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We consider a special case of ~1ellin pseudodifferential operators on a cone
X/\ = X x lR+/X x 0 where the base X is a smooth compact manifold of
dimension n without boundary. The operators have the form

Here

1 lr 1000 (t1) z dt1(Au)(t) = -. dz - a(t, z)u(td-.
211"t rot t 1

(0.1 )

(0.2)

which means that u(t) is a function with compact support on R+ whose
values are sections of a vector bundle E over X. The weight line r may be
any verticalline rß = {~z = ß} in a complex plane, we assurne without loss
of generality that r coincides with the imaginary axis r o.

The operator-valued ~1ellin sYlubol a(t, z) satisfies the following condi
tions:

1.
(0.3)

·Supported by the Deutsche Forschungsgemeinschaft
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which means that a is a slnooth function in t E IR+ whose values are
parameter-dependent pseudodifferential operators of order fl on X with
a parameter z = ir, T E IR,

2. for t E [C, 00) the sy n1bol is independent of t, more precisely

a(t,z) = a(oo,z) tE [C,oo),

3. for t E [0, cl with 0 < c < C the symbol a(t, z) admits an analytical
continuation to sOlne strip S = {I~zl < e} and on each line rß =
{~z = ß} is a paranleter~dependent operator on X of oder Jl, that is
satisfies (0.3) unifornl1y in IßI ::; Cl < e.

We use a notation AfLJl(X") for the set of such operators and M L~(X")

if a(00, z) = O. Trollghout this paper we assurne Jl ::; O. The operators (0.1)
are of great inlportance for the calculus of pseudodifferential operators on
manifolds with conical singularities (see e.g. [1]). Here we restrict ourselves
to a model case when a singular nlanifold is a pure cone and the operator may.
be written globally in a !\.1ellin form. It is well known that A E M LJl(X") is a
bounded operator in weighted Sobolev spaces A : 11~,(n+I)/2 -+ H~-IJ,(n+1)/2.

V\'e will consider elliptic operators of zero order (11 = 0). The operator
A E M LO(X") is called elliptic if its sytubol satisfies the following additional
conditions:

1. for t E R+ a(t, z) is a paralneter-dependent elliptic operator on X with
a parameter zEr,

2. a( t, z) is invertible for for t E [0, cl and any z in the strip I~zl < c,

3. a(oo,z) = 1 where 1 stands for identity operator.

We prove (section 3) that ellipticity implies Fredholm property in Sobolev
spaces and obtain an index fonnula. A basic observation is that ellipticity
conditions ilnply that tbe elliptic family a(t, z) paramatrized by t E IR+, zEr
is trivial (tbat is a(t, z) is invertible) outside a compact set in lR+ x r. Thus it
defines an index bundle ind a E f\c(IR+ x r) where !(c means [(-functor with
compact supports (see [4]). Hs ehern character is represented by a closed
differential form with cOlllpact support, and we prove the following result

ind A = 100 lr ch(ind a).
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Another userul form of (DA) may be obtained in terms of the family
a(t, z) and its parametrix TO( t, z) such that 1 - Toa and 1- aTo are trace dass
operators for any (t, z) E lR.+ x rand ro = a- 1 outside a compact. Then (see
e.g. [5]) using the formula for ch(ind a) in terms of a and ro we may write

. 1 1.lnd A = -2. tr(dro + rodaro) 1\ da
1r'Z. B+xr

(0.5)

and precisely in this form we prove our result.
The proof follows the scheme developed in [6]. It consists in comparing

three expressions:

1. analytical index

ind A = tr(l - RA) - tr(l - AR)

where R is a parametrix of A up to a trace dass operator,

2. algebraical index

ind A = tr( 1 - r 0 a) - tr(1 - a 0 T)

(0.6)

(0.7)

where T is a fornlal conlplete sytnbol of Rand 0 means a composition
of formal complete sytnbols,

3. topological index given by (0.6).

The most important step is transition from 1 to 2 or, using the terminology
of [6], the theorem on a regularized trace of a product. In contrast to [6]
we have not only to watch the order but also to gain weight, which is much
more difficult. The second transition from 2 Lo 3 is based on the machinery
developed in [5] and requires no new ideas. .

Acknowledgments. We are very grateful to Professor Schrohe for nu
merous darifying discussions especially on Fredholm property and parametrix
construction. Tbe first author would like to thank Professor R. Nest for an
invitation to Copenhagen University where the article was completed.
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1 Preliminary Estimates

We will use the following notations. For a function a = a(t, z) we set

(k) ak

a = Bzka(t,z),

alk) = Dka(t, z) = (-t :tra(t, z).

For two functions a(t, z) ancl b( t, z) set

N-I 1
a 0 bIN = L k' a (k) ( t, z)b(k) ( t, z).

k=O •

(1.1 )

For a function u(t), t E [0,00) with values in COO(X, E) we clenote by
lu(t)1 any nonn in COO(X, E) at a givcn t. A similar notation la(t, z)1 for
operator-valued functions

a(t, z) : COO(X, E) -+ COO(X, F)

means any operator nOrtl1.

Introcluce

(z)' = (I - Z2)'/2 = exp GIn(1 - z2))

for I~zl < c < 1, sEC, assul11ing that the brauch of In(1 - Z2) in the strip
I~zl < c is real at zErQ. This function is holomorphic in z belonging to
the strip I~zl < c and in s for all sEC. Ir s belongs to a horizontal strip
I~sl < h, then the inequality holds

(1.2)

We also need an operator-valued version of the above order reducing function.
Let 6. be the Laplace operator on X. Define an order reclucing family

(1.3)

for I~zl < c < 1 and I~sl < h. A complex power is unclerstoocl in the sense
of elliptic theory (see [7]). This farnily is holomorphic in z and s belonging
to the mentioned strips.
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For u(t) E Ccf(lR+) its Mellin transform

is an entire function in z. In virtue of the identity

(1.4)

we see that u(z) is rapidly decreasing on any verticalline, that is

(1.5)

where

for any k E N, I~zl < c.
Finally we will consider rvlellin transforms of operator-valued symbols

a(t, z) E AlLo(X"), that is

a((, z) = 100

t<-la(t, z)dt.

