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KP HIERARCHY FOR HURWITZ-TYPE COHOMOLOGICAL FIELD THEORIES

REINIER KRAMER

Abstract. We generalise a result of Kazarian regarding Kadomtsev-Petviashvili integrability for single Hodge
integrals to general cohomological field theories related to Hurwitz-type counting problems or hypergeometric
tau-functions. The proof uses recent results on the relations between hypergeometric tau-functions and topological
recursion, as well as the Eynard-DOSS correspondence between topological recursion and cohomological field
theories. In particular, we recover the result of Alexandrov of KP integrability for triple Hodge integrals with a
Calabi-Yau condition.
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1. Introduction

The moduli spaces of curves are a central object in modern algebraic geometry, and have been studied
intensively. In particular, their intersection theory is a subject of ongoing research. The space Mg,n has n
line bundles Li whose fibres at a point are the cotangent lines at the ith point of the represented curve, and a
rank-g Hodge bundle E whose fibres are the space of one-forms at the curve. Their Chern classes are defined
to be ψi := c1(Li) and λj := cj(E), respectively. Moreover, the spacesMg,n for different g and n have many
structure maps between them, and many classes behave well under these maps. A collection of classes on all
Mg,n satisfying certain coherence axioms with respect to the structure maps are called cohomological field
theories (CohFTs), and these play an important role in enumerative geometry of curves. One well-known
example is the total Hodge class Λ(t) =

∑
λit

i.
By theWitten-Kontsevich theorem [Wit91; Kon92], moduli spaces of curves have many relations to areas of

mathematical physics and integrable hierarchies. In particular, this theorem proves that a generating function
of the intersection numbers of ψ-classes is a tau-function of the Korteweg-de Vries hierarchy.

Furthermore, the Ekedahl-Lando-Shapiro-Vainshtein formula [ELSV01] relates single Hodge integrals,
i.e. intersection numbers of Λ(−1) with ψ-classes, to simple single Hurwitz numbers, counting ramified
coverings of P1

C with only simple ramifications (with profile (2, 1, 1, 1, . . . )) except for one point. Hurwitz
numbers themselves also give a large class of tau-functions of Toda or Kadomtsev-Petviashvili hierarchies (of
which the KdV hierarchy is a reduction), as noted by Okounkov [Oko00].
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Kazarian [Kaz09] interpreted the ELSV formula as a change of variables from the generating function
of single Hodge integrals to a tau-function of the Kadomtsev-Petviashvili hierarchy, using the result of
Okounkov on simple single Hurwitz numbers.

All of these results have strong relations to Chekhov-Eynard-Orantin topological recursion [CEO06;
EO07], a succesful way of encoding many counting problem with a natural genus expansion into a spectral
curve with a recursively defined collection of multidifferentials, which should be generating functions of the
counts. The Witten-Kontsevich ψ-intersection numbers can be encoded this way, and this is somehow the
base case of the theory. Many types of Hurwitz numbers obey topological recursion as well, starting with
[BM08; BEMS11] for the first case of simple Hurwitz numbers, and culminating in the works of Bychkov-
Dunin-Barkwoski-Kazarian-Shadrin [BDKS20a; BDKS20b], which prove topological recursion for two large
families of hypergeometric KP tau-functions, encompassing nearly all previously-studied cases of Hurwitz
numbers.

In another direction, there is a general correspondence between topological recursion and intersection
numbers of CohFTs [Eyn14; DOSS14], which vastly generalises the ELSV formula when combined with the
results on topological recursion for Hurwitz numbers.

Another related direction is the conjecture of Mariño and Vafa [MV02] on a further gene ralisation of the
ELSV formula, proved independently in [LLZ03; OP04]. This Mariño-Vafa formula relates triple Hodge
integrals with a Calabi-Yau condition to topological vertex amplitudes, i.e. Gromov-Witten invariants of
C3. Topological recursion was conjectured for toric Calabi-Yau threefolds by Bouchard-Klemm-Mariño-
Pasquetti [BKMP09]. It was first proved in [Che18; Zho09] for C3, as well as in [Eyn11] as an example of
the general correspondence of theorem 2.11, while the general BKMP conjecture was proved in [EO15].
Although the Mariño-Vafa formula fits in the framework of hypergeometric tau-functions, this case is not
subsumed by the proof scheme of [BDKS20b].

Both the space of CohFTs and the space of KP tau-functions have an action of an infinite-dimensional
group, respectively the Givental group and the Heisenberg-Virasoro group. As certain elements of these
spaces have been identified by Witten-Kontsevich and Kazarian, and different integrable hierarchies have
been constructed for general CohFTs by Dubrovin-Zhang [DZ01] and Buryak [Bur15a], one may ask how
general the relation is with KP specifically, and the group actions are a natural tool to study this question.

Alexandrov [Ale20] showed that in the case of a rank-one CohFT, the orbits of the Witten-Kontsevich
CohFT/tau-function under these two different group actions have an intersection which is only two-
dimensional, and contains exactly the triple Hodge integrals that appear in the Mariño-Vafa formula. As a
consequence, Alexandrov generalises Kazarian’s result to show that the generating function of Calabi-Yau
triple Hodge integrals satisfies the KP hierarchy after a linear change of variables.

Results of this paper. We give a new viewpoint on the relation found by Alexandrov, by generalising
Kazarian’s proof in [Kaz09] to all hypergeometric KP tau-functions satisfying topological recursion, using
the above results. This yields a change of variables coming from the function X for any hypergeometric
tau-function preserving the KP hierarchy after removing the unstable terms of the tau-function. When
topological recursion holds, this resulting tau-function can be interpreted as the generating function of the
cohomological field theory.

In general, the change of variables contains infinite linear combinations. However, we identify when
the linear combinations are actually finite, and find a finite-dimensional family for each CohFT rank /
number of ramification points. In the rank one case, this recovers exactly the triple Hodge integrals, in a
particular parametrisation. For higher rank, this family seems to fit within Alexandrov’s deformed generalised
Kontsevich model [Ale21].

Interestingly, the function X may also be a Möbius transformation. In this case, there is no correction
term, and this can be interpreted as certain independence of the parametrisation of the spectral curve. This
also resolves the meaning behind Kazarian’s change of coordinates, as voiced in [Kaz09, Remark 2.6]: “The
definition for the change (6) looks unmotivated. [...] The only motivation that we can provide here is that
‘it works’.” There is quite a freedom of choice, but the particular choice Kazarian made reduces to the
finite-dimensional family indicated above.

Open questions. Single and triple Hodge integrals have been studied intensively in relation to Dubrovin-
Zhang hierarchies, yielding relations to the intermediate long wave hierarchy and the fractional Volterra
hierarchy, cf. [Bur15b; Bur16; LYZZ21]. The relation between those results and the current work are still
unclear, and will be discussed elsewhere.

The family where the linear change of variables is finite seems like an interesting and natural deformation
of Witten’s r-spin class, keeping a single ramification point, but splitting the pole of dx. However, this family
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seems mostly unknown, with the exception of Alexandrov’s work mentioned above. It may be interesting to
investigate it more closely, in order to better understand the deformation of higher-order zeroes of dx.

Currently, there is a gap in the literature on limits of spectral curves, which in particular limits the validity
of the proof theorem 2.6, and hence the applicability of the main theorem of this paper, to dx with simple
zeroes. Future work with Borot, Bouchard, Chidambaram, and Shadrin will fix this, and will investigate
more generally the applicability of limit arguments for topological recursion.

