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COMBINED COUNT OF REAL RATIONAL CURVES OF

CANONICAL DEGREE 2 ON REAL DEL PEZZO SURFACES

WITH K2 = 1

S. FINASHIN, V. KHARLAMOV

Abstract. For del Pezzo surfaces of this type, we propose two ways of count-
ing real rational curves of canonical degree 2. The both have exceptionally

strong invariance property: the result does not depend on the choice of a sur-

face. The first one includes all divisor classes of canonical degree 2 and gives
in total 30. The other one excludes the class −2K, but adds up the results of

counting for Bertini pair of real structures. This count gives 96.

Vor dem Gesetz steht ein Trhter.
Zu diesem Trhter kommt ein Mann vom Lande und
bittet um Eintritt in das Gesetz. Aber der Trhter sagt,
da er ihm jetzt den Eintritt nicht gewhren knne. Der
Mann berlegt und fragt dann, ob er also spter werde
eintreten drfen.
”Es ist mglich”, sagt der Trhter, ”jetzt aber nicht.”

F. Kafka, Die Parabel ”Vor dem Gesetz”

1. Introduction

This work is based on our previous paper [FK]. So we start with recalling its
setup and principal ingredients.

1.1. Short review of [FK]. By definition, a compact complex surface X is a del
Pezzo surface of degree 1, if X is non-singular and irreducible, its anticanonical
class −KX is ample, and K2

X = 1. The image of X by a bi-anticanonical map
X → P3 is then a non-degenerate quadratic cone Q ⊂ P3, with X → Q being a
double covering branched at the vertex of the cone and along a non-singular sextic
curve C ⊂ Q (a transversal intersection of Q with a cubic surface). In particular,
each del Pezzo surface of degree 1 carries a non-trivial automorphism, known as
the Bertini involution, that is the deck transformation τX of the covering.

Any real structure, conj : X → X, has to commute with τX , and this gives
another real structure τX ◦ conj = conj ◦τX which we call Bertini dual to conj. It
is such a pair of real structures, {conj, conj ◦τX}, that we call a Bertini pair. We
generally use notation conj± for Bertini pairs of real structures and write X± for
the corresponding pairs of real del Pezzo surfaces to simplify a more formal notation
(X, conj±).

The bi-anticanonical map projects the real loci X±R to two complementary do-

mains Q±R ⊂ QR on QR, where the latter is a cone over a real non-singular conic
with non-empty real locus. The branching curve C is real too, and its real locus CR
together with the vertex of the cone form the common boundary of Q±R . Conversely,
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2 COMBINED COUNT OF REAL RATIONAL CURVES OF CANONICAL DEGREE 2

for any real non-singular curve C ⊂ Q which is a transversal intersection of Q with
a real cubic surface, the surface X which is the double covering of Q branched at
the vertex of Q and along C is a del Pezzo surface of degree 1 inheriting from Q a
pair of Bertini dual real structures conj±.

Recall also an intrinsic description of the basic Pin−-structure introduced in
[FK].

1.1.1. Theorem. There is a unique way to supply each real del Pezzo surface X of
degree 1 with a Pin−-structure θX on XR, so that the following properties hold:

(1) θX is invariant under real automorphisms and real deformations of X. In
particular, the associated quadratic function qX : H1(XR;Z/2) → Z/4 is
preserved by the Bertini involution.

(2) qX vanishes on each real vanishing cycle in H1(XR;Z/2) and takes value 1
on the class dual to w1(XR).

(3) If X± is a Bertini pair of real del Pezzo surfaces of degree 1, then the
corresponding quadratic functions qX± take equal values on the elements
represented in H1(X±R ;Z/2) by the connected components of CR.

The Picard group of a del Pezzo surface (as well as that of any rational surface)
is naturally isomorphic to the second homology group with integer coefficients,
PicX = H2(X). It has a natural grading by canonical degree, α 7→ −αKX . In
the case of del Pezzo surfaces of degree 1, the subgroup of minimal, zero, grading
is the lattice K⊥X which is isomorphic to E8 and generated by geometric vanishing
cycles. Over C, the set of geometric vanishing cycles coincides with the set of roots.
Neither of divisor classes of degree 0 is effective. If X is equipped with a real
structure conj, then the Picard group of real divisor classes is a subgroup of PicX
naturally isomorphic to H2(X) ∩ ker(1 + conj∗). The latter splits in an orthogonal
direct sum ZKX ⊕ (K⊥X ∩ ker(1 + conj∗)). For the list of isomorphism classes of the
lattices K⊥X ∩ ker(1 + conj∗), see for example Table 1 in Section 2.

The only effective divisor classes in the coset −KX + E8 of degree 1 classes are
−KX and −KX − e where e is any root of E8. The linear system | − KX | is of
projective dimension 1 and consists of pull-backs to X of line generators of Q. The
divisors representing the classes −KX − e are rigid, they are (−1)-curves, called by
definition lines. Over C they are in one-to-one correspondence with the roots e in
K⊥X , and over R with the roots in K⊥X ∩ ker(1 + conj∗).

It is for a signed count of real lines that the above Pin−-structure was employed
in [FK]. Namely, a real line L ⊂ X was called hyperbolic (resp. elliptic) if qX(LR) =
1 ∈ Z/4 (resp. qX(LR) = −1 ∈ Z/4), and an integer weight s(L) = 1 (resp.
s(L) = −1) was attributed to hyperbolic (resp. elliptic) lines. As was shown in
[FK], for counting real lines with these weights the following fundamental relations
hold:

(1.1.1)
∑

real lines L⊂X

s(L) = 2 rk(K⊥X ∩ ker(1 + conj∗))

and, for each Bertini pair X±,

(1.1.2)
∑

real lines L⊂X+

s(L) +
∑

real lines L⊂X−

s(L) = 16.

The divisor classes of lines together with −KX constitute the first layer in the
semigroup of effective divisor classes, that is the set of effective divisor classes α of
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canonical degree −αKX = 1. The curves in the divisor class −KX form a pencil of
curves of arithmetic genus 1, so that a generic curve in this pencil is a nonsingular
curve of geometric genus 1 while a finite number of curves in this pencil is rational.
Therefore, it is reasonable to combine the count of real lines with a count of real
rational curves A belonging to the divisor class −KX , attributing (similar to the
above) to each of them the weight s(A) = iqX(AR)−1w(A) where w(A) stands for a
modified Welschinger weight of A, that is (−1)cA where cA stands for the number
of non-solitary real nodes of A. Then, as it can be easily deduced from (1.1.1),
an additional relation holds when we are performing such a weighted count of real
rational curves over the whole first layer.

1.1.2. Theorem. For any real del Pezzo surface X of degree 1,

(1.1.3)
∑

real lines L⊂X

s(L) +
∑

real rational curves A∈|−KX |

s(A) = 8. �

1.2. Next step. In this paper, we carry out a similar study of the second layer of
the semigroup of effective divisor classes, that is the set of effective divisor classes
α of canonical degree −αKX = 2. As is known, this semigroup is generated by the
elements of its first layer (namely, by −K and the divisor classes of lines), and thus
the second layer is formed by sums of two elements in the first one.