The integral converges at ~( > 0 so that Ci( (, t) is a holomorphic function in
a half-plane ~( > O. Similarly to (1.4) we have

Ci(1) = 100

t<-1 Da(t, z )dt

is holomorphic in a half-plane ~( > -1 since Da(t, z) vanishes at t = O.
Repeat ing th is procedure we Inay w rite si Ini larly to (1.4)

(1.6)

where a(k) ((, z) is hololnorphic in ~( > -1. From (1.6) it follows that a((, z)
is rapidly decreasing in ( on any vertical line r ß, so that

for any k E N, (E rß.

la((, z)1 ~ C(z)1 (() r k

5
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For symbols a(t, z) E A1Lt;(X") with Jl :s; 0 more precise estimates hold

Ila«(, z)ll $ CI (() I-kl (z) I~·

Here 1I . I1 means the norm of the operator

(1.8)

(1.9)

If J.I. < -n/2 the operator (1.9) belongs to the Hilbert-Schmidt dass and its
Hilbert-Schnlidt norm 11· Ilz satisfies an equality

(1.10)

Finally, if Jl < -n then the operat.or (1.9) belongs to the trace class and the
trace norm 11 . Ilt satisfies an estinlate

(1.11)

In (1.8)-(1.11) (E r ßp ßl f. 0, z E r ß2 , Iß21 < c: and k may be any integer
positive nUlnber.

The operator (0.1) corresponding to the operator-valued f\1ellin symbol
a(t, z) will be denoted by Op(a). With these notations the main theorem of
this section is as follows.

Theorem 1 Let a(t,z) E A1Lt;(X"), b(t,z) E ML~(X") with Jl, v $ O.
Then for N sl1fficiently [arge the operator

CN = Op(a) Op(b) - Op{a 0 biN)

as an operator in the space HO.(n+l)/2 belongs to the trace dass.

Proof. Introduce a partition of unity poet), PI (t), P2(t) such that

supp po E [0, cl, sUPP PI E [c/2, cl, supp P2 E [c/2, 00),

supp Po n supp P2 = 0

and
poet) -1, tE [0,c/2], P2{t) =1, tE [c,oo).

Then any operator Op(a) Inay be rellfesented as a SUffi

2

Op(a) = E Op(Pka ).
k=O
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(1.12)

We emphasize that the sYlnbols Po( t )a(t, z) and pd t )a(t, s) are holornorphic
in z belonging to the strip S.

The operator CN is then a surn

2

,E Op(Pia)Op(pjb) - Op((Pia) 0 (pjb)IN)
i,j=O

and we consider several cases according to the values of i,j.
Case 1 (i ,j # 0).
In this case the supports of symbols Pia and pjb are separated from t = O.

The Mellin calculus for such operators on a half- line t ~ 0 may be reduced
to the usual Fourier calculus of p.d.o. on the whole line y E (-00,00) by
change of variables t = eY , z = ir. Indeed, formula (0.1) goes to

(Au.)(e~) = _1 JOO drjOO eiT{YI-Y)a(e~,ir)u(e~l)dYI1
21r -00 -00

and the o-product of two sYlnbols becoIlles

N-I ik ak ak

a(t,z)ob(t,z)IN = E k'a ka(e~,ir)a kb(eY,ir)
k=O • r y

which is the usual compositioll rule for Fourier p.d.o. The synlbols

Pi(eY)a(eY,ir), pj(eY)b(eY,ir)

have cOlnpact support in y, so the theorem follows from the usual Fourier
calculus of p.d.o. (see e.g. [6]).

Case 2 (i = 2,j = 0).
In this case (P2a) 0 (Pob)IN = 0 since the supports of po and P2 do not

intersect, so we need to prove that the operator

Op(P2a)Op(pob) = Op(P2a)POOp(b)

belongs to trace dass (the so-colled pseudolocality property). The operator
Op(b) is bounded in HO,{n+1)/2 since its order 1I ~ 0, and thus it is sufficient
to prove that Op(P2a )Po belongs to trace dass. To this end we represent it
as a conlpositioll

1IO,{n+I)/2 ~ 116 ,.., ~ HO,(n+1)!2 (1.13)

with sonle integer s > (n + 1)/2 and SOIlle I > (n + 1)/2 and show that
both operators in (1.13) are Hilbert-Scillnidt ones. The second operator is
an embedding.
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Lemma 2 For 8 > (n + 1)/2, 8 > 0 the erl1bedding

considered on a subspace ollunctions u E HIJ,(n+1)/2+6 whose supports belong

to the interval t E [0, Tl is a lIilbert·Schmidt operator.

Proof. Let first u(t) E C~(O, T). Then u(z)T-Z is an entire function
rapidly decreasing in the right half-plane. The norm of u(t) in the Sobolev
space HIJ,(n+1)/2+6 is equal to an L2-norm of R·(z)u(z) on the line f -6. Here
RIJ(z) is an order-reducing fanlily (1.3). The Donn of u(t) in HO,(n+l)/2 is an
LTnorm of the restriction of u(z) to the line f o. The restrietions of u(z) ta
r-6 and r° are connected by the Cauchy integral

1 lr T(-z
u(() = -2' -,u(z)dz

1rl r -6 z - \:)

where (E r o. Denoting v(z) = RIJ(z)fi(z) we write (1.14) in the form

] lr T(-z
u() = -. -(R-IJ(z)v(z)dz.

