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Introduction
One of the central results of the famous work of P. Gabriel [Gab] is the following

theorem:

Theorem ([Gab], Ch.VI). Any noetherian scheme can be reconstillcted uniquely up to
isomorphism from the category 01 quasi-coherent sheaves on this scheme.

Actually Gabriel produced a constrllction which assigns to any locally noetherian
abelian category A a ringed space (XA, 0 A) which in thc case when A is the category
Qcohx of quasi-coherent sheaves on a noctherian scheIne X happens to be isomorphic to thc
scheme X. Recall that the space X A - the Gabriel spectrum of A - consists of isomorphisrll
classes of indecomposable injectives of the category A with a natural topology: the base
of closed sets are supports of noetherian objects. Here the support of an object M eonsists
of equivalenee classes of those indeeomposable injectives I for which there cxists a nonzero
arrow from M to 1.

One of the main purposes of this work is to prove the following Theorem:

Theorem. Any scheme can be reconstructed uniquely up to isomorphism from the category
01 quasi-coherent sheaves on this scheme.

We present here a eonstruetion whieh assigns to any abelian category A a ringed
spaee XA such that if A and A' are cquivalent categories, XA is naturally isomorphie
to XA'. And if A is the eategory of quasi-coherent sheaves of a scheme X, then thc
sehenle X is eanonieally isonlorphic to XA. Thc undcrlying topologieal spaee of XA is
(SpecA, 'I). Here SpecA is the spectrum of thc category A introduced in [R1] (cf. also
[R]' Chapter 111) j 'I is the strong Zariski topology which appears here for the first time.
The structure sheaf is a sheaf of eommutative rings analogous to the one used in thc
theorem of P. Gabricl. It is worth to Illention that the construction of this work is not
an extension of the Gabriel eonstruction to a wider class of categories. On the contrary,
for alnlost all locally noetherian categories (in particular, for alnlost all eategories of left
modules over noncolnmutative 1eft noetherian rings) the underlying space, (SpecA, 'I),
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is much snlaller than the Gabriel spectrum of A. And it could be described, or at least
estimated, in a quite a fcw cases of interest (see [R], Chapters 11, IV, and V, and [R3]). The
meaning of this renlark is that tbc construction of this paper cau be used for studying some
'noncommutative spaces' of interest which are introduced a.s abelian categories thought as
categories of quasi-cohcrent sheaves on 'would-be spaces' (cf. (Ml, [Al, [AZ], [RJ). The
paper is written with such applications in mind. 'In particular, we study the geoIlletrical
structure of an abelian category in more detail than is strictly necessary to prove the main
theorem of the work.

The article is organized as fallows.
Scction 1 coutains sonle basic facts of spectral theory of abelian categories. Main

references on the subject are [RlJ or [R], Chapter 111.
In Section 2 subschemes of an abclian category are introduced.
In Section"3 we study Zariski closed subschcmes aud Zariski topology on the spectrum.
In Section 4 we define reduccd and Zariski reduced subschemes and study relations

between them in some cases of interest. We establish the stability of subschemes and
reduced subschemes witb respect to Hat localizations.

In Section 5 we introduce the prime spectrum and Levitzki spectum of an abelian
category which are naturally related (especially the Levitzki spectrum) with the Zariski
topology on the spectrum.

The Zariski closed subschemes and Zariski topology are not, in general, compatible
with localizations. We introduce in Section 6 the strangly closed subschemes and the strang
Zariski topology which are stable with respcct to flat"localizations.

In Section 7 we define a ringed space associated to any choice of a topology on the
spectrum of an abelian category and" prove that any scheme can be canonically recon
structed, uniquely up to isomorphism, from tbe category of quasi-coherent sheaves on that
scheme.

I would like to thank Max-Planck Institut für MatheIllatik for hospitality and excellent
working conditions.

1. Preliminaries on the spectrum of abelian categories.
Fix an abelian category A. Recall that, for any two objects X, Y of A, we write

X >- Y if Y is a subquotient of a finite direct SUIll of copies of X. For any X E ObA,
denote by (X) the full subcategory of A such that Ob(X) = ObA - {Y E ObA IY >- X}.
It is easy to check that X >- Y iff (Y) ~ (X). This observation provides a convenient
realization of thc quotient of (ObA, >-) with respect to thc equivalence relation induced by
>-: X ~ Y if X >- Y >- X. NamelYl (ObA, >-)/ ~ is isomorphie to ({ (X) I X E ObA}, 2).

Set SpecA = {P E ObA I P i=- 0, and for any nonzero subobject X of P, X >- P}.
The spectrum, SpecA, 0/ the category A is the preordered set of equivalence (with respect
to >-) classes of objects of SpecA. The canonical realization of (ObA , >-)/ ~ induces a
canonical realization of SpecA : (SpecA = {(P) I P ESpecA}, 2).

An abelian category A has the property (sup) if, for any ascending chain n of suboD
jects of an object M, the supremuIll of n exists and for any subobject L of M, the natural
morphism sup{X n LIX E n} ----t (sup n) n L is an isomorphism.
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The categories with the property (sup) are sometimes called the categories with exact
direct limits.

1.1. Proposition. For any P ESpecA, the subeategory (P) is a SeITe subeategory 0/ A.
1J A is a eategory with the property (sup), then the converse is true: iJ X is an objeet oJ
A sueh that (X) is a SeITe subeategonJ oJ A, then X is equivalent (in the sense oJ>- ) to
a P ESpecA; i. e. (X) = (P).

ProoJ. See Proposition 2.3.3 and 2.4.7 in [R] .•

A nonzero object X of a category A is called quasifinal if, for any nonzero object Y
of A, Y >- X. The category A having aquasifinal object is called loeal.

One can check that all simple objects of a local category (if any) are isomorphie to
each other. In particular, the category of left modules over a c0l11mutative ring R is loeal
iff the ring R is loeal.

1.2. Proposition. The quotient category AI(P) is ioeal.

Proof. See Proposition 3.3.1 and Corollary 3.3.2 in [R] .•

1.3. Proposition. (a) For any topologizing (i. e. Jull and closed with respeet to taking
direct sums and subquotients) subcategory 'Ir oJ A, the inclusion funetor 1r --+ A induees
an embedding Spec'Ir --+ SpecA.

(b) For any exact loealization Q : A --+ AiS and Jor any P ESpecA, either P E ObS,
orQ(P) E SpecAjS; henee Q induees an injeetive map Jrom SpecA-SpecS to SpecAjS.