For the BKP hierarchy, similar results should hold. In particular, Alexandrov and Shadrin [AS21] proved
an adapted topological recursion for a large class of hypergeometric BKP tau-functions, analogous to theo-
rem 2.6. The analogous ELSV-Eynard-DOSS correspondence between this kind of topological recursion and
cohomological field theories has not appeared in the literature, but the special case of completed cycles spin
Hurwitz numbers is treated in work of the author with Giacchetto and Lewański [GKL21].

Outline of the paper. Section 2 contains prerequisites. In sections 2.1 and 2.2, we give a short introduction
to the Kadomtsev-Petviashvili hierarchy and its space of solutions. In section 2.3, we recall the main ideas
from [Kaz09], which we will generalise. In sections 2.4 and 2.5, we recall recent results on hypergeometric
tau-functions and their relations to topological recursion and cohomological field theories, and state our main
theorem, which is theorem 2.14. We also introduce, in section 2.6, the generating function of triple Hodge
numbers, which is the main motivating example of this paper.

In section 3, we prove the main result. Firstly, in section 3.1, we find a change of variables, for any
hypergeometric tau-function, that preserves this tau-function after removal of unstable terms, corollary 3.5.
In section 3.2, we restrict to the case where topological recursion holds, and use this machinery to obtain
tau-functions of intersection numbers, proving our main result. We also determine, in section 3.3, the exact
conditions for the change of variables to be finite, in a specific sense. Finally, in section 3.4, we return to the
triple Hodge integrals, and prove an explicit version of the main theorem for this case.

Notation. We work over the field of complex numbers C. We will use the function ς(z) := e
z
2 − e−

z
2 , µ and

ν will denote partitions, and zµ :=
∏µ1

i=1 i
mi(µ)mi(µ)!, wheremi(µ) is the number of parts of µ of size i. We

will also consistently write n := `(µ) and JnK := {1, . . . , n}.

On the origin of this paper. An earlier version of this text, only concerning triple Hodge integrals, was
written in 2018, shortly after A. Alexandrov informed me of his result. That version appeared in my PhD
dissertation [Kra19, Chapter 10]. This paper is an updated and extended version of that chapter.

Acknowledgments. I would like to thank A. Alexandrov for informing me of his theorem on triple Hodge
integrals, S. Shadrin for introducing me to the subject and suggesting generalising Kazarian’s method to this
case, and both of them, G. Carlet, N. Chidambaram, and A. Giacchetto for many interesting discussions.

The author was supported by the Netherlands Organization for Scientific Research and by the Max-Planck-
Gesellschaft.

2. Prerequisites on the KP hierarchy and topological recursion

In this section, we review some standard notions on the KP hierarchy and its relations to the infinite
Grassmannian. We give the main outline of Kazarian’s proof of KP for single Hodge integrals, which we
will use as a blueprint for our results. We also recall the class of hypergeometric tau-functions, which fulfills
a central role in this paper, as well as its relation to topological recursion and cohomological field theories.
Finally, we recall the Mariño-Vafa formula for triple Hodge integrals and show it fits in the setup.

2.1. The KP hierarchy. The Kadomtsev-Petviashvili hierarchy is an infinite set of evolutionary differential
equations in infinitely many variables. It is a very well-studied system, and some introductions into the
subject can be found in [Dic03; Kha99; MJD00].

Let t = {ti}i≥1 be a set of independent variables and ∂ := ∂
∂t1

. Define the pseudo-differential operator (i.e.
a Laurent series in ∂−1 with coefficients functions in t with composition defined formally)

(1) L = ∂ + u1∂
−1 + u2∂

−2 + . . . .

where the uj are dependent variables in the ti. For a pseudo-differential operatorO, defineO+ to be its purely
differential part, the part without powers of ∂−1. The Lax formulation of the KP hierarchy is given by the
system of equations

(2)
∂L

∂ti
=

[
(Li)+, L

]
.
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This is a system of partial differential equations for the uj , and they can be interpreted as the compatibility
equations for the system

LΨ = zΨ
∂Ψ

∂ti
= (Li)+Ψ .(3)

The function Ψ is called the Baker-Akhiezer function. The first non-trivial equation, the KP equation, is

(4) 3
∂2u1
∂t22

− ∂

∂t1

(
4
∂u1
∂t3

− 12u1
∂u1
∂t1

− ∂3u1
∂t31

)
= 0 .

The Baker-Akhiezer function can be written in the form

(5) Ψ =
τ
({
tk − z−k

k

})
τ({tk})

exp
( ∞∑
k=1

tkz
k
)
.

Here τ is a single function, called a tau-function, dependent on the tk, and all dependent variables can be
expressed in terms of this one function. This way, the entire hierarchy can be rewritten as bilinear equations
for τ calledHirota equations.

There is an enrichment of the KP hierarchy, introduced by Takasaki-Takebe [TT95], and called the ~-KP
hierarchy, which is given by rescaling all ∂

∂ti
→ ~ ∂

∂ti
in equations (1) and (2), and allowing the ui to also be

power series in ~.

2.2. Space of tau-functions and Lie action. The space of solutions of the KP hierarchy is an infinite-
dimensional Grassmannian [SS83], which is usually Plücker embedded in a Fock space, i.e. a highest weight
module of a certain Clifford algebra. The Hirota equations are then the Plücker relations defining the
Grassmannian inside the Fock space. By the boson-fermion correspondence, this can also be expressed in
terms of symmetric functions, which is the viewpoint we will adopt here.

Definition 2.1. We write Λ := CJp1, p2, . . .K for the space of symmetric functions, also called the bosonic Fock
space (of type A). Here the pk are power-sum functions pk =

∑
iX

k
i in some countably infinite variable set

X = {Xi}.
For other symmetric functions in X , e.g. the Schur functions sλ, we write sλ(p) := sλ(X).

The space of symmetric functions has a projective action of the Lie algebra gl(∞), the algebra of infinite
square matrices (aij)i,j∈Z+ 1

2
.1 This space has a standard basis given by Ekl = (δikδjk)ij . Define the vertex

operator

(6) Z(z, w) =
1

z − w

(
exp

( ∞∑
j=1

(zj − wj)pj

)
exp

(
−

∞∑
k=1

(z−k − w−k)
1

k

∂

∂pk

)
− 1

)
.

Then expanding this vertex operator as

(7) Z(z, w) =
∑

i,j∈Z+ 1
2

Zijz
i+1/2w−j−1/2 ,

the assignment Eij 7→ Zij is a projective representation of gl(∞), i.e. a representation of a central extension
ĝl(∞).

The matrices αk =
∑
l∈Z+ 1

2
El−k,l give rise to the following operators on Λ:

(8) ak :=


pk k > 0

−k ∂
∂p−k

k < 0

0 k = 0

.

We also define the following operators:

Lm :=
1

2

∞∑
i=−∞

:aiam−i: , Ml :=
1

6

∞∑
i,j=−∞

:aiajal−i−j : ,(9)

where the : :, the normal ordering, means one should order the operators inside in order of decreasing index.
All of these operators are in ĝl(∞).

1In order to make the Lie bracket well-defined, some decay condition is needed. A common choice is restriction to finitely many
diagonals, but there are other options, see e.g. [SS83]. We will remain agnostic on this choice, as in this paper, the required convergence
in guaranteed by our constructions.
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Theorem 2.2 ([SS83]). Under the identification tk = pk
k , the space of KP tau-functions is the orbit of 1 ∈ Λ

under the action of ĝl(∞).

2.3. Single Hodge integrals. In [Kaz09], Kazarian considered the generating function for single Hodge
integrals,

(10) FH(u;T0, T1, T2, . . . ) :=
∑
g,n

1

n!