21rl r -6 z -

(1.14)

This operator acts between L2 spaces on lines r -6 and r° and its Hilbert
Schmidt norm is equal to the L2-norm of its Schwarz kernel

which is an operator-valued function. For s > n/2 we have an estimate for
the Hilbert-Sclunidt Dünn in L2(X)

(cf. (1.10)), so that

Integrating over ~( anel ~z and using that 28 - n > 1, we obtain that the
L2-norm of [«((, z) is finite, whence the lell1ll1a follows.
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(1.15)

o
To prove that C in (1.13) is a Hilbert-Schmidt operator we use that Po P'l

vanishes on the diagonal t = t l . So, writing

(~) Z = (ln t
l

_ In t)-N aN (!!.) Z

t 8zN t

for any N E N and integrating by parts we represent C as an integral operator

where
v(td = t~I/2U(td E L2 (R,+, L2 (X))

if u E HO,(n+1)/'l. Inclusion Cu E HtI,"Y for s integer means that for any
k = 0, 1, ... 1 sand for any differential operator P of order s - k on X

This operator acting on v = t- 1
/

2
U has a Schwarz kernel

J( (t, t,) = ( tn/'--Y D: P2(t)PO(t. )Pa(N)~t; z) (!!.) Z dz
}r (ln t -ln tdNt/ t

and we need to estilnate the L2-norm of this kernel, more precisely, we need
to prove that

1"" dt [0 dq[((t, tdll~ S; 00

(in fact the integration is over t E [c/2, Cl and over t l E [0, cl). We may omit
the factor t n / 2-"Y since it is bounded on [c/2, Cl. Next, since

and

for z = ir the Hilbert-Sclll11idt nonn of the integrand may be esimated as

(1.16)
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Here we have made use of the fact that t l =1= t, so that Iln t l - In tl =1= o.
Moreover,

1I D:P2Pa(N)(t, z)112 ~ Cl(z) IIJ-N+nj:l.

For N Iarge enough the integral of (1.16) over z converges and we obtain

Thus, for L2-norm of 11[«(t, tdll we obtain an estimate

C
4
jC clt fC dt l =

c/2 Jo (1 + lin t l - In tl)Nt l

1
1nc flnc dYI= C4 eYdy < 00

Inc/2 -00 (1+1Y-YII)N

for N > 1. This proves case 2.
Case 3 (i,j = 0, 1).
This is the most difficult case. Here we will make use that pi(t)a(t, z) and

pj(t)b(t, z) are holomorphic functions in the strip S. To silnplify notations,
we omit the factors pi(t), pAt) including thein into a and b.

For u E Ccf(lR+) we have

(BuHt) = Op(b)u = ~ f t-Zb(t, z)u(z)dz
27rZ Jr1

where r I may be any vertical line with Imr1I < e. Then for ~( > ~r 1 the
Mellin transform of Bu has the fonn

- 1 lr .-.Bu(() = -2' b(( - z, z)ii(z)dz.
7rZ r 1

-Sinlilarly for ABu(w) we obtain

A"B;(w) = (27ri)-2 f d( f dza(w-(,()b((-z,z)1i(z) (1.17)
Jr2 Jrl

with ~w > ~r2 > mr1 . The integral converges because of estimates (1.5),
(1.8).
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Now using the Taylor formula, we writ~

N-l 1
a(w - (,0 = ~ kla(k)(w - (,z)(( - z)k + TNa(( - z)N

where

1 (1 - B)N-l
(TNa)(w-(,z,O= 10 a(N)(w-(,z+O((-z» (N-l)! dlJ.

(1.18)

(1.19)

The regular terms in (1.18) after substitution into (1.17) and integration
over ( give

_1_. f a(k)(w _ (, z)(( - z)kb(( - z, z)d( =
27t'l Jr2
= _1_. f (i(k)(w _ (, Z)b(k)(( - z, z)d( =

21ft Jr2

= A1t _ w _ z (a(k)(t, z)b(k)(t, z))

resulting in Op( a 0 biN )u. So, the operator CN corresponds to the remainder
ternl in (1.18)

C-;u(w) = (21fi)-'2 f cl( r dzTNa(w-(,(,z)b(N)((-Z,z)u(z). (1.20)Jr2 Jr l

Observe that the function b(N)(( -z,z) at N 2: 1 is hololnorphic in m( > -1,
so the integration line r'2 Inay be shifted arbitrary within the strip I~(I < c.
It means that the restrietion ~r1 < ~r '2 < ~w is needed no more, and the
only remaining restrietion is ~r '2 < mw. It will be convenient to take

(1.21 )

Ta prove that (1.20) belongs to the trace dass we again represent it as a
composition of two Hilbert-Schnlidt operators

HO,(n+l)/2 ~ lI~,(n+l)/'2+6 <......+ HO,(n+l)/2

with some fJ > 0 and sOlue s > (n + 1)/2 whieh Inay be taken as an even
integer nunlber. The second operator in this sequence is an embedding. Note
that in virtue of lenul1a 2 the weight gain S is necessary to have a Hilbert
Schmidt embedding. So, we choose ~r1 = 0, ~w = -fJ, ~r '2 < ~w in
(1.21).
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Lemma 3 Let s > (n + 1)/2 be an even integer. Then the operator

C
N

: HO,(n+l)/2 -+ H tI ,(n+l)!2+6

is a Hilbert-Schmidt operator provided N is sufficiently [arge.

