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ARITHMETIC PURITY OF THE HARDY-LITTLEWOOD PROPERTY
AND GEOMETRIC SIEVE FOR AFFINE QUADRICS

YANG CAO AND ZHIZHONG HUANG

Abstract. We establish the Hardy-Littlewood property (à la Borovoi-Rudnick) for Zariski open
subsets in affine quadrics of the form q(x1, · · · , xn) = m, where q is a non-degenerate integral
quadratic form in n > 3 variables and m is a non-zero integer. This gives asymptotic formulas for
the density of integral points taking coprime polynomial values, which is a quantitative version of
the arithmetic purity of strong approximation property off infinity for affine quadrics.
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1. Introduction

1.1. Arithmetic purity of the Hardy-Littlewood property. LetX be a smooth geometrically
integral variety over Q. Assume that X satisfies strong approximation off the real place R. An
open question first raised by Wittenberg (cf. [32, §2.7 Question 2.11]) asks whether all open
subsets U ⊂ X also satisfy strong approximation off R, whenever codimX(X U) > 2. We
say that such X satisfies arithmetic purity of strong approximation ((APSA) for short) off R
(cf. [8, Definition 1.2]). As observed by Minčhev (cf. [4, Proposition 2.6]), the condition on the
codimension guarantees that there is no cohomological or topological obstruction for U to satisfy
strong approximation. Recently in [9, 8], Wittenberg’s question was settled in the affirmative for
a wide class of semisimple simply connected linear algebraic groups and their homogeneous spaces
(with connected stabilizers). We refer to the references therein for an account of proven results
towards this question.

In this article, we address an effective and statistic aspect of Wittenberg’s question concerning
the distribution of integral points in adelic spaces. Our starting point is the work of Borovoi-
Rudnick [4]. Now we assume that X ⊂ An

Q is a smooth quasi-affine geometrically integral variety
whose adelic space X(A) is non-empty. Assume moreover that X(R) has no compact connected
components. We equip the affine space An(R) = Rn with an euclidean norm ‖ · ‖. Let B :=
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B∞ ×Bf ⊂ X(A) be an adelic neighbourhood with B∞ ⊂ X(R) a real connected component and
Bf ⊂ X(Af ) a compact open subset. For any T > 0, consider the counting function

(1) NX(B;T ) := #{X ∈ X(Q) ∩B : ‖X‖ 6 T}.
We are interested in the varieties X for which an asymptotic formula for NX(B;T ) exists for any
such B. Assume that X satisfies strong approximation off R, then we expect that the leading
constant should be a product of local densities (depending also on ‖ · ‖). However there also exist
certain such varieties failing the integral Hasse principle and strong approximation.

To better put forth our qualitative characterization of these varieties, we further assume that X
is equipped with a fixed gauge form ωX , i.e. a nowhere zero differential form of top degree. We
associate to ωX a normalised Tamagawa measure mX = mX

∞×mX
f on X(A), where the real part

mX
∞ is a defined on X(R), and the finite part mX

f is defined on X(Af ) (cf. §2.1 for more details).
Let δX : X(A)→ R>0 be a locally constant not identically zero function, and let us note

B∞(T ) := {X ∈ B∞ : ‖X‖ 6 T}.
We say that X is a (relatively) Hardy-Littlewood variety (with respect to the gauge form ωX)
with density δX , after Borovoi-Rudnick [4, Definition 2.2] (see also [11, p. 143]), if for any adelic
neighbourhood B = B∞ ×Bf as before, we have mX

∞(B∞(T ))→∞ and

(2) NX(B;T ) ∼
∫
B∞(T )×Bf

δX d mX , T →∞.

A Hardy-Littlewood variety X is called strongly Hardy-Littlewood if δX ≡ 1. That is, for any such
B as before, we have

(3) NX(B;T ) ∼
∫
B∞(T )×Bf

d mX = mX
∞(B∞(T )) mX

f (Bf ), T →∞.

We may view the function δX as an effective measure of the failure of strong approximation on
X. If X(Q) = ∅, then clearly X is Hardy-Littlewood with density δX ≡ 0. We shall henceforth
focus on the case where X(Q) 6= ∅. See notably works [11, 13, 14], [4, §6] and more recent ones
[26, 16, 5] for various examples of homogeneous spaces satisfying the Hardy-Littlewood property.
1

The following is a natural extension and refinement of the Hardy-Littlewood property in the
spirit of Wittenberg’s question.

Question 1.1. Assume that X is a Hardy-Littlewood variety with density δX . Are all open subsets
U ⊂ X also Hardy-Littlewood (with respect to the gauge form ωX |U) with density δX |U , whenever
codimX(X U) > 2?

Definition 1.2. We say that X satisfies arithmetic purity of the Hardy-Littlewood property with
density δX , abbreviated as (APHL) with density δX , if X is a Hardy-Littlewood variety with
density δX and Question 1.1 has a positive answer for X.

Similarly, we say that X satisfies arithmetic purity of the strongly Hardy-Littlewood property,
abbreviated as (APSHL), if X satisfies (APHL) with density δX ≡ 1.

It is proved by Borovoi-Rudnick [4, Proposition 2.5] (resp. [4, Proposition 2.4]) that being
relatively (resp. strongly) Hardy-Littlewood implies a weaker version of (resp. the usual) strong
approximation for X and the integral Hasse principle for any integral model of X. In particular,

1In all known examples, the counting function NX(B;T ) behaves like T d(log T )e (depending on the embedding
X ↪→ AnQ), where d > 0, e > 0 are rational numbers.
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the condition codimX(X U) > 2 is necessary for U to be Hardy-Littlewood. Moreover, we
shall prove that (cf. Proposition 2.1 in §2.1) this condition guarantees that the restriction of the
Tamagawa measure mX on U is well-defined. To get an instructive idea, let us take X an integral
model of X over Z, and let Z be the Zariski closure of Z := X U in X and let U := X Z be
the integral model of U . For simplicity we assume that U(Ẑ) :=

∏
p<∞ U(Zp) 6= ∅. Write

τp(U ,X ) :=
#U(Fp)
#X (Fp)

.

We may interpret the quantity τp(U ,X ) as the probability that an integral point of X specializes
to a point in U modulo p. By the Lang-Weil estimate (cf. (9) (10) infra) to both X and Z, we get

(4) 1− τp(U ,X ) =
#Z(Fp)
#X (Fp)

= O

(
1

pcodimX(Z)

)
,

where the implied constant is uniform for any prime p. Roughly speaking, we calculate the finite
part measure mX

f |U of U(Ẑ) as being the limit of mX
f (
∏

p<M U(Zp) ×
∏

p>M X (Zp)) as M → ∞.
This turns out to require that infinite product over almost all p of τp(U ,X ) is absolutely convergent,
which is true whenever codimX(Z) > 2 thanks to (4).

As removing a proper closed subset does not affect the real volume, we expect in particular that
if the counting function NU(U(R)× U(Ẑ);T ) for U is non-zero when T →∞, then

(5) NU(U(R)× U(Ẑ);T ) ∼ cU ,XNX(X(R)×X (Ẑ);T ),

where cU ,X > 0 is related the infinite product of τp(U ,X ). On the other hand, we do not expect
that, amongst other reasons (e.g., the existence of non-constant invertible functions, cf. [4, Lemma
1.5.2]), NU(U(R) × U(Ẑ);T ) could grow in the same magnitude as NX(X(R) × X (Ẑ);T ) when
codimX(X U) = 1, as the infinite product over τp(U ,X ) would diverge to 0. For related Schinzel-
type conjectures however, see [26, (1.3)–(1.5)].

Integral points of X lying in such open subsets U satisfy infinitely many congruence conditions.
To derive (2) or (3) for U , this is one difficulty we need to get rid of. For instance, if Z is defined
by two regular functions f, g ∈ Z[X ], then U(Z) consists of precisely the points X ∈ X (Z) such
that either p - f(X) or p - g(X) for any prime p, i.e.

U(Z) = {X ∈ X (Z) : gcd(f(X), g(X)) = 1}.

1.2. Results on (APHL). Motivated by recent progress [9, 8] on (APSA) for semisimple simply
connected groups, the purpose of this article is to go beyond the affine spaces previously considered
in [12, 27, 3] and provide a positive answer to Question 1.1 for affine quadrics, by developing a
version of geometric sieve for them.

1.2.1. Affine spaces. The geometric sieve was first inaugurated by Ekedahl [12] when dealing with
X = An. Further generalised by Poonen [27, Theorem 3.1] and Bhargava [3, §3], this sieve method
has demonstrated surprising applications on the density of square-free polynomial values in various
circumstances. Their results indeed prove, on plugging-in the classical Chinese remainder theorem:

Theorem 1.3 (Ekedahl, Poonen, Bhargava). Affine spaces satisfy (APSHL).
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1.2.2. Affine quadrics. Let q(x) ∈ Z[x1, · · · , xn] be a non-degenerate integral quadratic form in
n > 3 variables. Suppose that q(x) is indefinite (i.e. isotropic over R). For m ∈ Z6=0, let us
consider the Z-scheme

(6) Q := (q(x) = m) ⊂ An
Z.

The smooth geometrically integral Q-variety

(7) Q := Q×Z Q ⊂ An
Q

is called an affine quadric. In particular, Q is an integral model of Q. Recall that affine quadrics
with n > 4 variables satisfy the integral principle and strong approximation, while there is Brauer-
Manin obstruction when n = 3 (cf. [10, §5.6, §5.8]). We shall always assume in this article that
Q(Q) 6= ∅. We remark that rational points on an affine quadric form a thin subset of An(Q).

The variety Q is an affine symmetric space (cf. [4, p. 59], [5, p. 1045]) under the spin group
G := Spinq (the universal double covering of SOq, with the standard almost faithful representation
through SOq in GLn,Q). Let P ∈ Q(Q) and let H be its stabilizer. Then H ∼= Spinq|P⊥ is a
symmetric subgroup of Spinq, where P⊥ is the orthogonal complement of P . The real locus Q(R)
has no compact connected components. Since n > 3, the group G is always semisimple and
simply connected, so is H if n > 4. Special attention is devoted to the case where n = 3 because
H is isomorphic to a torus. It is anisotropic over Q (hence has no non-trivial Q-characters)
precisely when −m det(q) is not a square, a condition that we shall always assume and denote by
−m det(q) 6= � in the sequel. The work of Borovoi-Rudnick proves that (cf. [4, §6.4])

• Affine quadrics with n > 4 variables are strongly Hardy-Littlewood (cf. [4, Theorem 0.3]);
• Affine quadrics with n = 3 variables are Hardy-Littlewood with a locally constant density
function δQ : Q(A)→ {0, 2} (cf. [5, p. 1047-1048], [4, §3], see also §3.2 infra).

We recall the well-known asymptotic growth of integral points on affine quadrics (cf. e.g. [23,
(2.6)], [11, (1.9)] and [5, p. 1047]). For every connected component B∞ ⊂ Q(R),

(8) #{X ∈ Q(Z) ∩B∞ : ‖X‖ 6 T} ∼
∫
B∞(T )×Q(Ẑ)

δQ d mQ ∼ cQ,B∞T
n−2,

where cQ,B∞ > 0 depends on Q, B∞.
Our main results are the following.

Theorem 1.4. Let Q ⊂ An
Q be the affine quadric (7) with n > 4 variables. Then Q satisfies

(APSHL).

Theorem 1.5. Let Q ⊂ An
Q be the affine quadric (7) with n = 3 variables. Suppose that the form

q is anisotropic over Q and that −m det(q) 6= �. Then Q satisfies (APHL) with density δQ.

1.3. A general strategy to achieve (APHL). In order to prove Theorems 1.4 and 1.5, we
develop a road-map, i.e. Theorem 3.1, which comes up with a sufficient criterion towards (APHL)
for general affine Hardy-Littlewood varieties X. It consists of two hypotheses. Let us fix X an
affine integral model of X over Z for convenience of exposition.

The first one is called strong effective equidistribution condition. We require finer information
on the error terms of the equivalences (2) and (3) when evaluated at certain family of finite adelic
neighbourhoods BXf (ξ, l) (cf. (20), which we call congruence neighbourhoods (Definition 2.2))
associated to l > 2 and ξ = (ξp)p|l ∈

∏
p|lX(Qp). If ξ ∈

∏
p|l X (Zp), then BXf (ξ, l) can be described

in terms of congruence conditions: for every B∞ ⊂ X(R),

(B∞ ×BXf (ξ, l)) ∩ X (Z) = {X ∈ X (Z) ∩B∞ : for every p | l,X ≡ ξp( mod pvp(l))}.
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The significant feature is that we require the error terms to have polynomial growth on the level
of congruence l, and to be uniform for both l and ξ as well. This formulation is motivated by
recent works on counting integral points with congruence conditions due to Nevo-Sarnak [26, §3],
Gorodnik-Nevo [17, §6 & §7], and Browning-Gorodnik [5, §2], et al. We utilise this hypothesis
to deduce the density of integral points on X that specialize into an arbitrary subset of residues
(cf. Proposition 2.5), which has applications in two different directions. On the one hand, we can
give an “approximation” of the Tamagawa measure restricted to a given open subset (cf. Corollary
2.6). On the other hand, it turns out to give satisfactory control (cf. Corollary 2.7) for integral
points on X coming from residues in a given closed subset modulo certain primes which are not
of polynomial growth.

The second hypothesis is called geometric sieve condition in the spirit of Ekedahl’s work [12],
for which our formulation is closer to Bhargava’s (cf. Theorem 4.8). For any fixed closed Z ⊂ X
of codimension at least two, let Z := Z ⊂ X . Informally speaking, this hypothesis requires that
integral points on X arising from residues of Z of arbitrarily large prime moduli are negligible.
Establishing this hypothesis is often challenging in resolving Question 1.1, as we need to sieve out
integral points satisfying infinitely many congruence conditions in a thin subset if X ⊂ An is not
of degree one.

Then Theorem 3.1 on the whole says that a Hardy-Littlewood variety X satisfies (APHL),
provided that sufficiently many integral models Xa of X constructed via “rescaling coordinates by
a ∈ N6=0” (cf. (24) in §2.2 and (42) in §3) all satisfy these two hypotheses. Inspired by various
results on counting lattice points in homogeneous spaces in a vast literature, we verify the strong
effective equidistribution condition for certain nice homogeneous spaces. This implies that to
achieve (APHL) for such varieties, it remains to show the geometric sieve condition (cf. §3.2).

1.4. A geometric sieve for affine quadrics. The technical core of our paper is the following
extension of Ekedahl’s geometric sieve [12] to affine quadrics, which seems to be the first example
for affine varieties besides affine spaces.

