·‖H . However, the hypotheses of Theorem
1 are again considerably simpler and more general than those of [52, Theorem 2.4.2].

Remark 1.3 (Replacement of Hilbert by Banach space dual norms in  Lojasiewicz-Simon gradient
inequalities). The structure of the original result of Simon [80, Theorem 3] was improved in
specific applications by Feireisl and Simondon [35, Proposition 6.1], R̊ade [74, Proposition 7.2],
Rybka and Hoffmann [76, Theorem 3.2], [77, Theorem 3.2], and Takáč [86, Proposition 8.1] by
replacing the L2(X) norm used by Simon in his [80, Theorem 3] with dual Sobolev norms, such
as W−1,2(X), and replacing the C2,α Hölder norm used by Simon to define the neighborhood of
the critical point with a Sobolev W 1,2(X) norm.

It is of considerable interest to know when the optimal exponent θ = 1/2 is achieved, since in
that case one can prove (see [30, Theorem 23.19], for example) that a global solution, u : [0,∞)→
X , to a gradient system governed by the  Lojasiewicz-Simon gradient inequality,

du

dt
= −E ′(u(t)), u(0) = u0,

has exponential rather than mere power-law rate of convergence to the critical point, u∞. One
simple version of such an optimal  Lojasiewicz-Simon gradient inequality is provided by the fol-
lowing result of Huang; note that the functional E is not required to be analytic.

Proposition 1.4 (Optimal  Lojasiewicz-Simon gradient inequality for C2 functionals on Hilbert
spaces). [52, Proposition 2.7.1] Let H be a real Hilbert space, U ⊂ H be an open subset,
E : U → R be a C2 function, and x∞ ∈ U be a critical point of E , that is, E ′(x∞) = 0. Assume
that the self-adjoint operator E ′′(x∞) : H → H is injective. Then the following assertions are
equivalent.

(1) The operator E ′′(x∞) : H →H is surjective (and thus invertible);
(2) There are constants, Z ∈ [1,∞) and σ ∈ (0, 1], such that if x ∈ U obeys

(1.4) ‖x− x∞‖H < σ,

then

(1.5) ‖E ′(x)‖H ≥ Z|E (x)− E (x∞)|1/2.
Remark 1.5 (Related optimal abstract  Lojasiewicz-Simon gradient inequalities). See Haraux and
Jendoubi [44, Theorem 2.1] and Haraux, Jendoubi, and Kavian [46, Proposition 1.1] for results
which are similar to Proposition 1.4.

Proposition 1.4, though of interest, has rather limited applications since it is only valid in
a very restrictive setting of Hilbert spaces and when the Hessian, E ′′(x∞) : H → H , is an
invertible operator.

For the harmonic map energy functional, a more interesting optimal  Lojasiewicz-Simon-type
gradient inequality,

‖E ′(f)‖Lp(S2) ≥ Z|E (f)− E (f∞)|1/2,
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has been obtained by Kwon [60, Theorem 4.2] for maps f : S2 → N , where N is a closed
Riemannian manifold and f is close to a harmonic map f∞ in the sense that

‖f − f∞‖W 2,p(S2) < σ,

where p is restricted to the range 1 < p ≤ 2, and f∞ is assumed to be integrable in the sense of
[60, Definitions 4.3 or 4.4 and Proposition 4.1]. Her [60, Proposition 4.1] quotes results of Simon
[81, pp. 270–272] and Adams and Simon [3].

The [64, Lemma 3.3] due to Liu and Yang is another example of an optimal  Lojasiewicz-Simon-
type gradient inequality for the harmonic map energy functional, but restricted to the setting of
maps f : S2 → N , where N is a Kähler manifold of complex dimension n ≥ 1 and nonnegative
bisectional curvature, and the energy E (f) is sufficiently small. The result of Liu and Yang
generalizes that of Topping [89, Lemma 1], who assumes that N = S2.

For the Yamabe functional, an optimal  Lojasiewicz-Simon gradient inequality, has been ob-
tained by Carlotto, Chodosh, and Rubinstein [16] under the hypothesis that the critical point is
integrable in the sense of their [16, Definition 8], a condition that they observe in [16, Lemma 9]
(quoting [3, Lemma 1] due to Adams and Simon) is equivalent to a function on Euclidean space
given by the Lyapunov-Schmidt reduction of E being constant on an open neighborhood of the
critical point.

For the Yang-Mills L2 energy functional for connections on a principal U(n)-bundle over a
closed Riemann surface, an optimal  Lojasiewicz-Simon gradient inequality, has been obtained by
R̊ade [74, Proposition 7.2] when the Yang-Mills connection is irreducible.

Given the desirability of treating an energy functional as a Morse function whenever possible,
for example in the spirit of Atiyah and Bott [5] for the Yang-Mills equation over Riemann surfaces,
it is useful to rephrase these integrability conditions in the spirit of Morse theory.

Definition 1.6 (Morse-Bott function). [6, Section 3.1] Let B be a smooth Banach manifold,
E : B → R be a C2 function, and Crit E := {x ∈ B : E ′(x) = 0}. A smooth submanifold C ↪→ B
is called a nondegenerate critical submanifold of E if C ⊂ Crit E and

(1.6) (TC )x = Ker E ′′(x), ∀x ∈ C ,

where E ′′(x) : (TB)x → (TB)∗x is the Hessian of E at the point x ∈ C . One calls E a Morse-Bott
function if its critical set Crit E consists of nondegenerate critical submanifolds.

We say that a C2 function E : B → R is Morse-Bott at a point x0 if there is an open
neighborhood U ⊂ B of x0 such that U ∩Crit E is a (relatively open) smooth submanifold of B
and (1.6) holds at x0.

Definition 1.6 is a restatement of definitions of a Morse-Bott function on a finite-dimensional
manifold, but we omit the condition that C be compact and connected as in Nicolaescu [71,
Definition 2.41] or the condition that C be compact in Bott [11, Definition, p. 248]. Note that
if B is a Riemannian manifold and N is the normal bundle of C ↪→ B, so Nx = (TC )⊥x for all
x ∈ C , where (TC )⊥x is the orthogonal complement of (TC )x in (TB)x, then (1.6) is equivalent
to the assertion that the restriction of the Hessian to the fibers of the normal bundle of C ,

E ′′(x) : Nx → (TB)∗x,

is injective for all x ∈ C ; using the Riemannian metric on B to identify (TB)∗x
∼= (TB)x, we

see that E ′′(x) : Nx
∼= Nx is an isomorphism for all x ∈ C . In other words, the condition (1.6)

is equivalent to the assertion that the Hessian of E is an isomorphism of the normal bundle N
when B has a Riemannian metric.
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The Yang-Mills L2 energy functional for connections on a principal G-bundle over X is Morse-
Bott when X is a closed Riemann surface — see the article by Atiyah and Bott [5] and the
discussion by Swoboda [85, p. 161]. However, it appears difficult to extend this result to the case
where X is a closed four-dimensional Riemannian manifold. To gain a sense of the difficulty, see
the analysis by Bourguignon and Lawson [12] and Taubes [87] of the Hessian for the Yang-Mills L2

energy functional when X = S4 with its standard round metric of radius one. For a development
of Morse-Bott theory and a discussion of and references to its numerous applications, we refer to
Austin and Braam [6].

However, given a Morse-Bott energy functional, we then have the

Theorem 3 (Optimal  Lojasiewicz-Simon gradient inequality for Morse-Bott functionals on Ba-
nach spaces). Assume the hypotheses of Theorem 1, except for the hypothesis that E : U ⊂X →
R be real analytic and require instead that this functional be C2 and Morse-Bott function at x∞
in the sense of Definition 1.6. Then the conclusions of Theorem 1 and Corollary 2 hold with
θ = 1/2.

We refer to Appendix A for a discussion of integrability and the Morse-Bott condition for the
harmonic map energy functional, together with examples.

Remark 1.7 (Previous versions of the optimal  Lojasiewicz-Simon gradient inequality). Theorem
3 was first proved by Chill [18, Corollary 3.12], [19, Corollary 4] and Haraux and Jendoubi [44,
Theorem 2.1] but under the additional hypothesis that X is a Hilbert space and H = X ,
although in less general settings it is originally due to Simon [82, Sections 3.12 and 3.13].

Remark 1.8 (Distinguishing between Fredholm index and Morse-Bott index). It is worth pointing
out that term ‘index’ arises here in several different, albeit traditional ways. Suppose that B is
a closed, oriented, smooth manifold and that E : M → R is a Morse function. If x∞ ∈ B is a
critical point of E , then the (Morse) index of E at x∞ is the number of negative eigenvalues of the
Hessian, E ′′(x∞) : (TB)x∞ × (TB)x∞ → R, of E at x∞. More generally, if B also Riemannian,
E is a Morse-Bott function, and C ↪→ B is a connected component of a critical set of E , then
the (Morse-Bott) index [6, Section 3.1] of E along C is the rank of N −(C ), where

N (C ) = N +(C )⊕N −(C ),

is the normal bundle of C and the fibers N ±
x∞(C ) of the subbundles N ±(C ) are defined by the

positive and negative eigenspaces of E ′′(x∞) : Nx∞(C )×Nx∞(C )→ R for each x∞ ∈ C .
On the other hand, in Theorem 1, we view the Hessian E ′′(x∞) is a linear operator E ′′(x∞) :

(TB)x∞ → (TB)∗x∞ and require that E ′′(x∞) be Fredholm with index zero, that is,

index E ′′(x∞) = dim Ker E ′′(x∞)− dim Coker E ′′(x∞) = 0,

in the usual sense of linear operators on Banach spaces.

1.2.  Lojasiewicz-Simon gradient inequality for the harmonic map L2-energy func-
tional. Finally, we describe a consequence of Theorem 1 for the harmonic map L2-energy func-
tional. For background on harmonic maps, we refer to Hélein [49], Jost [56], Simon [82], Struwe
[84], and references cited therein. We begin with the

Definition 1.9 (Harmonic map energy functional). Let (M, g) and (N,h) be a pair of closed,
Riemannian, smooth manifolds. One defines the harmonic map L2-energy functional by

(1.7) Eg,h(f) :=
1

2

∫
M
|df |2g,h d volg,

for smooth maps, f : M → N , where df : TM → TN is the differential map.
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When clear from the context, we omit explicit mention of the Riemannian metrics g on M and
h on N and write E = Eg,h. Although initially defined for smooth maps, the energy functional
E in Definition 1.9, extends to the case of Sobolev maps of class W 1,2. To define the gradient of
the energy functional E in (1.7) with respect to the L2 metric on C∞(M ;N), we first choose an
isometric embedding, (N,h) ↪→ Rn for a sufficiently large n (courtesy of the isometric embedding
theorem due to Nash [69]), and recall that by [56, Equations (8.1.10) and (8.1.13)] we have(

E ′(f), u
)
L2(M,g)

:=
d

dt
E (expf (tu))

∣∣∣∣
t=0

= (∆gf, u)L2(M,g)

= (Πh(f)∆gf, u)L2(M,g) ,

for all u ∈ C∞(M ; f∗TN), where Πh(y) : Rn → TyN is orthogonal projection and expy : TyN →
N is the exponential map, so expy(0) = y ∈ N , for all y ∈ N . (Note that one could alternatively
define (

E ′(f), u
)
L2(M,g)

=
d

dt
E (π(f + tu))

∣∣∣∣
t=0

as implied by [82, Equations (2.2)(i) and (ii)], where π is the nearest point projection onto N
from a normal tubular neighborhood.) Thus, viewing the gradient as an operator and applying
[49, Lemma 1.2.4],

(1.8) E ′(f) = Πh(f)∆g = ∆gf −Ah(df, df),

as in [82, Equations (2.2)(iii) and (iv)]. Here, Ah denotes the second fundamental form of the
isometric embedding, (N,h) ⊂ Rn and

(1.9) ∆g := −divg gradg = d∗,gd = − 1√
det g

∂

∂xβ

(√
det g

∂f

∂xα

)
denotes the Laplace-Beltrami operator for (M, g) (with the opposite sign convention to that of
[17, Equations (1.14) and (1.33)]) acting on the scalar components f i of f = (f1, . . . , fn) and
{xα} denote local coordinates on M . As usual, the gradient vector field, gradg f

i ∈ C∞(TM), is

defined by 〈gradg f
i, ξ〉g := df i(ξ) for all ξ ∈ C∞(TM) and 1 ≤ i ≤ n and the divergence function,

divg ξ ∈ C∞(M ;R), by the pointwise trace, divg ξ := tr(η 7→ ∇gξη), for all η ∈ C∞(TM).