Proof. The assumption that s is an even integer serves only to simplify
the proof. Using representation (1.20) for CN we are to estimate the Hilbert
Schmidt norm of the operator between L2-spaces on the lines r° and r_5

with the Schwarz kernel

The Hilbert-Schnlidt nonn of the integrand lnay be estimated as

IIRtI(w)TNll(w - (, (, z)1121Ib(N)«( - z, z)ll ~

~ I«( ~pz) Ip IIR'(w )TNa(w - (, (, z)1 k

Here we have used (1.8) for beN) with p arbitrary large. In virtue of (1.19)
our next step is to estilnate the nonn

(1.22)

Denoting z + B«( - z) by 1] and putting s = 2a, a E N, we may rewrite
RtI(w) using the binomial fonnula

RtI(w) = (1 - ~ - 112 +1]2 - w2r = L: CklmR2k(1])1J21W2rn
k+l+m=u

with some constant coefficients Ckfm . Finally, using (1.10) for the operator
R2k(1J)a(N)(w - (,11) of order J1. - N + 2k, we obtain

11 R2k
(" )a(Nl(w - (, '7)Ih ~ I(w ~"() I" I(,,) 1,,-N+2k+i,

provided J1. - N + 2k + ~ < 0, q Inay be any positive nUlnher. It implies the
following rough estilnate of (1.22)

IIR'(w)a(Nl(w - (,,,)112 ~ I(w ~ q) I" 1(11) 1"'1 (w) I'
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where Pl ~ Jl - N + s + n/2 is supposed to be negative.
Next, writing w as a sum

w = (w - () + (( - z) + z

and applying binomial formula, we get

These rough esti Inates resultin the follow ing estimate for the kernel K (w, z)

(1.24)lro lr_.II[((w,z)II~ldzlldwl.

where ql, PI are arbitrary positive nun1bers and Jl2 is negative and may be
made larger in magnitude at the expense of N. The needed Hilbert-Schmidt
norm 18

After integration over wEr-6 we get the following integral which estimates
(1.24)

C [1 dO [ ldzj [ ]d(l 1 (z) 1

2
"

io iro ir2 1(( - z) I'2Pl I(z + 0(( - z)) Ftl2'

First consider the region I( - zl < Izl/2. Then

1 < 1
I(( - z) Fp 1 -

1 < C
l(z+0((-z))12tl2 -1(z}12tl2

and
[ 11 I [ Id(1 <' [ Izl Jd I
iro (. z il<-zl< 1}l 1 (z) 12tl2 - 1" - iro 1 (z) 12tl2-1" z

which is convergent for J-l2 large enough. Now, for le - zl ~ IzJ/2 we estimate

1 < 1
I (z + 0(( - z)) 12tl'2 -

13



and
f r~ dl1J1 1 f 1 (z) rb

i ro Idzl i1zl/7.1 (z) 1

2
$ 171I7.P1 = 2Pl + 1 iro [ZI7.P1 +l ~ 00.

So, the Hilbert-Schnlidt norm of GN is finite.
o

To prove the theorem, it remains to observe that the functions of the type
GNU have support in a finite interval t E [0, T] since a 0 bIN vanish at t large
enough independent of z. Thus, lemma 2 may be applied implying that CN

belongs to the trace dass.
Case 4 (i = O,j = 2).
Here we have a pseudolocallity property similar to case 2, hut the proof

runs slightly different. Again we have that (poa) 0 (P2b) = 0, so we need to
prove that Op(poa )P20p(b) belongs to the trace class. Since b(t, z) has com
pact support in t, we Illay assullle that P2(t) is also compactly supported.
Then since Op(b) is baunded in HO,(n+l)1/2, we again need to prove that
Op(poa )P2 belongs to the trace class. But llluitiplication operator P2(t) may
be regarded as ~1ellin p.d.o. with a holomorphic symbol, so we are in as
sumptions of case 3. This conlpletes the praof of the theorem.

o

2 A Regularized Trace of a Product

For operators A = Op(a) E A1L~(XA) and B = Op(b) E AILÖ(XA) with
jL, v ~ 0 define a regularizcd trace of a product by

By theorem 1 this trace exists provided N is sufficiently large.

Theorem 4 The regula1'ized trace 0/ a product does not depend on the
order, that is

(2.1 )

Proof. There are several cases corresponding to those listed in the proof
of theorem 1.

Case 1 (i,j # 0).

14



The assertion reduces to the theorem on a regularized trace of a product
of Fourier p.d.o. [6].

Case 2 (i = 2,j = 0) or case 4 (i = O,j = 2).
For A = Op(Pia), B = Op(pjb) we have by theorem 1 that AB and BA

belong to the trace dass. Then their traces are equal by Lidskij's theorem.
Case 3 (i,j = 0,1). .
Using (1.20) with

~r2 < ~w = ~rl = 0

(cf. (1.21)) we get

TrNAB = TrCN = (21ri)-2 f d( f dz trTNu(z - (, (, Z)b(N)(( - Z, z)
Jr'l Jr1

(2.2)
Recall that Tr denotes the trace of operators on the cone XI\. while tr is the
trace of operators Oll the base X. The function

has a pole of the first order at ( = z. So, we may shift the lines r 1, r 2

within the strips I~zl < t:,I~(1 < t:, provided l~r21 remains less then I~rtl.