Theorem 1.6. Assume that Q satisfies the hypotheses of Theorems 1.4 and 1.5. Fix an integral
model Q of Q of the form in (6). For any closed subset Z ⊂ Q such that codimQ(Z) > 2, let Z
be the Zariski closure of Z in Q. Then for any M > 2, we have

#{X ∈ Q(Z) : ‖X‖ 6 T,∃p >M,X mod p ∈ Z} = O

(
T n−2

(
1

M codimQ(Z)−1
+

1√
log T

))
, T →∞

where the implied constant depends only on Q and Z.

The bound above being uniform for M , Theorem 1.6 thus furnishes a satisfactory control for
integral points on Q specializing into Z modulo any prime larger than arbitraryM(T ) which grows
to infinity, compared to the order of growth in (8). We would like to mention that the independent
work of Browning and Heath-Brown [6] dealing with projective quadrics obtains power saving for
the term Tn−2

√
log T

when n > 5.
Our strategy of proving Theorem 1.6 unifies radically different ideas on estimating integral points

on quadratic hypersurfaces. We start by breaking the prime moduli [M,∞] into three subfamilies,
and then analyse each of them separately. Primes between M and Tα with α > 0 small enough to
be determined later are dealt with on utilising the effective equidistribution result mentioned in
§1.3 (cf. Theorem 4.1). Primes larger than a power of T divided into two parts:

Tα < p < T and p > T.



6 YANG CAO AND ZHIZHONG HUANG

We name them respectively “intermediate primes” and “very large primes”. For the intermediate
primes (cf. Theorem 4.2), we appeal to uniform estimates for integral points of bounded height
on quadrics in [5, §4 §5] developed originally aiming at studying power-free polynomial values
on affine quadrics. This slicing argument can be applied straightforward to the case n > 4 (cf.
Proposition 4.6). However it a priori does not provide a desired power saving for the case n = 3,
as was also encountered in [5, p. 1078]. To overcome this difficulty, we make essential use of the
assumptions that −m det q is non-squared and that the form q is Q-anisotropic in our argument.
A consequence is that (cf. Lemma 4.4) any slice contains no line or parabolic conic (i.e. affine
plane conic of rank one) and thus contributes few integral points (cf. Proposition 4.5). Note that
these assumptions also appear in the results of Liu–Sarnak [23]. For the treatment of very large
primes (cf. Theorem 4.7), we make use of Bhargava’s generalised Ekedahl-type geometric sieve
[3], and we develop a half-dimensional sieve for affine quadrics (cf. §1.5 below). These two sieve
methods are matched together via a fibration argument (cf. §4.3).

1.5. A half-dimensional sieve for affine quadrics. We establish the following auxiliary result
on the density of quadratic polynomial values represented by a binary quadratic form. This is
an application of the half-dimensional sieve due to Friedlander-Iwaniec [19] [15], which may be of
independent interest.

Theorem 1.7. Let Q1(x) ∈ Z[x1, · · · , xL] be a quadratic polynomial in L > 1 variables, and let
Q2(y) ∈ Z[y1, y2] be a binary positive-definite non-degenerate quadratic form.

• If L > 2, assume that the Q-variety (Q1(x) = 0) ⊂ AL
Q is smooth;

• If L = 1, assume that the Q-variety

(Q1(x)−Q2(y) = 0) ⊂ A3
Q

is a (smooth) affine quadric, and that it has anisotropic stabilizer.

Then

#{X ∈ ZL : ‖X‖ 6 T,∃(u, v) ∈ Z2, Q1(X) = Q2(u, v)} = O

(
TL√
log T

)
,

where the implied constant depends only on Q1, Q2.

Remark 1.8. Without the condition that the stabilizer be anisotropic, the estimate in Theorem
1.7 is false, as clearly seen from the example x2 + 1 = y2

1 + y2
2. See also Remark 5.3.

It would be interesting to ask whether Theorem 1.5 remains true for affine quadrics of dimension
two with isotropic stabilizers. A different feature is that the singular series

∏
p<∞

#Q(Fp)

pdim Q can
diverge, and the order of magnitude of NQ(Q(R)×Q(Ẑ);T ) can be T log T instead of T (cf. [11,
p. 146]). We likewise ask whether condition that the form q be Q-anisotropic could be dropped.
On may run into the similar pathological phenomenon as in the projective analogue [22].

1.6. Structure of the paper. Section 2 is mostly served for technical preparations. We describe
effective equidistribution of integral points with uniform error terms and its applications. In Section
3 we prove Theorem 3.1, and then we deduce Theorems 1.4 and 1.5 as a consequence. Section 4
is entirely devoted to proving Theorem 1.6, i.e. the treatment of “error terms”. Theorem 1.7 is
proved in Section 5. More layouts are sketched at the beginning of each section.
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1.7. Notation and conventions. Given two real-valued functions f and g with g non-negative,
Vinogradov’s symbol f � g and Landau’s symbol f = O(g) both mean that there exists C > 0
such that |f | 6 Cg. The dependence of C on the variable and on f, g will be specified explicitly.
We use these two symbols interchangeably. If f, g are defined over the real numbers and with g
nowhere zero, the small “o” notation f(x) = o(g(x)) means that limx→∞

f(x)
g(x)

= 0. In this article,
all implied constants are allowed to depend on the embedding X ↪→ An

Q and the chosen euclidean
norm ‖ · ‖.

The letter p is always reserved for prime numbers, and ε denotes an arbitrarily small positive
parameter that can be rescaled by constant multiples. We write pk‖n for certain k ∈ N, n ∈ N6=0

if pk | n and pk+1 - n. We denote the Möbius function by µ(·). We write Ω(n) for the number
of prime divisors of n ∈ N 6=0. We say that an integer l > 2 is sufficiently divisible if there exists
l0 ∈ N6=0 such that l0 | l, where the integer l0 depends on the setting.

A variety over Q is an integral separated scheme of finite type over Q. We write codimX(Y )
for the codimension of a subvariety Y in X. For X a Q-variety, an integral model of X over Z
is a faithfully flat of finite type and separated scheme X over Z endowed with an isomorphism
X ×Z Q ∼= X over Q. Such an integral model over Z always exists by [24, Proposition 2.5]. For W
a scheme over Z, we write W(Ẑ) :=

∏
p<∞W(Zp).

We frequently use the following version of the Lang-Weil estimate. Let Y be a separated reduced
scheme of finite type of dimension > 0 over Z. Let YQ := Y ×Z Q be the generic fibre, and for any
p, let YFp := Y ×Z Fp. Since dim(YFp) = dim(YQ) for almost all p, we have, uniformly for any p,

(9) #Y(Fp) = O(pdim(YQ)).

If there exists L0 ∈ N 6=0 such that the scheme Y is smooth over Z[1/L0] with geometrically integral
fibres (e.g. when the generic fibre YQ is smooth and geometrically integral), then uniformly for
any p,

(10) #Y(Fp) = pdim(YQ) +O(pdim(YQ)− 1
2 ).

In particular, for almost all p, Y(Zp) 6= ∅. Moreover, for any integer l > 2 with (L0, l) = 1,

(11) #Y(Z/l)� ldim(YQ).

All implied constants above depend only on Y . The estimates of Fp-points follow from the Weil
conjecture [28, Theorem 7.7.1] ignoring finitely many primes. The existence of a Zp-point and the
estimate of Z/l-points follow from Hensel’s Lemma.

2. Hardy-Littlewood property and equidistribution

The Hardy-Littlewood property signifies that the growth of integral points is quantified by
the Tamagawa measure on the adelic space. In §2.1 we first recall the definition of normalised
Tamagawa measures on adelic spaces and their restrictions on open subsets. In §2.2 we prove
Proposition 2.3, which shows that to deduce the (APHL) property for X, it suffices to prove (2)
for congruence neighbourhoods with respect to a specific subfamily of integral models of X. In
§2.3 we prove Proposition 2.5, giving explicit error terms for (2) evaluated at a large family of
adelic neighbourhoods. In §2.4 we exhibit two different applications of Proposition 2.5.

2.1. Normalised Tamagawa measures. We refer to [4, §1.6] and [31, §2] for details.
Let X be a smooth geometrically integral variety over Q such that X(A) 6= ∅ (which we assume

throughout this article). A gauge form ωX on X is a nowhere zero differential form of degree
dim(X). For any place v of Q, the gauge form ωX induces a measure mX

v on X(Qv) ([31, §2.2]).
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Let X be an integral model of X over Z. By the Lang-Weil estimate (10), we can choose an integer
l (depending on X ) such that

∏
p-l,p<∞X (Zp) 6= ∅. According to [31, Theorem 2.2.5], we have, for

almost all finite places v = p <∞,

(12) mX
p (X (Zp)) :=

∫
X (Zp)

d mX
p =

#X (Fp)
pdimX

.2

A set of convergence factors (λv) for (mX
v ) is a set of strictly positive real numbers indexed by

the places of Q such that the infinite product

(13)
∏

p-l,p<∞

λ−1
p mX

p (X (Zp))

is absolutely convergent. The Tamagawa measure on the adelic space X(A) corresponding to
(ωX , (λv)) is defined as ([31, §2.3])

(14) mX :=
∏
v

λ−1
v mX

v .

This Tamagawa measure mX is normalized if

(15) λ∞ × lim
x→∞

∏
p≤x

λp = 1.

The existence of the limit in (15) (and hence the existence of a normalized Tamagawa measure) is
equivalent to the convergence of the infinite product

∏
p-l,p<∞mX

p (X (Zp)), and is independent of
the choice of integral models X of X (cf. [4, §1.6]). Denote by

(16) mX
f := λ−1

∞

∏
p<∞

λ−1
p mX

p

the finite part measure on X(Af ). If mX is normalised with respect to a chosen set of convergence
factors, then a different choice of convergent factors satisfying (15) induces the same measure as
mX (resp. mX

f ) on X(A) (resp. X(Af )).
For any dense open subset U ⊂ X, for every place v, consider mU

v := mX
v |U the restricted

v-adic Tamagawa measure on Uv(Qv). For v =∞, the set (X U)(R) ⊂ X(R) is closed of lower
dimension. Let φ : V → X(R) be a local diffeomorphism, where V ⊂ RdimX is an open real
neighbourhood. Then for any bounded real neighbourhood BR ⊂ X(R), the Lebesgue measure of
φ−1(BR ∩ (X U)(R)) is zero. Therefore mX

∞(BR ∩ (X U)(R)) = 0 and

(17) mX
∞(BR) = mU

∞(BR ∩ U(R)).

The next proposition shows that, the restriction of mX to U is well-defined, provided codimX(X
U) > 2.

Proposition 2.1. Suppose that codimX(X U) > 2. Then (λv) is a set of convergence factors for
(mU

v ), and the product measure mU :=
∏

v λ
−1
v mU

v is a normalized Tamagawa measure on U(A)
corresponding to (ωX |U , (λv)).

Proof. Let us fix X an integral model of X over Z. Let Z be the Zariski closure of Z := X U
in X and let U := X Z be the integral model of U . We fix l′ ∈ N6=0 an integer such that X ,U

2Although it will not be used in the sequel, the real part mX
∞ is closely related to the real Hardy-Littlewood

density à la Siegel, at least when X is an affine complete intersection. See [4, 0.0.4].
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are smooth over Z[1/l′] and
∏

p-l′,p<∞ U(Zp) 6= ∅. Take M0 sufficiently large such that, for any
p >M0, we have p - l′, and by (12),

(18) mX
p (X (Zp)) = #X (Fp)p−dimX , mX

p (U(Zp)) = mU
p (U(Zp)) = #U(Fp)p− dimU .

The Lang-Weil estimates (9) (10) show that

#Z(Fp)
#U(Fp)

= O

(
1

pcodimX(Z)

)
uniformly for all p. Therefore for any p >M0,

(19)
λ−1
p mX

p (X (Zp))
λ−1
p mX

p (U(Zp))
=

#X (Fp)
#U(Fp)

= 1 +
#Z(Fp)
#U(Fp)

= 1 +O

(
1

pcodimX(Z)

)
.

This shows that the infinite product ∏
p-l′,p<∞

λ−1
p mX

p (X (Zp))
λ−1
p mX

p (U(Zp))

is absolutely convergent. Since by construction of (λv), (13) is absolutely convergent, we conclude
that the infinite product ∏

p-l′,p<∞

λ−1
p mU

p (U(Zp))

is also absolutely convergent, which was to be shown. �

Normalized Tamagawa measures exist on many homogeneous spaces. For instance, let G be
a semisimple and simply connected algebraic group, H ⊂ G be a connected reductive closed
subgroup, and assume that X ∼= G/H. Then by [31, p. 24 Corollary], there exists a G-invariant
gauge form on X. In this case, we can construct a canonical Tamagawa measure mX on X(A)
corresponding to a canonical choice of convergent factors (λv) such that mX is normalised (cf. [4,
§1.6.2]). If H is semisimple, we choose λv = 1 for all v, and in general, λv are defined in terms of
some Artin L-functions.

2.2. Hardy-Littlewood property for congruence neighbourhoods of integral models.
Let X ⊂ An

Q be a quasi-affine, smooth geometrically integral variety with a normalized Tamagawa
measure mX = mX

∞×mX
f as in §2.1. Recall as in the introduction that we equip the affine space

An(R) = Rn with an euclidean norm ‖ · ‖ in order to define the counting function (1), and we
assume that X(R) has no compact connected components.

Let X ⊂ An
Z be an integral model of X over Z. Let l > 2 be an integer and ξ := (ξp)p|l ∈∏

p|lX(Qp) ⊂
∏

p|lQn
p , (ξ, l) be a collection of local points. For each p | l, we define the p-adic

neighbourhood
BXp (ξ, l) := X(Qp) ∩ (ξp + pvp(l)Znp ) ⊂ Qn

p .

We then define the finite adelic subset

(20) BXf (ξ, l) :=
∏
p|l

BXp (ξ, l)×
∏
p-l

X (Zp) ⊂ X(Af ).

Definition 2.2. We say that BXf (ξ, l) is a compact congruence finite adelic neighbourhood of X ,
or a congruence neighbourhood of X for short, if it is non-empty and compact (by convention).
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Our goal is to show that (cf. Proposition 2.3 below), the validity of formula (2) for all such
congruence neighbourhoods BXf (ξ, l) ensures the Hardy-Littlewood property for X.

Note that BXf (ξ, l) is non-empty if and only if
∏

p-l X (Zp) 6= ∅, and BXf (ξ, l) is compact if and
only if BXp (ξ, l) is closed in ξp + pvp(l)Znp (hence compact) for each p|l because X (Zp) is compact
for any p (cf. the proof of [7, Corollary 3.2]). Any non-empty finite adelic subset BXf (ξ, l) of X
of the form (20) becomes a congruence neighbourhood upon replacing l by some of its sufficiently
large powers depending on X and every ξp, and leaving ξ unchanged. Hence the family {BXf (ξ, l)}
consisting of all congruence neighbourhoods of X forms a topological base of X(Af ).

