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0 Inroduction

We consider a special case of Mellin pseudodifferential operators on a cone
X" = X x R;/X x 0 where the base X is a smooth compact manifold of
dimension n without boundary. The operators have the form

(Au)(t) = #/I:dzfow (%‘)za(t,z)u(t,)%t—‘. (0.1)
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Here

u(t) € C2(Ry, C¥(X, E)) (0.2)

which means that u(?) is a function with compact support on R, whose
values are sections of a vector bundle E over X. The weight line I' may be
any vertical line 'y = {Rz = B} in a complex plane, we assume without loss
of generality that I' coincides with the imaginary axis ['p.

The operator-valued Mellin symbol a(t,z) satisfies the following condi-
tions:

1.
a(t, z) € C®(Ry4, Ly(X,T)), (0.3)
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which means that a is a smooth function in ¢ € R, whose values are
parameter-dependent pseudodifferential operators of order x on X with
a parameter z =17, 7 € R,

2. for t € [C, 00) the symbol is independent of t, more precisely
a(t,z) = a(oo0,z) t € [C,00),

3. for t € [0,c] with 0 < ¢ < C the symbol a(t,z) admits an analytical
continuation to some strip § = {|Rz| < €} and on each line T'y =
{Rz = B} is a parameter-dependent operator on X of oder g, that is
satisfies (0.3) uniformly in {8| < e, <e.

We use a notation M L#{X") for the set of such operators and M L§{(X*)
if a(oco, z) = 0. Troughout this paper we assume u < 0. The operators (0.1)
are of great importance for the calculus of pseudodifferential operators on
manifolds with conical singularities (see e.g. [1]). Here we restrict ourselves
to a model case when a singular manifold is a pure cone and the operator may
be written globally in a Mellin form. It is well known that A € ML*(X")isa
bounded operator in weighted Sobolev spaces A : [>"+1)/2  [rs=u{nt1)/2,

We will consider elliptic operators of zero order (g = 0). The operator
A € ML°(X") is called elliptic if its symbol satisfies the following additional
conditions:

1. fort € Ry a(t, z) is a parameter-dependent elliptic operator on X with
a parameter z € I,

2. a{t, z) is invertible for for ¢ € [0,¢] and any z in the strip |Rz| < €,

3. a(00,z) =1 where 1 stands for identity operator.

We prove (section 3) that ellipticity implies Fredholm property in Sobolev
spaces and obtain an index formula. A basic observation is that ellipticity
conditions imply that the elliptic family a(t, z) paramatrized byt € R,z € T
is trivial (that is a(t, z) is invertible) outside a compact set in Ry xI'. Thus it
defines an index bundle inda € K (R4 x I') where K, means K-functor with
compact supports (see [4]). Its Chern character is represented by a closed
differential form with compact support, and we prove the following result

i;ldA= ‘/(;m/rch(inda). (0.4)
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Another useful form of (0.4) may be obtained in terms of the family
a(t, z) and its parametrix ro(t, z) such that 1 —roa and 1 —arg are trace class
operators for any (¢,z) € Ry X I" and ro = a™! outside a compact. Then (see
e.g. [5]) using the formula for ch(ind @) in terms of a and ro we may write

1
ind A= — tr(d d Ad 0.5
in 577 Juer r(dro + rodare) A da (0.5)
and precisely in this form we prove our result.
The proof follows the scheme developed in [6]. It consists in comparing
three expressions:

1. analytical index
ind A =tr(l — RA) — tr(l — AR) (0.6)
where R is a parametrix of A up to a trace class operator,

2. algebraical index
indA=tr(l—-roa)—tr(l —aor) (0.7)

where 7 is a formal complete symbol of R and o means a composition
of formal complete symbols,

3. topological index given by (0.6).

The most important step is transition from 1 to 2 or, using the terminology
of [6], the theorem on a regularized trace of a product. In contrast to [6]
we have not only to watch the order but also to gain weight, which is much
more difficult. The second transition from 2 to 3 is based on the machinery
developed in [5] and requires no new ideas. '
Acknowledgments. We are very grateful to Professor Schrohe for nu-
merous clarifying discussions especially on Fredholm property and parametrix
construction. The first author would like to thank Professor R. Nest for an
invitation to Copenhagen University where the article was completed.



1 Preliminary Estimates

We will use the following notations. For a function a = a(t, z) we set

ak
a® = Wa(t, z),

a\*
agy = D*a(t,2) = (——ta) a(t, z).

For two functions a(t,z) and b(t, z) set

aOb[N = Z —a(k) t,z b(k)(t,z). (1.1)

For a function u(t), t € [0,00) with values in C®(X, E) we denote by
|u(t)] any norm in C*(X, E) at a given t. A similar notation |a(t,z)| for
operator-valued functions

a(t,z) : C®(X, E) —» C(X, F)

means any operator norm.
Introduce

() = (1 = 22" = exp (%ln(l _ zz))

for [Rz| < £ < 1, s € C, assuming that the branch of In(1 — 2?) in the strip
|Rz| < € is real at z € Ty. This function is holomorphic in z belonging to
the strip |[Rz| < € and in s for all s € C. If s belongs to a horizontal strip
ISs| < 6, then the inequality holds

(2)°] < C(1+ |o*)™/* (1.2)

We also need an operator-valued version of the above order reducing function.
Let A be the Laplace operator on X. Define an order reducing family

R(2) = (1 — A = 2%)*/? (1.3)

for |Rz| <e <1 and |Ss| < §. A complex power is understood in the sense
of elliptic theory (see [7]). This family is holomorphic in z and s belonging
to the mentioned strips.