Moreover, we may shift r2 crossing rt, hut then we must take into account
the residue at ( = z. It is equal to

By (1.19) we have

TNa(I)(O, z, z) = :!a~~)(O, z),

so that the residue is equal to

1 1 (N) ...- tru(l) (O,Z)b(N)(O,z)dz.
21riN! r 1

But for N > 1

15



Thus, for N > 1 integral (2.2) does not depend on a position 0/ the lines
r b r 2 within the strip l~zl < c, I~(l < c. A similar assertion is true for the
integral

To prove that (2.2) and (2.3) are equal, we consider families

a,,(t,z) = a(t,z)R-"(z)

b,,(t, z) = b(t, z)R-"(z)

where s is acOlnplex paralneter ranging in the half-strip ~s ~ 0, I~sl ~ c.
Let A", B" be the corresponding operators on the cone. The estimates of

theorem 1 show that TrNA"B" and TrNB"A" are holomorphic functions for
s belonging to the half-strip. Thus, it is sufficient Lo prove the equality

for ~s sufficiently large. To put it difTerently, we need to verify (2.1) for
operators A, B of sufficiently large negative orders. To this end we write

TN G(I)(Z - (, (, z)
(z - () -

and then

..... ( (() "N-l ..... (k)( () ((-z)k
a(l) z -, - L..Jk;Q a(1) z - ,z k!

((-z)N+l

TrN AB = -(27l"it 2 f d( f dz tr a(1)(z - (, ()b<;) (( - z, z) +
Jr2 Jr t (( - z)

N-l tr i/l.o)(z - ( z)(( - z)kb (( - z z)
+ L (27ri)-2 f d( f dz '(1) , 2 I (1) '. (2.4)

k;Q Jr2 Jr t (( - z) k.

Each sumnland in (2.4) makcs sense if a and b have large negative orders and
~r2 < ~r 1 are fixed. Interchanging z and ( in the first integral and using
that tr G(1)b(l) = tr b(1)G(1) for trace dass operators, we obtain
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Now, the remaining sumrnands may be transformed as follows

lr lr
tra~7~(-TJ,z)TJkb(1)(TJ,z)

dTJ dz 2 =
f_6 fl TJ

k lr lr tr a~7~(TJ,z)TJkb(l)( -1], z)
= (-1) dTJ dz 2 •

f 6 f 1 1]

Here we bave ebanged TJ by -TJ. Now, integrating by parts with respeet to z
and permuting a(1) and b(1) under tbe traee sign, we obtain

(2.6)

Now,Here we have shifted the lines of integrations keeping ~r2 < ~r1.

summing (2.5) and (2.6) for k = 0, 1, ... , N - 1, we get

TrN AB = (27ri)-2 f d( f dz tr TN b(1)(z - (, C, z)a{N)(C - z, z).
Jfl Jf2 ( - Z

This expression eoineides with the corresponding expression (2.2) for TrN BA
exeept that the lilles r 1 anel r 2 are interehanged. Hut, as we have seen, we
may interchange r 1 anel r2 not affeeting the value of the integral.

This eompletes the proof.
o

3 An Aigebraical Index

First we introd uee an algebra of fonnal ~1ellin symbols on IR.+, define elliptic
synlbols and introduee an algebraieal index of elliptie elements. Then eon
strueting a paralnetrix and applying the thearern on a regularized traee of a
product, we prove that the analytical anel algebraical index eoineide.

A fonnal synlbol is a fonnal power series
00

a(t,z) = L:hkak(t,Z)
k::::O
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where coefficients ak(t, z) E COO(R+, LIJ-k(X, ro)), Jl :::; 0 satisfy the follow
ing conditions:

1.

2. for 0 < t < c or t > C ao(t, z) does not depend on t while ak(t, z) = 0
for k > O.

The powers of a fonnal paralnet.er h serve for ordering the series terms. Define
a product 0 of two synlbols by

00 1 am

aob= L hk+l+m-l-aak(t,z)Dmbl(t,z).
m. zmk.l,m:=O

It is easy to check that the sYlnbols fonn an associative algebra with a unit
a(t, z) =1 consisting of the leading terol only. We denote this algebra by A.
Introduce a 17'ace ideal j consisting of synlbols with Jl < -(n + 1) and with
all the functions a,l..(t, z) vanishing at t E [0, cl and t ~ C. A trace for a E :J
is defined by

00 k 1 lr fa 00 dtTr a = L h -1_
2

, dz tr ak(t, z)-.
,1..:=0 7I"t ro 0 t

This is a formal series with constant coefficients and the exponents of h
ranging fronl -1 to +00. Using integrations by parts, one can check that

Tr a 0 b = Tr boa

if one of the synlbols belongs to j.
A symbol a E A is called elliptic if there exists a symbol r such tbat

1 - T 0 a and 1 - a 0 T belong to :J. In particular for leading terms ao and ro
we obtain

1 - Toao E j, 1 - noro E j. (3.1 )

Such synlbol r is called a (fonnal) pamnl,etrix 0/ a. The following con
struction is well-known.
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Lemma 5 Let there exist a functi011 ro( t, z) satisfying (3.1). Then for N
large enough the syrnbol

N N
r = ro 0 L{1 - a 0 ro)k = L(1 - ro 0 a)k 0 ro

k=o k=O
(3.2)

(the powers are underslood with respeet to the produ.et 0) is a parametrix of
a.

Proof. By direct calculation we have

1 - r 0 a = (1 - 1'00 at(N+l), (3.3)

l-aor = (l-aorot(N+l) (3.4)

where exponent o(N + 1) nleans the (N + l)-th power with respect to 0

product. Clearly, these sYlnols belong to 3.
D

We define t.he algebraical index of an elliptic sYlnbol a by

ind a = Tr(l - l' 0 a) - Tr(1 - a 0 r). (3.5)

By definition it is a fonnal series in h with constant coefficients. It turns out,
however, that all the coefficients vanish except a constant term, so we can
treat it as a nUlnber. f\10reover, the index does not depend on the choice of
a parametrix. All these properties are standard consequences of the stability
of the index.

