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Introduction

One of the central results of the famous work of P. Gabriel [Gab] is the following
theorem:

Theorem ([Gab], Ch.VI). Any noetherian scheme can be reconstructed uniquely up to
isomorphism from the category of quasi-coherent sheaves on this scheme.

Actually Gabriel produced a construction which assigns to any locally noetherian
abelian category A a ringed space (X 4,04) which in the case when A is the category
Qcohx of quasi-coherent sheaves on a noetherian scheme X happens to be isomorphic to the
scheme X. Recall that the space X 4 — the Gabriel spectrum of A — consists of isomorphism
classes of indecomposable injectives of the category A with a natural topology: the base
of closed sets are supports of noetherian objects. Here the support of an object M consists
of equivalence classes of those indecomposable injectives I for which there exists a nonzero
arrow from M to L.

One of the main purposes of this work is to prove the following Theorem:

Theorem. Any scheme can be reconstructed uniquely up to isomorphism from the category
of quasi-coherent sheaves on this scheme.

We present here a construction which assigns to any abelian category A4 a ringed
space X 4 such that if A and A’ are equivalent categories, X 4 is naturally isomorphic
to X 4. And if A is the category of quasi-coherent sheaves of a scheme X, then the
scheme X is canonically isomorphic to X 4. The underlying topological space of X 4 is
(SpecA, T). Here SpecA is the spectrum of the category A introduced in [R1] (cf. also
[R], Chapter III}; T is the strong Zariski topology which appears here for the first time.
The structure sheaf is a sheaf of commutative rings analogous to the one used in the
theorem of P. Gabriel. It is worth to mention that the construction of this work is not
an extension of the Gabriel construction to a wider class of categories. On the contrary,
for almost all locally noetherian categories (in particular, for almost all categories of left
modules over noncommutative left noetherian rings) the underlying space, (SpecA, %),
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is much smaller than the Gabriel spectrum of A. And it could be described, or at least
estimated, in a quite a few cases of interest (see {R], Chapters II, IV, and V, and [R3]). The
meaning of this remark is that the construction of this paper can be used for studying some
'noncommutative spaces’ of interest which are introduced as abelian categories thought as
categories of quasi-coherent sheaves on 'would-be spaces’ (cf. [M], [A], [AZ], [R]). The
paper is written with such applications in mind. In particular, we study the geometrical
structure of an abelian category in more detail than is strictly necessary to prove the main
theorem of the work.

The article is organized as follows.

Section 1 contains some basic facts of spectral theory of abelian categories. Main
references on the subject are [R1] or [R], Chapter IIL

In Section 2 subschemes of an abelian category are introduced.

In Section'3 we study Zariski closed subschemes and Zariski topology on the spectrum.

In Section 4 we define reduced and Zariski reduced subschemes and study relations
between them in some cases of interest. We establish the stability of subschemes and
reduced subschemes with respect to flat localizations.

In Section 5 we introduce the prime spectrum and Levitzki spectum of an abelian
category which are naturally related (especially the Levitzki spectrum) with the Zariski
topology on the spectrum.

The Zariski closed subschemes and Zariski topology are not, in general, compatible
with localizations. We introduce in Section 6 the strongly closed subschemes and the strong
Zariskt topology which are stable with respect to flat-localizations.

In Section 7 we define a ringed space associated to any choice of a topology on the
spectrum of an abelian category and prove that any scheme can be canonically recon-
structed, uniquely up to isomorphism, from the category of quasi-coherent sheaves on that
scheme.

I would like to thank Max-Planck Institut fur Mathematik for hospitality and excellent
working conditions.

1. Preliminaries on the spectrum of abelian categories.

Fix an abelian category A. Recall that, for any two objects X,Y of A, we write
X » Y if Y is a subquotient of a finite direct sum of copies of X. For any X € ObA,
denote by (X) the full subcategory of A such that OW(X) = ObA — {Y € ObA |Y » X}.
It is easy to check that X > Y iff (Y) C (X). This observation provides a convenient
realization of the quotient of (ObA, >) with respect to the equivalence relation induced by
= X =Y if X »Y > X. Namely, (ObA, »)/ = is isomorphic to ({{(X) | X € ObA}, D).

Set SpecA = {P € ObA | P # 0, and for any nonzero subobject X of P, X » P}.
The spectrum, SpecA, of the category A is the preordered set of equivalence (with respect
to >) classes of objects of SpecA. The canonical realization of (ObA, )/ =~ induces a
canonical realization of SpecA : (SpecA = {(P) | P € SpecA}, D).

An abelian category A has the property (sup) if, for any ascending chain €2 of subob-
jects of an object M, the supremum of £2 exists and for any subobject L of M, the natural
morphism sup{X N L|X € Q} — (sup) N L is an isomorphism.
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The categories with the property (sup) are sometimes called the categories with ezact
direct limits.

1.1. Proposition. For any P € SpecA, the subcategory (P) is a Serre subcategory of A.
If A is a category with the property (sup), then the converse is true: if X is an object of
A such that (X) is a Serre subcategory of A, then X is equivalent (in the sense of > } to
a P € SpecA; i.e. (X)=(P).

Proof. See Proposition 2.3.3 and 2.4.7in [R]. m

A nonzero object X of a category A is called quasifinal if, for any nonzero object Y
of A,Y » X. The category A having a quasifinal object is called local.

One can check that all simple objects of a local category (if any) are isomorphic to
each other. In particular, the category of left modules over a commutative ring R is local
iff the ring R is local.

1.2. Proposition. The quotient category A/{P) 1is local.
Proof. See Proposition 3.3.1 and Corollary 3.3.2 in [R]. m

1.3. Proposition. (a) For any topologizing (i.e. full and closed with respect to taking
direct sums and subquotients) subcategory T of A, the inclusion functor T — A induces
an embedding SpecT — SpecA.

(b) For any exact localization @ : A — A/S and for any P € SpecA, either P € ObS,
or Q(P) € SpecA/S; hence Q induces an injective map from SpecA—SpecS to SpecA/S.