In many cases, congruence neighbourhoods can equivalently be defined via congruence condi-
tions. For instance, when both X,X are affine, i.e., both X ⊂ An

Q, X ⊂ An
Z are closed, then for

any l > 2, ξ ∈ X (Z/l), suppose that there exists ξ a lift of ξ in
∏

p|l X (Zp) ⊂
∏

p|lX(Qp), we have

(21) BXp (ξ, l) = {X ∈ X (Zp) : X ≡ ξ( mod pvp(l))}.

Each BXp (ξ, l) is closed. Hence, if BXf (ξ, l) is non-empty, it is a congruence neighbourhood. We
will make use of this fact in §3.2. In general if X,X are quasi-affine, (21) still holds when l is
sufficiently divisible (depending on X ).

Any a ∈ N6=0 defines a morphism
φa : An

Z → An
Z

x 7→ a · x,(22)

and φa,Q : An
Q → An

Q is an isomorphism. Let

(23) Xa := φa(X) ⊂ An
Q.

Then Xa is isomorphic to X, and is equipped with the normalised Tamagawa measure mXa :=
(φa)∗mX . Now we define an integral model Xa of Xa. Let X ⊂ An

Q, X ⊂ An
Z be their corresponding

Zariski closures, and assume that X is defined by a family of polynomials f1, · · · , fr ∈ Z[x1, · · · , xn].
Let Xa ⊂ An

Z be the affine scheme defined by the polynomials

adeg f1f1

(
1

a
x1, · · · ,

1

a
xn

)
, · · · , adeg frfr

(
1

a
x1, · · · ,

1

a
xn

)
∈ Z[x1, · · · , xn],

and let

(24) Xa := Xa φa(X X) ⊂ An
Z.

3

Then Xa is an integral model of Xa and, in fact, Xa is the Zariski closure of Xa in An
Z. If

X = X (X X) (e.g. when bothX,X are affine), then φa induces an isomorphism X×ZZ[1/a] ∼=
Xa ×Z Z[1/a].

Proposition 2.3. Let X be as in the beginning of §2.2 and let δX : X(A) → R>0 be a locally
constant, not identically zero function. Then the following properties are equivalent.

(i) The variety X is Hardy-Littlewood with density δX ;
(ii) For any quasi-affine integral model X ⊂ An

Z of X, for any connected component B∞ ⊂ X(R)
and for any congruence neighbourhood BXf (ξ, l) of X , we have

(25) NX(B∞ ×BXf (ξ, l);T ) ∼
∫
B∞(T )×BXf (ξ,l)

δX d mX , T →∞;

3The inner bar denotes the Zariski closure in AnQ, and the outer bar denotes the closure in AnZ.
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(iii) There exists a quasi-affine integral model X ⊂ An
Z of X such that, for any connected

component B∞ ⊂ X(R) and for any congruence neighbourhood BXf (ξ, l) of X , the formula (25)
holds ;

(iv) There exists a quasi-affine integral model X ⊂ An
Z of X such that, for any connected compo-

nent B∞ ⊂ X(R), and for any sufficiently divisible a ∈ N6=0 (depending on X ) and any congruence
neighbourhood BXaf (ξ, l) of Xa with BXaf (ξ, l) ⊂ Xa(Ẑ), we have

(26) NXa(φa,R(B∞)×BXaf (ξ, l);T ) ∼
∫
φa,R(B∞(T ))×BXaf (ξ,l)

δXa d mXa ,

where δXa is the locally constant function δX ◦ φ−1
a : Xa(A)→ R>0.

Proof. The implications “(ii)⇒(iii)” and “(ii)⇒(iv)” are evident, and “(i)⇒(ii)” just follows from
definition.

For “(iii)⇒(i)”, we need to show: for any connected component B∞ ⊂ X(R) and any compact
open subset Bf ⊂ X(Af ), the formula (2) holds. Let X be as in the assumption satisfying (25).
Since Bf is compact, there exist finitely many congruence neighbourhoods BXf (ξi, li), 1 6 i 6 r

of X such that Bf = ∪ri=1B
X
f (ξi, li). We can choose a sufficiently divisible l0 ∈ N6=0 (depending

on X and Bf ) with
∏r

i=1 li | l0 such that each BXf (ξi, li) is covered by finitely many congru-
ence neighbourhoods BXf (ξj, l0) of X . Since any two such neighbourhoods BXf (ξj, l0) are either
equal or disjoint, therefore we conclude that there exist finitely many congruence neighbourhoods
BXf (ξk, l0), 1 6 k 6 r′ such that Bf =

∐r′

k=1B
X
f (ξk, l0). Hence, assuming that (25) holds for all

adelic neighbourhoods B∞ ×BXf (ξk, l0), 1 6 k 6 r′, then as T →∞,

NX(B∞ ×Bf ;T ) =
r′∑
k=1

NX(B∞ ×BXf (ξk, l0);T )

∼
r′∑
k=1

∫
B∞(T )×BXf (ξk,l0)

δX d mX

=

∫
B∞(T )×Bf

δX d mX .

This proves (2), whence X is Hardy-Littlewood with density δX .
Now we prove “(iv)⇒(iii)”. Let X be as in the assumption. We may assume X = X (X X),

which does not affect the definition of Xa (24). Let a0 ∈ N6=0 (depending on X ) be such that
the assumption of (iv) holds for every Xa with a0 | a. Now for any congruence neighbourhood
BXf (ξ, l) of X , we can find al ∈ N6=0 (depending on BXf (ξ, l)) with l | al and a0 | al such that
φal(ξ) ∈

∏
p|l Xal(Zp). Note in particular

∏
p-l Xal(Zp) 6= ∅ by the definition of BXf (ξ, l). Then it

is clear that Xal(Ẑ) 6= ∅, BXalf (φal(ξ), all) ⊂ Xal(Ẑ) is a congruence neighbourhood of Xal , and φal
induces an isomorphism B∞ × BXf (ξ, l) ∼= φal,R(B∞) × B

Xal
f (φal(ξ), all). Therefore since a0 | al,
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applying (26) to BXalf (φal(ξ), all), as T →∞, we have

NX(B∞ ×BXf (ξ, l);T ) = NXal
(φal,R(B∞)×BXalf (φal(ξ), all); alT )

∼
∫

(φal,R(B∞))(alT )×B
Xal
f (φal (ξ),all)

δXal d mXal

=

∫
B∞(T )×BXf (ξ,l)

δX d mX .

This proves (25) for the integral model X . �

We end this subsection by the following lemma which will be helpful later.

Lemma 2.4. Let X be as in the beginning of §2.2. Let δX : X(A) → R>0 be a locally constant
function. Then we have:

(i) For any connected component B∞ ⊂ X(R), δX |B∞×X(Af ) factors through a locally constant
function δB∞ : X(Af )→ R>0. In particular, for any compact open Bf ⊂ X(Af ), we have

(27)
∫
B∞(T )×Bf

δX d mX = mX
∞(B∞(T ))

∫
Bf

δB∞ d mX
f .

(ii) Keeping the notation in (i). For any l0 > 2 and any compact open subset B0 ⊂
∏

p|l0 X(Qp),
and for any quasi-affine integral model X of X, on writing

(28) BXf,0 := B0 ×
∏
p-l0

X (Zp) ⊂ X(Af ),

there exists l1 ∈ N6=0 depending only on B∞, B0 and X with l0 | l1 such that, δB∞|BXf,0 factors
through the projection BXf,0 → B0 ×

∏
p|l1,p-l0 X (Zp).

Proof. (i) is clear because δX is locally constant and B∞ is connected.
We now prove (ii). By the same arguments for the proof of “(iii)⇒(i)” of Proposition 2.3,

there exists an l1 ∈ N6=0 depending only on B∞ and X with l0 | l1 such that, the compact set
B0 ×

∏
p-l0 X (Zp) is a finite union of open subsets of the form BXf (ξk, l1), and the locally constant

function δB∞ obtained in (i) is constant on each BXf (ξk, l1). Therefore δB∞|BXf,0 factors through
B0 ×

∏
p|l1,p-l0 X (Zp), whence the statement of (ii). �

2.3. Effective equidistribution with error terms. Let X be as in §2.2 with a fixed integral
model X over Z. Fix l0 ∈ N6=0 an integer (depending on X ) such that X ×Z Z[1/l0] is smooth with
geometrically integral fibres over Z[1/l0], and that

∏
p-l0 X (Zp) 6= ∅. In the following proposition,

we shall consider (30) as an effective version of the asymptotic formula (25) with an explicit uniform
error term.

Let us first introduce some more notation. For any integer l > 2 with gcd(l, l0) = 1, the residue
map

(29) Ψl :=
∏
p|l

Ψp :
∏
p|l

X (Zp)→
∏
p|l

X (Z/pvp(l)) ∼= X (Z/l)

is surjective by Hensel’s Lemma. Therefore, for any subset S ⊂ X (Z/l), the set Ψ−1
l (S) ⊂∏

p|l X (Zp) is compact.
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Proposition 2.5. Let δX : X(A) → R>0 be a locally constant, not identically zero function.
Assume that for B0 ⊂

∏
p|l0 X(Qp) a fixed compact open subset and B∞ ⊂ X(R) a fixed connected

component, there exist σX > 0 and 0 < βX < 1 such that for any congruence neighbourhood
BXf (ξ, l) ⊂ BXf,0 (cf. (28)), we have

(30) NX(B∞ ×BXf (ξ, l);T ) =

∫
B∞(T )×BXf (ξ,l)

δX d mX +O(lσX mX
∞(B∞(T ))1−βX ),

where the implied constant of (30) may depend on B∞,X , B0 but it is independent of l and ξ. Then
for any integer l > 2 with gcd(l, l0) = 1 and any subset S ⊂ X (Z/l), we have

(31) NX(B∞ ×BXf,0(S, l);T ) =

∫
B∞(T )×BXf,0(S,l)

δX d mX +O(#S · lσX ·mX
∞(B∞(T ))1−βX )

where we write

(32) BXf,0(S, l) := B0 ×Ψ−1
l (S)×

∏
p-l0l

X (Zp) ⊂ X(Af ),

and the implied constant may depend on B∞,X , B0, but it is independent of l and S.

Proof. Since B0 is compact, as in the proof of Proposition 2.3 (see also the discussion after Defi-
nition 2.2), we can choose an integer l1 (depending only on B0,X ) with the same prime factors as
l0 and finitely many congruence neighbourhoods (BXf (ξi, l1))i∈I of X such that

(33) B0 =
∐
i∈I

(
∏
p|l0

BXp (ξi, l1)).

Now let us fix l > 2 with gcd(l, l0) = 1 and S ⊂ X (Z/l). For every s ∈ S, we fix a lift
s ∈ Ψ−1

l ({s}) ⊂
∏

p|l X (Zp). Then for such s and any i ∈ I, we have ξi × s ∈
∏

p|l1lX(Qp), and
BXf (ξi × s, l1l) is a congruence neighbourhood of X . Moreover, thanks to (33), we have

BXf,0(S, l) =
∐

i∈I,s∈S

BXf (ξi × s, l1l).

Hence the formula (30) implies

NX(B∞ ×BXf,0(S, l);T ) =
∑

i∈I,s∈S

(∫
B∞(T )×BXf (ξi×s,l1l)

δX d mX +O((l1l)
σX mX

∞(B∞(T ))1−βX )

)

=

∫
B∞(T )×BXf,0(S,l)

δX d mX +O(#I ·#S · (l1l)σX mX
∞(B∞(T ))1−βX ).

Since #I, l1 only depend onB0,X , the desired formula (31) then follows, where the implied constant
is only allowed to depend on B∞,X , B0. �

2.4. Two applications of effective equidistribution. Let Z ⊂ X be a closed subset with
codimX(Z) > 2, and let U := X Z be the open subset. Let Z be the Zariski closure of Z in X
as an integral model of Z and let U := X Z be the integral model of U . By Proposition 2.1, the
restriction mU := mX |U is well-defined as a normalised Tamagawa measure on U(A).

Our first application of Proposition 2.5 consists in comparing the counting function of integral
points on X lying in U modulo any p < M, p - l0, with the Tamagawa measure of the corresponding
adelic neighbourhood of U(A), when M is sufficiently large. We shall make use of this result in
the deduction of (APHL) in Theorem 3.1.
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For any integer l > 2 with gcd(l, l0) = 1, recall (29) and take U(Z/l) ⊂ X (Z/l). Then

(34) Ψ−1
l (U(Z/l)) =

∏
p|l

U(Zp),

because Ψ−1
p (U(Z/pvp(l))) = U(Zp) for every p | l. 4 For any M > 2, we note

(35) PM,l0 :=
∏

p-l0,p<M

p.

Hence with the notation (32),

BXf,0(U(Z/PM,l0),PM,l0) = B0 ×Ψ−1
l (U(Z/PM,l0))×

∏
p>M

X (Zp)

= B0 ×
∏

p-l0,p<M

U(Zp)×
∏
p>M

X (Zp).
(36)

Corollary 2.6. Under the hypothesis of Proposition 2.5, we assume moreover B0 ⊂
∏

p|l0 U(Qp)

and
∏

p-l0 U(Zp) 6= ∅. Then, for any M > 2 sufficiently large, we have

NX(B∞ ×BXf,0(U(Z/PM,l0),PM,l0);T )

=

∫
BU∞(T )×BUf,0

δX |U d mU +O

(
P
σX+dim(X)
M,l0

mX
∞(B∞(T ))1−βX +

mX
∞(B∞(T ))

M codimX(Z)−1

)
,

where BUf,0 ⊂ U(Af ) is defined analogously to (28) in terms of U ,

(37) BU
∞(T ) := B∞(T ) ∩ U(R),

and the implied constant may depend on B∞, B0,U ,X but it is independent of M .

Proof. On applying Lemma 2.4 (i) to δX , let δB∞ : X(Af )→ R>0 be the factorisation of δX . Using
(27), we then consider

IX (U(Z/PM,l0)) :=

∫
B∞(T )×BXf,0(U(Z/PM,l0 ),PM,l0 )

δX d mX = mX
∞(B∞(T ))

∫
BXf,0(U(Z/PM,l0 ),PM,l0 )

δB∞ d mX
f ,

and

(38) IU :=

∫
BU∞(T )×BUf,0

δX |U d mU = mU
∞(BU

∞(T ))

∫
BUf,0

δB∞|U d mU
f .

The formula (17) shows that
mX
∞(B∞(T )) = mU

∞(BU
∞(T )).