To extend the universal counting relations (1.1.2) and (1.1.3) to the second layer,
we exclude from the consideration the divisor classes of type −2KX − 2e where e
is a root in K⊥X , and the classes of type −2KX − e1 − e2 where e1, e2 are roots
in K⊥X with e1 · e2 = −1. Their exclusion from consideration is motivated mainly
by conventions in Gromov-Witten theory that impose to count such classes for 0
(neither of these classes α allows to trace a rational curve of divisor class α through
a 1 = −αKX − 1 fixed generic point).

Therefore, the remaining part B(X) of the second layer and its real part BR(X) =
B(X) ∩ ker(1 + conj∗) split as

B(X) =B0(X) ∪ B2(X) ∪ B4(X), B2k(X) = {−2KX − v | v ∈ K⊥X , v2 = −2k},

BR(X) =B0R(X) ∪ B2R(X) ∪ B4R(X), B2kR (X) = B2k(X) ∩ ker(1 + conj∗).

The curves A ⊂ X in each of the divisor classes α ∈ B2k have arithmetic genus
2− k and form a linear system of projective dimension 3− k. Thus, in our counts
we pick a point x ∈ XR and for each α ∈ B2k introduce into consideration the
following sets of curves

C2k(α, x,X) ={A ⊂ X |A is rational, [A] = α, x ∈ A},

C2kR (α, x,X) ={A ∈ C2k(α, x,X) |A is real}

and put

C2k(x,X) =
⋃

α∈B2k(X)

C2k(α, x,X), C2kR (x,X) =
⋃

α∈B2k
R (X)

C2kR (α, x,X),

C(x,X) = C0(x,X) ∪ C2(x,X) ∪ C4(x,X),

CR(x,X) = C0R(x,X) ∪ C2R(x,X) ∪ C4R(x,X).

For a generic choice of x ∈ XR, each of these sets is finite.
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The main results of this paper are the following two theorems, which provide an
extension of the strong invariance properties (1.1.2) and (1.1.3) form the first layer
to the second.

1.2.1. Theorem. For any real del Pezzo surface X of degree 1 and any generic
point x ∈ XR, we have

(1.2.1)
∑

A∈CR(x,X)

s(A) = 30

with

(1.2.2) s(A) = iq̂X([A])w(A), w(A) = (−1)cA

where q̂X([A]) = qX(AR) and cA stands for the number of non-solitary real nodes
of A.

1.2.2. Theorem. For any Bertini pair of real del Pezzo surfaces X± of degree 1
and any pair of real generic points x± ∈ X±R , we have

(1.2.3)
∑

A∈C2R(x+,X+)∪C4R(x+,X+)

s̃(A) +
∑

A∈C2R(x−,X−)∪C4R(x−,X−)

s̃(A) = 96

where

(1.2.4) s̃(A) =

{
s(A), if A ∈ C2R(x±, X±),

2s(A), if A ∈ C4R(x±, X±).

It may be worth to mention that our initial motivation was to study quadric
sections of a real quadric cone Q ⊂ P3 that are 6-tangent to a fixed real sextic
curve C ⊂ P3 and to elaborate for them a count which would have as strong
invariance properties as the count of real 3-tangent hyperplane sections established
in [FK] as one of the main applications of the relation (1.1.2) (see Section 5). It is
from analysis of the underlying wall-crossing phenomena that we came to an idea
to combine together B2(X) and B4(X) and developed the corresponding system of
weights. It is in this way that we arrived to Theorem 1.2.2 and proved it initially.
Later on we elaborated another, more arithmetic oriented, proof. Below, we give
the both proofs with a hope that either of them may help to reveal a general law.
At least, it is due to this arithmetic proof that we noticed another system of weights
that led us to Theorem 1.2.1, where by such a change of weights and introducing
into consideration B0(X) we turned to achieve the strong invariance statement for
each of the real structures in a Bertini pair separately.

The paper is organized as follows. The arithmetic proof is presented in Sections
2 and 3. Namely, in Section 2 we treat separately a bit more tricky case of maximal
and submaximal surfaces, while the other cases are carried out in Section 3. Another
proof, via wall-crossing, is discussed in Section 4. In Section 5 we present an
application of Theorems 1.2.1-1.2.2 to counting real quadric sections 6-tangent to
a real sextic curve on a real quadric cone.

1.3. Acknowledgements. This work was accomplished during a stay of the sec-
ond author at the Max-Planck-Institut für Mathematik in Bonn. He thanks the
MPIM for hospitality and excellent (despite a complicated pandemic situation)
working conditions.
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2. Preliminary count for surfaces with a connected maximal or
submaximal real locus

2.1. Real forms of del Pezzo surfaces of degree 1. Recall that the real de-
formation class of any real del Pezzo surface X of degree 1 is determined by the
topology of XR. There are 11 deformation classes. The corresponding topological
types are shown in the first line of Table 1, where T2 stands for a 2-torus and K
for a Klein bottle.

The lattice Λ(X) = K⊥X∩ker(1+conj∗) is one of the main deformation invariants
which plays a crucial role in the further proofs. These lattices are enumerated in
the bottom lines of Table 1.

This table is organized according to the so-called Smith type of surfaces, with
a code (M − k), which means that in the Smith inequality dimH∗(XR;Z/2) 6
dimH∗(X;Z/2) the right-hand side is greater by 2k than the left-hand side. The
(M − 2)-case includes four deformation classes and two of them, encoded with
(M − 2)I are of type I, which means that the fundamental class of XR is realizing
w2(X) = KX(mod2) in H2(X;Z/2).

Surfaces belonging to the same real Bertini pair have the same Smith type. The
real Bertini pairs form 7 pairs of real deformation types. In 3 pairs the deformation
types (indicated in the last 3 columns of Table 1) are dual to itself: X+ is defor-
mation equivalent to X−. The other 4 pairs are shown in the 4 columns marked
M, (M-1), (M-2), and (M-3).

Note also that the lattices Λ(X+) and Λ(X−) are orthogonal complements to
each other in E8 = K⊥X .

Table 1. The root lattices Λ(X) = K⊥X ∩ ker(1 + conj∗)

Smith type of XR M (M − 1) (M − 2) (M − 3) (M − 4) (M − 2)I (M − 2)I

Topology of XR RP2#4T2 RP2#3T2 RP2#2T2 RP2#T2 RP2 RP2⊥K2 (RP2#T2)⊥Σ2

Λ(X) E8 E7 D6 D4 +A1 4A1 D4 D4

Smith type of XR M (M − 1) (M − 2) (M − 3)

Topology of XR RP2⊥4Σ2 RP2⊥3Σ2 RP2⊥2Σ2 RP2⊥Σ2

Λ(X) 0 A1 2A1 3A1

2.2. Cremona transformation of Pin-codes. By a code of a real blowup model
X → P2 of a real del Pezzo (M − r)-surface X of degree 1 with r pairs of complex
conjugate imaginary exceptional classes e8−2k = − conj∗ e8−2k−1, 0 6 k 6 r−1, and
8 − 2r real exceptional classes e1, . . . , e8−2r we mean the sequence (a0, . . . , a8−2r)
of residues ±1 mod 4, where ai = q̂X(ei) for i > 1 and a0 = q̂X(h) with h
staying for the class realized by the pull-back of straight lines. The condition
q̂(h) = qX(w1(XR)) = 1 imposes the relation

a0 + · · ·+ a8−2r = 1 mod 4.

