
MONADS IN DOUBLE CATEGORIES

THOMAS M. FIORE, NICOLA GAMBINO, AND JOACHIM KOCK

Abstract. We extend the basic concepts of Street’s formal theory of monads

from the setting of 2-categories to that of double categories. In particular,
we introduce the double category Mnd(C) of monads in a double category C
and define what it means for a double category to admit the construction
of free monads. Our main theorem shows that, under some mild conditions,

a double category that is a framed bicategory admits the construction of free

monads if its horizontal 2-category does. We apply this result to obtain double
adjunctions which extend the adjunction between graphs and categories and

the adjunction between polynomial endofunctors and polynomial monads.

Introduction

The development of the formal theory of monads, begun in [22] and contin-
ued in [14], shows that much of the theory of monads [1] can be generalized from
the setting of the 2-category Cat of small categories, functors and natural trans-
formations to that of a general 2-category. The generalization, which involves
defining the 2-category Mnd(K) of monads, monad maps and monad 2-cells in a 2-
category K, is useful to study homogeneously a variety of important mathematical
structures. For example, as explained in [16], categories, operads, multicategories
and T -multicategories can all be seen as monads in appropriate bicategories. How-
ever, the most natural notions of a morphism between these mathematical struc-
tures do not appear as instances of the notion of a monad map. For example, it
is well known that, while categories can be viewed as monads in the bicategory of
spans [2], functors are not monad maps therein.

To address this issue, we define the double category Mnd(C) of monads, horizon-
tal monad maps, vertical monad maps and monad squares in a double category C.
Monads and horizontal monad maps in C are exactly monads and monad maps in
the horizontal 2-category of C, while the definitions of vertical monad maps and
monad squares in C involve vertical arrows of C that are not necessarily identities.
This combination of horizontal and vertical arrows of C in the definition of Mnd(C)
allows us to describe mathematical structures and morphisms between them as
monads and vertical monad maps in appropriate double categories. For example,
small categories and functors can be viewed as monads and vertical monad maps
in the the double category of spans.

For a double category C, we define also the double category End(C) of endo-
morphisms, horizontal endomorphism maps, vertical endomorphism maps and en-
domorphism squares. The double categories Mnd(C) and End(C) are related by a
forgetful double functor U : Mnd(C) → End(C), mapping a monad to its underlying
endomorphism. By definition, a double category C is said to admit the construc-
tion of free monads if U has a vertical left adjoint. In view of our applications,
we consider the construction of free monads in double categories that satisfy the
additional assumption of being framed bicategories, in the sense of [20]. Our main
result shows that a framed bicategory satisfying some mild assumptions admits the
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construction of free monads if its horizontal 2-category does. Here, the notion of
a 2-category admitting the construction of free monads is obtained by generalizing
the characterization of the free monads in the 2-category Cat obtained in [21, §6.1].

We apply the general theory to the study of two free constructions. First, we con-
sider the construction of the free category on a graph (relatively to a category with
finite limits), which plays an important role in Joyal’s abstract treatment of Gödel’s
incompleteness theorems [17]. We show that if E is a pretopos with parametrized
list objects, then the double category of spans in E admits the construction of free
monads. Secondly, we consider the construction of the free monad on a polynomial
endofunctor (relatively to a locally cartesian closed category, which is always as-
sumed here to have a terminal object), which contributes to the category-theoretic
analysis of Martin-Löf’s types of wellfounded trees, begun in [18] and continued
in [7, 8]. We show that if E is a locally cartesian closed category with finite disjoint
coproducts and W-types, then the double category of polynomials in E admits the
construction of free monads. Both of these results are obtained by application of
our main result, which is possible since the double categories of interest are framed
bicategories. Examples of categories E satisfying the hypotheses above abound: for
example, every elementary topos with a natural numbers object is both a pretopos
with parametrized list objects and a locally cartesian closed category with finite
disjoint coproducts and W-types [18]. Thus, our theory applies in particular to the
category Set of sets and functions and to categories of sheaves.

The double categories of spans and of polynomials are defined so that if we
consider the vertical part of the free monad double adjunction, we recover exactly
the adjunction between graphs and categories [15, §II.7] and the adjunction be-
tween polynomial endofunctors and polynomial monads [8, §4.6]. Hence, we both
strengthen these adjointness results and put them in a general context. Indeed,
one of the original motivations for the research presented here was to make precise
the analogy between the two constructions. In both cases, the application of our
main theorem simplifies a problem regarding double categories by reducing it to a
question on 2-categories. Note, however, that the combination of horizontal and
vertical arrows is exploited essentially to recover the existing results, since the free
monad construction acts on endomorphisms (which are defined using horizontal ar-
rows) but its universal property is expressed with respect to vertical endomorphism
maps.

Some double-categorical aspects of monads have also been investigated within
the theory of fc-multicategories in [16, Chapter 5] and within the theory of framed
bicategories in [20, §11]. However, the notion of a horizontal monad map considered
there generalizes the ring-theoretic notion of a bimodule, whereas our horizontal
monad maps are essentially the monad maps of Street [22].

Plan of the paper. Section 1 discusses monads in a 2-category, recalling some
basic notions from [22] and giving a characterization of the free monads in a 2-
category. Section 2 introduces the double category Mnd(C) of monads in a double
category C and illustrates its definition with examples. Section 3 establishes some
special properties of Mnd(C) under the assumption that C is a framed bicategory.
In particular, we state our main result, Theorem 3.7, and apply it to our examples.
Finally, Section 4 contains the proof of Theorem 3.7.

1. Monads in a 2-category

Preliminaries. We recall some definitions concerning endomorphisms, monads
and their algebras in a 2-category. Let K be a 2-category. An endomorphism
in K is a pair (X, P ) consisting of an object X and a 1-cell P : X → X. An
endomorphism map (F, φ) : (X, P ) → (Y, Q) consists of a 1-cell F : X → Y
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and a 2-cell φ : QF → FP , which is not required to satisfy any condition. An
endomorphism 2-cell α : (F, φ) → (F ′, φ′) is a 2-cell α : F → F ′ making the
following diagram commute

QF
φ
//

Qα

��

FP

αP

��

QF ′
φ′
// F ′P.

We write End(K) for the 2-category of endomorphisms, endomorphism maps and
endomorphism 2-cells in K. There is a 2-functor Inc : K → End(K) which sends an
object X ∈ K to the identity endomorphism (X, 1X) on X. Let us now consider a
fixed endomorphism (Y,Q) in K. For X ∈ K, the category Q-algX of X-indexed Q-
algebras, in the sense of Lambek, is defined by letting

Q-algX =def EndK((X, 1X), (Y, Q)) .

Explicitly, an X-indexed Q-algebra consists of a 1-cell F : X → Y , called the
underlying 1-cell of the algebra, and a 2-cell f : QF → F , called the structure
map of the algebra. Note that the structure map is not required to satisfy any
conditions. These definitions extend to a 2-functor

Q-alg(−) : K → Cat .

We write U(−) : Q-alg(−) → K(−, Y ) for the 2-natural transformations whose com-
ponents are the forgetful functors UX : Q-algX → K(X, Y ) mapping an X-indexed
Q-algebra to its underlying 1-cell.

