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Which Hilbert series are possible

Natalia Iyudu and Stanislav Shkarin

Abstract

It is well-known that if A is a finitely generated degree-graded algebra and there is n ∈ N

such that dimAn 6 n, then A has linear growth. More specifically, the sequence of dimensions
(dimAm)m∈N is bounded. Having in mind applications to a number of classification problems,
we characterize all possible sequences (dimAn, dimAn+1, . . . ) in the case dimAn 6 3 and n > 3.
It turns out that there are surprisingly few options and we list them all. Thus by characterising
all Hilbert series with a coefficient at most three, we specify a class of Hilbert series which are
indeed possible.

MSC: 17A45, 16A22

Keywords: Gröbner basis, Quadratic algebras, Finitely presented algebras, Hilbert series, Gelfand–Kirillov

dimension

1 Introduction

We start by recalling relevant definitions. Throughout this article K is fixed field. All algebras we
deal with are unital associative algebras over K and all vector spaces are over the field K. The
only dimension we use (always denoted dim ) is the dimension of vector spaces over K. If B is a
Z+-graded vector space, Bm stands for the mth component of B. We always assume that each Bm

is finite dimensional, which allows to consider the Hilbert series of B:

HB(t) =
∞∑

m=0
dimBm tm ∈ Z[[t]].

If V is an n-dimensional vector space over K, then F = F (V ) is the tensor algebra of V . For any
choice of a basis X = {x1, . . . , xn} in V ,

F is naturally identified with the free algebra K〈X〉,

always assumed to be degree graded (=all elements of X are of degree 1.)

The set of all words (including the empty word 1) in the alphabet X is denoted 〈X〉.

For each n, we denote
〈X〉n = {u ∈ 〈X〉 : degu = n}.

For a quotient A = F/I (I is a two-sided ideal in F different from F ), I is called the ideal of

relations. If an ideal I in F is degree-graded (=coincides with the linear span of its homogeneous
elements), then A is naturally degree-graded .

If R is a subspace of the n2-dimensional space V 2 = V ⊗ V , then the quotient of F (V ) by the
ideal I(V,R) generated by R is called a quadratic algebra (see the book [3] for a vast exposition
on quadratic algebras) and denoted A(V,R). For any choice of bases x1, . . . , xn in V and g1, . . . , gk
in R, A(V,R) is exactly the algebra presented by generators x1, . . . , xn and relations g1, . . . , gk.

There is a well-known result [4] asserting that if A is a finitely generated degree-graded algebra
and there is n ∈ N such that dimAn 6 n, then A has linear growth. More specifically, the sequence
of dimensions (dimAm)m∈N is bounded. As nice as this general result is, it is not sufficient for some
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applications. We would like to say a lot more about HA in the case when dimAn is particularly
small (at most 3). For the sake of brevity, we shall introduce the following notation:

H
[n]
A = (dimAn,dimAn+1,dimAn+2, . . . ).

That is, H
[n]
A is the sequence of coefficients of the Hilbert series of A starting from the one with tn.

Next, we denote
m := m,m,m, . . .

That is m is the constant m sequence: m repeats infinitely many times. We shall use it in the
following way: 563 stands for the sequence 5, 6, 3, 3, 3, . . .

Theorem 1.1. Let n ∈ N and A be a finitely generated degree graded algebra such that dimAn = 1
and the ideal of relations of A is generated by some homogeneous elements of degree at most n.
Then

H
[n]
A ∈ {1, 10}.

Moreover, H
[n]
A = 1 if n = 1.

Theorem 1.2. Let n > 2 and A be a finitely generated degree graded algebra such that dimAn = 2
and the ideal of relations of A is generated by some homogeneous elements of degree at most n.
Then

H
[n]
A ∈ {2, 21, 210, 20}.

Theorem 1.3. Let n > 3 and A be a finitely generated degree graded algebra such that dimAn = 3
and the ideal of relations of A is generated by some homogeneous elements of degree at most n.
Then

H
[n]
A ∈ {34, 3, 3321, 32, 321, 3210, 320, 31, 310, 30}.

Moreover,

H
[n]
A ∈ {34, 3, 32, 321, 3210, 320, 31, 310, 30} if n > 4.

The above theorems can not be improved as asserted by the following result.

Theorem 1.4. For every n > 2, each of the sequences 10, 1, 20, 21, 210, 2, 30, 310, 31, 320,

321, 32 and 3 occurs as H
[n]
A for a monomial quadratic algebra A. Moreover, for every n > 3,

the sequence 3210 is also among the sequences H
[n]
A for monomial quadratic algebras A, while the

sequence 34 is among H
[n]
A for monomial algebras A, whose (monomial) relations are of degree at

most n. Finally, there is an algebra A given by homogeneous relations of degree at most three for

which H
[3]
A = 3321.

1.1 Gröbner bases

The concept of a Gröbner basis plays a key role in our proofs. We recall its main features. Let
A = F (V )/I and X be a linear basis in V . A well-ordering 6 on 〈X〉 is said to be compatible

with mutiplication if

1 6 u for all u ∈ 〈X〉 and u 6 v =⇒ uw 6 vw, wu 6 wv for all u, v, w ∈ 〈X〉.

If we fix a well-ordering 6 on 〈X〉 compatible with multiplication, we can talk of the leading
monomial f of a non-zero f ∈ K〈X〉 (=the biggest with respect to 6 monomial, which features in
f with non-zero coefficient). A subset G of an ideal I in K〈X〉 is called a Gröbner basis of I
if 0 /∈ G, G generates I as an ideal and for each non-zero f ∈ I, there is g ∈ G such that g is a
subword of f . That is the two sets {g : g ∈ G} and

{
f : f ∈ I \{0}

}
generate the same ideal. Such

a G is by no means unique: for one, G = I \ {0} fits the bill. However, a couple of extra conditions
pinpoint G. Namely, if we additionally assume that a Gröbner basis G satisfies
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• for every two distinct f, g ∈ G, f is not a subword of any monomial featuring in g;

• every f ∈ G is monic: the f -coefficient in f equals 1,

then G becomes unique. Such a basis is called the reduced Gröbner basis of I. Note that I
possesses a finite Gröbner basis if and only if its reduced Gröbner basis is finite.

The non-commutative Buchberger algorithm [1] applied to a set of defining relations (any col-
lection of elements of I generating I as a two-sided ideal) yields the reduced Gröbner basis for I.
In general, one of the problems though is that (unlike for the commutative case) the procedure
does not have to terminate in finitely many steps. What is even worse, there is no a-priory way to
say if it does (the problem of recognizing finiteness of the reduced Gröbner basis is algorithmically
unsolvable). Furthermore, everything is highly sensitive to the choice of the generators and the
ordering.

The words u ∈ 〈X〉, which have no leading monomials of elements of the ideal I of relations of
A as subwords, are called normal words for A. It is easy to see that normal words form a linear
basis in A. Clearly, if G is a Gröbner basis for I, then a word u ∈ 〈X〉 is normal if and only if it
has no leading monomials of elements of G as subwords.

For the sake of brevity, we shall introduce the following concept. An order 6 on 〈X〉 is called
admissible if it is a well-ordering compatible with multiplication respecting the degree in the
following sense: u < v if degu < deg v. In most cases, when choosing an admissible order we
opt for the left-to-right or right-to-left degree lexicographical orders corresponding to some
total order on X. Since this is a veritable mouthful, we shall abbreviate these orders as

the LR order and the RL order ,

respectively.

1.2 Examples: Proof of Theorem 1.4

As Theorem 1.4 states the existence of a bunch of examples and as it is frankly easy but entertaining,
we deal with it right away. We start with very simple examples, used as building blocks later.
Assume that A and B are finitely presented degree graded K-algebras given by generating sets XA

and XB and defining relation sets RA ⊂ K〈XA〉 and RB ⊂ K〈XB〉, where XA and XB are assumed
disjoint. Then we can consider the algebra C given by the generating set XC and the relation set
RC , where

XC = XA ∪XB and RC = RA ∪RB ∪ {ab : a ∈ XA, b ∈ XB} ∪ {ba : a ∈ XA, b ∈ XB}.

We call C the direct sum of A and B, which constitutes a slight abuse of notation because the
degree 0 component of C. However, Cn is the direct sum of the vector spaces An and Bn for every
n > 1. In particular, the Hilbert series of these three algebras satisfy HC = HA +HB − 1. Note
also that C is quadratic if A and B are quadratic and that C is a monomial algebra if A and B
are monomial algebras.

Example 1.5. The free algebra S = K〈x〉 = K[x] on one generator satisfies dimSn = 1 for each

n ∈ N.

Example 1.6. For each j ∈ N and each n > max{j, 2}, let A = A(n,j) be the monomial quadratic

algebra given by n + j − 1 generators x1, . . . , xn+j−1 and relations xpxq = 0 if p > q or q − p > 2.

Then the sequence H
[n]
A coincides with the sequence (j, j − 1, . . . , 1, 0, 0, . . . ).

Proof. For each r ∈ N satisfying r 6 n + j − 1, Ar is easily seen to be spanned by the linearly
independent monomials xmxm+1 . . . xm+r−1 for 1 6 m 6 n + j − r, while Ar = {0} for r > n + j.
The result follows.
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Example 1.7. Let n > 2 and B be the quadratic algebras given by n + 2 generators z, x0, . . . xn
and and monomial quadratic relations xjxk = 0 if k 6 j or k − j > 2, xjz = 0 for 0 6 j 6 n,

z2 = 0 and zxj = 0 for j 6= 1. Then H
[n]
B = 320.

Proof. It is easy to see Now Bn is spanned by x0 . . . xn−1, zx1 . . . , xn−1 and x1 . . . xn, Bn+1 is
spanned by x0 . . . xn and zx1 . . . xn, while Bn+2 = {0}.

Remark 1.8. Taking direct sums of (sometimes more than one) copies of S of Example 1.5 and
of copies of A(n,j) of Example 1.6 with j ∈ {1, 2} and throwing in the algebra B of Example 1.7,

we see that the sequences 10, 1, 20, 21, 210, 2, 30, 310, 31, 320, 321, 32 and 3 occur as H
[n]
A for a

monomial quadratic algebras A. The algebra A(n,3) of Example 1.6 shows that the sequence 3210

is also among the sequences H
[n]
A for monomial quadratic algebras A provided n > 3.

It remains to deal with two sequences 34 and 3321.

Example 1.9. Let n > 2 and C be the algebra given by 3 generators x, y, z and monomial relations

zx = yz = x2 = y2 = xy = yx = 0 and xzn−2y = 0. Then H
[n]
C = 34.

Proof. It is easy to see that Cn is spanned by three linearly independent monomials zn, xzn−1

and zn−1y, while all other degree n monomials vanish in C. It follows that for each m > n, Cm is
spanned by four linearly independent monomials zn+1, xzn, zny and xzn−1y. The result follows.

Example 1.10. Let D be the algebra given by 2 generators z and s and 5 cubic relations zs2 =

s2z = s3 = sz2 = 0 and szs = z2s. Then H
[n]
D = 3321.

Proof. We set z < s and equip 〈z, s〉 with the LR order. Computing the reduced Gröbner basis of
the ideal of relations of D, we easily see that it consists of the defining relations zs2, s2z, s3, sz2

and szs− z2s together with just one extra element z4s. This easily yields HD(t) = 1 + 2t+ 4t2 +

3t3 + 3t4 + 2t5 + t6 + t7 + t8 + . . . and therefore H
[n]
D = 3321.

As Theorem 1.4 follows immediately from Remark 1.8 and Examples 1.9 and 1.10, we declare it
proven and forget about it from now on.

1.3 Our tools

We would like to mention the following fact, which simplifies our life considerably.

Remark 1.11. Let A be a finitely generated degree graded algebra and n ∈ N be such that the
ideal of relations of A is generated by its elements of degree 6 n. Let also V = A1 and I ⊂ F (V )
be the ideal of relations of A. Consider the algebra B = F/J , where J is the ideal generated by
In. It is easy to see that Im = Jm for all m > n. Hence dimAm = dimBm for all m > n. Thus in
Theorems 1.1, 1.2 and 1.3, one can, without loss of generality, assume that the ideal of relations of
A is generated by homogeneous elements of degree exactly n.

The proof of Theorems 1.1, 1.2 and 1.3 requires considering a vast number of cases. We split
considerations in different ways. One of the ways we sort possibilities for A is by the following pair
of integer isomorphism invariants. Let A be a finitely generated degree graded algebra and n ∈ N .
We denote

λ(A,n) = max
x∈A1

dimxAn−1 and ρ(A,n) = max
x∈A1

dimAn−1x, (1.1)

where xAn−1 and An−1x are considered as subspaces of A. Clearly,

1 6 λ(A,n), ρ(A,n) 6 dimAn, provided An 6= {0}.
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One way to whittle down options is to use the general position type arguments. Since for a
finitely presented K-algebra A replacing K by a field extension F does not change the Hilbert series
(it swaps A with the F-algebra F⊗K A), we can and will always assume that

the field K is infinite.

This allows us, on a number of occasions, to talk about generic elements of a finite dimensional
vector space W over K. Namely, we say that generic x ∈ W have a property P if the set of x ∈ W
for which P fails is contained in a proper algebraic variety. Equivalently P holds for generic x if it
holds for all elements of a non-empty Zariski open set. Since K is infinite, if each of finitely many
properties holds for generic x ∈ W , then all of them hold simultaneously for generic x ∈ W . Note
also that if it is clear that the set of x for which a certain property is satisfied is Zariski open, then
either this property is satisfied for no x at all or it is satisfied for generic x. We shall use these
observations repeatedly and without extra comments.

2 Possible normal words

We start by listing all possibilities for the set of degree n normal words in the relevant cases. In
this section we shall also list degree n normal words occurring for generic choice of generators.

Lemma 2.1. Let A be a finitely generated degree graded algebra, k, n ∈ N , n > k and 1 6 k 6 3.
Assume also that dimAn = k, dimAn+1 > k, X is a linear basis in V = A1 and 〈X〉 is equipped

with an admissible order. Then the set of normal words for A of degree n (there are exactly k
of them) have to be of one of the forms presented in the following table, where a, b, c are pairwise

distinct elements of X :

Label k degree n normal words Label k degree n normal words

N1.1 1 an N3.10 3 . . . ababab, . . . bababa, . . . ababaa

N2.1 2 an, bn N3.11 3 an, bn, ban−1

N2.2 2 abab . . . , baba . . . N3.12 3 an, bn, an−1b

N2.3 2 an, an−1b N3.13 3 an, can−1, an−1b

N2.4 2 an, ban−1 N3.14 3 an, ban−1, an−1b

N3.1 3 an, bn, cn N3.15 3 aabaab . . . , abaaba . . . , baabaa . . .

N3.2 3 an, bcbc . . . , cbcb . . . N3.16 3 an, ban−1, can−1

N3.3 3 abcabc . . . , bcabca . . . , cabcab . . . N3.17 3 an, ban−1, cban−2

N3.4 3 ababab . . . , bababa . . . , cabab . . . N3.18 3 an, an−1b, an−1c

N3.5 3 an, bn, can−1 N3.19 3 an, an−1b, an−2bc

N3.6 3 . . . ababab, . . . bababa, . . . ababac N3.20 3 an, ban−1, aban−2

N3.7 3 an, bn, an−1c N3.21 3 an, an−1b, an−2ba

N3.8 3 an, abab . . . , baba . . . N3.22 3 an, ban−1, b2an−2

N3.9 3 ababab . . . , bababa . . . , aabab . . . N3.23 3 an, an−1b, an−2b2

Proof. Let u(1), . . . , u(k) be all degree n normal words. Clearly, u(j) are pairwise distinct. Since
dimAn+1 > k, there are at least k normal words of degree n+ 1. Since every subword of a normal
word is normal, there exists k-element set M ⊂ {1, . . . , k}2 such that for every (j,m) ∈ M , v =
v(j,m) ∈ 〈X〉n+1 is a normal word for A and satisfies v1 . . . vn = u(j) and v2 . . . vn+1 = u(m). Now M
can be interpreted as a directed graph on k vertices 1, . . . , k with exactly k edges (loops are allowed,
multiple edges are forbidden). As k 6 3, one can easily run through all possible (isomorphism classes

of) graphs like that and solve the corresponding systems u
(j)
2 . . . u

(j)
n = u

(m)
1 . . . u

(m)
n−1 of symbolic

equations, which yields only the options from the above table. The following picture shows the
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complete list of these graphs. To the right of each graph, labels of corresponding solutions from the
above table are written (the word ’nothing’ indicates that no solutions correspond to the graph).

N1.1 N2.1 N2.2 N2.3 N2.4

N3.1 nothing N3.7, N3.12

N3.7, N3.12 N3.19, N3.21, N3.23 N3.17, N3.20, N3.22

N3.18 N3.16 N3.13, N3.14 N3.13, N3.14

N3.13, N3.14 N3.13, N3.14 N3.2, N3.8

nothing N3.6, N3.10 N3.4, N3.9 N3.3, N3.15

Note that one has to use the condition n > k. If we drop it, much more solutions occur including
solutions corresponding to graphs with ’nothing’ to the right of them.

2.1 Generic normal words and the structure of the proofs

Let A be a finitely generated degree graded algebra and let q = dimA1. For a totally ordered tuple
Y (possible empty) of linearly independent elements of A1, we denote by the symbol

Ω(A,Y )

the set of all totally ordered linear bases X in A1 containing Y as an initial segment. The latter
means that the order on Y induced from X coincides with the original order on Y and that y < x
whenever y ∈ Y , x ∈ X \ Y . Clearly, the set

Ω(A) := Ω(A,∅)

is just the set of all ordered linear bases in A1. If Y = {y1, . . . , ym} with the order y1 < . . . < ym,
we write

Ω(A, y1, . . . , ym)

when referring to Ω(A,Y ). This notation is convenient because it contains the description of the
order on Y .

Note that if q = dimA1, then a generic element (x1, . . . , xq) of A
q
1 provides a linear basis in A1.

This allows us to speak of generic bases in A1. One of the ways to reduce the number of options to
consider is to figure out what happens under the assumptions of Lemma 2.1 if the set of generators
X is a generic ordered basis in A1. More specifically, we want to know which of the normal word
patterns listed in Lemma 2.1 are the patterns occurring for generic basis with respect to, say, the
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left-to-right degree-lexicographical order. As described above, we say that a pattern (N3.23, for
example) occurs for a generic basis X if the set of X, for which it happens contains a non-empty
Zariski open subset of Aq

1.
The following lemma collects information of this type. For the sake of brevity, from now on we

shall use the following notation. Once a degree graded A = F (V )/I, a linear basis X in V = A1

and an admissible order on 〈X〉 are fixed, we denote

NWn = the set of all degree n normal words.

Lemma 2.2. Let 1 6 k 6 3, n > max{2, k} and let A be a finitely generated degree-graded algebra

such that dimAn = k and dimAn+1 > k. For an ordered basis X in A1, we denote the corresponding

LR and RL orders on 〈X〉 by < and ≺, respectively. Then for generic X = (x1, x2, . . . ) ∈ Ω(A)
the following statements hold:

(G1) If λ(A,n) = ρ(A,n) = 1, then with respect to both < and ≺, NWn = {xn1 , . . . , x
n
k} (patterns

N1.1, N2.1 and N3.1);

(G2) If k = 2 and λ(A,n) = 2, then with respect to <, NWn = {xn1 , x
n−1
1 x2} (N2.3);

(G3) If k = 2 and ρ(A,n) = 2, then with respect to ≺, NWn = {xn1 , x2x
n−1
1 } (N2.4);

(G4) If k = 3 and max{λ(A,n), ρ(A,n)} = 2, then with respect to both < and ≺,

NWn = {xn1 , x
n−1
1 x2, x2x

n−1
1 } (N3.14);

(G5) If k = 3 and λ(A,n) = 3, then with respect to <, NWn = {xn1 , x
n−1
1 x2, w}, where

w ∈ {xn−1
1 x3, x

n−2
1 x2x1, x

n−2
1 x22} (N3.18, N3.21 and N3.23);

(G6) If k = 3 and ρ(A,n) = 3, then with respect to ≺, NWn = {xn1 , x2x
n−1
1 , w}, where

w ∈ {x3x
n−1
1 , x1x2x

n−2
1 , x22x

n−2
1 } (N3.16, N3.20 and N3.22).

We shall prove the above lemma in the following section. The punch-line though is that it allows
to significantly reduce the number of options to consider. Item (G4) is a pleasant surprise: only
one pattern of normal words. We have multiple options in (G5) and (G6). A priori, this could
mean we could reduce the spectrum of options further by showing that some of the options do not
occur generically. Unfortunately, this is a no go: each of the three options in (G5) and in (G6)
occurs as the normal word pattern for generic basis in A1 for some A.

The proof of Theorems 1.1, 1.2 and 1.3 is structured in the following way:

• Prove Lemma 2.2;

• Consider the normal word patterns emerging from Lemma 2.2 one at a time.

2.2 Proof of Lemma 2.2

Lemma 2.3. Let 1 6 k 6 3, n > max{2, k} and let A be a finitely generated degree-graded algebra

such that dimAn = k and dimAn+1 > k. Then xn 6= 0 in A for generic x ∈ A1.

Proof. Assume the contrary: xn = 0 for all x ∈ A. First, we show that this assumption implies

x3An−3 = An−3x
3 = {0} for every x ∈ A1 provided n > 3. (2.1)

Assume the contrary. Then there is a ∈ A1 such that either a3An−3 or An−3a
3 is non-zero. The two

options are obviously equivalent (they swap when we pass to the opposite multiplication). Thus
we can assume that a3An−3 6= {0}. Now for X ∈ Ω(A, a) with the corresponding LR order on 〈X〉,
the condition a3An−3 6= {0} implies that at least one degree n normal word must start with a3.
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Looking at the possibilities for degree n normal words provided by Lemma 2.1, we see that then
an must be a normal word. Hence an 6= 0 in A, which is incompatible with the assumption xn = 0
for all x ∈ A. Hence (2.1) must be satisfied.