∑
d1,...,dn≥0

∫
Mg,n

Λ(−u2)
n∏
i=1

ψdii Tdi ,

and showed that its exponent, ZH := exp(FH), is a tau-function for the KP hierarchy, after a certain change
of coordinates. Explicitly, this change of coordinates is given as follows: define

(11) D = (u+ z)2z
∂

∂z
.

Then we define the Td in terms of other coordinates qk by the linear correspondence

qk ↔ zk , Td ↔ Ddz .(12)

The proof consists of three steps, and makes essential use of the ELSV formula [ELSV01] to transform this
generating function into a generating function of Hurwitz numbers.

The first step, [Kaz09, Theorem 2.2], is the observation that the generating function for single simple
Hurwitz numbers is a tau-tunction for the KP hierarchy. This is a well-known result, see [Oko00]. In fact,
the single simple Hurwitz generating function can be obtained from the trivial τ-function 1 by the action of
two very explicit elements of the Lie group associated to ĝl(∞). The second step, [Kaz09, Theorem 2.3], uses
the ELSV formula to rewrite the Hurwitz generating function (after subtracting the unstable geometries) as a
generating function for single Hodge integrals. This introduces certain combinatorial factors, that suggest a
certain change of coordinates. After this change of coordinates, we obtain ZH, viewed as a function in q’s.

The third step, [Kaz09, Theorem 2.5] shows that a certain class of coordinate changes preserves solutions
of the KP hierarchy, after they are modified with a quadratic function. In essence, this coordinate change
is given infinitesimally by the flow along the differential part of an A ∈ ĝl(∞), whose polynomial part is
exactly the added quadratic function. In this specific case, this quadratic function is exactly the (0, 2) part of
the Hurwitz generating function.

In this paper, we will generalise this proof scheme to a more general setting. We will start from a general
hypergeometric tau-function in the sense of theorem 2.6 below, corresponding to the first point of the proof.

We obtain a change of coordinates coming from this formalism that can always be completed to an
automorphism of KP when correcting with the H0,2 of equation (23), without any further assumption,
corresponding to the third point of the proof.

If we restrict to the class of hypergeometric tau-functions satisfying topological recursion, we can use
the correspondence between topological recursion and cohomological field theories of Eynard and Dunin-
Barkowski-Orantin-Shadrin-Spitz [Eyn14; DOSS14], which generalises the ELSV formula and hence gives
the second step.

In the particular case of triple Hodge integrals, the role of the ELSV formula is taken by the Mariño-Vafa
formula. For explanations on all the required notions and notation, see the following sections.

2.4. Hypergeometric KP tau-functions and topological recursion. An important class of KP tau-functions
is given by the hypergeometric tau-functions [KMMM95; OS01a; OS01b], for which we will use the results
and notation of [BDKS20a]. In two large families of examples, these satisfy Eynard-Orantin topological
recursion [EO07] (or its generalisation to non-simple ramification given by Bouchard-Eynard [BE13]), which
we define first. We will confine ourselves to the case of rational spectral curves, as this is the appropriate
setting for the Hurwitz-type problems covered.

Definition 2.3 ([EO07; BE13]). A rational spectral curve is a quadruple C = (Σ = P1, dx, dy,B), where dx
and dy are meromorphic one-forms on Σ with no common zeroes, only simple poles of dx, and without poles
of dy at zeroes of dx, and B = B(z1, z2) =

dz1 dz2
(z1−z2)2 is a symmetric (1, 1)-form on Σ× Σ. Write R ⊂ Σ for

the set of zeroes of dx, and ra for the order of vanishing of dx at a ∈ R.
On a rational spectral curve, define a set of symmetric multidifferentials {ωg,n}g≥0,n≥1 onΣn via topological

recursion as follows: first, define the unstable cases by ω0,1 := ydx (this need only be defined locally near the
ai using any primitive of y) and ω0,2 := B. Then, for 2g − 2 + (n+ 1) > 0, the stable range, define

(13) ωg,n+1(z[n], zn+1) :=
∑
a∈R

∑
{0}(I⊂{0,...,ra−1}

Res
z=a

∫ z
a
ω0,2(·, zn+1)∏m

i=2

(
ω0,1(z)− ω0,1(σia(z))

)Wg,|I|+1,n(σ
I
a(z); z[n]) ,
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where σa is a generator of the local deck transformations of a primitive of dx at a, and

(14) Wg,m,n(ζ[m]; z[n]) :=

′∑
µ`[m]⊔l(µ)

k=1Nk=[n]∑
gk=g+l(µ)−n

l(µ)∏
k=1

ωgk,|µk|+|Nk|(ζµk
, zNk

)

where the prime on the summation means exclusion of any (gk, |µk|+ |Nk|) = (0, 1).

Remark 2.4. Often, the definition of spectral curves involves functions x and y, in stead of their derivatives.
However, these functions may not be defined globally on x, e.g. they may – and in this paper will – contain
logarithmic terms. As most of the theory of topological recursion (with the notable exception of the global
topological recursion of Bouchard-Eynard [BE13]) only depends on the derivatives, I have chosen to use this
as a definition.

Theorem 2.5 ([BEO15; BS17]). Let C be a rational spectral curve with simple zeroes of dx. A collection
{ωg,n}g≥0,n≥1 with ω0,1 = ydx and ω0,2 = B satisfies topological recursion if and only if the following hold:

• Meromorphicity: For 2g − 2 + n > 0, ωg,n extends to a meromorphic form on Σn;
• Linear loop equation: For any g, n, and a ∈ R,

(15) ωg,n+1(z, zJnK) + ωg,n+1(σa(z), zJnK)

is holomorphic near z = a and has a simple zero at z = a;
• Quadratic loop equation: For any g, n, and a ∈ R,

(16) ωg−1,n+2(z, σa(z), zJnK) +
∑

g1+g2=g
ItJ=JnK

ωg1,|I|1+1(z, zI)ωg2,|J|+1(σa(z), zJ)

is holomorphic near z = a and has a double zero at z = a;
• Projection property: For 2g − 2 + n > 0,

(17) ωg,n(zJnK) =
∑

a1,...,an∈R

( n∏
j=1

Res
ζj=aj

∫ zj

aj

ω0,2(zj , ·)
)
ωg,n(ζJnK) .

If only the meromorphicity and linear and quadratic loop equations hold, the problem is said to satisfy
blobbed topological recursion, cf. [BS17]. In this case, the ωg,n are determined by the spectral curve along
with their holomorphic parts at ramification points.

The ‘point’ of topological recursion is that the ωg,n will often encode enumerative invariants in their Taylor
series expansion around a given point of the spectral curve in a given coordinate. For us, this is also the case,
as we consider the class given by the following theorem:

Theorem 2.6 ([BDKS20a; BDKS20b]). Consider two formal power series

(18) ψ̂(~2, y) :=
∞∑
k=1

∞∑
m=0

ck,my
k~2m , ŷ(~2, z) :=

∞∑
k=1

ŷk(~2)zk :=

∞∑
k=1

∞∑
m=0

sk,mz
k~2m ,

and their associated hypergeometric ~-KP tau-function or Orlov-Scherbin partition function

(19) Z(p) = eF (p) =
∑
ν∈P

exp
( ∑

�∈ν

ψ̂(−~c�)
)
sν(p)sν

({ ŷk
~
})
.