1.4. The support of an object. For any M E ObA, the support oJ M, Supp(M),
consists of all (P) E SpecA such that M f/: Ob(P).

1.5. Localizations at subsets of the spectrum. For any subset U of SpecA, denote
by (U) the intersection n(p}EU(P). Being the intersection of a set of Serre subcategories,
(U) is a Serre subcategory. A loealization at U is a localization at thc Serre subeategory
(U).

1.6. Same of the canonical topologies on the spectrum.

1.6.1. The topology T. We dcnote this way the strongest topology c0l11patiblc with
thc preorder ~ (recall that P ~ P' means that P' is a specialization of P). Its explicit
description: the closure of a subset W of SpecA consists of all specializations of all points
ofW.

Recall that a topological space X is called a K olmogorov Js spaee, if it satisfies the
following propcrty:

(Ta) If x anel y are two distinct points of X, then there exists an open set containing
only Olle of these points.

In other words, if x E {y}- and y E {x}-, then x = y.
Sinee thc closurc of a point in tbc topology T consists of the set of its specializa

tions anel two points whieh are specializations of each other coincide by definition of
SpecA, (SpecA, T) is a Kolmogorov's space. In partieular, if an irreducible subset of
(SpecA, T) has a gcnerie point, this gencric point is unique. The irreducible closed subsets
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of (SpecA, r) having generic points (i.e. the closures of points) are sets of specializations
of points of SpecA.

1.6.2. The topology y•. A base of closed sets of r. consists of Supp(V), where V runs
through finite direct sums of objects of SpecA. In other words, the base of closed sets of
y. consists of finite unions of thc sets of specializations of points of the spectrum. The
topology Y",," is thc weakest topology on SpecA having the property: the closure of any point
P of (SpecA, r.) is the set {PI ESpecA!P' ~ P} of specializations of P. In particular,
(SpecA, Y.) is a Kolrnogorov's space with the same irreducible closcd subsets having a
generic point as (SpecA, r).

1.6.3. The topology r·. Recall that an objcct M of a category C is 01 finite type if
for any directed set q of subobjects of M such that sup [2 = M, there exists a subobject
M' E [2 such that M' = M. We define the topology y. on SpecA by declaring the sets
Supp(V), wherc V runs through the class of all objects of A of finite type, a base of
closed subsets. Note that this base is closed with respect to taking finite unions, since
UiEJ Supp(Vi) = Supp( EBiEJ Vi) and a finite direct surn of objects of finite type is an
object of finite type. A sinülar statement about finite intersections is not true.

1.6.3.1. Lemma. Suppose that the category A has the properly: any nonzero object of A
has a nonzero subobject of finite type. Then the topology r"" is weaker than the topology r· .

Proof. In fact, nnder the conditions of thc lemma, every elClnent of SpecA is of the
form (P), where P is of finite type.•

1.6.3.2. Corollary. Under the conditions of Le1nma 1.6.3.1, (SpecA,r·) is a Kol
mogorov's space.

1.6.4. The case of a locally noetherian category. The flat spectrum of an abelian
category A is tbe set of all Serre subcategories P of A such that AlP is a local category
(cf. [R], eh. VI for a detailed study of Spec-A). The following proposition has a weIl
known commutative (i.e. when A = R - mod and R is commutative) prototype.

1.6.4.1. Proposition. Let M be a noetherian object of A such that every nonzero sub
quotient of M has an associated point. Then there exists an increasing filtration 0 = Mo C

MI C M 2 C ... C Mn = M such that MiIMi-I E SpecA for 1 ::; i ::; n.

Proof. Note that any noetherian object M of A has a finite Gabriel-Krull diInension
which iInplies the existence of a finite filtration 0 = Mo C MI C M 2 C ... C Mn = M
such that, for all 1 :::; i :::; n , Mi/Mi - 1 E Spec- A. By the asSUlllptioll, Ass(MiIMi-d =1= 0.
So that MilM i - 1 ESpecA.•

1.6.4.2. Corollary. Suppose that A is a locally noetherian category such that any nonzero
object of A has an associated point (in SpecA). Then Spec- A = SpecA.

Proof. Since A is locally noetherian, every P E Spec- A can be represented by a
noctherian (P-torsion free) object P. It follows from Proposition 1.6.4.1 that P ESpecA.

•
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1.6.4.3. Corollary. Suppose.that A is a locally noetherian category such that any nonzero
object 0/ A has an associated point (in SpecA). Then the topologies r* and r* on SpecA
coincide.

Proof. The category A being locally noetherian, objects of finite type are cxactly
noetherian objects; and all elements of SpecA are of the form (P) with a noetherian P.
It follows froln Proposition 1.6.4.1 that the support of any object M of finite type is a finite
union of the sets of spccializations of points of Sp ecA: Supp(M) = U1< i < n SUpp (Mi / Mi -1 )

(cf. 1.6.4.1). So that the topologies r* and T. coincide. _ - -

2. Subschemes.
2.1. Subschemes of an abelian category. Recall that a subcategory 1r of A is core
flective if the inclusion functor 11' ---+ A has a right adjoint. This property means that any
object M has the biggest subobject, t T M (called the 'li-torsion of M'), from 1r.

If A has suprenHlms of subobjects (which is the case if A has slnall direct sums),
then being corefiective means exactly that supremUl11 of any set of subobjects of an object
which belong to 1r is also in T.

A full subcategory T of an abelian category A is called topologizing if it is closed with
respect to finite direct SUIUS and contains all subquotions of any of its objects.

We ·call a coreflcctive topologizing subcategory of A a subscheme 0/ A.

2.2. The Gabriel multiplication. The Gabriel product of two subcategories 1r and §

of an abclian category A is the full subcategory T. S of A generated by all X E OhA for
whieh there exists an exact sequence

o ---+ X' ---+ X -----+ X" -t 0

with X' E ObS and X" E ObT. If 'lr and S are topologizing subcategories, then such is
']f' • §. This multiplication is associative and has an identity eleInent - the subcategory O.
Note that a topologizing subcatcgory 1I' of A is tkick iff 'Ir • ']f' = 'lr.

By Lemma 111.6.2.1 in [R], if 'Ir, S are subschemes of A, their Gabriel product T • §

is a subscheme.