One says that a smooth map f : M → N is harmonic if it is a critical point of the L2 energy
functional (1.7), that is

E ′(f) = ∆gf −Ah(df, df) = 0.

Given a smooth map f : M → N , an isometric embedding (N,h) ↪→ Rn, a non-negative integer
k, and p ∈ [1,∞), we define the Sobolev norms,

‖f‖Wk,p(M) :=

(
n∑
i=1

‖f i‖p
Wk,p(M)

)1/p

,

with

‖f i‖Wk,p(M) :=

 k∑
j=0

∫
M
|(∇g)jf i|p d volg

1/p

,
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where ∇g denotes the Levi-Civita connection on TM and all associated bundles (that is, T ∗M
and their tensor products), and if p =∞, we define

‖f‖Wk,∞(M) = ‖f‖Ck(M) :=
n∑
i=1

k∑
j=0

ess sup
M

|(∇g)jf i|.

If k = 0, then we denote ‖f‖W 0,p(M) = ‖f‖Lp(M). For p ∈ [1,∞) and nonnegative integers k,

we use [4, Theorem 3.12] (applied to W k,p(M ;Rn) and noting that M is a closed manifold) and
Banach space duality to define

W−k,p
′
(M ;Rn) :=

(
W k,p(M ;Rn)

)∗
,

where p′ ∈ (1,∞] is the dual exponent defined by 1/p+ 1/p′ = 1. Elements of the Banach space
dual (W k,p(M ;Rn))∗ may be characterized via [4, Section 3.10] as distributions in the Schwartz
space D ′(M ;Rn) [4, Section 1.57].

In particular, when p = 1 and p′ =∞ and k is a non-negative integer, we have

W−k,∞(M ;Rn) :=
(
W k,1(M ;Rn)

)∗
.

Lastly, we note that if (N,h) is real analytic, then the isometric embedding (N,h) ↪→ Rn may
also be chosen to be analytic by the analytic isometric embedding theorem due to Nash [70], with
a simplified proof due to Greene and Jacobowitz [41]).

The statement of the forthcoming Theorem 4 includes the most delicate dimension for the
source Riemannian manifold, (M, g), namely the case where M has dimension d = 2 and allows a
Sobolev norm for the definition of the  Lojasiewicz-Simon neighborhood of a harmonic map that
appears to be optimal for that case, namely, W 2,1(M ;N), as well as the suboptimal W 1,p(M ;N)
with p > 2. Following the landmark articles by Sacks and Uhlenbeck [79, 78], the case where the
domain manifold M has dimension two is well-known to be critical.

Theorem 4 ( Lojasiewicz-Simon gradient inequality for the energy functional for maps between
pairs of Riemannian manifolds). Let d ≥ 2 and k ≥ 1 be integers and p ∈ [1,∞) be such that

kp > d or k = d and p = 1.

Let (M, g) and (N,h) be closed, Riemannian, smooth manifolds, with M of dimension d. If (N,h)
is real analytic (respectively, C∞) and f ∈W k,p(M ;N), then the gradient map1

E ′(f) : TfW
k,p(M ;N)→ T ∗fW

k,p(M ;N),

is a real analytic (respectively, C∞) map of Banach spaces. If (N,h) is real analytic and f∞ ∈
W k,p(M ;N) is a harmonic map, then there are positive constants Z ∈ [1,∞), and σ ∈ (0, 1], and
θ ∈ [1/2, 1), depending on f∞, g, h, k, p, with the following significance. If f ∈ W k,p(M ;N)
obeys the W k,p  Lojasiewicz-Simon neighborhood condition,

(1.10) ‖f − f∞‖Wk,p(M) < σ,

then the harmonic map energy functional (1.7) obeys the  Lojasiewicz-Simon gradient inequality,

(1.11) ‖E ′(f)‖W−k,p′ (M) ≥ Z|E (f)− E (f∞)|θ.

Furthermore, if the hypothesis that (N,h) is analytic is replaced by the condition that E is Morse-
Bott at f∞, then (1.11) holds with the optimal exponent θ = 1/2.

1Thus T ∗f W
k,p(M ;N) is the dual of the tangent space TfW

k,p(M ;N) of the Banach manifold W k,p(M ;N) at

the point f .
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Finally, if (N,h) is real analytic or (N,h) is C∞ and E is Morse-Bott at f∞, and C0 ∈
[1,∞) is a constant, and θ ∈ [1/2, 1) is as in (1.2), then there are constants, Z0 ∈ [1,∞) and
σ0 ∈ (0, 1], depending in addition on C0, with the following significance. If the hypothesis that
f ∈W k,p(M ;N) obeys (1.10) is replaced by the L2  Lojasiewicz-Simon neighborhood condition,

(1.12) |E (f)− E (f∞)| ≤ C0 and ‖f − f∞‖L2(M) < σ0,

then (1.2) holds with constant Z replaced by Z0.

Remark 1.10 (Previous versions of the  Lojasiewicz-Simon gradient inequality for the harmonic
map energy functional). As noted earlier, and Topping [89, Lemma 1] proved a  Lojasiewicz-type
gradient inequality for maps, f : S2 → S2, with small L2 energy, with the latter criterion replacing
the usual small C2,α norm criterion of Simon for the difference between a map and a critical point
[80, Theorem 3]. Simon uses a C2(Σ) norm to measure distance between maps, f : Σ → N , in
[81, Equation (4.27)]. Topping’s result is generalized by Liu and Yang in [64, Lemma 3.3]. Kwon
[60, Theorem 4.2] obtains a  Lojasiewicz-type gradient inequality for maps, f : S2 → N , that are
W 2,p(Σ)-close to a harmonic map, with 1 < p ≤ 2. However, her proof explicitly uses the fact
that p > 1.

Our interest in  Lojasiewicz-Simon gradient inequalities for harmonic map energy functionals
is motivated by the wealth of potential applications. We shall survey some of those applications
below.

1.3. Applications of the  Lojasiewicz-Simon gradient inequality for the harmonic map
energy functional. Simon applied his  Lojasiewicz-Simon gradient inequality [80, Theorem 3]
to obtain a global existence and convergence (see [60, Theorem 1.15]) for harmonic map gradient
flow in [81]. In [28], we applied the  Lojasiewicz-Simon gradient inequality to prove discreteness of
L2 energies of Yang-Mills connections over closed four-dimensional Riemannian smooth manifolds
when d = 4. In a sequel [31] to the present article, we adapt our proof of that result to the case
of harmonic maps from a closed Riemann surface to an analytic closed Riemannian manifold and
address the following conjecture due to Fang-Hua Lin [63]:

Conjecture 1.11 (Discreteness for energies of harmonic maps from closed Riemann surfaces
into analytic closed Riemannian manifolds). (Lin [63, Conjecture 5.7].) Assume the hypotheses
of Theorem 4. Then the subset of critical values of the L2-energy functional, E : W 2,1(Σ;N) →
[0,∞), is closed and discrete.

1.4. Outline of the article. In Section 2, we derive an abstract  Lojasiewicz-Simon gradient
inequality for an analytic functional over a Banach space, proving Theorem 1 and Corollary 2,
and for a Morse-Bott energy functional over a Banach space, proving Theorem 3. In Section 3,
we establish the  Lojasiewicz-Simon gradient inequality for the harmonic map energy functional,
proving Theorem 4. Appendix A reviews the relationship between the Morse-Bott property and
the integrability in the setting of harmonic maps.

1.5. Notation and conventions. For the notation of function spaces, we follow Adams and
Fournier [4], and for functional analysis, Brezis [14] and Rudin [75]. We let N := {0, 1, 2, 3, . . .}
denote the set of non-negative integers. We use C = C(∗, . . . , ∗) to denote a constant which
depends at most on the quantities appearing on the parentheses. In a given context, a constant
denoted by C may have different values depending on the same set of arguments and may increase
from one inequality to the next. If X ,Y is a pair of Banach spaces, then L (X ,Y ) denotes
the Banach space of all continuous linear operators from X to Y . We denote the continuous
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dual space of X by X ∗ = L (X ,R). We write α(x) = 〈x, α〉X ×X ∗ for the pairing between X
and its dual space, where x ∈ X and α ∈ X ∗. If T ∈ L (X ,Y ), then its adjoint is denoted by
T ∗ ∈ L (Y ∗,X ∗), where (T ∗β)(x) := β(Tx) for all x ∈X and β ∈ Y ∗.

1.6. Acknowledgments. Paul Feehan is very grateful to the Max Planck Institute for Math-
ematics, Bonn, and the Institute for Advanced Study, Princeton, for their support during the
preparation of this article. He would like to thank Peter Takáč for many helpful conversations
regarding the  Lojasiewicz-Simon gradient inequality, for explaining his proof of [36, Proposition
6.1] and how it can be generalized as described in this article, and for his kindness when hosting
his visit to the Universität Röstock. He would also like to thank Brendan Owens for several
useful conversations and his generosity when hosting his visit to the University of Glasgow. He
thanks Brendan Owens and Chris Woodward for helpful communications and comments regard-
ing Morse-Bott theory, Alessandro Carlotto for useful comments regarding the integrability of
critical points of the Yamabe functional.

2.  Lojasiewicz-Simon gradient inequalities for analytic and Morse-Bott energy
functionals

Our goal in this section is to prove the abstract  Lojasiewicz-Simon gradient inequalities for
analytic and Morse-Bott energy functionals stated in our Introduction, namely Theorems 1 and
3 and Corollary 2. In Sections 2.1 and 2.2, respectively, we review or establish some of the results
in linear and nonlinear functional analysis which we will subsequently require. As in Simon’s
original approach to the proof of his gradient inequality for analytic functionals, one establishes
the result in infinite dimensions via a Lyapunov-Schmidt reduction to finite dimensions and an
application of the finite-dimensional  Lojasiewicz gradient inequality, whose statement we recall
in Section 2.3. Section 2.4 contains the proofs of the corresponding gradient inequalities for
infinite-dimensional applications.

2.1. Linear functional analysis preliminaries. In this subsection, we gather a few elementary
observations from linear functional analysis that we will subsequently need.

Lemma 2.1 (Maps of dual spaces induced by an embedding of a Banach space into a Hilbert
space). [14, Remark 3, page 136] Let H be a Hilbert space, X be a Banach space with a contin-
uous embedding ε : X ⊂H , and ε∗ : H ∗ →X ∗ be the canonical map of dual spaces (adjoint of
the embedding) defined by

(2.1) 〈x, ε∗h∗〉X ×X ∗ = 〈ε(x), h∗〉H ×H ∗ = (ε(x), h)H = ι(h)ε(x) ∀x ∈X , h ∈H ,

and h∗ ∈H ∗ is defined by the Riesz isomorphism,

(2.2) ι : H ∼= H ∗, h 7→ h∗ := (·, h)H .

Then the following hold.

(1) ‖ε∗α‖X ∗ ≤ C‖α‖H ∗ for all α ∈H ∗, where C is the norm of the embedding ε : X ⊂H ,
and the linear map ε∗ : H ∗ →X ∗ is continuous;

(2) The composition,

(2.3)  ≡ ε∗ ◦ ι ◦ ε : X →X ∗,

is injective and thus a continuous embedding;
(3) If X is dense in H , then ε∗ : H ∗ →X ∗ is injective and thus a continuous embedding;
(4) Ran ε∗ ⊂X ∗ is dense if X is dense in H and X is reflexive.
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Proof. We only need to prove Item (2), since the remaining Items are given by [14, Remark 3,
page 136]. Observe that, for all x, y ∈X , the definition of  gives

(x)(y) = 〈y, ε∗ιε(x)〉X ×X ∗ = (ε(y), ε(x))H ,

so (ε(y), ε(x))H = 0 for all y ∈ X if (x)(y) = 0 for all y ∈ X . Choosing y = x gives
‖ε(x)‖H = 0, that is, x = 0 since ε : X ⊂ H is a continuous embedding. Moreover,  is
continuous by Item (1). �

Remark 2.2 (Notation for embedding of a Banach space into a Hilbert space or into its Banach
dual space). Although the adjoint, ε∗ : H ∗ → X ∗, of a continuous embedding, X ⊂ H , is
not necessarily also an embedding unless X is dense in the pivot Hilbert space, H , Lemma 2.1
shows that the composition,  = ε∗ ◦ ι ◦ ε : X →X ∗, is an embedding and thus we may identify
X with its image (X ) ⊂X ∗, suppress further explicit mention of  unless otherwise noted (for
example, in Lemma 2.4), and write X ⊂X ∗. Similarly, unless otherwise noted (for example, in
Lemma 2.4), we identify X with its image ε(X ) ⊂H , suppress explicit mention of ε, and write
X ⊂H .