Our goal is to compare the finite part integral in IX (U(Z/PM,l0)) with the one in IU .
We apply Lemma 2.4 (ii) to the locally constant function δB∞ , and let l1 > 2 (depending only

on B∞, B0,X ) be an integer satisfying (ii) for B∞ and B0. We take M1 > 2 (depending only on
B∞, B0,X ) such that p > M1 ⇒ p - l1 (for example, we can take M1 = l1 + 1). Then, for any
M >M1, when restricted to BXf,0, δB∞ factors through a locally constant function

(39) δMB∞ : BX0,M := B0 ×
∏

p<M,p-l0

X (Zp)→ R>0,

4Indeed, any Z/pvp(l)-point, say P , can be lifted to a Zp-point P̃ of X , by Hensel’s lemma. Let P be the image
of P in U(Fp). Then since the open set U contains the closed point P of Spec(Zp), U must contain its generic point,
and therefore P̃ ∈ U .



INTEGRAL POINTS ON AFFINE QUADRICS 15

i.e., δB∞ |BXf,0 is the composition of δMB∞ with projection BXf,0 → BX0,M . Therefore thanks to (36), on
defining BU0,M := B0 ×

∏
p-l0,p<M U(Zp) ⊂ BX0,M , we have

BXf,0(U(Z/PM,l0),PM,l0) = BU0,M ×
∏
p>M

X (Zp), BUf,0 = BU0,M ×
∏
p>M

U(Zp).

On defining moreover the measures

mX
M := λ−1

∞

∏
p<M

λ−1
p mX

p , and mU
M := mX

M |U ,

on respectively
∏

p<M X(Qp) and
∏

p<M U(Qp), and using (39), we can now compute:

IX (U(Z/PM,l0)) = mX
∞(B∞(T ))

(∫
BU0,M

δMB∞ d mX
M

)(∏
p>M

λ−1
p mX

p (X (Zp))

)
,

and

IU = mU
∞(BU

∞(T ))

(∫
BU0,M

δMB∞|U d mU
M

)(∏
p>M

λ−1
p mU

p (U(Zp))

)
.

By definition,

(40)
∫
BU0,M

δMB∞ d mX
M =

∫
BU0,M

δMB∞|U d mU
M .

It remains to compare the infinite products. According to (19) as in the proof of Proposition 2.1,
if M > M0, on writing cp := #Z(Fp)

#U(Fp)
,∏

p>M

(1 + cp) = exp

(∑
p>M

log(1 + cp)

)
= 1 +O

(∑
p>M

1

pcodimX(Z)

)
= 1 +O

(
1

M codimX(Z)−1

)
.

We also deduce from (38) that IU = O(mX
∞(B∞(T ))). Gathering together the computations above,

we obtain that, for any M > max(M0,M1),

IX (U(Z/PM,l0)) = IU
∏
p>M

(1 + cp) = IU +O

(
IU

M codimX(Z)−1

)
= IU +O

(
mX
∞(B∞(T ))

M codimX(Z)−1

)
.(41)

The implied constants above depend only on B∞, B0,U ,X .
Finally, we apply Proposition 2.5 with

l := PM,l0 , S := U(Z/PM,l0).

The Lang-Weil estimate (11) for U implies

#S = #U(Z/PM,l0) = O(P
dim(X)
M,l0

).

Therefore using (41), we get,

NX(B∞ ×BXf,0(U(Z/PM,l0),PM,l0);T ) = IX (U(Z/PM,l0)) +O(P
σX+dim(X)
M,l0

mX
∞(B∞(T ))1−βX )

= IU +O

(
P
σX+dim(X)
M,l0

mX
∞(B∞(T ))1−βX +

mX
∞(B∞(T ))

M codimX(Z)−1

)
,

where the implied constant depends only on B∞, B0,U ,X . This finishes the proof. �

Our second application is to estimate integral points on X lying in Z modulo any single suffi-
ciently big prime. This is used in Section 4.1 for the treatment of error terms.
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Corollary 2.7. Under the hypothesis of Proposition 2.5, we have, uniformly for any prime p0

sufficiently large,

NX(B∞ ×BXf,0(Z(Fp0), p0);T ) = O

(
mX
∞(B∞(T ))

p
codimX(Z)
0

+ pσX+dimZ
0 mX

∞(B∞(T ))1−βX

)
,

where the implied constant may depend on B∞, B0,X ,Z, but it is independent of p0.

Proof. We keep using the constant M1 > 2 (depending only on B∞, B0,X ) in the proof of Corol-
lary 2.6 such that, δX |B∞×BXf,0 is the composition of the locally constant function δM1

B∞
(39) with

projection B∞ ×BXf,0 → BX0,M1
.

We also recall the constantM0 in the proof of Proposition 2.1 depending only on X ,U such that
that (18) holds for any p > M0. Consequently, for any such p, thanks to (34), we compute

mX
p (Ψ−1

p (Z(Fp))) = mX
p (X (Zp))−mX

p (Ψ−1
p (U(Fp))

= mX
p (X (Zp))−mX

p (U(Zp))

=
#X (Fp)−#U(Fp)

pdimX
=

#Z(Fp)
pdimX

.

Therefore, by the Lang-Weil estimates (9) (10),

mX
p (Ψ−1

p (Z(Fp)))
mX
p (X (Zp))

=
#Z(Fp)
#X (Fp)

= O

(
1

pcodimX(Z)

)
,

the implied constant depending only on X ,Z.
For any prime p0 - l0, consider

IX (Z(Fp0)) :=

∫
B∞(T )×BXf,0(Z(Fp0 ),p0)

δX d mX = mX
∞(B∞(T ))

∫
BXf,0(Z(Fp0 ),p0)

δB∞ d mX
f .

Then if p0 > max(M0,M1), following the proof of Corollary 2.6 above, we have

IX (Z(Fp0)) = mX
∞(B∞(T ))

(∫
BX0,M1

δM1
B∞

d mX
M1

)( ∏
p>M1,p 6=p0

λ−1
p mX

p (X (Zp))

)
λ−1
p0

mX
p0

(Ψ−1
p0

(Z(Fp0)))

= mX
∞(B∞(T ))

(∫
BX0,M1

δM1
B∞

d mX
M1

)( ∏
p>M1

λ−1
p mX

p (X (Zp))

)
λ−1
p0

mX
p0

(Ψ−1
p0

(Z(Fp0)))

λ−1
p0

mX
p0

(X (Zp0))

=

∫
B∞(T )×BXf,0

δX d mX ×
mX
p0

(Ψ−1
p0

(Z(Fp0)))

mX
p0

(X (Zp0))

= O

(
mX
∞(B∞(T ))

p
codimX(Z)
0

)
,

where the implied constant depends only on B∞, B0,X ,Z.
Finally applying Proposition 2.5 to l := p0 and using again the Lang-Weil estimate (9) for Z,

we get

NX(B∞ ×BXf,0(Z(Fp0), p0);T ) = IX (Z(Fp0)) +O(#Z(Fp0) · pσX0 mX
∞(B∞(T ))1−βX )

= O

(
mX
∞(B∞(T ))

p
codimX(Z)
0

+ pσX+dimZ
0 mX

∞(B∞(T ))1−βX

)
.
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This finishes the proof. �

3. (APHL) for affine varieties and homogeneous spaces

The structure of this section is as follows. In §3.1 we prove Theorem 3.1 which outlines hypothe-
ses (i) and (ii) as a sufficient condition for (APHL). Then in §3.2 we show – Theorem 3.4 – the
compatibility of the hypothesis (i) with works on effective equidistribution of integral points on
nice affine homogeneous spaces which are proven to be Hardy-Littlewood (Theorems 3.2 & 3.3),
and we then state (Corollary 3.5) that to show (APHL) for such varieties it remains to establish
the geometric sieve condition. In 3.3 we prove Theorems 1.4 and 1.5.

3.1. A sufficient condition for (APHL). In this subsection, let X ⊂ An
Q be an affine, smooth

geometrically integral variety with a normalized Tamagawa measure mX = mX
∞×mX

f . Let δX :
X(A)→ R>0 be a locally constant, not identically zero function.

We recall the morphism φa (22) and the variety Xa (23), together with the measure mXa and
the locally constant function δXa defined on Xa(A). We have seen in §2.2 that if

X = Spec (Z[x1, · · · , xn]/(f1(x), · · · , fr(x)))

is an affine integral model of X over Z, then the integral model Xa “twisted by a ∈ N 6=0” for
Xa
∼=Q X is

(42) Xa = Spec(Z[x1, · · · , xn]/(adeg f1f1(a−1x), · · · , adeg frfr(a
−1x)).

We observe that the condition X (Z) 6= ∅ implies that Xa(Z) 6= ∅ for any a ∈ N6=0. Note also that,
if X(Q) 6= ∅, then for any sufficiently divisible a ∈ N6=0 (depending on X ), we have Xa(Z) 6= ∅.

Theorem 3.1. Suppose that X is an affine Hardy-Littlewood variety with density δX and X(Q) 6=
∅. Assume that there is an affine integral model X ⊂ An

Z of X with the following property: for
any sufficiently divisible a ∈ N6=0 (depending on X ), the integral model Xa (cf. (42)) satisfies:

(i) (Strong effective equidistribution condition) There exist σXa > 0 and 0 < βXa < 1 such that,
for any connected component B∞ ⊂ X(R) and for any congruence neighbourhood BXaf (ξ, l) ⊂ Xa(Ẑ)
of Xa,

NXa(φa,R(B∞)×BXaf (ξ, l);T )

=

∫
φa,R(B∞(T ))×BXaf (ξ,l)

δXa d mXa +O(lσXa mX
∞(B∞(T ))1−βXa ),

T →∞,(43)

where the implied constant of (43) may depend on B∞,Xa, but it is independent of l and ξ;
(ii) (Geometric sieve condition) For any closed subset Z ⊂ X with codimX(Z) > 2 and Za :=

Z ⊂ Xa, there exist continuous functions f1, f2 : R>0 → R>0 such that fi(x) = o(1) as x→∞ for
i = 1, 2, such that, for every connected component B∞ ⊂ X(R), for every M > 0,

#{X ∈ Xa(Z) : X ∈ φa,R(B∞(T )),∃p >M,X mod p ∈ Za}
=O

(
(f1(M) + f2(T )) mX

∞(B∞(T ))
)
,

T →∞,(44)

where the implied constant may depend on B∞,Xa and Z, but it is independent of M .
Then the variety X satisfies (APHL) with density δX .

Remarks.
(1) If X in the theorem above is strongly Hardy-Littlewood, i.e. δX ≡ 1, then X satisfies

(APSHL).
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(2) Our formulation of (44) is compatible with currently known works on geometric sieves
[27, 3, 6].

Proof of Theorem 3.1. Step I: Let us fix an open subset U ⊂ X with Z := X U and codimX(Z) >
2. The map

B∞ 7→ BU
∞ := B∞ ∩ U(R)

is a bijection between connected components of X(R) and U(R), because codimX(Z) > 2. We
henceforth fix a B∞ from now on, which amounts to fixing a connected component BU

∞ of U(R).
Apply Lemma 2.4 (i) to δX and let δB∞ : X(Af )→ R>0 be the resulting locally constant function
for B∞. We may assume that B∞ ∩X(Q) 6= ∅, because otherwise the assumption that X being
Hardy-Littlewood implies that δB∞ is identically zero on X(Af ), and the formula (1) for U trivially
holds for BU

∞ ×BU
f , where BU

f ⊂ U(Af ) is any compact open subset.
Let X be as in the assumption of the theorem. For any a ∈ N6=0, we define the integral model
Ua := Xa Z ⊂ Xa for Ua, where Z stands for the Zariski closure of Z in Xa. Let a0 ∈ N 6=0 be
such that the hypotheses (i) and (ii) hold for every Xa with a0 | a. Since X(Q) 6= ∅, we can find
a1 ∈ N6=0 (depending on X ) with a0 | a1 such that Xa1(Z) 6= ∅. In particular Xa(Z) 6= ∅ for every
a1 | a. We take l0 ∈ N 6=0 with a1 | l0 depending only on X ,U such that X×ZZ[1/l0], U×ZZ[1/l0] are
smooth with geometrically integral fibres over Z[1/l0], and that

∏
p-l0 U(Zp) 6= ∅ (by the Lang-Weil

estimate (10)). We want to show that, for any a with l0 | a, the formula (26) holds for the connected
component φa,R(BU

∞) of Ua(R) and for any congruence neighbourhood BUaf (ξ, l) (20) of Ua inside
Xa(Ẑ)5. Upon breaking BUaf (ξ, l) into a finite number of smaller congruence neighbourhoods as in
the proof of Proposition 2.3, we may assume a | l (hence l0 | l), since

∏
p-l0 Ua(Zp) 6= ∅. Granting

this, Theorem 3.1 then follows from Proposition 2.3.
Step II: In the remaining of the proof, we work with a fixed Xa with l0 | a and a fixed congruence

neighbourhood BUaf (ξ1, l1) ⊂ Xa(Ẑ) of Ua with a | l1. Recall that φa induces an isomorphism
Xa×ZZ[1/a] ∼= X ×ZZ[1/a] and the same holds for Ua. Therefore, Xa×ZZ[1/l1] and Ua×ZZ[1/l1]
are smooth with geometrically integral fibres. By abuse of notation, we shall drop the subscript a
in what follows.

If δX is identically zero on B∞ × BUf (ξ1, l1), since δX is locally constant, there exist compact
open subsets Bi ⊂ X(Af ) such that BUf (ξ1, l1) ⊂ ∪iBi, and δB∞ is identically zero on all Bi.
The variety X being Hardy-Littlewood implies that NX(B∞ × Bi;T ) = 0 by (2) and (27), which
means that X(Q) ∩ (B∞ × Bi) = ∅ by (1). We henceforth get U(Q) ∩ (BU

∞ × BUf (ξ1, l1)) ⊂
X(Q) ∩ (∪i(B∞ ×Bi)) = ∅. In this case, the formula (26) trivially holds.

From now on, we may assume δX is not identically zero on B∞ × BUf (ξ1, l1). Then by (17) and
(27), ∫

BU∞(T )×BUf (ξ1,l1)

δX |U d mU = mX
∞(BX

∞(T ))

∫
BUf (ξ1,l1)

δB∞ |U d mU
f ,(45)

where BU
∞(T ) is defined by (37) and the finite part integral

∫
BUf (ξ1,l1)

δB∞|U d mU
f is non-zero.

We take

(46) B0 :=
∏
p|l1

BUp (ξ1, l1) ⊂
∏
p|l1

X (Zp) ∩
∏
p|l1

U(Qp),

5Note that Ua = Xa = Xa in this affine setting, and Xa(Z) 6= ∅ for any such a.
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so that with the notation (28),

(47) BUf (ξ1, l1) = BUf,0 = B0 ×
∏
p-l1

U(Zp).