For u(t) € C°(Ry) its Mellin transform

i(z) = / t*tu(t)dt
0
is an entire function in 2. In virtue of the identity

#i(z) = a(2) = [ 7 =1 DRu(t)dt (1.4)

0

we see that #(z) is rapidly decreasing on any vertical line, that is
[#(2)] < Cl(2)™" | (1.5)

forany k€ N, |Rz| <e. _
Finally we will consider Mellin transforms of operator-valued symbols

a(t,z) € MLo(X"), that is

a(¢,z) = /000 ¢ La(t, z)dt.

The integral converges at R( > 0 so that a({,t) is a holomorphic function in
a half-plane ¢ > 0. Similarly to (1.4) we have

- 1
a((a t) = Ea(l)(Ca t):

where

dgy = /0 €' Dal(t, 2)dt

is holomorphic in a half-plane ®( > —1 since Da(t, z) vanishes at ¢t = 0.
Repeating this procedure we may write similarly to (1.4)

&(Caz) = Cl_ka(k)(Caz): (1'6)

where G(1y((, z) is holomorphic in ¢ > —1. From (1.6) it follows that a(¢, z)
is rapidly decreasing in { on any vertical line I'g, so that

[a(¢,2) < C)HO ™ (1.7)
forany ke N, ( € Tg.



For symbols a(t,z) € ML4(X") with ¢ < 0 more precise estimates hold

lla(¢, 2)Il < CHEG) 71 (=) |- (1.8)
Here || - || means the norm of the operator
a(¢,t): L*(X,E) » L*(X,E). (1.9)

If 4 < —n/2 the operator (1.9) belongs to the Hilbert-Schmidt class and its
Hilbert-Schmidt norm |} - ||2 satisfies an equality

1(¢, )Ml < CL{C) ¥ (=) (472, (1.10)

Finally, if 4 < —n then the operator (1.9) belongs to the trace class and the
trace norm || - ||, satisfies an estimate

13(¢, )Ml < CHO ™| (=) I+ (1.11)

In (1.8)-(1.11) ( € I'g,, B1 # 0, z € Tg,, |B2] < € and k may be any integer
positive number.

The operator (0.1) corresponding to the operator-valued Mellin symbol
a(t, z) will be denoted by Op(a). With these notations the main theorem of
this section is as follows.

Theorem 1 Let a(t,z) € ML5(X"), bt,z) € MLY(X") with p, v < 0.
Then for N sufficiently large the operator

Cw = Op(a) Op(s) — Op(ao blw)
as an operator in the space H*"*1/2 belongs to the trace class.

Proof. Introduce a partition of unity po(t), p1(t), p2() such that

supp po € [0, ¢], supp p1 € [¢/2,¢], supp pz € [¢/2,00),
supp po Nsupppz =0

and
poft) =1, t €[0,¢/2], p2(t) =1, t € [¢,0).

Then any operator Op(a) may be represented as a sum
2
Op(a) = 3~ Op(pxa).
k=0
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We emphasize that the symbols po(t)a(t, z) and p,(t)a(t,s) are holomorphic
in z belonging to the strip S.
The operator Cy is then a sum

+ 2 Op(pia)Op(p;b) — Op((pia) o (p;b)in) (1.12)

1,7=0
and we consider several cases according to the values of i, j.

Case 1 (4,7 # 0).

In this case the supports of symbols p;a and p;b are separated from ¢t = 0.
The Mellin calculus for such operators on a half- line t > 0 may be reduced
to the usual Fourier calculus of p.d.o. on the whole line y € (—o0,00) by
change of variables t = ¢¥, z = ir. Indeed, formula (0.1) goes to

l L] oo
(Au)(e) = o= / dr / TN g(e¥ ir)u(eh )dys,

and the o-product of two symbols becomes
N=1 ;k gk k

a :
a(t,z) o b(t, z) Z TE a(e )6—ykb(ev,z7')
which is the usual composition rule for Fourier p.d.o. The symbols

pi(e¥)a(e?,ir), pj(e?)b(e, i)

have compact support in y, so the theorem follows from the usual Fourier
calculus of p.d.o. (see e.g. [6]).

Case 2 (1 =2, =0).

In this case {pya) o (pob)|n = 0 since the supports of po and p; do not
intersect, so we need to prove that the operator

Op(p2a)Op(pob) = Op(p2a)poOp(b)

belongs to trace class (the so-colled pseudolocality property). The operator
Op(b) is bounded in H%{"t1/2 since its order v < 0, and thus it is sufficient
to prove that Op(paa)po belongs to trace class. To this end we represent it
as a composition

HO+D/2 5 e o, golnt /2 (1.13)

with some integer s > (n + 1)/2 and some ¥ > (n + 1)/2 and show that
both operators in (1.13) are Hilbert-Schmidt ones. The second operator is
an embedding.



Lemma 2 Fors > (n+1)/2, § > 0 the embedding

H:.(n+l)/2+6 s HO,(n+l)/‘2

considered on a subspace of functions u € H*("/246 whose supports belong
to the interval t € [0,T) is a Hilbert-Schmidt operator.

