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PRIME GAPS AND CYCLOTOMIC POLYNOMIALS

PIETER MOREE

Abstract. This is the write-up of a talk I gave at the Winter Symposium of the Royal
Dutch Mathematical Society on January 9, 2021, which is to appear in the Dutch journal
Nieuw Archief voor Wiskunde. It discusses my recent research paper [26] with Kosyak, Sofos
and Zhang on finding cyclotomic polynomials with prescribed maximum coefficient and its
connections with prime number theory.

1. Cyclotomic polynomials: basics

It is clear that X2 − 1 = (X − 1)(X + 1), X3 − 1 = (X − 1)(X2 + X + 1) and X4 − 1 =
(X − 1)(X + 1)(X2 + 1). Over the rationals none of the factors can be factorized further
and the expressions give the factorization into irreducibles. However, it is not so obvious how
to factorize Xn − 1 for an arbitrary integer n ≥ 1 into irreducibles over the rationals in a
systematic way.

Over the complex numbers the answer is easy:

(1.1) Xn − 1 =

n∏
m=1

(X − e
2πim
n ).

The roots are the n-th roots of unity and these divide the circle into equal parts. The word
cyclotomy comes from ancient Greek and literally means circle-cutting. A root of unity ζ is
said to be a primitive n-th root of unity if it satisfies ζn = 1, but not ζd = 1 for any 1 ≤ d < n.
For any two integers n and d by the Euclidean algorithm we can find integers a and b such
that an+bd = gcd(n, d), where gcd is a shorthand for greatest common divisor. Thus if ζn = 1

and ζd = 1, it follows that ζgcd(n,d) = 1. Therefore, in order to check that ζ is a primitive
n-th root of unity, it suffices to check that ζn = 1 and ζd 6= 1 for every proper divisor d of
n. By a similar argument one deduces that if ζ is a primitive n-th root of unity, then ζj is of
order n/gcd(j, n). It follows that all the primitive n-th roots of unity are of the form ζj , with
1 ≤ j ≤ n and gcd(j, n) = 1. There are precisely ϕ(n) primitive n-th roots of unity, where ϕ
is the Euler totient function, which is defined as

ϕ(n) =

n∑
j=1

(j,n)=1

1.

An obvious primitive n-th root of unity is e2πi/n.
The n-th cyclotomic polynomial can be defined as

(1.2) Φn(X) =

n∏
j=1

(j,n)=1

(X − e
2πij
n ).

Date: September 2021.
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n Φn(x)

5 x4 + x3 + x2 + x+ 1
12 x4 − x2 + 1
15 x8 − x7 + x5 − x4 + x3 − x+ 1
16 x8 + 1
60 x16 + x14 − x10 − x8 − x6 + x2 + 1
105 x48 + x47 + x46 − x43 − x42 − 2x41 − x40 − x39 + . . .+ 1
210 x48 − x47 + x46 + x43 − x42 + 2x41 − x40 + x39 + . . .+ 1
240 x64 + x56 − x40 − x32 − x24 + x8 + 1

Table 1. Some cyclotomic polynomials

It thus has precisely the n-th order primitive roots of unity as its simple roots. (Note that of
all Greek letters Φ looks the most like a cut circle.) The degree of Φn(X) is ϕ(n) and we have
Φn(x) = Xϕ(n) + . . ..

By reducing the fractions m/n in (1.1) (e.g., 4/6 = 2/3), we see that for each divisor d of
n there are ϕ(d) reduced fractions with denominator d. These correspond to roots of unity of
order d. We thus infer from (1.1) and (1.2) that

(1.3) Xn − 1 =
∏
d|n

Φd(X).

Setting n = 1 we get Φ1(X) = X − 1. In case n = p is a prime, we obtain

Φp(X) = Xp−1 +Xp−2 + . . .+X + 1.

It can be shown that all cyclotomic polynomials have integer coefficients and are irreducible,
and so (1.3) gives the factorization of Xn − 1 into irreducibles over the rationals. Indeed,
many famous mathematicians gave proofs of the irreducibility of the cyclotomic polynomials
(Gauss, Kronecker, Eisenstein, Dedekind, Landau, Schur, . . . ). For some of these proofs, see
Weintraub [46]. The (very short) proof of Schur was even set to rhyme! (Cremer [14, p.
39-41]).