Next, we show that

x2An−2 6= {0} and An−2x
2 6= {0} in A for generic x ∈ A1. (2.2)

Indeed, assume the contrary. Then either x2An−2 = {0} for all x ∈ A1 or An−2x
2 = {0} for all

x ∈ A1. Again the two statements reduce to one another by passing to the opposite multiplication.
Thus we can assume that x2An−2 = {0} for all x ∈ A1. Let X ∈ Ω(A) and < be the corresponding
LR order on 〈X〉. Lemma 2.1 provides all possible forms of the degree n normal words. Since
x2An−2 = {0} for all x ∈ A1, none of the normal words can start with x2 for x ∈ X. This excludes
all options except for N2.2, N3.3, N3.4, N3.6 and N3.10. For each of these options, we either have
two degree n normal words starting with ab and ba respectively for distinct a, b ∈ X or (for N3.3)
the three normal words start with ab, bc and ca respectively for pairwise distinct a, b, c ∈ X. It
follows that there is a normal word w of degree n for which the first letter is greater than the second
one: w = xyw′ with x > y. Since xy + yx = (x+ y)2 − x2 − y2 and (x+ y)2w′ = x2w′ = y2w′ = 0,
we have (xy + yx)w′ = 0 in A. Hence w = −yxw′ in A. Since w is a normal word and yxw′ < w,
we arrive to a contradiction. This contradiction proves (2.2).

Now let z ∈ A1 be such that z2An−2 6= {0}. Then for every X ∈ Ω(A, z) with 〈X〉 carrying
the corresponding LR order, at least one degree n normal word must start with z2. Since (as
we have assumed) xn = 0 in A for all x ∈ A1, none of degree n normal words is the nth power
of an element of X. Of all the possibilities offered by Lemma 2.1 only N3.9 and N3.15 have the
desired properties. First, assume the degree n normal words are of the form N3.15. Then they are
w = yzzyzz · · · = yzzw′, zyzzyz . . . and zzyzzy . . . . Note that (z + αy)3 − z3 − α3y3 = α(z2y +
zyz+yz2)+α2(y2z+yzy+zy2) for all α ∈ K. Since our K is infinite, it follows that z2y+zyz+yz2

is a linear combination of cubes. According to (2.1), we then have (z2y + zyz + yz2)w′ = 0 and
therefore w = −zyzw′ − z2yw′. Since zyzw′ < w, z2yw′ < w and w is a normal word, we arrive to
a contradiction. This contradiction eliminates normal words shape N3.15 from our considerations
leaving N3.9 only. Hence the degree n normal words are yzyz . . . , zyzy . . . and z2yzyz . . . for some
y ∈ X \ {z}. In particular, yzyz . . . , zyzy . . . and z2yzyz . . . are linearly independent in A (and
therefore form a basis in An) for generic y, z ∈ A1. Hence

for generic y, z ∈ A1, for every X ∈ Ω(A, z, y) with 〈X〉 carrying the
corresponding LR order, the degree n normal words are yzyz . . . , zyzy . . . and z2yzyz . . .

(2.3)
Applying the same argument to the RL order, or alternatively applying (2.3) to A with the opposite
multiplication, we get

for generic y, z ∈ A1, for every X ∈ Ω(A, z, y) with 〈X〉 carrying the
corresponding RL-order, the degree n normal words are yzyz . . . , zyzy . . . and . . . zyzyz2.

(2.4)
By (2.3) and (2.4), for generic y, z ∈ A1, w1 = yzyz . . . and w2 = zyzy . . . are linearly indepen-

dent in A and each of the four triples (w1, w2, v1), (w1, w2, v2), (w1, w2, v3) and (w1, w2, v4) forms
a linear basis in An, where v1 = z2yzyz . . . , v2 = y2zyzy . . . , v3 = . . . zyzyz2 and v4 = . . . yzyzy2.
Pick y, z ∈ A1 having all these properties and choose a linear basis X in A1 containing y and z.
Consider two total orders on X such that z is the smallest element and y is second smallest for the
first one, while y is the smallest element and z is second smallest for the second one. Now we have
four admissible orders on 〈X〉: the LR and RL orders corresponding to the two orders on X. We
denote the LR one satisfying z < y by <1, the LR one satisfying y < z by <2, the RL one satisfying
z < y by <3, the RL one satisfying y < z by <4. By the above observations, the degree n normal
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words with respect to <j are w1, w2 and vj for 1 6 j 6 4. Since the only words of degree n+1 with
both degree n subwords being normal are words of the same form, the inequality dimAn+1 > 3
yields that dimAn+1 = 3 and that the degree n+ 1 normal words exactly as described above only
one letter longer. On our way to a contradiction we consider the following two cases.

Case 1: n is even. Then n = 2k + 2 for some k ∈ N, w1 = (yz)k+1 and w2 = (zy)k+1. We
take the third normal word v4 = (yz)ky2 with respect to <4 and write it as a linear combination
of normal words with respect to <1:

(yz)ky2 = p(yz)k+1 + q(zy)k+1 + rz2(yz)k in A, where p, q, r ∈ K.

By (2.1), An−3y
3 = {0} and z3An−3 = {0}. Multiplying the equality in the above display by y on

the right and these facts, we get

0 = p(yz)k+1y+qz(yz)ky2+rz2(yz)ky = p(yz)k+1y+qz(p(yz)k+1+q(zy)k+1+rz2(yz)k)+rz2(yz)ky
= p(yz)k+1y + (q2 + r)z(yz)k+1 + pq(zy)k+1z.

Since three monomials in the last line are the three degree n+1 normal words with respect to <1,
we have p = pq = q2 + r = 0. Hence p = 0 and r = −q2 and therefore

(yz)ky2 = q(zy)k+1 − q2z2(yz)k in A, where q ∈ K.

Now we multiply this equality by z on the right:

(yz)ky2z = q(zy)k+1z − q2z2(yz)kz.

Since y2z+ yzy+ zyy is a linear combination of cubes and An−3x
3 = 0 for all x ∈ A1, we have that

(yz)ky2z + (yz)kyzy + (yz)kzy2 = 0. Plugging this into the above display, we get

(yz)k+1y + (yz)kzy2 + q(zy)k+1z − q2z2(yz)kz = 0.

Since (yz)k+1y is a degree n + 1 normal word with respect to <1 and the remaining three mono-
mials featuring in the above display are smaller that (yz)k+1y with respect to <1, we arrive to a
contradiction.

Case 2: n is odd. Then n = 2k + 1 for some k ∈ N, w1 = (yz)ky and w2 = (zy)kz. First, we
write y(yz)k as a linear combination of normal words with respect to <1:

y(yz)k = p(yz)ky + q(zy)kz + rz(zy)k in A, where p, q, r ∈ K.

Since of the four monomials featuring in the above display, the biggest one with respect to <3 is
(yz)ky and it also happens to be a normal word for the same order, we must have p = 0. Since of
the four monomials featuring in the above display, the biggest one with respect to <4 is (zy)kz and
it also happens to be a normal word for the same order, we must have q = 0. Hence

y(yz)k = rz(zy)k in A, where r ∈ K. (2.5)

Now we do the same with (yz)kz:

(yz)kz = a(yz)ky + b(zy)kz + cz(zy)k in A, where a, b, c ∈ K.

Since the <1-normal word (yz)ky is the biggest with respect to <1 monomial present in the above
display, a = 0. Note that, according to (2.5), y[(yz)kz] = [y(yz)k]z = rz2(yz)k. Thus, multiplying
the above display by y on the left, we obtain

rz2(yz)k = b(yz)k+1 + cyz(zy)k.

Since the <1-normal word (yz)k+1 is the biggest with respect to <1 monomial present in the above
display, b = 0. Coming back to the expression for (yz)kz, we see that (yz)kz = a(yz)ky. Since both
(yz)kz and (yz)ky are degree n+ 1 normal words with respect to <3, we arrive to a contradiction,
which completes the proof.
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2.3 Proof of Part (G1) of Lemma 2.2

Let 1 6 k 6 3, n > max{2, k} and let A be a finitely generated degree-graded algebra such that
dimAn = k, dimAn+1 > k and λ(A,n) = ρ(A,n) = 1. For an ordered basis X in A1, we denote
the corresponding LR and RL-orders on 〈X〉 by < and ≺, respectively. We have to show that for
generic X = (x1, x2, . . . ) ∈ Ω(A) with respect to both < and ≺, the degree n normal words are
xn1 , . . . , x

n
k .

Note that according to the assumption λ(A,n) = ρ(A,n) = 1, we have that for every linear
basis X in A1 and every admissible order on 〈X〉, degree n normal words must start with pairwise
distinct letters and they must end with pairwise distinct letters. Hence according to Lemma 2.1,

for every linear basis X in A1 and every admissible order on 〈X〉,
degree n normal words must be of one of the following shapes: N1.1, N2.1, N2.2, N3.1, N3.2 or N3.3.

(2.6)
We start by showing that

there exist x1, . . . , xk ∈ A1 for which xn1 , . . . , x
n
k are linearly independent. (2.7)

By Lemma 2.3, zn 6= 0 in A for generic z ∈ A1, which proves (2.7) for k = 1. For k > 2, we pick
z ∈ A1 for which zn 6= 0 in A and pick X ∈ Ω(A, z). We equip 〈X〉 with the LR order <. Since zn

is the smallest degree n word and zn 6= 0 in A, zn is one of the degree n normal words with respect
to <. If additionally k = 2, then by (2.6), the second degree n normal word is also a power of some
x ∈ X, which proves (2.7) in the case k = 2. It remains to consider the case k = 3. Since we also
know that zn is a normal word, (2.6) implies that the degree n normal words must be of one of
the forms N3.1 or N3.2. If they are of the form N3.1, (2.7) is satisfied. It remains to consider the
case N3.2. Then the degree n normal words are zn, w = xyxy · · · = xyw′ and yxyx . . . for distinct
x, y ∈ X \{z}. Without loss of generality, x > y. Obviously w = −yxw′+(x+y)2w′−x2w′−y2w′.
Since w is a normal word and zn < w, yxw′ < w at least one of the elements (x + y)2w′, x2w′ or
y2w′ has to be non-proportional to zn. Hence there is a ∈ A1 and v ∈ An−2 such that a and z
are linearly independent and a2v and zn are linearly independent. Now take (new) X ∈ Ω(A, z, a),
equipping 〈X〉 with the LR order. As above, zn is the smallest degree n normal word. Since
λ(A,n) = 1 no other normal word starts with z. Since a2v and zn are linearly independent, the
second smallest degree n normal word must start with either az or a2. Hence by (2.6), only the
form N3.1 of normal words is viable: all three degree n normal words are nth powers, which proves
(2.7) in the final case k = 3.

By (2.7), xn1 , . . . , x
n
k are linearly independent in A for generic x1, . . . , xk ∈ A1. Hence for generic

X = (x1, x2, . . . ) ∈ Ω(A), xn1 , . . . , x
n
k are linearly independent. Now assume that X is such a basis.

Since xn1 is the smallest degree n word with respect to both < and ≺ and xn1 6= 0 in A, xn1 is the
smallest degree n normal word with respect to both < and ≺. This completes the proof in the
case k = 1. Assume now that k = 2. Since xn1 is a normal word (2.6) implies that the second
normal word with respect to each of the orders < and ≺ is an nth power. Since xn1 and xn2 are
linearly independent in A and are the two smallest nth powers for both < and ≺, xn1 and xn2 are
degree n normal words with respect to both < and ≺, which completes the proof in the case k = 2.
Finally, assume that k = 3. Since xn1 is the smallest degree n normal word for both < and ≺, (2.6)
implies that the second smallest degree n normal words is either an nth power of a letter or has
the form abab . . . for some distinct a, b ∈ X \ {x1}. Since xn1 and xn2 are linearly independent and
xn2 < abab . . . , xn2 ≺ abab . . . , the latter is impossible. Hence the second smallest degree n normal
words is an nth power for both < and ≺. Now by (2.6) all three normal words are nth powers for
both < and ≺. Since xn1 , x

n
2 and xn3 are linearly independent in A and are the smallest three nth

powers for both < and ≺, we have that the degree n normal words are xn1 , x
n
2 and xn3 with respect

to both < and ≺. The proof is complete.
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2.4 Proof of Parts (G2) and (G3) of Lemma 2.2

Parts (G2) and (G3) are clearly equivalent. Indeed, they transform to one another when we pass
to the opposite multiplication. Thus it suffices to verify (G2). Let n > 2 and let A be a finitely
generated degree-graded algebra such that dimAn = 2, dimAn+1 > 2 and λ(A,n) = 2. For an
ordered basis X in A1 we always equip 〈X〉 with the LR order <. We have to show that for generic
X = (x1, x2, . . . ) ∈ Ω(A), the degree n normal words are xn1 and xn−1

1 x2.
By Lemma 2.3, zn 6= 0 for generic z ∈ A1. Since λ(A,n) = 2, dim zAn−1 = 2 for generic z ∈ A1.

Hence for generic z ∈ A1, we have both zn 6= 0 and dim zAn−1 = 2. For such a z and for every
X ∈ Ω(A, z), zn is a degree n normal word and both degree n normal words must start with z.
Only N2.3 of Lemma 2.1 fits. Hence the second degree n normal word is zn−1y for some y ∈ X \{z}.

Hence zn and zn−1y are linearly independent in A for generic z, y ∈ A1. Now take such z, y
and let X ∈ Ω(A, z, y). Since zn and zn−1y are linearly independent in A and are the two smallest
words with respect to <, they are the degree n normal words and (G2) follows.

2.5 Proof of Part (G4) of Lemma 2.2

Lemma 2.4. Let A be a finitely generated degree graded algebra, whose ideal of relations is generated

by some homogeneous elements of degree n, where n > 3. Assume also that dimAn = 3 and that

(λ(A,n), ρ(A,n)) ∈ {(1, 2), (2, 1)}. Then dimAn+1 < 3.

Proof. Assume the contrary: dimAn+1 > 3. This will allow us to apply Lemma 2.1. Since the
two cases (λ(A,n), ρ(A,n)) = (1, 2) and (λ(A,n), ρ(A,n)) = (2, 1) are clearly equivalent to each
other (passing to the opposite multiplication reduces on case to the other), we can without loss of
generality assume that λ(A,n) = 2 and ρ(A,n)) = 1.

Since λ(A,n) = 2, dimxAn−1 = 2 for generic x ∈ A1. First, we show that x2An−2 6= {0} for
generic x ∈ A1. Assume the contrary. Then x2An−2 = {0} for all x ∈ A1. Pick any a ∈ A1 such
that dim aAn−1 = 2 and let X ∈ Ω(A, a) with 〈X〉 carrying the LR order <. Since dimaAn−1 = 2,
exactly two degree n normal words start with a. Since ρ(A,n) = 1, the (all three) degree n normal
words end with pairwise distinct letters. Out of all options provided by Lemma 2.1, only N3.6 and
N3.7 fit these requirements. The condition x2An−2 = {0} for all x ∈ A1 excludes N3.7. Hence
the three normal words are given by N3.6: abab . . . , w = baba · · · = baw′ and w3 = abab . . . c,
where b, c ∈ X \ {a} are distinct. Now w = baw′ and since x2An−2 = {0} for all x ∈ A1, we have
a2w′ = b2w′ = (a+ b)2w′ = 0. Hence (ab+ ba)w′ = 0 and therefore w = −abw′. Since w is normal
and abw′ < w, we have arrived to a contradiction. Thus x2An−2 6= {0} for a generic x ∈ A1. Hence
for a generic x ∈ A1 we have that both dimxAn−1 = 2 and dimx2An−2 > 0.

Now pick a ∈ A1 such that dimaAn−1 = 2 and dim a2An−2 > 0 and let X ∈ Ω(A, a) with 〈X〉
carrying the LR order <. Then exactly two of the degree n normal words must start with a and at
least one must start with a2, while the three normal words must end with pairwise distinct letters.
Of all options provided by Lemma 2.1 only N3.7 fits and therefore the degree n normal words are
an, bn and an−1c, where b, c ∈ X are such that a, b, c are pairwise distinct.

It follows that zn, zn−1y, xn form a linear basis in An for generic x, y, z ∈ A1. Hence zn,
yn are linearly independent and zn, zn−1y are linearly independent for generic z, y ∈ A1. Take
such z, y and let X ∈ Ω(A, z, y) with 〈X〉 carrying the LR order <. Since zn and zn−1y are two
smallest degree n monomials and are linearly independent in A, both are degree n normal words.
Since the trio of normal words must be of the form N3.7, the third normal word is xn for some
x ∈ X \ {y, z}. Since yn < xn, yn belongs to the linear span of zn and zn−1y. Since zn and yn

are linearly independent, it follows that the linear span of zn and zn−1y coincides with the linear
span of zn and yn. This happens for generic y, z ∈ A1. Thus for generic x, y, z ∈ A1, z

n, zn−1y, xn

form a linear basis in An and span {zn, xn} = span {zn, zn−1x}. Hence zn, zn−1y and zn−1x are
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linearly independent in An, yielding dim zAn−1 = 3, which contradicts the condition λ(A,n) = 2.
This contradiction completes the proof.

For the duration of the proof of (G4) of Lemma 2.2 only, we shall introduce the following extra
notation. Let A be a finitely generated degree graded algebra and n > 3. We denote

λ+(A,n) = max
x∈A1

dimx2An−2 and ρ+(A,n) = max
x∈A1

dimAn−2x
2.

Obviously, λ+(A,n) 6 λ(A,n) and ρ+(A,n) 6 ρ(A,n).

Lemma 2.5. Let A be a finitely generated degree graded algebra, whose ideal of relations is generated

by some homogeneous elements of degree n, where n > 3. Assume also that λ(A,n) = ρ(A,n) = 2,
dimAn = 3 and dimAn+1 > 3. Then max{λ+(A,n), ρ+(A,n)} = 2.

Proof. By Lemma 2.3, xn 6= 0 in A for generic x ∈ A1. Assume the contrary. Then dimx2An−2 6 1
and dimAn−2x

2 6 1 for all x ∈ A1. This together with the equality λ(A,n) = ρ(A,n) = 2 means
that

dimxAn−1 = dimAn−1x and x2An−2 = An−2x
2 = span {xn} 6= {0} for generic x ∈ A1. (2.8)

Hence we can pick a linear basis X in A1 such that each x ∈ X satisfies all the properties from
(2.8). For a ∈ X and any degree-lexicographical order on 〈X〉 for which a is the minimal element
of X, an must be a normal word. Since dimx2An−2 6 1, dimAn−2x

2 6 1 for each x ∈ A1, no
other degree n normal word can start or end with a2. Since dim aAn−1 = dimAn−1a = 2 and a is
the minimal letter, there is another normal word either starting or ending with a. The only option
from Lemma 2.1 fitting this description is N3.8. Thus there is b ∈ X \ {a} such that the degree
n normal words are an, abab . . . and baba . . . . The same three words are normal for any degree-
lexicographical order on 〈X〉 for which a is the minimal element of X and b is second minimal.
By the same argument the degree n normal words for any degree-lexicographical order on 〈X〉 for
which b is the minimal element of X and a is second minimal are bn, abab . . . and baba . . . .

As in the proof of the previous lemma, consider two total orders on X such that a is the smallest
element and b is second smallest for the first one, while b is the smallest element and a is second
smallest for the second one. Now we have four admissible orders on 〈X〉: the corresponding LR
and RL orders. We denote the LR one satisfying a < b by <1, the LR one satisfying b < a by <2,
the RL one satisfying a < b by <3 and the RL one satisfying b < a by <4. The degree n words an,
abab . . . and baba . . . are normal for <1 and <3, while the degree n words bn, abab . . . and baba . . .
are normal for <2 and <4. Since the only words of degree n+1 with both degree n subwords being
normal are words of the same form, the inequality dimAn+1 > 3 yields that dimAn+1 = 3 and
that the degree n + 1 normal (with respect to each of the four orders) words exactly as described
above only one letter longer.

Since an−1b is smaller with respect to <1 than each of the degree n normal words abab . . . and
baba . . . and abn−1 is <4 smaller than the same, there exist p, q ∈ K such that

an−1b = pan and abn−1 = qbn.

Multiplying the first of the above equalities by b on the right, we get an−1b2 = panb = p2an+1,
while multiplying the second equation by a on the left, we similarly get a2bn−1 = q2bn+1. If
n > 4, then the only <1 normal word smaller than a2bn−2 is an and the only <4 smaller than
a2bn−2 is b4. Hence an−2b2 is a scalar multiple of an and a2bn−2 is a scalar multiple of bn. Since
an−1b2 = panb = p2an+1, a2bn−1 = q2bn+1 and an+1 6= 0, bn+1 6= 0, it follows that an−2b2 = p2an

and a2bn−2 = q2bn. Iterating these arguments, we get

an−jbj = pjan and ajbn−j = qjbn for 2 6 j 6 n (2.9)
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and
an+1−jbj = pjan+1 and ajbn+1−j = qjbn+1 for 1 6 j 6 n− 1. (2.10)

Let w = w1 . . . wn ∈ 〈a, b〉n be such that w <1 abab . . . . Since the only normal word <1 smaller
than w is an, w = αan for some α ∈ K. Then aw = αan+1. On the other hand, aw1 . . . wn−1 <1

abab . . . and therefore aw1 . . . wn−1 = βan for some β ∈ K. Hence aw = βanwn. By (2.10),
βanwn = βan+1 if wn = a and βanwn = pβan+1 if wn = b. Thus β = α if wn = a and β = pα
if wn = b. Hence w = aw1 . . . wn−1 if wn = a and w = paw1 . . . wn−1 if wn = b. Iterating
this argument, we get w = pdeg bwan, where deg bw is the number of b’s featuring in w. Similar
argument applied to the other three orderings yields

for every w ∈ 〈a, b〉n,
w = pdeg bwan if w <1 abab . . . or w <3 . . . baba,

w = qdeg awbn if w <2 baba . . . or w <4 . . . abab.
(2.11)

By (2.10), an−1b2 = p2an+1 = qn−1bn+1. Since an+1 6= 0 and bn+1 6= 0, we have that either
p = q = 0 or pq 6= 0. First, we show that the case p = q = 0 can not occur. Indeed, assume that p =
q = 0. Since the degree n words an, abab . . . and baba . . . span An, b

n = αan+βabab · · ·+γbaba . . .
for some α, β, γ ∈ K. Since both {an, abab . . . , baba . . . and {bn, abab . . . , baba . . . } are linear bases
in An, α 6= 0. Multiplying by a on the left, we get abn = αan+1 + βa2baba · · · + γababa . . . .
Since q = 0, (2.10) implies that abn = 0. Since p = 0, (2.11) yields a2baba · · · = 0. Hence
αan+1 + γabab · · · = 0 and α 6= 0. Then the degree n + 1 words an+1 and abab . . . are linearly
dependent, which contradicts the fact that they are normal with respect to <1. This contradiction
proves that pq 6= 0. Now we shall verify that

pq = 1 and bn = pnan. (2.12)

The equalities (2.10) imply that abn = qbn+1 = pnan+1 and a2bn−1 = q2bn+1 = pn−1an+1.