2.2.1. Lemma. An elementary Cremona transformation based on a triple ei, ej , ek
with 1 6 i < j < k 6 8 − 2r changes each of the residues a0, ai, aj , ak by the sum
of three others, and does not change al for l 6= 0, i, j, k. In particular: a sequence
a0, ai, aj , ak formed by 1, 1, 1, 1 is replaced by −1,−1,−1,−1 and vice versa; a se-
quence 1, 1,−1,−1 is replaced by −1,−1, 1, 1 and vice versa; sequences 1, 1, 1,−1
and −1, 1, 1, 1 are not modified.
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If r > 0 and we choose a triple ei, e7, e8 (where e7, e8 are conjugate imaginary),
then the pair a0, ai is changed to ai, a0 while the other elements of the code are not
modified.

Proof. Such transformation changes ei to h−ej−ek and h to 2h−ei−ej−ek, and
the result follows from quadraticity of q̂X and its additivity on pairwise orthogonal
elements. �

2.3. Signed count for connected M-surfaces.

2.3.1. Proposition. If XR = RP2#4T2, then X admits a real blowup model with
8 real blown up points and code (1, 1, . . . , 1).

Proof. Let us blow up P 2 first at 4 generic points p1, . . . , p4 and next make a generic
infinitely near blowup over each of the points pi. The result is a singular del Pezzo
surface of degree 1, with 4 nodes. A non-singular del Pezzo surface X obtained by
its perturbation can be interpreted as replacing of the 4 infinitely near blow ups
by blowing up at points pi+4 ∈ P 2 located somewhere in close proximity to pi,
i = 1, . . . , 4. Let ei ∈ H2(X) denote the exceptional classes of blowing up at pi. In
the real setting, our assumption XR = RP2#4T2 means that all points pi, 1 6 i 6 8,
are real.

Note moreover, that q̂X(ei) and q̂X(ei+4) are of opposite signs, since ei− ei+4 is
a vanishing class. This implies q̂X(h) = 1. Lemma 2.2.1 implies that an elementary
Cremona transformation based at two negative and one positive classes ei leads to a
real blowup model with totally 3 negative classes ei. After another transformation
based at these three, we obtain a real blowup model with code (1, 1, . . . , 1), as
required.

To extend the result from a particular surface X (constructed above) to any
other real del Pezzo surface X ′ of degree 1 with the real locus X ′R = RP2#4T2, it is
sufficient to use their real deformation equivalence, the invariance of the quadratic
function q̂ under real deformation, and the natural bijection between the set of real
(−1)-curves and the set of divisor classes α with αK = α2 = −1. �

Starting from here, given a surface X, we use the following notation:

R2(X) = {e ∈ K⊥X | e2 = −2}, R4(X) = {v ∈ K⊥X | v2 = −4}.

If X is real then we consider the real part of the above families of divisor classes
and put

RaR(X) = {x ∈ Ra(X) | conj∗(x) = −x}.
As is well known (see, for example, [FK]), if (X, conj) is a maximal real del

Pezzo surface of degree 1 and XR is connected, then XR = RP2#4T2 and K⊥X =
ker(1+conj∗), so that in this case R2

R(X) = R2(X) is nothing but the set of roots in
ker(1+conj∗) = K⊥X

∼= E8. To enumerate the elements of this set and to determine
their q̂-values, we use the special blowup model given by Proposition 2.3.1, which
we call a positive blowup model.

A straightforward calculation shows that with respect to a positive blowup model
the 240 roots that constitute R2

R(X) in the case XR = RP2#4T2 split into 4 types
with corresponding values of q̂ as shown in Table 2. Each type is characterized there
by its level, that is equal up to sign to the coefficient at h in the basic coordinate
expansion.
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Table 2. Real roots in the case XR = RP2#4T2

level type of roots e ∈ R2
R(X) ∼= E8 number q̂(e)

0 ei1 − ei2 56 2

1 ±(h− ei1 − ei2 − ei3) 2
(
8
3

)
= 112 0

2 ±(2h− ei1 − ei2 − ei3 − ei4 − ei5 − ei6) 2
(
8
6

)
= 56 2

3 ±(3h− 2ei1 − ei2 − ei3 − ei4 − ei5 − ei6 − ei7 − ei8) 16 0

As a consequence the 240 elements in B2R(X) split into 7 types with corresponding
values of q̂ as shown in Table 3.

Table 3. B2R-classes in the case XR = RP2#4T2

level type of classes e ∈ B2R(X) number q̂(e)
3 3h− ei1 − ei2 − ei3 − ei4 − ei5 − ei6 − ei7 8 0
4 4h− 2ei1 − 2ei2 − ei3 − ei4 − ei5 − ei6 − ei7 − ei8 28 2
5 5h− 2ei1 − 2ei2 − 2ei3 − 2ei4 − 2ei5 − ei6 − ei7 − ei8 56 0
6 6h− 3ei1 − 2ei2 − 2ei3 − 2ei4 − 2ei5 − 2ei6 − 2ei7 − ei8 56 2
7 7h− 3ei1 − 3ei2 − 3ei3 − 2ei4 − 2ei5 − 2ei6 − 2ei7 − 2ei8 56 0
8 8h− 3ei1 − 3ei2 − 3ei3 − 3ei4 − 3ei5 − 3ei6 − ei7 − ei8 28 2
9 9h− 4ei1 − 3ei2 − 3ei3 − 3ei4 − 3ei5 − 3ei6 − 3ei7 − 3ei8 8 0

Similarly, the 2160 elements of B4R(X) split into the following 11 subsets with
corresponding values of q̂ as shown in Table 4.

Table 4. B4R-classes in the case XR = RP2#4T2

level type of classes β ∈ B4(X) number q̂(β)
1 h− ei 8 2
2 2h− ei1 − ei2 − ei3 − ei4 70 0
3 3h− 2ei1 − ei2 − ei3 − ei4 − ei5 − ei6 168 2
4 4h− 2ei1 − 2ei2 − 2ei3 − ei4 − ei5 − ei6 − ei7 280 0
4 4h− 3ei1 − ei2 − ei3 − ei4 − ei5 − ei6 − ei7 − ei8 8 0
5 5h− 2ei1 − 2ei2 − 2ei3 − 2ei4 − 2ei5 − 2ei6 − ei7 56 2
5 5h− 3ei1 − 2ei2 − 2ei3 − 2ei4 − ei5 − ei6 − ei7 − ei8 280 2
6 6h− 3ei1 − 3ei2 − 2ei3 − 2ei4 − 2ei5 − 2ei6 − ei7 − ei8 420 0
7 7h− 3ei1 − 3ei2 − 3ei3 − 3ei4 − 2ei5 − 2ei6 − 2ei7 − ei8 280 2
7 7h− 4ei1 − 3ei2 − 2ei3 − 2ei4 − 2ei5 − 2ei6 − 2ei7 − 2ei8 56 2
8 8h− 3ei1 − 3ei2 − 3ei3 − 3ei4 − 3ei5 − 3ei6 − 3ei7 − ei8 8 0
8 8h− 4ei1 − 3ei2 − 3ei3 − 3ei4 − 3ei5 − 2ei6 − 2ei7 − 2ei8 280 0
9 9h− 4ei1 − 4ei2 − 3ei3 − 3ei4 − 3ei5 − 3ei6 − 3ei7 − 2ei8 168 2
10 10h− 4ei1 − 4ei2 − 4ei3 − 4ei4 − 3ei5 − 3ei6 − 3ei7 − 3ei8 70 0
11 11h− 4ei1 − 4ei2 − 4ei3 − 4ei4 − 4ei5 − 4ei6 − 4ei7 − 3ei8 8 2