Write

(1.4) Φn(x) =

ϕ(n)∑
j=0

an(j)xj .

For j > ϕ(n) we put an(j) = 0. We define

A(n) = max
k≥0
|an(k)|, A{n} = {an(k) : k ≥ 0},

and call A(n) the height of Φn. Note that, for example, A{105} = {−2,−1, 0, 1}, see Table 1.
Our interest is in the possible heights A(n) and extrema of A{n} as n runs over the integers.

The cyclotomic coefficients an(j) are usually very small. Indeed, in the 19-th century
mathematicians even thought that they are always 0 or ±1. The first counterexample to this
claim occurs at n = 105; we have a105(41) = a105(7) = −2. Issai Schur in a letter to Edmund
Landau proved that every negative even number occurs as a coefficient of some cyclotomic
polynomial. Emma Lehmer [29] reproduced Schur’s argument, which is easily adapted to
show that every integer is assumed as value of a cyclotomic coefficient [44]. For the best result
to date in this direction see Fintzen [17] (found during her Max Planck Insitut für Mathematik
(MPIM) internship).
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Figure 1. Coefficients of the n-th cyclotomic polynomial for n =
3234846615 = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29, cf. [2].

Nowadays computations can be extended enormously far beyond n = 105, cf. Figure 1.
These and analytic number theoretical considerations show clearly that the complexity of the
coefficients is a function of the number of distinct odd prime factors of n, much rather than
the size of n. Complex patterns arise (see Figure 1) and a lot of mysteries remain.

2. Which maximum coefficients of cyclotomic polynomials do occur?

The very innocent looking question we consider here is the following.

Question 2.1. Which integers occur as a maximum coefficient of some cyclotomic polynomial?

For example, Φ210 has 2 as a maximum coefficient. We propose the following conjecture.

Conjecture 2.2. Every natural number occurs as the maximum coefficient of some cyclotomic
polynomial.

The rest of the paper discusses the progress we made on establishing this conjecture. Sur-
prisingly, a big role in this is played by deep work done by many number theorists on the
distribution of gaps between primes. Last but not least, everything hinges on a construc-
tion found by Eugenia Roşu [38] during a 2010 MPIM internship, improving on an earlier
construction due to Yves Gallot and myself [21].

3. Prime gaps

3.1. Elementary material, generalities. For millenia now (some!) humans have been fas-
cinated by prime numbers and their distribution. Recall that prime numbers are numbers > 1
only divisible by themselves and 1 (it turns out that it is much better to consider 1 itself not
as a prime number). It is usually attributed to Euclid (circa 300 BCE) that he proved there
are infinitely many primes. Several formulas producing infinitely many primes are known, but
they turn out to be practically useless. A famous example is a result of Mills, which asserts
the existence of a real number A > 1 with the property that A3n rounded down to the nearest
integer is prime for each natural number n. This first “defeat” forces us to take a step back and
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ask less precise questions such as to estimate the prime counting function π(x), which counts
the number of primes p not exceeding x; that is π(x) =

∑
p≤x 1. In the course of answering

this, the stochastic nature of the prime numbers will become apparent. The notion of an error
term will also be involved. If |f(x)| ≤ Bg(x), for some positive constant B and all values of
x ≥ 1, we write this compactly as f(x) = O(g(x)). This notation was introduced by Bach-
mann in 1894 and popularized by Landau and is generally named Landau’s Big O notation.
Edmund Landau (1877–1938) was the first to put prime number theory as a separate field on
the mathematical map and wrote a bulky standard work [28] on it. Two non-Germans math-
ematicians, who studied the original German version, were surprised to learn about a very
strong mathematician called Verfasser they had never heard of (Verfasser means author...).

The first mathematicians to investigate the growth of π(x) had of course to start with
collecting data to get some intuition for what is going on. They did this by painfully setting
up tables of consecutive prime numbers. The most famous of these computers was Carl-
Friedrich Gauss. In 1791, when he was 14 years old, he noticed that as one gets to larger and
larger numbers the primes thin out, but that locally their distribution appears to be quite
erratic. He based himself on a prime number table contained in a booklet with tables of
logarithms he had received as a prize, and went on to conjecture that the “probability that an
arbitrary integer n is actually a prime number should equal 1/ log n”. Thus Gauss conjectured
the following approximations:

π(x) ≈
∑

2≤n≤x

1

log n
≈ Li(x),

where

Li(x) =

∫ x

2

dt

log t
,

denotes the logarithmic integral. By partial integration one sees that Li(x) ∼ x/ log x, where
by A(x) ∼ B(x) we mean that limx→∞A(x)/B(x) = 1. Thus Gauss’s heuristic leads to the
conjecture that

π(x) ∼ x

log x
.