1.4. The support of an object. For any M € ObA, the support of M, Supp(M),
consists of all (P) € SpecA such that M ¢ Ob(P).

1.5. Localizations at subsets of the spectrum. For any subset U of SpecA, denote
by (U) the intersection ﬂ(P)EU(P). Being the intersection of a set of Serre subcategories,

(U) is a Serre subcategory. A localization at U is a localization at the Serre subcategory
{U).

1.6. Some of the canonical topologies on the spectrum.

1.6.1. The topology 7. We decnote this way the strongest topology compatible with
the preorder O (recall that P 2 P’ means that P’ is a specialization of P). Iis explicit
description: the closure of a subset W of Spec.A consists of all specializations of all points
of W.

Recall that a topological space X is called a Kolmogorov’s space, if it satisfies the
following property:

(Ty) If = and y are two distinct points of X, then there exists an open set containing
only one of these points.

In other words, if z € {y}~ and y € {z}~, then z = y.

Since the closure of a point in the topology 7 consists of the set of its specializa-
tions and two points which are specializations of each other coincide by definition of
SpecA, (SpecA,7) is a Kolmogorov’s space. In particular, if an irreducible subset of
(SpecA, 7) has a generic point, this generic point is unique. The irreducible closed subsets
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of (SpecA, 7) having generic points (i.e. the closures of points} are sets of specializations
of points of SpecA.

1.6.2. The topology 7.. A base of closed sets of 7. consists of Supp(V'), where V runs
through finite direct sums of objects of Spec.A. In other words, the base of closed sets of
7. consists of finite unions of the sets of specializations of points of the spectrum. The
topology 7. is the weakest topology on SpecA having the property: the closure of any point
P of (SpecA,,) is the set {P’ €SpecA|P’ C P} of specializations of P. In particular,
(SpecA, 7.) is a Kolmogorov’s space with the same irreducible closed subsets having a
generic point as (SpecA, 7).

1.6.3. The topology 7*. Recall that an object M of a category C is of finite type if
for any directed set Q2 of subobjects of M such that sup {2 = M, there exists a subobject
M’ € Q such that M' = M. We define the topology 7* on SpecA by declaring the sets
Supp(V'), where V runs through the class of all objects of A of finite type, a base of
closed subsets. Note that this base is closed with respect to taking finite unions, since
Uies Supp(Vi) = Supp( @ies V5) and a finite direct sum of objects of finite type is an
object of finite type. A similar statement about finite intersections is not true.

1.6.3.1. Lemma. Suppose that the category A has the property: any nonzero object of A
has a nonzero subobject of finite type. Then the topology 7. is weaker than the topology ™.

Proof. In fact, under the conditions of the lemma, every element of Spec.A is of the
form (P), where P is of finite type. m

1.6.3.2. Corollary. Under the conditions of Lemma 1.6.3.1, (SpecA,*) is a Kol-
mogorov’s space.

1.6.4. The case of a locally noetherian category. The flat spectrum of an abelian
category A is the set of all Serre subcategories P of A such that 4/P is a local category
(cf. [R], Ch. VI for a detailed study of Spec™.A4). The following proposition has a well
known commutative (i.e. when A = R — mod and R is commutative) prototype.

1.6.4.1. Proposition. Let M be a noetherian object of A such that every nonzero sub-
quotient of M has an associated point. Then there exists an increasing filtration 0 = My C
My CMy,C...C M, =M such that M;/M;_, € SpecA for1 <i < n.

Proof. Note that any noetherian object M of A has a finite Gabriel-Krull dimension
which implies the existence of a finite filtration 0 = Mo Cc M C My C ... C M, =M
such that, for all 1 <7 < n, M;/M;_; € Spec™ A. By the assumption, Ass(M;/M;_1) # 0.
So that M,’/M'_l € SpecA. u

1.6.4.2. Corollary. Suppose that A is a locally noetherian category such that any nonzero
object of A has an associated point (in SpecA). Then Spec™ A = SpecA.

Proof. Since A is locally noetherian, every P € Spec™ A can be represented by a
noctherian (P-torsion free) object P. It follows from Proposition 1.6.4.1 that P € SpecA.
| |



1.6.4.3. Corollary. Suppose. that A is a locally noetherian category such that any nonzero
object of A has an associated point (in Spec.A). Then the topologies * and 7. on SpecA
coincide. '

Proof. The category A being locally noetherian, objects of finite type are cxactly
noetherian objects; and all elements of SpecA are of the form (P) with a noetherian P.
It follows from Proposition 1.6.4.1 that the support of any object M of finite type is a finite
union of the sets of specializations of points of SpecA: Supp(M) = |, ¢, <, Supp(M;/M;_1)
(cf. 1.6.4.1). So that the topologies 7* and 7, coincide. m T

2. Subschemes.

2.1. Subschemes of an abelian category. Recall that a subcategory T of A is core-
flective if the inclusion functor T — A has a right adjoint. This property means that any
object M has the biggest subobject, t M (called the ‘T-torsion of M’), from T.

If A has supremums of subobjects (which is the case if A has small direct sums),
then being coreflective means exactly that supremum of any set of subobjects of an object
which belong to T is also in T.

A full subcategory T of an abelian category A is called topologizing if it is closed with
respect to finite direct sums and contains all subquotions of any of its objects.

We call a coreflective topologizing subcategory of A a subscheme of A.

2.2. The Gabriel multiplication. The Gabriel product of two subcategories T and S
of an abelian category A is the full subcategory T o S of A generated by all X € ObA for
which there exists an exact sequence

00— X X > X"—0

with X’ € ObS and X" € ObT. If T and S are topologizing subcategories, then such is
T e S. This multiplication is associative and has an identity element — the subcategory 0.
Note that a topologizing subcategory T of A is thick if TeT =T.

By Lemma I11.6.2.1 in [R], if T, § are subschemes of A, their Gabriel product T e S
is a subscheme.