Proof. Let first u(t) € C§°(0,T). Then #(2)T~* is an entire function
rapidly decreasing in the right half-plane. The norm of u(t) in the Sobolev
space H*{"+1)/2+8 i5 equal to an L2-norm of R*(2)@(z) on the line ['_;. Here
R*(z) is an order-reducing family (1.3). The norm of u(¢) in H%("*1/2 5 an
Lo-norm of the restriction of #(z) to the line I'y. The restrictions of #(z) to
I'_s and I'y are connected by the Cauchy integral

(—z
a(g)—L/r T (2)dz (1.14)

T omidrsz—(

where { € I'p. Denoting 9(z) = R*(z)u(z) we write (1.14) in the form

- ] T\~
a(¢) = %/1:_6 po— CR *(2)o(z)d=.

This operator acts between L? spaces on lines I'_s and 'y and its Hilbert-
Schmidt norm is equal to the L?-norm of its Schwarz kernel

(-2
o

which is an operator-valued function. For s > n/2 we have an estimate for
the Hilbert-Schmidt norm in L*(X)

K((,2) = ——R*(2)

IR ()3 < [{2)|72*"
(cf. (1.10)), so that

T26
KB < fgr oy )

!—2.‘l+ﬂ.

Integrating over S¢ and Bz and using that 2s — n > 1, we obtain that the
L*-norm of K((, 2) is finite, whence the lemma follows.
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0
To prove that C in (1.13) is a Hilbert-Schmidt operator we use that pgp2
vanishes on the diagonal t = t,. So, writing

t\? _ aN t
(T) =(nti—Int) NaZN( )

for any N € N and integrating by parts we represent C' as an integral operator

(Cu)(t) = / 2 [ ( ) (Dpo(t)a™(t,2) gy

(Int — Int;)Nei/?

where

v(t)) =17 u(t)) € L*(Ry4, L*(X))

if u e HO+D/2 Inclusion Cu € H*" for s integer means that for any
k=0,1,...,s and for any differential operator P of order s — k on X

t"/*=7D¥ PCu € L*(R4, LA(X)).

172 has a Schwarz kernel

t1)PaM(t,2) 7t \*
-/ ' (lnt —lntl)"’tl’r2 t) (1.15)

This operator acting on v =t~

and we need to estimate the L?-norm of this kernel, more precisely, we need
to prove that

/°° di /°° AL 1K (2, 1)]12 < oo
0 0

(in fact the integration is over t € [¢/2,C] and over t; € [0,c]). We may omit
the factor ¢*/2=7 since it is bounded on [c/2, C]. Next, since

() ()
()

for z = 17 the Hilbert-Schmidt norm of the integrand may be esimated as

|2[*[[ Pat™(2, 2)|l Cy|(z) [~ N+otn/2
T+ It =Int )N = (1 4 |t = Int, )V

and
<1

C (1.16)



Here we have made use of the fact that ¢; # t, so that |Inty, — Int| # 0.

Moreover,
|1Dfpa Pa™(t, 2)|lz < C{) N +"/2,

For N large enough the integral of (1.16) over z converges and we obtain

Cs

Kt <
1K)l S e

Thus, for L%-norm of ||K(¢,1;)|| we obtain an estimate

c ¢ dtl
uf -
C“/c/z( (1 +|lnt1—lnt|)""'tl

o /h)C /lnc
= e < o0
4 Incf2 y ) (1 + Iy - y1|)

for N > 1. This proves case 2.

Case 3 (1,7 =0,1).

This is the most difficult case. Here we will make use that p;(¢)a(t, z) and
p;(t)b(t, z) are holomorphic functions in the strip S. To simplify notations,
we omit the factors p;(t), p;(t) including them into a and b.

For u € C§°(R4) we have

(Bu)(t) = Op(bu= L t=7b(t, z)u(2)d=

r

where Iy may be any vertical line with |RI";| < €. Then for ®( > RI'; the
Mellin transform of Bu has the form

Bu(() = — i ¢ - 5, 2)a()dz.

2w Jr

Similarly for m(w) we obtain

ABu(w) = (274) 2/ dg/ dzd(w — ¢, O)B(¢ = 2, 2)i(2) (1.17)

with ®w > R, > RT';. The integral converges because of estimates (1.5),

(1.8).
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Now using the Taylor formula, we write
N-1 1

d(w—(, () = ZL,““"(w ¢,2)(¢ — 2)* + Twa(¢ — 2)¥ (1.18)
where
R 3 R (1 )N—l
(Tné)(w — ¢, 2,C) = /0 M =G24 06 = ) g ds (119)

The regular terms in (1.18) after substitution into (1.17) and integration
over { give

o [ 8w = €, 2)(C = 2B - 2,20 =

2r r,

= —-l-—f a®(w — ¢, 2)bry(¢ = 2,2)d( =

2mr1 Jry
= Mymw:(a®(t, 2)biy (t, )

resulting in Op(a o b )u. So, the operator Cy corresponds to the remainder
term in (1.18)

Crvu(w) = (27i)™2 /r d¢ /l_ dzTya(w — (, ¢, 2)bwy (¢ = 2, 2)ii(z).  (1.20)

Observe that the function E(N)(C—z,z) at N > 1is holomorphicin R( > -1,
so the integration line I'; may be shifted arbitrary within the strip [R({] < ¢.
It means that the restriction RI'} < RI'; < Rw is needed no more, and the
only remaining restriction is £I'; < Rw. It will be convenient to take