2.2.1. An application: the n-th neighborhood of a topologizing subcategory.
Given a subscheme 1r of A, define the n-th ncighborhood of'lr as the n-th power of 1r; Le.
li(n) ;= 1r •...• 1r (n times). All T(n) are subschemes of A and 1r(n) ~ 1r(n+l) for all n.
One can check that 1r(oo) := Un>l ']f'(n) is a thick subcategory of A which coincides with

the intersection of all thick subc~iegories containing 11'. Note that 1r(oo) is not, in general,
a subscheIne of A. It is a subscheIne if 1r is locally noetherian. _

2.3. Subschemes and the topology T. Fix an abelian category A. Note that, for
any subscheme 1I' of A, Spec'lr is a closed subset of thc topological space (SpecA, T).
Conversely, any closed subset W of (SpecA, r) coincides with Spec1r for some subscheme
1r. Tbe biggest subscheme of A having such property is the Serre subcategory Aw of A
generated by all objects M such that Supp(M) ~ W. Thus arbitrary subschcmes could
be interpreted as closed subschenlcs of thc space (SpecA, r).
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2.4. Subschemes of the category of modules. Let A be thc category R --mod of
left modules over an a.~sociative ring R. And let T be any topologizing subcategory of A.
Denote by Fy the set of allieft ideals m in R such that R/m E ObT.

Conversely, for any set F of left ideals in R, denote by Tp the fuH subcategory of
R - mod generated by alllnodules M such that, for any z E M, Ann(z) E F.

2.4.1. Lemma. 1) For any topologizing subcategory T of R - mod, the set F = PT has
the following properties:

(a) m, n E F implies that mn n E F;
(b) if m E F, then any left ideal n containing m belongs to F;
(c) for any m E Fand any finite subset x of elements of R, (m: x) E F.
2) If F is a subset of the set IlR of lejt ideals of R having the properties (a), (b), (c),

then the subcategory Tp is topologizing and coreflective.

Proof. 1) (a) is a consequence of the fact that the quotient module R/7n n n is a
submodule of the direct sunl R/m EB R/n.

(b) The nlodule R/n is a quotient of R/mj hence R/n E ObT together with R/m.
(c) Let u denote tbe iInage of the identity element in R/m. The left ideal (m : x)

is the annihilator of the element EBrExTu of the direct SUfi of I x I copies of R/mj hence
R/(m : x), being a sublnodule of a module fronl T, belongs to T.

2) For any lnodule M, the set Mp := {z E M I Ann(z) E F} is a submodule.
In fact, for any z, z' E M and any r E R, we have:

Ann(z + z') ~ Ann(z) n Ann(z'), and Ann(rz) = (Ann(z) : r).
Clearly Mp is the largest SUbulodule of M which belongs to 'lrp. This means that the

subcategory TF is coreflective.
If M, M' E Ob'lrp, then M EB M' E Ob'lrp, since for any z E M, z' E M', Ann(z EB z')

equals to the intersection of Ann(z) and Ann(z'). Clcarly any subobject of an object of
.. T p belongs to T p . Finally, a quotient of any object of l'p belongs to Tp. So that the

subcategory 'fF is topologizing. _

The sets F of left ideals satisfying thc conditions of Leulnla 2.4.1 are called topologizing
filters.

2.4.2. Note. For any topologizing subcategory 11', the subcategory T p, where F = FT

is thc set {m E IlR I R/m E Ob11'} is the intersection of all corefiective topologizing
subcategories of R - 7Tl,od containing 11'. _

2.4.3. Example. Let m be any left ideal in R.. Denote by [R/m] the fuH subcategory of
A generated by all nlodules M such that, for any z E M, m ::;Ann(z). One cau check that
the subcategory [R/m] is topologizing and coreftective. Moreovcr, [R/m] is the smallest
subschenle of A containing the nlodule R/m. Oue cau see that [R/m] = 11'[m] , where
[712] := {n E ltR Im::; n}.

The topologizing subcategories T[m] are miniInal in the following sense: for any topol
ogizing filter F of left ideals in R, TF = UmEP T[m]' _

Example 2.4.3 is extended to any abelian category A with the property (snp) as
follows. For any objcct V of A, denote by V>- the fun snbcategory of A generated by
all objects X such that V >- X. Note that V>- is topologizing, since it is closed nnder
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finite direct SUIllS; and if X EObV>- and X >- Y, then Y EObV>-. But, in general, the
subcategory V>- is not coreflective. Thc full subcategory [V] of A generated by all X E ObA
which are supremUIllS of their subobjects frolll V>- is both topologizing and coreflective.

Note that any subscheme 11' of A is of the form UVEX [V]' whcre .x is a class of objects
of l' having thc property: for any Y E Ob11', therc exists X E .?€ such that X >- Y.

Clearly V >- W if and only if W>- ~ V>-. In particular, the subcategories V>- and [V]
depend only on the equivalence class (V) of the objcct V. Oue can see that Spec[V] =
SpecV>- = Supp(V). So that if V ESpecA, then SpecV>- is the set of all specializations
of (V).

Assume that the category A has TIO nonzero objects with empty support. In this easc,
if V E SpecA and is a c10sed point, then all nonzero objects of V>- are equivalent to V.

If A = R - 1nod and V = Rlrn for some lcft ideal m in R, the subcategory [V]
coincides with the subcategory [Rlm] of Example 2.4.3.

2.4.4. Residue Held of a point of the spectrum. If A is a Ioeal category and V
is aquasifinal object, then [V] is thc residue category 0/ A: [V] = K(A). It does not
depend on the choiee of aquasifinal object. If A has a simple objeet M, then [V] = [M] is
equivalent to thc category of vector spaces over skcw residue field of K(A) = End(M) (cf.
[R], 111.5.4.1). Since all simple objects of a Ioeal category are isomorphie to each other,
the residue field K(A) is defined uniquely up to isomorphism.

In partieular, for any abelian category A and any element P of SpecA we have a weIl
defined residue category Kp := K(AIP) of P. And if the category AlP has simple objeets,
we have a defined llniquely up to isolllorphisnl skew residue field K p := K(AIP) of P.

3. Zariski closed subschemes.
A subcategory 1r of A is called refiective if the inclusion functor 1r -----7 A has a left

adjoint. Wc say that a subschemc l' of A is Zariski closed (or simply closed) if 1r is a
refiectivc subcatcgory of A.

By Lemma 111.6.2.1 in [R], if T, S are closed subschenlcs of A, then their Gabriel
product l' • S is a closed subsehenle.