We write Mnd(K) for the 2-category of monads, monad maps and monad 2-
cells in K, as defined in [22]. As usual, we refer to a monad by mentioning only
its underlying endomorphism, leaving implicit its multiplication and unit. With a
minor abuse of notation, we write Inc : K → Mnd(K) for the 2-functor mapping
an object X to the monad (X, 1X). If (Y, Q) is a monad, for every X ∈ K we
may consider not only the category Q-algX of Lambek algebras for its underlying
endomorphism, but also the category Q-AlgX of X-indexed Eilenberg-Moore Q-
algebras, which is defined by letting

Q-AlgX =def Mnd((X, 1X), (Y, Q)) .

Note that we write Q-algX for the category of algebras for the endomorphism
and Q-AlgX for the category of Eilenberg-Moore algebras for the monad. Explicitly,
an X-indexed Eilenberg-Moore Q-algebra consists of a 1-cell F : X → Y and a 2-
cell f : QF → F satisfying the axioms

QQF
Qf
//

µQF

��

QF

f

��

QF
f
// F,

F
ηQF
//

1F --

QF

f

��

F.

Again, these definitions extend to a 2-functor Q-Alg(−) : K → Cat and there is
a 2-natural transformation U(−) : Q-Alg(−) → K(−, Y ), with components given by
the evident forgetful functors. Since (Y,Q) is assumed to be a monad, for every
X ∈ K the forgetful functor UX : Q-AlgX → K(X, Y ) has a left adjoint, defined by
composition with Q : Y → Y .
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A characterization of free monads. We generalize the characterization of the
free monad on an endomorphism given by Staton in [21, Theorem 6.1.5] from the
2-category Cat to an arbitrary 2-category K. The generalization is essentially
straightforward, but we indicate the main steps of the proof. See [1, §9.4] for back-
ground material on free monads and [12] for a general account of several examples
of the free monad construction.

Theorem 1.1. Let (Y, Q) be an endomorphism in a 2-category K. For a monad (Y, Q∗)
and a 2-cell ιQ : Q → Q∗, the following conditions are equivalent.

(i) The endomorphism map (1Y , ιQ) : (Y,Q∗) → (Y, Q) is universal, in the sense
that for every monad (X, P ), composition with (1Y , ιQ) induces an isomor-
phism fitting in the diagram

(1)

MndK((X, P ), (Y,Q∗))
∼= //

))RRRRRRRRRRRRR
EndK((X, P ), (Y,Q))

vvlllllllllllll

K(X, Y ),

where the downward arrows are the evident forgetful functors.
(ii) The 2-cell νQ∗ : QQ∗ → Q∗, defined as the composite

(2) QQ∗ ιQQ∗
// Q∗Q∗ µQ∗

// Q∗,

equips Q∗ with a universal Q-algebra structure, in the sense that for every
X ∈ K, the functor K(X, Y ) → Q-algX defined by mapping F : X → Y
to the Q-algebra with underlying 1-cell Q∗F and structure map the 2-cell
νQ∗F : QQ∗F → Q∗F , is left adjoint to the forgetful functor UX : Q-algX →
K(X, Y ).

Proof. To see that (i) implies (ii), consider the following diagram:

Q∗-AlgX

∼= // Q-algX

MndK((X, 1X), (Y,Q∗))

))RRRRRRRRRRRRRR

∼= // EndK((X, 1X), (Y,Q))

vvlllllllllllll

K(X, Y ),

where the bottom triangular diagram is an instance of the diagram in (1). The
functor defined in (ii) is left adjoint to the forgetful functor UX : Q-algX → K(X, Y )
since it is exactly the composite of the left adjoint K(X, Y ) → Q∗-AlgX , which
is given by composition with Q∗ (since Q∗ is a monad), with the isomorphism
Q∗-AlgX → Q-algX , which is defined by composition with ιQ.

For the proof that (ii) implies (i), we need to define an isomorphism as in (1).
Given an endomorphism map (F, φ) : (X, P ) → (Y, Q), where φ : QF → FP , we
need to define a monad map (F, φ]) : (X, P ) → (Y,Q∗), where φ] : Q∗F → FP .
For this, we exploit the adjointness in (ii). Note that the left adjoint to Q-algX →
K(X, Y ) sends F to the Q-algebra with underlying 1-cell Q∗F and structure map
νQ∗F : QQ∗F → Q∗F . Now, observe that the map

QFP
φP
// FPP

FµP // FP

equips FP with a Q-algebra structure. By adjointness, the map φ] : Q∗F →
FP is defined as the unique Q-algebra morphism such that the following diagram
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commutes

F
ηQ∗F

//

FηP ,,

Q∗F

φ]

��

FP.

Note that saying that φ] is a Q-algebra morphism amounts to saying that the
following diagram commutes

QQ∗F
Qφ]

//

νQ∗F

��

QFP

φP

��

FPP

FµP

��

Q∗F
φ]

// FP.

The isomorphism is defined as the identity on 2-cells. It remains to check that
what we have defined is indeed an inverse to the functor defined by composition
with (1Y , ιQ), but the verification is essentially identical to the one given in detail
in the proof of [21, Theorem 6.1.5] and hence we omit it. �

Definition 1.2. A 2-category K is said to admit the construction of free monads if
for every endomorphism (Y,Q) there exists a monad (Y, Q∗) and a 2-cell ιQ : Q →
Q∗ satisfying the equivalent conditions of Theorem 1.1.

Remark 1.3. Let us point out that the universal property of the free monad
(Y,Q∗) on an endomorphism (Y,Q) stated in item (i) of Theorem 1.1 includes
the assertion that for every monad (X, P ) and every endomorphism map (F, φ) :
(X, P ) → (Y, Q), there exists a unique 2-cell φ] : Q∗F → FP such that (F, φ]) :
(X, P ) → (Y, Q∗) is a monad map and the diagram

QF
ιQF
//

φ ,,

Q∗F

φ]

��

FP

commutes. From the statement in item (ii) of Theorem 1.1, it also follows that
if K is a 2-category that admits the construction of free monads and has local
coproducts, i.e. coproducts in its hom-categories, then for every F : X → Y , the
initial algebra for the endofunctor

K(X, Y ) → K(X, Y )
(−) 7→ F + Q (−)

has Q∗F as its underlying object and the copair of the 2-cells ηQ∗F : F → Q∗F
and νQ∗F : QQ∗F → Q∗F as its structure map.

By the bicategorical Yoneda lemma [23], every bicategory is biequivalent to a
2-category [9, Theorem 1.4]. Hence, the remarks and the results above can be
applied also to bicategories. We now introduce our two main classes of examples:
bicategories of spans and bicategories of polynomials.
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Example 1.4. Let E be a category with finite limits. Recall that a span in E is a
diagram of the form

(3)

F
τ

��
@@

@@
@@

@
σ

��~~
~~

~~
~~

X Y,

and that a span morphism is a commutative diagram of the form

(4)

X F
τ //σoo

φ

��

Y

X F ′
τ ′
//

σ′
oo Y.

We write SpanE for the bicategory of spans in E , originally defined in [2], which has
the objects of E as 0-cells, spans as 1-cells and span morphisms as 2-cells. It is well-
known that graphs and categories in E can be identified with endomorphisms and
monads in SpanE [2, 3]. For our purposes, it is convenient to recall the definition
of the 2-category of linear functors over E , which is biequivalent to the bicategory
SpanE . Given a span as in (3), we define its associated linear functor to be the
composite

E/X
σ∗
// E/F

τ! // E/Y ,

where σ∗ acts by pullback along σ and τ! acts by composition with τ . In general,
a functor between slices of E is said to be linear if it is naturally isomorphic to a
functor of this form. Now, recall from [8, §1.3] that slice categories of E are ten-
sored over E and that linear functors have a canonical strength. The 2-category of
linear functors is then defined as the sub-2-category of Cat having slice categories
of E as 0-cells, linear functors between them as 1-cells, and strong natural trans-
formations as 2-cells, i.e. natural transformations compatible with the canonical
strength on linear functors. Let us also recall that a strong natural transformation
between linear functors is cartesian, i.e. its naturality squares are pullbacks. By the
biequivalence, graphs in E can be thought of as linear endofunctors and categories
in E can be thought of as linear monads, i.e. monads whose underlying functor is
linear and whose multiplication and unit are strong natural transformations.

