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CENTRALITY

T. N. VENKATARAMANA

Abstract. We give a simple proof of the centrality of the con-
gruence subgroup kernel in the higher rank isotropic case.

1. Introduction

In this paper, we give a simple proof of the well known centrality
of the congruence subgroup kernel in the “higher rank” isotropic case
([R1], [R2]). That is, we prove the following (we refer to Section 1 for
definitions of the terms involved).

Theorem 1. The congruence subgroup kernel C associated to a con-
nected Q-simple simply connected linear algebraic group G defined over
Q with Q − rank(G) ≥ 1 and R − rank(G) ≥ 2, is central in the

arithmetic completion Ĝ of G(Q).

The newest part of the proof is in the case when Q − rank(G) = 1
and the group of integer points L(Z) of the Levi of a minimal parabolic
Q-subgroup P is a virtually abelian group. To handle this case, we
make use of the following result, which is quite general and may be of
independent interest. The proof uses Dirichlet’s theorem on primes in
arithmetic progressions.

Theorem 2. Let ∆ ⊂ GLn(Z) be a subgroup. There exists an integer
g(n) dependent only on n such that for any two co-prime integers a, b
and any fixed integer N the group ∆a,b generated by the congruence
subgroups {∆((a+ bx)N) := ∆∩GLn((a+ bx)NZ) : x ∈ Z}, (is normal
and) the exponent of the quotient group ∆/∆a,b is bounded by g(n) (i.e.
depends only on n and not on the integers a, b, and N).

Theorem 2 is proved in section 4. Using this, Theorem 1 is proved
in section 5 in the case Q− rank(G) = 1 and the group L(Z) is infinite
and virtually abelian. The case when L(Z) is not virtually abelian is
proved in section 6. The other sections establish some preliminaries.
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2 T. N. VENKATARAMANA

Remark. In the generality stated here, Theorem 1 is due to Raghu-
nathan; his proof was quite different in the two cases (1) Q−rank(G) ≥
2 [R1], and (2) Q − rank(G) = 1, R − rank(G) ≥ 2 [R2]. For ear-
lier work (especially in the case SLn and Sp2n [BMS]) we refer to the
bibliography in [R1]. [At the time that [R1] and [R2] were written, the
Kneser-Tits problem (we refer to [Gille] for the statement over number
fields and for references to previous work) had not been completely re-
solved and consequently the formulation of Raghunathan was slightly
different]. In the present paper we give a different proof especially in
the case when Q−rank(G) = 1 ( and the group of integer points of the
Levi subgroup of a minimal parabolic Q-subgroup is virtually abelian).

Remark. To prove the centrality in the Q -rank one case ( with inte-
gral points of the Levi being virtually abelian), Raghunathan uses the
centrality (proved by Serre [Ser]) when G = RK/Q(SL2) is the Weil
restriction of scalars from K to Q of SL2, where K a number field hav-
ing infinitely many units. The proof of centrality in [Ser] makes crucial
use of the Artin reciprocity law. In contrast, we use only Dirichlet’s
theorem on infinitude of primes in arithmetic progressions. Thus the
proof is new even in the case considered by Serre (we note that Prasad
and Rapinchuk [Pr-Ra2] also proved centrality; the present paper has
considerable overlap with [Pr-Ra2] and [Pr-Ra2] contains much more
than what is proved in the present paper. However, the method of
proof in our paper is quite different and it seems worthwhile to record
the proof here).

Remark. Raghunathan first proved centrality for the group SU(2, 1):
suppose L/K is a quadratic extension of number fields with K 6= Q,
h is an isotropic non-degenerate form in three variables defined on
L3 and hermitian with respect to L/K, G is the unit group of h i.e.
G = RK/Q(SU(2, 1) where RK/Q is the Weil restriction of scalars. The
proof of this also makes use of Artin Reciprocity. In the present paper,
we completely avoid the use of SU(2, 1). This is especially important
since, in [R2], a deep theorem on the embedding of suitable SL2 and
SU(2, 1) is used (which in turn is based on the classification of rank
one groups over number fields) to obtain the centrality in the general
case from these two cases. In contrast, we (by appealing to a theorem
of Jacobson and Morozov) use only a suitably embedded SL2 (and
Dirichlet’s theorem on primes in arithmetic progressions) to get the
general case directly. In particular, we get another proof for SU(2, 1)
as well.