RT; < Rw < KT, (1.21)

To prove that (1.20) belongs to the trace class we again represent it as a
composition of two Hilbert-Schmidt operators

HO.(n+l)/2 9{ 1_1:.(n+l)/2+5 _ HO.(n-H)/'Z

with some 6§ > 0 and some s > (n + 1)/2 which may be taken as an even
integer number. The second operator in this sequence is an embedding. Note

that in virtue of lemma 2 the weight gain é is necessary to have a Hilbert-
Schmidt embedding. So, we choose RI'} = 0, Rw = =4, R < Rw in
(1.21).
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Lemma 3 Let s > (n+1)/2 be an even integer. Then the operator
CN . HU,{n+l)/2 — Hs,(n+l)/2+6

is a Hilbert-Schmidt operator provided N s sufficiently large.

Proof. The assumption that s is an even integer serves only to simplify
the proof. Using representation (1.20) for Cn we are to estimate the Hilbert-
Schmidt norm of the operator between L*-spaces on the lines 'y and I'_;
with the Schwarz kernel

K(w,z) = jr R*(w)Twa(w — ¢, ¢, 2)bowy (¢ — 2, 2)dC.
2
The Hilbert-Schmidt norm of the integrand may be estimated as
IR (w)Tna(w — ¢, ¢, 2)ll2 [y (¢ = 2, 2)I| <

Co *(w a(w — z

Here we have used (1.8) for B(N) with p arbitrary large. In virtue of (1.19)
our next step is to estimate the norm

IR (w)a™ (w ~ ¢, 2 + 8(C — 2))]2- (1.22)

Denoting 2z 4+ 6(¢ — z) by n and putting s = 20, o € N, we may rewrite
R?(w) using the binomial formula

R’(w) — (1 —A— 1’2 + 172 - w?)a = Z CHmRQk(n)n'llw'Zm
kt+l+m=o

with some constant coefficients Cym. Finally, using (1.10) for the operator
Rzk(".’)am)(w —(,7n) of order  — N + 2k, we obtain

C
1B ) ue = €l € et (n) P42,

provided g — N + 2k + 2 < 0, ¢ may be any positive number. It implies the
following rough estimate of (1.22)

*(w)a™M(w — —-———-—-—C B '
| R (w)a*™(w = (,n)l]2 < (w—q)lql(n)l | (w) |

12



where p; < p— N + s+ n/2 is supposed to be negative.
Next, writing w as a sum

w=(w=0)+(=2)+z

and applying binomial formula, we get

Hw) [P S Cl{w = " (¢ = 2) "1 {2) "

These rough estimates result in the following estimate for the kernel K'(w, z)

l (=) Fldc]
WKl <C [[d0 | o T ()

where q;,p, are arbitrary positive numbers and g, is negative and may be
made larger in magnitude at the expense of N. The needed Hilbert-Schmidt

norm is
. 2
S o, 2) el (1.24)

After integration over w € ['_s we get the following integral which estimates

(1.24) 1 [ {2) I**
0 J, 40 el . Ve e v o= P

First consider the region | — z| < |z|/2. Then

1
— <1
(=2} [

1 C
T 00— = = (o) =

F 9 sy T <, et

which is convergent for ys large enough. Now, for |{ — z| > |z|/2 we estimate

and

1
o) =

13



and

o0 2s
To |z1/2 In|*»r  2py + 1 Jr, |z|?P1F
So, the Hilbert-Schmidt norm of Cy is finite.
O

To prove the theorem, it remains to observe that the functions of the type
Cnu have support in a finite interval ¢ € {0, T] since a o b|,, vanish at t large
enough independent of z. Thus, lemma 2 may be applied implying that Cn
belongs to the trace class.

Case 4 (1=0,7 = 2).

Here we have a pseudolocallity property similar to case 2, but the proof
runs slightly different. Again we have that (poa) o (p2b) = 0, so we need to
prove that Op(pea)p0p(b) belongs to the trace class. Since b(t,z) has com-
pact support in ¢, we may assume that p,(t) is also compactly supported.
Then since Op(b) is bounded in H®("*1D1/2 we again need to prove that
Op(poa)p: belongs to the trace class. But multiplication operator pa(t) may
be regarded as Mellin p.d.o. with a holomorphic symbol, so we are in as-
sumptions of case 3. This completes the proof of the theorem.

O

2 A Regularized Trace of a Product

For operators A = Op(a) € ML§(X") and B = Op(b) € ML{(X") with
i, v < 0 define a regularized trace of a product by

TrnAB = Tr(AB — Op(aobly)).
By theorem 1 this trace exists provided N is sufficiently large.

Theorem 4 The regularized trace of a product does not depend on the
order, that is
TryAB = TryBA (2.1)

Proof. There are several cases corresponding to those listed in the proof
of theorem 1.

Case 1 (2,5 # 0).

14



The assertion reduces to the theorem on a regularized trace of a product
of Fourier p.d.o. {6].

Case 2 (1=2,j =0)orcased (i=0,5 =2).

For A = Op(pia), B = Op(p;b) we have by theorem 1 that AB and BA
belong to the trace class. Then their traces are equal by Lidskij’s theorem.