Lemma 6 Let a('\) be a farnily of elliptic symbols, r(.\) a family of para
metrices, Then

Tr( 1 - r('\) 0 a('\)) - Tr( 1 - a(.\) 0 r( A))

is independent of A.

Proof. We have

(1 - r 0 a)' = (1 - r 0 a)' 0 (1 - r 0 a) + (1 - r 0 a)' 0 r 0 a =
= {(1-roa)oroa}'-(1-roa)o(r o a)'-(r o a)'o(l-roa)
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where prime means derivation by A. Thus,

Tr(1 - r 0 a)' = d~ Tr( 1 - r 0 a) 0 r 0 a - 2 Tr(1 - r 0 a) 0 (r' 0 a + r 0 a').

Similarly,

Tr(l-aor)'= d~ Tr(1-aor)oaor-2Tr(1-aor)o(a'or+aor').

Hut

Tr(1 - a 0 r) 0 a 0 r = Tr r 0 (1 - a 0 r) 0 a = Tr(1 - r 0 a) 0 r 0 a,

Tr( 1 - a 0 r) 0 a' 0 r = Tr r 0 (I - a 0 r) 0 a' = Tr{ 1 - r 0 a) 0 r 0 a',

Tr{ 1 - a 0 r) 0 a 0 r' = Tr a 0 (I - r 0 a) 0 r' = Tr{ 1 - r 0 a) 0 r' 0 a.

So, both expressions Tr( 1 - r 0 a)', Tr( 1 - a 0 r)' coincide.
o

In particular, given two paralnetrices rl and r2 of the same elliptic symbol
a, we consider a linear hOIllotopy r("\) = (1 - A)rI +Ar2 which gives a family
of parametrices. Then, letnma 6 inlplies that index does not depend on the
choice of a parametrix. '

Now, for areal A > 0 define a honlomorphisn1 H>. : A -+ A by

co

H>.G = L ,,\khkak(t, AZ).
k=O

It is straightforward to check that [l>. is in fact a hOlnomorphism:

If a E :T, then
(3.6)

where 1/>. acts on fOrInal series with constant coefficients replacing h by Ah.
Equality (3.6) follows by change of variables in the integral

~ k k I 1 lr 100
dtTr fl>.a = L...J A h - -. dz trak(t, AZ)- =

k::;;;O 21rl fo 0 t

~ k I k I ] lr 100

dt= L...J A - h - -. dz tr ak(t, z)-.
k=O 21rl r Q 0 t
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Lemma 7 The fornlal senes ind consists 0/ the constant term only.

Proof. For A > 0 consider a family a(A) = H>.a of elliptic symbols. Then
r(A) = H>.r is a family of parametrices since

1 - HAT 0 H>.a = H>.(l - r 0 a) E :1.

So,
ind a(A) = Tr H>.(1 - r 0 a) - Tr /1>.(1 - a 0 r) = H>.ind a.

On the other hand, ind a(.-\) does not depend on A by lemma 6.
o

We are going to C0I11pare analytical and algebraical indices. Given an
elliptic operator

A= Op(a(t,z)),

we may treat its sytnbol a(t, z) as a fOflllal one consisting of the leading term
only. The ellipticity conditions listed in the introduction imply that there
exists an ro(t, z) such that 1 - roa anel 1 - aro belong to:1. Indeed, for
o < t < c and t > C a- 1 exists by definition. For t E [c, Cl a(t, z) is
parameter-dependent elliptic where zEro is considered as a parameter. In
particular it implies that a( t, z) is also invertible at Izl > M for sufficiently
large AI. As for t E [c, Cl, z E [-AI, AI] there exists a parametrix b(t, z)
since a( t, z) is elliptic at any t, z. Now, using a cut-off function cp(t, z) which
is equal to 1 in a rectangle t E [c, Cl, ]zl ~ AI and vanishes outside a compact
in 1R+ x rodefine

1'0(t, z) = (1 - c.p)a- I (t, z) + cpb(t, z).

This function may serve as a leading tenn of a formal parametrix given by
lemma 5. Thus, the algebraical index is defined. To compute the analytical
index of A, we need an operator paranletrix R inverting A up to the trace
dass operators. Tben the analytical index of A is given by the formula

ind A = Tr(l - RA) - Tr(1 - AR).

Introduce a notation
N-l

TIN = E rk
,1.-=0

21
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for a formal synlbol

Then the following theoreln holds.

Theorem 8 Let r be a formal parametrix (3.2) of the elliptic symbol a.
Then /or N large enough the operator R = Op(rIN) is an operator parametrix
0/ A = Op (a) and

ind A = Tr(1 - RA) - Tr(l - AR) = Tr(1 - r 0 a) - Tr(l - a 0 r). (3.8)

Proof. Denoting "IN by band taking AI sufficiently large, we get

1 - Op(b)Op(a) = Op((1- boa)Lu) + {Op(b)Op(a) - Op(boaIM )}

1 - Op(a)Op(b) = Op( (1 - a 0 b)IM) + {Op(a)Op(b) - Op( a 0 bIM)}.