This was proved much later, in 1896, by Hadamard and independently by de la Vallée-Poussin
and is now called the Prime Number Theorem (PNT). Both of them were divinely rewarded
for doing so and became immortal. Well, almost – they lived to be near centenarians...

If the Riemann Hypothesis (RH) were true, it would imply that

(3.1) π(x) = Li(x) +O(
√
x log x).

The RH is one of the Millenium Problems and will not be discussed further here. Its intimate
connection with the distribution of prime numbers is discussed in an introductory way in [37].

Prime number questions fall into two main categories: global problems and local problems.
The former concerns asymptotic formulae, sums, estimations and the like of π(x) and related
functions (of which the PNT is an example), while local problems involve questions dealing
with the individual primes. Our focus here will be on large differences between primes (a local
property) and their applications.

We let pn denote the n-th prime number and put dn := pn+1 − pn. For example, the first
few prime numbers are p1 = 2, p2 = 3, p3 = 5, p4 = 7, which means that the first few prime
gaps are d1 = 1, d2 = 2, and d3 = 2. Note that

∑n
k=1(pk+1 − pk) = pn+1 − 2. By an

equivalent form of the PNT the n-th prime number pn asymptotically grows as n log n. (This
is plausible as by the PNT the number of primes not exceeding n log n is asymptotically equal
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to n log n/(log(n log n), that is to n.) Thus on average the prime gap is log n, which behaves
as log pn. A natural question is then how often dn is behaving far from average. E.g., looking
at the dn one might suspect that infinitely often dn = 2. This happens when both pn and
pn+1 are primes (they then form a twin prime pair) and the Twin Prime Conjecture states
that there are infinitely many twin prime pairs. Similarly it is suspected that, given any even
number 2k, infinitely often dn = 2k. Proving results in this direction is extremely hard. If
one focuses on rather bigger gaps, life is a bit easier. For example, Helmut Maier [31] showed
that pn+1 − pn ≤ (log pn)/4 for infinitely many n. There are a lot of interesting things to say
further on small gaps and some spectacular recent developments to report on, see, e.g., the
recent book by Broughan [10]. However, our focus will be on large prime gaps. One does not
need the PNT to see that there are arbitrarily large prime gaps, i.e. arbitrarily large stretches
of composite integers. Namely, for every N > 1 there exists a string of at least N consecutive
composite integers. An example is given by the string (N + 1)! + 2, (N + 1)! + 3, . . . , (N +
1)! +N + 1. Experimentally gaps of size N have been found between numbers much smaller
than (N + 1)! +N + 1. Rankin [40] proved in 1938 that there exists a positive constant c such
that, for infinitely many n, we have

pn+1 − pn ≥ c log pn
(log log pn)(log log log log pn)

(log log log pn)2
.

This improved on work of Westzynthius (1931) who showed that the sequence (pn+1−pn)/ log pn
is unbounded. In his final paper on this topic Rankin showed that one can take c to be any
number smaller than eγ , where γ = 0, 5772156649 . . . is Euler’s constant. This had been
shown already in 1935 by Pál Erdős [16]. Indeed, Erdős who had the habit of offering prizes
for solving various open problems, offered 10.000 dollar to anyone who could prove that c can
be replaced by any arbitrarily large constant. In 2016, twenty years after Erdős passed away,
this conjecture was independently established by Ford, Green, Konyagin and Tao [18] and
Maynard [33]. The group of four authors and Maynard received each 5.000 dollar from Ron
Graham, a close friend of Erdős.