Define

(20)
ψ(y) := ψ̂(0, y) , y(z) := ŷ(0, z) , x(z) := log z − ψ(y(z)) ,

X(z) := ex(z) , D :=
∂

∂x
, Q := z

dx

dz

and write

(21) Hn :=

∞∑
k1,...,kn=1

∂nF

∂pk1 · · · ∂pkn

∣∣∣∣
p=0

Xk1
1 · · ·Xkn

n .

Then these can be decomposed as

(22) Hn =

∞∑
g=0

~2g−2+nHg,n ,
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with Hg,n independent of ~, and

(23) DH0,1(X(z)) = y(z) , H0,2(X(z1), X(z2)) = log
( z−1

1 − z−1
2

X−1
1 −X−1

2

)
.

Ifmoreover dψ(y)dy

∣∣
y=y(z)

and dy(z)
dz have analytic continuations tomeromorphic functions in z and all coefficients

of positive powers of ~2 in ψ̂(~2, y(z)) and ŷ(~2, z) are rational functions of z whose singular points are disjoint
from the zeroes of dx, then the n-point differentials

(24) ωg,n := d1 · · · dnHg,n + δg,0δn,2
dX1 dX2

(X1 −X2)2

can be extended analytically to (P1)n as global rational forms, and the collection of n-point differentials satisfies
meromorphicity and the linear and quadratic loop equations, i.e. blobbed topological recursion, for the curve
(P1, dx(z), dy(z), B = dz1 dz2

(z1−z2)2 ).

Finally, if ψ̂ and ŷ belong to one of the two families

Family I ψ̂(~2, y) = S(~∂y)P1(y) + log
(P2(y)

P3(y)

)
; ŷ(~2, z) =

R1(z)

R2(z)

Family II ψ̂(~2, y) = αy ; ŷ(~2, z) =
R1(z)

R2(z)
+ S(~z∂z)−1 log

(R3(z)

R4(z)

)
,

where α ∈ C× and the Pi andRj are arbitrary polynomials such thatψ(y) and y(z) are non-zero, but vanishing
at zero, and no singular points of y are mapped to branch points by x, then the n-point differentials also satisfy
the projection property, and hence topological recursion, for the curve above.

Remark 2.7. The proof of theorem 2.6 for higher order zeroes of dx uses a limit argument which, although
usedmore often, is currently not fully justified by the literature (in particular, invoking [BE13] is not sufficient).
However, this gap will be filled soon.

Remark 2.8. It is possible to allow for constant terms in ψ̂ in equation (18), but using quasihomogeneity of
the sν in equation (19), one can see this can be absorbed in a recaling of the argument of ŷ. From the spectral
curve point of view, this follows from the fact that the two curves

(25)

{
X(z) = ze−ψ◦y(z)+log a = aze−ψ◦y(z)

y(z) = z
and

{
X(z′) = z′e−ψ◦y(

z′
a )

y(z′) = z′

a

can be identified via z′ = az.

Remark 2.9. We will consistently use the symbol x for the function which is part of the spectral curve data
and X for its exponential, which is the expansion parameter for this class of Hurwitz problems.

We will need different parts of this theorem for the different parts of the proof. In particular, topological
recursion is needed to obtain intersection numbers.

2.5. Topological recursion and cohomological field theories. Topological recursion is strongly related to
intersection theory of the moduli spaces of curves: there is a quite general correspondence between spectral
curves and certain coherent collections of intersection classes in the moduli spaces. These coherent collections
are cohomological field theories, whichwere orignally defined byKontsevich andManin [KM94] to axiomatise
Gromov-Witten theory.

Definition 2.10 ([KM94]). Let V be a vector space with a non-degenerate bilinear form η. A cohomological
field theory (CohFT) on (V, η) is a collection of maps

(26) Ωg,n : V
⊗n → H∗(Mg,n) ,

for all g ≥ 0, n ≥ 1 such that 2g − 2 + n > 0, such that
• Ωg,n isSn-equivariant with respect to simultaneous permutation of the factors and the marked points;
• with respect to the glueing maps

(27) ρ : Mg−1,n+2 → Mg,n , σ : Mg,|I|+1 ×Mh,|J|+1 →Mg+h,|ItJ| ,

we get

ρ∗Ωg,n(vJnK) = Ωg−1,n+2(vJnK ⊗ η†) ,

σ∗Ωg+h,|I|+|J|(vI ⊗ vJ) = Ωg,|I|+1 ⊗ Ωh,|J|+1(vI ⊗ η† ⊗ vJ) ;
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There is a large group acting on the space of CohFTs, called the Givental group [Giv01; Sha09; Tel12].
It consists of R(u) ∈ Id + uEnd(V )JuK such that R(u)R†(−u) = Id. There is also a group of translation
actions by T (u) ∈ u2V JuK. For an exposition which is well-adapted to the current setting, but assumes simple
ramification of x, see [GKL21, Section 2.2].

Theorem 2.11 ([Eyn14; DOSS14; BKS20]). Consider a compact rational spectral curve (P1, dx, dy,B), and
define V ∗ to be the space of residueless meromorphic one-forms on P1 with poles only at a ∈ R of order at most
ra + 1. Choose a basis {dξj}j∈J of V ∗ with dual basis ej and define dξjk = (d ◦ 1

dx )
kdξj . Then

(28) ωg,n(z1, . . . , zn) =
∑

j1,...,jn∈J

∫
Mg,n

Ωg,n(ej1 ⊗ · · · ⊗ ejn)

n∏
i=1

∞∑
ki=0

ψkii dξ
ji
ki
(zi) ,

where Ω is a cohomological field theory on V , given explicitly by acting on a direct sum of Witten ra-spin classes
for all ramification points of order ra by an R and T determined, respectively, by B and y.

Remark 2.12. The space V ∗ is naturally related to the projection property of theorem 2.5: the dξjk span the
image of the projection operator. Its dimension, the rank of the CohFT, equals the degree of the divisor of
zeroes of dx.

There are two common choices for the basis dξj , depending on a local coordinate ζa around a ramification
point a such that x(z) = ζa(z)

ra + x(a). One is dξa,k(z) = Resz′=a

( ∫ z′
a
B(z, ·)

)
dζ(z′)
ζ(z′)k

, with 1 ≤ k ≤

ra − 1, cf. [BKS20, Equation (80)], while the other is ξa(z) =
∫ z B(ζa,·)

dζa

∣∣
ζa=0

, in case ra = 2, cf. [GKL21,
Equation (2.23)]. Both have merit, depending on the situation, but they are not compatible.

Furthermore, several normalisation conventions exist for the recursion operator linking dξjk to dξjk+1.
These different conventions can be related by rescaling Ω and the correlators, using that the integrand must
be of degree 3g − 3 + n.

So the ωg,n we are concerned with can be expanded in different ways: as a formal series around X = 0 by
theorem 2.6, and on a basis of meromorphic differentials with poles at the zeroes of dx by theorem 2.11. The
change of variables we require is found by relating these different expansions.

In order to apply the Eynard-DOSS correspondence to get a good change of variables, we will want to
take a different basis of V ∗. It turns out to be useful to relate to powers of our preferred coordinate z, so the
basis we take is ξj :=

(
dx
dz

)−1
zj = d

dx
zj+1

j+1 .

Definition 2.13. Let Ω be a cohomological field theory on a space (V, η) with a basis {ej}j∈J . Its generating
function FΩ is defined as

(29) FΩ({T jk | k ≥ 0, j ∈ J}) :=
∑
g,n

2g−2+n>0

~2g−2+n

n!

∑
ji,...,jn∈J

∫
Mg,n

Ω(ej1 ⊗ · · · ⊗ ejn)

n∏
i=1

∞∑
ki=1

ψkii T
ji
ki
,

where we write {T j} for the basis of V ∗ dual to {ej} and T jk = T j ⊗ pk.