Example 1.5. Let E be a locally cartesian closed category. Recall from [8, §1.4]
that a polynomial over E is a diagram of the form

(5)
F̄

σ

��~~
~~

~~
~

θ // F
τ

��
??

??
??

??

X Y

and a cartesian morphism of polynomials is a diagram of the form

X F̄

��

//oo

_� F // Y

X F̄ ′ //oo F ′ // Y,

where the central square is a pullback. We write PolyE for the bicategory of
polynomials over E , as defined in [8, §1.16], which has the objects of E as 0-cells,
polynomials as 1-cells, and cartesian morphisms of polynomials as 2-cells. Working
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in the internal logic of E , for a polynomial as in (5) we may represent an element
f ∈ F as an arrow

f : (xi | i ∈ I) → y ,

where I =def θ−1(f), the family (xi | i ∈ I) is defined by letting xi =def σ(i),
for i ∈ I, and y =def τ(f). Thus, we think of the set I as the arity of the arrow f .
The biequivalence between the bicategory of spans and the 2-category of linear
functors extends to a biequivalence between the bicategory of polynomials and the
2-category of polynomial functors [8, Theorem 2.17], as we now proceed to recall.
For a polynomial as in (5), the polynomial functor associated to it is defined as the
composite

E/X
σ∗
// E/F̄

θ∗ // E/F
τ! // E/Y ,

where θ∗ is the right adjoint to the pullback functor θ∗. A functor between slices
of E is said to be polynomial if it is naturally isomorphic to a functor of this
form. Like linear functors, polynomial functors have a canonical strength and so
we can define the 2-category of polynomial functors as the sub-2-category of Cat
having slices of E as 0-cells, polynomial functors as 1-cells and cartesian strong
natural transformations as 2-cells. The biequivalence between PolyE and the 2-
category of polynomial functors allows us to identify endomorphisms and monads
in PolyE with polynomial endofunctors and polynomial monads on slices of E ,
respectively, where by a polynomial monad we mean a monad whose underlying
endofunctor is polynomial and whose multiplication and unit are cartesian strong
natural transformations.

Let us also recall from [18] that a locally cartesian closed category E is said to
have W-types if every polynomial endofunctor P : E → E has an initial algebra,
called the W-type of the functor. Note that a polynomial functor P : E → E has
to be represented by a diagram as in (5) in which both X and Y are the terminal
object of E and hence is competely determined by the map θ. The category-theoretic
notion of a W-type is a counterpart of the notion of a type of wellfounded trees,
originally introduced by Martin-Löf within his dependent type theory [19]. As
shown in [7, Theorem 12], if E has disjoint coproducts, the assumption of W-types
is sufficient to show that, for all X ∈ E , every polynomial endofunctor P : E/X →
E/X has an initial algebra. For further material and references on polynomial
functors, see [8] and its bibliography.

Proposition 1.6 provides the horizontal part of Proposition 3.8. Item (i) in its
statement refers to the notion of a pretopos with parametrized list objects, for
which we invite the reader to refer to [17].

Proposition 1.6.

(i) If E is a pretopos with parametrized list objects, the bicategory SpanE admits
the construction of free monads.

(ii) If E is a locally cartesian closed category with disjoint coproducts and W-types,
the bicategory PolyE admits the construction of free monads.

Proof. We begin by proving (ii). We exploit the biequivalence between the bicat-
egory of polynomials and the 2-category of polynomial functors. Let Q : E/Y →
E/Y be a polynomial endofunctor. We show that there is a polynomial monad
Q∗ : E/Y → E/Y and a cartesian strong natural transformation ι : Q → Q∗ that
satisfy the universal property in item (ii) of Theorem 1.1. By [7, Theorem 12], the
assumption that E has W-types implies that the forgetful functor U : Q-alg → E/Y
has a left adjoint. We let Q∗ : E/Y → E/Y be the monad resulting from the
adjunction. The monad Q∗ : E/Y → E/Y is polynomial by [8, Theorem 4.5].
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If Q : E/Y → E/Y is represented by the polynomial

(6)

Q̄

����
��

��
��

θQ
// Q

��
??

??
??

??

Y Y

then Q∗ : E/Y → E/Y is represented by the polynomial

(7)

Q̄∗

��~~
~~

~~
~~

θQ∗
// Q∗

  
@@

@@
@@

@@

Y Y,

where the object Q∗ in (7) is described in the internal logic of E as the set of well-
founded trees of profile Q, i.e. trees built up from identities and formal composites
of the arrows in Q. The map θQ∗ in (7) describes the arities of the arrows in Q∗

in the evident way. The inclusion of the arrows in Q into those in Q∗ is part of a
diagram

(8)

Y Q̄
θQ
//oo

��

_� Q

��

// Y

Y Q̄∗
θQ∗
//oo Q∗ // Y,

which represents the required cartesian strong natural transformation ι : Q → Q∗.
A direct verification shows that the left adjoint to U : Q-alg → E/Y maps an
object A to the Q-algebra with underlying object Q∗A and structure map νA :
QQ∗A → Q∗A, where νQ∗ : QQ∗ → Q∗ is defined as in (2). To conclude the
proof of item (ii) it is sufficient to observe that, for X ∈ E , the category Q-algX is
equivalent to the category of polynomial functors F : E/X → E/Y equipped with
a cartesian strong natural transformation φ : QF → F .

The proof of item (i) is similar, except that polynomial functors are replaced
by linear functors. In this case, the assumption of W-types can be replaced by
that of parametrized list objects, which suffice to prove the existence of the left
adjoint to the forgetful functor U : Q-alg → E/Y and that the resulting monad
Q∗ : E/Y → E/Y is linear. This is because linear endofunctors (respectively, linear
monads) are just graphs (respectively, categories) internal to E , and, as shown
in [17, Proposition 7.3], the assumption of parametrized list objects guarantees the
existence of the free category on a graph in E . �

If E is a locally cartesian closed pretopos with W-types, then it has list objects
and these are parametrized since we are in a cartesian closed category. Hence, such a
category satisfies the hypotheses of both item (i) and item (ii) of Proposition 1.6. In
this case, the construction of the free monad for polynomial endofunctors generalizes
the construction of the free monad for linear endofunctors.

2. Monads in a double category

Notation and preliminaries. We assume readers to be familiar with the basic
concepts of the theory of double categories (see [4] for the original reference and [6,
10, 11] for modern accounts) and limit ourselves to introducing some notation and
recalling some basic notions. For a double category C, we write ObjC for its class
of objects, HorC for its class of horizontal arrows, VerC for its class of vertical
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arrows and SqC for its class of squares. We write C0 for the category of objects
and vertical arrows and C1 for the category of horizontal arrows and squares. We
allow horizontal composition to be associative and unital up to coherent invertible
squares rather than strictly. For the sake of readability, however, we shall work as
if horizontal composition were strict, as allowed by [10, Theorem 7.5]. Typically, a
square will be written as follows:

(9)

X
F //

u

��

α

Y

v

��

X ′
F ′
// Y ′.