3.1. Example: closed subschemes of R-rnod. If A = R-mod, reflective topologizing
subcategory of A are in one-to..one eorrcspondence with two..sided ideals of the ring R: to
any two..sided ideal a there corresponds thc full subcategory [Rla] gencrated by all modules
annihilated by a (cf. [R], Proposition 111.6.4.1). In particuIar, any reflective topologizing
subcategory of R - mod is coreflective. _

3.2. Note. It follows from Example 3.1 that if the ring R is simple, there are only trivial
Zariski closed subsehemes of R - rnod and lots of subschemes. _

3.3. Operations with subschemes. Fix an abelian category A having the property
(sup).

3.3.1. Lemma. (a) The intersection 0/ any set 01 subschemes 0/ A is a subscheme.
(b) The intersection 0/ any set 0/ Zariski closed subschemes 0/ A is a Zanski closed

subscheme.
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Proof. (a) Clearly the interseetion of any set of topologizing subcategories is a-topolo
gizing subcategory. Similarly, the intersection of any family X of coreflective subcategories
is a coreflective subcategory.

In fact, let n be a family of subobjects of an object Y which belong to thc intersec
tion nsEx S. Since each of thc subcategories SEx is coreficctive, sup n belongs to this
intersection tao. This implies the coreflectivity of nsEx S.

(b) Let now ~ be a family of Zariski closed subschemes. And let, for any 1r in ~,

.A J.r denotc a left adjoint to the inclusion JT : 1r --+ A, and rrr the adjunction arrow
IdA ---t JT ° A J'JJ'. Let K 1: denote the kernel of 1JT. Note that rrr is an cpirnorphiSnlj so
that JTo "JT ~Cok(1]T). Set K~:= sup{KT 11r E ~}. For any M E ObA, M/K~(M) is a
quotient of M / Ky(M) for any 1r E ~; hence it is an object of nTE~1r. Conversely, if Y is an
objcct of nTE~ 1r, then an arbitrary morphism / : M ---t Y factors by M ---t M / K y (M) .
So that Kerf 'contains' K~(M). All together shows that the map M H M/K~(M)

extends to a left adjoint to the inclusion functor nTE~ 1r ---t Aj Le. nTE~ 1r is a reflective
subcatcgory of A .•

3.3.2. The supremum of subschemes. The supremum, sup~, of a family ~ = {Si I
i E J} of subschemcs is the smallest subscheme of A containing all the subschemes of thc
family ~.

Let {Si I i E J} be any fanlily of topologizing subcategories of A. Then the smallest
topologizing subcatcgory containing all the subcategorics Si equals to the union of the
subcategories X>-, where X runs through EBiEJXi in which Xi E ObS i for aU i E J,
and only finite number of Xi are nonzero. If all the sllbcategories Si are coreflective anel
arbitrary direct sums EBiEJXi , Xi E ObSi, exist, then we have an analogous description
of the smallest subscheIne S containing all Si: the subcategory S is the union of the
subcategories [X], where X runs through all sums EBiEJXi with Xi E ObSi.

Note that 'all sums' in this description can be replaced by the requiremcnt Xi E Si,
where Si is a set of objccts of Si such that Si = UYESi [Y].

For instancc, if Si = [Xi] for sonle Xi E ObA, i E J, then SUp{Si ! i E J} = [EBiEJXi].

3.3.2.1. Lemma. The supremU1n 0/ a finite number 01 Zariski closed subschemes is a
Zariski closed subscheme.

Proof. We shall use the notations of the argulnent of Lenlma 3.3.l.
Let ~ be a finite fanüly of Zariski closed subschemes of A. Denote by K ~ the functor

which assigns to any M E ObA the intersection nTE~Ky(M). Since ~ is finite, M/K~(M)
is a subobject of T'B~M/KT(M) =1: 'B~ ~ JT(M). Denote by wJ thc (uniquely defined)
extension of the map M H M / K ~ (M) to a functor from A to A. Since thc el irect surn
"f';g~M/KT(M) is an objcct of sup 'B, thc functor W~ takes valucs in thc subcategory sup~.

On the other hand, if M E Ob sup~, then K J(M) = 0; Lc. thc natural cpimorphism
M -----1 W~(M) is an isolnorphislll. This shows that W~ is lcft adjoint to the inclusion
sup~ --+ A.•

4. Irreducible and reduced subschemes.
4.1. Irreducible subschemes and points of the spectrum. CaU a subschcme X of
A irreducible if, for any subschemes 1r and §, we have the implication:
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x ~ S u 1L {:} either X ~ 1L, or X ~ S.

4.1.1. Lemma. For any P ESpecA, the subscheme [PJ has the property: if [PJ ~ S. T
for some subsche1nes Sand 1L, then either [PJ ~ S, 01' [P] ~ 1L. In particular, [PJ is an
irreducible subscherne.

Proof. Let P = (P) for same P ESpecA; so that [PJ = [P]. The inclusion [P] ~ S.1L
means that P E ObS • Tj Le. there exists an exact sequence 0 ----t X ----t P ----t Y ----t 0
such that X E ObT and Y E ObS. Ir x i= 0, then X >-- Pj hence P E ObT. If X = 0, then
Y ~ P; so P E ObS.

If [P] ~ S U T, then [P] ~ S. T. Therefore eithcr [P] ~ 8, or [P] ~ T.•

4.2. Reduced subschemes. We call A reduced if any subscheIne 'Ir of A such that the
the natural embedding SpecT ----t SpecA is a bijection coincides with A.

4.2.1. Proposition. The intersection Teti) of all subschemes 1I" of A such that Spec1I" =
Spec1' is a unique red1J,ced subscheme ofA having the same spectrum as 1'. The subscheme
Teti) coincides with sup{[PJ IP ESpec1'}.

Proof. We can assume without lass of generality that 1L coincides with A. The equality
Spec1" = SpecA is equivalent, for any subscheme (more generally; for any topologizing
subcategory)T' of A, to the equality Spec1r' = SpecA. Therefore SpecArei) is equal to
SpecA. Since a subscheme of a subschcme of A is a subscheme of A, A rell is reduced.

Clearly the spectnnn of the subschemc sup{[P] I P ESpecA} coincides with SpecA.
And any subscheme T of A such that Spec1r = SpecA contains all subscheInes [Pli hence
it contaills sup{[P] I P ESpecA}. Therefore A rell = sup{[P] I P ESpecA}.•

4.2.2. Remark. Clearly A rcll = sup{[P] I P Ex}, where x is any subset of SpecA such
that any point of SpecA is a spccialization of some point of x.•
4.3. Closed subsets of the spectrum and reduced subschemes. For any subset W
of SpecA, let [W] denote the reduced subcategory sup{[P] I (P) E W}.