The function log log x walks off to infinity in such a gentle way that one does not notice it.
For example, the reciprocal prime sum

∑
p≤x 1/p behaves in that way. It comes perhaps to

as a surprise (or shock!) to the reader that if we sum the reciprocals of all different primes
any human eye has ever looked at, the number comes to be out less than ... 4! The fact that
making conjectures in analytic prime number theory is a notoriously dangerous endeavour is
related to this. The danger lies in the fact that computers can barely spot log log terms and
are certainly blind to the log log log terms that frequently occur. It is there that the log log log
devil is in his element. The presence of such terms can result in the conjecture being false on
very thin subsequences. A famous example is the conjecture that π(x) < Li(x). It is false, but
true up to gigantic values of x. Littlewood proved that π(x) and Li(x) carry out an eternal
dance around each other. This is now a classic result, but falls a bit short of proving RH
(on the suggestion of his tutor Littlewood tried to prove RH during his postdoctoral studies!).
Further examples of log log log devil teases are discussed in my article [36].

3.2. Large prime gaps. There is a whole range of conjectures on gaps between consecutive
primes; from more careful to high-risk. The most famous one is Legendre’s and claims that
there is a prime in (m2, (m + 1)2) for every natural number m. This is a conjecture that is
on the safer side, but for example Firoozbakht’s conjecture that p1/nn is a strictly decreasing
function of n is “trés risqué”. It implies that dn < (log pn)2 − log pn + 1 for all n sufficiently
large (see Sun [43]), contradicting a heuristic model suggesting that, given any ε > 0, there
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exponent author year
0.9666 D. Wolke 1975
0.8674 R.J. Cook 1979
0.8243 M.N. Huxley 1980
0.8083 A. Ivić 1981
0.8055 R.J. Cook 1981
0.7501 D.R. Heath-Brown 1979
0.6944 A.S. Peck 1998
0.6666 K. Matomäki 2007
0.6001 D.R. Heath-Brown 2019

Table 2. Record exponents α in (3.2) over time

are infinitely many n such that dn > (2e−γ− ε)(log pn)2; see Banks, Ford and Tao [4]. Cramér
in 1936 conjectured that dn = O

(
(log pn)2

)
. Piltz in 1884 conjectured more modestly that

dn = O(pεn) for every ε > 0. The first to prove that dn = O(pθn) for some θ < 1 was Hoheisel
in 1930. He took θ = 1 − 1

33000 + ε. Well-known to number theorists is Huxley’s [24] result
from 1972 showing that one can take θ = 7/12+ ε. Baker et al. [3] showed that dn = O(p0.525n ),
which is not much weaker than what one can prove assuming RH. Under RH it is an easy
consequence of (3.1) that dn = O(

√
pn(log pn)2). Cramér [13] improved on this by showing in

1920 that dn = O(
√
pn log pn) under RH. More explicitly, Carneiro et al. [11] established under

RH that dn ≤ 22
25

√
pn log pn for every pn > 3.

We will be especially interested in the following conjecture, which is in the same league as
Legendre’s conjecture.

Conjecture 3.1 (Andrica’s conjecture). For n ≥ 1, pn+1−pn <
√
pn+
√
pn+1, or equivalently√

pn+1 −
√
pn < 1, or equivalently pn+1 − pn < 2

√
pn + 1.

Andrica’s Conjecture is currently out of reach as we have just seen (even under RH). The
next best thing one can then hope for is to prove that there are not too many n for which the
inequality fails (more on that later).

Many mathematicians take it that an unproven assertion can only be called conjecture if
there are overwhelming reasons for its truth. From this perspective it seems fair to say that
this does not apply to any of the conjectures in this section. Some log log log devil (or any of
its kin) might well be lurking somewhere...

3.3. The size of large prime gaps. Estimating the size of large prime gaps by establishing
a small exponent α in

(3.2)
∑
pn≤x

pn+1−pn≥
√
pn

(pn+1 − pn) = O(xα)

is a sport. The current record is due to Heath-Brown [23], who established α = 3/5+ ε, with ε
any positive number. This result is very relevant for us, as we will see in the sequel. I include
the table with “exponent hunters”, as it strongly suggests how much effort it often takes in
prime number theory to achieve seemingly small improvements.
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4. More on cyclotomic polynomials

From (1.3) it can be deduced by so-called Möbius inversion that

(4.1) Φn(X) =
∏
d |n

(Xd − 1)µ(n/d),

where the product is over all positive divisors d of n and µ is the Möbius function defined by
µ(n) = (−1)t if n is a square-free positive integer having t prime factors, and µ(n) = 0 if n
has a repeated prime factor.