Identity squares will be written without a label, as follows:

X
F // Y

X
F
// Y,

X

u

��

X

u

��

X ′ X ′.

For a double category C, its horizontal 2-category HC is defined as follows: the
0-cells are the objects of C, the 1-cells are the horizontal arrows of C and the 2-cells
are the squares of the form

X
F //

α

Y

X
F ′
// Y.

The notions of horizontal adjunction and vertical adjunction between double cate-
gories can be defined using the general notion of an adjunction in a 2-category [13].
A horizontal adjunction is an adjunction in the 2-category of double categories, dou-
ble functors and horizontal natural transformations; vertical adjunctions are defined
analogously, replacing horizontal natural transformations with vertical ones [10].

Example 2.1. Let E be a category with finite limits. With a minor abuse of
notation, we write SpanE also for the double category of spans in E , which has
objects of E as objects, spans as horizontal arrows, maps of E as vertical arrows
and diagrams of the form

X

u

��

F
τ //

φ

��

σoo Y

v

��

X ′ F ′
σ′
oo

τ ′
// Y ′

as squares. Note that the horizontal bicategory of this double category is exactly
the bicategory of spans in E defined in Example 1.4.

Example 2.2. Let E be a locally cartesian closed category. With another abuse
of notation, we write PolyE also for the double category of polynomials over E ,
which has the objects of E as objects, polynomials as horizontal arrows, maps of E
as vertical arrows and diagrams of the form

X

u

��

F̄
σoo

_�
θ //

��

F
τ //

φ

��

Y

v

��

X ′ F̄ ′
σ′
oo

θ′
// F ′

τ ′
// Y ′,
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where the central square is a pullback, as squares. The bicategory of polynomials
defined in Example 1.5 is the horizontal bicategory of this double category.

The double categories of endomorphisms and monads. Below, we define
the double category Mnd(C) of monads in a double category C. After giving the
definition, we explain how it generalizes the definition of the 2-category Mnd(K)
of monads in a 2-category K. In view of our applications, we begin by introducing
the double category End(C) of endomorphisms in a double category C.

Definition 2.3. Let C be a double category.
(i) A horizontal endomorphism is a pair (X, P ) consisting of an object X and

a horizontal arrow P : X → X. Since we consider only horizontal endomor-
phisms, we refer to them simply as endomorphisms.

(ii) A horizontal endomorphism map (F, φ) : (X, P ) → (Y,Q) consists of a hori-
zontal arrow F : X → Y and a square

X
F //

φ

Y
Q
// Y

X
P
// X

F
// Y.

(iii) A vertical endomorphism map (u, ū) : (X, P ) → (X ′, P ′) consists of a vertical
arrow u : X → X ′ and a square

X
P //

u

��

ū

X

u

��

X ′
P ′
// X ′.

(iv) An endomorphism square

(X, P )
(F,φ)

//

(u,ū)

��

α

(Y,Q)

(v,v̄)

��

(X ′, P ′)
(F ′,φ′)

// (Y ′, Q′)

is a square

X
F //

u

��

α

Y

v

��

X ′
F ′
// Y ′

satisfying the condition

X //

φ

Y // Y

X //

��

ū

X //

��

α

Y

��

X ′ // X ′ // Y ′

=

X //

��

α

Y //

��

v̄

Y

��

X ′ //

φ′

Y ′ // Y ′

X ′ // X ′ // Y ′.

We write End(C) for the double category of endomorphisms, horizontal endo-
morphism maps, vertical endomorphism maps and endomorphism squares. We omit
the straightforward verification that End(C) is indeed a double category.
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Definition 2.4. Let C be a double category.

(i) A monad is an endomorphism (X, P ) equipped with squares

X
P //

µP

X
P // X

X
P

// X

X

ηP

X

X
P
// X

satisfying the associativity law

X //

µP

X // X // X

X //

µP

X // X

X // X

=

X // X //

µP

X // X

X //

µP

X // X

X // X

and the unit laws

X // X

ηP

X

X //

µP

X // X

X // X

=

X // X

X // X

=

X

ηP

X // X

X //

µP

X // X

X // X.

As before, we refer to a monad as above by mentioning only its underlying
endomorphism (X, P ).

(ii) A horizontal monad map (F, φ) : (X, P ) → (Y,Q) is a horizontal endomor-
phism map between the underlying endomorphisms satisfying the following
conditions:

X // Y //

µQ

Y // Y

X //

φ

Y // Y

X // X // Y

=

X //

φ

Y // Y // Y

X // X //

φ

Y // Y

X //

µP

X // X // Y

X // X // Y

X // Y

ηQ

Y

X //

φ

Y // Y

X // X // Y

=

X

ηP

X // Y

X // X // Y.
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(iii) A vertical monad map (u, ū) : (X, P ) → (X ′, P ′) is a vertical endomorphism
map between the underlying endomorphisms satisfying the following condi-
tions:

X //

µP

X // X

X //

��

ū

X

��

X ′ // X ′

=

X //

��

ū

X //

��

ū

X

��

X ′ //

µP ′

X ′ // X ′

X ′ // X ′

X

ηP

X

X //

��

ū

X

��

X ′ // X ′

=

X

��

X

��

X ′

ηP ′

X ′

X ′ // X ′.

(iv) A monad square is an endomorphism square between the underlying endo-
morphism maps.

We write Mnd(C) for the double category of monads, horizontal monad maps,
vertical monad maps and monad squares; again, it is straightforward to check
that Mnd(C) is a double category. Before giving examples, we clarify the relation-
ship between our definitions and those in [22].

Remark 2.5. Let K be a 2-category and consider the double category H(K),
that has K as its horizontal 2-category and only identity 1-cells as vertical arrows.
Monads in K are the same as monads in H(K) and monad maps in K are the same
as horizontal monad maps in H(K). Finally, monad 2-cells in K are the same as
monad squares in H(K) of the special form

(X, P )
(F,φ)

//

α

(Y, Q)

(X, P )
(F ′,φ′)

// (Y, Q).

In particular, the horizontal 2-category of Mnd(H(K)) is the 2-category Mnd(K)
of [22]. As we explain in the following examples, the presence of non-trivial vertical
arrows in a double category allows us to describe important mathematical structures
as vertical monad maps.

Example 2.6. Let E be a category with finite limits. The category GrphE of
graphs and graph morphisms internal to E can be identified with the category of
endomorphisms and vertical endomorphism maps in the double category SpanE ,
while the category CatE of categories and functors internal to E can be identified
with the category of monads and vertical monad maps in SpanE . We see here an
example of the benefits of considering monads in a double category rather than in a
2-category: while categories can be seen as monads in the bicategory of spans in E ,
functors between categories are not the same as monad maps in that bicategory.

Example 2.7. Let E be a locally cartesian closed category with finite disjoint co-
products and W-types. We write PolyEndE for the category of endomorphisms and
vertical endomorphism maps in the double category PolyE and write PolyMndE
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for the category of monads and vertical monad maps in PolyE . If M : E → E is
the free monoid monad in E (which exists by the assumptions on E), then there is
a double category PolyEndE/M whose objects are endomorphisms with a vertical
endomorphism map to M . This is the double category of M -spans in the sense
of [3] and [16], while PolyMndE is the double category of multicategories. The
free monad on an endofunctor over M is the free multicategory on an M -span.
Furthermore, the vertical maps in PolyMndE are the multifunctors, and hence we
see again the benefits of considering monads in the double categories rather than
just in 2-categories. Further variations are possible: with a polynomial monad T in
the place of M we get the same result for T -spans and T -multicategories, and in the
particular case where T is the identity monad, we are back to just plain categories
in E .