4.3.1. Proposition. The correspondence W I---t [W] establishes an isomorphism /rom the
category (preorder) of closed subsets of the space (SpecA, r) onto the category of redll.ced
subschemes of A.

Proof. In fact, a subscheIne 1r is reduced iff T = sup{[P] I (P) E Spec1L}.•

4.4. Zariski reduced subschemes. We call a. closed subscheme T of A Zariski reduced
if any Zariski closed subscheIne T' of A such that 1r' ~ T and Spec"f' = Spec1L coincides
with T. For any closed subscheme T, the intersection Tred of all closed subschemes 1r'
of A such that Spec1r' = Spec1L is the srnallest Zariski reduced subschenle of A having
the same spectrum as T. We caU Tred the Zariski reduced subscheme associated to 11'. In
particular, there exists the Zariski redll.ced stLbscheme Ared associated to A.

4.4.3. Example: the reduced subscheme associated to the category of modules
over a Goldie ring. Let A = R-mod, where R is a 1eft Goldie ring. Then there is a finite
set :f of nlinimal primes in R. These nüniInal primes are left annihilators in Rj therefore,
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by Proposition 1.6.4.5 in [R]' they belong to SpeclR. Since every ideal p E SpeqR contains
a prime ideal, (p : R), any ideal of SpeclR contains an ideal from X. Therefore A reD is
the supremum of Zariski closed irreducible subscheInes [R/p) ~ R/p - mod, where p runs
through (the finite set) X.

Note that sup{[R/p) I p E X} = [EBpEX R/p) = [R/ npEx p] = [R/L:(R)), where
.c(R) = npEX p is the Levitzki radical (which is by definition thc biggest locally nilpotent
ideal) of R. The last equality follows froln thc following facts:

a) R/.c(R) >- R/p for each p E X (actually, for each p E SpeqR) which implies thc
inclusion sup{[R/p] I p E X} ~ [R/ .c(R)).

b) On the other hand, R/.c(R) is a subobject (thanks to the finiteness of X ) of
EBpExRlp which inlplies thc inverse inclusion [R/L:(R)) ~ [ EBpEX Rlp).

Thus, we have established the following fact:

4.4.3.1. Proposition. For any left Goldie ring R, R - mod tCD = [RIL:(R)] ~

R/.c(R) - mod.
In particular, R - modtetJ is a Zariski closed subscheme of R - mod; therefore R 

modte"O = R - modred .

4.4.3.2. Corollary. Let A be the category of left modules over a left noetherian ring R.
Then, for any closed subscheme 'lr of A, Tred = 'lrteD •

Proof. Any closed subscheme 'lr of R - mod (for an arbitrary associative ring R) is
naturally isoInorphic to thc category Riet - rnod for a (uniquely defined) two-sided ideal
et (cf. Example 3.1). The isomorphisIll 11' ~ Riet - mod induces isoillorphisms between
'lrred and Riet - modred and bctween 'Irtc"O and R/cr. - rnodtCD ' Since thc ring R is left
noetherian such is the ring RIa; in particular, R/a is a left Goldie ring. By Proposition
4.4.3.1, the inclusion Rla - modre"O ~ R/a - modred turns out to be the equality. Hence

'lrtei) = 'lrred' •

4.4.4. The reduced subschemes associated to the eategory of modules: the
general ease. Consider now the general affine case: A = R - tTl.od, where R is an
arbitrary associative ring. We have:

Are"O = sup{[R/p] Ip E SpeqR} = [EBpESpec/R R,fp] ~[R/L(R)] ~ RIL(R) - mod

where .c(R) is the Levitzki radical of R. It follows from TheorCIn 1.4.10.2 in [R] that the
subcategory [R/ .c(R)] coincides with Ared'

If SpeqR has a finite subset of minimal points (as in the case when R is a left Goldie
ring; cf. Exalnple 4.4.3), then, repeating the argument of Example 4.4.3, one can see that

. Aren = [R/ .c(R)] = Ared'
In the general (even comnultative) case, the reduced subscheme Att"O is, usually,

strictly sInaller than Ared .

4.5. Subschemes and loealizations. Thc following assertion shows that subschemcs
are stable with respect to Hat localizations.
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4.5.1. Proposition. (a) Let Q : A ---+ A/S be a /lat localization. For any subscheme T
of A, 1r n S is a Serre subcategory of1f and, given a localization Q' : T -----t 1r/S n 1r, there
exists a unique functor J : 1f/T n § -----t A/S such that the diagram

1fnS --t

1
S --t

Q'
--t 1f/T n §

1J
Q

-----+ A/S

(1)

is commutative. The junctor J establishes an equivalence between 1f/Tn Sand the mini1nal
subscheme [Q(T)] of the category A/S containing Q(T).

(b) If1f is a reduced subscheme ofA, then [Q(1f)] is a reduced subscheme of the category
A/S.

Proof. (a) The assertion (a) follows froIn Lernma VL1.4.1 and (the argument of)
Proposition VI.2.5.1 in [R].

(b) Suppose now that the subscheme 1r is reduced; i.e. 1f = sup{[P] IPESp ec1f} .
Clearly [Q(T)] = sup{[Q(P)JI(P) ESpecA}. Since Q(P) is either zero, or belongs to
SpecA/S, the subscheme [Q(1f)] is reduced.•

5. The Prime and Levitzki spectra of an abelian category
and Zariski reduced subschemes.

Let I(A) denote the set of Zariski closed subschemes of an abelian category A. Denote
by PrimeA the set of all IP E I(A) such that, for any pair S,"Ir E I(A), thc inclusion
IP ~ S u "Ir implies that cither IP ~ S, or IP ~ 1f.

We consider PrimeA together with thc 'specialization' preorder 2.
The Zariski topology on PrimeA is defined in a usual way: closed subsets are all sets

V(1f) := {Ir EPrimeA I Ir ~ 1f}, wherc 1f runs though I(A).
It follows fronl the definition of PrimeA that

V(1f U S) = V(1f) UV(S)

for any 1f, S E I(A). And, for any falnily S ~ I(A), we have

(1)

(2)V( n1f) = nV(1f).
- TE=: 'rES

For any object M in A, define the annihilator of M as the intcrsection of all 1f E I(A)
which contain M. The notation: Ann(M).

5.1. Lemma. (a) 1/ M >- M', then Ann(M) ~ Ann(M').
In particular, Ann(M) is weil defined for any M E ObA.
(b) nMES Ann(M) = Ann( ffiMES M).
(c) For any P ESpecA, Ann(P) E PrimeA.