For any M sufficiently large such that p >M ⇒ p - l1 (e.g. M > l1 + 1), by (36), we have

NU(BU
∞ ×BUf (ξ1, l1);T )

=#
(
U(Z) ∩ (B∞(T )×BUf,0)

)
=NX(B∞ ×BXf,0(U(Z/PM,l1),PM,l1);T )

+O(#{X ∈ X (Z) ∩B∞ : ‖X‖ 6 T,∃p >M,X mod p ∈ Z}),

(48)

where the implied constant is absolute.
Step III. Thanks to the hypothesis (i), the formula (30) in Proposition 2.5 holds for any

BXf (ξ, l) ⊂ BXf,0 = B0 ×
∏

p-l1 X (Zp) ⊂ X (Ẑ) and the assumption of Corollary 2.6 is satisfied for
B0 (46) above. We therefore apply Corollary 2.6 and obtain

NX(B∞ ×BXf,0(U(Z/PM,l1),PM,l1);T )

=

∫
BU∞(T )×BUf,0

δX |U d mU +O

(
P
σX+dim(X)
M,l1

mX
∞(B∞(T ))1−βX +

mX
∞(B∞(T ))

M codimX(Z)−1

)
.

Furthermore, applying the hypothesis (ii) to the error term in (48), we obtain

(49) NU(BU
∞ ×BUf (ξ1, l1);T ) =

∫
BU∞(T )×BUf,0

δX |U d mU + Er,

where

Er = O

(
P
σX+dim(X)
M,l1

mX
∞(B∞(T ))1−βX +

mX
∞(B∞(T ))

M codimX(Z)−1
+ (f1(M) + f2(T )) mX

∞(B∞(T )))

)
,

and the implied constant depends only on B∞,X , Z as well as B0 which is in turn determined by
(ξ1, l1) and U .

As we assume that X is Hardy-Littlewood, mX
∞(B∞(T )) → ∞ as T → ∞ by definition. Take

M = η log(mX
∞(B∞(T ))) (a fortiori M →∞), where η > 0 depends only on B∞,X ,U , so that

P
σX+dim(X)
M,l1

6 exp

(
(σX + dim(X))

∑
p<M

log p

)
6 mX

∞(B∞(T ))
βX
2 .

Therefore the hypothesis (ii) implies that

Er =O

(
mX
∞(B∞(T ))1−βX

2 +
mX
∞(B∞(T ))

logcodimX(Z)−1(mX
∞(B∞(T )))

+ (f1(η log(mX
∞(B∞(T )))) + f2(T )) mX

∞(B∞(T ))

)
=o(mX

∞(B∞(T ))).

Returning to (49) and recalling (47), we obtain finally

NU(BU
∞ ×BUf (ξ1, l1);T ) =

∫
BU∞(T )×BUf (ξ1,l1)

δX |U d mU +o(mX
∞(B∞(T ))), T →∞,

where the implied constant depends only on B∞,X ,U , (ξ1, l1). Finally taking (45) into account,
we obtain the equivalence (26). The proof of the theorem is thus completed. �
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3.2. Affine homogeneous spaces. In this article we consider homogeneous spaces of the follow-
ing two types.

Type I: nice algebraic groups. By convention, we call G a nice algebraic group if G is a
semisimple simply connected Q-simple linear algebraic group over Q with G(R) non-compact.
We fix faithful representation G ↪→ SLn,Q. We consider in this way G as a closed subvariety of
SLn,Q ⊂ An2

Q , and we use euclidean norms from An2

Q . According to [31, §2.2], G is endowed with
an invariant gauge form, to which we can associate a Tamagawa measure mG = mG

∞×mG
f (with

convergence factors (1)) as a unimodular Haar measure on G(A). The measure mG induces a
(finite) Haar measure mG

q on G(A)/G(Q). For every lattice Γ of G, i.e., Γ is a discrete cofinite
subgroup of G(R), the real part mG

∞ induces a (finite) Haar measure mΓ
∞ on the locally compact

topological group G(R)/Γ. Appealing to works [25, 17], we have

Theorem 3.2. Nice algebraic groups are strongly Hardy-Littlewood.

Proof. Fix any such group G. We firstly infer from [25, Theorem 1] and [17, Theorem 2.7] that
mG
∞({x ∈ G(R) : ‖x‖ 6 T})→∞ as T →∞. 6 Secondly, [25, Theorem 2] and [17, Theorem 1.2]

show in particular that for any x0 ∈ G(Q) and any irreducible lattice Γ,

(50) #{γ ∈ Γ · x0 : ‖γ‖ 6 T} ∼ 1

mΓ
∞(G(R)/Γ)

mG
∞({x ∈ G(R) : ‖x‖ 6 T}), T →∞.7

In order to establish the strongly Hardy-Littlewood property, according to Proposition 2.3,
it suffices to prove the formula (25) for G(R) × BGf (ξ, l), where BGf (ξ, l) is a fixed congruence
neighbourhood of a fixed integral model G of G over Z with G(Ẑ) 6= ∅ and ξ = (ξp) ∈

∏
p|l G(Zp).

Consider the congruence subgroup

Kf (l) :=
∏
p|l

Kp(l)×
∏
p-l

G(Z), where Kp(l) := {η ∈ G(Zp) : η ≡ id( mod pvp(l))},

so that

(51) BGf (ξ, l) = Kf (l) · (ξ ×
∏
p-l

id).

We shall follow the strategy of the proof of [4, Theorem 4.2]. Let K(l) := G(R) × Kf (l) and
Γ(l) := K(l) ∩ G(Q). Then Γ(l) is a lattice of G(R). Since G(R) is non-compact, the strong
approximation theorem (cf. e.g. [8, Theorem 1.1]) implies that K(l) ·G(Q) = G(A). We therefore
have (cf. [4, 4.5])

mG
q (G(A)/G(Q)) = mG

q (K(l) ·G(Q)/G(Q)) = mΓ(l)
∞ (G(R)/Γ(l)) mG

f (Kf (l)).

The left-hand-side is the Tamagawa number of G, which is proved to be 1 (cf. e.g. [4, p. 58]). We
therefore conclude that

(52) mΓ(l)
∞ (G(R)/Γ(l))−1 = mG

f (Kf (l)).

Moreover, G(Z) is dense in G(Ẑ). So we can choose x0 ∈ G(Z) such that x0 ≡ ξp mod pvp(l) for
every p | l. Since G is Q-simple, the lattice Γ(l) is irreducible. We now invoke (50) for Γ(l), and

6In fact they give asymptotic formulas.
7To obtain this, we can invoke for example the limits in [25, Theorems 1 & 2] and eliminate the term

T d(log T )e
∫
End(V )

f dµ∞.
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we obtain

NG(G(R)×BGf (ξ, l);T ) = #{γ ∈ Γ(l) · x0 : ‖γ‖ 6 T}
∼ mΓ(l)

∞ (G(R)/Γ(l))−1 mG
∞({x ∈ G(R) : ‖x‖ 6 T})

= mG
∞({x ∈ G(R) : ‖x‖ 6 T}) mG

f (Kf (l))

= mG
∞({x ∈ G(R) : ‖x‖ 6 T}) mG

f (BGf (ξ, l)),

by using (51) and (52). This achieves our goal. �

Type II: nice symmetric spaces. Let G be a connected semisimple simply connected linear
algebraic group over Q such that G(R) has no compact factors. We choose an almost faithful Q-
representation ι : G → GL(W ), where W ∼= Qn is an n-dimensional Q-vector space, so that ι(G)
acts on W . In this article, a symmetric space X is isomorphic to a smooth geometrically integral
Zariski closed orbit ι(G) · v0 of a vector v0 ∈ W , whose stabilizer H is symmetric (i.e., there exists
a non-trivial Q-involution σ ∈ Aut(G) such that H is the fixed point locus of σ), connected, and
has no non-trivial Q-characters (hence reductive). In particular X ∼= G/H and X(Q) 6= ∅. We
consider X as a closed subvariety of An

Q via X ∼= ι(G) · v0 ⊂ An
Q. We recall from §2.1 that X is

equipped with a normalised Tamagawa measure mX = mX
∞×mX

f . The non-compactness of every
connected component B∞ ⊂ X(R) and the unboundness of mX

∞(B∞(T )), T →∞ follow from e.g.
[5, Lemma 2.2 & (2.4)].

In [4, §5] Borovoi and Rudnick introduced a locally constant function

(53) δX : X(A)→ {0,#(C(H))},
where C(H) is the dual group of Pic(H) à la Kottwitz (cf. [4, §3.4]). This function is an indicator
of adelic orbits containing rational points. That is, for every adelic orbit OA of X(A) under G(A),
(cf. [4, Theorem 3.6])

δX |OA
> 0⇔ OA ∩X(Q) 6= ∅.

Based on works [11, 13, 14] et al, Borovoi and Rudnick show that

Theorem 3.3 ([4] Theorems 5.3 & 5.4). Symmetric spaces are Hardy-Littlewood with density δX
(53). They are strongly Hardy-Littlewood provided C(H) = 0.

Remark. The density function δX (53) can equivalently be defined in terms of the orthogonal
locus of the Brauer group Br(X) (cf. [10, Propositions 2.2 and 2.10]). See the work of Wei–Xu
[30] for various explicit formulas in this spirit.

By convention, we say X is a nice symmetric space if either
(1) G is Q-simple;

or
(2) G ∼= SL2,Q× SL2,Q and H is the diagonal subgroup.8

For homogeneous spaces of type (I) or (II), works [26, 17, 5] provide explicit uniform error term
estimates for counting integral points with congruence conditions. Based on them, we are now in
a position to show:

Theorem 3.4. Nice algebraic groups and nice homogeneous spaces all satisfy the hypothesis (i)
of Theorem 3.1 with respect to an arbitrary affine integral model over Z (inside of An2

Z or An
Z

depending on the type).
8The case (2) corresponds to affine quadrics in four variables of signature (2, 2).
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Proof. Let X be such a homogeneous space. Fix X any affine integral model of X over Z as above
and consider for any a ∈ N 6=0 the integral model Xa of Xa over Z (cf. (42), which is also an integral
model of X since Xa

∼=Q X). As X(Q) 6= ∅, then Xa(Z) 6= ∅ if a is sufficiently divisible. Now fix
any such Xa.

Now we fix BXaf (ξ, l) (cf. (20)) a congruence neighbourhood of Xa, where l > 2 is an integer and
ξ ∈

∏
p|l Xa(Zp). Let ξ = (ξp)p|l be the image of ξ in Xa(Z/l) ∼=

∏
p|l Xa(Z/pvp(l)) under the residue

map Ψl (29). Since Xa is affine, each factor BXap (ξ, l) of BXaf (ξ, l) can equally be defined by means
of the congruence conditions in (21).

Building on the works of Nevo-Sarnak [26, Theorem 3.2] and Gorodnik-Nevo [16, Theorem 6.1]
for Type I varieties (using (51) (52) as in the proof of Theorem 3.2), and Browning-Gorodnik [5,
Corollaries 2.5 & 2.6] for Type II varieties, there exist σXa > 0, 0 < βXa < 1 such that, for any
connected component B∞ ⊂ X(R), we have, uniformly for any such (ξ, l),

NXa(φa,R(B∞)×BXaf (ξ, l);T ) = #{X ∈ Xa(Z) ∩ φa,R(B∞) : ‖X‖ 6 T, for any p | l,X ≡ ξp mod pvp(l)}
= #{X ∈ Xa(Z) ∩ φa,R(B∞) : ‖X‖ 6 T,X ≡ ξ mod l}

=

∫
φa,R(B∞)(T )×BXaf (ξ,l)

δXa d mXa +O(lσXa mXa
∞ (φa,R(B∞)(T ))1−βXa )

=

∫
φa,R(B∞)(T )×BXaf (ξ,l)

δXa d mXa +O(lσXa mX
∞(B∞(T ))1−βXa ).

Therefore this confirms the hypothesis (i) of Theorem 3.1 for the integral model X . �

Corollary 3.5. Assume that a homogeneous space X = G/H in Theorem 3.4 satisfies the hypoth-
esis (ii) of Theorem 3.1 with respect to a fixed affine integral model (inside of An2

Z or An
Z depending

on the type). Then X satisfies (APHL) with density δX (53). If moreover H is simply connected,
then X satisfies (APSHL).

Proof. It follows directly from Theorems 3.1, 3.2, 3.3 that X is Hardy-Littlewood with density δX .
Now let X be an affine integral model of X, and let a1 ∈ N 6=0 (depending on X ) be such that
every integral model Xa with a1 | a satisfies the hypothesis (ii) of Theorem 3.1. By Theorem 3.4,
there exists a2 ∈ N 6=0 (depending on X ) such that every Xa with a2 | a satisfies the hypothesis (i)
of Theorem 3.1. Therefore, Xa satisfies both hypotheses whenever a1a2 | a, and hence X satisfies
(APHL) with density δX by Theorem 3.1. Moreover, [4, Theorem 0.3, Corollary 0.3.3] shows that
X is strongly Hardy-Littlewood, provided that H is simply connected. �

3.3. Affine quadrics. Returning to the affine quadric Q (6). We recall that, on fixing P ∈ Q(Q),
Q is a symmetric space under G = Spinq with stabilizer H ∼= Spinq|P⊥ . The group Spinq is always
Q-simple if n > 5 or n = 3, whereas when n = 4, it can happen that Spinq ∼= SL2,Q× SL2,Q, which
is the only exceptional case where Spinq can possibly be not Q-simple ([5, Remark 2.4]). In any
case, affine quadrics with n > 3 variables are nice symmetric spaces.

Admitting Theorem 1.6, we can now prove our main theorems stated in the introduction.

Proof of Theorems 1.4 and 1.5. Recall that we assume the form q(x) defining the affine quadric Q
(7) to be R-isotropic. The real locus Q(R) of Q is a hyperboloid. It is connected if n > 4, and it
can be one sheeted or two sheeted when n = 3 (depending on H). It follows from (8) that for any
connected component B∞ ⊂ Q(R), we have

mQ
∞(B∞(T )) � T n−2.
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On the other hand, we take an integral model Q ⊂ An
Z of the form q(x) = m (cf. (6)) satisfying

the hypotheses of Theorems 1.4 and 1.5. Then for any a ∈ N6=0, on recalling (42), the twisted
integral model Qa ⊂ An

Z is defined by the equation

q(x) = a2m.

In particular −a2m det q 6= � and hence the hypothesis of Theorem 1.5 is always satisfied for any
a ∈ N6=0. Then Theorem 1.6 implies that the hypothesis (ii) of Theorem 3.1 holds for all Qa with

f1(x) =
1

x
, f2(x) =

1√
log x

.

Therefore the statements of Theorems 1.4 and 1.5 follow from Corollary 3.5. �

4. A geometric sieve for affine quadrics

In this whole section, we are devoted to proving Theorem 1.6. For this purpose, let us fix for
the rest of this section the integral model Q (6) over Z for Q, and a closed subset Z ⊂ Q of
codimension at least two. Let Z := Z ⊂ Q. For any 0 < N1 < N2 6 ∞ sufficiently large, let us
define

(54) V (T ;N1, N2) := #{X ∈ Q(Z) : ‖X‖ 6 T,∃p ∈ [N1, N2],X mod p ∈ Z}.
Thus for any M > 0,

#{X ∈ Q(Z) : ‖X‖ 6 T,∃p >M,X mod p ∈ Z} = V (T ;M,∞).