The function sending a monad (X, P ) to its underlying object X extends to a
double functor Und : Mnd(C) → C and the function mapping an object X ∈ C
to the identity monad (X, 1X) extends to a double functor Inc : C → Mnd(C). It
is easy to check that Inc is a horizontal right adjoint to Und, essentially as in the
2-categorical formal theory of monads [22, Theorem 1]. The question of when C
admits the construction of Eilenberg-Moore objects, that is, of when the double
functor Inc has a horizontal right adjoint, will be treated in a sequel to this paper.
Here, instead, we focus on the construction of free monads.

Free monads in a double category. We write U : Mnd(C) → End(C) for the
forgetful double functor mapping a monad to its underlying endomorphism.

Definition 2.8. A double category C is said to admit the construction of free
monads if U : Mnd(C) → End(C) has a vertical left adjoint.

Remark 2.9. We now make explicit what it means for a double category C to
admit the construction of free monads. By an analogue of the characterization of
ordinary adjunctions in terms of universal arrows [15, Theorem IV.2], to give a
vertical left adjoint to U amounts to giving the following data in (i)-(iv) satisfying
the functoriality condition in (∗).

(i) For every endomorphism (X, P ), a monad (X∗, P ∗).
(ii) For every endomorphism (X, P ), a universal vertical endomorphism map

(ιX , ιP ) : (X, P ) → (X∗, P ∗) .

Universality means that for each vertical endomorphism map (u, ū) : (X, P ) →
(X ′, P ′), where (X ′, P ′) is a monad, there exists a unique vertical monad map
(u], ū]) : (X∗, P ∗) → (X ′, P ′) such that

X
P //

u

��

ū

X

u

��

X ′
P ′
// X ′

=

X
P //

ιX

��

ιP

X

ιX

��

X∗ //

u]

��

ū]

X∗

u]

��

X ′
P ′
// X ′.

(iii) For every horizontal endomorphism map (F, φ) : (X, P ) → (Y,Q), a horizontal
monad map (F ∗, φ∗) : (X∗, P ∗) → (Y ∗, Q∗).
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(iv) For every horizontal endomorphism map (F, φ) : (X, P ) → (Y, Q), a universal
endomorphism square

(X, P )
(F,φ)

//

(ιX ,ιP )

��

ι(F,φ)

(Y, Q)

(ιY ,ιQ)

��

(X∗, P ∗)
(F∗,φ∗)

// (Y ∗, Q∗).

Universality means that for every endomorphism square

(10)

(X, P )
(F,φ)

//

(u,ū)

��

α

(Y,Q)

(v,v̄)

��

(X ′, P ′)
(F ′,φ′)

// (Y ′, Q′),

where (X ′, P ′), (Y ′, Q′) are monads and (F, φ′) : (X ′, P ′) → (Y ′, Q′) is a
horizontal monad map, there exists a unique monad square

(X∗, P ∗)
(F∗,φ∗)

//

(u],ū])

��

α]

(Y ∗, Q∗)

(v],v̄])

��

(X ′, P ′)
(F ′,φ′)

// (Y ′, Q′)

such that

(X, P )
(F,φ)

//

(u,ū)

��

α

(Y, Q)

(v,v̄)

��

(X ′, P ′)
(F ′,φ′)

// (Y ′, Q′)

=

(X, P )
(F,φ)

//

(ιX ,ιP )

��

ι(F,φ)

(Y, Q)

(ιY ,ιQ)

��

(X∗, P ∗) //

(u],ū])

��

α]

(Y ∗, Q∗)

(v],v̄])

��

(X ′, P ′)
(F ′,φ′)

// (Y ′, Q′).

(∗) The assignments in (i) and (iii) give a functor

(−)∗ :
(
ObjEnd(C) ,HorEnd(C)

)
→

(
ObjMnd(C) ,HorMnd(C)

)
and the assignments in (ii) and (iv) give a functor

ι :
(
ObjEnd(C) ,HorEnd(C)

)
→

(
VerMnd(C) ,SqMnd(C)

)
.

Note that the data and the universality in (ii) actually follow from the data and
the universality in (iv) by taking (F, φ) to be the horizontal identity on an endo-
morphism (X, P ).

A necessary condition for U : Mnd(C) → End(C) to have a vertical left adjoint
is that its vertical part

(11) U0 : Mnd(C)0 → End(C)0

has a left adjoint. Indeed, this is precisely what items (i) and (ii) of Remark 2.9
amount to. Here, End(C)0 denotes the category of endomorphisms and vertical
endomorphism maps and Mnd(C)0 denotes the category of monads and vertical
monad maps.
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Example 2.10. Let E be a category with finite limits. The functor in (11) for the
double category SpanE is the forgetful functor U0 : CatE → GrphE mapping a
category in E to its underlying graph.

Example 2.11. Let E be a locally cartesian closed category. The functor in (11) for
the double category PolyE is the forgetful functor U0 : PolyMndE → PolyEndE
mapping a polynomial monad to its underlying endofunctor.

3. Monads in a framed bicategory

We now proceed to establish some properties of the double category Mnd(C)
under the assumption that C is a framed bicategory, leading to our main theorem
(Theorem 3.7 below), which provides conditions for C to admit the construction of
free monads. We begin by recalling from [20] the definition of a framed bicategory
and some useful facts.

Framed bicategories. For a double category C, the functor

(∂0, ∂1) : C1 → C0 × C0 ,

mapping a horizontal arrow F : X → Y to (X, Y ) and a square as in (9) to (u, v) :
(X, Y ) → (X ′, Y ′), is a Grothendieck fibration if and only if it is a Grothendieck
opfibration [20, Theorem 4.1]. When these conditions hold, the double category C
is said to be a framed bicategory [20, Definition 4.2]. As explained in [20, Ex-
amples 4.4] and [8, Proposition 3.6], the double categories SpanE and PolyE are
framed bicategories.

Lemma 3.1 (Shulman). If C is a framed bicategory, for every vertical arrow u : X → X ′

there exist horizontal arrows u! : X → X ′ and u∗ : X ′ → X together with squares

X
u! //

u

��

αu

X ′

X ′ X ′

X ′ u∗
//

βu

X

u

��

X ′ X ′

X

u

��

γu

X

X ′
u∗
// X

X

δu

X

u

��

X u!
// X ′

satisfying the equalities

X

δu

X

u

��

X

u

��

//

αu

X ′

X ′ X ′

=

X

u

��

X

u

��

X ′ X ′

=

X

u

��

γu

X

X ′ //

βu

X

u

��

X ′ X ′,

X

δu

X //

��

αu

X ′

X // X ′ X ′

=

X
u! // X ′

X u!
// X ′

and

X ′ //

βu

X

��

γu

X

X ′ X ′ // X

=

X ′ u∗
// X

X ′
u∗
// X.
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Proof. See [20, Theorem 4.1]. �

Lemma 3.1 can be expressed equivalently by saying that every vertical arrow u
in C has an orthogonal companion u! and an orthogonal adjoint u∗ in the termi-
nology of [11].