Case 3 (1,7 = 0,1). '

Using (1.20) with

Rl <Rw=%RTI", =0

(cf. (1.21)) we get

TenAB = TrCy = (2mi)~? /r d¢ /F dz teTwa(z — ¢, ¢, 2)bwy (¢ — 2, 2)
(2.2)

Recall that Tr denotes the trace of operators on the cone X”* while tr is the
trace of operators on the base X. The function

TNa(z - C:C!Z) = > ! CTNa(l)(Z - CaC)z)

has a pole of the first order at {( = z. So, we may shift the lines Ty, Iy
within the strips |Rz| < ¢, |R(| < ¢, provided |R[;| remains less then |RT].
Moreover, we may shift I'; crossing 'y, but then we must take into account
the residue at ( = 2. [t is equal to

1 -~
—— ]r br Ty (0, 2, 2)bwy (0, 2)dz.

271

By (1.19) we have

~ 1 (v
Tna(y(0,z,2) = magl))(o,z),
so that the residue is equal to

1 " -
“21riN!] tr (1%??(0,2)()(;\;)(0,2)(1’2.

Iy

But for N > 1

- © g
bow)(0, 2) = /0 — 5DVt 2)de = = DN, )l = 0,

15



Thus, for N > 1 integral (2.2) does not depend on a position of the lines
'y, T2 within the strip |[Rz] < g,|R(| < €. A similar assertion is true for the
integral

TryBA = (271‘1')_2'/; d¢ A dz tr TNE(I)(Z - C,C,z)a(N)(C —2z,2). (2.3)
To prove that (2.2) and (2.3) are equal, we consider families
a,(t,z) = a(t,z)R™*(2)
by(t,z) = b(t,z)R™°(2)

where s is a complex parameter ranging in the half-strip s > 0, |Ss| <e.

Let A,, B, be the corresponding operators on the cone. The estimates of
theorem 1 show that TryA,B, and Try B, A, are holomorphic functions for
s belonging to the half-strip. Thus, it is sufficient to prove the equality

TrnA,B, = TryB,A,

for Rs sufficiently large. To put it differently, we need to verify (2.1) for
operators A, B of sufficiently large negative orders. To this end we write

Taany(z—(,¢2)  amlz =) - Thgtal)(z — ¢, )5

(z=() T (¢ — 2)N+1
and then
= —(271)” brag)(z - CaC)B(l)(C —z,2)
TINAB_ (2 ) 2'/1:2 d( ry dz (C—Z)z +
N-1 o tra(l)(z - z)kg(l)(C —2,2)
+ Z%(?m /,dc L dz = . (2.4)

Each summand in (2.4) makes sense if @ and b have large negative orders and
T, < BTy are fixed. Interchanging z and ( in the first integral and using
that tr a(l)b(l) = tr b(l)a(l) for trace class operators, we obtain

- (2mi)? | A | s bz = 6 Oau (¢ = 7,2) (2.5)

I, (€ —2)?

16



Now, the remaining summands may be transformed as follows

~(k -
/ dy [ dz trafy)(=n, 2)n*b) (1, 2)
T_s 1 ry 7]2
~(k) k7,
trdgyy (7, 2)n"buy (=1, 2)
= (=1 [ an [ de—00 .
(=1 f, dn |, @2 "

Here we have changed n by —5. Now, integrating by parts with respect to z
and permuting @(;y and b(;y under the trace sign, we obtain

tr o8 (— ,z)nfa ,
/ an [ dz (=7 317 my(m 2)
Cs r, n
T(k) kn
= [ dac /[ d tr b(])(z = (,2)(( - 22) an)(( — z, z).
r Iz (¢ - z)

Here we have shifted the lines of integrations keeping R['; < RI';. Now,
summing (2.5) and (2.6) for k =0,1,...,N — 1, we get

(2.6)

tr Twbgy(z — (e
y rs C - Z
This expression coincides with the corresponding expression (2.2) for Try BA
except that the lines I'} and I'; are interchanged. But, as we have seen, we
may interchange I'y and I'; not affecting the value of the integral.

This completes the proof.
O

3 An Algebraical Index

First we introduce an algebra of formal Mellin symbols on R, define elliptic
symbols and introduce an algebraical index of elliptic elements. Then con-
structing a parametrix and applying the theorem on a regularized trace of a
product, we prove that the analytical and algebraical index coincide.

A formal symbol is a formal power series

a(t,z) = i h"ak(t,z)

k=0
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where coefficients ax(t, z) € C®(Ry, L*~¥(X, o)), ¢ < 0 satisfy the follow-
ing conditions:

1.
6111
S aalty2) € C=(Ry, LPF(X,T)),
2. for0<t<cort>C aot,z) does not depend on t while ax(t,z) =0
for k > 0.

The powers of a formal parameter h serve for ordering the series terms. Define
a product o of two symbols by

aob= z hk+1+m$aaz_mak(tiZ)Dmbl(taz)'
kJlm=0 *

It is easy to check that the symbols form an associative algebra with a unit

a(t,z) = 1 consisting of the leading term only. We denote this algebra by A.

Introduce a trace ideal J consisting of symbols with g < —(n + 1) and with

all the functions a;(t,z) vanishing at ¢ € [0,c] and t > C. A tracefora € J
is defined by

N oo dt

Tra-é}h %frodz/{; trak(t,z)-t—.

This is a formal series with constant coefficients and the exponents of &
ranging from —1 to +oo. Using integrations by parts, one can check that

Traob= Trboa

if one of the symbols belongs to J.