Let p be a prime and n a positive integer. Then from (4.1) the following properties are
easily deduced
a) Φpn(X) = Φn(Xp) if p divides n;
b) Φ2n(X) = (−1)ϕ(n)Φn(−X) if n is odd;
c) Φn(X) = Xϕ(n)Φn(1/X), that is, Φn is self-reciprocal if n > 1.
For example, using the first property we infer that Φ16(X) = Φ2(X

8) = X8 + 1.
It is a classical result that if n has at most two distinct odd prime factors, then A(n) = 1,

cf. Lam and Leung [27]. The first non-trivial case arises where n has precisely three distinct
odd prime divisors and thus is of the form n = peqfrg, with 2 < p < q < r prime numbers.
By repeatedly invoking the first property above we have A{peqfrg} = A{pqr}, and hence it
suffices to consider only the case where e = f = g = 1 and so n = pqr. This motivates the
following definition.

Definition 4.1. A cyclotomic polynomial Φn is said to be ternary if n = pqr, with 2 < p <
q < r primes. In this case we call the integer n ternary.

An important subclass of these polynomials where we have even more control are the optimal
ternary cyclotomic polynomials.

Definition 4.2. A ternary cyclotomic polynomial Φpqr is said to be optimal if its coefficients
assume p+ 1 different values, that is A{pqr} has cardinality p+ 1.

The usage of the word optimal comes from the fact that p + 1 is the maximum number of
distinct coefficients that can occur.

A special property of ternary cyclotomic polynomials is that consecutive coefficients differ
by at most one (proven in [20]). Here an example:

Φ11·13·17(X) = ....−X672 − 2X673 − 2X674 − 2X675 − 3X676 − 4X677 − 3X678 . . .

It follows that A{n} consists of consecutive integers if n is ternary (this is not true in general!).
For example, A{11 · 13 · 17} = {−4,−3, . . . , 1, 2, 3}, as can be read off from Table 5. In the
ternary case the behaviour of the coefficients is both non-trivial, but also understood so well,
that we can use this to our benefit. This is not the case if n has four or more distinct odd
prime factors. For optimal ternary cyclotomic polynomials the situation is even more under
control, since if we know that apqr(k1) = b and apqr(k2) = a, with b − a = p, then b must be
the maximal coefficient and a the minimal one.

4.1. The family Φpqr with p fixed. In this subsection we briefly discuss other research on
ternary coefficients.

The height A(n) is unbounded if n ranges over the ternary integers. However, if we restrict
to ternary n having a prescribed smallest prime factor P (n) = p, we get a bounded quantity
M(p). The definition of M(p) can be stated more explicitly as

M(p) = max{A(pqr) : 2 < p < q < r},
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p 3 5 7 11 13 17 19 23 29 31 37 41
(p+ 1)/2 2 3 4 6 7 9 10 12 15 16 18 21
M(p) ≥ 2 3 4 7 8 10 12 14 18 19 22 26
b2p/3c 2 3 4 7 8 11 12 15 19 20 24 27

Table 3. Some numerical evidence for the corrected Sister Beiter conjecture

where p is a fixed odd prime and q, r range over the primes satisfying r > q > p. As the
definition of M(p) involves infinitely many cyclotomic polynomials, it is not clear whether
there exists a finite procedure to determine it. Duda [15], during his internship at MPIM,
provided such a procedure. It reduces the computation of M(p) to the determination of the
maximum value of A(n), with n running through a finite set of ternary integers pqr. As the
n involved are huge, the procedure is unfortunately not practical. It is a major open problem
to find a practical procedure leading to explicit values of M(p).

In 1971, Möller [35] gave a construction showing that M(p) ≥ (p+ 1)/2 for p > 5. On the
other hand, in 1968, Sister Marion Beiter [5] had conjectured thatM(p) ≤ (p+1)/2 and shown
that M(3) = 2 [7], which on combining leads to the conjecture that M(p) = (p + 1)/2 for
p > 2. The bound of Möller together with Beiter’s [6] bound M(5) ≤ 3 shows that M(5) = 3.
Zhao and Zhang [47] showed that M(7) = 4. Thus Beiter’s conjecture holds true for p ≤ 7.
Gallot and Moree [21] showed that Beiter’s conjecture is false for every p ≥ 11. Moreover,
they showed that for every ε > 0 we have M(p) ≥ (2/3 − ε)p and conjectured that always
M(p) ≤ 2p/3, dubbing this conjecture the “corrected Sister Beiter conjecture”.