Lemma 3.2 (Shulman). Let C be a framed bicategory. Let u : X → X ′ be a vertical
arrow in C. If we define

X

ηu

X

X u!
// X ′

u∗
// X

=def

X

δu

X

��

γu

X

X u!
// X ′

u∗
// X

and

X ′ u∗
//

εu

X
u! // X ′

X ′ X ′

=def

X ′ u∗
//

βu

X
u! //

��

αu

X ′

X ′ X ′ X ′,

then the following versions of the triangle identities hold:

X ′ u∗
// X

ηu

X X

X ′ //

εu

X // X ′ // X

X ′ X ′
u∗
// X

=

X ′ u∗
// X

X ′
u∗
// X,

X

ηu

X
u! // X ′

X // X ′ //

εu

X // X

X u!
// X X

=

X
u! // X ′

X u!
// X ′.

Proof. See [20, Proposition 5.3]. �

Monads in framed bicategories. Let C be a double category. We have the
diagram

(12)

Mnd(C)0
U0 //

∂M
$$I

IIIIIIII
End(C)0

∂E
zzvvvvvvvvv

C0,

where ∂E and ∂M send an endomorphism and a monad, respectively, to their un-
derlying object and U0 is the vertical part of the forgetful double functor U of
Definition 2.8.

Proposition 3.3. If C is a framed bicategory, the functors

∂E : End(C)0 → C0 , ∂M : Mnd(C)0 → C0
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are Grothendieck fibrations and the functor U0 : Mnd(C)0 → End(C)0 is a fibered
functor relatively to these fibrations.

Proof. Writing ∆ : C0 → C0 ×C0 for the diagonal functor, the functor ∂E fits into
the pullback diagram

End(C)0 //

∂E

��

C1

(∂0,∂1)

��

C0
∆

// C0 × C0.

We then have that ∂E is a Grothendieck fibration since it is a pullback of (∂0, ∂1),
which is a Grothendieck fibration by the hypothesis that C is a framed bicategory.
Using Lemmas 3.1 and 3.2, we can define explicitly a base change operation for the
Grothendieck fibration ∂E , as follows. Let u : X → X ′ be a map in C0 and (X ′, P ′)
an endomorphism in C. The base change of (X ′, P ′) along u is defined to be the
endomorphism (X, P ), where P : X → X is the composite

X
u! // X ′ P ′

// X ′ u∗
// X .

The required cartesian morphism from (X, P ) to (X ′, P ′) in End(C)0 (i.e. the
cartesian lift of u) is given by the vertical endomorphism map (u, ū) : (X, P ) →
(X ′, P ′), where ū is the square

X
u! //

u

��

αu

X ′ P ′
// X ′ u∗

//

βu

X

u

��

X ′ X ′
P ′
// X ′ X ′.

The verification of the required universal property is straightforward.
To show that ∂M is a Grothendieck fibration, we first observe that if (X ′, P ′) is

a monad, then (X, P ) inherits a monad structure: its multiplication is the square

X
u! // X ′ P ′

// X ′ u∗
//

εu

X
u! // X ′ P ′

// X ′ u∗
// X

X // X ′
P ′
//

µ

X ′ X ′
P ′
// X ′ // X

X u!
// X ′

P ′
// X ′

u∗
// X

and its unit is the square

X

ηu

X X X

X
u! // X ′

η

X ′ u∗
// X

X u!
// X ′

P ′
// X ′

u∗
// X.

The monad axioms are easily verified. Now it only remains to verify that the
cartesian lift (u, ū) is a vertical monad map and that it is cartesian for ∂M . This
verification is straightforward, using Lemmas 3.1 and 3.2. This also shows that U0

is fibered as claimed. �
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Lemma 3.4. Let (X, P ) and (X ′, P ′) be endomorphisms in a framed bicategory C.
There is a bijection between vertical endomorphism maps (u, ū) : (X, P ) → (X ′, P ′)
and horizontal endomorphism maps of the form (u∗, φ) : (X ′, P ′) → (X, P ), which
restricts to a bijection between vertical monad maps and horizontal monad maps
when (X, P ) and (X ′, P ′) are monads.

Proof. For a vertical endomorphism map (u, ū) : (X, P ) → (X ′, P ′), define the
horizontal endomorphism map (u∗, φu) : (X ′, P ′) → (X, P ) by letting φu be the
square

X ′ u∗
//

φu

X
P // X

X ′
P ′
// X ′

u∗
// X

=def

X ′ u∗
//

βu

X
P //

��

ū

X

��

γu

X

X ′ X ′
P ′
// X ′

u∗
// X.

In the other direction, given a horizontal endomorphism map (u∗, φ) : (X ′, P ′) → (X, P ),
define the vertical endomorphism map (u, ūφ) : (X, P ) → (X ′, P ′) by letting ūφ be
the square

X
P //

u

��

ūφ

X

u

��

X ′
P ′
// X ′

=def

X

u

��

γu

X
P // X

X ′ //

φ

X // X

X ′ // X ′ //

βu

X

u

��

X ′
P ′
// X ′ X ′.

Using Lemma 3.1, it is possible to show that these functions are mutually inverse,
that (u∗, φu) is a horizontal monad map if (u, ū) is a vertical monad map, and
that (u, ūφ) is a vertical monad map if (u∗, φ) is a horizontal monad map. �

Let us point out that the bijection defined in the proof of Lemma 3.4 is an
example of a cofolding in the sense of [5, Definition 3.16].

Free monads in a framed bicategory. We now consider the construction of free
monads in a framed bicategory. First of all, observe that for a framed bicategory C,
the functor U0 in (12), being a fibered functor, has a left adjoint if and only if each of
its fibers has a left adjoint. Therefore, the free monad on an endomorphism (X, P ),
if it exists, must have the form (X, P ∗). Note, however, that the left adjoint is not
in general a fibered left adjoint, even if it is fiberwise a left adjoint. The fibering
of U0 implies further that the component of the unit (ιX , ιP ) : (X, P ) → (X, P ∗),
if it exists, has to be a vertical endomorphism map of the form (1X , ιP ) : (X, P ) →
(X, P ∗), where ιP is a square of the form

X
P //

ιP

X

X
P∗
// X.
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The universal property in the fiber asserts that for every endomorphism square of
the form

X
P //

α

X

X
P ′
// X,

where (X, P ′) is a monad, there exists a unique monad square of the form

X
P∗
//

α]

X

X
P ′
// X

such that

X
P //

α

X

X
P ′
// X

=

X
P //

ιP

X

X //

α]

X

X
P ′
// X.

The universal property in the fiber implies a more general universal property, with
respect to general monads (and not just monads with X as underlying object)
and general vertical endomorphism maps (and not just the special ones considered
above), as in item (ii) of Remark 2.9. We illustrate the content of this observation
in our examples.

Example 3.5. Let us consider the framed bicategory SpanE associated to a cat-
egory E with finite limits. The diagram in (12) becomes

CatE
U0 //

∂M
""D

DDDDDDD GrphE

∂E
{{xx

xx
xx

xx
x

E ,

where ∂E sends a graph to its object of vertices and ∂M sends a small category to
its object of objects. Since SpanE is a framed bicategory, the preceding remarks
reduce to the familiar fact that the free category on a graph, if it exists, has the
object of vertices of the graph as its object of objects.

Example 3.6. Let us consider the framed bicategory PolyE associated to a locally
cartesian closed category E with finite disjoint coproducts. For PolyE , the diagram
in (12) amounts to:

PolyMndE
U0 //

∂M
%%K

KKKKKKKKK
PolyEndE

∂E
yytttttttttt

E .