2.2.1. An application: the n-th neighborhood of a topologizing subcategory.
Given a subscheme T of A, define the n-th neighborhood of T as the n-th power of T; i.e.
T :=Te...eT (n times). All T™® are subschemes of A and T(» C T+ for all n.
One can check that T :=|J , T(™ is a thick subcategory of .4 which coincides with

the intersection of all thick subcategories containing T. Note that T(*) is not, in general,
a subscheme of A. It is a subscheme if T is locally noetherian. »

2.3. Subschemes and the topology 7. Fix an abelian category .A. Note that, for
any subscheme T of A, SpecT is a closed subset of the topological space (SpecA, 7).
Conversely, any closed subset W of (Spec.A, 7) coincides with SpecT for some subscheme
T. The biggest subscheme of .4 having such property is the Serre subcategory Aw of A
generated by all objects M such that Supp(M) C W. Thus arbitrary subschemes could
be interpreted as closed subschemes of the space (SpecA, 7).
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2.4. Subschemes of the category of modules. Let A be the category R —mod of
left modules over an associative ring R. And let T be any topologizing subcategory of A.
Denote by Fr the set of all left ideals m in R such that R/m € ObT.

Conversely, for any set F of left ideals in R, denote by Tz the full subcategory of
R — mod generated by all modules M such that, for any z € M, Ann(z) € F.

2.4.1. Lemma. 1) For any topologizing subcategory T of R — mod, the set F' = Fy has
the following properties:

(a) m,n € F implies that mNn € F,

(b) if m € F, then any left ideal n containing m belongs to F;

(c) for any m € F and any finite subset z of elements of R, (m:z) € F.

2) If F is a subset of the set [} R of left ideals of R having the properties (a), (b), (c),
then the subcategory Tr is topologizing and coreflective.

Proof. 1) (a) is a consequence of the fact that the quotient module R/m Nn is a
submodule of the direct sum R/m & R/n.

(b) The module R/n is a quotient of R/m; hence R/n € ObT together with R/m.

(c) Let u denote the image of the identity element in R/m. The left ideal (m : x)
is the annihilator of the element @,¢ ru of the direct sum of | = | copies of R/m; hence
R/(m: z), being a submodule of a module from T, belongs to T.

2) For any module M, the set Mp := {z € M | Ann(z) € F} is a submodule.

In fact, for any z,2’ € M and any r € R, we have:

Ann(z + 2') D Ann(z) N Ann(z'), and Ann(rz) = (Ann(z) : 7).

Clearly M is the largest submodule of M which belongs to Tr. This means that the
subcategory T is coreflective.

If M,M' € ObTp, then M @ M’ € ObTp, since for any z € M, 2/ € M', Ann(2 8 2')
equals to the intersection of Ann(z) and Ann(z’). Clearly any subobject of an object of
Tr belongs to Tr. Finally, a quotient of any object of Tr belongs to Tr. So that the
subcategory Tr is topologizing. =

The sets F' of left ideals satisfying the conditions of Lemma 2.4.1 are called topologizing
filters.

2.4.2. Note. For any topologizing subcategory T, the subcategory Tg, where F' = Fy
is the set {m € ;1R | R/m € ObT} is the intersection of all coreflective topologizing
subcategories of R — mod containing T. =

2.4.3. Example. Let m be any left ideal in R. Denote by [R/m] the full subcategory of
A generated by all modules M such that, for any z € M, m <Ann(z). One can check that
the subcategory [R/m] is topologizing and coreflective. Moreover, [R/m] is the smallest
subscheme of A containing the module R/m. One can see that [R/m] = Ty, where
[m]:={ne€ LR|{m < n}

The topologizing subcategories Tj,,) are minimal in the following sense: for any topol-
ogizing filter F of left ideals in R, Tr = J,,cp Tpm)- @

Example 2.4.3 is extended to any abelian category A with the property (sup) as
follows. For any object V' of A, denote by V. the full subcategory of A generated by
all objects X such that V » X. Note that Vi is topologizing, since it is closed under
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finite direct sums; and if X €ObV, and X > Y, then ¥ €0ObV, . But, in general, the
subcategory V. is not coreflective. The full subcategory [V] of A generated by all X € ObA
which are supremums of their subobjects from V. is both topologizing and coreflective.

Note that any subscheme T of A is of the form [y c¢[V], where X is a class of objects
of T having the property: for any Y € ObT, there exists X € X such that X » Y.

Clearly V > W if and only if W, C V.. In particular, the subcategories V. and [V]
depend only on the equivalence class (V) of the object V. One can see that Spec[V] =
SpecV,. = Supp(V). So that if V € SpecA, then SpecV, is the set of all specializations
of (V).

Assume that the category .4 has no nonzero objects with empty support. In this case,
if V € SpecA and is a closed point, then all nonzero objects of V. are equivalent to V.

If A= R—mod and V = R/m for some left ideal m in R, the subcategory [V]
coincides with the subcategory [R/m] of Example 2.4.3.

2.4.4. Residue field of a point of the spectrum. If A is a local category and V
is a quasifinal object, then [V] is the residue category of A: [V] = K(A). It does not
depend on the choice of a quasifinal object. If A has a simple object M, then [V] = [M] is
equivalent to the category of vector spaces over skew residue field of K(A) = End(M) (cf.
[R], 111.5.4.1). Since all simple objects of a local category are isomorphic to each other,
the residue field K(.A) is defined uniquely up to isomorphism.

In particular, for any abelian category A and any element P of Spec.A we have a well
defined residue category Kp := K(A/P) of P. And if the category .A/P has simple objects,
we have a defined uniquely up to isomorphism skew residue field Kp := K(A/P) of P.

3. Zariski closed subschemes.

A subcategory T of A is called reflective if the inclusion functor T — .A has a left
adjoint. We say that a subscheme T of A is Zariski closed (or simply closed) if T is a
reflective subcategory of A.

By Lemma II[.6.2.1 in [R}, if T,S are closed subschemes of A, then their Gabriel
product T e S is a closed subscheme.