According to the range of N1, N2, we separate our discussion into three parts, in which (54) is
treated using different methods. In §4.1 we derive an upper bound for (54) valid for arbitrary
N1, N2, which is satisfactory if we take N1 growing to infinity as T → ∞ and N2 = Tα with
α > 0 sufficiently small. In §4.2, on taking N1 = Tα, N2 = T , we deal with the residues coming
from intermediate primes, by employing various Serre-type uniform bounds for integral points on
quadrics. In §4.3 we match together a generalised geometric sieve and our half-dimensional sieve
for affine quadrics so as to derive a satisfactory upper bound for the case N1 = T,N2 =∞. In §4.4
we assemble these bounds together and prove Theorem 1.6.

We shall always throughout assume that −m det q 6= � if n = 3. And we shall emphasise
uniformity of dependence in the assumption of all statements. Unless expressly stated to the
contrary, all implied constants are only allowed to depend on Q and Z.

4.1. Extension to prime moduli of polynomial growth. The purpose of section is to prove:

Theorem 4.1. For any 1� N1 < N2 <∞, we have

V (T ;N1, N2) = O

(
T n−2

N
codimQ(Z)−1
1

+ T (n−2)(1−βQ)N
(3n−2)(n−1)

2
+dimZ+1

2

)
.

Proof. Recall from §3.3 that we have Q ∼= G/H, with

dimG =
n(n− 1)

2
, dimH =

(n− 1)(n− 2)

2
.

Let us fix l0 > 2 such that Q is smooth over Z[1/l0]. Thanks to Theorem 3.4, the hypothesis of
Proposition 2.5 is fulfilled for B0 :=

∏
p|l0 Q(Zp) with exponent (cf. [5, Corollary 2.6])

σQ = dimH + 2 dimG =
(3n− 2)(n− 1)

2
.
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Applying Corollary 2.7, we conclude that for any connected component B∞ ⊂ Q(R), any p0

sufficiently large with p0 - l0,

NQ(B∞ ×BQf,0(Z(Fp0), p0);T )� mQ
∞(B∞(T ))

p
codimQ(Z)
0

+ mQ
∞(B∞(T ))1−βQpσX+dimZ

0

= O

(
T n−2

p
codimQ(Z)
0

+ T (n−2)(1−βQ)p
(3n−2)(n−1)

2
+dimZ

0

)
.

For any p, let us now consider

(55) Vp(T ;Z) := #{X ∈ Q(Z) : ‖X‖ 6 T,X mod p ∈ Z}.

Then for N1 sufficiently large, summing Vp0(T ;Z) over all such p0’s lying in [N1, N2], we get the
following upper bound for V (T ;N1, N2):

V (T ;N1, N2) 6
∑

N16p06N2

Vp0(T ;Z)

=
∑

N16p06N2

∑
B∞⊂Q(R)

NQ(B∞ ×BQf,0(Z(Fp0), p0);T )

=
∑

N16p06N2

O

(
T n−2

p
codimQ(Z)
0

+ T (n−2)(1−βQ)p
(3n−2)(n−1)

2
+dimZ

0

)

� T n−2

N
codimQ(Z)−1
1

+ T (n−2)(1−βQ)N
(3n−2)(n−1)

2
+dimZ+1

2 ,

as desired. �

4.2. Intermediate primes of polynomial range. The goal of this section is to show:

Theorem 4.2. Assume moreover that the quadratic form q is anisotropic over Q (and −m det q 6=
�) if n = 3. Then for any α > 0,

V (T ;Tα, T ) = Oα

(
T n−2

log T

)
.

Our method of obtaining the estimate in Theorem 4.2 is to break the sum into residue classes.
For any l > 2, ξ ∈ (Z/l)n, let us consider

(56) Vl(T ; ξ) := #{X ∈ Q(Z) : ‖X‖ 6 T,X ≡ ξ mod l}.

We shall separate our discussion into the cases n = 3 and n > 4. It turns out that we need
satisfactory bounds for the quantity (56) with l = p, which are uniform respect to p and ξ ∈ Fnp ,
and we need to prove that the contribution from summing over all p in this range is still satisfactory,
compared to the order of magnitude T n−2. Our argument is inspired by [5, §5].

4.2.1. Ingredients. We record here a uniform estimate for the growth of integral points on quadratic
hypersurfaces due to Browning-Gorodnik. This result is also useful in §5. For g(x) ∈ Q[x1, · · · , xL]
a polynomial of degree two, the quadratic part g0 of g is the homogeneous degree two part of g.
Let rk(g0) denote the rank of the quadratic form g0.
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Theorem 4.3 ([5] Theorem 1.11). For any ε > 0, we have, uniformly for any irreducible polyno-
mial g(x) ∈ Z[x1, · · · , xL] of degree two with rk(g0) > 2,

#{X ∈ ZL : ‖X‖ 6 T, g(X) = 0} = Oε(T
L−2+ε).

The implied constant is independent of the polynomial g.

The case of L = 3 is a direct consequence of dimension growth bounds obtained by Browning,
Heath-Brown and Salberger (cf. [5, Lemma 4.1]).

4.2.2. Affine quadrics with three variables. We start by the more involved case n = 3. We first
show the following basic fact. Recall that we always assume Q(Q) 6= ∅.

Lemma 4.4. The condition −m det q 6= � is equivalent to that Q does not contain any line over
Q.

Proof. We first note that Pic(QQ) = Z. To see how Pic(QQ) is generated, we recall that a projective
quadric surface S in P3 over Q has Picard group Pic(S) ∼= Z2. Any hyperplane section E ∈ |O(1)|
intersects S at a conic curve C of divisor type (1, 1). So that Pic(S E) ∼= Z2/Z(1, 1) ∼= Z. In
particular, if the conic curve C splits into two lines, then each of them generates Pic(S E). See
[18, II. Examples 6.6.1 & 6.6.2].

So if we compactify Q into Q ⊂ P3 and view Q as the complement of some hyperplane section
in Q, then the class of a Q-line on Q (if any) generates Pic(Q), since any Q-plane through that
line intersects Q at another Q-line. Let d := −m det q and fix P ∈ Q(Q). Let H ∼= (x2− dy2 = 1)

be the stabilizer of Spinq acting on P (cf. §3.3). The group G = Gal(Q(
√
d/Q)) operates on

Ĥ ∼= Pic(QQ), so that
Pic(Q) ∼= ĤG.

On the one hand, if d = �, then the tangent plane of Q at P intersects Q at two lines over Q (cf.
[10, p. 333]). On the other hand, if d 6= �, by [10, p. 331], we have Pic(Q) = 0. So we conclude
that Q contains no Q-lines if and only if d 6= �. �

With this at hand, recalling (56), we now show:

Proposition 4.5. Assume that n = 3. Then under the assumption of Theorem 4.2, uniformly for
any 1� p 6 T and ξ ∈ F3

p, we have

Vp(T ; ξ)�ε

(
T

p

)ε(
1 +

T

p
4
3

)
.

Proof. We fix 1 � p 6 T and ξ ∈ F3
p in our following arguments. Either Vp(T ; ξ) = 0, for which

the desired estimate is evident, or we can find X0 ∈ Q(Z) such that, ‖X0‖ 6 T,X0 ≡ ξ mod p.
On making the change of variables X = X0 + py, the new variable y ∈ Z3 satisfies the following
equations:

(57) ‖y‖ 6 2T

p
, y · ∇q(X0) + pq(y) = 0.

Since X0 is a smooth point of Q, we have ∇q(X0) 6= 0. Moreover p - gcd(X0), since otherwise
p | m, which cannot happen for p large enough. Since X0 ≡ ξ mod p, the second equation of (57)
implies that y lies in the lattice

Γp
ξ

:= {x ∈ Z3 : x · ∇q(ξ) ≡ 0 mod p}
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of determinant �� p, the implied constants depending only on q and m. 9 Thus

(58) Vp(T ; ξ) 6Mp

X0,ξ
(T ),

where

Mp

X0,ξ
(T ) := #

{
y ∈ Γp

ξ
: ‖y‖ 6 2T

p
,y · ∇q(X0) + pq(y) = 0

}
.

We are led to bounding Mp

X0,ξ
(T ).

Choose a minimal basis L = (l1, l2, l3) of Γp
ξ
such that (cf. [5, (5.3)])

(59) ‖l1‖ 6 ‖l2‖ 6 ‖l3‖, ‖l1‖‖l2‖‖l3‖ �� p,

so that, on making the non-singular change of variables y 7→ L·z, the new variable z = (z1, z2, z3) ∈
Z3 satisfies, by (57) and [5, p. 1075],

(60) |zi| 6
ciT

p‖li‖
, 1 6 i 6 3, q̃(z) + z ·Y0 = 0,

where ci > 0, 1 6 i 6 3 are absolute constants, and

q̃(z) = q(Lz), Y0 = p−1L∇q(X0).

Now we slice the second equation of (60) and get for each fixed integer z3 a resulting polynomial
qz3 ∈ Z[z1, z2]. By (60), the total number of z3 is

(61) � 1 +
T

p‖l3‖
.

We first claim that for any z3 = κ1 ∈ Q, rk((qκ1)0) = 2. Indeed, the quadratic part of qκ1 is

(qκ1)0 = q̃(z1, z2, 0).

The latter, viewed as quadratic form in two varieties, has rank 1 (that is, rk((qκ1)0) = 1) if and
only if (z3 = 0) is the tangent plane at certain point defined over Q of the projective quadric
(q = 0) ⊂ P2. By the assumption that q is Q-anisotropic, we conclude that this is impossible,
which proves the claim.

We further claim that for any z3 = κ2 ∈ Q, the polynomial qκ2 is irreducible over Q. Indeed, if
the polynomial qκ2 is reducible over Q for certain κ2 ∈ Q, that is, it splits into the product of two
polynomials f1, f2 of degree one, then (z3 = κ2)∩ (fi = 0) defines a Q-line on Q for i = 1, 2 (since
the change of variables at each step above is non-singular). This is absurd by Lemma 4.4 as we
always assume that −m det q 6= �.

Consequently, using (60), Theorem 4.3 shows that the contribution from integral points on each
quadric (qz3 = 0) with z3 ∈ Z is (as we assume p 6 T )

Apz3(T ) := #{(z1, z2) ∈ Z2 : |zi| �
T

p‖li‖
, 1 6 i 6 2, qz3(z1, z2) = 0}

= Oε

(
1 +

(
T

p‖l1‖

)ε)
= Oε

((
T

p

)ε)
,

9in fact det(Γp
ξ
) = p for p large enough, cf. [5, p. 1076-1077].
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where the implied constant is independent of z3. Therefore, taking (61) into account, we obtain
an upper bound for Mp

X0,ξ
(T ) as follows:

Mp

X0,ξ
(T ) 6

∑
|z3|� T

p‖l3‖

Apz3(T )

�ε

(
1 +

T

p‖l3‖

)
×
(
T

p

)ε
�ε

(
T

p

)ε(
1 +

T

p
4
3

)
,

because ‖l3‖ � p
1
3 by (59). This finishes the proof, thanks to (58). �

Proof of Theorem 4.2 for the case n = 3. We may assume that Z 6= ∅, hence dimZ = 0. We then
have #Z(Fp) 6 degZ for every prime p. Employing the estimate (cf. [1, Proposition 10])

(62)
∑
p6X

1

pσ
�σ

X1−σ

logX
, 0 < σ < 1,

and using Proposition 4.5, we sum over all primes in the interval [Tα, T ] and we get, for any
0 < ε < min(1

2
, 1

3
α),

V (T ;Tα, T ) 6
∑

Tα6p6T

∑
ξ∈Z(Fp)

Vp(T ; ξ)

�ε(degZ)
∑

Tα6p6T

(
T ε

pε
+
T 1+ε

p
4
3

)
�ε

T ε × T 1−ε

log T
+ T 1+ε− 1

3
α = Oε

(
T

log T

)
.

We fix ε > 0 small enough in terms of α so that the implied constant above depends only on α.
This proves the desired upper-bound. �

4.2.3. Affine quadrics with at least 4 variables. Now we turn to the case n > 4. The analogous
version of Proposition 4.5 as a key input for us is the following estimate obtained by Browning
and Gorodnik.

Proposition 4.6 ([5] Proposition 5.1). Assume n > 4. Then

Vp(T ; ξ)�ε

(
T

p

)n−3+ε(
1 +

T

p
n
n−1

)

holds uniformly for any prime 1� p 6 T and for any ξ ∈ Fnp .
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Proof of Theorem 4.2 for the case n > 4. Recalling the Lang-Weil estimate (9) for Z, we infer from
Proposition 4.5 and (62) that

V (T ;Tα, T ) 6
∑

Tα6p6T

∑
ξ∈Z(Fp)

Vp(T ; ξ)

�ε

∑
Tα6p6T

pn−3 ×
(
T

p

)n−3+ε(
1 +

T

p
n
n−1

)

�ε

∑
Tα6p6T

(
T n−3+ε

pε
+

T n−2+ε

p1+ 1
n−1

+ε

)

�εT
n−3+ε × T 1−ε

log T
+ T n−2+ε × T−

α
n−1 �ε

T n−2

log T
,

for any 0 < ε < min(1
2
, α
n−1

). It remains to fix ε > 0 small enough depending only on α to get the
desired dependence for the implied constant. �

4.3. Treatment of very large primes. The goal of this section is to generalise Ekedahl’s geo-
metric sieve [12] to affine quadrics. Our treatment is inspired by a discussion with Tim Browning,
to whom we express our gratitude.

Theorem 4.7. Let N1 = T,N2 =∞ in (54). Then

V (T ;T,∞) = O

(
T n−2

(log T )
1
2

)
.

Proof of Theorem 4.7. Up to a change of variables, we may assume that the Z-integral model Q
is defined by a diagonal quadratic form:

(63)
n∑
i=1

aix
2
i = m.

This may affect (54) via a different choice of equivalent height functions in terms of the form q,
which is clearly negligible. We may assume that an−1 · an > 0. By multiplying −1 to the equation
(63) if necessary we can assume that both of them are > 0. We can furthermore assume that
an = 1, and all other ai’s are square-free integers, and we write from now on an−1 = a > 0.

Next, upon enlarging the subvariety Z ⊂ Q of codimension at least two, we can assume that

(64) Z = Q ∩ (f = g = 0) ⊂ An
Q,

where the two polynomials f, g satisfy f ∈ Z[x1, · · · , xn−1], g ∈ Z[x1, · · · , xn−2]. Consequently,
assuming (64), then there exists l0 ∈ N6=0 depending only on Q, f, g such that

(65) Z ×Z Z[1/l0] ' Spec

(
Z[1/l0][x1, · · · , xn]∑n
i=1 aix

2
i −m, f, g

)
⊂ Q×Z Z[1/l0] ⊂ An

Z[1/l0].