Proof. (a) The first assertion is evident.
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(b) Any refiective subcategory T contains coproducts (taken in A) of any set of its
objects (provided this coproduct exists).

(c) Fix P ESpecA. Let S,1r E I(A) be such that P E ObS U 1r. Since S U 1r ~

§ -1r, P E ObS - 1r which iInplies that either PES, or PET; i.e. either Ann( (P)) ~ 8,
or Ann((P)) ~ 1r.•

5.2. Corollary. 1f A is non-degenerate (i.e. Supp(M) = (/) only ij M = 0), then V(1r) is
non-empty for any 11' =I- O.

Proof. In fact, for any M E ObT, {P E SpecAl (P) ESupp(M)} ~ ObT. Thereforc, if
T is nonzero, it contains an object P of SpecA; hence it contains Ann(P) which is prime
by Lemma 5.1. • '

5.3. Lemma. Suppose that A is 'a loeal eategory. And let P be a quasifinal object in A.
Then Ann(P) is the unique minimal element of I(A) - O.

Proof. In fact, any nonzero topologizing subcategory T contains all quasifinal objects
of A.•

5.4. Levitzki spectrum of an abelian category. Recall that a topological space X
is called sober if every irreducible closed subset of X has a unique generic point. The
inclusion functor Js frOIn the category 6!'op of sober topological spaces into the category
'rop of topological spaces has a left adjoint, ... Js , which assigns to any topological space X
the set X s of all irreducible closed subsets of X with the strongest topology such that the
map <Px : X ------t Xs,x 1-+ {x}-, is continuous. The map CPx is a quasi-homeomorphism
(Le. it induces a bijection of the sets of open subsets of the spaces). The sober spaces
are exactly topological spaces Y having thc property: every quasi-homeomorphisIn with
the domain Y is a homeonlorphisIn. In particular, any quasi-homeomorphisIn froIn X to
a sober space Y indllces a homeomorphism froIn Xs to Y.

5.4.1. Definition. The Levitzki spectrum of an abelian category A is the subspace
LSpecA of PrimeA formed by all P EPrimeA which are Zariski reduced.

5.4.2. Note. Clearly Ann(P)ELSpecA for any P ESpecA. If follows froIn the argurnent
of Corollary 5.2 that if T is a nonzero closed subscherne, the corresponding closed subset
of LSpecA, VL(T) := V(T)nLSpecA is nonempty.•

5.4.3. Proposition. Let A be an abelian category. The Levitzki spectrum LSpecA 0/
A is a sober topological space. The map cp : SpecA ------tLSpecA, P 1-+ Ann(P), is a
quasi-homeomorphism of (SpecA, 73) to LSpecA.

Proof. The map cp is continuous because

<p-l(VL(T)) := {(P) E SpecAj Ann(P) ~ T} = {(P) E SpecAIP E übT} := V(T). (1)

Moreover, it follows froIn (1) that cp-l defines a bijective map from the set of closed
subsets of LSpecA onto the set of closed subsets of (SpecA, 73); Le. cp is a quasi
hOIneomorphism. It reInains to show that LSpecA is a sober space.

Note that a closed subset W of LSpecA' is irreducible iff W = V(IP) for a priIne
subscheme Ir. In fact, let Ir bc the intersection of all closed subscheInes of A containing
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elements of W. We claim that it is prime. Suppose IP ~ S U 1r for some closed subschemes
Sand 1r. Then W ~ V(IP} ~ V(S U 1r) = V(S) U V(T). Since W is irrcducible, cither
W ~ V(S), or W ~ V(1r). If W ~ V(§), then IP ~ § by definition of IP and V(S).

Since all elelnents of Ware reduced closed subscheInes, IP is a reduccd closed sub
schenle: IP = IPred' Therefore IP ELSpecA. Since W = V(IP)nLSpecA, Ir EW. Thus
every irreducible closed subset of LSpecA has a generic point. The last observation to
finish the argument: LSpecA is a Kolmogorov's space, hence an irreduciblc closed set of
LSpecA cannot have more than one generic point. This follows directly from definitions:
the relation lP E V(IP') means that IP ~ lP". So that if, in addition, 1P' E V(IP), then IP = 1P' .

•
5.4.4. Proposition. The map 1r H VL(1r) establishes a one-to-one correspondence
between Zariski reduced closed subschemes of A and closed subsets of LSpecA.

Proof. We have a map which assigns to any closed subset W of LSpecA the inter
section 1rw of all closcd subschemes of A containing all elements of W. Since W consists
of Zariski reduced subschemes, 1rw is also Zariski reduced. And VL(1rw) coincidcs with
W. This shows that the composition 'ljJ ° 4> of the lnap 4> : W H 1rw with thc map
1/J : 1r H VL(T) is identity. On the other hand, if 1r = 'fred' the set W = VL(1r) contains
all Ann(P}, P ESpec1r. This implies that Tw contains all P E Spec1r. Therefore, since 1r
is reduced, 'f ~ 1rw . It follows from the definition of 1rw that 1rw ~ 1r. This shows that
4> ° 'lj; = id.•

5.4.5. The prime spectrum and the Levitzki spectrum of the category of mod
ules. Let A = R - mod for an associative ring R. Then set I(A) of closed subschemes
of A are in bijective correspondence with the set I(R) of two-sided ideals in R: to any
two-sided ideal a there corresponds the full subcategory of R - rnod generated by all R
modules M such that a ~ Ann(M) (cf. Example 3.1). This correspondence induces a
homeomorphism from PrimeA to the prime spectrum SpeeR of thc ring R with Zariski
topology. It follows froIn Theorenl 1.4.10.2 (and LemIua 1.5.2) in (R] that the homcomor
phism PrimeA ---+ SpeeR induces a hOlneoluorpmsln from LSpecA onto thc Levitzki
speetnLm LSpeeR of R which by definition consists of all prime ideals p in R such that the
quotient ring R/p has no locally nilpotent ideals.

6. Strong Zariski topology.
Let 1r be a Zariski closed subschenle, JT thc inclusion functor 1r ---1 ,A, OT := JTo ~ JT :

A ----t A. We say that 1r is conlpatiblc with localization Q ; A ---1 AIS if 0'1' is compatible
with Q. The latter means that Q ° OT(S) is invertible for any s E HomA such that Qs is
invertible.

6.1. Lemma. Suppose 'Ir is compatible with a flat loealization Q : A ----t B. Then the
minimal subscherne of B generated by Q(1r) is closed.