We often encounter symmetric operators in the form of the Hessian of a functional on a Banach
space and thus it is convenient to have a simple criterion for when they are Fredholm with index
zero.

Lemma 2.3 (Fredholm property and index of a bounded, linear, symmetric operator with closed
range). Let X be a reflexive Banach space. If A : X → X ∗ is a bounded, linear, symmetric
operator with closed range, then A is Fredholm with index zero.

Proof. If M ⊂ X∗ is a subspace, we recall from [75, Section 4.6] that its annihilator is

M◦ := {φ ∈X ∗∗ : 〈α, φ〉X ∗×X ∗∗ = 0, ∀α ∈M},
and that by [75, Theorem 4.12],

(Ran A )◦ = Ker A ∗,

where A ∗ : X ∗∗ →X ∗ is the adjoint operator defined by

(A ∗φ)(x) = φ(A x), ∀x ∈X and φ ∈X ∗∗.

If J : X →X ∗∗ is the canonical map defined by J(x)α = α(x) for all x ∈X and α ∈X ∗, then
J is an isomorphism by hypothesis that X is reflexive and thus

〈y,A ∗J(x)〉X ×X ∗ = (A ∗J(x))(y) = J(x)(A y) = 〈x,A y〉X ×X ∗ ∀x, y ∈X .

Hence,

Ker A ∗ = {φ ∈X ∗∗ : 〈y,A ∗φ〉X ×X ∗ = 0, ∀ y ∈X }
∼= {x ∈X : 〈y,A ∗J(x)〉X ×X ∗ = 0, ∀ y ∈X }
= {x ∈X : 〈x,A y〉X ×X ∗ = 0, ∀ y ∈X }
= {x ∈X : 〈y,A x〉X ×X ∗ = 0, ∀ y ∈X } (by symmetry of A )

= Ker A .

On the other hand, using the quotient map π : X ∗ → X ∗/Ran A = Coker A and employing
[14, Proposition 11.9] with M = Ran A ⊂ E = X ∗ in that proposition, which is closed by our
hypothesis, the adjoint map,

π∗ : (X ∗/Ran A )∗ → (Ran A )◦,
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is a well-defined isometric isomorphism. Therefore Ker A ∼= (Ran A )◦ has the same dimension
as (Coker A )∗ and hence the same dimension as Coker A . Thus, Coker A is finite-dimensional
and A is Fredholm with index zero. �

When X is a Banach space that is continuously embedded in a Hilbert space H , we next
observe that the orthogonal projection of H onto a finite-dimensional subspace K ⊂X extends
to a continuous linear projection on the dual space X ∗.

Lemma 2.4 (Extension of orthogonal projection onto a finite-dimensional subspace to a continu-
ous linear projection on a Banach dual space). Let X be a Banach space with a continuous embed-
ding, ε : X ⊂H , into a Hilbert space H , let ι : H ∼= H ∗ denote the Riesz isomorphism (2.2),
let  = ε∗ ◦ ι ◦ ε : X → X ∗ denote the embedding (2.3), and let K ⊂ X be a finite-dimensional

subspace. If Π : H → K is the H -orthogonal projection, then Π̃ ≡ (Π ◦ ε)∗ : X ∗ →X ∗, has the
following properties:

(1) Π̃ is continuous with operator norm ‖Π̃‖L (X ∗) = ‖Π ◦ ε‖L (X );

(2) Ran Π̃ = (K) ⊂X ∗;

(3) Π̃ε∗ι(h) = (Πh) for all h ∈H ;

(4) Π̃(x) = (Πε(x)) for all x ∈X ;

(5) Π̃(k) = (k) for all k ∈ K ⊂X .

Remark 2.5 (Notation for projection on dual Banach space). Henceforth, when this can cause
no confusion, we shall suppress explicit mention of the embedding ε and identify ε(X ) with its
image in H . Similarly, we shall suppress explicit mention of the embedding  and identify K,X
with their images (K), (X ) ⊂ X ∗ and write K,X ⊂ X ∗, together with Π̃ = Π on X or H ,

and Π̃ = idK on K, and Ran Π̃ = K ⊂X ∗.

Remark 2.6 (On the role of the Hilbert space). Suppose that X is a Banach space. By [14,
Example 1, page 38] or [75, Lemma 4.21(a)] (an application of the Hahn-Banach [75, Theorem
3.3]), a finite-dimensional subspace K ⊂X admits a topological complement, a closed subspace
L ⊂X such that X = K ⊕L , that is, X = K + L and K ∩L = {0}. The linear projection
Π : X → K onto the factor K is continuous by [14, Theorem 2.10]. If one assumed the existence
of a continuous embedding  : X →X ∗, with suitable conditions, it may be possible to reproduce
the conclusions of Lemma 2.4 without the introduction of an auxiliary Hilbert space, H , but any
such slight increase in generality appears to have limited practical application. See Capraro and
Rossi [15] for a discussion of related issues.

Proof of Lemma 2.4. The assertions in Item (1) follow from [75, Theorem 4.10].
Let {ki}κi=1 be an H -orthonormal basis for K and define {αi}κi=1 ⊂X ∗ by setting αi := (ki) ∈

X ∗ for i = 1, . . . , κ. Hence, noting that K ⊂X and identifying X with its image ε(X) ⊂H ,

αi(kj) = (ki)(kj) = ε∗ιε(ki)(kj) = (ε(kj), ε(ki))H = δij , ∀ i, j,
where δij is the Kronecker delta.

For Item (2), we first note that the projection operator Π is given by

Πh =
κ∑
i=1

(h, ki)H ki, ∀h ∈H ,

and, for all x ∈X , since αi(x) = (ki)(x) = (ε(x), ε(ki))H ,

Πε(x) =

κ∑
i=1

(ε(x), ε(ki))H ki =

κ∑
i=1

αi(x)ki.
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Consequently, for all x ∈X and α ∈X ∗,(
Π̃α
)

(x) = ((Π ◦ ε)∗α)(x) = α(Πε(x)) =

κ∑
i=1

αi(x)α(ki) =

(
κ∑
i=1

α(ki)αi

)
(x),

and therefore,

Π̃α =
κ∑
i=1

α(ki)αi.

Hence, Ran Π̃ = (K), which is Item (2).
For Item (3), we observe that(

Π̃ε∗ι(h)
)

(y) =

(
κ∑
i=1

ε∗ι(h)(ki)αi

)
(y) =

κ∑
i=1

ε∗ι(h)(ki)αi(y)

while

(Πh)(y) = 

(
κ∑
i=1

(h, ε(ki))H ki

)
(y) =

(
κ∑
i=1

(h, ε(ki))H (ki)

)
(y) =

κ∑
i=1

(h, ε(ki))H (ki)(y).

We have ε∗ι(h)(ki) = (ε(ki), h)H = (h, ε(ki))H for all h ∈ H , while (ki)(y) = αi(y) for all
y ∈X by definition of the αi. Hence,

(Πh)(y) =
κ∑
i=1

ε∗ι(h)(ki)αi(y) =
(

Π̃ε∗ι(h)
)

(y), ∀h ∈H , y ∈X ,

which is Item (3). Then Item (4) is an immediate consequence of Item (3) by taking h = ε(x)
and recalling that (x) = ε∗ιε(x) for all x ∈ X . Item (5) follows from the fact that Π = idK on
K. �

2.2. Nonlinear functional analysis preliminaries. In this subsection, we gather a few ele-
mentary observations from nonlinear functional analysis that we will subsequently need.

2.2.1. Smooth and analytic inverse and implicit function theorems for maps on Banach spaces.
Statements and proofs of the Inverse Function Theorem for Ck maps of Banach spaces are pro-
vided by Abraham Marsden, and Ratiu [1, Theorem 2.5.2], Deimling [25, Theorem 4.15.2], Zeidler
[93, Theorem 4.F]; statements and proofs of the Inverse Function Theorem for analytic maps of
Banach spaces are provided by Berger [7, Corollary 3.3.2] (complex), Deimling [25, Theorem
4.15.3] (real or complex), and Zeidler [93, Corollary 4.37] (real or complex). The corresponding
Ck or Analytic Implicit Function Theorems are proved in the standard way as corollaries, for
example [1, Theorem 2.5.7] and [93, Theorem 4.H].

2.2.2. Differentiable and analytic maps on Banach spaces. We refer to [52, Section 2.1A]; see also
[7, Section 2.3]. Let X ,Y be a pair of Banach spaces, let U ⊂ X be an open subset, and
F : U → Y be a map. Recall that F is Gâteaux differentiable at a point u ∈ U with a Gâteaux
derivative, F ′(x) ∈ L (X ,Y ), if

lim
t→0

1

t
‖F (x+ ty)−F (x)−F ′(x)ty‖Y = 0, ∀ y ∈X .

Furthermore, if F is Gâteaux differentiable at u ∈ U and

lim
y→0

1

‖y‖X
‖F (x+ y)−F (x)−F ′(x)y‖Y = 0,
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then F is said to be Fréchet differentiable at x ∈ U . If F is Gâteaux differentiable near x and
the Gâteaux derivative is continuous at x, then F is Fréchet differentiable at u [25, Proposition
2.7.5].

Recall from [7, Definition 2.3.1], [25, Definition 15.1], [93, Definition 8.8] that F is (real)
analytic at x ∈ U if there exists a constant r > 0 and a sequence of continuous symmetric
n-linear forms, Ln : X × · · · ×X → Y , such that

∑
n≥1 ‖Ln‖rn < ∞ and there is a positive

constant δ = δ(x) such that

(2.4) F (x+ y) = F (x) +
∑
n≥1

Ln(yn), ‖y‖X < δ,

where yn ≡ (y, . . . , y) ∈ X × · · · × X (n-fold product). If F is differentiable (respectively,
analytic) at every point x ∈ U , then F is differentiable (respectively, analytic) on U . It is a
useful observation that if F is analytic at x ∈X , then it is analytic on a ball Bx(ε) [90, p. 1078].

2.2.3. Gradient maps. We refer to [52, Section 2.1B]; see also [7, Section 2.5].

Definition 2.7 (Gradient map). [52, Definition 2.1.1] Let U be an open subset of a Banach
space, X . A continuous map, M : U → X ∗, is called a gradient map if there exists a C1

functional, E : U → R, such that M (x) = E ′(x) for all x ∈ U in the sense that,

E ′(x)y = 〈h,M (x)〉X ×X ∗ , ∀x ∈ U , y ∈X ,

where 〈·, ·〉X ×X ∗ is the canonical bilinear form on X × X ∗. The real-valued function, E , is
called a potential for the map M .

We recall the following basic facts concerning gradient maps.

Proposition 2.8 (Properties of gradient maps). [52, Proposition 2.1.2] Let U ⊂X be an open
subset of a Banach space, X , and let M : U → X ∗ be a continuous map. Then the following
hold.

(1) If M is of class C1, then M is a gradient map if and only if all of its Fréchet derivatives,
M ′(x) for x ∈ U , are symmetric in the sense that

〈w,M ′(x)y〉X ×X ∗ = 〈y,M ′(x)w〉X ×X ∗ , ∀x, y, w ∈ U .

(2) A bounded linear operator A : X → X ∗ is a gradient operator if and only if A is
symmetric, in which case a potential for A is given by E (x) = 1

2〈x,A x〉X ×X ∗, for all
x ∈X .

(3) If M is an analytic gradient map, then any potential E : U → R such that M = E ′ is
analytic as well.

2.3. Finite dimensional  Lojasiewicz and Simon gradient inequalities. We recall the
finite-dimensional versions of the  Lojasiewicz-Simon gradient inequality.

Theorem 2.9 (Finite-dimensional  Lojasiewicz and Simon gradient inequalities). [52, Theorem
2.3.1] 2 Let U ⊂ Rn be an open subset, z ∈ U , and let E : U → R be a real-valued function.

(1) If E is real analytic on a neighborhood of z and E ′(z) = 0, then there exist constants
θ ∈ (0, 1) and σ > 0 such that

(2.5) |E ′(x)| ≥ |E (x)− E (z)|θ, ∀x ∈ Rn, |x− z| < σ.