Since pq 6= 0 and an+1, bn+1 are non-zero, pn

q
= pn−1

q2
and therefore pq = 1. Furthermore, now

abn = qbn+1 = pnan+1 yields bn+1 = pn+1an+1. If n > 4, (2.9) implies an−2b2 = p2an = qn−2bn.
Since pq = 1, we have bn = pnan. In order to complete the proof of (2.12), it remains to verify
that b3 = p3a3 in the case n = 3. Writing b3 as a linear combination of <1 normal words, we
see that b3 = αa3 + βaba + γbab for some α, β, γ ∈ K. Multiplying by a on the left and using
(2.10), we get ab3 = qb4 = p3a4 and ab3 = αa4 + βa2ba + γabab = (α + pβ)a4 + γabab. Hence
(α+ pβ − p3)a4 + γabab = 0. Since both a4 and abab are normal words with respect to <1, γ = 0
and α+ pβ − p3 = 0. Thus b3 = (p3 − pβ)a3 + βaba, where β ∈ K. Multiplying this equality by b
on the right and using (2.10), we get b4 = (p3 − pβ)a3b+ βabab = p2(p2 − β)a4 + βabab. Since we
already know that b4 = p4a4, β(abab − p2a4) = 0. Since both a4 and abab are normal words with
respect to <1, β = 0. Hence b3 = p3a3, as required. This completes the proof of (2.12).

In particular, an and bn are proportional. Now recall that this happens for generic a and b in
A1. Hence

span {xn : x ∈ A1} is one-dimensional. (2.13)

By scaling b, if necessary, we can turn p into 1. Then q = 1 and bn = an. Now (2.11) can be
rewritten as

for every w ∈ 〈a, b〉n different from abab . . . and baba . . . , w = an in A. (2.14)

Now (2.14) yields
(a+ b)n = (2n − 2)an + abab · · · + baba . . . .

Since an, abab . . . and baba . . . (being <1 normal words) are linearly independent, an and (a+b)n are
linearly independent as well, which contradicts (2.13). This contradiction completes the proof.
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Lemma 2.6. Let A be a finitely generated degree graded algebra, whose ideal of relations is generated

by some homogeneous elements of degree n, where n > 3. Assume also that λ(A,n) = ρ(A,n) = 2,
dimAn = 3 and dimAn+1 > 3. Then λ+(A,n) = ρ+(A,n) = 2 and x2An−2 + An−2x

2 = An for

generic x ∈ A1.

Proof. Assume the contrary to the conclusion of the lemma. Then for all x ∈ A1,

either dimx2An−2 < 2 or dimAn−2x
2 < 2 or dim (x2An−2 +An−2x

2) < 3. (2.15)

By Lemma 2.5, max{λ+(A,n), ρ+(A,n)} = 2. Passing to the opposite multiplication, if necessary,
we can without loss of generality assume that λ+(A,n) = 2. Hence dimx2An−2 = 2 for generic
x ∈ A1. By Lemma 2.3, xn 6= 0 in A for genric x ∈ A1. Pick z ∈ A1 such that dim z2An−2 = 2
and zn 6= 0 in A and let X ∈ Ω(A, z) with 〈X〉 carrying the LR order <. Since zn 6= 0 in A and
zn is the smallest degree n word, zn is the smallest degree n normal word. Since dim z2An−2 = 2,
the second smallest degree n normal words must start with z2. Furthermore, the assumption
λ(A,n) = ρ(A,n) = 2 implies that the three normal words do NOT start with the same letter
or end with the same letter. This leaves us with the options N3.7, N3.12, N3.13 and N3.14 of
Lemma 2.1. Since N3.13 and N3.14 are incompatible with (2.15), the only possibilities are N3.7
and N3.12. If N3.7 occurs, we have that

zn, yn and zn−1y form a linear basis in An for generic y, z ∈ A1. (2.16)

If (2.16) fails, then N3.12 is the only option and we have

zn, yn and zn−1y are linearly dependent in An for all y, z ∈ A1 and
zn, yn and zn−1x form a linear basis in An for generic x, y, z ∈ A1.

(2.17)

If (2.17) is satisfied, then zn and yn are linearly independent in A for generic y, z ∈ A1, z
n and

zn−1y are linearly independent in A for generic y, z ∈ A1, while zn, yn and zn−1y are linearly
dependent in An for all y, z ∈ A1. It follows that for generic y, z ∈ A1, the pair zn, yn spans the
same two-dimensional space as the pair zn, zn−1y. Since for generic x, y, z ∈ A1, monomials zn,
yn and zn−1x form a linear basis in An, it follows that for generic x, y, z ∈ A1, words zn, zn−1y
and zn−1x form a linear basis in An as well. Hence dim zAn−1 = 3, which contradicts the equality
λ(A,n) = 2. Thus (2.17) can not hold and therefore (2.16) is satisfied. That is, zn, yn and zn−1y
form a linear basis in An for generic y, z ∈ A1.

First, we verify that dimAn−2x
2 = 2 for some x ∈ A1. Assume the contrary. Then An−2y

2

is one-dimensional and is spanned by yn for generic y ∈ A1 (yn 6= 0 for generic y ∈ A1). Thus
for generic y, z ∈ A1, z

n, yn and zn−1y form a linear basis in An and An−2y
2 is spanned by yn.

Take such y and z and let X ∈ Ω(A, z, y) with 〈X〉 carrying the LR order <. Since zn and zn−1y
are linearly independent in A and are the two smallest degree n words, zn and zn−1y are normal
words with respect to <. Since, as we have already observed, the form of degree n normal words
must be either N3.7 or N3.12, the third degree n normal word must be xn for some x ∈ X \ {z}.
Since zn, yn and zn−1y are linearly independent and yn 6 xn for all x ∈ X \ {z}, the third normal
word is yn. Hence the three degree n normal words are zn, yn and zn−1y. Since zn−2y2 < yn,
zn−2y2 = azn+bzn−1y for some a, b ∈ K. On the other hand, An−2y

2 is spanned by yn and therefore
zn−2y2 = −cyn for some c ∈ K. Then azn + bzn−1y + cyn = 0 and therefore a = b = c = 0. Hence
zn−2y2 = 0. Thus zn−2y2 = 0 for generic y, z ∈ A1. Then zn−2y2 = 0 for all y, z ∈ A1. Plugging
in y = z, we get zn = 0 for all z ∈ A1, which is a contradiction. Hence dimAn−2x

2 = 2 for some
x ∈ A1 and therefore dimAn−2x

2 = 2 for generic x ∈ A1. Since dimAn−1x = 2 for generic x ∈ A1,
we see that An−2x

2 = An−1x for generic x ∈ A1.
Now, using the exact same argument as above with the RL order instead of the LR one, we see

that zn, yzn−1 and yn form a linear basis in An for generic y, z ∈ A1. Now for generic y, z ∈ A1, both
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{zn, yn, zn−1y} and {zn, yn, zyn−1} are linear bases in An. Take such y, z and let X ∈ Ω(A, z, y)
with 〈X〉 carrying the LR order <. Then for every w ∈ 〈y, z〉n containing both y and z, we have
w < yn and therefore w = pzn+ qzn−1y for some p, q ∈ K. Now, {zn, yn, zyn−1} is the set of degree
n normal words with respect to the RL order <1 on 〈X〉 corresponding to a total order on X for
which y is the minimal element and z is second minimal. Since w <1 zn, w = ayn + bzyn−1 for
some a, b ∈ K. Since pzn + qzn−1y = ayn + bzyn−1 and zyn−1 < yn, zn−1y < yn, zn < yn with
yn being a normal word with respect to <, we have a = 0. Similarly, p = 0 since zyn−1 <1 zn,
zn−1y <1 z

n and yn <1 z
n. Thus w = qzn−1y = bzyn−1. Hence

for generic y, z ∈ A1, every w ∈ 〈y, z〉n containing both z and y is a scalar multiple of zn−1y.
(2.18)

In particular, yzn−1 = α(y, z)zn−1y for some α(y, z) ∈ K
∗ for generic y, z (α(y, z) is non-zero

generically, since we already know that yzn−1 6= 0) for generic y, z ∈ A1. Next, we show that α(y, z)
(generically) does not depend on y. Indeed, yzn−1 = α(y, z)zn−1y and xzn−1 = α(x, z)zn−1x yields
(x + y)zn−1 = α(x + y, z)zn−1(x + y) = α(x, z)zn−1x + α(y, z)zn−1y and therefore zn−1

(
(α(x +

y, z) − α(x, z))x + (α(x + y, z) − α(x, z))y
)
= 0. With α being a non-zero rational function on

A1 ×A1, we have zn−1u = 0 for generic z, u ∈ A1 unless α does not depend on the first argument.
Thus for generic z ∈ A1, yzn−1 = α(z)zn−1y for generic y ∈ A1. Hence for generic z ∈ A1,
yzn−1 = α(z)zn−1y for all y ∈ A1. Plugging in y = z, we get α(z) = 1. Hence yzn−1 = zn−1y
for generic z ∈ A1 for all y ∈ A1. It follows that yzn−1 = zn−1y for all y, z ∈ A1. Now let
again < be a left-to-right degree-lexicographical order associated with generic z, y ∈ A1 in the
same way as above. Since the only degree n + 1 words with both degree n subwords from the
list {zn, yn, zn−1y} are zn+1, yn+1 and zny and since dimAn+1 > 3, we have dimAn+1 > 3 and
degree n+1 normal words with respect to < are zn+1, yn+1 and zny. Then all the same arguments
apply to words of degree n + 1 and we have zny = yzn. By (2.18), zn−2yz = azn−1y for some
a ∈ K. Hence zn−1yz = azny. Using the equalities yzn−1 = zn−1y and yzn = zny, we get
zn−1yz = yzn = zny. Hence zny = azny and therefore a = 1 and zn−2yz = zn−1y. Next, by (2.18),
for all p ∈ K, zn−2(y + pz)2 is a scalar multiple of zn−1(y + pz). That is, for each p ∈ K, there is
f(p) ∈ K such that zn−2(y + pz)2 = f(p)zn−1(y + pz). Using the equality zn−2yz = zn−1y, we get
zn−2y2 = (f(p)− 2p)zn−1y + (pf(p)− p2)zn. Since the left-hand side does not depend on p, there
are constants q, r ∈ K such that f(p) − 2p = q and pf(p)− p2 = r for all p ∈ K. Multiplying the
first equation by p and subtracting from the second, we get p2 + qp − r = 0 for all p ∈ K. Since
this is obviously nonsense, we arrive to a contradiction, which completes the proof.

Now we are ready to prove Part (G4) of Lemma 2.2. Let n > 3 and A be a finitely generated
degree-graded algebra such that max{λ(A,n), ρ(A,n)} = 2, dimAn = 3 and dimAn+1 > 3. For
an ordered basis X in A1, we denote the corresponding LR and RL orders on 〈X〉 by < and ≺,
respectively. The proof will be complete if we show that for generic X = (x1, x2, . . . ) ∈ Ω(A),
NWn = {xn1 , x

n−1
1 x2, x2x

n−1
1 } with respect to both < and ≺.

By Lemma 2.4, λ(A,n) = ρ(A,n) = 2. By Lemmas 2.3 and 2.6, for generic z ∈ A1, we have
zn 6= 0, dim z2An−2 = 2, dimAn−2z

2 = 2 and z2An−2 + An−2z
2 = An. Pick such a z and let

X ∈ Ω(A, z) with 〈X〉 equipped with the LR order <. Since zn 6= 0 in A and zn is the smallest
degree n word, zn is the smallest degree n normal word. Since dim z2An−2 = 2, the second smallest
degree n normal words must start with z2. Since λ(A,n) = 2, the third degree n normal word can
not start with z. Now out of all options provided by Lemma 2.1 only N3.7, N3.12, N3.13 and N3.14
fit the description. It follows that the two normal words starting with z2 must be zn and zn−1y for
some y ∈ X \ {z}. In particular, zn and zn−1y are linearly independent in A for generic z, y.

Now for generic z, y ∈ A1, we have that zn and zn−1y are linearly independent in A, zn 6= 0,
dim z2An−2 = 2, dimAn−2z

2 = 2 and z2An−2 +An−2z
2 = An. Pick such z, y and let X ∈ Ω(A, z).
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We equip 〈X〉 with the following admissible order <0:

for u,w ∈ 〈X〉, u <0 w if degu < degw,
if degu = degw, u <0 w provided u contains more z’s (that is, deg zu > deg zw),
we break the remaining ties by using the left-to-right lexicographical order.

(2.19)

Since zn and zn−1y are linearly independent in A and are the two smallest degree n words with
respect to <0, they are normal words. Since dim

(
z2An−2 +An−2z

2
)
= 3, the last degree n normal

word must contain at least two z. This excludes N3.7 and N3.12 leaving only N3.13 and N3.14.
That is, the third degree n normal word is either yzn−1 or xzn−1 with x ∈ X \ {y, z}. Thus we
have verified that at least one of the normal word forms N3.13 or N3.14 occurs. If N3.14 occurs,
then

zn, zn−1y and yzn−1 form a linear basis in An for generic y, z ∈ A1. (2.20)

If (2.20) fails, then N3.13 is the only option and we have

zn, zn−1y and yzn−1 are linearly dependent in An for all y, z ∈ A1 and
zn, zn−1y and xzn−1 form a linear basis in An for generic x, y, z ∈ A1.

(2.21)

Now we show that (2.21) is impossible. Indeed, assume that (2.21) is satisfied. Then for generic
y, z ∈ A1, the pairs z

n, zn−1y and zn, yzn−1 span the same two-dimensional space. Hence for generic
x, y, z ∈ A1, the linear spans of {zn, zn−1y, xzn−1} and {zn, zn−1y, zn−1x} coincide. It follows that
dim zAn−1 > 3 for generic z ∈ A1, which contradicts the equality λ(A,n) = 2. Hence (2.20) must
be satisfied.

Thus for generic z, s ∈ A1, z
n, zn−1s and szn−1 form a linear basis in An. Pick such z, s and let

X ∈ Ω(A, z) with 〈X〉 carrying the LR order <. The two smallest degree n words zn and zn−1s
are linearly independent in A and therefore are normal words. Since λ(A,n) = 2, the third normal
word must start with a letter different from z. Since szn−1 is the smallest such word and zn, zn−1s
and szn−1 are linearly independent in A, the three normal words with respect to < are zn, zn−1s
and szn−1. Similar argument shows that with respect to the RL order ≺ the triple of degree n
normal words is the same. Since all this holds for generic z, s, (G4) of Lemma 2.2 follows.

2.6 Proof of Parts (G5) and (G6) of Lemma 2.2

Lemma 2.7. Let A be a finitely generated degree graded algebra, whose ideal of relations is generated

by some homogeneous elements of degree n, where n > 3. Assume also that dimAn = 3, dimAn+1 >

3 and z ∈ A1. If dim zAn−1 = 3, then dimAn+1 = 3 and the following cancellation rule holds:

if w ∈ An and zw = 0 in A, then w = 0 in A. (2.22)

Furthermore, for every 1 6 j 6 n− 1,

if w ∈ An−j and zjw = 0 in A, then ww1 = 0 in A for all w1 ∈ Aj. (2.23)

If dimAn−1z = 3, then dimAn+1 = 3 and the opposite cancellation rule is satisfied:

if w ∈ An and wz = 0 in A, then w = 0 in A. (2.24)

Furthermore, for every 1 6 j 6 n− 1,

if w ∈ An−j and wzj = 0 in A, then w1w = 0 in A for all w1 ∈ Aj. (2.25)
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Proof. The two parts are obviously equivalent: just pass to the opposite multiplication. Thus it is
enough to verify the equality dimAn+1 = 3, (2.22) and (2.23) under the assumption dim zAn−1 = 3.
Pick a linear basis X in A1 containing z, equip X with a total order for which z is the minimal
element and extend this order to the corresponding left-to-right degree-lexicographical order on
〈X〉. The condition dim zAn−1 = 3 implies that all three degree n normal words w1, w2 and w3

must start with z. Out of all options provided by Lemma 2.1, only N3.18, N3.19, N3.21 and N3.23
fit this property. For each of these cases, one easily check that the only degree n + 1 words for
which both degree n subwords are normal are zw1, zw2 and zw3. Since dimAn+1 > 3 it follows that
dimAn+1 = 3 and zw1, zw2 and zw3 are the degree n+ 1 normal words. Hence the map w 7→ zw
between 3-dimensional spaces An and An+1 is invertible and (2.22) follows. Now let 1 6 j 6 n−1
and y1, . . . , yj ∈ A1. Assume that w ∈ An−j is such that zjw = 0 in A. Then zjwy1 = 0 and
therefore by (2.22), zj−1wy1 = 0. If j > 1, zj−1wy1y2 = 0 and by (2.22), zj−2wy1y2 = 0. We
repeat the trick until we get wy1 . . . yj = 0. Since yj ∈ A1 are arbitrary, ww1 = 0 in A for each
w1 ∈ Aj. This completes the proof of (2.23).

Lemma 2.8. Let A be a finitely generated degree graded algebra, whose ideal of relations is generated

by some homogeneous elements of degree n, where n > 3. Assume also that dimAn = 3, dimAn+1 >

3, λ(A,n) = 3 and dimxn−1A1 < 3 for all x ∈ A1. Then ρ(A,n) > 2 and there exist z, s ∈ A1 such

that zn, zn−1s and zn−2st are linearly independent in A for some t ∈ {z, s}.

Proof. Since λ(A,n) = 3, we can pick z ∈ A1 such that zAn−1 is a three-dimensional subspace of A.
Consider X ∈ Ω(A, z) with 〈X〉 carrying the LR order. Since dim zAn−1 = 3 and z is the smallest
letter, all three degree n normal words must start with z. Finally, since dim zn−1A1 < 3 in A, at
least one degree n normal word does not start with zn−1. Only three options from Lemma 2.1 fit
these conditions: N3.19, N3.21 and N3.23. Hence the degree n normal words are zn, zn−1s and
zn−2st for some s ∈ X \ {z} and t ∈ X. If t ∈ {z, s}, then the required linear independence follows
from the linear independence of normal words. Moreover two normal words end with either z or s,
yielding ρ(A,n) > 2. Thus there is nothing to prove in this case.

It remains to consider the case when for every choice of z ∈ A1 with dim zAn−1 = 3, for every
choice of X ∈ Ω(A, z) with 〈X〉 carrying the LR order, the degree n normal words are zn, zn−1s
and zn−2st for pairwise distinct z, s, t (more precisely, we shall show that this case does not occur
by arriving to a contradiction). Note that anyway, zn and zn−1s are linearly independent in A for
generic z, s ∈ A1.

As we have seen, for generic z, s ∈ A1, dim zAn−1 = 3 and zn and zn−1s are linearly independent
in A. For such z, s, let X ∈ Ω(A, z, s) with 〈X〉 carrying the LR order. Since zn and zn−1s
are two smallest degree n words and are linearly independent in A, they are degree n normal
words. According to the above observations the third degree n normal word is zn−2st′ for some
t′ ∈ X \ {z, s}. Since for every y ∈ X, zn−1y < zn−2st′, zn−1y is in the linear span of zn

and zn−1s. Hence zn−1x is in the linear span of zn and zn−1s for all x ∈ A1. In particular,
zn−1t′ = pzn−1s + qzn for some p, q ∈ K. Let t = t′ − ps − qz. Then zn−1t = 0 in A. Since
zn−2s2 < zn−2st′, zn−2sz < zn−2st′, both zn−2s2 and zn−2sz belong to the linear span of zn and
zn−1s. Hence zn, zn−1s and zn−2st form a linear basis in An. Now we slightly change the basis X.
We keep all elements of X \ {t′} as they were and replace t′ by t (t takes the place of t′ in the total
order on X). Since zn−2s2 and zn−2sz are in the linear span of zn, zn−1s one easily observes that
zn−2st is the smallest word not in the said span. Hence for the new X, zn, zn−1s and zn−2st are
degree n normal words with the added bonus of the equality zn−1t = 0 in A. By Lemma 2.7, the
cancellation rule (2.22) holds.

Since zn−2s2 is in the linear span of zn and zn−1s and this holds for generic s, we have that
zn−2x2 is in the linear span of zn and zn−1x for generic x ∈ A1. Since zn−1x is in the linear
span of zn and zn−1s for all x ∈ A1, it follows that zn−2x2 is in the linear span of zn and zn−1s
for generic x ∈ A1. Hence zn−2x2 is in the linear span of zn and zn−1s for all x ∈ A1. Thus
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zn−2((s + t)2 − s2 − t2) = zn−2(st + ts) is in the linear span of zn and zn−1s. Hence zn−2ts =
−zn−2st+ azn−1s + bzn for some a, b ∈ K and therefore zn, zn−1s and zn−2ts form a linear basis
in An.