A symbol a € A is called elliptic if there exists a symbol r such that
l—roaand 1 —aor belong to J. In particular for leading terms ay and rg
we obtain

l—rpap € J, 1—apro € J. (3.1)

Such symbol r is called a (formal) parametriz of a. The following con-
struction is well-known.

18



Lemma 5 Let there exist a function ro(t, z) satisfying (3.1). Then for N
large enough the symbol

N N
r=rg0Y (l—aor)* =Y (1-rgoa)for, (3.2)

k=0 k=0

(the powers are understood with respect to the product o) is a parametriz of
a.

Proof. By direct calculation we have
1—roa=(1=rgoa)V+) (3.3)

l—aor=(1 —aory) N+l (3.4)

where exponent o(/N + 1) means the (N + 1)-th power with respect to o-
product. Clearly, these symols belong to 7.
a
We define the algebraical index of an elliptic symbol a by

inda= Tr(l1—roa)— Tr(l —aor). (3.5)

By definition it is a formal series in A with constant coefficients. It turns out,
however, that all the coefficients vanish except a constant term, so we can
treat it as a number. Moreover, the index does not depend on the choice of
a parametrix. All these properties are standard consequences of the stability
of the index.

Lemma 6 Let a(A) be a family of elliptic symbols, r(A) a family of para-
metrices. Then

Tr(1 — 7(A) oa(A)) — Tr(1 — a(A)or(A))
is independent of M. |

Proof. We have

(1-roa)=(1-roa)o(l—roa)+(l—roa)oroa=

={(l—roa)oroa}) —(1—roa)o(roa) —(roa)o(l—roa)
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where prime means derivation by A. Thus,

Tr(l—roa)'za%Tr(l ~roa)oroa—2Tr(l—roa)o(r'oa+road).
Similarly,

Tr(l—aor)’:%Tr(l —aor)oagor—2Tr(l —aor)o(ad'or+aor’).
But

Tr(l —aor)oaor=Trro{l—aor)oa=Tr(l —roa)oroa,
Tr(l —aor)od'or=Trro(l —aor)oad' =Tr(l—-roa)orod,
Tr(l —aor)oaor'=Trao(l—roa)or' =Tr(l —roa)or oa.
So, both expressions Tr(l —roa)’, Tr(l1 —aor) coincide.
a
In particular, given two parametrices ry and r2 of the same elliptic symbol
a, we consider a linear homotopy r(A) = (1 — A)ry + Ar, which gives a family
of parametrices. Then, lemma 6 implies that index does not depend on the

choice of a parametrix.
Now, for a real A > 0 define a homomorphism H, : A — A by

Hya = Z )«kh"ak(t, Az).
k=0
It is straightforward to check that Iy is in fact a homomorphism:

H,\(a o] b) = (HAG) o] (H,\b)

Ifa€ J, then
TrHya= H) Tra (3.6)

where H) acts on formal series with constant coefficients replacing & by Ah.
Equality (3.6) follows by change of variables in the integral

o 1 oo dt
- = /\k} k—1 / / —_— =
Tr Hya E:O g dz A trag(t,Az) ;

= Z)\k"hk"—;/ dzjOo trak(t,z)‘—ii.
=0 27t Jrg 0 ¢

1
s
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Lemma 7 The formal sertes ind consists of the constant term only.

Proof. For A > 0 consider a family a(A) = Hja of elliptic symbols. Then
r(A) = Hjr is a family of parametrices since

l—H,\TOHAa=H,\(1—TOG)EJ.

So,
inda(A\)=TrH)(1 —ro0a)—TrHy(1 —aor)= Hyinda.

On the other hand, ind a(A) does not depend on A by lemma 6.
a
We are going to compare analytical and algebraical indices. Given an
elliptic operator

A= Op(a(t,2)),

we may treat its symbol a(t, z) as a formal one consisting of the leading term
only. The ellipticity conditions listed in the introduction imply that there
exists an ro(¢,z) such that 1 — rpa and 1 — arg belong to J. Indeed, for
0 <t<candt>C a!exists by definition. For t € [c,C] a(t, z) is
parameter-dependent elliptic where z € T'g is considered as a parameter. In
particular it implies that a(¢, z) is also invertible at |z| > M for sufficiently
large M. As for t € [¢,C], z € [~M, M] there exists a parametrix b(¢, z)
since a(t, z) is elliptic at any ¢, 2. Now, using a cut-off function (¢, z) which
is equal to 1 in a rectangle t € [c,C], |z| £ M and vanishes outside a compact
in Ry x Iy define

7‘0(t,z) = (1 - ‘P)a-l(t’z) + Lpb(t, z)'

This function may serve as a leading term of a formal parametrix given by
lemma 5. Thus, the algebraical index is defined. To compute the analytical
index of A, we need an operator parametrix R inverting A up to the trace
class operators. Then the analytical index of A is given by the formula

indA= Tr(1 — RA) — Tr(1 — AR). (3.7)

Introduce a notation

N-1
r|N = Z Tk
k=0
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for a formal symbol

r= i hEry.

k=0
Then the following theorem holds.