The true behavior ofM(p) is much more complicated than suggested by Beiter’s conjecture.
For one, it is related to the distribution of inverses modulo primes p. Given any integer a
coprime to p, any integer b with ab ≡ 1(mod p) is its modular inverse. The collection of points
(a, b) with 0 < a, b < p is called the modular hyperbola; for a survey see Shparlinski [42].
The distribution of points on the modular hyperbola is traditionally investigated using the
Kloosterman sum K(a, b; p), which is defined as

K(a, b; p) =
∑

1≤x≤p−1
e2πi(ax+bx)/p,

with x any modular inverse of x modulo p. (As an aside we note that the Dutch word
kloosterman means “cloister man" and thus the cloister man sums can be used to investigate
a conjecture of a nun. Honi soit qui mal y pense! Reader beware: too intense study of these
sums and their applications can lead to “Kloostermania” [34].) By a fundamental result of
Weil we have |K(a, b; p)| ≤ 2

√
p, which can be used to show that M(p) > 2p/3 − 3 p3/4 log p

(see Cobeli et al. [12]).
In Figure 2 we display part of the modular hyperbola mod 241 that is relevant in constructing

a sharp lower bound for M(241) in the work of Gallot and myself. It gives integer pairs (a, b)
with 1 ≤ a, b ≤ 240 in certain triangles with ab ≡ 1(mod 241). For a detailed analysis of this
construction, see Cobeli et al. [12].

5. Our results on the possible maximum coefficient

In this section I finally return to Question 2.1 and discuss the recent progress made on
it in my paper with Kosyak, Sofos and Zhang [26]. It relies on a construction found by my
former intern Eugenia Roşu (using only paper!). For certain primes p it improves on an
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Figure 2. M(241) estimation relevant part of modular hyperbola mod 241.

earlier construction by Gallot and myself (found using paper... and computer). The original
formulation is quite lengthy, however for us the following watered down version will do.

Theorem 5.1. (Moree and Roşu [38]). Let m ≥ 0 be an arbitrary integer and p ≥ 4m2+2m+3
be any prime. Then there exist primes q1, r1, q2, r2 such that Φpq1r1 and Φpq1r1 have maximum
coefficient (p− 1)/2−m, respectively (p+ 1)/2 +m.

This shows that the set of cyclotomic maximum coefficients we can obtain certainly contains

R : =
{p− 1

2
−m : p is a prime, m ≥ 0, 4m2 + 2m+ 3 ≤ p

}
∪
{p− 1

2
+m : p is a prime, m ≥ 0, 4m2 + 2m+ 3 ≤ p

}
.

We conjecture that this set equals the set of all natural numbers, thus implying that each
natural number can arise as maximum coefficient of some cyclotomic polynomial. Roughly
speaking R is a union of integers in intervals of the form ((p−1)/2−√p/2, (p−1)/2 +

√
p/2),

and thus if the gaps between successive primes are always sufficiently small, all natural integers
will be covered. Working out the technicalities one arrives at the following result.

Theorem 5.2. If pn+1 − pn <
√
pn +

√
pn+1 holds for pn ≤ 2h, then the integers 1, 2, . . . , h

are in R. Andrica’s conjecture, Conjecture 3.1, implies that every natural number occurs as
the maximum coefficient of some ternary cyclotomic polynomial.

A lot of numerical work on large gaps has been done (see the website [39]). This can be
used to infer that the inequality in Theorem 5.2 holds for pn ≤ 2 · 263 ≈ 1.8 · 1019, leading to
the following corollary.

Corollary 5.3. Every integer up to 9 · 1018 occurs as the maximal coefficient of some ternary
cyclotomic polynomial.

If holes in the set R appear, it is when pn+1 − pn ≥
√
pn +

√
pn+1. The number of natural

numbers up to x that are not in R (if any), is close to∑
pn≤2x

dn≥
√
pn+
√
pn+1

(dn −
√
pn −

√
pn+1) ≤

∑
pn≤2x

dn≥
√
pn+
√
pn+1

dn ≤
∑
pn≤2x
dn≥
√
pn

dn.