2.3.2. Proposition. If XR = RP2#4T2 then∑
β∈B4

R(X)

iq̂X(β) = 2[−8 + 70− 168 + (280 + 8)− (280 + 56)] + 420

= −308 + 420 = 112. �

2.4. Signed count for connected (M − 1)-surfaces.

2.4.1. Proposition. If XR = RP2#3T2, then X admits a real blowup model with
6 real blown up points and code (−1,−1, . . . ,−1).
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Proof. Like in the proof of Proposition 2.3.1 we construct a real del Pezzo surface
X by blowing up P 2 at three pairs of real points pi and pi+3, i = 1, 2, 3, located
sufficiently close to each other in each pair. Then we additionally blow up at a
a pair of imaginary complex-conjugate points p7 and p8, assuming that the whole
configuration of 8 points is generic. For a similar reason, q̂(ei) and q̂(ei+3) are of
opposite signs for each i = 1, 2, 3. This implies q̂(h) = 1, and performing a Cremona
transformation based at those 3 points pi for which q̂(ei) is positive, we obtain a
blowup model with code (−1,−1, . . . ,−1), as required.

The same deformation arguments as at the end of the proof of Proposition 2.3.1
apply and extend the result from the surface X constructed to any real del Pezzo
surface of degree 1 with real locus of the same topological type. �

Table 5. B4R-classes in the case XR = RP2#3T2

bi-level type of classes β ∈ B4(X) number q̂(β)
1,1 h− ei 6 2
0,4 2h− ei1 − ei2 − ei3 − ei4 15 0
0,2 2h− ei1 − ei2 − e7 − e8 15 2
1,5 3h− 2ei1 − ei2 − ei3 − ei4 − ei5 − ei6 6 2
1,3 3h− 2ei1 − ei2 − ei3 − ei4 − e7 − e8 60 0
0,2 4h− 2ei1 − 2ei2 − 2ei3 − ei4 − ei5 − e7 − e8 60 2
0,4 4h− 2ei1 − ei2 − ei3 − ei4 − ei5 − 2e7 − 2e8 30 0
0,6 4h− 3ei1 − ei2 − ei3 − ei4 − ei5 − ei6 − e7 − e8 6 2
1,1 5h− 2ei1 − 2ei2 − 2ei3 − 2ei4 − ei5 − 2e7 − 2e8 30 2
1,3 5h− 3ei1 − 2ei2 − 2ei3 − 2ei4 − ei5 − ei6 − e7 − e8 60 0
1,5 5h− 3ei1 − 2ei2 − ei3 − ei4 − ei5 − ei6 − 2e7 − 2e8 30 2
0,2 6h− 3ei1 − 3ei2 − 2ei3 − 2ei4 − 2ei5 − 2ei6 − e7 − e8 15 2
0,4 6h− 3ei1 − 3ei2 − 2ei3 − 2ei4 − ei5 − ei6 − 2e7 − 2e8 90 0
0,2 6h− 2ei1 − 2ei2 − 2ei3 − 2ei4 − ei5 − ei6 − 3e7 − 3e8 15 2
1,5 7h− 3ei1 − 3ei2 − 3ei3 − 3ei4 − 2ei5 − ei6 − 2e7 − 2e8 30 2
1,3 7h− 3ei1 − 3ei2 − 2ei3 − 2ei4 − 2ei5 − ei6 − 3e7 − 3e8 60 0
1,1 7h− 4ei1 − 3ei2 − 2ei3 − 2ei4 − 2ei5 − 2ei6 − 2e7 − 2e8 30 2
0,6 8h− 3ei1 − 3ei2 − 3ei3 − 3ei4 − 3ei5 − ei6 − 3e7 − 3e8 6 2
0,4 8h− 4ei1 − 3ei2 − 3ei3 − 3ei4 − 3ei5 − 2ei6 − 2e7 − 2e8 30 0
0,2 8h− 4ei1 − 3ei2 − 3ei3 − 2ei4 − 2ei5 − 2ei6 − 3e7 − 3e8 60 2
1,3 9h− 4ei1 − 4ei2 − 3ei3 − 3ei4 − 3ei5 − 2ei6 − 3e7 − 3e8 60 0
1,5 9h− 3ei1 − 3ei2 − 3ei3 − 3ei4 − 3ei5 − 2ei6 − 4e7 − 4e8 6 2
0,2 10h− 4ei1 − 4ei2 − 4ei3 − 4ei4 − 3ei5 − 3ei6 − 3e7 − 3e8 15 2
0,4 10h− 4ei1 − 4ei2 − 3ei3 − 3ei4 − 3ei5 − 3ei6 − 4e7 − 4e8 15 0
1,1 11h− 4ei1 − 4ei2 − 4ei3 − 4ei4 − 4ei5 − 3ei6 − 4e7 − 4e8 6 2

If (X, conj) is an (M − 1)-surface and XR is connected, then XR = RP2#3T2

and K⊥X ∩ ker(1 + conj∗)
∼= E7 (see [FK]). To enumerate the elements of B4R and to

determine their q̂X -values, we use the special blowup model given by Proposition
2.4.1, which we call a submaximal negative blowup model.

First of all, we observe that among 2160 classes v ∈ K⊥ ∼= E8 with v2 = −4
precisely 126×60

10 = 756 are real, i.e. belong to R4
R(X). Same calculation as in M -

case above shows that the corresponding 756 elements of B4R(X) split into 11 subsets
shown in Table 5. In accordance with notation in Proposition 2.4.1, by ei (with
unspecified value of index) there meant the classes of the 6 real exceptional divisors,
while e7, e8 specify the pair of complex conjugate imaginary ones. Furthermore,
each type is accompanied by an indication of its bi-level, that is a pair (a, b) where
a is the Z/2-residue of the coefficient at h and b the number of classes e1, . . . , e6
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which enter with odd coefficients in the expansion of the element. Due to the choice
of the negative blowup model, for β ∈ B4(X) of level a, b the value q̂(β) (shown in
Table 5) is equal to a+ b mod 4.

2.4.2. Proposition. If XR = RP2#3T2 then∑
β∈B4

R(X
+)

iq̂X+ (β) = 2[−6 + 15− 15− 6 + 60− 60 + 30− 6− 30 + 60− 30]

−15 + 90− 15 = 2 · 12 + 60 = 84. �

3. Proof of Theorems 1.2.1 and 1.2.2

3.1. Signed count of curves in C2R(x,X).

3.1.1. Proposition. For every Bertini pair of real del Pezzo surfaces X± of degree
1, and any pair of real generic points x± ∈ X±R , we have∑

A∈C2(x+,X+)

s(A) = 2(r− − r+)r+,
∑

A∈C2(x−,X−)

s(A) = 2(r+ − r−)r−,

∑
A∈C2(x+,X+)∪C2(x−,X−)

s(A) =− 2(r+ − r−)2.

where r± = rk(K⊥X± ∩ ker(1 + conj±∗ )).