The main theorem of this paper is the following:

Theorem 2.14. If a cohomological field theory Ω is obtained from theorem 2.11 applied to either family in
theorem 2.6, then the exponential of FΩ(T (q)) is an ~-KP tau-function in {td = qd

d }, where the T jk (q) are
defined by
(30)

T j−1 =
1

j + 1
qj+1 , T jk+1 =

∞∑
m=1

∞∑
l=0

Tlqm+l
∂

∂qm
T jk , with Tl given by −Q(z)−1 =

∞∑
l=0

Tlzl .

The proof of this theorem is given in proposition 3.8.

Remark 2.15. The proof of this theorem does not use anything specific to the families mentioned, it just
requires topological recursion to obtain a cohomological field theory. As soon as topological recursion is
proved for another hypergeometric tau-function and the spectral curve fits in the scope of theorem 2.11, this
theorem generalises. For an example, see the next section.

2.6. The Mariño-Vafa formula and KP for topological vertex amplitudes. A particularly interesting family
of hypergeometric tau-functions is given by the theory of the topological vertex, or triple Hodge integrals. For
the triple Hodge integrals, the ELSV-type formula required is the Mariño-Vafa formula [MV02]. This theory
is the particular case for C3 of the Gromov-Witten theory of toric Calabi-Yau threefolds, conjectured by
Bouchard-Klemm-Mariño-Pasquetti [BKMP09] to satisfy topological recursion. The case we are interested
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in was proved in [Che18; Zho09], as well as in [Eyn11] as an example of the general correspondence of
theorem 2.11, while the general BKMP conjecture was proved in [EO15]. Interestingly, this family does not
quite fit in the families of theorem 2.6 for general parameters.

In this section, we use the triple Hodge integrals as an example of our general theory, using methods
slightly adapted to this special case. We will see in section 3.3 why this case is particularly nice.

Definition 2.16. The tripleHodge cohomological field theorywithCalabi-Yau condition is the one-dimensional
CohFT THg,n(a, b, c) = Λ(a)Λ(b)Λ(c), where the parameters a, b, c satisfy 1

a + 1
b +

1
c = 0.

We write

(31) FTH(a, b, c;T ) := FTH(a,b,c)(T ) .

An adapted application of theorem 2.14 is given in the following theorem. This theorem has already been
proved by Alexandrov [Ale20], here we give a new proof.

Theorem 2.17 ([Ale20, Theorem 2]). Define T0(q) := q1, Tk+1(q) :=
∑∞
m=1m(u2qm + u w+2√

w+1
qm+1 +

qm+2)
∂
∂qm

Tk. Then

(32) FTH
(
− u2,−u2w, u

2w

w + 1
; {Tk(q)}

)
is a solution of the KP hierarchy with respect to the variables {td = qd

d }, identically in u and w.

In this particular case, we will make slightly different choices to end up with the formulation above.

Remark 2.18. Note that the triple a = −u2, b = −u2w, c = u2w
w+1 does indeed satisfy 1

a + 1
b +

1
c = 0, and

moreover any triple satisfying this condition can be written this way.

Remark 2.19. In the limit w → 0, this theorem reduces to the main theorem, 2.1, of [Kaz09]. In the limit
u→ 0, it reduces to the Witten-Kontsevich theorem [Wit91; Kon92]: in that limit Td → (2d− 1)!!q2d+1 and
independence of even parameters reduces the KP hierarchy to the KdV hierarchy.

Before giving the Mariño-Vafa formula, note that in genus zero

(33)
∫
M0,n

Λ(a)Λ(b)Λ(c)∏n
i=1 1− µiψ

di
i

= |µ|n−3

for n ≥ 3, and this serves as a definition for n = 1, 2. These terms are not included in FTH.

Theorem 2.20 (Mariño-Vafa formula, [MV02; LLZ03; OP04]). There is a relation between triple Hodge
integrals and characters of symmetric groups, as follows:

exp

(∑
µ

∞∑
g=0

(w + 1)g+n−1

|Autµ|

n∏
i=1

∏µi−1
j=1 (µi + jw)

(µi − 1)!

∫
Mg,n

Λ(−1)Λ(−w)Λ
(

w
w+1

)∏n
i=1(1− µiψi)

β2g−2+n+|µ| pµ

)

=

∞∑
m=0

∑
µ,ν`m

χνµ
zµ
e(1+

w
2 )βf2(ν)

∏
�∈ν

βw

ς(βwh�)
pµ .

(34)

On the right-hand side the sum is over all partitions ν of size equal to |µ|, the product is over all boxes in the
Young diagram of ν, andh� is the hook length of the box�. Furthermore, f2(ν) = 1

2

∑
j(νj−j+

1
2 )

2−(−j+ 1
2 )

2

is the shifted symmetric sum of squares.

Remark 2.21. Even though it seems the triple Hodge class in this formula only depends on one parameter, w,
the parameter β can be interpreted in this way as well, entering as a cohomological grading parameter. Hence,
the formula does govern the entire generating function of triple Hodge integrals.

In the limit w → 0, the Mariño-Vafa formula reduces to the ELSV formula, as the product over boxes
simplifies to the hook length formula for the dimension of the S|µ|-representation associated to ν.

Remark 2.22. This formula is perfectly well-behaved for w = −1, but theorem 2.17 does not make sense
in this case. From the general theorem 2.14, we will see that in this case X is a Möbius transformation, and
hence conforms to corollary 3.6.

By symmetry in the arguments of the Λ-classes, the point w = −1 is equivalent to the limit w → ∞,
which in the conventional formulation of the Mariño-Vafa formula is the initial condition for the cut-and-
join equation used to prove the fomula, see [Zho03, Theorem 3.3]. In this case, the integral reduces to∫
Mg,1

λgψ
2g−2 by Mumford’s relation. These integrals were calculated by Faber and Pandharipande [FP00].
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The right-hand side of the Mariño-Vafa formula is a hypergeometric KP tau-function, which can be seen
explicitly by the following lemma. In essence this lemma was used by both [LLZ03; OP04] to prove the
Mariño-Vafa formula.

Lemma 2.23. Introduce an extra parameter ~ in equation (34) by rescaling β → ~β and pk → ~−kpk to obtain

exp

(∑
µ

∞∑
g=0

(w + 1)g+n−1

|Autµ|

n∏
i=1

∏µi−1
j=1 (µi + jw)

(µi − 1)!

∫
Mg,n

Λ(−1)Λ(−w)Λ
(

w
w+1

)∏n
i=1(1− µiψi)

~2g−2+nβ2g−2+n+|µ| pµ

)

=

∞∑
m=0

∑
µ,ν`m

χνµ
zµ
e(1+

w
2 )~βf2(ν)

∏
�∈ν

βw

ς(~βwh�)
pµ .

(35)

This right-hand side may alternatively be written as a hypergeometric ~-KP tau-function in the shape of
theorem 2.6, with

ψ̂(~2, y) = −βy , ŷ(~2, z) =
∞∑
k=1

~
ς(~kβw)

(βwz)k X(z) = z(1− βwz)1/w .

Proof. By basic theory of symmetric functions,
∑
µ`m

χν
µ

zµ
pµ = sν(p). Also, by [OP04, Equations (0.6), (0.7)],

1∏
�∈ν q

h�/2 − q−h�/2
= q−|ν|/2−f2(ν)/2sν(1, q

−1, q−2, . . . )

where here the q−k are the ‘usual’ variables, i.e. the ones in which sν is symmetric, not the power sum
variables.