In this case, the remarks above amount to the fact, exploited in the proof of [8,
Corollary 4.7], that to prove the universal property of the free monad on a poly-
nomial endofunctor with respect to maps in PolyEndE , it is sufficient to check it
with respect to a special class of them.
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Theorem 3.7, which is our main result, gives sufficient conditions for a framed
bicategory to admit the construction of free monads, facilitating the verification of
this property in our examples.

Theorem 3.7. Let C be a framed bicategory such that the category C1 of horizontal
arrows and squares has equalizers. If the horizontal 2-category of C has local coprod-
ucts and admits the construction of free monads, then C admits the construction of
free monads.

The proof of Theorem 3.7 is given in Section 4. Here, instead, we apply it to our
two running examples.

Proposition 3.8.

(i) If E is a pretopos with parametrized list objects, the double category SpanE
admits the construction of free monads.

(ii) If E is a locally cartesian closed category with disjoint coproducts and W-types,
the double category PolyE admits the construction of free monads.

Proof. For both (i) and (ii), the assumptions on E guarantee that all the hypotheses
of Theorem 3.7 are satisfied. In particular, the existence of free monads in the
horizontal 2-categories is established in Proposition 1.6. �

4. Proof of the Main Theorem

Let C be a double category satisfying the hypotheses of Theorem 3.7. We use
the characterization of free monads in a 2-category given in Theorem 1.1 to exhibit
the data listed in Remark 2.9. For items (i) and (ii) of Remark 2.9, let (X, P ) be an
endomorphism. By the existence of free monads in HC, we have a monad (X, P ∗)
and a square

X
P //

ιP

X

X
P∗
// X

satisfying the equivalent conditions in items (i) and (ii) of Theorem 1.1 in HC. We
then obtain a vertical endomorphism map (1X , ιP ) : (X, P ) → (X, P ∗). We need to
show that (1X , ιP ) enjoys the required universal property. For this, let us consider a
vertical endomorphism map (u, ū) : (X, P ) → (X ′, P ′), where (X ′, P ′) is a monad.
Here, ū is a square of the form

X
P //

u

��

ū

X

u

��

X ′
P ′
// X ′.

By the cofolding bijection defined in the proof of Lemma 3.4, we have a horizontal
endomorphism map (u∗, φu) : (X ′, P ′) → (X, P ), where φu is a square of the form

X ′ u∗
//

φu

X
P // X

X ′
P ′
// X ′

u∗
// X.
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By the universal property in item (i) of Theorem 1.1 for (X, P ∗), there exists a
unique square

X ′ u∗
//

φ]
u

X
P∗
// X

X ′
P ′
// X ′

u∗
// X

such that (u∗, φ]
u) : (X ′, P ′) → (X, P ∗) is a horizontal monad map and

X ′ u∗
//

φu

X
P // X

X ′
P ′
// X ′

u∗
// X

=

X ′ u∗
// X

P //

ιP

X

X ′ //

φ]
u

X // X

X ′
P ′
// X ′

u∗
// X.

Using again the cofolding bijection of Lemma 3.4, we obtain the vertical monad
morphism (u, ū]) : (X, P ∗) → (X ′, P ′) that factors (u, ū) through (1X , ιP ), as
required. By the definition of the bijection and Theorem 1.1, the square ū] satisfies
the equations

(13)

X

ηP∗

X

X //

u

��

ū]

X

u

��

X ′
P ′
// X ′

=

X

u

��

X

u

��

X ′

ηP ′

X ′

X ′
P ′
// X ′

and

(14)

X
P∗
//

νP∗

X
P // X

X //

��

ū]

X

��

X ′
P ′

// Y

=

X
P∗
//

��

ū]

X
P //

��

ū

X

��

X ′ //

µP ′

X ′ // X ′

X ′
P ′

// X ′,

where the square νP∗ is defined by

X
P∗
//

νP∗

X
P // X

X
P∗

// X

=def

X
P∗
// X

P //

ιP

X

X //

µP∗

X // X

X
P∗

// X.

For item (iii) of Remark 2.9, let (F, φ) : (X, P ) → (Y, Q) be a horizontal endo-
morphism map. Exploiting the universal property in item (i) of Theorem 1.1 for
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(Y,Q∗), we define

X
F //

φ∗

Y
Q∗
// Y

X
P∗
// X

F
// X

to be the unique square such that (F, φ∗) : (X, P ∗) → (Y,Q∗) is a horizontal monad
map and

(15)

X
F //

φ

Y
Q
// Y

X //

ιP

X // Y

X
P∗
// X

F
// Y

=

X
F // Y

Q
//

ιQ

Y

X //

φ∗

Y // Y

X
P∗
// X

F
// X.

Observe that, by the fact that (F, φ∗) is a horizontal monad map, we have that

(16)

X
F // Y

ηQ∗

Y

X //

φ∗

Y // Y

X
P∗
// X

F
// Y

=

X

ηP∗

X
F // Y

X
P∗
// X

F
// Y

and
(17)

X
F // Y

νQ∗

Q∗
// Y

Q
// Y

X //

φ∗

Y // Y

X
P∗

// X
F
// Y

=

X
F // Y

φ∗

Q∗
// Y

Q
// Y

X // X // Y

φ

// Y

X //

νP∗

X // X // Y

X
P∗

// X
F
// Y.

In particular, (17) holds by the definitions of νP∗ and νQ∗ , the first axiom for a
horizontal monad map and (15). For item (iv) of Remark 2.9, the required universal
endomorphism square needs to have the form

(X, P )
(F,φ)

//

(1X ,ιP )

��

ι(F,φ)

(Y, Q)

(1Y ,ιQ)

��

(X, P ∗)
(F,φ∗)

// (Y,Q∗).
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Therefore, ι(F,φ) has to be a square in C of the form

X
F //

ι(F,φ)

Y

X
F
// Y

and satisfy the equation

(18)

X
F //

φ

Y
Q
// Y

X //

ιP

X //

ι(F,φ)

Y

X
P∗
// X

F
// Y

=

X
F //

ι(F,φ)

Y
Q
//

ιQ

Y

X //

φ∗

Y // Y

X
P∗
// X

F
// Y.

We define ι(F,φ) to be the identity square on F , so that (18) above is verified by (15).
To verify the universal property, we need to show that for an endomorphism square

(X, P )
(F,φ)

//

(u,ū)

��

α

(Y, Q)

(v,v̄)

��

(X ′, P ′)
(F ′,φ′)

// (Y ′, Q′),

there exists a unique monad square

(X, P ∗)
(F,φ∗)

//

(u,ū])

��

α]

(Y,Q∗)

(v,v̄])

��

(X ′, P ′)
(F ′,φ′)

// (Y ′, Q′)

satisfying

(19)

(X, P )
(F,φ)

//

(u,ū)

��

α

(Y, Q)

(v,v̄)

��

(X ′, P ′)
(F ′,φ′)

// (Y ′, Q′)

=

(X, P )
(F,φ)

//

(1X ,ιP )

��

ι(F,φ)

(Y,Q)

(1Y ,ιQ)

��

(X, P ∗) //

(u,ū])

��

α]

(Y,Q∗)

(v,v̄])

��

(X ′, P ′)
(F ′,φ′)

// (Y ′, Q′).