3.1. Example: closed subschemes of It —mod. If A = R—mod, reflective topologizing
subcategory of A are in one-to-one correspondence with two-sided ideals of the ring R: to
any two-sided ideal & there corresponds the full subcategory {R/«| generated by all modules
annihilated by « (cf. [R], Proposition II1.6.4.1). In particular, any reflective topologizing
subcategory of R — mod is coreflective. m

3.2. Note. It follows from Example 3.1 that if the ring R is simple, there are only trivial
Zariski closed subschemes of R — mod and lots of subschemes. =

3.3. Operations with subschemes. Fix an abelian category 4 having the property
(sup).

3.3.1. Lemma. (a) The intersection of any set of subschemes of A is a subscheme.
(b) The intersection of any set of Zariski closed subschemes of A is a Zariski closed
subscheme.



Proof. (a) Clearly the intersection of any set of topologizing subcategories is a-topolo-
gizing subcategory. Similarly, the intersection of any family X of coreflective subcategories
is a coreflective subcategory.

In fact, let 2 be a family of subobjects of an object Y which belong to the intersec-
tion [gexS. Since each of the subcategories § € X is coreflective, sup§2 belongs to this
intersection too. This implies the coreflectivity of [gc+S.

(b) Let now § be a family of Zariski closed subschemes. And let, for any T in §,
“Jr denote a left adjoint to the inclusion Jy : T — A, and 7y the adjunction arrow
Id4 — Jyo “Jy. Let Ky denote the kernel of ny. Note that nt is an epimorphism; so
that Jro "Jy ~Cok{(nr). Set KF :=sup{K1|T € §}. For any M € ObA, M/KF(M) is a
quotient of M/Ky(M) for any T € §; hence it is an object of [y 5 T. Conversely, if Y is an
object of (yz T, then an arbitrary morphism f: M — Y factors by M — M/Kg(M).
So that Kerf ’contains’ KF(M). All together shows that the map M — M/KF(M)
extends to a left adjoint to the inclusion functor Yy T — A; L. [T is a reflective
subcategory of A. m

3.3.2. The supremum of subschemes. The supremum, sup §, of a family § = {8, |
i € J} of subschemes is the smallest subscheme of A containing all the subschemes of the
family J.

Let {8;| i € J} be any family of topologizing subcategories of A. Then the smallest
topologizing subcategory containing all the subcategories §; equals to the union of the
subcategories X, , where X runs through @;c;X; in which X; € ObS; for all : € J,
and only finite number of X; are nonzero. If all the subcategories S; are coreflective and
arbitrary direct sums ®;cyX;, X; € OS;, exist, then we have an analogous description
of the smallest subscheme S containing all S;: the subcategory § is the union of the
subcategories [X], where X runs through all sums &®;¢;X; with X; € ObS,;.

Note that ’all sums’ in this description can be replaced by the requirement X; € Z;,
where Z; is a set of objects of §; such that §; = Jy ¢z, [Y]-

For instance, if 8§; = [X;] for some X; € ObA, i € J, then sup{S; |i € J} = [®ics Xi]

3.3.2.1. Lemma. The supremum of a finite number of Zariski closed subschemes is a
Zariski closed subscheme. ‘

Proof. We shall use the notations of the argument of Lemma 3.3.1.

Let § be a finite family of Zariski closed subschemes of A. Denote by Kz the functor
which assigns to any M € ObA the intersection (pce K7(M). Since § is finite, M/Kz(M)
is a subobject of 1§zM/K1(M) =t Fz Jr(M). Denote by ¥y the (uniquely defined)
extension of the map M — M/K3z(M) to a functor from A to A. Since the direct sum
&3 M/Kr(M) is an object of sup §, the functor Uz takes values in the subcategory sup §.
On the other hand, if M € Obsup3F, then Kz(M) = 0; i.e. the natural epimorphism
M — ¥z(M) is an isomorphism. This shows that Uy is left adjoint to the inclusion
supg — A. =

4. Irreducible and reduced subschemes.

4.1. Irreducible subschemes and points of the spectrum. Call a subscheme X of
A irreducible if, for any subschemes T and §, we have the implication:
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XCSUT & either XCT, or XCS.

4.1.1. Lemma. For any P €SpecA, the subscheme [P] has the property: if [P] C SeT
for some subschemes S and T, then either [P} C S, or [P] C T. In particular, [P] is an
trreducible subscheme.

Proof. Let P = (P) for some P € SpecA; so that {P] = [P]. The inclusion [P]C SeT
means that P € ObS ¢ T; i.e. there exists an exact sequence 0 — X — P — Y — 0
such that X € ObT and Y € ObS. If X # 0, then X = P; hence P € ObT. If X =0, then
Y ~ P;so P € ObS.

If [P] CSUT, then [P] C SeT. Therefore either [P]C S,or [P]CT. =

4.2. Reduced subschemes. We call A reduced if any subscheme T of A such that the
the natural embedding SpecT — SpecA is a bijection coincides with A.

4.2.1. Proposition. The intersection Teeo of all subschemes T of A such that SpecT’ =
SpecT s a unique reduced subscheme of A having the same spectrum as T. The subscheme
Teeo coincides with sup{[P] | P €SpecT}.

Proof. We can assume without loss of generality that T coincides with 4. The equality
SpecT’ = SpecA is equivalent, for any subscheme (more generally, for any topologizing
subcategory)T of A, to the equality SpecT’ = SpecA. Therefore SpecA..p is equal to
SpecA. Since a subscheme of a subscheme of A is a subscheme of A, A..p is reduced.

Clearly the spectrum of the subscheme sup{[P] | P €SpecA} coincides with SpecA.
And any subscheme T of A such that SpecT = SpecA contains all subschemes [P]; hence
it contains sup{[P] | P €SpecA}. Therefore A, = sup{[P] | P €SpecA}. m

4.2.2. Remark. Clearly A, = sup{[P] | P € X}, where X is any subset of Spec.A such
that any point of SpecA is a specialization of some point of X. m

4.3. Closed subsets of the spectrum and reduced subschemes. For any subset W
of SpecA, let (W] denote the reduced subcategory sup{[P] | (P) € W}.