Proof. Any class α = −2K − e ∈ B2R(X±) gives a real net of elliptic curves. By
fixing a generic base point x ∈ X±R , we obtain a real pencil, whose other base
point x′ 6= x has to be real. Singular curves from this pencil are irreducible (and
thus, rational, with one node), except one curve which has to be real and gives a
splitting α = (−K) + (−K− e). The first, anticanonical, component is real elliptic,
passing through x, and the second component is a real line. After blowing up the
points x, x′ we obtain a real fibration X±R #2RP2 → RP1, so that counting the Euler

characteristic of X±R #2RP2 by means of this fibration we get the relation

(3.1.1) − 1 +
∑

A∈C2R(α,x,X±)

w(A) = χ(X±R )− 2 = r∓ − r±

where −1 is the Euler characteristic of the reducible fiber and w(A) stands for
χ(AR) = sA − cA.

On the other hand,
∑
α∈B2

R(X
±) i

q̂X±(α) = 2r± due to Proposition 3.4.5 in [FK].

Since s(A) = iq̂X±(α)w(A), we conclude that∑
A∈C2(x,X±)

s(A) =
∑

α∈B2
R(X

±)

iq̂X±(α)
∑

A∈C2R(α,x,X±)

w(A) = 2r±(r∓ − r±).

The third identity in the statement is nothing but the sum of the first two. �

3.2. On deformation invariance of partial counts. As it could be already
observed in the proof of Proposition 3.1.1, the value of a sum∑

A∈C2R(α,x,X±)

iq̂X±(α)w(A)

does not depend on a choice of the point x, and moreover is invariant under real
deformations of X±. The same property holds for

∑
A∈C2kR (α,x,X±) i

q̂X±(α)w(A)
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with k = 0 and 2. In fact, such an invariance property holds in much more general
situation.

3.2.1. Proposition. For any β ∈ H2(X) each sum of the form∑
A

f([β]2,KXβ, q̂(β))w(A)

where f is any function Z×Z×Z/4→ R and the sum is taken over all real rational
curves A belonging to the divisor class β and passing through a fixed real collection
of −KXβ − 1 points x ⊂ X depends only on β, f and the number of real points in
x. Such a sum is also invariant under real deformations of X.

Proof. Follows from the real deformation invariance of q̂, see Theorem 1.1.1, and
the real deformation invariance, as well as the stated in Proposition independence
on x, of the sum

∑
A w(A) taken, as in the statement, over all real rational curves

A belonging to the divisor class β and passing through a fixed real collection of
−KXβ − 1 points (for a proof of the latter invariance, see [Br-2]). �

3.3. Signed count of curves in C4R(x,X) for XR other than RP2#4T2 or

RP2#3T2. In the case-by-case analysis of each of the lattices

Λ(X±) = K⊥X ∩ ker(1 + conj∗)

from Table 1 we use such a root basis on which q̂X is vanishing identically. For
existence of such a basis, see [FK, Lemma 3.1.2].

3.3.1. Cases XR = RP2⊥kS2. If XR = RP2⊥kS2, 0 6 k 6 4, then Λ(X) is
isomorphic to (4 − k)A1. Since each (−4)-vector in (4 − k)A1 splits into a sum of

generators of a pair of A1-summands, the number of such vectors is 4
(
4−k
2

)
which

is 0 for k equal 3 and 4. Each (−4)-vector yields a unique curve A ∈ C4R(x,X) and

for them the value s(A) = iq̂X(v) is 1 since q̂X = 0 on each A1-summand. Thus, we
just count the number Card(R4

R) of (-4)-vectors in Λ(X):∑
A∈C4R(x,X)

s(A) = Card(R4
R) = 4

(
4− k

2

)
.

3.3.2. Cases XR = RP2⊥K2 and XR = (RP2#T2)⊥S2. According to Table 1,
if X+

R = RP2⊥K2 (resp. X+
R = (RP2#T2)⊥S2) then X−R = RP2⊥K2 (resp.

X−R = (RP2#T2)⊥S2) too, and in all the cases both Λ(X±) are isomorphic to
D4. Note that D4 can be seen as a sublattice of 4〈−1〉 generated by the roots
e0 = (1, 1, 0, 0), e1 = (1,−1, 0, 0), e2 = (0, 1,−1, 0) and e3 = (0, 0, 1,−1). With
respect to this presentation, the (-4)-vectors split into 2 kinds: sixteen vectors
(±1,±1,±1,±1) and eight vectors with one coordinate ±2 and the others 0. Thus,
the vanishing of q̂X on e0, . . . , e3 implies its vanishing on all the (-4)-vectors in
D4. Indeed, it has then to vanish on e1 + e3 and thus on all the sixteen first-kind
(-4)-vectors (as they are congruent modulo 2D4 to each other), while vanishing of
q̂X on the eight second-kind (-4)-vectors follows from their presentation as mod 2-
orthogonal sum of the first-kind vectors. For each of X = X±, this gives∑

A∈C4R(x,X)

s(A) =
∑
v∈R4

R

iq̂X± (v) = Card(R4
R) = 16 + 8 = 24.
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3.3.3. Cases XR = RP2#T2 and XR = RP2⊥S2. They form a Bertini pair: if
X+ = RP2#T2 then X− = RP2⊥S2, and vice versa. According to Table 1, for
such a pair, Λ(X+) is D4⊕A1 and Λ(X−) is 3A1. A (-4)-vector in D4⊕A1 is either
one of the (-4)-vectors of D4 (24 choices), or a sum of one root in D4 (24 choices)
with one root in A1 (2 choices). On the (-4)-vectors of the first-kind the form q̂X
vanishes, like in the previous case. On the latter sums we have q̂X(v1+v2) = q̂X(v1),
and in accordance with [FK] the signed count of the 2-roots v1 gives 2 rk |D4| = 8,
which after that should be multiplied by 2 because of two choices of v2 in A1. Thus,

∑
A∈C4R(x,X)

s(A) =
∑
v∈R4

R

iq̂X(v) =

{
24 + 16 = 40, for Λ(X) = D4 ⊕A1,

4
(
3
2

)
= 12, for Λ(X) = A3.

3.3.4. Cases XR = RP2#2T2 and RP2⊥2S2. They also form a Bertini pair: if
X+ = RP2#2T2 then X− = RP2⊥2S2, and vice versa. According to Table 1, for
such a pair, Λ(X+) is isomorphic to D6 and Λ(X−) to 2A1. The lattice D6 can be

seen as a sublattice of 6〈−1〉 generated by the following roots

−1 −1 0 0 0 0
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1

The vanishing of q̂X+ on these basic roots implies immediately its vanishing on the
twelve (-4)-vectors that contain ±2 as one coordinate and 0 as others. The rest
(−4)-vectors are obtained from (±1,±1,±1,±1, 0, 0) by permutation of coordinates
(totally 24

(
6
2

)
). The

(
6
2

)
permutations interpreted as partitions n1 + n2 + n3 = 4

have either all ni even (6 cases), in which case q̂X = 0, of give two odd summands
ni (9 cases), in which case q̂X = 2.