Writing q = e~βw and using that f2(ν) =
∑

�∈ν c� gives
∞∑
m=0

∑
µ,ν`m

χνµ
zµ
e(1+

w
2 )~βf2(ν)

∏
�∈ν

βw

ς(~βwh�)
pµ =

∞∑
m=0

∑
ν`m

sν(p)e
∑

�∈ν ~βc�sν

({ βw

e~βw(k+ 1
2 )

}∞

k=0

)
.

To revert to power-sum variables, we use that pk
({

βw

e~βw(k+1
2
)

}∞

k=0

)
= (βw)k

ς(~kβw) , and inserting this in the
definition of ŷ yields the result. �

Zhou [Zho10] also explored this relation between triple Hodge integrals and integrable hierarchies, extend-
ing it to the 2-Toda hierarchy and to certain relative Gromov-Witten theories.

3. KP hierarchy for intersection numbers

In this section, we will formulate and prove the main theorem, generalising Kazarian’s method to the
generating functions of intersection numbers coming from hypergeometric tau-functions.

3.1. The change of variables. We will interpret any X(z) defined by equations (18) and (20) as giving a
change of coordinates. For this, define a linear correspondence Θ between power series in X or z on the one
hand and linear series in p or q on the other by

pk ↔ Xk , qm ↔ zm .(36)

This defines a change of coordinates as follows:

Definition 3.1. We define a linear morphism between power series in {pm}m≥1 and {qd}d≥1 by

(37) pk(q) =

∞∑
m=k

cmk qm with cmk given by Xk =

∞∑
m=k

cmk z
m .

In order to make this change of coordinates and remain within the realm of solutions of the KP hierarchy,
we should flow along the action of the infinite general linear algebra. Hence, we should find the infinitesimal
flow associated to this change. For this, we introduce a flow parameter β by

(38) Xβ(z) :=
1

β
X(βz) = ze−ψ(y(βz)) ,

such that X0(z) = z and X1(z) = X(z).
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Lemma 3.2. For Xβ(z) :=
1
βX(βz), where X(z) = z +O(z2), and with Q(z) := z

X
dX
dz , the flow along β of

the function Xβ is given by

(39)
∂Xβ

∂β
=

(
1− 1

Q(βz)

) z
β

∂Xβ

∂z
=

1

β

(
Q(βz)− 1

)
Xβ .

Proof. By definition of Q, X = z
Q(z)

dX
dz . Therefore,

∂Xβ

∂β
=

∂

∂β

( 1

β
X(βz)

)
=
z

β

dX

dz

∣∣∣
z→βz

− 1

β2
X(βz)

=
z

β

dX

dz

∣∣∣
z→βz

− 1

β2

( z

Q(z)

dX

dz

)∣∣∣
z→βz

=
(
1− 1

Q(βz)

) z
β

∂Xβ

∂z
. �

We will use this with [Kaz09, Theorem 2.5], which uses the ĝl(∞) action on τ-functions:

Theorem 3.3 ([Kaz09]). In the situation of a correspondence like equation (37), there is a quadratic function
Q(p) such that the transformation sending an arbitrary series Φ(p) to the series Ψ(q) = (Φ +Q)

∣∣
p→p(q)

is an

automorphism of the KP hierarchy: it sends solutions to solutions.

The function Q(p) is not unique.

Proposition 3.4. In the general situation of theorem 2.6, without analytic assumptions, the quadratic function
for the change of definition 3.1 can be taken to be − 1

2Θ(H0,2).

Proof. Consider the more general linear correspondence Θβ between power series in Xβ or z on the one
hand and linear series in p or q on the other by

pk ↔ Xk
β , qm ↔ zm .

This gives a linear morphism between power series in {pm}m≥1 and {qd}d≥1 by

pk(β; q) =

∞∑
m=k

cmk qm with cmk given by Xk
β =

∞∑
m=k

cmk z
m ,

such that pk(0; q) = qk.
Under Θβ , the operator zm+1 ∂

∂z transforms into
∑∞
k=1 kqm+k

∂
∂qk

, which is the differential part of Lm(q).
The polynomial part of this operator is

1

2

m−1∑
k=1

qkqm−k ,

which under the correspondence transforms into

1

2

m−1∑
k=1

zk1z
m−k
2 =

1

2
z1z2

zm−1
1 − zm−1

2

z1 − z2
= −1

2

zm−1
1 − zm−1

2

z−1
1 − z−1

2

.

Therefore, the correction to be made to lemma 3.2 to obtain a KP-preserving flow is found by the substitution
f(z)z ∂

∂z → − 1
2

1
z−1
1 −z−1

2

(
z−1
1 f(z1)− z−1

2 f(z2)
)
for a series f(z) ∈ zCJzK. Note that 1

β

(
1− 1

Q(βz)

)
satisfies

these requirements, and we find that the differential operator of lemma 3.2 needs to be completed by

− 1

2β(z−1
1 − z−1

2 )

(
z−1
1

(
1− 1

Q(βz1)

)
−z−1

2

(
1− 1

Q(βz2)

))
=

1

2β(z−1
1 − z−1

2 )

(
1

z1Q(βz1)
− 1

z2Q(βz2)

)
− 1

2β
.

By a similar calculation as for lemma 3.2,
∂z

∂β

∣∣∣
X const.

=
1

β

( 1

Q(βz)
− 1

)
z ,

from which it follows that

−∂H0,2

∂β

∣∣∣
X const.

= − ∂

∂β
log

( z−1
1 − z−1

2

X−1
1 −X−1

2

)∣∣∣
X const.

=
1

z−1
1 − z−1

2

(
z−2
1

∂z1
∂β

∣∣∣
X const.

− z−2
2

∂z2
∂β

∣∣∣
X const.

)
=

1

β(z−1
1 − z−1

2 )

( 1

z1Q(βz1)
− 1

z2Q(βz2)

)
− 1

β
,

which, up to a factor 2, is exactly the polynomial correction needed.
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From these calculations, we find that

A :=
(
1− 1

Q(βz)

) z
β

∂

∂z
− 1

2

∂H0,2

∂β

∣∣∣
X const.

corresponds to a linear combination ofLm underΘβ , and hence preserves KP.Now consider a KP tau-function
Φ(p) and define the function Z(β, q) = exp(Φ(p(β, q)− 1

2Θ(H0,2)). Then

∂

∂β
Z =

( ∞∑
k=1

∂pk(β, q)

∂β

∂

∂pk
− 1

2
Θ
(∂H0,2

∂β

∣∣∣
X const.

))
Z(40)

= Θ
((

1− 1

Q(βz)

) z
β

∂

∂z
− 1

2

∂H0,2

∂β

∣∣∣
X const.

)
Z(β)(41)

= Θ(A)Z(β)(42)

As Z(0) = Z, and Θ(A) preserves τ-functions of KP, this automorphism does indeed preserve solutions. �

Corollary 3.5. For Z(p) defined by equation (19), Z(p) exp
(
−Θ(~−1H0,1 +

1
2H0,2)

)∣∣
p→p(q)

is also an ~-KP
tau-function, whose logarithm does not contain unstable terms.

Proof. As all equations in the KP hierarchy only contain at least second derivatives of F , addition of a linear
term−Θ(~−1H0,1) preserves solutions. By proposition 3.4, subtracting the (0, 2) term and changing p 7→ p(q)

is an automorphism as well. �

Corollary 3.6. In case X(z) is a Möbius transformation with the shape of equation (20), i.e. X(z) = az
1+bz

(taking into account remark 2.8), this quadratic function can be taken to be 0.