2There is a typographical error in the statement of [52, Theorem 2.3.1 (i)], as Huang omits the hypothesis that
E ′(z) = 0; also our statement differs slightly from that of [52, Theorem 2.3.1 (i)], but is based on original sources.
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(2) Assume that E is a C2 function and E ′(z) = 0. If the connected component, C, of the
critical point set, {x ∈ U : E ′(x) = 0}, that contains z has the same dimension as the
kernel of the Hessian matrix HessE (z) of E at z locally near z, and z lies in the interior
of the component, C, then there are positive constants, c and σ, such that

(2.6) |E ′(x)| ≥ c|E (x)− E (z)|1/2, ∀x ∈ Rn, |x− z| < σ.

Theorem 2.9 (1) is well known and was stated by  Lojasiewicz in [65] and proved by him as [66,
Proposition 1, p. 92] and Bierstone and Milman as [10, Proposition 6.8]; see also the statements
by Chill and Jendoubi [22, Proposition 5.1 (i)] and by  Lojasiewicz [67, p. 1592].

Theorem 2.9 (2) was proved by Simon as [82, Lemma 1, p. 80] and Haraux and Jendoubi as
[44, Theorem 2.1]; see also the statement by Chill and Jendoubi [22, Proposition 5.1 (ii)].

 Lojasiewicz used methods of semi-analytic sets [66] to prove Theorem 2.9 (1). For the inequality
(2.5), unlike (2.6), the constant, c, is equal to one while θ ∈ (0, 1). In general, so long as c is
positive, its actual value is irrelevant to applications; the value of θ in the infinite-dimensional
setting [52, Theorem 2.4.2 (i)], at least, is restricted to the range [1/2, 1) and θ = 1/2 is optimal
[52, Theorem 2.7.1].

2.4.  Lojasiewicz-Simon gradient inequalities for analytic or Morse-Bott functionals
on Banach spaces. We note that if E : U → R is a C2 functional on an open subset U of a
Banach space X , then its Hessian operator at a point x0 ∈ U is symmetric, that is

(2.7) 〈x,E ′′(x0)y〉X ×X ∗ = 〈y,E ′′(x0)x〉X ×X ∗ ,

for all x, y ∈ X ; compare Proposition 2.8, Item (1). Moreover, Lemma 2.3 shows that if
E ′′(x0) : X → X ∗ is Fredholm, then it necessarily has index zero if X is reflexive, though
we emphasize that we do not assume that X is reflexive except when that property is explicitly
stated. Throughout this section we employ the conventions of Remarks 2.2 and 2.5.

Lemma 2.10 (Properties of C2 functionals with Fredholm Hessian maps of index zero). Let
X be a Banach space that is continuously embedded in a Hilbert space H and let U ⊂ X be
an open subset. Let E : U → R be a C2 functional with gradient map, E ′ : U → X ∗, let
x∞ ∈ U be a critical point of E , and assume that the Hessian E ′′(x∞) : X → X ∗ of E at x∞
is a Fredholm operator with index zero. Let Π : H → K be the H -orthogonal projection onto
K := Ker E ′′(x∞) ⊂X ⊂H and let Π : X ∗ →X ∗ denote its bounded linear extension provided
by Lemma 2.4. Then there exist an open neighborhood U0 ⊂ U of x∞ and an open neighborhood
V0 ⊂X ∗ of the origin such that the C1 map,

(2.8) Φ : U →X ∗, x 7→ E ′(x) + Π(x− x∞),

when restricted to U0, has a C1 inverse, Ψ : V0 → U0. Moreover, there is a constant C =
C(E , U0, V0) ∈ [1,∞) such that

(2.9) ‖Ψ(Πα)−Ψ(α)‖X ≤ C‖E ′(Ψ(α))‖X ∗ , ∀α ∈ V0.

Proof. The derivative of Φ at x∞ is given by DΦ(x∞) = E ′′(x∞) + Π : X → X ∗. Thus if
DΦ(x∞)(x) = 0 for some x ∈X , then E ′′(x∞)(x) = −Πx ∈ K ⊂H and if y ∈ K,

(y,Πx)H = −(y,E ′′(x∞)(x))H

= −〈y,E ′′(x∞)(x)〉X ×X ∗ (by (2.3))

= −〈x,E ′′(x∞)(y)〉X ×X ∗ (by (2.7))

= 0 (since y ∈ Ker E ′′(x∞)),
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where in the application of (2.3) we use the fact that  : X ⊂X ∗ is an embedding and identify
X with (X ) ⊂ X ∗. In particular, for y = Πx ∈ K we deduce that E ′′(x∞)(x) = −Πx = 0, so
that x ∈ K and x = Πx = 0. Therefore DΦ(x∞) has trivial kernel.

Because E ′′(x∞) is Fredholm and Π : X ∗ → X ∗ is finite-rank by Lemma 2.4 (2), it follows
that

DΦ(x∞) = E ′′(x∞) + Π : X →X ∗

is Fredholm. Now DΦ(x∞) : X → X ∗ is an injective Fredholm operator with index zero
and therefore surjective too. By the Open Mapping Theorem, DΦ(x∞) has a bounded inverse.
Applying the Inverse Function Theorem for Φ near x∞, there exist an open neighborhood U1 ⊂ U
of x∞ and a convex open neighborhood V1 ⊂ X ∗ of the origin in X ∗ so that the C1 inverse
Ψ : V1 → U1 of Φ is well-defined. Since Π : X ∗ →X ∗ is bounded by Lemma 2.4, we may choose
V0 ⊂ V1, a smaller open neighborhood of the origin in X ∗, with Π(V0) ⊂ V1 and set U0 := Ψ(V0).
From (2.8), we have

Φ(x) = E ′(x) + Π(x− x∞), ∀x ∈ U0,

and the inverse function property and writing α = Φ(x) ∈ V0 and x = Ψ(α) for x ∈ U0, we obtain

(2.10) α = E ′(Ψ(α)) + Π(Ψ(α)− x∞)), ∀α ∈ V0.

The Fundamental Theorem of Calculus then yields

Ψ(Πα)−Ψ(α) =

∫ 1

0

(
d

dt
Ψ(α+ t(Πα− α))

)
dt

=

(∫ 1

0
DΨ(α+ t(Πα− α)) dt

)
(Πα− α), ∀α ∈ V0,

where we use the fact that for α ∈ V0, we have α,Πα ∈ V1 and, by convexity of V1, the map Ψ
is well defined on the line segment joining α to Πα. (Note also that in the preceding identity, we
implicitly make use of the embedding [75, Section 4.5] X ⊂X ∗∗ defined by x(α) = α(x), for all
x ∈X and α ∈X ∗.) Therefore,

‖Ψ(Πα)−Ψ(α)‖X ≤M‖Πα− α‖X ∗ , ∀α ∈ V0,

where, since DΨ(α1) ∈ L (X ∗,X ) is a continuous function of α1 ∈ V1 (as Ψ : V1 → U1 is C1 by
construction), we have

M := sup
α1∈V1

‖DΨ(α1)‖L (X ∗,X ) <∞,

because we may assume without loss of generality that V1 ⊃ V0 is a sufficiently small and bounded
(convex) open neighborhood of the origin. Also, for all α ∈ V0,

Πα− α = Πα− E ′(Ψ(α))−Π(Ψ(α)− x∞)) (by (2.10))

= Π(α−Π(Ψ(α)− x∞))− E ′(Ψ(α)) (since Π2 = Π by Lemma 2.4 (5)),

and

‖Π(α−Π(Ψ(α)− x∞))‖X ∗ ≤ C1‖α−Π(Ψ(α)− x∞)‖X ∗ (by Lemma 2.4 (1))

= C1‖E ′(Ψ(α))‖X ∗ (by (2.10)).

Taking norms, we conclude that

‖Πα− α‖X ∗ ≤ (C1 + 1)‖E ′(Ψ(α))‖X ∗ , ∀α ∈ V0.

Therefore, by combining the preceding inequalities, we obtain

‖Ψ(Πα)−Ψ(α)‖X ≤M(C1 + 1)‖E ′(Ψ(α))‖X ∗ , ∀α ∈ V0,
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and this concludes the proof of the lemma. �

Recall the Definition 1.6 of a Morse-Bott functional E and its set Crit E of critical values.

Definition 2.11 (Lyapunov-Schmidt reduction of a C2 functional with a Fredholm Hessian map).
Assume the hypotheses of Lemma 2.10 and let Ψ : V0

∼= U0 be the C1 diffeomorphism of open
neighborhoods, V0 ⊂ X ∗ of the origin and U0 ⊂ X of x∞, provided by that lemma. We define
the Lyapunov-Schmidt reduction of E : U0 → R at x∞ by

Γ : K ∩ V0 → R, α 7→ E (Ψ(α)),

where K = Ker E ′′(x∞) ⊂ X as in Lemma 2.10 and we are implicitly applying the embedding
 : X ⊂X ∗ defined by (2.3) in Lemma 2.1.

Note that the origin in X ∗ is a critical point of Γ since Ψ(0) = x∞, the critical point of
E : U → R in Lemma 2.10 and

Γ′(0)(x) = E ′(Ψ(0))DΨ(0)(x) = E ′(x∞)DΨ(0)(x) = 0, ∀x ∈X .

The following lemma plays a crucial role in the proofs of Theorems 1 and 3.

Lemma 2.12 (Properties of the Lyapunov-Schmidt reduction of a C2 functional with a Fredholm
Hessian map). Assume the hypotheses of Lemma 2.10 and the notation of Definition 2.11.

(1) If E is Morse-Bott at x∞, then there is an open neighborhood V of the origin in K ∩ V0

where the Lyapunov-Schmidt reduction of E is a constant function, that is,

Γ ≡ E (x∞) on V .

.
(2) If E is real analytic on U , then Γ is real analytic on K ∩ V0.

Proof. If E is Morse-Bott at x∞ then, by shrinking U0 if necessary, we may assume that the set
Crit E ∩ U0 is a submanifold of U0 with tangent space Tx∞ Crit E = K. Then the restriction of
the map Φ : U0 → V0 in (2.8),

(2.11) Φ : Crit E ∩ U0 → K ∩ V0,

has differential at x∞ given by

DΦ(x∞) = E ′(x∞) + Π = Π : K → K.

The preceding operator comprises the embedding  provided by Lemma 2.1 (2) and in particular
is an isomorphism. An application of the Inverse Function Theorem shows that the inverse of the
map (2.11) is defined in a neighborhood V of the origin in K ∩ V0 and is the restriction of the
map Ψ : V0 → U0 to K ∩ V0. Therefore, Ψ(V ) ⊂ Crit E ∩ U0 and we compute

Γ′(α) = E ′(Ψ(α))DΨ(α) = 0, ∀α ∈ V .

Therefore, Γ(α) = Γ(0) = E (x∞), for every α ∈ V . This proves Item (1).
To prove Item (2), we recall from Lemma 2.10 that Φ : U0 → V0 is a diffeomorphism. Moreover,

Φ is real analytic since E ′ is real analytic. By the Analytic Inverse Function Theorem (see Section
2.2.1) the inverse map, Ψ : V0 → U0, is also real analytic and therefore its restriction to the
intersection K ∩ V0 of a finite-dimensional linear subspace K ⊂ X ∗ with the open set V0 ⊂ X ∗

is still real analytic. Since E : U → R is real analytic by hypothesis, the composition Γ = E ◦Ψ
is real analytic. �

We then have the
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Proposition 2.13 ( Lojasiewicz-Simon gradient inequalities for analytic and Morse-Bott func-
tionals on Banach spaces). Assume the hypotheses of Lemma 2.10. Then the following hold.

(1) If E is Morse-Bott at x∞, then there exist an open neighborhood W0 ⊂ U of x∞ and a
constant C = C(E ,W0) ∈ [1,∞) such that

|E (x)− E (x∞)| ≤ C‖E ′(x)‖2X ∗ , ∀x ∈W0.

(2) If E is analytic on U , then there exist an open neighborhood W0 ⊂ U of x∞ and constants
C = C(E ,W0) ∈ [1,∞) and β ∈ (1, 2] such that

|E (x)− E (x∞)| ≤ C‖E ′(x)‖βX ∗ , ∀x ∈W0.