For Λ(X) = D6, this yields∑
A∈C4R(x,X)

s(A) =
∑
v∈R4

R

iq̂X(v) = 12 + 16(9− 6) = 60.

For Λ(X) = 2A1, we have
∑
A∈C4R(x,X) s(A) =

∑
v∈R4

R
iq̂X(v) = 4.

3.4. Proof of Theorems 1.2.2 and 1.2.1. The results obtained above are sum-
marized in Table 6 which is organized by columns according to Smith types of
Bertini pairs and where the rows show the result of the signed count over A ∈
C2k(x,X) for X = X± in each Bertini pair. For the first 4 columns our convention
is that X+ refers to surfaces with connected real locus (see Table 1).

For k = 1 calculations are given by Proposition 3.1.1, for k = 2 they are taken
from Propositions 2.3.2, 2.4.2 and previous Subsection. For k = 0 calculations are
due to [Br-2] (note that the original Welschinger weight used in [Br-2] coincides
with our s-weight in the case of curves A ∈ C0(x,X), since their arithmetic genus
gA = 2 is even, and thus cA and sA have the same pairity).

Adding the 3 terms
∑
A∈C0(x,X) s(A) +

∑
A∈C2(x,X) s(A) +

∑
A∈C4(x,X) s(A) for

each type of X = X± we obtain Theorem 1.2.1.
As we take the sum

∑
A∈C2(x,X) s(A) + 2

∑
A∈C4(x,X) s(A) for X = X+ and add

it with the same sum for X = X−, we obtain Theorem 1.2.2.
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Table 6.
∑
A∈C2(x,X) s(A) for each type of Bertini pairs X±.

M M − 1 M − 2 M − 3 M − 4 (M − 2)I
A ∈ C2(x+, X+) -128 -84 -48 -20 0 0
A ∈ C2(x−, X−) 0 12 16 12 0 0
A ∈ C4(x+, X+) 112 84 60 40 24 24
A ∈ C4(x−, X−) 0 0 4 12 24 24
A ∈ C0(x+, X+) 46 30 18 10 6 6
A ∈ C0(x−, X−) 30 18 10 6 6 6

4. Wall crossing

Richtiges Auffassen einer Sache und Miverstehen der
gleichen Sache schlieen einander nicht vollstndig aus.

F. Kafka, ”Der Proze. Kapitel 9: Im Dom”

Here, we present a proof of Theorems 1.2.1 and 1.2.2 based on a real version
of Abramovich-Bertram-Vakil wall-crossing formula [Va, Theorem 4.2]. More pre-
cisely, it is based on the underlying it gluing procedure as it is presented in [IKS,
Proposition 4.1] and [Br-P, Theorem 2.5].

4.1. A special choice of walls. As is known, the bi-anticanonical map establishes
an isomorphism between the moduli space of real del Pezzo surfaces X of degree 1
and that of real non-singular sextics C on the real quadric cone Q based on a non-
empty real conic. In particular, such an isomorphism allows not only to identify the
real deformation classes of these objects but also to visualize nodal degenerations
of the former with nodal degenerations of the latter.

To be precise, let us define by a (simple) nodal degeneration of sextics on Q a
complex analytic family of curves C(t), t ∈ C, |t| < 1 such that C(t) with t 6= 0 are
non-singular sextics while C(0) is uninodal. We call it Morse-Lefschetz if the total
space of the family is smooth (in other words, “wall-intersection” is transverse),
and real if it is equipped with an antiholomorphic involution mapping C(t) to C(t̄)
for each t. Starting from a nodal degeneration of sextics, {C(t), t ∈ C, |t| < 1},
and taking the double coverings X(t) → Q branched in C(t) we obtain a complex
analytic family of surfaces X(t), t ∈ C, |t| < 1 such that X(t) with t 6= 0 are del
Pezzo surfaces of degree 1 while X(0) is a uninodal surface. It is this kind of
families that we call nodal degenerations of del Pezzo surfaces of degree 1. Such a
degeneration will be called Morse-Lefschetz, if the family C(t) is Morse-Lefschetz.
Note also that if the family C(t) is real, then the real structure conj : Q → Q
lifts to two, Bertini dual, real structures on the total space of the family X(t)
so that, in particular, for each real t the surface X(t) acquires a pair of Bertini
dual real structures. If X(t) is a real Morse-Lefschetz family, then for each of the
Bertini dual structures the real loci of X(t) (as well as the real loci of C(t)) with
t real experience a Morse transformation when t is crossing 0. We say that such
a degeneration avoids contracting a real spherical component if for both directions
of crossing 0 and for each of the Bertini dual structures the Morse transformation
XR(t)→ XR(−t) is not contracting a real spherical component of XR(t).
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4.1.1. Proposition. Any pair of real del Pezzo surfaces of degree 1 can be con-
nected by a finite sequence of real Morse-Lefschetz nodal degenerations that avoid
contracting of a real spherical component.

Proof. As it follows from definitions, a real Morse-Lefschetz family X(t) is not
contracting a real spherical component if and only if the underlying real Morse-
Lefschetz family C(t) is not contracting a real oval. Thus, it remains to check
that any two real sextics C(t) can be connected by a finite sequence of real Morse-
Lefschetz nodal degenerations that avoid contracting a real oval. Such degenera-
tions can be found, for example, on Figure 1 in [FK]. �

4.2. Enumerating of limit splittings. Consider an arbitrary Morse-Lefschetz
family X(t), t ∈ C, |t| < 1 of del Pezzo surfaces of degree 1. To kill the monodromy,
introduce, in addition, an associated untwisted family, X ′(τ), τ ∈ C, |τ | < 1, induced
from the given one by degree 2 base change t = τ2. The total space X ′ = ∪X ′(τ) of
the untwisted family acquires a node at the nodal point of X ′(0) = X(0). We make

X ′ non-singular by blowing up this node and get a new family X̃(τ), τ ∈ C, |τ | < 1

with X̃(τ) = X ′(τ) for τ 6= 0 while X̃(0) is reduced and consists of two irreducible

components with normal crossing: one component, which we denote X̃1(0), is the

minimal nonsingular model of X ′(0), the other one, denoted X̃0(0), is isomorphic
to P1 × P1, and they intersect along a nonsingular rational curve E which is the
blown in (−2)-curve in X̃1(0) and which can be seen in X̃0(0) = P1 × P1 as the
diagonal.

Contracting X̃0(0) to E along the lines of one of the rulings, we get a smooth

family of smooth surfaces with X̃1(0) as central fiber (see [A] for details). A choice
of such a contraction provides then natural isomorphisms

Pic(X(t)) = H2(X(t))
'←− H2(X̃(τ))

'−→ H2(X̃1(0)) = Pic(X̃1(0)), t = τ2, τ 6= 0

preserving the intersection form. This allows us to use, for the sake of brevity,
the same symbol for all corresponding divisor and homology classes (with a pre-

caution that the composed map H2(X(t))
'←− H2(X̃(τ))

'−→ H2(X̃1(0))
'←−

H2(X̃(−τ))
'−→ H2(X(t)) is not identity but the Dehn twist x 7→ x+ ([E] ◦x)[E]).