Now consider a total order on X for which z is the minimal element t is second smallest and s is
the third smallest element and extend this order to the corresponding LR order <1 on 〈X〉. Since
zn is the smallest degree n word and zn 6= 0 in A, zn is the smallest degree n normal word. The
second smallest degree n word with respect to <1 is zn−1t, which vanishes in A, while the third
smallest degree n word is zn−1s. Since zn and zn−1s are linearly independent in A, the second
degree n normal word with respect to <1 is still zn−1s. Since dim zn−1A1 < 3, the third <1 degree
n normal word can not start with zn−1. Of these the three smallest (in this order) are zn−2tz,
zn−2t2 and zn−2ts. We already know that zn−2t2 is in the linear span of zn and zn−1s. Since
zn−1t = 0, we have zn−1tz = 0 in A. By (2.22), zn−2tz = 0 in A. Hence both zn−2tz and zn−2t2

are in the linear span of zn and zn−1s. Since we know that zn−2ts is not in the said span, we have
that the third degree n normal word with respect to <1 is zn−2ts. Thus the three degree n normal
words for <1 are zn, zn−1s and zn−2ts. The only degree n+ 1 words whose degree n subwords are
among zn, zn−1s and zn−2ts are zn+1 and zns. Hence An+1 is spanned by zn+1 and zns, which
contradicts the inequality dimAn+1 > 3. This contradiction completes the proof.

Now we are ready to prove Parts (G5) and (G6) of Lemma 2.2. Obviously (G5) and (G6) are
equivalent. Indeed they transform to one another when we pass to the opposite multiplication.
Thus it suffices to prove (G5). Let n > 3 and let A be a finitely generated degree-graded algebra
such that λ(A,n) = 3, dimAn = 3 and dimAn+1 > 3. The proof will be complete if we show that for
generic X = (x1, x2, . . . ) ∈ Ω(A) with 〈X〉 equipped with the LR order <, NWn = {xn1 , x

n−1
1 x2, w}

where w ∈ {xn−1
1 x3, x

n−2
1 x2x1, x

n−2
1 x22}.

First, consider the case when dimxn−1A1 = 3 for some x ∈ A1. Then dim zn−1A1 = 3 for generic
z ∈ A1. For such a z, for X ∈ Ω(A, z) with 〈X〉 carrying the LR order, all three degree n normal
words must start with zn−1. Then by Lemma 2.1 they are of the form zn, zn−1y, zn−1x for some
distinct x, y ∈ X \{z}. In particular, zn, zn−1y and zn−1x are linearly independent in A for generic
z, y, x ∈ A1. Then for such z, y, x and for any X ∈ Ω(A, z, y, x) with 〈X〉 carrying the LR order,
the three smallest degree n words zn, zn−1y, zn−1x are linearly independent in A and therefore are
normal words. Hence for generic X = (x1, x2, . . . ) ∈ Ω(A) with 〈X〉 equipped with the LR order
<, NWn = {xn1 , x

n−1
1 x2, x

n−1
1 x3}.

It remains to consider the case when dimxn−1A1 < 3 for all x ∈ A1. First, assume that there exist
z, s ∈ A1 for which zn, zn−1s and zn−2sz are linearly independent in A. Then for generic z, s ∈ A1,
zn, zn−1s and zn−2sz form a linear basis in An. For such z, s and for every X ∈ Ω(A, z, s) with 〈X〉
carrying the LR order <, the two smallest degree n words zn and zn−1s are linearly independent
in A and therefore are degree n normal words. Since dim zn−1A1 < 3, the third normal word can
not start with zn−1. The smallest word, which does not start with zn−1 is zn−2sz. Since zn, zn−1s
and zn−2sz are linearly independent, zn−2sz is the third degree n normal word. Recall that all this
happens for generic z and s. Hence for generic X = (x1, x2, . . . ) ∈ Ω(A) with 〈X〉 equipped with
the LR order <, NWn = {xn1 , x

n−1
1 x2, x

n−2
1 x2x1}.

Finally, it remains to deal with the case when dimxn−1A1 < 3 for all x ∈ A1 and zn, zn−1s and
zn−2sz are linearly dependent in A for every z, s ∈ A1. By Lemma 2.8, there exist z, s ∈ A1 for
which zn, zn−1s and zn−2s2 are linearly independent in A. Hence zn, zn−1s and zn−2s2 are linearly
independent in A for generic z, s ∈ A1. For such z, s, let X ∈ Ω(A, z, s) with 〈X〉 carrying the
LR order <. As in the previous case, the two smallest degree n words zn and zn−1s are linearly
independent in A and therefore are degree n normal words. Since dim zn−1A1 < 3, the third normal
word can not start with zn−1. The smallest word, which does not start with zn−1 is zn−2sz and
the second smallest is zn−2s2. Since zn, zn−1s and zn−2sz are linearly dependent, while zn, zn−1s
and zn−2s2 are linearly independent, the third degree n normal word is zn−2s2. Since this happens
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for generic z and s, for generic X = (x1, x2, . . . ) ∈ Ω(A) with 〈X〉 equipped with the LR order <,
NWn = {xn1 , x

n−1
1 x2, x

n−2
1 x22}. The proof is now complete.

3 Case λ(A, n) = ρ(A, n) = 1 and Proof of Theorem 1.1

We start with the following technical lemma.

Lemma 3.1. Let A be a finitely generated degree graded algebra, whose ideal of relations is generated

by homogeneous elements of degree n > 2. Let also X be a linear basis in A1, a1, . . . , ak ∈ X.

Assume also that for every total order on the set {a1, . . . , ak} extends to a total order on X in such

a way that for both corresponding LR and RL orders on 〈X〉, the set of degree n normal words is

{anp : 1 6 p 6 k}. Assume also that dimAn+1 > k. Then dimAm = k for all m > n.

Proof. Since anj for 1 6 j 6 n form a linear basis of An,

w =
k∑

j=1

αj(w)a
n
j in A for all w ∈ 〈X〉n, (3.1)

where αj(w) ∈ K are uniquely determined. Now if an element w of 〈X〉, considered as an element of
A is written as a linear combination of normal words (with respect to some admissible order), then
the normal words greater than w do not feature (=come with zero coefficients). Now according to
the assumption on the existence of orders, we see that

αj(apw) = αj(wap) = 0 if j 6= p for every w ∈ 〈X〉n−1. (3.2)

Now using (3.1) and (3.2), we obtain that for all x, y ∈ X and w ∈ 〈X〉n−1, the following equalities
hold in A:

xwy =
k∑

j=1
αj(xw)a

n
j y =

k∑
j=1

αj(xw)αj(a
n−1
j y)an+1

j ,

xwy =
k∑

j=1
αj(wy)xa

n
j =

k∑
j=1

αj(wy)αj(xa
n−1
j )an+1

j .

Since dimAn+1 > k, we have that dimAn+1 = k and that an+1
j for 1 6 j 6 k are all degree n+ 1

normal words with respect to any order with respect to which anj for 1 6 j 6 k are degree n normal
words. Furthermore, the above display yields that

w =

k∑

j=1

α′

j(w)a
n+1
j in A for every w ∈ 〈X〉n+1,

where
α′

j(xwy) := αj(xw)αj(a
n−1
j y) = αj(wy)αj(xa

n−1
j ) for x, y ∈ X, w ∈ 〈X〉n−1. (3.3)

Note that the validity of the equations (3.3) is equivalent to the fact that all degree n+1 overlaps of
the leading monomials of the reduced Gröbner basis of the ideal of relations of A resolve (without
producing any degree n+1 element). The latter is, in turn, the same as the equality dimAn+1 = k.
This observation, applied one degree further, shows that the equality dimAn+2 = k is equivalent
to

α′

j(xw)α
′

j(a
n
j y) = α′

j(wy)α
′

j(xa
n
j ) for 1 6 j 6 k, x, y ∈ X, w ∈ 〈X〉n. (3.4)

However, by (3.3), for w ∈ 〈X〉n and x, y ∈ X, we have

α′

j(xw) = αj(w)αj(xa
n−1
j ), α′

j(wy) = αj(w)αj(a
n−1
j y),
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while applying the above display to specific w, we get

α′

j(xa
n
j ) = αj(xa

n−1
j ), α′

j(a
n
j y) = αj(a

n−1
j y).

Using the equalities from the above two displays, we immediately see that (3.4) is indeed satisfied
and therefore dimAn+2 = k and degree n+2 normal words are an+2

j . That is, we have proved that
if dimAn+1 > k, then dimAn+1 = dimAn+2 = k and all assumptions of our lemma are satisfied
when n is replaced by n + 1. Iterating, we get dimAm = k for all m > n, which completes the
proof.

Lemma 3.2. Let A be a finitely generated degree graded algebra, k, n ∈ N , 1 6 k 6 3 and

n > max{k, 2}. Assume also that the ideal of relations of A is generated by homogeneous elements

of degree n, dimAn = k, dimAn+1 > k and λ(A,n) = ρ(A,n) = 1. Then dimAm = k for all

m > n.

Proof. By Lemma 2.2, for generic X = (x1, x2, . . . ) ∈ Ω(A), NWn = {xn1 , . . . , x
n
k} with respect to

both the LR order< and the RL order≺ on 〈X〉. It follows that for genericX = (x1, x2, . . . ) ∈ Ω(A)
all conditions of Lemma 3.1 are satisfied (with aj = xj for j 6 k). By Lemma 3.1 dimAm = k for
all m > n, as required.

3.1 Proof of Theorem 1.1

Let n ∈ N and A be a finitely generated degree graded algebra such that dimAn = 1 and the ideal
of relations of A is generated by some homogeneous elements of degree at most n. According to
Remark 1.11, we can without loss of generality assume that the ideal of relations of A is generated by
homogeneous elements of degree exactly n. If n = 1, A is naturally isomorphic as a graded algebra

to the algebra K[t] of polynomials in one indeterminant and thereforeH
[n]
A = 1. Thus we can assume

that n > 2. If dimAn+1 = 0, then obviously H
[n]
A = 10. Next, we assume that dimAn+1 > 1. Since

both λ(A,n) and ρ(A,n) = 1 are between 1 and dimAn, we have λ(A,n) = ρ(A,n) = 1. Hence all

conditions of Lemma 3.2 with k = 1 are satisfied. By Lemma 3.2, H
[n]
A = 1. The proof is complete.

4 Case An = zn−1A1 for some z ∈ A1 and proof of Theorem 1.2

Lemma 4.1. Let n, k ∈ N, n > k and let A be a finitely generated degree graded algebra, whose

ideal of relations is generated by some homogeneous elements of degree n. Assume also that z ∈ A1

and dimAn = dim zn−1A1 = k. Then either dimAn+1 < k or dimAm = k for all m > n.

Proof. If k = 1, the result follows from the already proven Theorem 1.1. Thus we shall assume that
k > 2. Since zn−1A1 = An, we immediately have znA1 = An+1. If zn = 0 in A, then An+1 = {0}
and therefore dimAn+1 = 0 < k, as required. Thus for the rest of the proof we can assume that
zn 6= 0 in A. Since dimAn = dim zn−1A1 = k and zn 6= 0 in A, we can pick a k-dimensional
subspace L of A1 such that z ∈ L and zn−1L = An. For the sake of brevity denote V = A1 and
let F be the tensor algebra of V = A1. Then A naturally interprets as the factor-algebra of the
free algebra F by the ideal of relations of A. If dimAn+1 < k, there is nothing to prove. Thus we
can assume that dimAn+1 > k. Since An+1 = zAn = znL and L is k-dimensional, it follows that
dimAn+1 = k and the map x 7→ znx from L to An+1 is a linear isomorphism. Hence there exist
unique linear maps α : Fn → L and α′ : Fn+1 → L such that

w = zn−1α(w) in A for all w ∈ Fn,
w = znα′(w) in A for all w ∈ Fn+1.

(4.1)
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Note that α(zn−1x) = α′(znx) = x for all x ∈ L. Let M = {x ∈ V : α(zn−1x) = 0}. Clearly, M
is a subspace of V and M ⊕ L = V . Since An+1 = zAn and dimAn+1 = dimAn = k, the map
w 7→ zw from An to An+1 is a linear isomorphism. In particular,

if w ∈ An and zw = 0 in A, then w = 0 in A. (4.2)

Consider the linear map
Z : V → V, Zx = α(zn−2xz).

Clearly Z(V ) = L. Next, if x ∈ M , then zn−1x = 0 in A. Hence zn−1xz = 0 in A. According to
(4.2), zn−2xz = 0 in A and therefore Zx = 0. That is, Z vanishes on M . Next, let L0 be the space
of x ∈ L such that Zjx = 0 for some j ∈ N (the main eigenspace corresponding to the eigenvalue
0) and let L+ be the sum of all main eigenspaces corresponding to all non-zero eigenvalues of Z.
Then M ⊕ L0 ⊕ L+ = V and each of the spaces M , L0 and L+ is invariant for Z. Since Zz = z,
z ∈ L+ and therefore dimL0 < k. Since n > k, it follows that Zn−1x = 0 for every x ∈ L0.

Now let x, y ∈ V and w ∈ Fn−1. Then by (4.1), the following equalities hold in A:

xwy = zn−1α(xw)y = znα(zn−2α(xw)y),
xwy = xzn−1α(wy) = zn−1α(xzn−1)α(wy) = znα(zn−2α(xzn−1)α(wy)).

Hence by (4.1) and the uniqueness of α′, we get

α′(xwy) = α(zn−2α(xw)y) = α(zn−2α(xzn−1)α(wy)) for all w ∈ Fn−1, x, y ∈ V . (4.3)

The proof of the fact that dimAm = k for all m > k will be complete if we show that dimAn+2 = k.
Indeed, then we can simply iterate. In order to prove that dimAn+2 = k it is enough to show that
an analog of (4.3) holds one degree higher:

α′(zn−1α′(xw)y) = α′(zn−1α′(xzn)α′(wy)) for all w ∈ Fn, x, y ∈ V . (4.4)

Indeed, if X is any linear basis in A1 = V containing z and containing a linear basis Y of L equipped
with a total order for which z is the minimal element and every element of X \ Y is greater than
any element of Y and if 〈X〉 carries the corresponding left-to-right degree-lexicographical order,
then the validity of (4.4) for w ∈ 〈X〉n such that the words xw and wy are non-normal is exactly
the same as resolving of all ambiguities of degree n+2, which would imply dimAn+2 = k. Thus it
remains to verify (4.4). If w ∈ Fn and x, y ∈ V , then (4.3) yields

α′(wy) = α(zn−2α(w)y), α′(xw) = α(zn−2α(xzn−1)α(w)) for all w ∈ Fn−1, x, y ∈ V . (4.5)

In particular, α′(zw) = α(w) for all w ∈ Fn. Since {α(w) : w ∈ Fn} = L, (4.5) now implies that
(4.4) is equivalent to

α(zn−2α(zn−2α(xzn−1)u)y) = α(zn−2α(zn−2α(xzn−1)z)α(zn−2uy)) (4.6)

for all x, y ∈ V , u ∈ L. Now for each x ∈ V and 0 6 j 6 n−2, zn−1−jxzj = zn−1α(zn−1−jxzj) in A.
Hence zn−1−jxzj+1 = zn−1α(zn−1−jxzj)z and therefore by (4.2), zn−2−jxzj+1 = zn−2α(zn−1−jxzj)z.
It follows that zn−1α(zn−2−jxzj+1) = zn−2α(zn−1−jxzj)z and by definition of Z, α(zn−2−jxzj+1) =
Zα(zn−1−jxzj). Hence α(zn−1−jxzj) = Zjα(zn−1x) for all x ∈ V and 0 6 j 6 n−1. In particular,
α(xzn−1) = Zn−1α(zn−1x). Since L = {α(zn−1x) : x ∈ V }, Zn−1 vanishes on L0 and Zn−1 is
invertible as a linear map from L+ to itself, {α(xzn−1) : x ∈ V } = L+. Hence (4.6) and therefore
(4.4) is equivalent to

α(zn−2α(zn−2vu)y) = α(zn−2α(zn−2vz)α(zn−2uy)) for all y ∈ V , u ∈ L, v ∈ L+. (4.7)
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By definition of α, (4.7) is the same as

zn−2α(zn−2vu)y = zn−2α(zn−2vz)α(zn−2uy) in A for all y ∈ V , u ∈ L, v ∈ L+. (4.8)

By (4.2), (4.8) is equivalent to (just multiply by z from the left)

zn−1α(zn−2vu)y = zn−1α(zn−2vz)α(zn−2uy) in A for all y ∈ V , u ∈ L, v ∈ L+. (4.9)

As we have observed above α(zn−1−jxzj) = Zjα(zn−1x) for all x ∈ V and 0 6 j 6 n − 1. Since
α(x) = x for x ∈ L, it follows that zn−1−jxzj = zn−1Zjx for all x ∈ L. Since Z restricted to L+ is
invertible, it follows that zn−1−jxzj = (Zj+1−nx)zn−1 for 0 6 j 6 n− 1 and x ∈ L+, where Z

−1 is
the inverse of the restriction of Z to L+.

Hence under the assumptions of (4.9), zn−1α(zn−2vz) = zn−2vz = (Z2−nv)zn−1 and therefore

zn−1α(zn−2vz)α(zn−2uy) = (Z2−nv)zn−1α(zn−2uy) = (Z2−nv)zn−2uy.

Next, by the same token z(Z2−nv)zn−2 = zn−1v and therefore z(Z2−nv)zn−2u = zn−1vu. By (4.2),
(Z2−nv)zn−2u = zn−2vu. Plugging this into the above display, we get

zn−1α(zn−2vz)α(zn−2uy) = zn−2vuy.

On the other hand, by definition of α, zn−1α(zn−2vu) = zn−2vu and therefore zn−1α(zn−2vu)y =
zn−2vuy. This together with the above display confirms the validity of (4.9) and completes the
proof.

4.1 Proof of Theorem 1.2

Let n > 2 and A be a finitely generated degree graded algebra such that dimAn = 2 and the ideal
of relations of A is generated by some homogeneous elements of degree at most n. The proof will be

complete if we show that H
[n]
A ∈ {2, 21, 210, 20}. According to Remark 1.11, we can without loss of

generality assume that the ideal of relations of A is generated by homogeneous elements of degree
exactly n. If dimAn+1 < 2, then the result follows from the already proven Theorem 1.1. Then for
the rest of the proof we can assume that dimAn+1 > 2. If λ(A,n) = ρ(A,n) = 1, Lemma 3.2 with

k = 2 implies that H
[n]
A = 2. Thus it remains to consider the case (λ(A,n), ρ(A,n)) 6= (1, 1). Since

both λ(A,n) and ρ(A,n) are between 1 and 2 = dimAn, this means that either λ(A,n) = 2 or
ρ(A,n) = 2. These two options reduce to one another when we pass to the opposite multiplication.
Indeed, the Hilbert series of A and of Aopp (being A with the opposite multiplication) coincide.
Hence we can without loss of generality assume that λ(A,n) = 2. By Lemma 2.2, for generic
X = (x1, x2, . . . ) ∈ Ω(A) with 〈X〉 carrying the LR order, NWn = {xn1 , x

n−1
1 x2}. Hence there is

z ∈ A1 such that dim zn−1A1 = 2. Now Lemma 4.1 with k = 2 yields H
[n]
A = 2, which completes

the proof.

5 Case dimAn = 3 and max{λ(A, n), ρ(A, n)} = 3

The main result of this section is the following lemma.

Lemma 5.1. Let A be a finitely generated degree graded algebra, whose ideal of relations is gen-

erated by some homogeneous elements of degree n, where n > 3. Assume also that dimAn =

max{λ(A,n), ρ(A,n)} = 3. If n > 3, then either dimAn+1 < 3 or H
[n]
A = 3. If n = 3, then either

dimAn+1 < 3 or H
[n]
A ∈ {3, 3321}.

We approach the proof in stages. We start with an enhanced version of Lemma 2.7.
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Lemma 5.2. Let A be a finitely generated degree graded algebra, whose ideal of relations is generated

by some homogeneous elements of degree n, where n > 3. Let also dimAn = 3, dimAn+1 > 3, X be

a linear basis in A1 equipped with a total order, z = minX, s = min(X \{z}) and M = span {z, s}.
Finally, assume that with respect to the LR order < on 〈X〉, the three degree n normal words are

either zn, zn−1s, zn−2st with t ∈ {z, s}.
Then for every x ∈ A1, there exists a unique x̂ ∈ M such that zn−1x = zn−1x̂ in A. These

elements of M satisfy the following property:

ẑ = z, ŝ = s and for each x ∈ A1, w ∈ An−1, xw = x̂w in A. (5.1)

If additionally dimAn−1z = 3, then the following stronger cancellation rule holds: for all non-

negative integers j,m, q such that j +m+ q = n,

if w ∈ Am and zj+qw = 0 in A, then w1ww2 = 0 in A for all w1 ∈ Aj and w2 ∈ Aq. (5.2)

Furthermore,

for all x1, . . . , xn ∈ A1, x1 . . . xn = x̂1 . . . x̂n in A. (5.3)

Proof. By Lemma 2.7, dimAn+1 = 3 and (2.22), (2.23) hold. In both cases, the two smallest degree
n normal words are zn and zn−1s, while the third normal word is greater than zn−1x for every
x ∈ X. Hence for each x ∈ X, zn−1x is a linear combination of zn and zn−1s. Hence for every
x ∈ A1, there exists a unique x̂ ∈ M such that zn−1x = zn−1x̂ in A. Uniqueness immediately
yields ẑ = z, ŝ = s. Let u = x− x̂. Then zn−1u = 0 and by (2.23), we have uw = 0 in A for each
w ∈ An−1. Hence xw = x̂w for every w ∈ An−1, which completes the proof of (5.1).