Proof. Denote x = Ψ(α) ∈ U0 for α ∈ V0 and recall the definitions of the open neighborhoods
U1 and V1 from the proof of Lemma 2.10. By shrinking U1 if necessary, we may assume that U1

is contained in a bounded convex open subset U2 ⊂ U . For α ∈ V0 we have α,Πα ∈ V1 (as in
the proof of Lemma 2.10) and therefore Ψ(α),Ψ(Πα) ∈ U0 and the line segment joining Ψ(α) to
Ψ(Πα) lies in U2. The Definition 2.11 of Γ, the fact that

Πα ∈ K ∩ V0, ∀α ∈ V0 by Lemma 2.4 (2),

and the Fundamental Theorem of Calculus then give

E (Ψ(α))− Γ(Πα) = E (Ψ(α))− E (Ψ(Πα))

= −
∫ 1

0

d

dt
(E (Ψ(α) + t(Ψ(Πα)−Ψ(α)))) dt, ∀α ∈ V0,

and thus

(2.12) E (Ψ(α))− Γ(Πα)

=

(
−
∫ 1

0
E ′(Ψ(α) + t(Ψ(Πα)−Ψ(α))) dt

)
(Ψ(Πα)−Ψ(α)), ∀α ∈ V0.

Note that

(2.13) ‖E ′(Ψ(α) + t(Ψ(Πα)−Ψ(α)))‖X ∗
≤ ‖E ′(Ψ(α) + t(Ψ(Πα)−Ψ(α)))− E ′(Ψ(α))‖X ∗ + ‖E ′(Ψ(α))‖X ∗ ∀α ∈ V0.

Similarly, the Fundamental Theorem of Calculus yields

E ′(Ψ(α) + t(Ψ(Πα)−Ψ(α)))− E ′(Ψ(α))

=

∫ 1

0

d

ds

(
E ′(Ψ(α) + st(Ψ(Πα)−Ψ(α)))

)
ds

= t

(∫ 1

0
E ′′(Ψ(α) + st(Ψ(Πα)−Ψ(α))) ds

)
(Ψ(Πα)−Ψ(α)), ∀α ∈ V0.

Thus, by taking norms of the preceding equality we obtain

(2.14) ‖E ′(Ψ(α) + t(Ψ(Πα)−Ψ(α)))− E ′(Ψ(α))‖X ∗ ≤M1‖Ψ(Πα)−Ψ(α)‖X , ∀α ∈ V0,

where, since E : U → R is C2 by hypothesis, we have

M1 := sup
x∈U2

‖E ′′(x)‖L (X ,X ∗) <∞,

because we may assume (by further shrinking U1 if necessary) that U2 ⊂ U is a sufficiently small
and bounded (convex) open neighborhood of x∞.
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Combining the inequalities (2.13) and (2.14) with the equality (2.12) yields

|E (Ψ(α))− Γ(Πα)| ≤
(
M1‖Ψ(Πα)−Ψ(α)‖X + ‖E ′(Ψ(α))‖X ∗

)
‖Ψ(Πα)−Ψ(α)‖X ,

and so combining the preceding inequality with (2.9) gives

(2.15) |E (Ψ(α))− Γ(Πα)| ≤ C‖E ′(Ψ(α))‖2X ∗ , ∀α ∈ V0.

We now invoke the hypotheses that E is Morse-Bott at x∞ or analytic near x∞.
When E is Morse-Bott at x∞, Lemma 2.12 (1) provides an open neighborhood V of the origin

in K∩V0 such that Γ ≡ E (x∞) on V . Choosing W0 = Ψ(V0∩Π−1(V )), noting that Π : X ∗ →X ∗

is a continuous (linear) map by Lemma 2.4, we obtain from (2.15) that

|E (x)− E (x∞)| ≤ C‖E ′(x)‖2X ∗ , ∀x = Ψ(α) ∈W0,

which proves Item (1).
Finally, when E is analytic on U then Lemma 2.12 (2) implies that Γ is analytic on K ∩ V0.

The finite-dimensional  Lojasiewicz gradient inequality (2.5) in Theorem 2.9 (1) applies to give,
for a possibly smaller neighborhood V2 ⊂ V0 of the origin, constants C ∈ [1,∞) and α ∈ (1, 2],
such that

(2.16) |Γ(Πα)− E (x∞)| ≤ C‖Γ′(α)‖β, ∀α ∈ V2.

But Γ′(Πα) = E ′(Ψ(Πα))DΨ(Πα) by Definition 2.11 of Γ and thus

(2.17) ‖Γ′(Πα)‖ ≤M2‖E ′(Ψ(Πα))‖X ∗ , ∀α ∈ V2,

where, since DΨ(α1) ∈ L (X ∗,X ) is a continuous function of α1 ∈ V1 (as Ψ : V1 → U1 is C1 by
construction), we have

M2 := sup
α1∈V1

‖DΨ(α1)‖L (X ∗,X ) <∞,

because we may assume without loss of generality that V1 ⊃ V2 is a sufficiently small and bounded
(convex) open neighborhood of the origin. Hence, for every α ∈ V2,

|Γ(Πα)− E (x∞)| ≤ C‖E ′(Ψ(Πα))‖βX ∗ (by (2.16) and (2.17))

≤ C
(
‖E ′(Ψ(Πα))− E ′(Ψ(α))‖X ∗ + ‖E ′(Ψ(α))‖X ∗

)β
≤ C

(
‖Ψ(Πα)−Ψ(α)‖X + ‖E ′(Ψ(α))‖X ∗

)β
(by (2.14) for t = 1),

and thus, by combining the preceding inequality with (2.9),

(2.18) |Γ(Πα)− E (x∞)| ≤ C‖E ′(Ψ(α))‖βX ∗ .
Consequently, for every α ∈ V2,

|E (Ψ(α))− E (x∞)| ≤ |E (Ψ(α))− Γ(Πα)|+ |Γ(Πα)− E (x∞)|

≤ C
(
‖E ′(Ψ(α))‖2X ∗ + ‖E ′(Ψ(α))‖βX ∗

)
(by (2.15) and (2.18))

≤ C‖E ′(Ψ(α))‖βX ∗
(

1 + ‖E ′(Ψ(α))‖2−βX ∗

)
≤ CM3‖E ′(Ψ(α))‖βX ∗ ,

where, for small enough V2 and noting that E ′(Ψ(α)) ∈ X ∗ is a continuous function of α ∈ V2

(since E : U → R is analytic and Ψ : V1 → U1 is C1 by construction), we have

M3 := 1 + sup
α∈V2

‖E ′(Ψ(α))‖2−βX ∗ <∞.
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Setting x = Ψ(α) for α ∈ V2 yields

|E (x)− E (x∞)| ≤ CM3‖E ′(x)‖βX ∗ , ∀x ∈ Ψ(V2).

We now choose W0 = Ψ(V2) to complete the proof of Item (2) and hence the proposition. �

We can now complete the

Proofs of Theorems 1 and 3. The conclusions follow immediately from Proposition 2.13. �

Proof of Corollary 2. According to the hypotheses, there exist Z ∈ [1,∞), and σ ∈ (0, 1], and
θ ∈ [1/2, 1), depending on the critical point x∞ ∈ U , so that for every x ∈ U with ‖x−x∞‖X < σ
we have

(2.19) |E (x)− E (x∞)|θ ≤ Z‖E ′(x)‖X ∗ .

We claim that for each M ∈ [1,∞) there exist constants σ0 ∈ (0, 1] and Z0 ∈ [1,∞) such that if
x ∈ U obeys

|E (x)− E (x∞)| ≤M and ‖x− x∞‖H < σ0,

then (2.19) holds with constant Z0 in place of Z. To prove this claim we argue by contradiction
and suppose it is false. Hence, there is a constant M ∈ [1,∞) such that, for each positive n ∈ N
and σ0 = 1/n and Z0 = n, there exists xn ∈ U obeying

|E (xn)− E (x∞)| ≤M and ‖xn − x∞‖H <
1

n
,

with

(2.20) |E (xn)− E (x∞)|θ > n‖E ′(x)‖X ∗ .

Consequently, we have a sequence {xn}n∈N ⊂ U with xn → x∞ in H as n→∞ and

n‖E ′(xn)‖X ∗ < |E (xn)− E (x∞)|θ ≤M θ, ∀n ∈ N.

Therefore, we must have E ′(xn)→ 0 in X ∗ as n→∞. Since  ◦ Π = Π̃ ◦ ε∗ ◦ ι : H → X ∗ and
is a continuous operator by Lemma 2.4 (1) and (3), we obtain, as n→∞,

Πxn → Πx∞ in X ∗.

For Φ : U →X ∗ defined as in Lemma 2.10 we see that, as n→∞,

Φ(xn) = E ′(xn) + Π(xn − x∞)→ 0 in X ∗.

Since Φ restricts to a C1 diffeomorphism from an open neighborhood U0 ⊂ U of x∞ onto an open
neighborhood V0 ⊂ X ∗ of the origin in X ∗ with a C1 inverse Ψ, we see that xn → x∞ strongly
in X as n→∞. Thus, for large enough n, we have ‖xn−x∞‖X < σ and so by (2.19) and (2.20),

n‖E ′(xn)‖X ∗ < |E (xn)− E (x∞)|θ ≤ Z‖E ′(xn)‖X ∗ .

This leads to contradiction by choosing n ≥ Z. This proves the claim and hence Corollary 2. �
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3.  Lojasiewicz-Simon gradient inequality for the harmonic map energy
functional

Our overall goal in this section is to prove Theorem 4, the  Lojasiewicz-Simon gradient inequality
for the harmonic map L2 energy functional E in the cases where (N,h) is a closed, real analytic,
Riemannian target manifold or E is Morse-Bott at a critical point f∞, under the hypotheses
that f belongs to a traditional W k,p or an L2  Lojasiewicz-Simon neighborhood of f∞. By way of
preparation we prove in Section 3.1 that W k,p(M ;N) is a real analytic (respectively, C∞) Banach
manifold when (N,h) is real analytic (respectively, C∞). In Section 3.2, we prove that E is real
analytic (respectively, C∞) when (N,h) is real analytic (respectively, C∞). Finally, in Section
3.3 we take up the proof of Theorem 4 proper.

3.1. Real analytic manifold structure on Sobolev spaces of maps. The [72, Theorems
13.5 and 13.6] due to Palais imply that the space W k,p(M ;N) of W k,p maps (with kp > d) from
a closed, C∞ manifold M of dimension d into a closed, C∞ manifold N can be endowed with the
structure of a C∞ manifold by choosing the fiber bundle, E → M , considered by Palais to be
the product E = M × N and viewing maps f : M → N as sections of E → M . In particular,
[72, Theorem 13.5] establishes the C∞ structure while [72, Theorem 13.6] identifies the tangent
spaces.

While other authors have also considered the smooth manifold structure of spaces of maps
between smooth manifolds (see Eichhorn [27], Krikorian [57], or Piccione and Tausk [73]) or
approximation properties (see Bethuel [8]), none appear to have considered the specific question of
interest to us here, namely, the real analytic manifold structure of the space of Sobolev maps from
a closed, Riemannian, C∞ manifold into a closed, real analytic, Riemannian manifold. Moreover,
the question does not appear to be considered directly in standard references for harmonic maps
(such as Hélein [49], Jost [56], or Struwe [83, 84], or references cited therein). Those consideration
aside, it will be useful to establish this property directly and, in so doing, develop the framework
we shall need to prove the  Lojasiewicz-Simon gradient inequality for the harmonic map energy
functional (Theorem 4).

We shall assume the notation and conventions of Section 1.2, so (M, g) is a closed, Riemannian,
smooth manifold of dimension d and (N,h) is a closed, real analytic (or C∞), Riemannian,
manifold that is embedded analytically (or smoothly) and isometrically in Rn. We shall view N
as a subset of Rn with Riemannian metric h given by the restriction of the Euclidean metric.
Therefore, a map f : M → N will be viewed as a map f : M → Rn such that f(x) ∈ N for every
x ∈ M and similarly a section Y : N → TN will be viewed as a map Y : N → R2n such that
Y (y) ∈ TyN for every y ∈ N .

The space of maps,

W k,p(M ;N) := {f ∈W k,p(M ;Rn) : f(x) ∈ N, for a.e. x ∈M},

inherits the Sobolev norm from W k,p(M ;Rn) and by [4, Theorem 4.12] embeds continuously into
the Banach space of continuous maps, C(M ;Rn), when kp > d or p = 1 and k = d. Furthermore,
for this range of exponents, W k,p(M ;N) can be given the structure of a real analytic Banach
manifold, as we prove in Proposition 3.2. A definition of coordinate charts on W k,p(M ;N) is
given [60, Section 4.3], which we now recall.