Proof. In fact, thc compatibility of 01' with Q nleans that there exists a unique functor
0i such that Q 0 OT = O~oQ. The latter equality and the isoIllorphism Q 0 Q'-- ---1Idß
iInply that there is a canonical isomorphisln O~ ::: Q 0 tJT 0 Q'--. Replacing O~ in the
equality Q°O'JI' = O~ °Q by Q °Gy °Q'--, wc obtain the following criteria of compatibility:
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01' is cOInpatible with the localization Q iff the canonical morphism Q 0 01' --t Q 0 OT 0

Q'" oQ is an isomorphism. The adjunction epimorphism 8:IdA --t Oy indllces a morphism
8' : 1da --t O~ whieh is the cOInposition of the inverse to thc adjunction isomorphism
[da:::' Q 0 Q"', Q8Q"', and the isomorphisIll Q 0 01' 0 Q" --t O~. We have canonieal
isomorphisms:

showing that the functor O~ induces a functor B --t 1I", where 1I" is the full subcategory
of B generated by all objects M of B such that 8' (M) is "an isomorphism.

(a) It follows from the definition of T' that 1r' is a reflective subcatcgory of B: the
functor O~ takes values in 1r' and induces a lcft adjoint to tbe inclusion fllnctor 1r' ---+ B.

(b) Note that Q(T) ~ T'. Indeed, since Obl' = {X E ObAI0'l['(X)}, for any X E ObT,
we have isomorphisms

O~ 0 Q(X) :::' Q 0 OT 0 Q" 0 Q(X) :::' Q 0 Or(X) ~ Q(X).

On the other hand, an object Q(Y) belongs to 11" iff the adjunction morphism Q(Y) --t
(9~ 0 Q(Y) is an isomorphism. Thus we have canonical isomorphisms

showing that the object Q(Y) is isomorphie to an object of Q(l').
(c) We claim that T' is a subscheme of B. In fact, since 1I" it rcflective, contains all

quotients of each of its objects. Let M E ObT'; and let L --t M bc a mononlorphism in
B. By a standard argument, there exists a commutative diagram

L

r
Q(L')

M

r
QL

---+ Q(M')

(1)

in whieh i is a monomorphism, M' E Ob11', and both vertical arrows are isomorphisms.
Sinee l' is a topologizing subcategory, L' E Ob11'. By (c), Q(L') E Ob1I". Hence L E ObT.
Thus 1" is a topologizing subcategory of B. Being a reflective subeategory of B (cf. (a)), 11"
is c10sed with rcspect to colinlits (taken in B). Hence T' is a c10sed subscheme of B.•

6.2. Note. A closed subscheIne 1[' is cOlllpatible with a flat localization Q iff the defining
ideal KT:=Ker(IdA --t (9r) of l' is compatible with Q. In fact, we have a commutativc
diagram

---+ Q 0 01' 0 QA 0 Q --t 0

r
---+ Q 0 O'l[' ---+ 0

with exact rows and isomorphie central vertical arrow. Therefore the suhscheme 11' is
compatible with the localization Q, Le. the right vertical arrow is an isomorphisln iff
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the left vertical arrow is an isomorphism. Tbe latter means that the defining ideal K T is
compatible with Q.•

6.3. Lemma. Let Q : A ---+ ß be a flat localization. The dass of 3{Q} 0/ closed
subschemes 0/ A compatible with Q is stahle with respect to taking finite suprem7Lms and
any intersections.

Proof. Let ~ be a family of closed subschenIes.
(a) The defining ideal of n~ is K nlj = sup{Krl'Ir E ~} (cf. Lemma 2.7.1). Since the

functor Q prescrves colimits aod A is a category with the property (sup), the fact that the
natural arrow Q 0 K T ---+ Q 0 KT 0 Q'" 0 Q is an isomorphism for any 'Ir E ~ implies the
isomorphness of Q 0 Knlj ---+ Q 0 Kn~ 0 Q'"oQ.

(b) Suppose the family ~ is finite. Thc defining ideal of sup ~ is n1'Elj Ky - the kernel
of the canonical morphisnl 1dA ---+ EBTEljOT' Thus we have a commutative diagram

--+ 0

o ---+

0--+ QoKaup~oQ oQ

a!
Q 0 Ksup~ --+ 0

(1)
with exact rows. The central vertieal arrow is an isomorphism. Since functors OT are
compatible with thc localization Q, the arrow a is also an isolnorphislll. Therefore the
third vertieal arrow is an isomorphism. Hence sup ~ is compatible with the localization Q .

•
6.3.1. Corollary. For any /amily 3 0/ localizating subcategories (i. e. kemels 0/ flat
localizations) 0/ an abelian categoT'lJ A, the dass 33 of closed subschemes 0/ A compatible
with localizations at all SE:=: is stable with respect to taking finite supremums and any
intersections.

6.3.2. Corollary. For any /amily 2 0/ localizing subcategories 0/ an abelian category A
containing 0, the dass the /amily 0/ sets {Spec'lrl'lr E 33} (cf. Corollary 6.3.1) is the
/amily 0/ all closed sets 0/ a topology T3:=: on SpecA.

6.4. The strong Zariski topology. Assurne that every P ESpecA is loealizable. We
denote by 'I3 the topolügy 738 of CüroUary 6.3.2 in thc ease whcn 2 eonsists of 0 and aU
P ESpecA. We eaU 'I3 the strong Zariski topology.

6.4.1. Lemma. Let 2 be a set 0/ thick subcategories 0/ an abelian category A; and let
F : A ---+ A be a /unctor compatible with localizations at each § E 2. Then F is compatible
with localizations at the thick subcategory nsEs S.

Proof. The eOlnpatibility üf F with localization at S mcans that, für any arrow s
such that K er(s) and Cok(s) are objeets of §, the morphism Fs enjoys thc salnc property.
Therefore (Ker{s),Cok{s) E ObnSEsS] {;:} [KerF(s),CokF(s) E ObnsEsS]. •

6.4.2. Corollary. Supp08e a /unctor F : A ---+ A is compatible wilh the localizalions at
all points 0/ SpecA. Then F is compatible with the localizations at any subset 0/ SpecA.
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6.4.3. Corollary. For any subset V of SpecA the map 'P : SpecA ---t SpecA/ (V)
sends cIosed subset of (SpecA, ~3) into closed subsets of iIn( cp) regarded as a subspaee of
(SpecA/ (V), 73)' where 73 is the Zariski topology.