Theorem 8 Let r be a formal parametriz (3.2) of the elliptic symbol a.
Then for N large enough the operator R = Op(r|n) is an operator parametriz

of A= 0p(a) and
indA=Tr(1-RA)-Tr(l - AR)=Tr(1 —roa)—Tr(l —aor). (3.8)
Proof. Denoting r{, by b and taking M sufficiently large, we get

1 — Op(b)Op(a) = Op({1 — boa)ly,) + {Op(b)Op(a) — Op(bo aly,)}
1 — Op(a)Op(b) = Op((1 — aob)|y,) + {Op(a)Op(b) — Op(a o bf,,)}.

By theorems 1 and 4 the operators in curly brackets belong to the trace class
and their traces are equal. Taking A/ > N and writing

N-1
b=r|y= > 1,
k=0

M-lN—ll 81 |
b0(1|Mr= Z Z FFT“-D a,
1=0 k=0 ‘- Y%
19
TO(I.lN = Z: Fg—lrkD a,
o<k+i<N + U%

we see that Op((bo a)|,,) — Op((r o a)|y) is a finite sum of terms

with k+1 >N, k<N, Il <M. If N> n+1, this operator belongs to
the trace class since its order is less than —(n + 1) and its symbol vanishes
at t € [0,c] and ¢ € [C, 00). The same is true for Op(a o b|,,) — Op(a o r|y),

which 1s the sum of 5
a
Op (QD 7‘1,)
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with k+12> N, k< N, !l < M. The traces of such operators are equal

because ;
t
——— I —

/rodz/ tr r;, [Pudz/ 6lerk

as one can see mtegra.tmg by parts. Thus,
Tr(l - RA)-Tr(1-AR)=Tr(1 —roa)|y —Tr(1 —aor)|y

which is precisely the algebraical index.

4 A Topological Index

Following [6], we introduce one more algebra which permits to simplify sig-
nificantly various calculations with noncommutative differential forms. We
will use a real variable 7 instead of 2 = i7. An element a of our new algebra

A is an operator-valued nonhomogeneous differential form of even degrees on
the half-plane R2. So,

a = ap(t,7)+ ay(t, 7)dr A dt (4.1)

where ag and a; are pseudodifferential operators on X of nonpositive orders.
A product 3 of two elements a,b € A is defined by

adb=aAb+ %da A db. (4.2)

One immediately checks that this product is associative. R
Any function a(t, T) may be considered as an element of A consisting of
0-component only. So, for functions a, b we have three products:

o ab is the usual point-wise operator product of functions,

da 0b
aob=ab+ lhta—a +. (43)

is a product in A as formal symbols,
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adb=ab+ %da Adb (4.4)
is a product in A

We may also consider the powers of a function a with respect to any of these

products using notations a*, a°*, a® to distinguish the three possibilities. One

can verify a simple rule to pass from o-product to 8-product of functions:
keep the terms linear in h, then alternate derivations d/dr,3/3t and then
write dr A dt instead of ht. This rule is valid for any number of functions
a;0ay0...0a; and a;8a,0...0%a;.

Similarly to J we introduce a trace ideal :f C A. It consists of forms
(4.1) where ag,a, are operators of order 4 < —(n + 1) with regard for a
parameter 7 € R, vanishing at t € [0,¢] and t € [C,00). For a € J define a

trace 1 1
Tra=—/ tra=—] tra,(t, r)drdt
2 ) X1 27 Jr2
(the orientation of R? is given by the form dr A dt). The trace property
Tracb = Tr bda

is obviously satisfied if ¢ or b belongs to J.
With this definitions we have the following topological index formula.

Theorem 9 For any N > 1
indA = Tr(1 - roﬁa)G(N'“) - Tr(l - a'drg);(N“) (4.5)
where o is the leading term of the parametriz of a.

Proof. We start with the algebraical index formula (3.8) taking

N N

r=ro03 (1=aor) =Y (1-rgoa)or,.

k=0 k=0
with N large enough. Then

l—roa=(l —rooa)°(N+l)

l—aor=(1—aory) N+,
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ind A = Tr(1 — ro 0.a)°*™*+) — Tr(1 — g o ro)°V+1), (4.6)

According to lemma 7 we need to extract a constant term in (4.6). It means
that we may calculate (1 — rg o a)°(N+!) keeping the terms linear in k. Thus,

l—rpoa=1-rga —tht——

where dots mean higher-degree terms in h. Using induction one easily obtains
a formula

(1 - rooa)°(N+1) ~ (1 - 'r'oa)N‘H -

N
—tht {E(l - roa)“'@%(l —rea)VF— Y (1= rga)* x
k=0 dr ot k4p+g=N-1
a(1 — 1-
X —(—&'M(] - 'rga)”a(a—troa)(l - rga)q} (4.7)

where ~ means that the linear terms coincide. The second sum may be
written as

N 91 — roa)* 8(1 - roa)

2

(1 = rga)V-* (4.8)

vl ar ot
o N ) )N =k
(1 — roa) A1 = roa)™~
— k
k;(l roa) = 5 . (4.9)

Using ”integration by parts” transform (4.9) to the form

ai Z(l — roa) 90 = roa)(l — roa)VF —

ar
_ i 8(1 ;;Oa)k 6(1 ;Trga)(l _ TOG)N_k _
5 _
Z (1 —roa) ka (;Ta:oa)(l — roa)V 7k, (4.10)

If N > 1 all the written terms belong to the trace ideal J since they contain
a factor 1 — rga € J or its derivatives.
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Let us now write down a constant term of the trace of (4.7). We represent
the second sum in (4.7) as a half-sum of expression (4.8) and (4.10). We
may drop the first sum in (4.10) since complete derivatives vanish under
integration and permute cyclically the factors under trace sign. Finally we
obtain