Let O denote a normal tubular neighborhood [50, p. 11] of radius δ0 of N in Rn, so δ0 ∈ (0, 1]
is sufficiently small that there is a well-defined projection map, π : O → N ⊂ Rn, from O to the
nearest point of N . When y ∈ N , the value π(y + η) is well defined for η ∈ Rn with |η| < δ0 and



 LOJASIEWICZ-SIMON GRADIENT INEQUALITIES 23

the differential,

(3.1) dπ(y + η) : Ty+ηRn ∼= Rn → Tπ(y+η)N,

is given by orthogonal projection.

Lemma 3.1 (Analytic diffeomorphism of a neighborhood of the zero-section of the tangent bundle
onto an open neighborhood of the diagonal). Let (N,h) be a closed, real analytic, Riemannian
manifold that is analytically and isometrically embedded in Rn and let (π,O) be a normal tubular
neighborhood of radius δ0 of N ⊂ Rn, where π : O → N ⊂ Rn is the projection to the nearest
point of N . Then there is a constant δ1 ∈ (0, δ0] such that the map,

(3.2) Φ : {(y, η) ∈ TN : |η| < δ1} → N ×N ⊂ R2n, (y, η) 7→ (y, π(y + η)),

is an analytic diffeomorphism onto an open neighborhood of the diagonal of N ×N ⊂ R2n.

Proof. For each y ∈ N , we have Φ(y, 0) = (y, y) ∈ diag(N ×N), where diag(N ×N) denotes the
diagonal of N×N . Moreover, T(y,0)(TN) = TyN×TyN and the differential dΦ(y, 0) : (TN)(y,0) →
TyN × TyN is given by (ζ, η) 7→ (ζ, dπ(y)(η)) = (ζ, η), that is, the identity. By [50, Theorem
5.1 and remark following proof, p. 110], the projection π is C∞ and by replacing the role of the
C∞ Inverse Function Theorem in its proof by the real analytic counterpart, one can show that
π is real analytic; see [82, Section 2.12.3, Theorem 1] due to Simon for a proof. Thus Φ is real
analytic and the Analytic Inverse Function Theorem now yields the conclusion of the lemma. �

For a map f ∈ W k,p(M ;N), we note that, because of the Sobolev embedding W k,p(M ;N) ⊂
C(M ;N), we can regard f as a continuous map f : M → Rn such that f(M) ⊂ N . Consider the
vector bundle,

Vf := f∗TN →M,

that is, (Vf )x = Tf(x)N ⊂ Rn for all x ∈M . Let Bf (δ) denote the ball of center zero and radius
δ > 0 in the Banach space of sections,

(3.3) W k,p(Vf ) :=
{
u ∈W k,p(M ;Rn) : u(x) ∈ Tf(x)N, ∀x ∈M

}
,

and denote

(3.4) Uf := Bf (κ(f)−1δ) ⊂W k,p(Vf ),

where κ(f) denotes the norm of the Sobolev embedding W k,p(Vf ) ⊂ C(Vf ).

Proposition 3.2 (Banach manifold structure on the Sobolev space of maps between Riemannian
manifolds). Let d ≥ 1 and k ≥ 1 be integers and p ∈ [1,∞) be such that

kp > d or k = d and p = 1.

Let (M, g) be a closed, Riemannian, C∞ manifold of dimension d and (N,h) be a closed, real an-
alytic, Riemannian, manifold that is isometrically and analytically embedded in Rn and identified
with its image. Then the space of maps, W k,p(M ;N), has the structure of a real analytic Banach
manifold and for each f ∈ W k,p(M ;N), there is a constant δ = δ(N,h) ∈ (0, 1] such that, with
the definition of Uf from (3.4), the map,

(3.5) Φf : Uf →W k,p(M ;N), u 7→ π(f + u),

defines an inverse coordinate chart on an open neighborhood of f ∈ W k,p(M ;N) and a real
analytic manifold structure on W k,p(M ;N). Finally, if the hypothesis that (N,h) is real analytic is
relaxed to the hypothesis that it is C∞, then W k,p(M ;N) inherits the structure of a C∞ manifold.
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Proof. Because N ⊂ Rn is a real analytic submanifold, it follows from arguments of Palais [72,
Chapter 13] that W k,p(M ;N) is a real analytic submanifold of the Banach space W k,p(M ;R2n).
Because Palais treats the C∞ but not explicitly the real analytic case, we provide details.

Let f ∈W k,p(M ;N) and define an open ball with center f and radius ε ∈ (0, 1],

Bf (ε) := {v ∈W k,p(M ;R2n) : ‖v − f‖Wk,p(M) < ε},

Recall from Lemma 3.1, that the assignment Φ(y, η) = (y, π(y+η)) defines an analytic diffeomor-
phism from an open neighborhood of the zero section N ⊂ TN onto an open neighborhood of the
diagonal N ⊂ N×N ⊂ R2n. In particular, the assignment Φf (u) = π(f+u), for u belonging to a

small enough open ball, Bf (δ2), centered at the origin in W k,p(Vf ), defines a real analytic embed-

ding of Bf (δ2) into W k,p(M ;R2n) and onto a relatively open subset, Φf (Bf (δ2)) ⊂W k,p(M ;N).
Thus, for small enough ε,

Bf (ε) ∩W k,p(M ;N) ⊂ Φf (Bf (δ2)).

The assignment Φf (u) = π(f + u) ∈ W k,p(M ;N), for u ∈ Bf (δ2), may be regarded as the
restriction of the real analytic map,

W k,p(M ;R2n) 3 u 7→ π(f + u) ∈W k,p(M ;R2n).

Therefore, the collection of inverse maps, defined by each f ∈W k,p(M ;N),

Φ−1
f : Bf (ε) ∩W k,p(M ;N)→W k,p(Vf ),

defines an atlas for a real analytic manifold structure on W k,p(M ;N) as a real analytic subman-
ifold of W k,p(M ;R2n).

Lastly, we relax the assumption of real analyticity and require only that (N,h) be a C∞

closed, Riemannian manifold and isometrically and smoothly embedded in Rn and identified
with its image. The conclusion that W k,p(M ;N) is a C∞ manifold is immediate from the proof
in the real analytic case by just replacing real analytic with C∞ diffeomorphisms. �

Remark 3.3 (Identification of the tangent spaces). The existence of a C∞ Banach manifold struc-
ture for W k,p(M ;N) in the case of a smooth isometric embedding (N,h) ⊂ Rn is also provided in
[72, Theorem 13.5]. In [72, Theorem 13.6] the Banach space W k,p(Vf ) is identified as the tangent

space of the Banach manifold W k,p(M ;N) at the point f . Note that for f ∈ W k,p(M ;N), the
differential (dΦf )(0) : W k,p(Vf )→ TfW

k,p(M ;N) is the identity map.

Remark 3.4 (Properties of coordinate charts). For the inverse coordinate chart (Φf ,Uf ) and

u ∈ Uf with f1 := π(f + u) ∈W k,p(M ;N), the differential

(dΦf )(u) : W k,p(Vf )→W k,p(Vf1) ⊂W k,p(M ;Rn),

is an isomorphism of Banach spaces. By choosing δ ∈ (0, 1] in Proposition 3.2 sufficiently small
we find that the norm of the operator

(dΦf )(u)− (dΦf )(0) : W k,p(Vf )→W k,p(M ;Rn)

obeys

‖(dΦf )(u)− (dΦf )(0)‖ ≤ 1, ∀u ∈ Uf ,

and therefore C3 := supu∈Uf
‖(dΦf )(u)‖ ≤ 2. By applying the Mean Value Theorem to Φf and

its inverse, we obtain

(3.6) C−1
4 ‖f − f1‖Wk,p(M) ≤ ‖u‖Wk,p(Vf ) ≤ C4‖f − f1‖Wk,p(M)
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for every f ∈ W k,p(M ;N) and every u ∈ W k,p(Vf ) with f1 = π(f + u), where C4 ≥ C3 depends
on (N,h) and f . (Compare [60, Inequality (4.7)].)

3.2. Smoothness and analyticity of the harmonic map energy functional. We shall
assume the notation and conventions of Section 3.1. Recall Definition 1.9 of the harmonic map
L2-energy functional,

E : W k,p(M ;N)→ R, f 7→ 1

2

∫
M
|df |2 d volg,

and define

(3.7) Ef ≡ E ◦ Φf : Uf ⊂W k,p(Vf )→ R, u 7→ 1

2

∫
M
|d(π(f + u))|2 d volg .

We now establish the following proposition.

Proposition 3.5 (Smoothness and analyticity of the harmonic map L2-energy functional). Let
d ≥ 2 and k ≥ 1 be integers and p ∈ [1,∞) be such that

kp > d or k = d and p = 1.

Let (M, g) and (N,h) be closed, Riemannian, smooth manifolds with (N,h) real analytic and
analytically and isometrically embedded in Rn and identified with its image. If f ∈W k,p(M ;N),
then Ef : Uf → R in (3.7) is a real analytic map, where Uf ⊂ W k,p(Vf ) is as in (3.4) and the

image of a coordinate neighborhood in W k,p(M ;N). In particular, the functional

E : W k,p(M ;N)→ R
is real analytic. Finally, if the hypothesis that (N,h) is real analytic is relaxed to the hypothesis
that it is C∞, then the functional E : W k,p(M ;N)→ R is C∞.

Proof. Our hypotheses on d, k, p ensure that there is a continuous Sobolev embedding, W k,p(M ;N) ⊂
C(M ;N) by [4, Theorem 4.12] and that W k,p(M ;R) is a Banach algebra by [4, Theorem 4.39].
By hypothesis, f ∈ W k,p(M ;N), so f ∈ C(M ;N). We view N ⊂ Rn as isometrically and real
analytically embedded as the zero section of its tangent bundle, TN , and which is in turn iso-
metrically and real analytically embedded in R2n and identified with its image. Moreover, if
u ∈W k,p(Vf ) = W k,p(M ; f∗TN), then u ∈ C(Vf ) = C(M ; f∗TN).

As in Lemma 3.1, let (π,O) be a normal tubular neighborhood of N ⊂ Rn of radius δ0 ∈ (0, 1].
Because the nearest-point projection map, π : O ⊂ Rn → N , is real analytic, its differential,
(dπ)(y) ∈ HomR(Rn, TyN) ⊂ EndR(Rn), is a real analytic function of y ∈ O and dπ(y) : Rn → Rn
is orthogonal projection. We choose ε ∈ (0, 1] small enough that dπ(y + z) has a power series
expansion centered at each point y ∈ O with radius of convergence ε,

dπ(y + z) =
∞∑
m=0

am(y)zm, ∀ y, z ∈ Rn with |z| < ε,

where (see, for example, Whittlesey [90] in the case of analytic maps of Banach spaces), for each
y ∈ O, the coefficients am(y; z1, . . . , zm) are continuous, multilinear, symmetric maps of (Rn)m

into EndR(Rn) and we abbreviate am(y; z, . . . , z) = am(y)zm. The coefficient maps, am(y), are
(analytic) functions of y ∈ O, intrinsically defined as derivatives of dπ at y ∈ O. We shall use
the convergent power series for dπ(y + z), in terms of z with |z| < ε, to determine a convergent
power series for Ef (u) in (3.7), namely

Ef (u) =
1

2

∫
M
|d(π(f + u))|2 d volg =

1

2

∫
M
|dπ(f + u)(df + du)|2 d volg,
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in terms of u ∈ W k,p(Vf ) with ‖u‖Wk,p(Vf ) < δ, where δ = ε/κ and κ = κ(f, g, h) is the norm of

the Sobolev embedding, W k,p(Vf ) ⊂ C(Vf ). Recall that

dπ(f + u)(df + du)|x = dπ(f(x) + u(x))(df(x) + du(x)), ∀x ∈M,

where f(x) + u(x) ∈ O and f(x) + du(x) ∈ Tf(x)N . We have the pointwise identity,

|dπ(f + u)(df + du)|2 =

∣∣∣∣∣
( ∞∑
m=0

am(f)um

)
(df + du)

∣∣∣∣∣
2

on M,

and thus,

|d(π(f + u))|2 =

∞∑
m=0

|(am(f)um)(df + du)|2

+ 2
∞∑
l=1

∞∑
m=0

〈|(am(f)um)(df + du), (am+l(f)um+l)(df + du)〉 on M.