Now assume additionally that dimAn−1z = 3. Then according to Lemma 2.7, the second can-
cellation rule (2.24) together with (2.25) hold as well. Hence

for any w ∈ An−1, wz = 0 in A if and only if zw = 0 in A. (5.4)

Indeed, by (2.22) and (2.24), both are equivalent to zwz = 0. Another immediate corollary of
(2.22) and (2.24) is

for any w ∈ An, wz = 0 in A if and only if zw = 0 in A. (5.5)

Indeed, both are equivalent to w = 0.
Let j +m+ q = n and w ∈ Am be such that zj+qw = 0 in A and let w1 ∈ Aj and w2 ∈ Aq. By

(2.23), zjww2 = 0 in A. By (5.4), ww2z
j = 0 in A. Hence by (2.25), w1ww2 = 0 in A completing

the proof of (5.2).
Finally, let x1, . . . , xn ∈ A1. We use induction by j to prove that zn−jx1 . . . xj = zn−j x̂1 . . . x̂j for

1 6 j 6 n. By definition of the hat map zn−1x1 = zn−1x̂1, which provides the basis of induction.
Now assume that 1 6 j 6 n − 1 and we already know that zn−jx1 . . . xj = zn−jx̂1 . . . x̂j. By
(5.2), the equality zn−1xj+1 = zn−1x̂j+1 implies that zn−jx1 . . . xj+1 = zn−jx1 . . . xjx̂j+1. Since
zn−jx1 . . . xj = zn−jx̂1 . . . x̂j , we get z

n−jx1 . . . xj+1 = zn−j x̂1 . . . x̂j+1. By (2.22), zn−j−1x1 . . . xj+1 =
zn−j−1x̂1 . . . x̂j+1, completing the induction step and justifying the whole inductive procedure. Af-
ter the final step, we get (5.3).

We would also like to make another general observation and introduce some notation useful in
the cases when degree n normal words are either zn, zn−1s and zn−2st with t ∈ {z, s}.

Lemma 5.3. Let A be a finitely generated degree graded algebra, whose ideal of relations is generated

by some homogeneous elements of degree n, where n > 3. Let also dimAn = 3, dimAn+1 > 3, X be

a linear basis in A1 equipped with a total order, z = minX, s = min(X \{z}) and M = span {z, s}.
Finally, assume that with respect to the left-to-right degree-lexicographical order on 〈X〉, the three
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degree n normal words are zn, zn−1s, zn−2st, where t ∈ {s, z}. Denote L = span {st, zs, z2},
V := A1 and let F be the tensor algebra of V (naturally identified with K〈X〉), making A the

quotient of F by the ideal of relations.

Then there exist a unique map α : Fn → L (automatically linear) such that

w = zn−2α(w) in A for all w ∈ Fn (5.6)

and the following statements are equivalent:

• dimAn+2 = 3;

• dimAm = 3 for all m > n;

• the equalities

zn−3α(szn−1)zy = zn−3α(szn−1)α(zn−1y),
zn−3α(szn−1)sy = zn−3α(szn−1)α(zn−2sy),
zn−3α(szn−2s)ty = zn−3α(szn−1)α(zn−3sty)

(5.7)

are satisfied in A for every y ∈ V .

Furthermore, if additionally, dimAn−1z = 3, then the first two equalities in (5.7) are automat-

ically satisfied, while the validity of the third one for every y ∈ V is equivalent to its validity for

y ∈ {s, z} only. That is, if dimAn−1z = 3, then the following statements are equivalent:

• dimAn+2 = 3;

• dimAm = 3 for all m > n;

• the equalities

zn−3α(szn−2s)tz = zn−3α(szn−1)α(zn−3stz)
zn−3α(szn−2s)ts = zn−3α(szn−1)α(zn−3sts)

(5.8)

are satisfied in A.

Proof. By assumptions dimAn = 3. Since the only degree n + 1 words for which both degree
n subwords are normal are zn+1, zns and zn−1st, we have dimAn+1 6 3. Since dimAn+1 > 3,
we have dimAn+1 = 3 and the degree n + 1 normal words are zn+1, zns and zn−1st. Note that
Lemma 2.7 as well as the first part of Lemma 5.2 apply since all relevant conditions are satisfied.
In particular, we can use the cancellation rule (2.22). Consider the linear maps π0 : L → K and
π1 : L → M given by

π0(ast+ bzs+ cz2) = a, π1(ast+ bzs+ csz) = bs+ cz,

making v = π0(v)su+ zπ1(v) for every v ∈ L.
Since zn, zn−1s, zn−2st are degree n normal words and zn+1, zns, zn−1st are degree n+1 normal

words and since normal words form a linear basis of A, there are unique linear maps α : Fn → L
and α′ : Fn+1 → L such that

w = zn−2α(w) in A for all w ∈ Fn,
w = zn−1α′(w) in A for all w ∈ Fn+1,

(5.9)

In particular, (5.6) defines a unique linear map α : Fn → L.
Now let x, y ∈ V and w ∈ Fn−1. Then by (5.9),

xwy = zn−2α(xw)y = zn−1α(zn−3α(xw)y),
xwy = xzn−2α(wy) = α0(wy)xz

n−2sz + xzn−1α1(wy)
= π0(α(wy))z

n−2α(xzn−2s)z + zn−2α(xzn−1)π1(α(wy))
= π0(α(wy))z

n−1α(zn−3α(xzn−2s)z) + zn−1α(zn−3α(xzn−1)π1(α(wy))).
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Since the map u 7→ zn−1u from L to An+1 is a linear isomorphism, we get

α′(xwy) = α(zn−3α(xw)y) = π0(α(wy))α(z
n−3α(xzn−2s)z) + α(zn−3α(xzn−1)π1(α(wy))) (5.10)

for all w ∈ Fn−1 and x, y ∈ V . Hence

α′(wy) = α(zn−3α(w)y),
α′(xw) = π0(α(w))α(z

n−3α(xzn−2s)t) + α(zn−3α(xzn−1)π1(α(w)))
(5.11)

for all x, y ∈ V and w ∈ Fn.
Now the equality dimAn+2 = 3 is satisfied if and only if all ambiguities of degree n+ 2 resolve.

This happens precisely when the second equality in (5.10) is satisfied with α replaced by α′ and
n replaced by n + 1. It is slightly more convenient though to repeat the process of writing the
equality (5.10) with w being one degree higher to see that dimAn+2 = 3 if and only if the equality

zn−2α′(xw)y = zn−3α(xzn−1)α′(wy) (5.12)

is satisfied in A for every x, y ∈ V and w ∈ Fn. By (5.11), α′(xw) and α′(wy) depend linearly on
w and as far as dependence on w is concerned, they depend on α(w) only. Thus (5.12) for general
w is equivalent to (5.12) for w ∈ {zn, zn−1s, zn−2st} only. Furthermore, by (2.23), nothing changes
in (5.12) if we replace x by x̂ as defined in Lemma 5.2. Since the dependence on x is also linear
and {x̂ : x ∈ V } = M = span {z, s}, (5.12) for arbitrary x ∈ V is the same as (5.12) for x ∈ {z, s}.
If x = z, then from definitions of α and α′ together with α′(zw) = α(w) (follows from 5.11) it is
easy to see that (5.12) is satisfied. Thus, dimAn+2 = 3 if and only if the equalities

zn−2α′(szn)y = zn−3α(szn−1)α′(zny)
zn−2α′(szn−1s)y = zn−3α(szn−1)α′(zn−1sy)
zn−2α′(szn−2st)y = zn−3α(szn−1)α′(zn−2sty)

(5.13)

are satisfied in A for every y ∈ V . Now by (5.11), α′(zny) = α(zn−1y), α′(zn−1sy) = α(zn−2sy),
α′(zn−2sty) = α(zn−3sty), α′(szn) = α(zn−3α(szn−1)z) and therefore zn−2α′(szn) = zn−3α(szn−1)z,
α′(szn−1s) = α(zn−3α(xzn−1)s) and therefore zn−2α′(szn−1s) = zn−3α(xzn−1)s and finally, α′(szn−2st) =
α(zn−3α(xzn−2s)t) and therefore zn−2α′(szn−2st) = zn−3α(xzn−2s)t. After plugging this in, we
see that (5.13) becomes (5.7). Hence (5.7) is equivalent to dimAn+2 = 3. Now if the equalities
(5.7) are satisfied one can, using (5.11) easily see that the same equalities will be satisfied if we
replace α by α′ and n by n + 1. Hence we can iterate the argument to get dimAm = 3 for all
m > n.

Finally, assume that dimAn−1z = 3. Then the second part of Lemma 5.2 kicks in. Since
zn−1y = zn−2α(zn−1y) and zn−2sy = zn−2α(zn−2sy), the first two equations in (5.7) follow straight
from (5.2). By (5.3) then nothing changes in the equations (5.7) if we replace y by ŷ. Hence the
validity of the third equation in (5.7) for arbitrary y ∈ V is the same as for y ∈ {z, s}. Thus (5.7)
becomes equivalent to (5.8), which completes the proof.

5.1 Normal words of the form zn, zn−1s and zn−2sz

This, in a way, is the most annoying option. It forces us to separate the cases n = 3 and n > 3 and
the answer differs in these two cases.

Lemma 5.4. Let n ∈ N, n > 3 and let A be a finitely generated degree graded algebra, whose ideal

of relations is generated by some homogeneous elements of degree n. Assume also that z, s ∈ A1,

zn, zn−1s and zn−2sz form a linear basis in An, dim zn−1A1 < 3 and dimAn+1 > 3. Let L be the

three-dimensional space spanned by sz, zs and z2. Then there exist unique linear maps Z : L → L
and S : L → L satisfying

zn−2Z(u) = zn−3uz and zn−2S(u) = zn−3us for all u ∈ L. (5.14)
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Furthermore,

dimAn+2 = 3 if and only if (Z2S − aZSZ − bSZ2 − cZ3)(u) = 0 and

(SZS − λZSZ − µSZ2 − νZ3)(u) = 0, where u = Zn−3(sz) ∈ L,
(5.15)

where a, b, c, λ, µ, ν ∈ K are such that

zn−3sz2 = azn−2sz + bzn−1s+ czn and zn−3szs = λzn−2sz + µzn−1s+ νzn in A. (5.16)

Finally, if n > 4, then dimAm = 3 for all m > n.

Proof. By assumptions dimAn = 3. Pick a linear basis X in A1 containing z and s, equip X
with a total order for which z is minimal and s is second minimal and consider the corresponding
left-to-right degree-lexicographical order on 〈X〉, then the degree n normal words are zn, zn−1s
and zn−2sz. Indeed, since dim zn−1A1 < 3, zn−2sz is the smallest word not in the span of zn and
zn−1s. Since the only degree n + 1 words for which both degree n subwords are normal are zn+1,
zns and zn−1sz, we have dimAn+1 6 3. Since dimAn+1 > 3, we have dimAn+1 = 3 and the
degree n + 1 normal words are zn+1, zns and zn−1sz. Note that Lemma 2.7 as well as the first
part of Lemma 5.2 apply since all relevant conditions are satisfied. In particular, we can use the
cancellation rule (2.22).

Let M , V , F and α : Fn → L be as in Lemma 5.3 with t = z. By the said lemma dimAn+2 = 3
if and only if dimAm = 3 for all m > n if and only if the equalities (5.7) are satisfied with t = z
for all y ∈ V , which read

zn−3α(szn−1)zy = zn−3α(szn−1)α(zn−1y)
zn−3α(szn−1)sy = zn−3α(szn−1)α(zn−2sy)),
zn−3α(szn−2s)zy = zn−3α(szn−1)α(zn−3szy),

(5.17)

for all y ∈ V .
According to (5.6), for each u ∈ L, there exist unique v,w ∈ L such that zn−3uz = zn−2w

and zn−3us = zn−2v. Hence the formulas Z(u) = w and S(u) = v define unique linear maps
Z,S : L → L satisfying (5.14). Using (5.9) and (2.22), we see that

wzj = zn−2Zj(α(zjw)) for 0 6 j 6 n− 1 and w ∈ Fn−j , (5.18)

ws = zn−2S(α(zw)) for w ∈ Fn−1. (5.19)

Obviously, Z(z2) = z2, Z(zs) = sz and S(z2) = zs.
First, we show that the first two equalities in (5.17) are always satisfied. If Z is invertible, then

An = zn−2L = zn−3Z(L)z and therefore dimAn−1z = 3. In this case the first two equalities in
(5.17) are satisfied by Lemma 5.3. On the other hand, if Z is non-invertible, then since Z(z2) = z2

and Z(zs) = sz,
Z(L) = L0, where L0 = Mz = span {z2, sz}.

By definition of Z, zn−3sz2 = zn−2Z(sz). By (2.23) and the definition of α, zZ(sz)zn−3 = szn =
zn−2α(szn−1). Using (2.22), we now see that zn−3α(szn−1)u = Z(sz)zn−3u for every u ∈ A2.
Since Z(L) = L0, there is v ∈ M such that Z(sz) = vz. Thus zn−3α(szn−1)u = vzn−2u for
every u ∈ A2. Hence the first two equalities in (5.17) now read vzn−2sy = vzn−2α(zn−2sy)) and
vzn−1y = vzn−2α(zn−1y)). Both are trivially satisfied according to (5.6). Thus in any case the first
two equalities in (5.17) are satisfied. This means that dimAn+2 = 3 if and only if

zn−3α(szn−2s)zy = zn−3α(szn−1)α(zn−3szy) for all y ∈ V . (5.20)
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Note that by (5.18), zszn−2 = zn−2Zn−3(sz). Hence zszn−2s = zn−2Zn−3(sz)s and therefore
by (2.22), szn−2s = zn−3Zn−3(sz)s = zn−2SZn−3(sz). Also, by (5.18), α(szn−1) = Zn−2(sz) or
szn−1 = zn−2Zn−2(sz). We shall record this:

szn−2s = zn−2S(u), szn−1 = zn−2Z(u), where u = Zn−3(sz). (5.21)

Next, we shall verify that the validity of (5.20) for all y ∈ V is equivalent to the validity of
the same for y ∈ {z, s}. We already know this to be the case if Z is invertible according to
Lemma 5.3. Assume now that Z is non-invertible. Then as we have already observed Z(L) = L0,
which makes L0 an invariant subspace for Z. First, assume that the restriction of Z to L0 is
invertible. As we have already shown above, zn−3α(szn−1)w = Z(sz)zn−3w for every w ∈ A2.
Since Z(sz) ∈ L0 = Mz, there is v ∈ M such that Z(sz) = vz. Hence zn−3α(szn−1)α(zn−3szy) =
vzn−2α(zn−3szy) = vzn−3szy. Since the left-hand side of (5.20) also ends with zy, the equality
(5.20) can be written as wzy = 0, where w = vzn−3s− zn−3α(szn−2s) ∈ An−1. By definition of Z,
u1 := α(wz) ∈ Z(L) = L0 = Mz. Since wz = zn−2u1 and u1 ∈ L0 we can use the invertibility of Z
on L0 and (5.21) to write wz = Z2−n(u1)z

n−2, where Z2−n is the (n− 2)th power of the inverse of
the restriction of Z to L0. Since Z2−n(u1) ∈ L0, there is v1 ∈ M such that Z2−n(u1) = v1z. Hence
wz = v1z

n−1 in A. Now the equality (5.20) can be written as v1z
n−1y = 0. Now from invertibility

of Z on L0 it follows that if v1z
n = 0, then v1z

n−1 = 0. Hence the validity of (5.20) for y = z (in
this case) yields the same for all y ∈ V . In particular, it is enough to verify (5.20) for y ∈ {s, z}
only.

The final option is when Z is non-invertible and the restriction of Z to the invariant subspace
L0 is non-invertible as well. Since Z(zs) = sz and Z(z2) = z2, this means that Z(sz) is a scalar
multiple of z2. That is, zn−3sz2 = czn in A for some c ∈ K (the numbers a and b in (5.16) equal 0).
Performing a linear substitution which leaves every x ∈ X \ {s} as it was and replaces s by s+ c1z
with an appropriately chosen c1 ∈ K, we can kill c (without disturbing any of the properties of our
algebra). Hence without loss of generality we can assume that c = 0. Equivalently, zn−3sz2 = 0
in A or Z(sz) = Z2(zs) = 0. If n > 4, then we have u = 0, where u = Zn−3(sz) and therefore
α(szn−1) = α(szn−2s) = 0 according to (5.21). Thus (5.20) is satisfied for every y ∈ V . In
particular (5.20) for y ∈ V is trivially equivalent to (5.20) for y ∈ {z, s}. If n = 3, then u = sz.
Hence by (5.21), (5.20) can be rewritten as S(sz)zy = Z(sz)α(zn−3szy). Since Z(sz) = 0, (5.20)
reads S(sz)zy = 0. By (5.16) and the definition (5.14) of S and Z, S(sz) = λsz+µzs+ νz2. Thus
(5.20) is the same as λsz2y + µzszy + νz3y = 0. Since sz2 = zZ(sz) = 0, it further simplifies to
µzszy + νz3y = 0. Now the validity of this equality for y = z spells νz4 = 0 ⇐⇒ ν = 0, while its
validity for y = smeans 0 = µzszs+νz3s = µλz2sz+(µ2+ν)z3s+µνz4 ⇐⇒ µλ = µ2+ν = µν = 0.
It follows that (5.20) holds for y ∈ {z, s} if and only if µ = ν = 0. On the other hand, if µ = ν = 0,
then (5.20) trivially holds for every y ∈ V . This completes the proof of the fact that in every case
(5.20) for y ∈ V is equivalent to (5.20) for y ∈ {z, s}.

Hence dimAn+2 = 3 if and only if

zn−3α(szn−2s)z2 = zn−3α(szn−1)α(zn−3sz2),
zn−3α(szn−2s)zs = zn−3α(szn−1)α(zn−3szs).

(5.22)

Now by (5.16), α(zn−3sz2) = asz+ bzs+ cz2 and α(zn−3szs) = λsz+µzs+ νz2. Using (5.21) and
the definitions of Z and S, we now get

zn−3α(szn−2s)z2 = zn−3S(u)z2 = zn−1Z2S(u),
zn−3α(szn−1)α(zn−3sz2) = zn−3Z(u)(asz + bzs+ cz2) = zn−1(aZSZ + bSZ2 + cZ3)(u),
zn−3α(szn−2s)zs = zn−3S(u)zs = zn−1SZS(u),
zn−3α(szn−1)α(zn−3szs) = zn−3Z(u)(λsz + µzs+ νz2) = zn−1(λZSZ + µSZ2 + νZ3)(u),

where, as in (5.21), u = Zn−3(sz) ∈ L. Thus (5.22) is equivalent to (5.15). Thus we have proven
that dimAn+2 = 3 if and only if (5.15) is satisfied.
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Now assume that n > 4. Then by definitions of S and Z it follows that (5.15) is equivalent to

zn−4u(sz2 − azsz − bz2s− cz3) = zn−4u(szs− λzsz − µz2s− νz3) = 0 in A, (5.23)

where u = Zn−3(sz). If Z is invertible, we can apply the second part of Lemma 5.2. Then (5.16)
and (5.2) imply (5.23). Hence dimAn+2 = 3. If Z is non-invertible and the restriction of Z to L0

is invertible, then exactly as above (5.23) rewrites as

Z4−n(u)zn−4(sz2 − azsz − bz2s− cz3) = Z4−n(u)zn−4(szs− λzsz − µz2s− νz3) = 0 in A,

where a negative power of Z refers to the inverse of the restriction of Z to L0 (note that u ∈ L0).
Since Z4−n(u) ∈ L0, there is v ∈ M such that Z4−n(u) = vz. Hence (5.23) is equivalent to

vzn−3(sz2 − azsz − bz2s− cz3) = vzn−3(szs− λzsz − µz2s− νz3) = 0 in A,

which is obviously satisfied according to (5.16). Hence dimAn+2 = 3 in this case as well. Finally, we
have already observed above that if Z is non-invertible, the restriction of Z to L0 is non-invertible
and n > 4, then (5.20) is satisfied and therefore dimAn+2 = 3.

Thus we have verified that dimAn+2 = 3 provided n > 4. By Lemma 5.3, dimAm = 3 for all
m > n, which completes the proof.

With the same shape of normal words in the case n = 3 we have an extra possibility.

Lemma 5.5. Let A be a finitely generated degree graded algebra, whose ideal of relations is generated

by some homogeneous elements of degree 3. Assume also that there exist z, s ∈ A1 such that z3,
z2s and zsz form a linear basis in A3. Then there are three mutually exclusive possibilities:

(1) dimA4 < 3;

(2) H
[3]
A = 3;

(3) H
[3]
A = 321.

Proof. By assumptions dimA3 = 3. If there is x ∈ A1 for which x2A1 is 3-dimensional, the result
follows from Lemma 4.1 with n = k = 3. Thus we can assume that dimx2A1 < 3 for all x ∈ A1.
Fix z, s ∈ A1 for which z3, z2s and zsz form a linear basis in A3. We pick a linear basis X in A1

containing z and s, equip X with a total order for which z is minimal and s is second minimal and
consider the corresponding left-to-right degree-lexicographical order on 〈X〉. Then the degree 3
normal words are z3, z2s and zsz. Since the only degree 4 words for which both degree 3 subwords
are normal are z4, z3s and z2sz, we have dimA4 6 3. If dimA4 < 3, there is nothing to prove.
Thus we assume dimA4 = 3 in which case the degree 4 normal words must be z4, z3s and z2sz.
Note that Lemma 2.7 as well as the first part of Lemma 5.2 apply since all relevant conditions are
satisfied. In particular, we can use the cancellation rule (2.22).