In order to verify (64), let us consider the maps pr1 : An → An−1, pr2 : An−1 → An−2, and
pr3 = pr2 ◦ pr1, the first (resp. second) being the projection onto the first (n − 1) (resp. (n − 2))
coordinates. Since dim(Z) 6 n − 3, its image pr3(Z) has codimension at least one in An−2

Q .
Therefore we can choose g ∈ Z[x1, · · · , xn−2] such that pr3(Z) ⊆ Z ′ := (g = 0) ⊂ An−2

Q . On
the other hand, since the map pr1 |Q is affine and finite, the closed subset pr1(Z) ⊂ An−1

Q has
codimension at least two, and pr1(Z) ⊂ pr−1

2 (Z ′) = Z ′ × A1
Q, the latter being of codimension one
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in An−1
Q . We can choose f ∈ Z[x1, · · · , xn−1] such that pr1(Z) ⊂ (f = 0) ∩ pr−1

2 (Z ′). This gives
Z ⊂ Q ∩ (f = g = 0) ⊂ An

Q. Note that this above procedure may also be reformulated using the
classical elimination theory.
Case 1. First of all we recall Bhargava’s [3] quantitative version of Ekedahl’s geometric sieve

[12].

Theorem 4.8 ([3] Lemma 3.1 & Theorem 3.3). Let Y ⊂ AL
Z be a subscheme such that the generic

fibre YQ ⊂ AL
Q is of codimension k. Then for any M �Y 1,

(1) #{X ∈ Y(Z) : ‖X‖ 6 T} = OY(TL−k);

(2) #{X ∈ ZL : ∃p >M,X mod p ∈ Y} = OY

(
TL

Mk−1 logM
+ TL−k+1

)
.

We are going to consider three conditions under which we can reduce the problem to the affine
space An−2 via the fibration pr3 |Q and adapt Theorem 4.8 to get satisfactory upper bounds. If f
is constant in the variable xn−1, then Z = (Y1 × A2

Q) ∩Q where

Y1 := (f = g = 0) ⊂ An−2
Q

is of codimension two. Otherwise, if f is non-constant in xn−1, denote by h ∈ Z[x1, · · · , xn−2]
the leading coefficient of f in xn−1 and write f = hxcn−1 + f ′ with c > 0 such that the degree of
f ′ in xn−1 is strictly less than c. If codimAn−2

Q
(g = h = 0) = 1, we consider all the irreducible

(reduced) components of (g = 0) ⊂ An−2
Q , each defined by one of the polynomials g1, · · · , gk

say. Then either codimAn−2
Q

(gi = h = 0) = 2 or (gi = 0) ⊆ (h = 0). In the first case we let
Zi = (f = gi = 0) ∩ Q. In the second case we have (f = gi = 0) = (f ′ = gi = 0) ⊂ An

Q, and
we therefore let Zi = (f ′ = gi = 0) ∩ Q. So that Z ⊆ ∪ki=1Zi (this amounts to enlarging again
Z). Thus upon replacing f by f ′, considering its respective leading coefficient in xn−1, and finally
analysing each component Zi, we may assume that the subvariety

Y2 := (g = h = 0) ⊂ An−2
Q

satisfies codimAn−2
Q

(Y2) = 2. We then define
(66)
Y1 := Spec (Z[x1, · · · , xn−2]/(f, g)) ⊂ An−2

Z , and Y2 := Spec (Z[x1, · · · , xn−2]/(g, h)) ⊂ An−2
Z

depending on whether f is constant in xn−1 or not.
We now extract the set B1 consisting of X ∈ Zn−2 satisfying at least one of the following

conditions:

• g(X) = 0;
• the polynomial f is constant in xn−1 and there exists p > T,X mod p ∈ Y1;
• the polynomial f is non-constant in xn−1, and there exists p > T such that p | g(X), and
f(X, xn−1), as a polynomial in xn−1, is ∈ pZ[xn−1]. In particular this implies p | h(X) and
thus X mod p ∈ Y2.

On rearranging the contribution from V (T ;T,∞) by fixing the first n−2 variables and summing
over integral points on the fibres of pr3 |Q, we introduce the quantity

V1(T ;T,∞) := #{X = (X1, · · · , Xn) ∈ Q(Z) : ‖X‖ 6 T, (X1, · · · , Xn−2) ∈ B1}
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to bound the overall contribution from the subcases above. Then we have

V1(T ;T,∞) 6
∑

‖X‖6T :X∈B1

H1(X)

6


∑

X∈Zn−2:‖X‖6T
g(X)=0

1 +
∑

(if f is constant in xn−1)
X∈Zn−2:‖X‖6T
∃p>T,X mod p∈Y1

1 +
∑

(if f is non-constant in xn−1)
X∈Zn−2:‖X‖6T
∃p>T,X mod p∈Y2

1

H1(X),

where for any X ∈ Zn−2,

H1(X) := #{(u, v) ∈ Z2 : u2 + av2 = m−
n−2∑
i=1

aiX
2
i }.

We have clearly H1(X) = Oε(T
ε) uniformly for any ‖X‖ 6 T . As for the three sums in bracket,

one uses Theorem 4.8 ((1) applied to the the closure in An−2
Z of the codimension one subvariety

(g = 0) ⊂ An−2
Q for the first sum, and (2) applied to Y1,Y2 ⊂ An−2

Z in the remaining two sums),
and gets

(67) V1(T ;T,∞) = O

(
T n−3 +

T n−2

T log T
+ T n−3

)
×Oε(T

ε) = Oε(T
n−3+ε).

Case 2. Let us consider from now on the set B2 of X ∈ Zn−2 satisfying all of the conditions
below:

• g(X) 6= 0;
• for any p > T , f(X, xn−1) mod p is a non-zero polynomial in xn−1.

To give an upper bound for the overall contribution from Case 2, we define the quantity V2(T ;T,∞)
as

#{X = (X1, · · · , Xn) ∈ Q(Z) : ‖X‖ 6 T,∃p > T, p | gcd(f(X), g(X)), (X1, · · · , Xn−2) ∈ B2}.

We clearly have

V2(T ;T,∞) 6
∑

X∈B2:‖X‖6T
∃u,v∈Z,u2+av2=m−

∑n−2
i=1 aiX

2
i

H2(X),

where for any X ∈ Zn−2,

H2(X) :=
∑
p:p>T
p|g(X)

∑
y∈Z:|y|6T
p|f(X,y)

#{z ∈ Z : z2 = m− ay2 −
n−2∑
i=1

aiX
2
i }.

Under the assumption that X ∈ B2, we have,∑
p:p>T

p|g(X) 6=0

1 = O(deg g),
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because g(X) 6= 0, and g(X) � T deg g, so the number of primes > T dividing g(X) is � deg g.
Moreover, uniformly for any p > T ,∑

y∈Z:|y|6T
p|f(X,y)

1� (deg f)

(
T

p
+ 1

)
= O(deg f),

because f(X, xn−1) mod p is a non-zero polynomial in xn−1 and hence has at most deg f roots over
Fp. Hence all implied constants above depend only on the polynomials f, g, that is, the variety Z.
So

H2(X)� O(1)×O(1)×O(1) = O(1).

Returning to the error term V2(T ;T,∞). The bound for H2(X) results in

V2(T ;T,∞)� #C(T )×O(1),

where

C(T ) := {X ∈ Zn−2 : ‖X‖ 6 T,∃u, v ∈ Z, u2 + av2 = m−
n−2∑
i=1

aiX
2
i }.

We are reduced to bounding #C(T ). For this we appeal to Theorem 1.7, whose proof will
be given in the next section, by setting Q1(x) = m −

∑n−2
i=1 aix

2
i and Q2(y1, y2) = y2

1 + ay2
2. If

n > 4, then the affine quadric (Q1(x) = 0) ⊂ An−2 is clearly smooth. When n = 3, the condition
−m det q 6= � is equivalent to the stated one in Theorem 1.7. So all assumptions of Theorem 1.7
are satisfied. We thus obtain

(68) V2(T ;T,∞)� #C(T )� T n−2

(log T )
1
2

.

Finally, thanks to (65) and the construction of Y1,Y2 (66), when T > l0, we obtain the inequality

V (T ;T,∞) 6 V1(T ;T,∞) + V2(T ;T,∞).

Therefore, the bounds obtained in Case 1 (67) and in Case 2 (68) complete the proof. �

4.4. Proof of Theorem 1.6. Keeping the notation in Theorems 4.1, 4.2, 4.7, it suffices to choose
an appropriate parameter α to make these error terms satisfactory. We therefore let α > 0 satisfy

0 < α <
βQ(n− 2)

(3n−2)(n−1)
2

+ dimZ + 1
,

so that

α

(
(3n− 2)(n− 1)

2
+ dimZ + 1

)
+ (n− 2)(1− βQ) < n− 2.

If M < Tα, then with the choice N1 = M < N2 = Tα in Theorem 4.1, we have

V (T ;M,Tα) = Oα,β

(
T n−2

M codimQ(Z)−1
+ Tα(

(3n−2)(n−1)
2

+dimZ+1)+(n−2)(1−βQ)

)
.
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Therefore, we finally obtain, since codimQ(Z) > 2,

V (T ;M,∞) 6V (T ;M,Tα) + V (T ;Tα, T ) + V (T ;T,∞)

=O

(
T n−2

M codimQ(Z)−1
+ Tα(

(3n−2)(n−1)
2

+dimZ+1)+(n−2)(1−βQ) +
T n−2

log T
+

T n−2

(log T )
1
2

)

=O

(
T n−2

M codimQ(Z)−1
+

T n−2

(log T )
1
2

)
.

If M > Tα, then

V (T ;M,∞) 6 V (T ;Tα, T ) + V (T ;T,∞) = O

(
T n−2

(log T )
1
2

)
.

This is also satisfactory because

T n−2

M codimQ(Z)−1
= o

(
T n−2

(log T )
1
2

)
.

This finishes the proof of Theorem 1.6. �

5. A half-dimensional sieve for affine quadrics

The goal of this section is devoted to proving Theorem 1.7. Our strategy is based on an upper-
bound version of Brun-type half-dimensional sieve, developed in works [19, 15]. This is recorded
in §5.2. Keeping the notation in Theorem 1.7, let us fix throughout this section a quadratic
polynomial Q1(x) ∈ Z[x1, · · · , xL], and a primitive positive-definite non-degenerate quadratic form
Q2(y) ∈ Z[y1, y2]. Let DQ2 be the discriminant of the form Q2. We have DQ2 6 −3. In §5.1 we
collect some well-known facts about representation of integers by primitive binary quadratic forms
of negative discriminant. We shall give full details of the proof of Theorem 1.7 for the case L > 2
in §5.3, and we indicate necessary modifications in §5.4 for the case L = 1, which is a classical
result going back to Bernays [2] (see also [15, p. 2 Remarks 2 ]).

5.1. Representation by binary quadratic forms. Let us define two arithmetic functions b(·)
and b∗(·), characterizing integers represented by the form Q2(u, v). First define

(69) PQ2 :=

{
p :

(
DQ2

p

)
= −1

}
,

where
(
·
p

)
is the Legendre symbol of modulus p. For n ∈ Z, let

(70) b(n) :=

{
1 if ∃u, v ∈ Z, n = Q2(u, v);

0 otherwise,

and

(71) b∗(n) :=

{
1 if ∀p | n, p 6∈ PQ2 ;

0 if ∃p ∈ PQ2 , p | n.

Fix n ∈ N6=0. We recall that (see for example [21, Lemmas 1 & 2]), if there exists p ∈ PQ2 such
that n = p2k+1m, with k ∈ N,m ∈ N 6=0, gcd(p,m) = 1, then b(n) = 0. So, if b(n) = 1, then for
any p ∈ PQ2 , p | n, there exists k ∈ N, such that p2k‖n. We conclude from this analysis that if
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b(n) = 1 then b∗(n/r) = 1 with certain perfect square r dividing n, whose prime divisors (if any)
are all in PQ2 . The function b∗ is clearly multiplicative, however it is not the case for b in general.

5.2. The half-dimensional sieve. Let A = (ai)i∈I be a finite sequence of integers indexed by I.
For any r ∈ N6=0, let Ar be the subsequence consisting of elements of A divisible by r. That is,
Ar = (ai)i∈Ir with Ir = {i ∈ I : r | ai}. Let P be a subset of prime numbers. For any z > 1, define
the sifting function

S(A,P , z) := #{i ∈ I : gcd(ai,
∏
p:p∈P
p<z

p) = 1}.

We will employ the following version of the half-dimensional sieve due to Friedlander and Iwaniec.

Theorem 5.1 ([19] Theorem 1, [15] Lemma 1). There exists a continuous function G : ]0,∞[→
R>0 such that, for any multiplicative arithmetic function ρ satisfying

• 0 6 ρ(p) < p for any p ∈ P;
• there exists K > 0 such that

(72)

∣∣∣∣∣∣∣
∑
p:p∈P
p<x

ρ(p)

p− ρ(p)
log p− 1

2
log x

∣∣∣∣∣∣∣ 6 K

for any x > 2,
we have, for any y, z > 2,

S(A,P , z) 6 Λ
(
G (w) +DK,w(log y)−

1
5

) ∏
p:p∈P
p<z

(
1− ρ(p)

p

)
+

∑
d<y

p|d⇒p<z,p∈P

|µ(d)R(d)|,

where

w :=
log y

log z
, Λ := #A(= #I), R(d) := #Ad −

ρ(d)

d
Λ,

and DK,w > 0 depends only on K,w.

5.3. Proof of Theorem 1.7 for the case L > 2. With the notation in §5.1, our ultimate goal
is to deduce the desired non-trivial upper bound for

(73)
∑

X∈ZL:‖X‖6T

b(Q1(X))

via applying Theorem 5.1 to S(A,P , z) with appropriately chosen ρ,A,P , z. Firstly it is convenient
to deal separately with the X’s with Q1(X) = 0, because b(0) = 1 but b∗(0) = 0. For this we use
the evident upper bound (Theorem 4.8 (1))

(74) B1(T ) := #{X ∈ ZL : ‖X‖ 6 T,Q1(X) = 0} � TL−1.

Now the discussion in §5.1 shows that

(75)
∑

X∈ZL:‖X‖6T

b(Q1(X)) 6 B1(T ) +
∗∑
r

∑
X∈ZL:‖X‖6T

r|Q1(X)

b∗(Q1(X)/r),

where the sum with superscript ∗ means that r is restricted to all non-zero perfect squares whose
prime divisors are all in PQ2 (69).
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We consider the sequence
A(T ) := {Q1(X)}X∈ZL:‖X‖6T .