Proof. Let Q = Q(V} be a localization at (V). Let W be a closed subset of
(SpecA, ~3); Le. W = SpecT for some strongly closed subschetne T. By 6.4.2, 11' is
compatible with the localization Q. Hence the minimal subscheme 11'v of A/(V) gcner
ated by 11' is closed (Lemma 6.1). Clearly this miminal subscheme is cornpatible with
localizations at every point of the image of SpecA.•

7. Reconstruction of schemes.
7.1. Ringed spaces associated to a category. Recall that the center of a category Ais
the ring C! (A) of endolllorphisms of thc identical functor I dA. A localization Q : A ---t B
maps the center of A into thc center of B. In particular, given a topology 7 of SpecA,
there is a presheaf D = Dy of commutative rings on the spaee (SpecA, n whieh assigns
to any open set U thc center of the quotient category A/(U). Denote the sheaf associated
to Dy by Oy.

In the following theorem 7 = 'I3 - the strong Zariski topology.

7.2. Theorem. Suppose that A is the category of quasi-coherent sheaves on an arbitrary
scheme X. Then the ringed space ((SpecA, 'I3 ), OA) is isomorphie to X.

Proof. (a) Let Adenote the category Qcohx of quasi-cohcrent sheaves on the scheme
X = (X,O). We claiIn that the underlying space X is isomorphie to (SpecA, 73)'

(al) A Ulap rjJ : X ---+ SpecA. Fix a point x EX. Let Px be thc corresponding prime
ideal in the Iocal ring Ox. We define a function P' on affine open sets of X as folIows. To
any affine open set U eontaining x, we assign the O(U)-rnodule O(U)/Pu, where Pu is the
preimage of Px' In othcr words, Pu is the kernel of the eanonical CJ(U)-module morphism
O(U) ---+ (ju,x)* (Ox/Px), where ju,x is the elnbedding (SpecOx, CJx) ---tX. We assign
zero to any affine set which does not eontain x. A standard argunlent shows that there
exists a sheaf, unique up to isomorphism, Px on X such that Px(U) = P'(U) for all affine
open sets. Clearly Px is quasi-eoherent. We claim that Px ESpecA.

In fact, let M --t Px be a monomorphism of quasi-coherent sheaves, and M f= O.
The Iattel' impHes that M (U) f= 0 for some affine neighborhood of x. Since M (U) is
a submodule of Px(U) = O(U)/Pu and Pu is a priIne .ideal in O(U), any choice of a
nonzero element in M(U) provides a monolTIorphisln Px(U) --t M(U). But then, by
[Cl'] , Proposition 1.9.4.2, ju* (Px lu) is a subsheaf of M. Here ju denotes thc canonical
embedding (U, CJ tu) ---+ X. Note now that Px is a subsheaf of ju*(Px lu); hence Px is a
subsheaf of M. This shows that Px ESpecA. Since the sheaf Px is defined uniqucly up
to isomorphislu, Px defines an element of SpecA which does not depend on the choices
made in tbe construction of Px .

(a2) A lnap 'lj; : SpecA ---+ X. Note that , for any P ESpecA, Supp(P) is an
irreducible closed subsct of X. In fact 1 let U be any affine subset of X such that P lu is
nonzero. Then P(U) E Spec(O(U) - mod). This inlplies that P(U) is equivalent to the
module O(U)/pu, where Pu is the annihilator of P(U), and Pu is a prime ideal. Therefore
SuppP(U) = V(pu) := {x E U I Pu ~ Px} is an irreduciblc closed subsct. Note that
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O(U)/PU is a submodule of P(U). And V(U)/pu can be identified with Px(U), where
x is the generic point of SuppP(U) (cf. (al)). Since Px Iv is a subsheaf of P Iu, Px

is a subsheaf of P (cf. the argument in (al)). Since P E SpecA and Px is nonzero, Px

is equivalent to P. This implies that Supp(P)=Supp(Px ) = {x} -. The map 'l/J assigns
to the point (P) of SpecA the generic point x of the support of P. It renlains to notice
that the map 'l/J is wen defined, Le. it does not dcpend on the choice of P inside of the
equivalence class. In fact, if M is a quasi-cohcrent sheaf such that M >- P , then, for any
y E X, My >- Py. This follows from the fact that the localization at a point, M f-t My,
is an exact functor, hence it preserves the preorder >-. In particular My = 0 implies that
Py = 0; Le. Supp(P) ~ Supp(M). Thus if M >- P >- M, then Supp(P) = Supp(M).

It is clear from the argulnent above that rP 0 'l/J = idspecA and 'l/J 0 rP = I dx . Olle
can see also that the Inap 'l/J is a morphism of ordercd sets witb the preorder on X given
by specialization. Therefore 'l/J and rP are mutually inverse isonlorphislns of tbe preordered
sets.

(a3) For any closed subset V of X, denote by :Iv the defining ideal of the reduced
subscheme of X with the underlying space V. Tbus we have a map

V f-t Spec[Ox/:lv) = {(P) E SpecAIP isannihilatcd by.:lv}

from the set of Zariski closed subsets of X to the set of Zariski closed subsets of SpecA.
This map is nothing else hut c/J = 'l/J-l : V f---7 rP(V). Hence the map 'l/J is continuous.

Conversely, let W bc a closed subset of (SpecA, 'I3)' Let 1r = 'fw denote a strongly
closed subscheme of A having the spectrum W. It follows from Leluma 6.4.3 that 'lj;(W)nU
is a Zariski closed subset of U for any affine open set U. Therefore 7f;(W) = <j>-l(W) is
Zariski closed which proves that cP is continuous.

(b) For any open affine subset U of X, O(U) is isolnorphic to the center of the the
category A / (U). This is cl ue to thc equivalence of categories A / (U) and 0 (U) - mod (cf.
(a4)) and to tbe fact that, since the ring O(U) is cOInmutative, thc center of O(U) - mod
is naturally isomorphie to O(U) .•

7.3. Remark. We could use other canonical topologies in the construction of Theorem
7.2 to rcconstruct schemes which belong to a ccrtain dass. For instance, wc could use thc
topology T* (cf. 1.6.2) to reconstruct lloetherian schenIes and the topology T* of Subseetion
1.6.3 to reconstruct quasi-compact quasi-separated schemes.

It is worth to mention that the reconstruction procedurc prcsented here works in a
much wider category than the eategory of scheInes and provides a base for reconstruction
theorenls in other categories of spaces. For instance it can be used (as a principaI step)
for the reconstruction of certain c1asses of analytic spaces.•
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