We start by considering the normal word decomposition for zs2: zs2 = rzsz+pz2s+qz3. A linear
substitution which leaves every x ∈ X \{s} as it was and replaces s by s+c1z with an appropriately
chosen c1 ∈ K, kills r (without disturbing any of the properties of our algebra). Hence without loss
of generality we can assume that r = 0: zs2 = pz2s+ qz3. Then zs2z = pz2sz + qz4 and by (2.22),
s2z = pzsz + qz3. Similarly, Similarly, zs3 = pz2s2 + qz3s = (p2 + q)z3s + pqz4 and by (2.22),
s3 = (p2 + q)z2s+ pqz3. Throwing in normal word decompositions for szs and sz2, we get

zs2 = pz2s+ qz3, sz2 = azsz + bz2s+ cz3, szs = λzsz + µz2s+ νz3,
s2z = pzsz + qz3, s3 = (p2 + q)z2s+ pqz3, where p, q, a, b, c, λ, µ, ν ∈ K.

(5.24)

28



The formulas (5.24) allow us to write matrices of the linear maps S and Z as defined by (5.14)
in Lemma 5.4 in the basis sz, zs, z2 (in this order):

Z =




a 1 0
b 0 0
c 0 1


 and S =




λ 0 0
µ p 1
ν q 0


 . (5.25)

By Lemma 5.4, the case dimAm = 3 for all m > 3 happens precisely when (5.15) for n = 3 is
satisfied. Thus dimAm = 3 for all m > 3 if and only if

(Z2S − aZSZ − bSZ2 − cZ3)(sz) = 0 and (SZS − λZSZ − µSZ2 − νZ3)(sz) = 0.

In the matrix form, this statement reads

dimAm = 3 for all m > 3 if and only if the first columns of the matrices
Z2S − aZSZ − bSZ2 − cZ3 and SZS − λZSZ − µSZ2 − νZ3 are zero.

(5.26)

Now we resolve the degree 4 ambiguities s4, s3z, s2zs, szs2 and s2z2 using the relations (5.24)
and the fact that degree 4 normal words are z4, z3s and z2sz. For example, for the ambiguity s4,
we have

0 = s(s3)− (s3)s = (p2 + q)sz2s+ pqsz3 − (p2 + q)z2s2 − pqz3s,

which we then reduce to a linear combination of z4, z3s and z2sz using the relations (5.24). Since
z4, z3s and z2sz, all coefficients of this combination must be zero, yielding three algebraic equations.
In total, the five ambiguities in question produce 15 equations, which are

λa(p2+q)+(a2+b)pq=0, (µa+bp−p+c)(p2+q)+(ab−1)pq=0, (νa+bq−q)(p2+q)+(a+1)cpq=0,

a(λp+aq)+µp+bq−(p2+q)=0, c(λp+aq)+νp+cq−pq=0, b(λp+aq)=0,

a(λ2+νa)+λµ+(µa−p)λ+νb=0, b(λ2+νa)+(µa−p)µ+µbp+µc−q=0, c(λ2+νa)+λν+(µa−p)ν+µbq+νc=0,

λ(ap−λ)+a2q+bq=0, µ(ap−λ)+p(bp−µ)+cp+abq−ν=0, ν(ap−λ)+q(bp−µ)+(a+1)cq=0,

a(aλ+ac−p)+λab+bc+aµ=0, b(aλ+ac−p)+µab+b2p+bc, c(aλ+ac−p)+aν+νab+b2q+c2−q=0

(5.27)

We proceed by solving this system of algebraic equations.
Case 1: bp 6= 0.
Scaling s (=performing a linear substitution which leaves every x ∈ X \{s} as it was and replaces

s by its own non-zero scalar multiple), we can turn p into −1. That is, we may assume that p = −1.
Then from the equations in the second line of (5.27), we get λ = aq, µ = bq − q − 1, ν = qc+ q.

Case 1a: bpq 6= 0.
Then from the first equation in the first line of (5.27), b = a2q and therefore µ = a2q2 − q − 1.

Plugging
p = −1, b = a2q, λ = aq, µ = a2q2 − q − 1 and ν = qc+ q

into the second equation from the first line and into the second equation of the fourth line of (5.27),
we get

c(q + 1) = −a3q3 + a2q2 + a2q − 2q − 1 and c(q + 1) = a2q2 + a2q + aq2 + 2aq − 2q + a− 1,

respectively. Subtracting these equations, we get a(q + 1)2 = 0. Since b = a2q 6= 0, we have a 6= 0
and therefore q = −1. Hence we have

p = q = −1, b = −a2, λ = −a, µ = a2, and ν = −c− 1.

Plugging q = −1 into c(q + 1) = −a3q3 + a2q2 + a2q − 2q − 1, we get a3 = −1. Plugging the
expressions from the above display into the third and second equations in the third row of (5.27),
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we get a4 = a2 and a2c = −1, respectively, which together with a3 = −1 yield a = c = −1.
Plugging this into the above display, we get

a = b = c = p = q = −1, λ = µ = 1 and ν = 0. (5.28)

Now one easily sees that all 15 equations of (5.27) are satisfied in this case. We have our first
solution.

Case 1b: bp 6= 0 and q = 0.
In this case the equations λ = aq, µ = bq − q − 1, ν = qc+ q yield

q = λ = ν = 0 and p = µ = −1.

Plugging these values into (5.27), we see that the system reduces to

a+ b− c− 1 = 0, (a2 + b)c = 0, (ac+ c+ 1)c = 0 and ac+ c+ 1− a− b = 0,

for which the only solutions are

p = µ = −1, q = c = λ = ν = 0 and a = 1− b, where b ∈ K
∗ (5.29)

and we have our second solution. This concludes Case 1.
Case 2: bq 6= 0 and p = 0.
Scaling s we can turn q into 1. That is, we may assume that q = 1. Plugging p = 0 and q = 1

into the third equation in the second row of (5.27), we get ab = 0 and therefore a = 0. Plugging
a = p = 0 and q = 1 into the second and the first equations in the second row of (5.27), we get
c = 0 and b = 1, respectively. Plugging a = p = c = 0 and b = q = 1 into all three equations in the
fourth row of (5.27), we get λ2 = 1, λµ+ ν = 0 and λν+µ = 0. Note that the scaling s 7→ −s does
not change q at all and changes λ into −λ. Hence by means of this extra scaling, we can reduce the
two options λ = ±1 to just λ = 1. Assuming λ = 1, the two equations λµ+ ν = 0 and λν + µ = 0
become one ν = −µ. Thus we have

p = a = c = 0, b = q = λ = 1 and ν = −µ, where µ ∈ K. (5.30)

One easily sees that all 15 equations of (5.27) are satisfied in this case. We have our third solution.
Case 3: b 6= 0 and p = q = 0.
Plugging p = q = 0 into the first equation of the fourth row in (5.27), we get λ = 0. Plugging

p = q = λ = 0 into the second equation of the fourth row in (5.27), we get ν = 0. Plugging
p = q = µ = ν = 0 into (5.27), we see that the entire system reduces to

µ(µa+ c) = 0, a(µa+ c) + bc = 0, c(a+ 1) = 0 and µa+ c+ ac = 0.

Considering cases c = 0 and c 6= 0 separately, it is easy to solve this system. This gives three more
solutions:

p = q = λ = µ = ν = c = 0 and a ∈ K, b ∈ K
∗; (5.31)

p = q = λ = a = ν = c = 0 and µ ∈ K, b ∈ K
∗; (5.32)

a = b = −1, p = q = λ = µ = ν = 0 and c ∈ K. (5.33)

Case 4: b = 0 and apq 6= 0.
It turns out that we have no solutions in this case. Indeed from the first row of (5.27), we get

p2 + q 6= 0. Scaling s, we can turn p2 + q into 1. Thus we can assume p2 + q = 1. Then q = 1− p2.
Plugging this into the equations of the first row of (5.27), we get

λ = a(p3 − p), µ = 2p−p3−c
a

and ν = (1−p2)(1−(a+1)pc)
a

.

30



Modulo these expressions, the first equation of the fourth row of (5.27) reduces to (p2 − 1)3 = 0.
This yields p2 = 1 and therefore q = 0 contradicting the assumptions.

Case 5: b = q = 0 and ap 6= 0.
By scaling s, we can and will assume that p = 1. Plugging b = q = 0 and p = 1 into the first

equation in the first row of (5.27), we get λ = 0. Plugging b = q = λ = 0 and p = 1 into the
third equation in the first row of (5.27), we get ν = 0. Plugging b = q = λ = ν = 0 and p = 1
into the first equation in the second row of (5.27), we get µ = 1. Plugging b = q = λ = ν = 0
and p = µ = 1 into the first equation in the fifth row of (5.27), we get c = 0. Finally, plugging
b = q = λ = ν = c = 0 and p = µ = 1 into the second equation in the first row of (5.27), we get
a = 1. Thus

a = p = µ = 1 and b = c = q = λ = ν = 0. (5.34)

One easily sees that all 15 equations of (5.27) are satisfied in this case. We have our seventh
solution.

Case 6: b = q = p = 0 and a 6= 0.
Plugging b = q = p = 0 into the first equation in the fourth row of (5.27), we get λ = 0. Plugging

b = q = p = λ = 0 into the second equation in the fourth row of (5.27), we get ν = 0.
Plugging b = q = p = λ = ν = 0 into (5.27), we see that the entire system reduces to

µ(µa+ c) = 0, ac+ µ = 0 and c(a+ 1) = 0.

This is easily seen to produce the following two solutions:

a = −1, b = p = q = λ = ν = 0 and µ = c ∈ K; (5.35)

b = p = q = λ = ν = µ = c = 0 and a ∈ K
∗. (5.36)

Case 7: a = b = 0.
The system becomes too simple in this case. We just state what are the last two solutions

(leaving the verification to the reader). The path is by, first seeing that q = 0 and considering the
cases p 6= 0 (and a scaling of s brings p to 1) and p = 0. The two solutions emerging are

p = c = µ = 1 and a = b = q = λ = ν = 0; (5.37)

a = b = c = p = q = λ = ν = 0 and µ ∈ K. (5.38)

Since Cases 1–7 cover all possibilities, we have described all solutions (modulo scaling of s) of
the system (5.27). Now it is a matter of a direct calculation to show that for the matrices Z and S
given by (5.25) with a, b, c, p, q, λ, µ, ν from one of the above eleven solutions (5.28–5.38), the matrix
equalities Z2S−aZSZ− bSZ2− cZ3 = 0 and SZS−λZSZ−µSZ2−νZ3 = 0 (the whole matrices
in fact) hold for all solutions except for (5.32) and (5.38), with the latter being the same as (5.32)
but with b = 0. According to (5.26), dimAm = 3 for all m > 3 unless p = q = λ = a = ν = c = 0.

Thus we may now assume that p = q = λ = a = ν = c = 0 and the relations (5.24) simplify to

zs2 = 0, sz2 = bz2s, szs = µz2s, s2z = 0, s3 = 0, where b, µ ∈ K.

If either b = 1 or µ = 0, the equalities Z2S−aZSZ− bSZ2− cZ3 = 0 and SZS−λZSZ−µSZ2−
νZ3 = 0 are satisfied anyway yielding dimAm = 3 for all m > 3. Thus we have to assume that
b 6= 1 and µ 6= 0. Since µ 6= 0, an appropriate scaling of s turns µ into 1 and the relations (5.24)
become

zs2 = 0, sz2 = bz2s, szs = z2s, s2z = 0, s3 = 0, where b ∈ K \ {1}. (5.39)

If we start with (5.39) with b = 0 and perform the substitution which keeps every x ∈ X \ {z, s}
as they were and replaces z by znew = z − αs and s by snew = s(1− α) with α ∈ K \ {1}, then the
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relations (5.39) written in terms of new z and s (which we now still denote z and s dropping the
subscript) look like

zs2 = 0, sz2 = αz2s, szs = z2s, s2z = 0 and s3 = 0.

Basically, this means that substitutions of this type turn b = 0 into any b ∈ K \ {1} we like. Hence
we can assume that b = −1, which yields

zs2 = 0, sz2 = −z2s, szs = z2s, s2z = 0, s3 = 0. (5.40)

In this case Z is invertible and therefore dimA2z = 3 and the second part of Lemma 5.2 applies.
Then according to (5.3) dimAm = dimBm for all m > 3, where the algebra B given by just two
generators s and z and the relations (5.40). Curiously enough, assuming that dimA4 = 3 and
that dimAm is different from 3 for some m > 5, we have almost pinpointed A uniquely up to an
isomorphism: algebras A and B may ’differ’ only in graded components 1 and 2. Computing the
reduced Gröbner basis of the ideal of relations of B, we easily see that it consists of zs2, sz2 + z2s,
szs− z2s, s2z, s3 and z4s, yielding HB(t) = 1+2t+4t2 +3t3 +3t4 +2t5 + t6+ t7 + t8 + . . .. Hence

H
[3]
A = 321, which completes the proof.

5.2 Normal words of the form zn, zn−1s and zn−2s2

Lemma 5.6. Let n ∈ N, n > 3 and let A be a finitely generated degree graded algebra, whose

ideal of relations is generated by some homogeneous elements of degree n. Assume also that there

exist z, s ∈ A1 such that zn, zn−1s and zn−2s2 form a linear basis in An, dim zn−1A1 < 3 and

zn−2sz = zn−1s + bzn in A for some b ∈ K
∗. Then either dimAn+1 < 3 or dimAm = 3 for all

m > n.

Proof. If dimAn+1 < 3, there is nothing to prove. Thus we can assume that dimAn+1 > 3. Let X
be a linear basis in A1 containing z and s. Equip X with a total order for which z = minX and
s = min(X \ {z}) and extend it to the left-to-right degree-lexicographical order < on 〈X〉. Since
the two smallest degree n words with respect to this order zn and zn−1s are linearly independent
in A, they are degree n normal words. Since dim zn−1A1 < 3 and zn−2sz is in the linear span of
zn and zn−1s in A, the smallest degree n word, which does not belong to the said span is zn−2s2

(recall that zn, zn−1s and zn−2s2 are linearly independent). Hence the three degree n normal
words are zn, zn−1s and zn−2s2. Since the only degree n + 1 words both degree n subwords of
which are normal are zn+1, zns and zn−1s2, we have dimAn+1 = 3 and the degree n + 1 normal
words are zn+1, zns and zn−1s2. Note that by Lemma 2.7, the cancellation rule (2.22) holds. We
also denote the tensor algebra of V := A1 by F . Recall that F naturally identified with the free
algebra K〈X〉. A scaling of s (=a linear substitution leaving every element of X \ {s} as it was
and replacing s by its own non-zero scalar multiple) allows to turn b into 1. Thus we can assume
that zn−2sz = zn−1s + zn. Repeatedly multiplying by z on the right and using the cancellation
rule (2.22), we get the following equalities in A:

zn−1−jszj = zn−1s+ jzn for 0 6 j 6 n− 1 and szn = zns+ nzn+1. (5.41)

Multiplying zn−2sz = zn−1s + (n − 2)zn by s on the right and using (2.22), we obtain szn−2s =
zn−2s2 + (n− 2)zn−1s. Multiplying by z on the right, we get zn−2s2z = szn−2sz − (n− 2)zn−1sz.
Now by (5.41), we get zn−2s2z = szn−1s + szn − (n − 2)zns − (n − 2)zn+1. Applying (5.41) once
again, simplifying and using (2.22), we get

zn−3s2z = zn−2s2 + 2zn−1s+ 2zn in A. (5.42)
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Now consider the normal word decomposition of zn−3s3:

zn−3s3 = pzn−2s2 + qzn−1s+ rzn in A, (5.43)

where p, q, r ∈ K. Next, we consider the monomial szn−3s2z, which we express in two different
ways. Multiplying (5.42) by s on the left and simplifying by means of (5.41) and the equality
szn−2s = zn−2s2 + (n− 2)zn−1s, we get

szn−3s2z = szn−2s2 + 2szn−1s+ 2szn = zn−2s3 + nzn−1s2 + 2nzns+ 2nzn+1.

Next, using z2szn−3 = zn−1s+ (n− 3)zn and (2.23), we get szn−3s2z = zn−3s3z + (n− 3)zn−2s2z.
Now according to (5.43), szn−3s2z = (p+n−3)zn−2s2z+qzn−1sz+rzn+1. Simplifying by means of
(5.41) and (5.42), we get szn−3s2z = (p+n−3)zn−1s2+(2p+q+2n−6)zns+(2p+q+r+2n−6)zn+1.
Taking (5.43) into account, we obtain

szn−3s2z = zn−2s3 + (n− 3)zn−1s2 + (2p + 2n− 6)zns+ (2p+ q + 2n− 6)zn+1.

By the above two displays,

3zn−1s2 + 2(3 − p)zns+ (6− 2p− q)zn+1 = 0 in A.

Since zn−1s2, zns and zn+1 are linearly independent in A, we see that 3 = 2(3−p) = 6−2p− q = 0
in K. It follows that K has characteristic 3 and p = q = 0. Note that had we excluded characteristic
3 fields from the start, we would be already done by getting a contradiction. As we did not, we
have to proceed. Note that we can kill r by a substitution which leaves every element of X \ {s}
as it was and adds to s an appropriate scalar multiple of z. Assume that we have done this. Then
(5.43) becomes

zn−3s3 = 0 in A. (5.44)

Since we know that zn−2sz = zn−1s+zn and zn−3s2z = zn−2s2+2zn−1s+2zn, monomials zn−2sz,
zn−3s2z and zn are linearly independent in A. Hence dimAn−1z = 3 and we can use both parts of
Lemma 5.2.

We have to verify that dimAm = 3 for all m > n. By Lemma 5.3, for this purpose it suffices to
verify the equalities (5.8) with t = s, where α : Fn → L = span {s2, zs, z2} is given by (5.6). That
is we have to verify that

zn−3α(szn−2s)sz = zn−3α(szn−1)α(zn−3s2z)
zn−3α(szn−2s)s2 = zn−3α(szn−1)α(zn−3s3)

(5.45)

are satisfied in A. The equality szn−2s = zn−2s2 + (n− 2)zn−1s yields α(szn−2s) = s2 + (n− 2)zs,
while (5.44) reads α(zn−3s3) = 0. Thus the right-hand side of the second equation in (5.45)
vanishes, while the left-hand side equals zn−3(s2 + (n − 2)zs)s2 = zn−3s4 + (n − 2)zn−2s3, which
vanishes as well because of (5.44). Thus the second equality in (5.45) is satisfied.

By (5.41), α(szn−1) = zs + (n − 1)z2, while by (5.42), α(zn−3s2z) = s2 + 2zs + 2z2, which
together with α(szn−2s) = s2 + (n− 2)zs allows us to rewrite the first equality in (5.45) as

zn−3(s2 + (n− 2)zs)sz = zn−3(zs + (n− 1)z2)(s2 + 2zs + 2z2).

After opening brackets and simplifying due to (5.41), (5.42) and (5.44), it transforms into 3zn−1s2+
6zns+ 6zn+1 = 0, which holds since K now has characteristic 3. The proof is complete.

Lemma 5.7. Let n ∈ N, n > 3 and let A be a finitely generated degree graded algebra, whose ideal

of relations is generated by some homogeneous elements of degree n. Assume also that there exist

z, s ∈ A1 such that zn, zn−1s and zn−2s2 form a linear basis in An, while zn, zn−1s and zn−2sz
are linearly dependent in A. Then either dimAn+1 < 3 or dimAm = 3 for all m > n.
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Proof. If zn−1A1 is 3-dimensional, the result follows from Lemma 4.1 with k = 3. Thus we can
assume that dim zn−1A1 < 3. Then, by assumptions, zn and zn−1s form a linear basis in zn−1A1.
Let X be a linear basis in A1 containing z and s. Equip X with a total order for which z = minX
and s = min(X\{z}) and extend it to the left-to-right degree-lexicographical order < on 〈X〉. Since
the two smallest degree n words with respect to this order zn and zn−1s are linearly independent
in A, they are degree n normal words. Since zn−1A1 as well as zn−2sz are in the linear span of
zn and zn−1s in A, the smallest degree n word, which does not belong to the said span is zn−2s2

(recall that zn, zn−1s and zn−2s2 are linearly independent). Hence the three degree n normal words
are zn, zn−1s and zn−2s2. If dimAn+1 < 3, there is nothing to prove. Thus we shall assume that
dimAn+1 > 3. Since the only degree n+ 1 words both degree n subwords of which are normal are
zn+1, zns and zn−1s2, we have dimAn+1 = 3 and the degree n+1 normal words are zn+1, zns and
zn−1s2. Note that by Lemma 2.7, the cancellation rule (2.22) holds. We also denote the tensor
algebra of V := A1 by F . Recall that F naturally identified with the free algebra K〈X〉.

Since zn, zn−1s and zn−2sz are linearly dependent, while zn and zn−1s are not, there exist
a, b ∈ K such that zn−2sz = azn−1s+ bzn. If a = 1 and b 6= 0, the result follows from Lemma 5.6.
Thus we can assume that either b = 0 or a 6= 1. Now if a 6= 1, then by a linear substitution, which
leaves every generator from X \ {s} as it was and replaces s by s + cz with appropriately chosen
c ∈ K, we can kill b. Thus for the rest of the proof we can assume that b = 0 and therefore

zn−2sz = azn−1s in A for some a ∈ K. (5.46)

Decomposing via normal words, we can write

zn−3s3 = pzn−2s2 + qzn−1s+ rzn in A for some p, q, r ∈ K. (5.47)

Before proceeding, we would like to provide relations between numbers p, q, r and a, which follow
from the assumptions of our lemma.