4.3.1. Proposition. The correspondence W — [W| establishes an isomorphism from the
category (preorder) of closed subsets of the space (SpecA, 1) onto the category of reduced
subschemes of A.

Proof. In fact, a subscheme T is reduced iff T = sup{[P] | (P) € SpecT}. u

4.4. Zariski reduced subschemes. We call a closed subscheme T of A Zariski reduced
if any Zariski closed subscheme T’ of A such that TV C T and SpecT’ = SpecT coincides
with T. For any closed subscheme T, the intersection T oq of all closed subschemes T'
of A such that SpecT’ = SpecT is the smallest Zariski reduced subscheme of A having
the same spectrum as T. We call T,.q the Zariski reduced subscheme associated to T. In
particular, there exists the Zariski reduced subscheme A .4 associated to A.

4.4.3. Example: the reduced subscheme associated to the category of modules
over a Goldie ring. Let A = BR—mod, where R is a left Goldie ring. Then there is a finite
set X of minimal primes in R. These minimal primes are left annihilators in R; therefore,
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by Proposition 1.6.4.5 in [R], they belong to Spec;R. Since every ideal p € Spec; R contains
a prime ideal, (p : R), any ideal of Spec;R contains an ideal from X. Therefore A, is
the supremum of Zariski closed irreducible subschemes [R/p] ~ R/p — mod, where p runs
through (the finite set) X.

Note that sup{[R/p] | p € X} = [®pex B/p] = [R/(,ex Pl = [R/L(R)], where
L(R) = [\,ex p is the Levitzki radical (which is by definition the biggest locally nilpotent
ideal) of R. The last equality follows from the following facts:

a) R/L(R) = R/p for each p € X (actually, for each p € Spec;R) which implies the
inclusion sup{{R/p] | p € X} C [R/L(R)].

b) On the other hand, R/L(R) is a subobject (thanks to the finiteness of X ) of
@pex R/p which implies the inverse inclusion [R/L(R)] C [ @pex R/p].

Thus, we have established the following fact:

4.4.3.1. Proposition. For any left Goldie ring R,R — mod..» = [R/L(R)] =~
R/L(R) — mod.

In particular, R — mod..; is a Zariski closed subscheme of R — mod; therefore R —
modeep = R — mod oq-

4.4.3.2. Corollary. Let A be the category of left modules over a left noetherian ring R.
Then, for any closed subscheme T of A, T oq = Trea-

Proof. Any closed subscheme T of R — mod (for an arbitrary associative ring R) is
naturally isomorphic to the category R/ — mod for a (uniquely defined) two-sided ideal
« (cf. Example 3.1). The isomorphism T ~ R/a — mod induces isomorphisms between
Tyeq and R/a — mod.oq and between Ty and R/ — modeep. Since the ring I? is left
noetherian such is the ring R/a; in particular, R/« is a left Goldie ring. By Proposition
4.4.3.1, the inclusion R/ — mod.p C R/a — mod,eq turns out to be the equality. Hence
Tna == Tred. u

4.4.4. The reduced subschemes associated to the category of modules: the
general case. Consider now the general affine case: A4 = R — mod, where R is an
arbitrary associative ring. We have:

Aceo = sup{[R/p} | p € SpeciRR} = [@pespecir R/p} S[R/L(R)] > R/L(R) — mod

where £(R) is the Levitzki radical of R. It follows from Theorem 1.4.10.2 in [R] that the
subcategory [R/L(R)] coincides with A4

If Spec R has a finite subset of minimal points (as in the case when R is a left Goldie
ring; cf. Example 4.4.3), then, repeating the argument of Example 4.4.3, one can see that
" Ao = [R/L(R)] = ALeq-

In the general (even commutative) case, the reduced subscheme A..; is, usually,
strictly smaller than A4

4.5. Subschemes and localizations. The following assertion shows that subschemes
are stable with respect to flat localizations.
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4.5.1. Proposition. (a) Let Q : A — A/S be a flat localization. For any subscheme T
of A,TNS is a Serre subcategory of T and, given a localization Q' : T — T/SN'T, there
erists a unique functor J : T/TNS — A/S such that the diagram

QI
— T/TNS

TS —— T
R PR .
§ —— A 25 as

is commutative. The functor J establishes an equivalence between T/TNS and the minimal
subscheme [Q(T)] of the category A/S containing Q(T).

(b) If T is a reduced subscheme of A, then [Q(T)] is a reduced subscheme of the category
A/S.

Proof. (a) The assertion (a) follows from Lemma VI.1.4.1 and (the argument of)
Proposition VI1.2.5.1 in [R].

(b) Suppose now that the subscheme T is reduced; i.e. T = sup{{P]|P €SpecT}.
Clearly [Q(T)] = sup{[Q(P)]|{P) € SpecA}. Since Q(P) is either zero, or belongs to
SpecA[S, the subscheme [Q(T)] is reduced.

5. The Prime and Levitzki spectra of an abelian category
and Zariski reduced subschemes.

Let I{A) denote the set of Zariski closed subschemes of an abelian category 4. Denote
by PrimeA the set of all P € I(A) such that, for any pair 8§, T € I(A), the inclusion
P C SUT implies that either PC S, or P C T.

We consider PrimeA together with the ’specialization’ preorder 2.

The Zariski topology on PrimeA is defined in a usual way: closed subsets are all sets
V(T) := {P €PrimeA | P C T}, where T runs though I(A4).

It follows from the definition of Prime.A that

V(TUS)=V(T)| JV(8) (1)

for any T, S € I(A). And, for any family = C I(A), we have

V(D =) V(D). (2)

- TeE TeE

For any object M in A, define the annihilator of M as the intersection of all T € I(A4)
which contain M. The notation: Ann(M).

5.1. Lemma. (a) If M > M’', then Ann(M) C Ann(M').
In particular, Ann{M) is well defined for any M € ObA.
() ez Ann(M) = Ann( @pc= M).
(c) For any P € SpecA, Ann(P) € PrimeA.