1 N a‘l"oaa 162(7'00)
zm'/ (N +1)tr(1 = roa) (ar ot~ 2 arot )

(1- roa)" (1 —roa) 31 —rea)*d(1 — roa)
_"Z{ a ot or } X

k=0
x(1— roa)N'kd‘rdt.
Next,
QEQE 1 32(1'0a) 1 37‘0 da 10rg0a 1 8% 1 O%

ar ot 2 970t  20r 0L _20L0r 20t0r. 2 olor

and

Bro da Brg da
ar ot ot or

{3(1 — r0a)* 8(1 — roa) o1~ roa)* 3(1 — roa)

)dr/\dt—drol\da

or ot ot or
= d(l - Toa)k A (l(l — To(l).

Thus, for the constant term of Tr(1 — ro 0 a)°V+1) we get an expression

1 (N+1) N
T -/li { 3 tr(1 — roa)” dro A da—

}d'r/\dt=

thdl kAd(l 1 N-k
52 rd(l —rea) (1 —roa)(1 — rea) }—

k=0

1 N+1 (O Pa
—%T-/;i tr(1 — roa) (6r6t0+ 05, m)d dt. (411)

A similar expression may be written for the constant term of Tr(1 —ao
70)°V+1) by interchanging « and ry. Note that

2 2

tr(l — aro)NaaT;trg = trro(l — arg)™ Ba'raat =
2

= tr(l — roa)Nro 661_;[
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It implies that the last integral in (4.11) does not change under permutation
of a and ro. Thus, taking the difference of (4.11) and the corresponding
expression obtained by interchanging a and rq, we find

. 1 N+1
ind A = %Lﬁ, {( 5 )tr(l - T'QG)NdT'g A da—
1 N
—=> trd(1 - roa)f A d(1 — roa)(1 — roa)VF—
2 k=0
—N;_ Itr(l - aro)Nda A dro+
1 N
+3 Y trd(1 — arg)* A d(1 —aro)(1 — aro)N-“} : (4.12)
k=0

Taking into account the rule for passing from o-product to G-product one
easily recognizes formula (4.5) in (4.12). In particular, we obtain that the
right hand side of (4.12) or (4.5) is independent of N provided N is large
enough. Using 3-product, we prove now that (4.5) is valid for N > 1. Indeed,

Tl(l - 7‘08(1)3(N+1) - Tl'(l - aa-ro);(N“) =
= Tr(1 = 13a)° — Tr(1 — adre)°N —
~Tr(1 — reda)*Noreda + Tr(1 — adro)*Nadro.
But by the associativity of the 3-product
Tr(1 — ro8a)*N8roda = Trrod(1 — adro)*Vda = Tr(1 — adro)*¥adry.
Here we have used that (1 — aSrO)GN € J for N > 1, so a cyclic permutation

of factors under a trace sigu is possible.

a
For N =1 (4.12) becomes

1
ind A = T /Ri tr(1 — roa)dro A da — tr(1 — arg)da A drg

since

trd(1 — roa) A d(1 — roa) = trd{l — arg) A d(l —arg) =0.
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Integrating by parts in the first summand, we get

- '/li tr (d(1 — roa))roda = L7 tr(droarg A da + rodarg A da).

+

The second summand may be transformed as follows
—tr(l — arg)da A dr = trdr(1 — aro) A da.

So, (4.12) at N =1 gives formula (0.5).

5 Example

Consider the simplest example of a singular integral operator on a half-line
(a cone over a point)

Blz) [~ uw)

m Jo y—=x

(Au)(z) = a(z)u(z) +

(5.1)

where B(z) and 1 — a{z) belong to C°(R4). For z > 0 this operator has a
principal (Fourier) symbol

ao(z,§) = afz) + B(z)sgn €

and we assume as usual that ao{z,£1) # 0.
Let us pass to the Mellin representation. Taking

u(y) = L/ry"‘ﬁ(z)dz

T o

with 0 < RI' < 1, substituting it into (5.1) and calculating the singular
integral

1 o0 y-z —zl _l_e?m'z
— dy=z""——
mtto y—=z 1 — e2m=
we represent (5.1) in the form
1
(Au)(@) = 5— /r z~a(z, 2)i(z)dz (5.2)
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where the Mellin symbol is

1+ e‘lriz
a(z,2) = a(z) + Ble) T — - (5.3)
The ellipticity conditions for the operator (5.2) besides a(z)% 8(z) # 0 mean
that the line I' = T', does not contain the poles of a(t,z) as well as the zeros
of a(0,z), so that a~!(0, z) is holomorphic in a strip containing ;. Now,

since rda A rda = 0 for scalar functions we obtain by the Stokes formula

1 1
indA = — dr A da = —~_/ a'da
271 JrxR, 27t Ja(IxRy)

which is equal to the variation of arga along the "boundary” d(I' x R} ). The
latter consists of the line z € I', £ = 0 and two half-lines z = o£100, z € R,.
This gives a final formula

afz) + B(=z)
afz) — B(2)

where A means variation along the positive half-axis z > 0. It is precisely
formula (0.3) from [2].

. 1 o 4100 -1 , 1
indA = —j a™'(0,2)a’(0,z)dz + 2—Aarg
4 T

2‘4‘1'2. —100
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