First of all, observe that α is a square in C of the form

X
F //

u

��

α

Y

v

��

X ′
F ′
// Y ′
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which satisfies the compatibility condition

(20)

X
F //

φ

Y
Q
// Y

X //

��

ū

X

��

//

α

Y

��

X ′
P ′
// X ′

F ′
// Y ′

=

X
F //

��

α

Y
Q
//

v̄

��

Y

��

X ′ //

φ′

Y ′ // Y ′

X ′
P ′
// X ′

F ′
// Y ′.

The required monad square α] has to be a square in C of the form

X
F //

u

��

α]

Y

v

��

X ′
F ′
// Y ′

satisfying the compatibility condition

(21)

X
F //

φ∗

Y
Q∗
// Y

X //

��

ū]

X

��

//

α]

Y

��

X ′
P ′
// X ′

F ′
// Y ′

=

X
F //

��

α]

Y
Q∗
//

v̄]

��

Y

��

X ′ //

φ′

Y ′ // Y ′

X ′
P ′
// X ′

F ′
// Y ′.

We define α] =def α, so that Equation (19) holds trivially, since ι(F,φ) is the identity.
To complete the verification of the universal property of ι(F,φ), it only remains

to show that Equation (21) holds. The idea is to consider the sub-horizontal arrow
E of Q∗F for which (21) and show that E must be isomorphic to Q∗F . More
precisely, let us define the horizontal arrow E : X → Y via the following equalizer
in the category C1 of horizontal arrows and squares:

(22) E //
θ // Q∗F

(ū],α) φ∗
//

φ′ (α,v̄])

// F ′P ′ .

Note that, since the vertical boundaries of the squares in (21) are equal, E is indeed
a horizontal arrow from X to Y . The commutativity of the equalizer diagram in (22)
can be expressed as the equation

(23)

X
E //

θ

Y

X //

φ∗

Y // Y

X //

��

ū]

X

��

//

α

Y

��

X ′
P ′
// X ′

F ′
// Y ′

=

X
E //

θ

Y

X //

��

α

Y

��

//

v̄]

Y

��

X ′ //

φ′

Y ′ // Y ′

X ′
P ′
// X ′

F ′
// Y ′.
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To prove Equation (21) we show that θ : E → Q∗F is an isomorphism. For this, we
exploit the fact (observed in Remark 1.3) that Q∗F : X → Y is the initial algebra
for the endofunctor

HC(X, Y ) −→ HC(X, Y )(24)
(−) 7−→ F + Q(−) ,

where HC(X, Y ) denotes the hom-category of horizontal arrows from X to Y of
the horizontal 2-category HC of C. Note that here we are using our assumption
that HC has local coproducts. By the initiality of Q∗F , in order to show that θ :
E → Q∗F is an isomorphism, it is sufficient to show that E admits an algebra
structure for the endofunctor in (24). The required algebra structure is given by
the copair (λ, ρ) : F +QE → E, where λ : F → E and ρ : QE → E are determined,
via the universal property of the equalizer E, by the commutative diagrams

(25) F
ηQ∗F

// Q∗F
(ū],α) φ∗

//

φ′ (α,v])

// F ′P ′

and

(26) QE
Q θ

// QQ∗F
νQ∗ F

// Q∗F
(ū],α) φ∗

//

φ′ (α,v])

// F
′P ′ ,

respectively. It remains to show that the diagrams in (25) and (26) commute. The
commutativity of (25) amounts to the equation

(27)

X
F // Y

ηQ∗

Y

X //

φ∗

Y // Y

X //

��

ū]

X

��

//

α

Y

��

X ′
P ′
// X ′

F ′
// Y ′

=

X
F // Y

ηQ∗

Y

X //

��

α

Y //

v̄]

��

Y

��

X ′ //

φ′

Y ′ // Y ′

X ′
P ′
// X ′

F ′
// Y ′.

Starting from the left-hand side of Equation (27), we apply Equation (16) in the
top two rows and get

X

ηP∗

X
F // Y

X //

��

ū]

X //

��

α

Y

��

X ′
P ′
// X ′

F ′
// Y ′.
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Then, Equation (13) gives us

(28)

X

��

X
F //

��

α

Y

��

X ′

ηP ′

X ′ // Y ′

X ′
P ′
// X ′

F ′
// Y ′.

Considering now the right-hand side of Equation (27), an application of the ana-
logue of Equation (13) for v̄] gives us

X
F //

��

α

Y

��

Y

��

X ′ // Y ′

ηQ′

Y ′

X ′ //

φ′

Y ′ // Y ′

X ′
P ′
// X ′

F ′
// Y ′.

An application of the second axiom for a horizontal monad map for (F ′, φ′) then
gives us exactly (28), as required. It remains to show the commutativity of the
diagram in (26), which amounts to the equation

(29)

P0
E //

θ

Y
Q
// Y

X // Y //

νQ∗

Y // Y

X //

φ∗

Y // Y

X //

��

ū]

X

��

//

α

Y

��

X ′
P ′
// X ′

F ′
// Y ′

=

X
E //

θ

Y
Q
// Y

X // Y //

νQ∗

Y // Y

X //

��

α

Y //

v̄]

��

Y

��

X ′ //

φ′

Y ′ // Y ′

X ′
P ′
// X ′

F ′
// Y ′.
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Starting from the left-hand side of Equation (29), we use Equation (17) in the
second and third row to get

X
E //

θ

Y
Q
// Y

X // Y

φ∗

// Y // Y

X // X // Y

φ

// Y

X // X

νP∗

// X // Y

X

ū]

��

// X

α

��

// Y

��

X ′
P ′

// X ′
F ′
// Y ′.

We then use Equation (14) in the bottom two rows and obtain

X
E //

θ

Y
Q
// Y

X // Y

φ∗

// Y // Y

X // X // X

φ

// Y

X

ū]

��

// X

ū

��

// X

α

��

// Y

��

X ′

µP ′

// X ′ // X ′ // Y ′

X ′
P ′

// X ′
F ′
// Y ′ .
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We apply Equation (20), which is the assumption that α is an endomorphism
square, in the third and the fourth row, so as to get

X
E //

θ

Y
Q
// Y

X // Y

φ∗

// Y // Y

X

ū]

��

// X

α

��

// Y

v̄

��

// Y

��

X ′ // X ′

φ′

// Y ′ // Y ′

X ′

µP ′

// X ′ // X ′ // Y ′

X ′
P ′

// X ′
F ′
// Y ′.

We now apply Equation (23) in the top three rows and we obtain

X
E //

θ

Y
Q
// Y

X

α

��

// Y

��

v̄]

// Y

v̄

��

// Y

��

X ′

φ′

// Y ′ // Y ′ // Y ′

X ′ // X ′

φ′

// Y ′ // Y ′

X ′

µP ′

// X ′ // X ′ // Y ′

X ′
P ′

// Y ′
F ′
// Y ′.
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We use the first axiom for a horizontal monad map (see item (ii) of Definition 2.4)
for (F ′, φ′) in the bottom three rows so as to get

X
E //

θ

Y
Q
// Y

X

α

��

// Y

��

v̄]

// Y

v̄

��

// Y

��

X ′ // Y ′

µQ′

// Y ′ // Y ′

X ′

φ′

// Y ′ // Y ′

X ′
P ′
// X ′

F ′
// Y ′.

We obtain exactly this diagram also by applying the analogue of Equation (14)
for v̄] to the second and third row of the right-hand side of Equation (29). This
concludes the proof of Theorem 3.7. �
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