Proof. (a) The first assertion is evident.
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(b) Any reflective subcategory T contains coproducts (taken in A) of any set of its
objects (provided this coproduct exists).

(c) Fix P € SpecA. Let S, T € I{A) be such that P € ObSUT. Since SUT
SeT, P € ObSeT which implies that either P € 8, or P € T; i.e. either Ann({P)) C
or Ann({(P))CT. =

5.2. Corollary. If A is non-degenerate (i.e. Supp(M) =0 only if M = 0), then V(T) is
non-empty for any T # 0.

Proof. In fact, for any M € ObT, {P € SpecA|{P) €Supp(M)} C ObT. Therefore, if
T is nonzero, it contains an object P of SpecA; hence it contains Ann(P) which is prime
by Lemma 5.1. m '

-
5,

5.3. Lemma. Suppose that A is a local category. And let P be a quasifinal object in A.
Then Ann(P) is the unique minimal element of I(A) — 0.

Proof. In fact, any nonzero topologizing subcategory T contains all quasifinal objects

of A. m

5.4. Levitzki spectrum of an abelian category. Recall that a topological space X
is called sober if every irreducible closed subset of X has a unique generic point. The
inclusion functor J, from the category &%op of sober topological spaces into the category
Top of topological spaces has a left adjoint, “J;, which assigns to any topological space X
the set X, of all irreducible closed subsets of X with the strongest topology such that the
map ¢x : X — Xs,z — {z}~, is continuous. The map @x is a quasi-homeomorphism
(i.e. it induces a bijection of the sets of open subsets of the spaces). The sober spaces
are exactly topological spaces Y having the property: every quasi-homeomorphism with
the domain Y is a homeomorphism. In particular, any quasi-homeomorphism from X to
a sober space Y induces a homeomorphism from X, to Y.

5.4.1. Definition. The Levitzki spectrum of an abelian category A is the subspace
LSpecA of PrimeA formed by all P ePrimeA which are Zariski reduced.

5.4.2. Note. Clearly Ann(P)eLSpecA for any P €SpecA. If follows from the argument
of Corollary 5.2 that if T is a nonzero closed subscheme, the corresponding closed subset
of LSpecA, VL(T) := V(T)NLSpec.A is nonempty. m

5.4.3. Proposition. Let A be an abelian category. The Levitzki spectrum LSpecA of
A is a sober topological space. The map ¢ : SpecA —LSpecA, P — Ann(P), is a
quasi-homeomorphism of (SpecA, 73) to LSpecA.

Proof. The map ¢ is continuous because
@ Y VL(T)) := {{P) € SpecA| Ann(P) C T} = {{P) € SpecA|P € ObT} := V(T). (1)

Moreover, it follows from (1) that ¢~! defines a bijective map from the set of closed
subsets of LSpecA onto the set of closed subsets of (SpecA,r3); i.e. ¢ is a quasi-
homeomorphism. It remains to show that LSpecA is a sober space.

Note that a closed subset W of LSpecA is irreducible iff W = V(P) for a prime
subscheme P. In fact, let P be the intersection of all closed subschemes of A containing
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elements of W. We claim that it is prime. Suppose P C SU T for some closed subschemes
Sand T. Then W C V(P) C V(SUT) = V(S)U V(T). Since W is irreducible, either
W CV(8),or W C V(T). If W C V(S), then P C S by definition of P and V(S).

Since all elements of W are reduced closed subschemes, P is a reduced closed sub-
scheme: P = P..4. Therefore P €LSpecA. Since W = V(P)NLSpecA,P €W. Thus
every irreducible closed subset of LSpec.A has a generic point. The last observation to
finish the argument: LSpecA is a Kolmogorov’s space, hence an irreducible closed set of
LSpecA cannot have more than one generic point. This follows directly from definitions:
the relation P € V(P') means that P C P’. So that if, in addition, ¥ € V(IP), then P = .

5.4.4. Proposition. The map T — VL(T) establishes a one-to-one correspondence
between Zariski reduced closed subschemes of A and closed subsets of LSpecA.

Proof. We have a map which assigns to any closed subset W of LSpecA the inter-
section Tw of all closed subschemes of A containing all elements of W. Since W consists
of Zariski reduced subschemes, Ty is also Zariski reduced. And VL(Ty) coincides with
W. This shows that the composition ¥ o ¢ of the map ¢ : W +— Ty with the map
¥ : T — VL(T) is identity. On the other hand, if T = T, the set W = VL(T) contains
all Ann(P), P €SpecT. This implies that Ty contains all P € SpecT. Therefore, since T
is reduced, T C Tw . It follows from the definition of Ty that Tw C T. This shows that

poty=1id. m

5.4.5. The prime spectrum and the Levitzki spectrum of the category of mod-
ules. Let A = R — mod for an associative ring R. Then set I(.A) of closed subschemes
of A are in bijective correspondence with the set I{R) of two-sided ideals in R: to any
two-sided ideal o there corresponds the full subcategory of R — mod generated by all R-
modules M such that o C Ann(M) (cf. Example 3.1). This correspondence induces a
homeomorphism from PrimeA to the prime spectrum SpecR of the ring R with Zariski
topology. It follows from Theorem 1.4.10.2 (and Lemma 1.5.2) in [R] that the homeomor-
phism PrimeA — SpecR induces a homeomorphism from LSpecA onto the Levitzki
spectrum LSpecR of R which by definition consists of all prime ideals p in R such that the
quotient ring R/p has no locally nilpotent ideals.

6. Strong Zariski topology.

Let T be a Zariski closed subscheme, Jr the inclusion functor T — A, Op := Jyo " Jr:
A — A. We say that T is compatible with localization Q : A — A/S if Ot is compatible
with @. The latter means that Q o Ox(s) is invertible for any s € HomA such that Qs is
invertible.

6.1. Lemma. Suppose T is compatible with a flat localization Q : A — B. Then the
minimal subscheme of B generated by Q(T) is closed.