Proof. By direct calculation,

H0,2(z1, z2) = log
( z−1

1 − z−1
2

X(z1)−1 −X(z2)−1

)
= log a .

Comparing this with the proof of proposition 3.4, the quadratic correction is needed to complete the operator
A, which only depends on ∂H0,2

∂β . As this vanishes in the present case, we may as well omit the entire
correction. �

Remark 3.7. The usual B-function of topological recursion,

(43) B(z1, z2) =
dz1 dz2

(z1 − z2)2
= d1d2 log(z

−1
1 − z−1

2 ) ,

is invariant under all Möbius transformations, so d1d2H0,2 vanishes if X is any Möbius transformation.
However, this is not the case for H0,2 itself: it is invariant under a one-dimensional subgroup, changes by a
constant under the two-dimensional subgroup above, but under other Möbius transformations also changes
by addition of terms like log zi.

Viewed another way, these more general Möbius transformations would take us out of the realm of formal
power series in z. However, in a space of functions, a shift z 7→ z + c does preserve the KP hierarchy, so if
the formal power series converges to a function on a large enough domain, this shift does preserve KP. This
argument is essentially taken from [Kaz09, Section 8]. In particular, under the ‘natural analytic assumptions’
of [BDKS20b, section 1.3], i.e. the assumptions in the second part of theorem 2.6, the Hg,n do extend to
rational functions on all of P1, so this shift is well-defined.

3.2. KP for intersection numbers. Now we will restrict to the cases where topological recursion, and hence
theorem 2.11, can be used, in order to relate to intersection numbers. In this case, the following holds from
equation (28).
(44)

F (p) =

(
~−1H0,1+

1

2
H0,2+

∑
2g−2+n>0

~2g−2+n

n!

∑
j1,...,jn∈J

∫
Mg,n

Ωg,n(ej1⊗· · ·⊗ejn)
n∏
i=1

∞∑
ki=0

ψkii ξ
ji
ki
(zi)

)∣∣∣∣
X

ki
i →pki

,

if we define ξjk(z) :=
∫ z
z′=rj

dξjk(z
′), noting that due to the shape of the Hg,n in equations (21) and (22) and

X(z) in equation (20), the Hg,n have no constant terms in zi.
Under the correspondence pk ↔ Xk, qm ↔ zm of definition 3.1, we define T jk by

(45) T jk (p) ↔
1

dx
dξjk(z) = (−D)k+1 z

j+1

j + 1
,
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with D as in equation (20). Explicitly,
(46)

T j−1 =
1

j + 1
qj+1 , T jk+1 =

∞∑
m=1

∞∑
l=0

Tlqm+l
∂

∂qm
T jk , with Tl given by −Q(z)−1 =

∞∑
l=0

Tlzl .

Note that, even though the recursion operator for the T jk may have infinitely many terms, its alternate
description via equation (45) ensures they are well-defined in Λ.

Therefore, by definition,
(47)

FΩ(T (p)) = Θ
(
~−1H0,1 +

1

2
H0,2

)
+

∑
2g−2+n>0

~2g−2+n

n!

∑
j1,...,jn∈J

∫
Mg,n

Ωg,n(ej1 ⊗ · · · ⊗ ejn)

n∏
i=1

∞∑
ki=0

ψkii T
ji
ki
(p)

is the logarithm of a tau-function, where {ej} is the dual basis to the basis {dξj0} of V ∗.

Proposition 3.8. Suppose the pair of functions (ψ̂, ŷ) lies in family I or II of theorem 2.6, and let Ω be the
cohomological field theory associated to the related topological recursion via theorem 2.11. Then

(48) ZΩ(q) = exp(FΩ(T (p(q))))

is an ~-KP tau-function.

Proof. Apply corollary 3.5 to exp(FΩ(T (p))) using equation (47). �

3.3. Finiteness of the transformation. The operator A in the proof of proposition 3.4 corresponds to a finite
sum of Lm if and only if Q(z)−1 is a polynomial in z. As this case seems particularly nice, we will investigate
it here.

Write P (z) = Q(z)−1 for this polynomial, and write r + 1 for its degree. From equation (20), it follows
that P (0) = 1, so we may write

(49) P (z) =

r+1∏
j=1

(1− cjz) .

We immediately see that dx(z) = dz
zP (z) , and hence the spectral curve has a unique ramification point,∞, of

ramification index r. This is also the rank of the associated Frobenius algebra. But we can do better. By
calculating the residues in v of

(50)
vr+1dv

(1− vz)
∏r+1
k=1(v − ck)

and using that they sum to zero, one can check that (if all cj are distinct)2

(51)
dx

dz
=

1

z
+

r+1∑
j=1

cr+1
j∏

k 6=j(cj − ck)

1

1− cjz
,

from which we see that

(52) x(z) = log z −
r+1∑
j=1

∏
k 6=j

(
1− ck

cj

)−1
log(1− cjz) .

If r = 0, dx has two (simple) poles, and hence no zeroes. In fact, in this case, X is a Möbius transformation.
If r = 1, this recovers the triple Hodge curve, studied in section 3.4 below.
If r > 1, the Frobenius algebra is not semi-simple: it seems to be a deformation of the algebra corresponding

to Witten’s r + 1-spin cohomological field theory, which is given by x = yr+1, cf. [Wit93; DNOPS16;
BCEG21]. This class fits in Alexandrov’s theory of the deformed generalised Kontsevich model [Ale21]: it
seems like it is a complementary subspace of the polynomial deformations of the Witten r + 1-spin theory.

Interestingly, except for special choices of cj , these cases seem not to be covered in the two families in
theorem 2.6 for which topological recursion is proved (for any choice of y). Even the r = 1 case does not fall
in that scope, unless c1c2 ∈ Q.

2If some cj coincide, the residue argument still holds, but the result changes.
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3.4. The case of triple Hodge integrals. Let us now consider the special case of triple Hodge integrals.
The approach taken in this section overlaps with the previous results, but is also slightly different in details,
adapted to this specific problem. In this case, the ELSV-type formula is completely explicit, and there is no
need to take the detour via topological recursion.

The coordinate change we want to perform is inspired by the Mariño-Vafa formula.

F
(
w, β; p

)
= log

( ∞∑
m=0

∑
µ,ν`m

χνµ
zµ
e(1+

w
2 )βf2(ν)

∏
�∈ν

βw

ς(βwh�)
pµ

)

=
∑
µ

∞∑
g=0

(w + 1)g+n−1

|Autµ|

n∏
i=1

∏µi−1
j=1 (µi + jw)

(µi − 1)!

∫
Mg,n

Λ(−1)Λ(−w)Λ
(

w
w+1

)∏n
i=1(1− µiψi)

β2g−2+n+|µ|pµ .

(53)

As 2g − 2 + n+ |µ| = 2
3 dimMg,n +

∑n
i=1(µi +

1
3 ) and g + n− 1 = 1

3 dimMg,n +
∑n
i=1

2
3 , we get after

rewriting u := β
1
3 (w + 1)

1
6

F
(
w, β; p

)
=

∑
µ

1

|Autµ|

∞∑
g=0

n∏
i=1

u4
∏µi−1
j=1 (µi + jw)β

(µi − 1)!

∫
Mg,n

Λ(−u2)Λ(−u2w)Λ
(
u2w
w+1

)∏n
i=1(1− µiu2ψi)

pµ

=

∞∑
g=0

∞∑
n=1

1

n!