After substituting the preceding expression and noting that M is compact and that all inte-
grands are continuous functions on M , the Lebesgue Dominated Convergence Theorem yields a
convergent power series as a function of u ∈W k,p(Vf ) with ‖u‖Wk,p(Vf ) < δ,

Ef (u) =
1

2

∫
M

∣∣∣∣∣
( ∞∑
m=0

am(f)um

)
(df + du)

∣∣∣∣∣
2

d volg,

and thus Ef (u) is an analytic function of u ∈W k,p(Vf ) with ‖u‖Wk,p(Vf ) < δ.

We now relax the assumption of real analyticity of (N,h) and require only that (N,h) be a C∞

closed, Riemannian manifold and isometrically and smoothly embedded in Rn and identified with
its image. The conclusion that the map Ef : W k,p(Vf ) → R is C∞ is immediate from the fact

that W k,p(Vf ) ⊂ C(Vf ) because the pointwise expressions for |dπ(f(x) + u(x))(df(x) + du(x))|2,
for x ∈M , and all higher-order derivatives with respect to z = u(x) ∈ O ⊂ Rn will be continuous
functions on the compact manifold, M . �

3.3. Application to the  Lojasiewicz-Simon gradient inequality for the harmonic map
energy functional. We continue to assume the notation and conventions of Section 3.1. The
covariant derivative, with respect to the Levi-Civita connection for the Riemannian metric h on
N , of a vector field Y ∈ C∞(TN) is given by

(3.8) (∇hY )y = dπ(y)(dY ),

where π = πh is as discussed around (3.1) and the second fundamental form [56, Definition 4.7.2]
of the embedding N ⊂ Rn is given by

(3.9) Ah(X,Y ) :=
(
∇hXY

)⊥
= dY (X)− dπ(dY (X)), ∀X,Y ∈ C∞(TN),

where dY is the differential of the map Y : N → R2n and we recall from (3.1) that dπ(y) : Rn →
TyN is orthogonal projection, so id − dπ(y) : Rn → (TyN)⊥ is orthogonal projection onto the

normal plane. By [56, Lemma 4.7.2] we know that Ah(y) : TyN ×TyN → (TyN)⊥ is a symmetric
bilinear form with values in the normal space, for all y ∈ N .



 LOJASIEWICZ-SIMON GRADIENT INEQUALITIES 27

We assume that d, k, p obey the conditions of Proposition 3.5 and recall from (1.8) that the
gradient of E at f ∈W k,p(M ;N) in the direction of v ∈ TfW k,p(M ;N) = W k,p(Vf ) is given by

E ′(f)(v) = (dπ(f)(∆gf), v)L2(M ;Rn),

noting again that dπ(y) : Rn → TyN is orthogonal projection (3.1), for all y ∈ N . Thus [49,
Lemma 1.2.4] gives

dπ(f)(∆gf) = ∆gf −Ah(f)(df, df),

and as an operator, we have

E ′(f) : TfW
k,p(M ;N)→ T ∗fW

k,p(M ;N),

where p′ ∈ (1,∞] is the dual exponent defined by 1/p+ 1/p′ = 1, and

T ∗fW
k,p(M ;N) =

(
W k,p(Vf )

)∗
= W−k,p

′
(Vf ).

The Hessian of E at f ∈W k,p(M ;N) is defined by [56, p. 427],

E ′′(f)(v, w) :=
∂2

∂s∂t
E (expf (sv + tw))

∣∣∣∣
s=t=0

=
d

dt
E ′(expf (tw))(v)

∣∣∣∣
t=0

.

Just as in the expression (1.8) for the gradient, one can replace the variation expf (sv + tw) by
π(f + sv + tw). When f is harmonic, that is, E ′(f) = 0, one finds that [56, Theorem 8.2.1]

E ′′(f)(v, w) =

∫
M
〈∆gv, w〉Vf d volg −

∫
M

trg〈Rh(df, v)w, df〉Vf d volg, ∀ v, w ∈W k,p(Vf ),

as a bilinear symmetric form on the tangent space, TfW
k,p(M ;N). Viewing E ′′(f) as a linear

operator from the tangent to cotangent space,

E ′′(f) : TfW
k,p(M ;N)→ T ∗fW

k,p(M ;N),

one also finds that [60, Equation (4.3)]

(3.10) E ′′(f)(v) = ∆gv − 2Ah(f)(df, dv)− (dAh)(v)(df, df).

We now have the

Proposition 3.6 (Fredholm and index zero properties for the Hessian of the harmonic map
L2-energy functional). Assume the hypotheses of Proposition 3.5, but exclude the case d = k = 2
and p = 1. If f ∈W k,p(M ;N) is a critical point of E , then the Hessian,

E ′′(f) : W k,p(Vf )→W−k,p
′
(Vf ),

is a Fredholm operator with index zero, where p′ ∈ (1,∞] is defined by 1/p+ 1/p′ = 1.

Proof. We first consider the case d ≥ 2 and k ≥ 1 and 1 < p <∞ and kp > d. We need to show
that the operator E ′′(f) − ∆g : W k,p(M ;Vf ) → W−k,p

′
(M ;Vf ) is compact, where p′ ∈ (1,∞)

is the dual exponent defined by 1/p + 1/p′ = 1. The Sobolev embedding W k,p(M) ⊂ C(M)

is continuous by [4, Theorem 4.12] and the embedding W k,p(M) b Lq
′
(M) is compact by [4,

Theorem 6.3], for 1 ≤ q′ < ∞. Hence, the dual embedding Lq(M) b W−k,p
′
(M) is compact for

the dual exponent, 1 < q ≤ ∞, defined by 1/q+ 1/q′ = 1, using [14, Theorem 6.4]. Therefore, we
aim to show that the operator,

E ′′(f)−∆g : W k,p(M ;Vf )→ Lq(M ;Vf ),

is bounded for some q ∈ (1,∞] and compose with the compact embedding,

Lq(M ;Vf ) bW−k,p
′
(M ;Vf ),
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to obtain the desired compactness result by [14, Proposition 6.3].
Note that W k,p(M) ⊂W 1,r(M) is a continuous Sobolev embedding by [4, Theorem 4.12] for

(1) k = 1 and r = p (and p > d ≥ 2), or
(2) k ≥ 2 and (k − 1)p > d and 1 ≤ r ≤ ∞, or
(3) k ≥ 2 and (k − 1)p = d and 1 ≤ r <∞, or
(4) k ≥ 2 and (k − 1)p < d and 1 ≤ r ≤ 1∗ = d/(d − (k − 1)p). To ensure the possibility of

a choice r ∈ (2, 1∗], we require in this case that 1∗ > 2, that is, d/(d − (k − 1)p) > 2 or
d/2 > d− (k− 1)p or (k− 1)p > d/2, that is, p > d/(2k− 2). But 2k− 2 ≥ k ⇐⇒ k ≥ 2
and thus, for k ≥ 2, the hypothesis p > d/k =⇒ p > d/(2k − 2).

Hence, for d ≥ 2 and each of the preceding possibilities for k and p, we may choose r = 2q
with 1 < q < ∞. Indeed, the choice q = r/2 suffices to give both a continuous embedding,

W k,p(M) ⊂W 1,r(M) = W 1,2q(M), and a compact embedding, Lq(M) bW−k,p
′
(M).

Using the expression (3.10) for the Hessian of E at a harmonic map f , we estimate

‖E ′′(f)(v)−∆gv‖Lq(M ;Rn) ≤ 2‖Ah(f)‖C(M ;Rn)‖|df ||dv|‖Lq(M ;R)

+ ‖dAh‖C(M ;R2n)‖|v||df |2‖Lq(M ;R)

≤ 2‖Ah‖C(M,Rn)‖df‖L2q(M ;Rn)‖dv‖L2q(M ;R2n)

+ ‖dAh‖C(M ;R2n)‖v‖C(M ;Rn)‖df‖2L2q(M ;Rn)

≤ 2‖Ah‖C(M,Rn)‖f‖W 1,2q(M ;Rn)‖v‖W 1,2q(M ;Rn)

+ ‖dAh‖C(M ;R2n)‖v‖C(M ;Rn)‖f‖2W 1,2q(M ;Rn)

≤ C‖Ah‖C1(M ;Rn)

(
‖f‖Wk,p(M ;N) + ‖f‖2Wk,p(M ;N)

)
‖v‖Wk,p(Vf ),

where the last inequality follows from the Sobolev embeddings just described, and thus

E ′′(f)−∆g : W k,p(Vf )→ Lq(Vf )

is a bounded linear operator. Since the embedding Lq(Vf ) bW−k,p
′
(Vf ) is compact and compo-

sition of a bounded linear operator and a compact operator is compact by [14, Proposition 6.3],

the operator, E ′′(f) − ∆g : W k,p(Vf ) → W−k,p
′
(Vf ), is compact. Thus, E ′′(f) : W k,p(Vf ) →

W−k,p
′
(Vf ) is a Fredholm operator with index zero by [51, Corollary 19.1.8], since the same is

true of ∆g.
We now turn to the case d ≥ 3 and k = d and p = 1. We need to show that the operator

E ′′(f) − ∆g : W d,1(M ;Vf ) → W−d,∞(M ;Vf ) is compact. The Sobolev embedding W d,1(M) ⊂
C(M) is continuous by [4, Theorem 4.12] and the embedding W d,1(M) b Lq

′
(M) is compact by

[4, Theorem 6.3], for 1 ≤ q′ < ∞. Hence, the dual embedding Lq(M) b W−d,∞(M) is compact
for 1 < q ≤ ∞ defined by 1/q + 1/q′ = 1 and the dual exponent 1 ≤ q′ <∞, using [14, Theorem
6.4]. Therefore, we aim to show that the operator,

E ′′(f)−∆g : W d,1(M ;Vf )→ Lq(M ;Vf ),

is bounded for some q ∈ (1,∞] and compose with the compact embedding,

Lq(M ;Vf ) bW−d,∞(M ;Vf ),

to obtain the desired compactness result by [14, Proposition 6.3].
Note that W d,1(M) ⊂ W 1,r(M) is a continuous Sobolev embedding by [4, Theorem 4.12] for

1 ≤ r ≤ 1∗ = d/(d − (d − 1)) = d, that is, 1 ≤ r ≤ d. Hence, for d ≥ 3, we may choose r = 2q
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with 1 < q ≤ d/2. Indeed, the choice q = d/2 suffices to give both a continuous embedding,

W d,1(M) ⊂W 1,d(M) = W 1,2q(M), and a compact embedding, Lq(M) = L
d
2 (M) bW−d,∞(M).

Using the expression (3.10) for the Hessian of E at a harmonic map f and q = d/2, we again
find that

‖E ′′(f)(v)−∆gv‖Lq(M ;Rn) ≤ C‖Ah‖C1(M ;Rn)

(
‖f‖W d,1(M ;N) + ‖f‖2W d,1(M ;N)

)
‖v‖W d,1(M ;Vf ),

and thus
E ′′(f)−∆g : W d,1(M ;Vf )→ Lq(M ;Vf )

is a bounded linear operator. The remainder of the argument for the first case (d ≥ 2 and k ≥ 1
and 1 < p < ∞ and kp > d) again shows that E ′′(f) : W d,1(Vf ) → W−d,∞(Vf ) is a Fredholm
operator with index zero. �

The proof that the Hessian operator is Fredholm with index zero in the borderline case k =
d = 2 and p = 1 relies on a regularity theorem for weakly harmonic maps from surfaces due to
Heléin [49, Theorem 4.1.1].

Proposition 3.7 (Fredholm and index zero properties for the Hessian of the harmonic map
L2-energy functional in the borderline case for d = 2). Let (M, g) be a closed, smooth Riemann
surface and (N,h) be a closed, Riemannian, smooth manifold that is isometrically embedded in
Rn and identified with its image. If f ∈W 2,1(M ;N) is a critical point of E , then the Hessian,

E ′′(f) : W 2,1(Vf )→W−2,∞(Vf ),

is a Fredholm operator with index zero.