Proof. In fact, the compatibility of Op with Q means that there exists a unique functor
Og such that Q o O = O0Q. The latter equality and the isomorphism @ o @~ —Idg
imply that there is a canonical isomorphismm Of ~ Q o Oy o Q. Replacing Of in the
equality Qo Or = O;0Q by Qo Oro@”, we obtain the following criteria of compatibility:
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Or is compatible with the localization ) iff the canonical morphism Q o Oy — Qo Ogo
Q" oQ is an isomorphism. The adjunction epimorphism é:1d 4 — O induces a morphism
§' : Idg — Of which is the composition of the inverse to the adjunction isomorphism
Idg ~ Qo Q",Q4Q", and the isomorphism Q o Or o Q" — OF. We have canonical
isomorphisms:

070073 ~(Qo070Q)0(Qo05oQ ) ~Qo0r0070@Q " 2Qo0roQ” ~ O

showing that the functor Of induces a functor B — T’, where T’ is the full subcategory
of B generated by all objects M of B such that §'(M) is ‘an isomorphism.
(a) It follows from the definition of T' that T’ is a reflective subcategory of B: the

functor Oy takes values in T" and induces a left adjoint to the inclusion functor TV — B.
(b) Note that Q(T) C T'. Indeed, since ObT = {X € ObA|Or(X)}, for any X € ObT,
we have isomorphisms

O10Q(X)=Qo0roQ" o Q(X) = Qo Or(X) =~ Q(X).

On the other hand, an object @(Y') belongs to T’ iff the adjunction morphism Q(Y) —
O%r o Q(Y} is an isomorphism. Thus we have canonical isomorphisms

QYY) ~030Q(Y)~Qo010Q o Q(Y) = Qo Or(Y)

showing that the object Q(Y’) is isomorphic to an object of Q(T).

(c) We claim that T is a subscheme of B. In fact, since T' it reflective, contains all
quotients of each of its objects. Let M € ObT'; and let L — M be a monomorphism in
B. By a standard argument, there exists a commutative diagram

L e M

| | )

Q) 2 Q)

in which ¢ is a monomorphism, M’ € ObT, and both vertical arrows are isomorphisms.
Since T is a topologizing subcategory, L' € ObT. By (c), Q(L') € ObT'. Hence L € ObT".
Thus T is a topologizing subcategory of B. Being a reflective subcategory of B (cf. (a)), T’
is closed with respect to colimits (taken in B). Hence T' is a closed subscheme of B. »

6.2. Note. A closed subscheme T is compatible with a flat localization @ iff the defining
ideal Kp:=Ker(Id4 — Or) of T is compatible with Q. In fact, we have a commutative
diagram
0— QoKroQ oQ —— QoQ oQ — Qo0r0Q 0Q —0
[@
0— Qo Kt —_— Q — Q o O —0

with exact rows and isomorphic central vertical arrow. Therefore the subscheme T is
compatible with the localization @, i.e. the right vertical arrow is an isomorphism iff
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the left vertical arrow is an isomorphism. The latter means that the defining ideal Kt is
compatible with (). =

6.3. Lemma. Let Q : A — B be a flat localization. The class of 31qy of closed
subschemes of A compatible with @@ is stable with respect to taking finite supremums and
any intersections.

Proof. Let § be a family of closed subschemes.

(a) The defining ideal of NF is Knz = sup{Kx|T € §} (cf. Lemma 2.7.1). Since the
functor @ preserves colimits and A is a category with the property (sup), the fact that the
natural arrow QQ o Kt — Qo Ky o Q" o is an isomorphism for any T € § implies the
isomorphness of QQ o Kng — Q 0 Knz 0 Q7 oQ.

(b) Suppose the family § is finite. The defining ideal of sup § is [z K1 — the kernel
of the canonical morphism Id 4 — @®1e3Or. Thus we have a commutative diagram

0— QoKupzo@ oQ — QoQ 0Q — Qo(Dregdi)oQ 0@ —0

e T T Qn
00— Q o Ksupﬁ — Q — Q o] (@Tegor) — 0( )
1
with exact rows. The central vertical arrow is an isomorphism. Since functors Of are
compatible with the localization @, the arrow « is also an isomorphism. Therefore the
third vertical arrow is an isomorphism. Hence sup § is compatible with the localization Q.
|

6.3.1. Corollary. For any family & of localizating subcategories (i.e. kernels of flat
localizations) of an abelian category A, the class 3z of closed subschemes of A compatible
with localizations at all S8 € Z is stable with respect to taking finite supremums and any
inlersections.

6.3.2. Corollary. For any family = of localizing subcategories of an abelian category A
containing 0, the class the family of sets {SpecT|T € 3z} (¢f. Corollary 6.83.1) is the
family of all closed sets of a topology T3; on SpecA.

6.4. The strong Zariski topology. Assume that every P €SpecA is localizable. We
denote by T3 the topology 13- of Corollary 6.3.2 in the case when = consists of 0 and all
P €SpecA. We call T3 the strong Zariski topology.

6.4.1. Lemma. Let = be a set of thick subcategories of an abelian category A; and let
F: A— A be a functor compatible with localizations at eachS € =. Then F is compatible
with localizations at the thick subcategory [gcsS-

Proof. The compatibility of F' with localization at § means that, for any arrow s
such that Ker(s) and Cok(s) are objects of §, the morphism F's enjoys the same property.
Therefore {Ker(s), Cok(s) € Ob(\gc=S] & [KerF(s), CokF(s) € Ob(gc=S] =

6.4.2. Corollary. Suppose a functor F': A — A is compatible with the localizations at
all points of SpecA. Then F is compatible with the localizations at any subset of SpecA.
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6.4.3. Corollary. For any subset V of SpecA the map ¢ : SpecA — SpecA/(V)
sends closed subset of (SpecA, T3) info closed subsets of iin(yp) regarded as a subspace of
(SpecA/(V),13), where T3 is the Zariski topology.