∫
Mg,n

Λ(−u2)Λ(−u2w)Λ
( u2w

w + 1

) n∏
i=1

∞∑
d=0

Td(p)ψ
d
i

= FTH

(
− u2,−u2w, u

2w

w + 1
;T (p)

)
+H0,1 +H0,2 ,

(54)

where

(55) Td(p) :=

∞∑
m=1

∏m−1
j=1 (m+ jw)

(m− 1)!
mdu2d+4βm−1pm .

Hence, our goal is to show that this change of variables and addition of the unstable terms preserves solutions
of the KP hierarchy.

Lemma 3.9. The following two expressions are inverse to each other:

(56) X(z) =
z

1 + (w + 1)βz

(
1 + βz

1 + (w + 1)βz

) 1
w

; z(X) =

∞∑
m=1

∏m−1
j=1 (m+ jw)

(m− 1)!
βm−1Xm .

Proof. This can be proved by a residue calculation. Start from the formula for X(z) with β = 1 and write
z(X) =

∑∞
m=1 CmX

m. Then Cm = ResX=0 z X
−m dX

X , and

dX

X
=
dz

z
+
d(1 + z)

1
w

(1 + z)
1
w

+
d(1 + (w + 1)z)−

w+1
w )

(1 + (w + 1)z)−
w+1
w

=
dz

z
+

1

w

dz

1 + z
− (w + 1)2

w

dz

1 + (w + 1)z

=
dz

z(1 + z)(1 + (w + 1)z)
.

Therefore,

Cm = Res
X=0

z X−m dz

z(1 + z)(1 + (w + 1)z)

= Res
z=0

z−m(1 + z)−
m
w −1(1 + (w + 1)z)m

w+1
w −1dz

= Res
z=0

z−m
∞∑
k=0

∏k−1
i=0 (−

m
w − 1− i)

k!
zk

∞∑
l=0

∏l−1
j=0(m

w+1
w − 1− j)

l!
(w + 1)lzldz

= Res
z=0

z−m
∞∑
k=0

∏k
i=1(

m
w + i)

k!
(−1)kzk

∞∑
l=0

∏m−1
j=m−l(

m
w + j)

l!
(w + 1)lzldz

=

m−1∑
k=0

∏k
i=1(

m
w + i)

k!

∏m−1
j=k+1(

m
w + j)

(m− k − 1)!
(−1)k(w + 1)m−k−1
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=

∏m−1
j=1 (mw + j)

(m− 1)!

m−1∑
k=0

(
m− 1

k

)
(−1)k(w + 1)m−k−1

=

∏m−1
j=1 (mw + j)

(m− 1)!
wm−1 =

∏m−1
j=1 (m+ jw)

(m− 1)!
.

Finally, β can be introduced in this formula by scaling z → βz, X → βX . �

Corollary 3.10. The expressions forX(z) in lemma 3.9 and lemma 2.23 are related by aMöbius transformation

(57) z 7→ z

1 + (w + 1)βz
.

Hence, by corollary 3.6, they require the same correction term for their induced linear change of variables.

We see that in this particular case we may obtain the function X in two different ways: from the general
theory of theorem 2.6, or from the specific shape of the Mariño-Vafa formula, theorem 2.20. In fact, the
second choice is nothing but choosing the spectral curve coordinate z to equal ξ (which is unique in this case),
or in other words T0 = q1.

Remark 3.11. Under the correspondence of theorem 2.11, the rank of the cohomological field theory corre-
sponds to the number of zeroes of dx, counted with multiplicities. So for rank one, dx can only have one zero,
and hence must have three poles. By Möbius transformation, we may place the zero at infinity, and two of the
poles at 0 and −1, from which we find that dxmust correspond to the dX

X found in the proof of lemma 3.9.
This may explain in part why Alexandrov [Ale20] finds only the triple Hodge CohFT in the intersection of
the orbits of the Givental and Heisenberg-Virasoro groups. However, dx is not the only datum of a spectral
curve, and while P1 is rigid and has a unique B, it is not clear why there is no freedom in the choice of dy.

Lemma 3.12. The series X(z) from lemma 3.9 satisfies the differential equation

(58)
∂X

∂β
(z) = −

(
(w + 2)z + (w + 1)βz2)z

∂X

∂z
(z) .

Proof. For X(z) = z
1+(w+1)z

(
1+z

1+(w+1)z

) 1
w

, we get Q(z)−1 = (1 + z)(1 + (w + 1)z), which using lemma 3.2
immediately yields the result. �

We use this lemma in combination with the linear correspondence of definition 3.1, slightly adapted as
follows: define a linear correspondence Θ between power series inX or z on the one hand and linear series in
p or q̃ on the other by

pk ↔ Xk , q̃m ↔ zm .(59)

Definition 3.13. We define a linear morphism between power series in {pm}m≥1 and {q̃d}d≥1 by

pk(q̃) =

∞∑
m=k

cmk q̃m with cmk given by Xk =

∞∑
m=k

cmk z
m .(60)

Under the correspondence pk ↔ Xk, q̃m ↔ zm, we have

Td(p) ↔ (u2D)du4z ; D := X
∂

∂X
=

(
1 + βz

)(
1 + (w + 1)βz

)
z
∂

∂z
.(61)

In terms of q̃-variables, this gives

Td = u2
∞∑
m=1

m
(
q̃m + (w + 2)βq̃m+1 + (w + 1)β2q̃m+2

) ∂

∂q̃m
Td−1 ; T0 = u4q̃1 .(62)

If we write qm := u4mq̃m, and using β = u3
√
w+1

, this becomes

Td =

∞∑
m=1

m
(
u4m+2q̃m + (w + 2)

u3√
w + 1

u4m+2q̃m+1 + u6u4m+2q̃m+2

) 1

u4m
∂

∂q̃m
Td−1(63)

=

∞∑
m=1

m
(
u2qm +

u(w + 2)√
w + 1

qm+1 + qm+2

) ∂

∂qm
Td−1 ;(64)

T0 = q1 .(65)

This is exactly the definition given in theorem 2.17.
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Corollary 3.14. For X(z) = z
1+(w+1)βz

(
1+βz

1+(w+1)βz

) 1
w , the quadratic correction of theorem 3.3 is Q =

− 1
2Θ(H0,2).

Proof. The function X(z) satisfies the conditions of theorem 2.6, so we may apply proposition 3.4. �

Now we are ready to prove the main result on KP integrability of triple Hodge integrals.

Proof of theorem 2.17. By lemma 2.23, F is a solution of the KP hierarchy in the variables tk := pk
k . In the

same way as for proposition 3.8, now using corollary 3.14 and equation (54),

(66) FTH

(
− u,−wu, wu

w + 1
; {Td(p(q̃))}

)
is a solution of the KP hierarchy in the variables q̃mm . As the KP hierarchy is quasi-homogeneous, rescaling
q̃m → qm preserves solutions. This completes the proof. �

Remark 3.15. The result in this subsection do hold for w = −1 (ignoring powers of u), but in this specific
caseX(z) is a Möbius transformation, so it reduces to the setting of corollary 3.6. From another point of view,
in this case the change of coordinates equation (37) is an isomorphism, whereas it gives a half-dimensional
subspace in all other cases. Equations for this half-dimensional space, in the linear Hodge case, were found
in [Ale15], cf. also [GW17] for a reformulation. These can be viewed as a deformation of the reduction from
KP to KdV. Similar equations should exist for triple Hodge integrals as well, but clearly none of this works
for w = −1.

In light of section 3.3, one may expect a deformation of the reduction from KP to r-KdV or r-Gelfand-
Dickey for the families found there.
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