Repeatedly multiplying zn−1s by z on the right, using (5.46) and cancelling z from the left
according to (2.22), we get

zn−1−jszj = ajzn−1s for 0 6 j 6 n and szn = anzns in A. (5.48)

Since by (5.48), zn−1−jszj = ajzn−1s, we have zn−1−jszjs = ajzn−1s2 and by (2.22),

zn−2−jszjs = ajzn−2s2 in A for 0 6 j 6 n− 2. (5.49)

The rest requires considering the cases a = 0 and a 6= 0 separately. By (5.49), szn−2s =
an−2zn−2s2. Hence szn−2sz = an−2zn−2s2z. On the other hand, by (5.48), szn−2sz = aszn−1s =
anzn−1s2. It follows that anzn−1s2 = an−2zn−2s2z and by (2.22), anzn−2s2 = an−2zn−3s2z. Hence

zn−3s2z = a2zn−2s2 in A if a 6= 0. (5.50)

Multiplying by s on the left and using first (5.49) and then (5.47), we get

szn−3s2z = a2szn−2s2 = anzn−2s3 = an(pzn−1s2 + qzns+ rzn+1).

On the other hand, by (5.48), z2szn−3 = an−3zn−1s and therefore z2szn−3s = an−3zn−1s2. By
(2.22), zszn−3s = an−3zn−2s2 and therefore szn−3s2z = an−3zn−3s3z. Using (5.47), we get
szn−3s2z = an−3(pzn−2s2z + qzn−1sz + rzn+1) and by (5.48) and (5.50) (here we assume that
a 6= 0), szn−3s2z = an−1pzn−1s2 + an−2qzns + ran−3zn+1. Comparing this equality to the above
display, we get

an−1(a− 1)pzn−1s2 + an−2(a2 − 1)qzns+ an−3(a3 − 1)rzn+1 = 0 in A.
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Since zn−1s2, zns and zn+1 are linearly independent in A, we arrive at

p(a− 1) = q(a2 − 1) = r(a3 − 1) = 0 if a 6= 0. (5.51)

This concludes laying the groundwork.
Case 1: a 6= 0. In this case (5.48) and (5.50) imply that dimAn−1z = 3. Then by Lemma 5.3

in order to prove that H
[n]
A = 3, it suffices to verify the validity of (5.8) with t = s, where

α : Fn → L = span {s2, zs, z2} is given by (5.6). That is, we have to verify (5.45). By (5.48), (5.49),
(5.50) and (5.47), α(szn−2s) = an−2s2, α(zn−3s2z) = a2s2, α(szn−1) = an−1zs and α(zn−3s3) =
ps2 + qzs+ rz2. Now (5.45) reads

an−2zn−3s3z = an+1zn−2s3, an−2zn−3s4 = an−1zn−2s(ps2 + qzs+ rz2).

Using (5.47) again, we can rewrite the above display as

an−2zn−2(ps2 + qzs+ rz2)z = an+1zn−1(ps2 + qzs+ rz2),
an−2zn−2(ps2 + qzs+ rz2)s = an−1zn−2s(ps2 + qzs+ rz2).

Simplifying by means of (5.48), (5.49) and (5.50), we see that the problem boils down to the validity
of

a2(a−1)pzn−1s2+a(a2−1)qzns+(a3−1)rzn+1 = 0, a2(a−1)pzn−2s3+a(a2−1)qzn−1s2+(a3−1)rzns = 0,

which holds due to (5.51). This completes Case 1.
Case 2: a = 0. By Lemma 5.3, the proof will be complete if we verify (5.7) with t = s. That is,

we have to show that

zn−3α(szn−1)zy = zn−3α(szn−1)α(zn−1y),
zn−3α(szn−1)sy = zn−3α(szn−1)α(zn−2sy),
zn−3α(szn−2s)sy = zn−3α(szn−1)α(zn−3s2y)

(5.52)

for all y ∈ V . However, since a = 0, (5.48) and (5.49) imply that α(szn−1) = α(szn−2s) = 0. Hence
(5.52) in the case a = 0 is satisfied, which completes Case 2 and the proof of our lemma.

5.3 Proof of Lemma 5.1

Let A be a finitely generated degree graded algebra, whose ideal of relations is generated by some ho-
mogeneous elements of degree n, where n > 3. Assume also that dimAn = max{λ(A,n), ρ(A,n)} =
3. Hence either λ(A,n) = 3 or ρ(A,n) = 3. The two cases are equivalent. Indeed, they are reduced
to one another by passing to the opposite multiplication. Thus without loss of generality, we may
assume that λ(A,n) = 3. If dimAn+1 < 3, there is nothing to prove. Hence we shall assume
that dimAn+1 > 3. If dimxn−1A1 = 3 for some x ∈ A1, Lemma 4.1 with k = 3 implies that

H
[n]
A = 3. Thus for the rest of the proof we can assume that dimxn−1A1 < 3 for all x ∈ A1.

Now by Lemma 2.2, for generic X = (x1, x2, . . . ) ∈ Ω(A) with 〈X〉 carrying the LR order <,
NWn = {xn1 , x

n−1
1 x2, w}, where w ∈ {xn−2

1 x2x1, x
n−2
1 x22}. If w = xn−2

1 x22, Lemma 5.7 (with z = x1

and s = x2) yields H
[n]
A = 3. If w = xn−2

1 x2x1 and n > 4, then by Lemma 5.4 with z = x1 and

s = x2, H
[n]
A = 3. On the other hand, if n = 3 and w = xn−2

1 x2x1 = x1x2x1, then H
[n]
A ∈ {3, 3321}

according to Lemma 5.5 with z = x1 and s = x2. This completes the proof of Lemma maxLR3.

6 Case dimAn = 3 and max{λ(A, n), ρ(A, n)} = 2

The main result of this section is the following lemma. We prove Theorem 1.3 at the end of the
section.

Lemma 6.1. Let A be a finitely generated degree graded algebra, whose ideal of relations is generated

by some homogeneous elements of degree n, where n > 3. Assume also that dimAn = 3, dimAn+1 >

3 and max{λ(A,n), ρ(A,n)} = 2. Then H
[n]
A =∈ {3, 34}.
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6.1 Normal words of the form zn, zn−1s and szn−1

Lemma 6.2. Let A be a finitely generated degree graded algebra, whose ideal of relations is generated

by some homogeneous elements of degree n, where n > 3. Let X be a linear basis in A1 and z, s ∈ X
be such that zn, zn−1s and szn−1 are linearly independent in A, zAn−1 = span {zn, zn−1s} and

An−1z = span {zn, szn−1} and An is spanned by (not necessarily linearly independent) zn, zn−1s,
szn−1 and szn−2s. Then dimAn+1 6 4 and An+1 is spanned by zn+1, zns, szn and szn−1s.
Moreover, if dimAn+1 = 4, then dimAm = 4 for all m > n. Furthermore, if dimAn = dimAn+1 =
3, then An+1 is spanned by zn+1, zns and szn and dimAm = 3 for all m > n.

Proof. Let X ∈ Ω(A, z, s) with 〈X〉 carrying the LR order <. Since zn and zn−1s are the two
smallest degree n words and zn, zn−1s are linearly independent in A, they are degree n normal
words. Since zAn−1 = span {zn, zn−1s} and zn, zn−1s and szn−1 are linearly independent in A,
the smallest degree n word w for which zn, zn−1s and w are linearly independent is w = szn−1.
Hence szn−1 is a degree n normal word. If zn, zn−1s, szn−1 and szn−2s are linearly dependent the
assumption that these 4 monomials span An guarantees that dimAn = 3 and the degree n normal
words are zn, zn−1s and szn−1. If zn, zn−1s, szn−1 and szn−2s are linearly independent, then
equalities zAn−1 = span {zn, zn−1s}, An−1z = span {zn, szn−1} ensure that szn−2s is the smallest
degree n word for which zn, zn−1s, szn−1 and w are linearly independent and therefore dimAn = 4
and szn−2s is the fourth and final normal word.

Thus for each w ∈ 〈X〉n, there exist unique α(w), β(w), γ(w), δ(w) ∈ K such that

w = α(w)zn + β(w)zn−1s+ γ(w)szn−1 + δ(w)szn−2s, (6.1)

where we assume that

δ(w) = 0 for all w if zn, zn−1s, szn−1 and szn−2s are linearly dependent.

Since zAn−1 = span {zn, zn−1s} and An−1z = span {zn, szn−1}, we see that

for every w ∈ 〈X〉n−1, β(wz) = γ(zw) = δ(zw) = δ(wz) = 0. (6.2)

Since the only degree n+1 words for which both degree n subwords are normal are zn+1, zns, szn

and szn−1s, these words span An+1 and therefore dimAn+1 6 4.
Regardless whether szn−2s is a linear combination of zn, zn−1s and szn−1 or not, the elements

w − α(w)zn − β(w)zn−1s− γ(w)szn−1 − δ(w)szn−2s

for all non-normal degree n words w form the degree n part of the reduced Gröbner basis for the
ideal of relations of A. Now if w ∈ 〈X〉n−1 and x, y ∈ X, (6.1) and (6.2) easily yield

xwy = α′(xwy)zn+1 + β′(xwy)zns+ γ′(xwy)szn + δ′(xwy)szn−1s in A, (6.3)

where

α′(xwy) = α(xw)α(zn−1y)+β(xw)α(zn−2sy), β′(xwy) = α(xw)β(zn−1y)+β(xw)β(zn−2sy),
γ′(xwy) = γ(xw)α(zn−1y)+δ(xw)α(zn−2sy), δ′(xwy) = γ(xw)β(zn−1y)+δ(xw)β(zn−2sy).

(6.4)
Here we reduced xwy = (xw)y. Performing the same procedure with xwy = x(wy), we see that

α̃(xwy)zn+1 + β̃(xwy)zns+ γ̃(xwy)szn + δ̃(xwy)szn−1s = 0 in A (6.5)

for all x, y ∈ X and w ∈ 〈X〉n−1, where

α̃(xwy) = α(xw)α(zn−1y) + β(xw)α(zn−2sy)− α(wy)α(xzn−1)− γ(wy)α(xszn−2),

β̃(xwy) = α(xw)β(zn−1y) + β(xw)β(zn−2sy)− β(wy)α(xzn−1)− δ(wy)α(xszn−2),
γ̃(xwy) = γ(xw)α(zn−1y) + δ(xw)α(zn−2sy)− α(wy)γ(xzn−1)− γ(wy)γ(xszn−2),

δ̃(xwy) = γ(xw)β(zn−1y) + δ(xw)β(zn−2sy)− β(wy)γ(xzn−1)− δ(wy)γ(xszn−2)

(6.6)
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and that the left-hand sides of (6.5) have the same linear spans as the the degree n+1 elements of the
reduced Gröbner basis (this is how the Buchberger algorithm works). Hence a linear combination
g of zn+1, zns, szn and szn−1s vanishes in A if and only if g is in the linear span of the left-hand
sides of (6.5).

First, we shall prove the lemma under the additional assumption that

either dimAn+1 = 4 (6.7)

or dimAn = dimAn+1 = 3 and szn−1s = zszn−2 = zn−2sz = 0 in A. (6.8)

It follows (we use szn−1s = 0 in the case dimAn = dimAn+1 = 3) that

α̃(xwy) = β̃(xwy) = γ̃(xwy) = 0 for all x, y ∈ X, w ∈ 〈X〉n−1. (6.9)

δ̃(xwy) = 0 for all x, y ∈ X, w ∈ 〈X〉n−1 if (6.7) is satisfied (6.10)

δ̃(xwy) 6= 0 for some x, y ∈ X, w ∈ 〈X〉n−1 if (6.8) is satisfied. (6.11)

Note that the converse is also true in the following sense. If (6.9) and (6.10) are satisfied, then
dimAn+1 = 4, while if (6.9) and (6.11) are satisfied, then dimAn+1 = 3 and szn−1s = 0.

Now the numbers α′(xwy), β′(xwy), γ′(xwy) and δ′(xwy) satisfying (6.3) (with δ′(xwy) = 0 in
the case (6.8)) are uniquely determined (and, of course, given by (6.4) except for δ′ in the case
(6.8)) and all conditions of the lemma are satisfied with n replaced by n + 1. In order to show
that dimAm = 4 for all m > n + 1 in the case (6.7), it suffices to verify that dimAn+2 = 4 (then
we can iterate the argument). For the same reason, in order to show that dimAm = 3 for all
m > n in the case (6.8), it suffices to verify that dimAn+2 = 3 and szns = 0 in A (the equalities
zszn−1 = zn−1sz = 0 follow from zszn−2 = zn−2sz = 0 trivially). We shall do just that (in both
of the above cases) thereby proving that the conclusion of our lemma is satisfied provided (6.7) or
(6.8) holds.

In order to show that dimAn+2 = 4 in the case (6.7), it is now sufficient to verify that (6.9) and
(6.10) are satisfied if the degree of w is increased by 1 and α, β, γ, δ are replaced by α′, β′, γ′, δ′,
respectively. Similarly, in the case (6.8), in order to show that dimAn+2 = 3 and szns = 0, it
is sufficient to verify that (6.9) and (6.11) are satisfied if the degree of w is increased by 1 and
α, β, γ, δ are replaced by α′, β′, γ′, δ′.

Now, (6.9) for monomials xwy with x, y ∈ X and w ∈ 〈X〉n (degree increased by 1) reads

α′(xw)α′(zny) + β′(xw)α′(zn−1sy)− α′(wy)α(xzn)− γ′(wy)α(xszn−1) = 0,
α′(xw)β′(zny) + β′(xw)β′(zn−1sy)− β′(wy)α′(xzn1)− δ′(wy)α′(xszn−1) = 0,
γ′(xw)α′(zny) + δ′(xw)α′(zn−1sy)− α′(wy)γ′(xzn)− γ′(wy)γ′(xszn−1) = 0,

(6.12)

(6.10) in the same situation becomes

γ′(xw)β′(zny) + δ′(xw)β′(zn−1sy)− β′(wy)γ′(xzn)− δ′(wy)γ′(xszn−1) = 0, (6.13)

while naturally, (6.11) becomes the opposite:

γ′(xw)β′(zny)+δ′(xw)β′(zn−1sy)−β′(wy)γ′(xzn)−δ′(wy)γ′(xszn−1) 6= 0
for some x, y ∈ X and w ∈ 〈X〉n.

(6.14)

Using the original (6.9), (6.6) and (6.4), we see that

α′(wy) = α(w)α(zn−1y) + β(w)α(zn−2sy), α′(xw) = α(w)α(xzn−1) + γ(w)α(xszn−2),
β′(wy) = α(w)β(zn−1y) + β(w)β(zn−2sy), β′(xw) = β(w)α(xzn−1) + δ(w)α(xszn−2),
γ′(wy) = γ(w)α(zn−1y) + δ(w)α(zn−2sy), γ′(xw) = α(w)γ(xzn−1) + γ(w)γ(xszn−2).

(6.15)
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Applying (6.15) in few particular cases and using (6.2), we get

α′(zny) = α(zn−1y) α′(xzn) = α(xzn−1), β′(zny) = β(zn−1y),
γ′(xzn) = γ(xzn−1), α′(zn−1sy) = α(zn−2sy) α′(xszn−1) = α(xszn−2),
β′(zn−1sy) = β(zn−2sy) γ′(xszn−1) = γ(xszn−2).

(6.16)

Plugging (6.15) and (6.16) into (6.12), we see that (6.12) is trivially satisfied (in both cases):
everything cancels out. If dimAn+1 = 4 (condition (6.7)), then we similarly have

δ′(wy) = γ(w)β(zn−1y) + δ(w)β(zn−2sy), δ′(xw) = β(w)γ(xzn−1) + δ(w)γ(xszn−2),

using which together with (6.15) and (6.16), we see that (6.13) is also satisfied, thus proving the
lemma in the case dimAn+1 = 4.

Now if dimAn = dimAn+1 = 3 and szn−1s = zn−2sz = zszn−2 = 0 in A (condition (6.8)),
then δ(w) = 0 for all w ∈ 〈X〉n−1 and δ′(w) = 0 for w ∈ 〈X〉n, while δ̃(xwy) = γ(xw)β(zn−1y) −
β(wy)γ(xzn−1) is not identically zero. As we already have (6.12), it remains to verify (6.14).
Assume the contrary. Then γ′(xw)β′(zny) − β′(wy)γ′(xzn) = 0 for all x, y ∈ X and w ∈ 〈X〉n.
Using (6.15) and (6.16), we can rewrite this equality as

γ(w)γ(xszn−2))β(zn−1y)− β(w)β(zn−2sy))γ(xzn−1) = 0.

Since for w = szn−1, γ(w) = 1 and β(w) = 0, while for w = zn−1s, γ(w) = 0 and β(w) = 1, the
above equality yields

γ(xszn−2)β(zn−1y) = β(zn−2sy)γ(xzn−1) = 0 for all x, y ∈ X.

Since β(zn−1s) = γ(szn−1) = 1, the above display is equivalent to

γ(xszn−2) = β(zn−2sy) = 0 for all x, y ∈ X.

Using these equalities in addition to (6.15), we get β(wy) = β′(zwy) = α(zw)β(zn−1y) and γ(xw) =
γ′(xwz) = α(wz)γ(xzn−1). Hence δ̃(xwy) = γ(xzn−1)β(zn−1y)(α(wz) − α(zw)). On the other
hand, by (6.15), α′(zwz) = α(wz) + γ(wz)α(zszn−2) = α(zw) + β(zw)α(zn−2sz). Since by (6.8),
zszn−2 = zn−2sz = 0, it follows that α(zw) = α(wz). Plugging this into the last expression for
δ̃(w), we get δ̃(w) = 0 for all w. This contradiction completes the proof of lemma under the extra
assumption (6.8).

Since (6.7) covers the case dimAn+1 = 4, for the remainder of the proof we can assume
that dimAn = dimAn+1 = 3. The rest of the proof is the reduction to the case (6.8). Since
dimAn = 3, the degree n normal words are zn, zn−1s and szn−1 and δ(w) = 0 for all w ∈ 〈X〉n.
Since dimAn+1 = 3, the set NWn+1 of degree n + 1 normal words is a 3-element subset of
{zn+1, zns, szn, szn−1s}. We shall see that only one of the four possibilities can actually occur.
Still we have to consider them all. Before doing this recall that zAn−1 = span {zn, zn−1s} and
An−1z = span {zn, szn−1} and therefore zAn−2z = span {zn}. Hence both zn−2sz and zszn−2 are
scalar multiples of zn. Performing a linear substitution, which does not change any element of
X \ {s} and adds to s an appropriate scalar multiple of z, we can turn zn−2sz into zero. Thus we
can without loss of generality assume that

zn−2sz = 0 and zszn−2 = azn in A, where a ∈ K. (6.17)

Case 1: NWn+1 = {zns, szn, szn−1s}. This is only possible if zn+1 = 0 in A and

β̃(xwy) = γ̃(xwy) = δ̃(xwy) = 0 for all x, y ∈ X and w ∈ 〈X〉n,
while α̃(xwy) 6= 0 for some x, y ∈ X and w ∈ 〈X〉n.

(6.18)
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Writing szn−2s, zn−2s2 and s2zn−2 as linear combinations of normal words, we get szn−2s =
λ1z

n + λ2z
n−1s + λ3sz

n−1, s2zn−2 = λ4z
n + λ5sz

n−1 and zn−2s2 = λ6z
n + λ7z

n−1s with λj ∈
K, where the last two expressions are one term shorter because zAn−1 = span {zn, zn−1s} and
An−1z = span {zn, szn−1}. Then 0 = szn−2sz = λ1z

n+1 + λ2z
n−1sz + λ3sz

n = λ3sz
n. Since szn

is a normal word, λ3 = 0. Hence, azns = zszn−2s = λ1z
n+1 + λ2z

ns. Since zns is a normal word,
λ2 = a. Thus szn−2s = λ1z

n + azn−1s. Now λ1sz
n + aszn−1s = s2zn−2s = λ4z

ns + λ5sz
n−1s

and therefore λ1sz
n + (a − λ5)sz

n−1s − λ4z
ns = 0. Since szn, zns and szn−1s are normal words,

we have λ1 = λ4 = 0 and λ5 = a. Hence szn−2s = azn−1s and s2zn−2 = aszn−1. Finally,
azn−1s2 = szn−2s2 = λ6sz

n+λ7sz
n−1s. Since szn, zns and szn−1s are normal words and zn+1 = 0,

we have λ6 = λ7 = 0. Summarizing, we get

zn+1 = zn−2s2 = zn−2sz = 0, zszn−2 = azn, szn−2s = azn−1s and s2zn−2 = aszn−1. (6.19)

Since δ(w) = 0, by (6.6), the equation in (6.18) reads

α(xw)β(zn−1y) + β(xw)β(zn−2sy)− β(wy)α(xzn−1) = 0,
γ(xw)α(zn−1y)− α(wy)γ(xzn−1)− γ(wy)γ(xszn−2) = 0,
γ(xw)β(zn−1y)− β(wy)γ(xzn−1) = 0.

(6.20)

Plugging in x = s, x = z, y = s or y = z one at a time and using (6.2), (6.19) where appropriate,
we obtain

α(sw)β(zn−1y)+β(sw)β(zn−2sy) = 0, γ(sw)α(zn−1y)−α(wy)−aγ(wy) = 0,
β(wy) = γ(sw)β(zn−1y) = α(zw)β(zn−1y)+β(zw)β(zn−2sy),
α(xw) = β(ws)α(xzn−1), α(ws)γ(xzn−1)+γ(ws)γ(xszn−2) = 0,
γ(xw) = β(ws)γ(xzn−1) = α(wz)γ(xzn−1)+γ(wz)γ(xszn−2), β(wz)α(xzn−1) = 0.

(6.21)

Plugging in x = s, x = z, y = s or y = z once again, we get

α(zw) = α(wz) = β(ws) = γ(sw), α(sw) = 0, α(ws) + aγ(ws) = 0. (6.22)

Since α(zw) = α(wz), we have 0 = α(zn−2sz) = α(zszn−2) = a and therefore a = 0 and α(ws) = 0.
Now using (6.22) and (6.21), we get

α(xw) = β(ws)α(xzn−1) = α(zw)α(xzn−1) and α(wy) = γ(sw)α(zn−1y) = α(zw)α(zn−1y).