Proof. Let Q@ = Q) be a localization at (V). Let W be a closed subset of
(SpecA,T3); i.e. W = SpecT for some strongly closed subscheme T. By 6.4.2, T is
compatible with the localization Q. Hence the minimal subscheme Ty of A/(V) gener-
ated by T is closed (Lemma 6.1). Clearly this miminal subscheme is compatible with
localizations at every point of the image of SpecA. =»

7. Reconstruction of schemes.

7.1. Ringed spaces associated to a category. Recall that the center of a category A is
the ring € (A) of endomorphisms of the identical functor Id 4. A localization @ : A — B
maps the center of A into the center of B. In particular, given a topology T of SpecA,
* there is a presheaf © = D7 of commutative rings on the space (SpecA, 7) which assigns
to any open set U the center of the quotient category A/(U). Denote the sheaf associated
to O7 by O7.

In the following theorem 7 = T3 — the strong Zariski topology.

7.2. Theorem. Suppose that A is the category of quasi-coherent sheaves on an arbitrary
scheme X. Then the ringed space ({(SpecA, T3), O 4) is isomorphic to X.

Proof. (a) Let A denote the category Qcohx of quasi-coherent sheaves on the scheme
X = (X, O). We claim that the underlying space X is isomorphic to (SpecA, 73).

(al) A map ¢ : X — SpecA. Fix a point z € X. Let p,; be the corresponding prime
ideal in the local ring O,. We define a function P’ on affine open sets of X as follows. To
any affine open set U containing z, we assign the O(U)-module O(U)/py, where py is the
preimage of p;. In other words, py is the kernel of the canonical O(U)-module morphism
OU) — (juz)s(Oz/pz), where jy, is the embedding (SpecO,, 0,) —X. We assign
zero to any affine set which does not contain z. A standard argument shows that there
exists a sheaf, unique up to isomorphism, P; on X such that P,(U) = P'(U) for all affine
open sets. Clearly P, is quasi-coherent. We claim that P, € SpecA.

In fact, let M — P, be a monomorphism of quasi-coherent sheaves, and M # 0.
The latter implies that M(U) # 0 for some affine neighborhood of z. Since M(U) is
a submodule of P,(U) = O(U)/py and py is a prime ideal in O(U), any choice of a
nonzero element in M(U) provides a monomorphism FP,(U) — M(U). But then, by
[Gr], Proposition 1.9.4.2, jy.(P; |u) is a subsheaf of M. Here jy denotes the canonical
embedding (U, O |y) — X. Note now that Py is a subsheaf of jy.(P; |v); hence P, is a
subsheaf of M. This shows that P, € SpecA. Since the sheaf P, is defined uniquely up
to isomorphism, P, defines an element of Spec.4 which does not depend on the choices
made in the construction of P,.

(a2) A map ¥ : SpecA — X. Note that, for any P € SpecA, Supp(P) is an
irreducible closed subset of X. In fact, let U be any affine subset of X such that P |y is
nonzero. Then P(U) € Spec(O(U) — mod). This implies that P(U) is equivalent to the
module O(U)/py, where py is the annihilator of P(U), and py is a prime ideal. Therefore
SuppP(U) = V(py) := {x € U | py C p:} is an irreducible closed subset. Note that
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O(U)/pu is a submodule of P(U). And O(U)/py can be identified with P,(U}, where
z is the generic point of SuppP(U) (cf. (al)). Since P, |y is a subsheaf of P |y, P,
is a subsheaf of P (cf. the argument in (al)). Since P € SpecA and P, is nonzero, Py
is equivalent to P. This implies that Supp(P)=Supp(P;) = {z}~. The map 7 assigns
to the point (P) of Spec.A the generic point z of the support of P. It remains to notice
that the map 1 is well defined, i.e. it does not depend on the choice of P inside of the
equivalence class. In fact, if M is a quasi-coherent sheaf such that M > P, then, for any
y € X, My > P,. This follows from the fact that the localization at a point, M — M,,
is an exact functor, hence it preserves the preorder >. In particular M, = 0 implies that
P, = 0; i.e. Supp(P) C Supp(M). Thus if M > P » M, then Supp(P) = Supp(M).

It is clear from the argument above that ¢ o ¢ = idgpeca and o ¢ = Idx. One
can see also that the map v is a morphism of ordered sets with the preorder on X given
by specialization. Therefore ¥ and ¢ are mutually inverse isomorphisms of the preordered
sets.

(a3) For any closed subset V' of X, denote by Jy the defining ideal of the reduced
subscheme of X with the underlying space V. Thus we have a map

V +— Spec[Ox/Jv] = {{P) € SpecA|P is annihilated by Jv}

from the set of Zariski closed subsets of X to the set of Zariski closed subsets of SpecA.
This map is nothing else but ¢ = ¥~ : V — ¢(V). Hence the map 9 is continuous.

Conversely, let W be a closed subset of (SpecA, T3). Let T = Ty denote a strongly
closed subscheme of A having the spectrum W. It follows from Lemma 6.4.3 that ¢ (W)NU
is a Zariski closed subset of U for any affine open set U. Therefore (W) = ¢~1(W) is
Zariski closed which proves that ¢ is continuous.

(b) For any open affine subset U of X, O(U) is isomorphic to the center of the the
category A/(U). This is due to the equivalence of categories A/(U) and O(U) — mod (cf.
(ad)) and to the fact that, since the ring O(U) is commutative, the center of O(U) — mod
is naturally isomorphic to O(U). =

7.3. Remark. We could use other canonical topologies in the construction of Theorem
7.2 to reconstruct schemes which belong to a certain class. For instance, we could use the
topology 7. (cf. 1.6.2) to reconstruct noetherian schemes and the topology 7* of Subsection
1.6.3 to reconstruct quasi-compact quasi-separated schemes.

It is worth to mention that the reconstruction procedure presented here works in a
much wider category than the category of schemes and provides a base for reconstruction
theorems in other categories of spaces. For instance it can be used (as a principal step)
for the reconstruction of certain classes of analytic spaces. m
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