Proof. We need to show that the operator E ′′(f)−∆g : W 2,1(Vf )→W−2,∞(Vf ) is compact. The
Sobolev embedding W 2,1(M ;Vf ) b Lr(M ;Vf ) ⊂ Lr(M ;Rn) is compact by [4, Theorem 6.3] for
1 ≤ r <∞. We choose r = 2 and observe that the dual embedding L2(M ;Rn) bW−2,∞(M ;Vf )
is compact by [14, Theorem 6.4]. Since the embedding W 1,1(M) ⊂ Ls(M) is continuous by [4,
Theorem 4.12] for 1 ≤ s ≤ 1∗ = 2/(2− 1) = 2, we can choose s = 2 and observe the composition

W 1,1(M ;Rn) ⊂ L2(M ;Rn) bW−2,∞(M ;Vf ).

is compact by [14, Proposition 6.3].
Using the expression (3.10) for the Hessian of E at a harmonic map f , we estimate

‖E ′′(f)(v)−∆gv‖W 1,1(M ;Rn) ≤ 2‖Ah(f)(df, dv)‖W 1,1(M ;Rn) + ‖(dAh)(v)(df, df)‖W 1,1(M ;R2n)

≤ 2‖Ah(f)(df)‖C1(M,Rn)‖v‖W 2,1(M ;Rn)

+ ‖dAh(df, df)‖C1(M ;R2n)‖v‖W 1,1(M ;Rn)

≤ 2
(
‖Ah(f)(df)‖C1(M ;Rn) + ‖dAh(df, df)‖C1(M,R2n)

)
‖v‖W 2,1(Vf ).

Because f is a critical point of E , it is a weakly harmonic map in the sense of [49, Definition 1.4.9].
By a regularity theorem due to Hélein [49, Theorem 4.1.1], the map f is C∞ and the quantity

‖Ah(f)(df)‖C1(M,R2n) + ‖dAh(df, df)‖C1(M,R2n),

is finite. Hence,
E ′′(f)−∆g : W 2,1(Vf )→W 1,1(Vf )

is a bounded linear operator. Since the embeddingW 1,1(Vf ) bW−2,∞(Vf ) is compact and compo-
sition of a bounded linear operator and a compact operator is compact by [14, Proposition 6.3],
the operator, E ′′(f) − ∆g : W 2,1(Vf ) → W−2,∞(Vf ), is compact. Thus, E ′′(f) : W 2,1(Vf ) →
W−2,∞(Vf ) is a Fredholm operator with index zero, since the same is true of ∆g. �
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Remark 3.8 (Regularity for weakly harmonic maps from higher-dimensional Riemannian man-
ifolds). We note that the regularity theorem for weakly harmonic maps, f : M → N , from
Riemann surfaces, M , due to Hélein [49, Theorem 4.1.1] has been partly generalized by Bethuel
[9, Theorem 1.1], [49, Theorem 4.3.1] to the case of weakly harmonic maps from Riemannian

manifolds M of dimension d ≥ 3, to show that a weakly harmonic map, f : M → N , is C1,α
loc on

M \ S, where S ⊂M is a closed subset with (d− 2)-dimensional Hausdorff measure zero.

We are now ready to complete the

Proof of Theorem 4. By Remark 3.4, there is a constant C4 = C4(f, g, h, k, p) ∈ [1,∞) such that
for every u ∈ Uf∞ ⊂W k,p(Vf∞) and f = Φf∞(u) = π(f∞ + u) ∈W k,p(M ;N), we have

(3.11) C−1
4 ‖f − f∞‖Wk,p(M) ≤ ‖u‖Wk,p(Vf∞ ) ≤ C4‖f − f∞‖Wk,p(M),

and

(dΦf∞)(u) = dπ(f∞ + u) : W k,p(Vf∞)→ TfW
k,p(M,N) = W k,p(Vf ),

is a Banach space isomorphism with norm C3 := supu∈Uf∞
‖(dΦf∞)(u)‖ ∈ [1,∞).

We shall first derive the  Lojasiewicz-Simon gradient inequalities for the map

Ef∞ = E ◦ Φf∞ : Uf∞ ⊂W k,p(Vf∞)→ R.

Consider first the case where (N,h) is real analytic. Propositions 3.5, 3.6, and 3.7 ensure that
the hypotheses of Theorem 1 are fulfilled with

x∞ = 0 ∈X = W k,p(Vf∞) and H = L2(Vf∞),

noting that Φf∞(0) = f∞, so Ef∞ has a critical point at the origin. Hence, there exist constants
θ ∈ [1/2, 1), and σ0 ∈ (0, δ], and Z0 ∈ [1,∞) (where δ ∈ (0, 1] is the constant in (3.4) that
defines the open neighborhood Uf∞ of the origin) such that for every v ∈ W k,p(Vf∞) obeying
‖v‖Wk,p(Vf∞ ) < σ0 we have

|Ef∞(v)− Ef∞(0)|θ ≤ Z0‖E ′f∞(v)‖W−k,p′ (Vf∞ ).

Thus, if f = Φf∞(u) ∈ W k,p(M ;N) obeys ‖f∞ − f‖Wk,p(M) < C−1
4 σ0, then (3.11) implies that

‖u‖Wk,p(Vf∞ ) < σ0. Also

E ′f∞(u) = E ′(f) ◦ (dΦf∞)(u) = E ′f (0) ◦ (dΦf∞)(u),

and therefore

‖E ′f∞(u)‖W−k,p′ (Vf∞ ) ≤ ‖E
′
f (0)‖W−k,p′ (Vf )‖(dΦf∞)(u)‖ ≤ C3‖E ′(f)‖W−k,p′ (Vf ).

We conclude that if ‖f − f∞‖Wk,p(M) < C−1
4 σ0, then

|E (f)− E (f∞)|θ ≤ C3Z0‖E ′(f)‖W−k,p′ (Vf ),

where W−k,p
′
(Vf ) is the dual of the tangent space W k,p(Vf ) = TfW

k,p(M ;N) of the analytic

Banach manifold W k,p(M ;N) at f . This yields inequality (1.11) for constants Z = C3Z0 and
σ = C−1

4 σ0.
We now allow (N,h) to be any C∞ closed, Riemannian manifold and consider the case where

E is a C2 functional that is Morse-Bott at a critical point f∞ ∈W k,p(M ;N). Though no longer
real analytic, W k,p(M ;N) is still a C∞ Banach manifold by Proposition 3.2 and the functional

Ef∞ = E ◦ Φf∞ : Uf∞ ⊂W k,p(Vf∞)→ R
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is C2 with critical point at the origin, where it is also Morse-Bott. Propositions 3.6 and 3.7 ensure
that the hypotheses of Theorem 3 are fulfilled with

x∞ = 0 ∈X = W k,p(Vf∞) and H = L2(Vf∞),

so there exist constants σ0 ∈ (0, δ] and Z0 ∈ [1,∞) such that for every v ∈ W k,p(Vf∞) obeying
‖v‖Wk,p(Vf∞ ) < σ0 we have

|Ef∞(v)− Ef∞(0)| ≤ Z0‖E ′f∞(v)‖2
W−k,p′ (Vf∞ )

.

The proof that optimal the  Lojasiewicz-Simon gradient inequality (1.11) holds with θ = 1/2 under
the condition (1.10) now follows mutatis mutandis the proof of the inequality with θ ∈ [1/2, 1) in
the real analytic case.

It remains to prove that the  Lojasiewicz-Simon gradient inequality (1.11) holds under the L2

 Lojasiewicz-Simon neighborhood condition (1.12). We have seen thus far that Theorems 1 and
3 apply to Ef∞ : Uf → R with x∞ = 0 ∈ X = W k,p(Vf∞) and H = L2(Vf∞), for E analytic or
Morse-Bott, respectively. Thus, Corollary 2 also applies to Ef∞ with the same value of θ ∈ [1/2, 1):
for every constant C0 ∈ [1,∞), there exist constants σ1 ∈ (0, 1] and Z1 ∈ [1,∞) such that for
every v ∈W k,p(Vf∞) obeying ‖v‖L2(Vf∞ ) < σ1 and |Ef∞(v)− Ef∞(0)| ≤ C0, we have

|Ef∞(v)− Ef∞(0)|θ ≤ Z1‖E ′f∞(v)‖W−k,p′ (Vf∞ ).

However, recalling the notation of Lemma 3.1, for every y ∈ N the map

Φy ≡ Φ(y, ·) : {η ∈ TyN : |η| < δ} → N, η 7→ π(y + η),

is a diffeomorphism onto its image, a normal tubular neighborhood of N ⊂ Rn. Therefore, by
applying the Mean Value Theorem to Φ−1

y , we obtain

|η| ≤ C5|π(y + η)− y|, ∀ η ∈ TyN with |η| < δ,

where C5 := sup{|d(Φ−1
y )(z)| : (y, η) ∈ TN with |η| < δ and z = π(y + u)}. Using the preceding

inequality with y = f∞(x) ∈ N and η = v(x) ∈ Tf∞(x)N for x ∈ M and taking L2 norms, we
obtain

‖v‖L2(Vf ) ≤ C5‖f − f∞‖L2(M).

Therefore, given C0 ∈ [1,∞), we choose σ = C−1
5 σ1 and observe that for every f = π(f∞ + v) ∈

W k,p(M ;N) with v ∈ W k,p(Vf∞) obeying ‖f − f∞‖L2(M) < σ and |E (f) − E (f∞)| ≤ C0, the
preceding inequality yields ‖v‖L2(Vf∞ ) < σ1. Since |Ef∞(v)− Ef∞(0)| ≤ C0, we thus have

|E (f)− E (f∞)|θ ≤ Z1‖E ′f∞(v)‖W−k,p′ (Vf∞ ) ≤ C3Z1‖E ′(f)‖W−k,p′ (Vf ),

which is just (1.11) with constant Z = C3Z1. This concludes the proof of Theorem 4. �

Appendix A. Integrability and the Morse-Bott condition for the harmonic map
energy functional

Following Lemaire and Wood [61, Section 1], we review the concept of integrability of a Jacobi
field along a harmonic map, describe the relation between integrability and the Morse-Bott con-
dition for the harmonic map energy functional at a harmonic map. We then indicate some of the
few examples where integrability is known for harmonic maps.
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We begin by recalling the second variation of the energy. For a smooth two-parameter variation,
ft,s : M → N , of a map f : M → N with ∂ft,s/∂t|(0,0) = v and ∂2ft,s/∂s|(0,0) = w, the Hessian
of f is defined by

Hessf (v, w) :=
∂2E (ft,s)

∂t∂s

∣∣∣∣
(0,0)

.

One has
Hessf (v, w) = (Jf (v), w)L2(M,g),

where
Jf (v) := ∆v − trRN (df, v)df

is called the Jacobi operator, a self-adjoint linear elliptic differential operator. Here, ∆ denotes
the Laplacian induced on f−1TN and the sign conventions on ∆ and the curvature RN are those
of Eells and Lemaire [26].

Let v be a vector field along f , that is, a smooth section of f−1TN , where f : M → N is a
smooth map. Then v is called a Jacobi field (for the energy) if Jf (v) = 0. The space of Jacobi
fields, Ker Jf , is finite-dimensional and its dimension is called the (E )-nullity of f .

Definition A.1 (Integrability of a Jacobi field along a harmonic map). [61, Definition 1.2] A
Jacobi field v along a harmonic map, f : M → N , is said to be integrable if there is a smooth
family of harmonic maps, ft : M → N for t ∈ (−ε, ε), such that f0 = f and v = ∂ft/∂t|t=0.

Adams and Simon proved the following alternative characterization of the integrability condi-
tion in Definition A.1.

Lemma A.2. [3, Lemma 1] Let ϕ0 : (M, g) → (N,h) be a harmonic map between real-analytic
Riemannian manifolds. Then all Jacobi fields along ϕ0 are integrable if and only if the space of
harmonic maps (C2,α-) close to ϕ0 is a smooth manifold, whose tangent space at ϕ0 is Ker E ′′(ϕ0).

It follows that for two real-analytic manifolds, all Jacobi fields along all harmonic maps are
integrable if and only if the space of harmonic maps is a manifold whose tangent bundle is given
by the Jacobi fields [61, p. 470]. By Definition 1.6, the conclusion of Lemma A.2 is equivalent to
the assertion that all Jacobi fields along ϕ0 are integrable if and only if the harmonic map energy
functional E is Morse-Bott at ϕ0.

For a further discussion of integrability and additional references, see [3, Section 1], Kwon [60,
Section 4.1], and Simon [81, pp. 270–272].

According to [61, Theorem 1.3] any Jacobi field along a harmonic map from S2 to CP2 is
integrable, where the two-sphere S2 has its unique conformal structure and the complex projective
space CP2 has its standard Fubini-Study metric of holomorphic sectional curvature 1.

From the list of examples provided by Lemaire and Wood [61, p. 471], there are few other
examples of families of harmonic maps that are guaranteed to be integrable, with the list including
harmonic maps from S2 to S2 but excluding harmonic maps from S2 to S3 or S4 [62].

We note that Fernández [37] has proved a dimension formula for the space of degree-d harmonic
maps from S2 into S2n. However, thus far, integrability for such maps is known only when n = 1.
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