By theorenls 1 anel 4 the operators in curly brackets belong to the trace dass
and their traces are equal. Taking Al ~ N and writing

N-I

b = rl N = L 'rk,
k::::::o

M-I N-I 1 ai

boaL\[= L L -117ilrkV'a,
1::::::0 k::::::O • uZ

1 al
I

r 0 al N = E [iiflrkD a,
O~k+i<N • Z

we see that Op( (b 0 a)LH) - Op( (r 0 a)IN) is a finite sum of terms

Op (:>kD1a)
with k + I ~ N, k < N, I < AI. If '·l > n + 1, this operator belongs to
the trace class since its order is less than -(n + 1) and its symbol vanishes
at t E [0, cl and t E [C, 00). The same is true for Op( a0 blM) - Op( a 0 rI N ),

which is the sunl of
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with k + I 2: N, k < N, 1 < !v!. The traces of such operators are equal
because

J 10
00 al I dt J 1000 a'a 1 dt

dz tralr/t;;Da-= dz tr-alDrk -'ro 0 z t ro 0 z t
as one can see integrating by parts. Thus,

Tr(1 - RA) - Tr(l - AR) = Tr (1 - r 0 a)IN - Tr (1 - a 0 r)IN

which is precisely the algebraical index.
o

4 A Topological Index

Following [6], we introduce one lnore algebra which pennits to simplify sig
nificantly various calculations \\'ith nonCOlll111utative differential forms. We
will use a real variable T instead of z = iT. An elelnent a of our new algebra
Ais an operator-valued nonhOll1ogeneous differential form of even degrees on
the half-plane lRt. So,

a = ao (t, T) + al (t, T ) dT 1\ dt (4.1)

where ao and al are psellcloclifferential operators on X of nonpositive orders.
A proclllct '0 of two elelnents a, b E A is defined by

acb = a 1\ b + ~da 1\ db. (4.2)

One inlmediately checks that this product is associative.
Any function a(t, T) Inay be considered as an element of A consisting of

O-component only. So, for functions a, b we have three products:

• ab is the usual point-wise operator proeluct of functions,

• . aaab
a 0 b = ab + tht 8T at +...

is a product in A a.s fonnal sYlnbols,

23

(4.3)



•
aob = ab + !..da A db

2
(4.4)

is a product in A.
We mayaIso consider the powers of a function a with respect to any of these
products using notations ak

, aok
, aOk to distinguish the three possibilities. One

can verify a simple rule to pass from o-product to o-product of functions:
keep the terms linear in h, then alternate derivations 8/ßr, ß/ßt and then
write dr 1\ dt instead of ht. This rule is valid for any number of functions
al 0 a2 0 ... 0 ak and aloa2o ... oak.

SiITIilarly to .J we introduce a trace ideal :f c A. It consists of forms
(4.1) where ao, al are operat.ors of order I-l < -(n + 1) with re~rd for a
parameter r E R, vanishing at t E [0, cl anel t E [C, 00). For a E .J define a
trace

Tra=-2
1 f tra=_l f tral(t,r)drdt
1r JI.2 21r JI.2+ +

(the orientation of R~ is given by the fonTI dr A dt). The trace property

Tr aob = Tr boa

is obviously satisfied if a or b belongs to :r.
\Vith this definitions we have the following topological index formula.

Theorem 9 For any N :2:: 1

ind A = Tr(l - rooa)O(N+l) - Tr(l - aoro)o(N+l) (4.5)

where ro is the [eading tenn 0/ the para11utrix 0/ a.

Proof. \Ve start with the algebraical index fonTIula (3.8) taking

N N
r = ro 0 L(1 - a 0 7'o)k = L(l - ro 0 alk 0 TO'

k=O k=O

with N large enough. Then

I-roa= (I-rooat(N+1)

I - a 07' = (1 - a 0 rot(N+l),
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(4.7)

so

ind A = Tr(1 - ro 0 at(N+l) - Tr(l - a 0 rot(N+l). (4.6)

According ta lenlma 7 we need ta extract a canstant term in (4.6). It means
that we may calculate (1 - ro 0 a )o(N+l) keeping the terms linear in h. Thus,

. fJro aa
1 - ro 0 a = 1 - roG - 'lht 8r at + ...

where dots mean higher-degree terms in h. Using induction one easily obtains
a fanTIula

(l- rooat(N+1) '" (l-roa)N+l-

. {~ k8ro 8a N-k "" I.-'lht L.-(I - roa) --(1 - roa) - LJ (1 - roa) X
fJr fJt1.:::0 k+p+q=N -1

8(1-roa)( )p8(I-roa)( )q}
X 8r 1 - Toa 8t 1 - roa

where '" Ineans that the linear terms coincide. The second sum may be
written as

~ 8(1 - roa)k 8(1 - roa) ( )N-k
L.- 8 8 1 - rou
1.=0 r t

or
~( ,,)k fJ (1 - roa) 8(1 - roa)N-k
L.- I-tou 8 a
1.=0 r t

Using "integration by parts" transform (4.9) to tbe form

(4.8)

(4.9)

(4.10)

a ~(1 )k 8(1 - roa.) (1 )N-k- L.- - roa - roa -
8t k:::O fJr

~ 8(1 - roa)k 8(1 - roa) ( )N-k
- L- 1 - roa -

1.::::0 8t fJr

~(1 )k 82(1- TOa) (1 )N-k- L- - 1'00. - roa .
k=O 8r8t

If N ~ 1 all the written tenns belong to the trace ideal :J since they contain
a factor 1 - roa E :J or its derivatives.
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Let us now write down a constant term of the trace of (4.7). We represent
the second surn in (4.7) as a half-surn of expression (4.8) and (4.10). We
may drop the first sum in (4.10) since conlplete derivatives vanish under
integration and perrnute cyclically the factars under trace sign. Finally we
abtain

1 1. N (aroBa 1 82(roa)) .-. (N + l)tr(1 - roa) -- - -
27rl I~ aT at 2 arat

_! t {a(l - roa)k 8(1- roa) _ 8(1 - roa)k 8(1 - roa)} x
2 k=O 8r 8t 8t ar

x(1 - roa)N-kdrdt.