In accordance with the Abramovich-Bertram-Vakil approach, we pick a generic
section t ∈ C, |t| < 1 7→ x(t) ∈ X(t) and lift each of the involved into our count
family of curves A(t) ∈ C2(x(t), X(t)) ∪ C4(x(t), X(t)) in X(t) with t 6= 0 up to a

family Ã(τ) in X̃(τ) with τ 6= 0 where we put Ã(τ) = A(τ2) using X̃(τ) ≡ X(τ2).
As a first step in the proof of Theorem 1.2.2, we enumerate below the possible
types for splittings Ã(0) = D0 + rE with r > 0 that can appear in the limit

Ã(0) = lim Ã(τ) ⊂ X̃1(0).

4.2.1. Proposition. For A(t) ∈ C2(x(t), X(t)) (so that [A(t)] = −2K − e with
e2 = −2, eK = 0) there are no splittings with r > 2. If r = 1 then either e · [E] = 1
or e · [E] = 0. Furthermore, the following holds:

(1) If r = 1 and e · [E] = 1, then [D0] ∈ −2K−e0, e20 = −2, e0K = 0, [D0]2 = 2
and [D0] · [E] = 1.

(2) If r = 1 and e·[E] = 0, then [D0] ∈ −2K−v, v2 = −4, vK = 0, v = e+[E],
[D0]2 = 0 and D0 · E = 2.

(3) If r = 2 then e = −[E], [D0] ∈ −2K − [E], [D0]2 = 2, and D0 · E = 2.
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Proof. The bound r 6 2 follows from e · [E] 6 2 (general property of roots in a root
lattice) combined with 2 + e · [E] − 2r = [D0] · (−K − [E]) > 0 (this positivity of
intersection holds, since −K− [E] is represented by an effective divisor lying over a
generator of the cone through the node, and by this reason is not contained in D0

which pass, by definition, through a fixed generic point). Furthermore, by the same
argument, if r = 2 then e · [E] = 2 and thus e = −[E], while if r = 1 then e · [E]
equals 1 or 0. The rest of the statement is a straightforward lattice arithmetic. �

4.2.2. Proposition. For A(t) ∈ C4(x(t), X(t)) (so that [A(t)] = −2K − v, with
v2 = −4, vK = 0), there are no splittings with r > 2. Furthermore, the following
holds:

(1) If r = 1 then v ·[E] = 1, [D0] ∈ −2K−v0, v0 = v+[E], v20 = −4, [D0]2 = 0,
and [D0] · [E] = 1.

(2) If r = 2 then v · [E] = 2, [D0] ∈ −2K − v0, v20 = −4, v0 = v + 2[E],
[D0]2 = 0, and [D0] · [E] = 2.

Proof. As is known (and easy to show), each vector v ∈ E8 with v2 = −4 can
be represented as a sum of two orthogonal roots. This implies that v · [E] 6 2.
So, by the same arguments as in the proof of Proposition 4.2.1 we conclude that
r 6 2 and that r = 2 may hold only if v · [E] = 2. The rest of the statement is a
straightforward lattice arithmetic. �

4.3. Alternative proof of Theorem 1.2.2. Due to Proposition 3.2.1, to prove
Theorem 1.2.2 it is sufficient to prove the invariance of our count under the wall-
crossing, i.e. in real Morse-Lefschetz families of real del Pezzo surfaces of degree
1, X(t), t ∈ C, |t| < 1 with conj(t) : X(t) → X(t̄). To shorten case by case
considerations we consider only nodal degenerations with ER 6= ∅ on both X+(0)
and X−(0), which is sufficient due to Proposition 4.1.1.

The wall-crossings are enumerated in Propositions 4.2.1 and 4.2.2, and in each
case the groups of curves A(t) that are involved into the count share in the limit
A(0) = D0 + rE with r > 0 the same divisor D0. For each group we calculate
”a loss” and ”a gain” happening under crossing a wall not only for the surfaces
X+(t) = X(t), t ∈ R, but also for their Bertini duals X−(t).

To be able to apply the Abramovich-Bertram-Vakil gluing procedure and to be
in accordance with the setting in Section 4.2, we always choose the real coordinate
t in the Morse-Lefschetz family under consideration so, that the Euler charateristic
of X+

R (t) = XR(t) is smaller for t > 0 than for t < 0. With this choice the both

rulings of X̃0(0) are real, and by this reason the real structure descends from the

family X̃(τ) to the family obtained by contraction of any of the two rulings. When
passing from X+(t) to the Bertini dual family X−(t), we do the same, only the
direction is changing: due to χ(X+

R (t)) + χ(X−R (t)) = 2, the Euler characteristic of

X−R (t) is smaller for t < 0 than for t > 0.

4.3.1. Wall-crossing 4.2.1(1) and 4.2.2(1). These are the cases with D0 ·E = 1.
Here, we apply the Abramovich-Bertram-Vakil gluing procedure and observe, for
t > 0, two real curves A′(t, )A′′(t) with [A′′R(t)] = [A′R(t)]+[ER] that merge together
in the limit. They are both of type −2K − e ∈ B2

R(X) in the case 4.2.1(1), and
of type −2K − v ∈ B4R(X) in the case 4.2.2(1). Furthermore, these curves have
the same number of non-solitary nodes and qX([A′′R(t)]) = qX([A′R(t)] + [E]) =
qX([A′R(t)]) + qX([E]) + 2 = qX([A′R(t)]) + 2. Hence, their common input is zero.
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Since neither of [A′(t)], [A′′(t)] is orthogonal to [E], it follows that on the side t < 0
there are no real curves in these classes at all. Thus, in these cases there is no
”loss” or ”gain” when comparing the counts for X(t) and X(−t). Besides, the
same arguments apply to the Bertini duals of X(−t) and X(t).

4.3.2. Wall-crossing 4.2.1(2) and 4.2.2(2). These are the cases with D0 ·E = 2
and D2

0 = 0. Being combined together, they provide 3 groups of families of curves
sharing the same divisor D0 in the limit; they correspond to divisor classes of type
−2K − e− [E],−2K − e,−2K − e+ [E]. Here, using the assumption ER 6= ∅, we
take the base point x(0) ∈ XR(0)o close to a generic point of ER, which insures that
D0 ∈ −2K − e− [E] intersects E at 2 real points, and observe, for t > 0, two real
curves A′(t), A′′(t) of type −2K− e that merge together and split both into D0tE
while D0 being a non-multiple limit of real curves D(t) of type −2K−e− [E]. Here,
[A′(t)] = [A′′(t)] = [D0]+ [E] while the number of cross-points in A′R(t, )A′′R(t) is by
1 greater that the number of cross-points in [(D0)R]. Therefore, the common input
of A′R(t), A′′R(t) is opposite to the input of D(t), as it follows from the definitions
of weights, (1.2.2) and (1.2.4). The term corresponding to −2K − e + [E] gives
an equal (also non-multiple) input as that of D(t). Thus, the total input of the 3
groups under consideration is equal to 2