10 PRIME GAPS AND CYCLOTOMIC POLYNOMIALS

h p q

3 5 11
5 13 53
55 139 7507
117 263 30509
219 449 97883

Table 4. Smallest choice of p ≥ 2h− 1 with q := 1 + (h− 1)p prime

Now the reader might be reminded of (3.2). An easy climb on the shoulders of giants in
analytic number theory then leads to the following result.

Theorem 5.4. For any fixed ε > 0, there exists a constant Cε such that the number of positive
integers ≤ x that do not occur as a height of a ternary cyclotomic polynomial is at most
Cεx

3/5+ε. Under the Riemann Hypothesis this number is at most Cεx1/2+ε.

5.1. A different approach. Let h > 1 be odd. If there exists a prime p ≥ 2h− 1 such that
q := 1 + (h − 1)p is a prime too, then for some prime r > q it can be shown that Φpqr has
maximum coefficient h. This is a consequence of work of Gallot, Moree and Wilms [22] and
involves ternary cyclotomic polynomials that are not optimal.

For some choices of h, p and q see Table 4.

Conjecture 5.5. Let h > 1 be any odd integer. There exists a prime p ≥ 2h − 1, such that
1 + (h− 1)p is a prime too.

This conjecture is a consequence of the widely believed Bateman–Horn conjecture [1], which
implies that, given an arbitrary odd integer h > 1, there are infinitely many primes p such
that 1 + (h− 1)p is a prime too.

Theorem 5.6. If Conjecture 5.5 holds true, then every positive odd natural number occurs as
maximal coefficient of some ternary cyclotomic polynomial. Unconditionally a positive fraction
of all odd natural numbers occur as maxima.

Our proof of the second assertion makes use of deep work of Bombieri, Friedlander and
Iwaniec [8] on the level of distribution of primes in arithmetic progressions with fixed residue
and varying moduli. Although the unconditional statement in Theorem 5.6 is surpassed by the
unconditional statement in Theorem 5.4, the proof of Theorem 5.6 is, in a way, ‘orthogonal’
to the one of Theorem 5.4; it thus has the potential of working for variations of the problem
where the method behind Theorem 5.4 would fail. Interestingly, like our prime gap criterion,
it rests on a variation of a certain very well studied problem involving prime numbers. Both
prime number questions are, however, quite different.

6. Concluding remarks

In [26] we also obtain the same type of results as described in the previous section for the
minimum coefficient and for the height. In case of the height a conjecture slightly stronger
than Andrica’s enters the game.

Conjecture 6.1. Every natural number occurs as the height of some cyclotomic polynomial.
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height p q r k sign diff.
1 3 7 11 0 + 2
2 3 5 7 7 − 3
3 5 7 11 119 − 5
4 11 13 17 677 − 7
5 11 13 19 1008 − 9
6 13 23 29 2499 − 10
7 17 19 53 6013 + 14
8 17 31 37 5596 − 14
9 17 47 53 14538 − 17
10 17 29 41 4801 − 17

Table 5. Minimal ternary examples with prescribed height

We demonstrate this in Table 5, which gives the minimum ternary integer n = pqr with
p < q < r such that Φn has height m for the numbers m = 1, . . . , 10. The integer k has
the property that apqr(k) = ±m, with the sign coming from the sixth column. The seventh
column records the difference between the largest and smallest coefficient and is in bold if
this is optimal, that is, if the difference equals p (compare Definition 4.2). See [26] for the
continuation of the table up to m = 40.

Prime differences make their appearance since in our approach we work with ternary cy-
clotomic polynomials. One would want to work with Φn with n having at least four prime
factors; however, this leads to a loss of control over the behaviour of the coefficients in general
and the maximum, minimum and height in particular. Prime number properties play a true
role if one asks for the possible heights A(n) and extrema of A{n} with n restricted to ternary
integers.

7. Further reading

Ribenboim’s book [41] gives a wealth of results on prime numbers and their distribution. It
can be thought of as a number-theoretical version of the Guinness Book of Records. Also some
of the underlying mathematics is explained. For a computational history of prime numbers
and Riemann zeros see [37]. The truly courageous might have a go at the monumental book
of Landau [28].
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