For r ∈ N 6=0, we define the subsequence

A(T )r := {Q1(X)/r}X∈ZL:‖X‖6T
r|Q1(X)

.

Consider the arithmetic multiplicative functions ω, %, defined for N ∈ N6=0 by

(76) ω(N) := #{ξ ∈ (Z/NZ)L : Q1(ξ) ≡ 0 mod N}, %(N) :=
ω(N)

NL−1
.

Then ω(N)�ε N
L−1+ε. We have, by the Chinese remainder theorem, that for any N ∈ N 6=0,

#A(T )N = #{X ∈ ZL : ‖X‖ 6 T, r | Q1(X)}

=
∑

ξ∈(Z/NZ)L

Q1(ξ)≡0 mod N

#{y ∈ (NZ)L : ‖y + ξ‖ 6 T}

= ω(N)

(
2T

N
+O(1)

)L
.

(77)

By assumption, the affine variety (Q1 = 0) ⊂ AL
Q. Then there exists l0 ∈ N 6=0 such that the affine

scheme Spec (Z[x1, · · · , xL]/(Q1(x))) is smooth over Z[1/l0] with geometrically integral fibres. So
by the Lang-Weil estimate (10), for any p - l0, we have

%(p) = 1 +O(p−
1
2 ).

Let us define

(78) P ′Q2
= PQ2 {p : %(p) = p}.

Since there are at most finitely many primes p satisfying %(p) = p, the primes in the set P ′Q2
have

the same density as those in PQ2 , namely one half (amongst the prime residues modulo 4D′Q2
with

D′Q2
| DQ2 such that D′Q2

is square-free and DQ2/D
′
Q2

is a square (cf. [29, VI. Propositions 5 &
14])). With these notions, for any r ∈ N6=0, λ > 0, one has

(79)
∑

X∈ZL:‖X‖6T

b∗(Q1(X)/r) 6 S(A(T )r,PQ2 , T
λ) 6 S(A(T )r,P ′Q2

, T λ).

We next claim that it suffices to deal with sufficiently small r’s in (75), more precisely r < T γ

for certain 0 < γ < ∆L := 1
4L
. Whenever there exists r = q2 | Q1(X) 6= 0 for some ‖X‖ 6 T , we

always have r 6 |Q1(X)| � T 2, in other words, q 6
√
|Q1(X)| � T , and so by (77),

#A(T )q2 � ω(q2)×

((
T

q2

)L
+ 1

)

�ε (q2)L−1+ε ×

((
T

q2

)L
+ 1

)

�ε
TL

q2−ε + q2L−2+ε.
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Therefore the contribution from all r ∈ [T γ, T 1+2∆L ] is
(80)

∗∑
r∈[T γ ,T 1+2∆L ]

∑
X∈ZL:‖X‖6T

r|Q1(X)

b∗(Q1(X)/r) 6
∑

q∈[T
γ
2 ,T

1
2 +∆L ]

#A(T )q2 �ε T
L− γ

2
+ε + TL−∆L+ε � TL−

γ
2

+ε.

This is satisfactory compared to the expected leading term TL√
log T

. Next, for

(81) T 1+2∆L < r � T 2 ⇔ T
1
2

+∆L < q � T,

we regard the (L + 1)-tuple (X, q) = (X1, · · · , XL, q) ∈ ZL+1 as an integral point on the affine
quadric

Qs(x, z) : (Q1(x)− sz2 = 0) ⊂ AL+1,

where s is an auxiliary integer parameter satisfying 0 6= s � T 1−2∆L , thanks to the preassigned
bound (81) for q and the fact that if Q1(X) = 0 then b∗(Q1(X)/r) = 0 for any r ∈ N 6=0. We
want to insert the uniform upper bound estimate in Theorem 4.3 for the quadrics Qs(x, z) with
s 6= 0. Recall that we assume L > 2, so rk(Qs)0 > 2 whenever s 6= 0, and moreover the quadratic
polynomial Q1(x)− sz2 is irreducible. Since otherwise Q1(x)− sz2 = (s1z + A1(x))(s2z + A2(x))
and this would imply that Q1(x) = A1(x)A2(x), a contradiction to the assumption that (Q1 = 0)
is smooth. So the hypotheses of Theorem 4.3 are satisfied. We conclude that the contribution of
such r’s satisfying (81) is

∗∑
T 1+2∆L<r�T 2

∑
X∈ZL:‖X‖6T

r|Q1(X)

b∗(Q1(X)/r)�
∑

06=s�T 1−2∆L

#{(X, q) ∈ ZL+1 : ‖(X, q)‖ � T,Qs(X, q) = 0}

�ε

∑
s�T 1−2∆L

TL+1−2+ε � TL−2∆L+ε.

(82)

This is also satisfactory and proves our claim. Gathering together (75) (79), equation (73) now
becomes

∑
X∈ZL:‖X‖6T

b(Q1(X)) 6 B1(T ) +
∗∑

r<T γ

∑
X∈ZL:‖X‖6T

r|Q1(X)

b∗(Q1(X)/r) +
∗∑

r>T γ

∑
X∈ZL:‖X‖6T

r|Q1(X)

b∗(Q1(X)/r)

6 B2(T ) +
∗∑

r<T γ

S(A(T )r,P ′Q2
, T λ),

(83)

where

B2(T ) = B1(T ) +
∗∑

r>T γ

∑
X∈ZL:‖X‖6T

r|Q1(X)

b∗(Q1(X)/r) = Oε(T
L− γ

2
+ε)

according to (74) (80) (82), and 0 < γ < ∆L, λ > 0 are to be chosen later. Everything now boils
down to the estimation of S(A(T )r,P ′Q2

, T λ).
Our task is to apply Theorem 5.1 to each A(T )r. For this purpose we fix r ∈ N6=0. If ω(r) = 0

then the subsequence A(T )r is empty. We therefore assume from now on that ω(r) 6= 0. By taking
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a crude estimate on the error term of (77), we get

(84) Λr := #A(T )r =
ω(r)

rL
(2T )L +Oε(r

L−1+εTL−1).

We define arithmetic functions

ωr(N) :=
ω(rN)

ω(r)
, %r(N) :=

ωr(N)

NL−1
=
%(rN)

%(r)
, N ∈ N6=0.

Let us now verify that the functions ωr and %r are multiplicative. Indeed, for any N ∈ N 6=0, we
factorize N = N1N2, r = r1r2 such that gcd(r1N1, r2N2) = 1. Then

ωr(N) =
ω(r1r2N1N2)

ω(r1r2)
=
ω(r1N1)

ω(r1)

ω(r2N2)

ω(r2)

=
ω(r1N1)ω(r2)

ω(r1)ω(r2)

ω(r2N2)ω(r1)

ω(r2)ω(r1)

=
ω(rN1)

ω(r)

ω(rN2)

ω(r)
= ωr(N1)ωr(N2).

By Hensel’s lemma, for any p - l0 and p | r, one has ω(pr) = ω(r)pL−1, and by the Chinese
remainder theorem, for any p - r, ω(rp) = ω(r)ω(p). Hence

(85) %r(p) =

{
%(p) if p - r;
1 if p | r.

This implies %r(p) = 1 + O(p−
1
2 ) uniformly for any prime p and any r ∈ N 6=0, so by Mertens’ first

theorem on arithmetic progressions (cf. e.g. [20, Theorem 2.2]), the hypotheses of Theorem 5.1,
in particular (72), are satisfied for the arithmetic function %r and the set P ′Q2

uniformly for any r
(that is, the remainder term K in (72) depends only on Q1, Q2 and is independent of r). Next we
need to evaluate, for each d ∈ N 6=0, the cardinality of the subsequence A(T )rd, using (84) and the
definition of ωr, %r:

#A(T )rd =
ω(dr)

(dr)L
(2T )L +O(ω(dr)TL−1)

=
ωr(d)

dL
ω(r)

rL
(2T )L +O((dr)L−1+εTL−1)

=
%r(d)

d
Λr +O((dr)L−1+εTL−1).

Define

Rr(d) := #A(T )rd −
%r(d)

d
Λr.

The above computation shows that

Rr(d) = Oε((dr)
L−1+εTL−1).
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On applying Theorem 5.1 to %r,A(T )r,P ′Q2
for each perfect square r with all prime divisors in

PQ2 , with z = T λ, y = T β, for λ, β > 0 small enough, we get,

S(A(T )r,P ′Q2
, T λ)

6
(
G(β/λ) +Dλ,β(log T )−

1
5

)
Λr

∏
p:p∈P ′Q2

p<Tλ

(
1− %r(p)

p

)
+
∑
d<Tβ

|Rr(d)|

=
(
G(β/λ) +Dλ,β(log T )−

1
5

)ω(r)

rL

∏
p:p∈P ′Q2

p<Tλ

(
1− %r(p)

p

) (2T )L +Oε

(∑
d<Tβ

(dr)L−1+εTL−1

)
,

where Dλ,β > 0 depends only on λ, β,Q1, Q2. Thanks to (85), the leading term in the last expres-
sion, up to the factor

(
G(β/λ) +Dλ,β(log T )−

1
5

)
(2T )L, can be written as ∏

p:p<Tλ

p∈P ′Q2

(
1− %(p)

p

)×
ω(r)

rL

∏
p:p|r
p∈P ′Q2

((
1− 1

p

)(
1− %(p)

p

)−1
) .

We are finally in a position to evaluate the sum in (83) as follows. The series
∑

r=� cr, formed
by

cr :=
ω(r)

rL

∏
p:p|r
p∈P ′Q2

((
1− 1

p

)(
1− %(p)

p

)−1
)

=
ω(r)

rL

∏
p:p|r
p∈P ′Q2

p− 1

p− %(p)
,

converges, because

cr �ε
rL−1+ε

rL
× rε �ε

1

r1−ε .

Therefore,

∑
r=�,r<T γ

p|r⇒p∈PQ2

S(A(T )r,P ′Q2
, T λ)

�ε

(G(β/λ) +Dλ,β(log T )−
1
5

)
(2T )L

∏
p:p<Tλ

p∈P ′Q2

(
1− %(p)

p

)
 ∑

r=�,r<T γ

p|r⇒p∈PQ2

cr

+
∑

r,d∈N6=0

r<T γ ,d<Tβ

(dr)L−1+εTL−1

= Oγ,λ,β

(
TL√

(log T )

(
1 + (log T )−

1
5

))
+Oγ,λ,β,ε(T

L−1+(γ+β)L+ε).

(86)

Upon choosing λ, γ, β, ε > 0 small enough, this finishes the proof of Theorem 1.7 for the case
L > 2. �
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Remark 5.2. It would be interesting to ask whether a lower bound of expected magnitude TL√
log T

exists for (73), just as was established in [15, Theorem 1] for the case L = 1 under some mild
assumptions.

5.4. Sketch of proof of Theorem 1.7 for the case L = 1. In this case it is equivalent to
showing the following. For b1, b2 ∈ Z6=0, assume that −DQ2b1b2 6= �. Then

(87) #{x ∈ Z : |x| 6 T : ∃u, v ∈ Z, b1x
2 + b2 = Q2(u, v)} � T√

log T
.

We may assume that b1 > 0, since the set above has finite cardinality if b1 < 0 and the upper
bound (87) is trivially satisfied. Most reasoning (especially the treatment of error terms) is akin to
§5.3. We choose to only outline how the dominant term comes out, which is the major difference
between these two cases. Let D be the square-free part of −b1b2.

Let us first assume D = 1. Upon change of variables we are reduced to the case where b1 = 1
and b2 = b2 = �, so that the identity inside (87) is written as

(x+ b)(x− b) = Q2(u, v).

Since gcd(x+ b, x− b) | 2b, on defining

L1(x) := x+ b, L2(x) := x− b,
and

P4Q2
:= PQ2 ∪ {p : p | 2b}, b∗4(n) =

{
1 if ∀p | n, p 6∈ P4Q2

;

0 if ∃p ∈ P4Q2
, p | n,

then our discussion in §5.1 shows that (75) can be modified correspondingly as∑
X∈Z:‖X‖6T

b(Q1(X)) 6 B1(T ) +
∗∑
r4

∑
X∈Z:‖X‖6T
r4|L1(X)

b∗4(L1(X)/r4) +
∗∑
r4

∑
X∈Z:‖X‖6T
r4|L2(X)

b∗4(L2(X)/r4),

where B1(T ) is the same as (74) and the sums with superscript ∗ are over non-zero squared integers
r4 such that p | r4 ⇒ p ∈ P4Q2

. The remaining argument is identical and thus omitted.
Let us now discuss the case where D 6= 1, which means that the polynomial Q1(x) is irreducible

over Q. In particular the Legendre symbol
(
D
·

)
is non-constant. Let us keep using the notation

PQ2 (69) and ω(·), %(·) (76) defined in §5.3. Then for any p - 2b1b2,

ω(p) = %(p) =

{
2 if

(
D
p

)
= 1;

0 otherwise.

Since −DQ2b1b2 6= �, the map

{p prime : p - 2b1b2DQ2} −→ {±1}2

p 7−→
((

DQ2

p

)
,

(
D

p

))
is surjective. On the one hand if |DQ2D| 6= �, let D0 be the square-free part of DQ2D. Therefore
we have |D0| 6= 1, and so primes in exactly one quarter of the residue classes modulo 4|D0| satisfy

(88)
(
DQ2

p

)
= −

(
D

p

)
= −1.



INTEGRAL POINTS ON AFFINE QUADRICS 39

On the other hand, if |DQ2D| = �, then in this case primes in exactly one quarter of the residue
classes modulo 4|D| satisfy (88). To summarize, recall P ′Q2

(78) and let

P ′′Q2
:= P ′Q2

{p : p | 2b1b2}.
Then by Mertens’ theorem regarding primes in arithmetic progressions, one deduces that∑

p:p∈P ′′Q2
p<x

%(p)

p− %(p)
log p ∼ 2

∑
p:

(
DQ2
p

)
=−(D

p )=−1

p<x

log p

p
∼ 2× 1

4
log x =

1

2
log x.

Therefore % satisfies the condition (72) in the half-dimensional sieve (Theorem 5.1). So the domi-
nant term in (86) takes the desired form:

T
∏
p∈P ′′Q2

p<Tλ

(
1− %(p)

p

)
� T

∏
p:

(
DQ2
p

)
=−(D

p )=−1

p<Tλ

(
1− 2

p

)
� T√

log T
.

Remark 5.3. To further clarify Remark 1.8 at this point, note that if −DQ2b1b2 = �, which is
equivalent to DQ2D = �, then (

DQ2

p

)
= −1⇔

(
D

p

)
= −1.

The main term in the sifting function now grows like

T
∏
p∈P ′Q2

p<Tλ

(
1− %(p)

p

)
= T

∏
p∈PQ2

p<Tλ

(
1− 2

p

)
� T,

which does not give the log saving.
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