∑
iq̂(e) where the sum is taken over the

roots e ∈ Λ(X+(t)). This gives a ”loss” equal to 4
(

rk(K⊥ ∩ ker(1 + conj∗(t)))− 1
)

taken for conj(t) : X(t)→ X(t) with t > 0 (cf. [FK, Proposition 3.4.5 ]). There are
no real curves in divisor classes −2K−e−[E],−2K−e,−2K−e+[E] on X(−t) (for
−2K − e it holds, since with our choice of x(0) on XR(0) all the counted rational
curves in XR(0) of class −2K − e intersect ER at real points, cf. [Br-P, Theorem
2.5]). The same arguments applied to the Bertini duals X−(−t) and X−(t) of
X+(−t) = X(−t) and X+(t) = X(t) show that from the Bertini duals we have a
”gain” equal to 4

(
rk(K⊥∩ker(1+conj−∗ (−t)))−1

)
= 4 rk(K⊥∩ker(1−conj∗(t))) =

4 rk ker(1 − conj∗(t)) where conj−(−t) : X−(−t) → X−(−t) stands for the Bertini
dual real structure conj−(−t) = conj(−t) ◦ τX . Therefrom, and in accordance with
Lefschetz trace formula applied to conj(t), the deficiency (loss minus gain) is equal
to −4χ(XR(t)) with t > 0.

4.3.3. Wall-crossing 4.2.1(3). In this case there are, on X(t) with t > 0, some
number of curves of type −2K + [E], and hence all with value 0 of q̂, that merge
to the same curve of type −2K − [E]. The input of Welschinger factors for all
these curves together can be counted in a similar way as in (3.1.1) in the proof of
Proposition 3.1.1, which gives a signed ”loss” equal to 2× (χ(XR(t))−1). A signed
”gain” from the side t < 0 is, similarly, 2× (χ(X−R (−t))− 1) where X−(−t) is the
Bertini pair for X+(−t) = X(−t). Therefrom, in this case the deficiency of inputs
is equal to 2× (χ(XR(t))− 1)− 2× (χ(X−R (−t))− 1) = 4χ(XR(t)) with t > 0.

Thus the total, summarizing all the cases, deficiency is zero, and we conclude
that the total count is preserved. �

4.4. Alternative proof of Theorem 1.2.1. We proceed as above in ”Alternative
proof” of Theorem 1.2.2 (now, without appealing to the Bertini dual surfaces). In
the cases 4.2.1(1) and 4.2.2(1) the arguments remain literally the same. The cases
4.2.1(2) and 4.2.2(2), being combined together and treated as in that proof, give
now the total input equal to 0 from t > 0 side just because the two families of curves
of types −2K − e− [E],−2K − e+ [E] give an input of the opposite sign and the
same absolute value (equal to 2) as the two families of curves of (intermediate) type
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−2K−e. As in the above proof, in these cases there are no input from the opposite
side. It is in the, only remaining, case 4.2.1(3) that curves of type −2K show them
up. Here, in accordance with Abramovich-Bertram-Vakil formula we need to treat
curve families sharing in the limit a common divisor D0 of type −2K − E. If the
both points where D0 meets E are real, then due to Abramovich-Vakil-Bertram
gluing procedure we have here four families of curves, one of type −2K − E, two
of type −2K, and two of type −2K + E that have D0 as the limit. The first and
the last one are of opposite sign and the same absolute value (equal to 1) as each
of the two of type −2K. Hence, their common input is 0. And, since there is no
input on the opposite (t < 0) side, we are done in the case of real points. If the
points where D0 meets E are imaginary (complex conjugate), then there are no real
curves of type −2K converging to D0 (this time there are instead two imaginary
complex conjugate families converging to D0 from t > 0 side) but by contrary, due
to Brugallé-Puignau surgery description, there are two real families of curves of
type −2K that converge to D0 from t < 0 side). Furthermore, these curves acquire
an additional, with respect to D0, node and this node is solitary. Hence, they of
the same sign as the two curves merging to D0 from t > 0 (that we have treated
before). Thus, here, we have the same input (equal to ±2) from both sides, which
finishes the proof of invariance. �

5. Count of quartics 6-tangent to a sextic on a quadratic cone

Here, by a quartic 6-tangent to a sextic C ⊂ Q we mean a transverse intersection
A = Z ∩Q of Q with a quadric Z such that the intersection divisor Z · C = A · C
contains each point with even multiplicity. Let us denote by T (Q,C, z) the set
of rational irreducible reduced 6-tangent quartics that pass through a fixed point
z ∈ Qr C. For a generic z ∈ Qr C, it contains, as is well-known, 2400 elements,
and for z = π(x), x ∈ X (where as usual X stands for the del Pezzo surface
associated with C), the projection C(x,X) → T (Q,C, z) induced by the double
covering π : X → Q is a bijection.

Over R, with each real point z± ∈ Q±R we associate a set of real 6-tangent quar-

tics, TR(Q±R , C, z
±) = {A is real, A ∈ T (Q,C, z±)}. For each A ∈ TR(Q±R , C, z

±),

the real locus AR of A lies entirely in the same half Q±R of QRrCR as z±, and thus
the curve A lifts to a pair of real rational curves Ak ∈ C2R(xk, X

±) ∪ C4R(xk, X
±),

k = 1, 2, with π(xk) = z ∈ Q±. For each k = 1, 2, this induces a bijection

C2R(xk, X
±) ∪ C4R(xk, X

±)→ TR(Q±, C, z±).

By Theorem 1.1.1(1), for each A ∈ TR(Q±R , C, z
±), the both real curves Ak

(k = 1, 2) that form π−1(A) are of the same type. This allows us to split real 6-
tangent quartics into two species: hyperbolic if s(Ak) > 0, and elliptic if s(Ak) < 0.

Following the setting of Theorem 1.2.1, we consider also a bigger set of sections,
T̃R(Q±, C, z±) ⊃ TR(Q±, C, z±), the set which contains in addition the real conics
in Q±R which are 2-tangent to C and pass through z±. Each of these conics A lifts

to a curve Ã from C0R(xk, X
±) both for k = 1 and k = 2, which provides us, for

each k = 1, 2, with a bijection

C0R(xk, X
±) ∪ C2R(xk, X

±) ∪ C4R(xk, X
±)→ T̃R(Q±, C, z±).

Similar to above, we call a real conic A ∈ T̃R(Q±, C, z±) hyperbolic if s(Ã) > 0 and
elliptic otherwise.
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Theorems 1.2.1 and 1.2.2 imply then the following result.

5.0.1. Theorem. Assume that a real sextic curve C ⊂ Q is a transversal intersec-
tion of a real quadratic cone Q ⊂ P3 (whose base is non-singular and has non-empty
real locus) with a real cubic surface. Then, for any generic pair of points z± ∈ Q±R ,
the following holds.

(1) The number of hyperbolic minus the number of elliptic elements in the set

T̃R(Q+, C, z+) ∪ T̃R(Q−, C, z−) is 30.
(2) The number of real quartics A that are 6-tangent to C (i.e. of elements in

TR(Q+, C, z+) ∪ TR(Q−, C, z−)) counted with weight s̃(A1) = s̃(A2) is 96.
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