Since α(zw) = α(wz) and α(sw) = 0, we have α(zn−2sy) = α(syzn−2) = 0. Similarly, α(xszn−2) =
α(zn−2xs) = 0. Using these equalities and the above display, we obtain

α̃(xwy) = α(xw)α(zn−1y) + β(xw)α(zn−2sy)− α(wy)α(xzn−1)− γ(wy)α(xszn−2)
= α(xw)α(zn−1y)− α(wy)α(xzn−1) = α(zw)α(xzn−1)α(zn−1y)− α(zw)α(zn−1y)α(xzn−1) = 0,

which contradicts the second condition in (6.18). This contradiction shows that Case 1 does not
occur.

Case 2: NWn+1 is {zns, zn+1, szn−1s}, {szn, zn+1, szn−1s} or {zns, zn+1, szn}. Since for 1 6

j 6 n − 2, zn−1−jszj belongs to zAn−2z, it is a scalar multiple of zn: zn−1−jszj = bjz
n. Hence

zn−1−jszj+1 = bjz
n+1 = bj+1z

n+1. Since zn+1 is non-zero in A, bj = bj+1. Hence (6.17) yields that
zn−1−jszj = 0 for 1 6 j 6 n− 2 and therefore a = 0. Hence (6.17) now reads

zn−2sz = zszn−2 = 0 in A. (6.23)

Case 2a: NWn+1 is either {z
ns, zn+1, szn−1s} or {szn, zn+1, szn−1s}. Again, we shall show that

this case does not occur by obtaining a contradiction. Since the two options reduce to each other
by passing to the opposite multiplication, we can assume that NWn+1 = {zns, zn+1, szn−1s}. This
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can only occur if szn is a linear combination of zn+1 and zns in A, while zns, zn+1 and szn−1s are
linearly independent in A.

As in Case 1, we write szn−2s, zn−2s2 and s2zn−2 as linear combinations of normal words:
szn−2s = λ1z

n + λ2z
n−1s+ λ3sz

n−1, s2zn−2 = λ4z
n + λ5sz

n−1 and zn−2s2 = λ6z
n + λ7z

n−1s with
λj ∈ K. Then by (6.23), 0 = zszn−2s = λ1z

n+1 + λ2z
ns + λ3zsz

n−1 = λ1z
n+1 + λ2z

ns. Since
zn+1 and zns are normal, λ1 = λ2 = 0 and therefore, denoting λ3 = a (for aesthetic reasons),
we have szn−2s = aszn−1. Hence 0 = szn−2sz = aszn. Next, since aszn = 0, aλ4z

n+1 =
aλ4z

n+1 + aλ5sz
n = as2zn−1 = s2zn−2s = λ4z

ns + λ5sz
n−1s, which implies λ4 = λ5 = 0 and

therefore s2zn−2 = 0. Finally, aszn−1s = szn−2s2 = λ6sz
n + λ7sz

n−1s, which yields λ7 = a and
λ6sz

n = 0. Summarizing, we get

zn−2sz = zszn−2 = s2zn−2 = 0, szn−2s = aszn−1, zn−2s2 = azn−1s+bzn, aszn = bszn = 0,
(6.24)

where b = λ6 ∈ K. Multiplying zn−2s2 = azn−1s + bzn by s on the right, we get zn−2s3 =
+azn−1s2 + bzns = (a2 + b)zns + abzn+1. If n > 4, zn−3s3 starts with z and therefore is a
linear combination of zn−1s and zn: zn−3s3 = pzn−1s + qzn. Multiplying by z on the left, we get
zn−2s3 = pzns + qzn+1 and therefore (zns and zn+1 are normal words), p = a2 + b and q = ab.
Hence zn−3s3 = (a2 + b)zn−1s + abzn. Iterating this procedure, we get that for 1 6 j 6 n − 1
zn−jsj = pjz

n−1s + qjz
n and zsn = pnz

ns + qnz
n+1, where (p1, q1) = (1, 0), (p2, q2) = (a, b)

and pj+1 = apj + qj, qj+1 = bpj. Writing sn as a linear combination of normal words, we have
sn = fszn−1+ gzn−1s+hzn, where f, g, h ∈ K. Multiplying by z on the left and using the equality
zszn−2 = 0, we have pnz

ns+ qnz
n+1 = zsn = gzns+hzn+1. Since zns and zn+1 are normal, g = pn

and h = qn. Hence sn = fszn−1 + pnz
n−1s+ qnz

n. Since sn commutes with s,

0 = fs2zn−1 + pnsz
n−1s+ qnsz

n − fszn−1s− pnz
n−1s2 − qnz

ns.

By (6.24), we can rewrite the above display as

(pn − f)szn−1s+ qnsz
n − (apn + qn)z

ns− bpnz
n+1 = 0.

If (a, b) 6= (0, 0), then by (6.24), szn = 0 and we have (pn−f)szn−1s− (apn+qn)z
ns−bpnz

n+1 = 0.
Since szn−1s, zns and zn+1 are normal words, we get f = pn, bpn = 0 and qn + apn = 0. From the
recurrent formula for pj, qj , we have

(
pn
qn

)
=

(
a 1
b 0

)n−1 (
1
0

)
.

Now we show that b = 0. Indeed, if b 6= 0, then the equations bpn = 0 and qn + apn = 0 yield
pn = qn = 0 and therefore the matrix in the above display must be non-invertible, which yields
b = 0, providing a contradiction. Thus b = 0. Hence by the above display, pn = an−1 and qn = 0.
Then the equation qn + apn = 0 reads an = 0 ensuring that a = 0 as well. Hence a = b = 0 and
(6.24) can be rewritten as

zn−2sz = zszn−2 = s2zn−2 = szn−2s = zn−2s2 = 0. (6.25)

Since szn is a linear combination of zns and zn+1, szn + pzns+ qzn+1 = 0 in A for some p, q ∈ K.
Then

α̃(xwy) = qγ̃(xwy), β̃(xwy) = pγ̃(xwy), δ̃(xwy) = 0 for all x, y ∈ X and w ∈ 〈X〉n,
while γ̃(xwy) 6= 0 for some x, y ∈ X and w ∈ 〈X〉n.

(6.26)

Using (6.6) and δ(w) = 0, we see that the equality in (6.26) reads

α(xw)β(zn−1y)+β(xw)β(zn−2sy)−β(wy)α(xzn−1)−pγ(xw)α(zn−1y)+pα(wy)γ(xzn−1)+pγ(wy)γ(xszn−2)=0,

α(xw)α(zn−1y)+β(xw)α(zn−2sy)−α(wy)α(xzn−1)−γ(wy)α(xszn−2)−qγ(xw)α(zn−1y)+qα(wy)γ(xzn−1)+qγ(wy)γ(xszn−2)=0,

γ(xw)β(zn−1y)−β(wy)γ(xzn−1)=0.

(6.27)
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Plugging in x = s, x = z, y = s or y = z and using (6.2), (6.25) where appropriate, we obtain

β(wy)=γ(sw)β(zn−1y)=α(zw)β(zn−1y)+β(zw)β(zn−2sy), α(sw)α(zn−1y)+β(sw)α(zn−2sy)−qγ(sw)α(zn−1y)+qα(wy)=0,

α(sw)β(zn−1y)+β(sw)β(zn−2sy)−pγ(sw)α(zn−1y)+pα(wy)=0, p(γ(xw)−α(wz)γ(xzn−1)−γ(wz)γ(xszn−2))=0,

α(xw)=β(ws)α(xzn−1)−pα(ws)γ(xzn−1)−pγ(ws)γ(xszn−2), α(wy)=α(zw)α(zn−1y)+β(zw)α(zn−2sy),

α(ws)α(xzn−1)+γ(ws)α(xszn−2)−qα(ws)γ(xzn−1)−qγ(ws)γ(xszn−2)=0, γ(xw)=β(ws)γ(xzn−1),

α(xw)−α(wz)α(xzn−1)−γ(wz)α(xszn−2)−qγ(xw)+qα(wz)γ(xzn−1)+qγ(wz)γ(xszn−2)=0.

(6.28)
Plugging in x = s, x = z, y = s or y = z once again, we get

α(zw) = α(wz) = β(ws) = γ(sw), α(sw) = α(ws) = 0. (6.29)

Since α(zw) = α(wz) and α(sw) = α(ws) = 0, α(zn−2sy) = α(syzn−2) = 0 and α(xszn−2) =
α(zn−2xs) = 0. By (6.28), γ(xw) = β(ws)γ(xzn−1) and therefore γ(xszn−2) = β(szn−2s)γ(xzn−1) =
0 since szn−2s = 0 according to (6.25). Hence (6.28) simplifies to

α(xw) = α(wz)α(xzn−1) + qγ(xw)− qα(wz)γ(xzn−1) = β(ws)α(xzn−1)− pα(ws)γ(xzn−1),
β(wy) = γ(sw)β(zn−1y) = α(zw)β(zn−1y) + β(zw)β(zn−2sy), γ(xw) = β(ws)γ(xzn−1),
α(sw)β(zn−1y) + β(sw)β(zn−2sy)− pγ(sw)α(zn−1y) + pα(wy) = 0, α(wy) = α(zw)α(zn−1y),
α(sw)α(zn−1y) + β(sw)α(zn−2sy)− qγ(sw)α(zn−1y) + qα(wy) = 0,
p(γ(xw)− α(wz)γ(xzn−1)) = 0, α(ws)α(xzn−1) = qα(ws)γ(xzn−1),

(6.30)
In particular, α(wy) = α(zw)α(zn−1y). Now by (6.6),

γ̃(xwy) = γ(xw)α(zn−1y)− α(wy)γ(xzn−1)− γ(wy)γ(xszn−2).

Plugging in α(wy) = α(zw)α(zn−1y), γ(xw) = β(ws)γ(xzn−1) and γ(xszn−2) = 0, we get γ̃(xwy) =
γ(xzn−1)α(zn−1y)(β(ws) − α(zw)). Since by (6.29), β(ws) = α(zw), we see that γ̃(xwy) = 0 for
all x, y, w, which contradicts (6.26). This contradiction leaves us the following option only.

Case 2b: NWn+1 = {szn, zns, zn+1}. Unlike all previous cases, this one is real, meaning there
are algebras with this property. In this case, we just have to show that (6.8) is satisfied, thus
reducing to the case already dealt with. In view of (6.23), the only missing condition is szn−1s = 0
in A. Thus the proof will be complete if we show that szn−1s = 0 in A.

Again, we write szn−2s, zn−2s2 and s2zn−2 as linear combinations of normal words: szn−2s =
λ1z

n + λ2z
n−1s + λ3sz

n−1, s2zn−2 = λ4z
n + λ5sz

n−1 and zn−2s2 = λ6z
n + λ7z

n−1s with λj ∈ K.
Then by (6.23), 0 = zszn−2s = λ1z

n+1+λ2z
ns+λ3zsz

n−1 = λ1z
n+1+λ2z

ns, yielding λ1 = λ2 = 0.
Similarly, 0 = szn−2sz = λ1z

n+1+λ2z
n−1sz+λ3sz

n = λ1z
n+1+λ3sz

ns and therefore λ1 = λ3 = 0.
Hence λ1 = λ2 = λ3 = 0 and szn−2s = 0. Thus 0 = s2zn−2s = λ4z

ns+λ5sz
n−1s and 0 = szn−2s2 =

λ6sz
n + λ7sz

n−1s. That is, 0 = λ4z
ns + λ5sz

n−1s = λ6sz
n + λ7sz

n−1s. Since szn and zns are
normal words, if λ5λ7 6= 0, we have λ4 = λ6 = 0. Similarly, if λ5 = 0, then λ4 = 0, while if λ7 = 0,
then λ6 = 0. Thus we must have one of the following options with a ∈ K and b ∈ K

∗:

zn−2sz = zszn−2 = szn−2s = 0, s2zn−2 = aszn−1, zn−2s2 = bzn−1s, szn−1s = 0, (6.31)

zn−2sz = zszn−2 = szn−2s = 0, s2zn−2 = 0, zn−2s2 = azn+bzn−1s, szn−1s = −a
b
zns, (6.32)

zn−2sz = zszn−2 = szn−2s = 0, zn−2s2 = 0, s2zn−2 = azn+bszn−1, szn−1s = −a
b
zns, (6.33)

zn−2sz = zszn−2 = szn−2s = zn−2s2 = s2zn−2 = 0. (6.34)

If (6.31) is satisfied, then szn−1s = 0 and there is nothing to prove. Next, assume that (6.32) is
satisfied. Considering normal word expansions and consecutively multiplying by s on either side
in the same way as we have done in Case 2a, starting with s2zn−2 = 0, we get sjzn−j = 0 for
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1 6 j 6 n − 1. If we start with zn−2s2 = azn + bzn−1s, we arrive to zn−jsj = ajz
n + bjz

n−1s and
zsn = anz

n+1 + bnz
ns, where

(
bj
aj

)
=

(
b 1
a 0

)j−1(
1
0

)
.

In particular, sn−1z = 0 and zsn−1 = an−1z
n + bn−1z

n−1s. Hence 0 = zsn−1z = an−1z
n+1 +

bn−1z
n−1sz = an−1z

n+1 and therefore an−1 = 0. If sn = pzn + qzn−1s + rszn−1, then 0 =
snz = pzn+1 + qzn−1sz + rszn = pzn+1 + rszn and p = r = 0. Hence sn = qzn−1s. Then
qzns = zsn = anz

n+1 + bnz
ns. Thus an = 0 and q = bn. Then bnz

n−1s = sn commutes with s
and therefore 0 = bn(z

n−1s2 − szn−1s) = bn
(
azn+1 +

(
b+ a

b

)
zns

)
. Since zns and zn+1 are normal

words and b 6= 0, it follows that bn = 0. Since an = bn = 0, the matrix in the above display is
degenerate and therefore a = 0. Then bj = bj−1 for all j. Hence 0 = bn = bn−1 and therefore b = 0,
which is a contradiction. Thus the case (6.32) does not occur. Similarly, the case (6.33) does not
occur. Alternatively, cases (6.32) and (6.33) transform to one another if we pass to the opposite
multiplication. Hence the only remaining option is (6.34).

Assume that (6.34) is satisfied. Since szn−1s is a linear combination of szn, zns and zn+1, there
are p, q, r ∈ K such that szn−1s + pzns + rszn + qzn+1 in A. The assumptions of our case ensure
that

α̃(xwy) = qδ̃(xwy), β̃(xwy) = pδ̃(xwy), γ̃(xwy) = rδ̃(xwy) for all x, y ∈ X, w ∈ 〈X〉n,

while δ̃(xwy) 6= 0 for some x, y ∈ X and w ∈ 〈X〉n.
(6.35)

According to (6.6), the equations in 6.35 read

α(xw)β(zn−1y)+β(xw)β(zn−2sy)−β(wy)α(xzn−1)−pγ(xw)β(zn−1y)+pβ(wy)γ(xzn−1)=0,

α(xw)α(zn−1y)+β(xw)α(zn−2sy)−α(wy)α(xzn−1)−γ(wy)α(xszn−2)−qγ(xw)β(zn−1y)+qβ(wy)γ(xzn−1)=0,

γ(xw)α(zn−1y)−α(wy)γ(xzn−1)−γ(wy)γ(xszn−2)−rγ(xw)β(zn−1y)+rβ(wy)γ(xzn−1)=0.

(6.36)

Plugging in x = s, x = z, y = s or y = z one at a time and using (6.2), (6.34) where appropriate,
we obtain

α(xw)=α(wz)α(xzn−1)+γ(wz)α(xszn−2)=β(ws)α(xzn−1)+pγ(xw)−pβ(ws)γ(xzn−1),

β(wy)=α(zw)β(zn−1y)+β(zw)β(zn−2sy), γ(xw)=α(wz)γ(xzn−1)+γ(wz)γ(xszn−2),

α(wy)=α(zw)α(zn−1y)+β(zw)α(zn−2sy), α(sw)β(zn−1y)+β(sw)β(zn−2sy)=p(γ(sw)β(zn−1y)−β(wy)),

α(sw)α(zn−1y)+β(sw)α(zn−2sy)=q(γ(sw)β(zn−1y)−β(wy)), γ(sw)α(zn−1y)−α(wy)=r(γ(sw)β(zn−1y)−β(wy)),

α(ws)α(xzn−1)+γ(ws)α(xszn−2)=q(β(ws)γ(xzn−1)−γ(xw)), α(ws)γ(xzn−1)+γ(ws)γ(xszn−2)=r(β(ws)γ(xzn−1)−γ(xw)).

(6.37)
Plugging in x = s, x = z, y = s or y = z again, we get

α(zw) = α(wz) = β(ws) = γ(sw), α(ws) = α(sw) = 0. (6.38)

In particular, α(xszn−2) = α(zn−2xs) = 0 and α(zn−2sy) = α(syzn−2) = 0. Plugging all this back
into (6.37), we get

α(xw) = α(wz)α(xzn−1) = β(ws)α(xzn−1) + pγ(xw)− pβ(ws)γ(xzn−1),
α(wy) = α(zw)α(zn−1y) = γ(sw)α(zn−1y)− rγ(sw)β(zn−1y) + rβ(wy),
β(wy) = α(zw)β(zn−1y) + β(zw)β(zn−2sy), γ(xw) = α(wz)γ(xzn−1) + γ(wz)γ(xszn−2),
q(β(wy) − γ(sw)β(zn−1y)) = q(γ(xw)− β(ws)γ(xzn−1)) = 0,
β(sw)β(zn−2sy) = p(γ(sw)β(zn−1y)− β(wy)), γ(ws)γ(xszn−2) = r(β(ws)γ(xzn−1)− γ(xw).

(6.39)
If q 6= 0, then β(wy) = γ(sw)β(zn−1y)) and γ(xw) = β(ws)γ(xzn−1). Since by (6.6),

δ̃(xwy) = γ(xw)β(zn−1y)− β(wy)γ(xzn−1),
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in the case q 6= 0, we have δ̃(xwy) = β(zn−1y)γ(xzn−1)(β(ws) − γ(sw)) = 0 according to (6.38),
yielding a contradiction with (6.35). Thus q = 0. In any case, plugging β(wy) = α(zw)β(zn−1y) +
β(zw)β(zn−2sy) and γ(xw) = α(wz)γ(xzn−1)+γ(wz)γ(xszn−2) from (6.39) into the above display
and using α(zw) = α(wz), we get

δ̃(xwy) = γ(wz)γ(xszn−2)β(zn−1y)− β(zw)β(zn−2sy)γ(xzn−1). (6.40)

Plugging w = zn−2s into the equality α(wy) = γ(sw)α(zn−1y) − rγ(sw)β(zn−1y) + rβ(wy) from
(6.39) and using (6.34), we get α(zn−2sy) = rβ(zn−2sy). Since we already know that α(zn−2sy) =
0, we have rβ(zn−2sy) = 0. Similarly, plugging w = szn−2 into α(xw) = β(ws)α(xzn−1) +
pγ(xw) − pβ(ws)γ(xzn−1), we get pγ(xszn−2) = 0. Plugging w = zn−2s into β(sw)β(zn−2sy) −
pγ(sw)β(zn−1y)+pβ(wy) = 0, we get pβ(zn−2sy) = 0, while plugging w = szn−2 into γ(ws)γ(xszn−2)+
rγ(xw) − rβ(ws)γ(xzn−1) = 0, we get rγ(xszn−2) = 0. If (p, r) 6= (0, 0) it now follows that
γ(xszn−2) = β(zn−2sy) = 0 and therefore δ̃(xwy) = 0 according (6.40). Since this contradicts
(6.35), we must have p = r = 0. Hence p = q = r = 0 and therefore szn−1s = 0 in A. By (6.34), we
also have zszn−2 = zn−2sz = 0. Thus all conditions of (6.8) are satisfied and, as we have already
shown, dimAm = 3 for all m > n. This completes the proof.

6.2 Proof of Lemma 6.1

Let A be a finitely generated degree graded algebra, whose ideal of relations is generated by some
homogeneous elements of degree n, where n > 3. Assume also that dimAn = 3, dimAn+1 > 3
and max{λ(A,n), ρ(A,n)} = 2. By Lemma 2.2, for generic X = (x1, x2, . . . ) ∈ Ω(A), NWn =
{xn1 , x

n−1
1 x2, x2x

n−1
1 } with respect to the LR order <. Thus we can choose a basis X = (x1, x2, . . . )

with this property and denote z = x1 and s = x2. Since λ(A,n) 6 2 and zn, zn−1s are linearly
independent in A, zAn−1 = span {zn, zn−1s}. Since ρ(A,n) 6 2 and zn, szn−1 are linearly in-
dependent in A, An−1z = span {zn, szn−1}. Now all conditions of Lemma 6.2 are satisfied. By

Lemma 6.2, H
[n]
A =∈ {3, 34}, which completes the proof.

6.3 Proof of Theorem 1.3

Let n > 3 and A be a finitely generated degree graded algebra such that dimAn = 3 and the ideal
of relations of A is generated by some homogeneous elements of degree at most n. The proof will be

complete if we show that H
[n]
A ∈ {34, 3, 3321, 32, 321, 3210, 320, 31, 310, 30}. And that H

[n]
A 6= 3321

provided n > 4. By Remark 1.11, we can without loss of generality assume that the ideal of relations
of A is generated by some homogeneous elements of degree exactly n. If dimAn+1 < 3, the result
follows from the already proven Theorem 1.2. Thus it remains to consider the case dimAn+1 > 3.

If λ(A,n) = ρ(A,n) = 1, then by Lemma 3.2, H
[n]
A = 3. In the case max{λ(A,n), ρ(A,n)} = 3,

Lemma 5.1 guarantees that H
[n]
A = 3 provided n > 4 and that H

[n]
A ∈ {3, 3321} if n = 3. The only

remaining option is max{λ(A,n), ρ(A,n)} = 2. By Lemma 6.1, H
[n]
A ∈ {3, 34}, which completes

the proof of our main theorem.
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