Next,

aro aa 1 a2 ( 7'oa) 1 aro aa 1 8ro aa 1 a2r 1 a2a--- - =--- - ---- ---a- -r--
Br at 2 ar8t 2 fJr Bi 2 fJt fJr 2 fJt8r 2 ßtßr

and

(
fJroaa 8ro 8a)-- - -- dr 1\ dt = dro 1\ da,
8r 8t 8t 8r

{
8(1 - roa)k 8(1 - roa) _ 8(1- roa)k 8(1 - roa)} dr 1\ dt =

8r 8t ai ar

= d(1 - roa)k 1\ d(l - roa).

Thus, for the constant tenn of Tr( 1 - ro 0 a )o(N+l) we get an expression

_1_. f {(N + 1) tr(l _ roa)Ndro 1\ da-
211"1 JI.~ 2

1~ k N k}- L...J trd(1 - roa) 1\ d(l - roa)(l - roa) - -
2 k=O

1 N + 1 f N ( 82
ro 8

2
ao )

- 211"i 2 JI.~ tr(l - 7'Oa) 8r8t a + ro 8rOt drdt. (4.11)

A sirnilar expression Inay be written for the constant tenn of Tr(1 - a 0

ro)o(N+l} by interchanging CL and ro. Note that

82a 82a
tr(1 - ar'o)N arat TO = tr ro(1 - a7'o)N arOt =

82a
= tr(l - roa)N ro arat'
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It implies that the last integral in (4.11) does not change under permutation
of a and ro. Thus, taking the difference of (4.11) and the corresponding
expression obtained by interchanging a and 1'0, we find

. 1 1. {(N+l)Ind A = -2. tr{1 - roa)Ndro 1\ da-
trl R~ 2

1~ k N k-- L- tr d(1 - roa) 1\ d{1 - roa)(1 - roa) - -
2 k=O

N + 1
- 2 tr( 1 - aro)Nda 1\ dl'O+

1 N }+ 2(; trd(1 - a7'o)k 1\ d(1 - a7'o)(1 - aro)N-k . (4.12)

Taking into account the rule for passing froln o-product to o-product one
easily recognizes fonnula (4.5) in (4.12). In particular, we obtain that the
right hand side of (4.12) or (4.5) is independent of N provided N is large
enough. Using o-product, we prove now that (4.5) is valid for N ~ 1. Indeed,

Tr{1 - rooa)o(N+I) - Tr(1 - aoro)O(N+I) =

= Tr{1-rooa)ON -Tr(l-aorofoN-

T (1 ..... )ON-...... T (1 ..... )ON..........- r - Tooa orooa + r - aoro oaoro.

But by the associativity of the o-product

Tr(1 - rooa)ONorooa = Trroo(1 - aorofONoa = Tr(1 - aoro)ONoaoro.

Here we have used that (1 - aoro)ON E 3 for N ~ 1, so a cyclic permutation
of factors under a trace sigll is possible.

o
For N = 1 (4.12) becolnes

ind A = _1_. J. tr( 1 - roa )dro 1\ da - tr(1 - aro)da 1\ dro
2trl ll~

sInce

trd(l - roa) 1\ d(l - roa) = trd(l - aro) 1\ d(l - aro) = O.
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Integrating by parts in the first sUlnmand, we get

-1. tr (d(l - roa))roda = 1. tr(droaro A da + rodaro A da) ..~ .~

The second summand may be transformed as follows

-tr(l - aro)da A dr = trdr(1 - aro) A da.

So, (4.12) at N = 1 gives formuhl. (0.5).

5 Example

Consider the simplest exanlple of a singular integral operator on a half-line
(a cone Qver a point)

ß(x) faoo u(y)
(Au)(x) = a(x)u(x) + -. --dy

7ft 0 y-x
(5.1 )

where ß(x) and 1 - a(x) belang to Cgo(R+). For x > 0 this operator has a
principal (Fourier) symbol

ao(x,~) = o:(x) + ß(x)sgn~

and we assume as usual that ao( x, ±1) =1= o.
Let us pass to the t\1ellin representation. Taking

u(y) = _1_. [ y-Zli(z )dz
2rrt Jr

1 faoo y-Z -z 1 + e211'iz
- --dy=x
rri 0 y - x 1 - e2 11'iz

we represent (5.1) in the fOrIll

with 0 < ~r < 1, substi tuting it int.o (5.1) and calculating the singular
integral

(Au)(x) = _1_. [ x-Za(x,z)li(z)dz
2rrz Jr

(5.2)
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where the Mellin symbol is

(5.3)

The ellipticity conditions for the operator (5.2) besides o(x) ± ß(x) i= 0 mean
tbat the line r = r 0' does not contain the poles of a(t, z) as weH as tbe zeros
of a(O, z), so that a- 1(0, z) is holomorphic in a strip containing r0'. Now,
since rda 1\ rda = 0 for scalar functions we obtain by the Stokes formula

1 lr 1 fo 1indA = -. dr 1\ da = -. a- da
211'"z fxR+ 211'"1. 8(fxl.+>

which is equal to the variation of arga along the "boundary" 8(r x lR+). The
latter consists of the line zEr, x = 0 and two half-lines z = u±ioo, x E R+.
This gives a final fonllula

. 1 1U +1OO -1' 1 o(x) +ß(x)
IndA = -. a (0, z)a (0, z)dz + -2ßarg () ß()

211'"1. u-ioo 11'" a x - x

where ß means variation along the positive half-axis x > O. It is precisely
formula (0.3) frOln [2].
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