Remark. Most importantly, Raghunathan [R1] proved that once the
congruence subgroup kernel C is central for any G (no assumptions on
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Q-rank), then C is finite; a much simpler proof of the finiteness was
later given by Gopal Prasad in [P]. Moreover, once C is central, C
can be computed: it is a precisely determined subgroup of the group
of roots of unity in a number field K (K is such that G = RK/Q(G)
is the Weil restriction of scalars of an absolutely almost simple sim-
ply connected group G defined over K). Important progress on the
computation of (the central) C was made in [Pr-R1], [Pr-R2], and its
complete determination was done by Prasad and Rapinchuk in [Pr-Ra].

Our paper does not deal with this question at all, and is concerned
only with the centrality of the congruence subgroup kernel in the cases
considered in the theorem.

Remark. The proof here works only for arithmetic groups in char-
acteristic zero but the proof of centrality in [R1],[R2] works for all
global fields and for S-arithmetic groups; it seems possible to adapt
the present proof to the S-arithmetic case, but it appears to be rather
long.
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TIFR has been from Raghunathan, Prasad, Nori and my fellow student
Sury. I am especially grateful to Gopal for suggesting many topics to
work on, patiently answering my questions and going through my early
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to dedicate this paper to him on his 75th birthday.

This paper owes a great deal to the methods of [R1], [R2] and I am
grateful to Raghunathan for explaining his proof in detail.

I am grateful to the organisers for their invitation to contribute to
this volume honouring Gopal.

A sizeable part of the work was done during the author’s visit to Max
Planck Institut, Bonn, Germany during 2019-2020. I thank MPIM for
hospitality and support. The support of JC Bose fellowship for the
period 2020-2025 is gratefully acknowledged.
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2. Generalities

2.1. The Congruence Subgroup Kernel. The following definitions
and observations are well known and we recall them without reference.

Let G be a linear algebraic group defined over Q. Fix an embed-
ding G ⊂ SLn defined over Q and call a subgroup of finite index in
G(Z) = G ∩ SLn(Z) an arithmetic subgroup of G(Q). We assume that
G(Z) is Zariski dense in G. Denote by SLn(mZ) the kernel to the
natural map SLn(Z) → SLn(Z/mZ); a subgroup of G(Z) which con-
tains G(mZ) := G ∩ SLn(mZ) for some non-zero integer m is called
a congruence subgroup of G(Q). The notion of arithmetic subgroups
and congruence subgroups of G(Q) does not depend on the specific
Q-embedding G→ SLn.

There is a topological group structure on G(Q) obtained by designat-
ing a fundamental system of neighbourhoods of identity in G(Q) to be
arithmetic groups (respectively congruence subgroups) in G(Z); this is
called the arithmetic (resp. congruence) topology on G(Q)); the group
G(Q) admits a completion with respect to this topology; this is the
arithmetic (respectively congruence) completion of G(Q), denoted

Ĝ (resp G). These completions are locally compact, totally discon-
nected and Hausdorff. Since the arithmetic topology on G(Q) is finer

than the congruence topology, we have a homomorphism Ĝ → G of
completions of G(Q) with kernel C, say. We have an exact sequence of
topological groups

1→ C → Ĝ→ G→ 1,

and C is called the congruence subgroup kernel. The exact se-
quence splits over G(Q).

The restriction of the arithmetic topology on G(Q) to the subgroup
Γ = G(Z) is just the profinite topology on G(Z); the closure of G(Z)

in Ĝ is simply the profinite completion Γ̂ of G(Z); the closure of G(Z)
in G is the congruence completion Γ of Γ; it is not difficult to see that

C ⊂ Γ̂ and that we have the exact sequence

1→ C → Γ̂→ Γ→ 1,

which shows that C is a compact profinite group.
If G is a unipotent algebraic group, then every subgroup of finite in-

dex in G(Z) is a congruence subgroup and C is trivial. In particular, if
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U ⊂ G is a unipotent algebraic Q-subgroup and Γ ⊂ G(Q) is an arith-
metic group, then there exists an integer m 6= 0 such that U(mZ) ⊂ Γ.

Suppose Γ = G(Z) and {Γm ⊂ Γ} a “cofinal” family of arithmetic
groups which are normal in Γ (i.e. such that every arithmetic subgroup
of Γ contains some Γm). Since the closure of Γ in the congruence
completion G is open, it follows that the closure Γm in G is also open
for every Γm; hence the intersection Cl(Γm) = Γ ∩ Γm is a congruence
subgroup of Γ containing Γm: it is called the congruence closure of Γm.
It follows from the definitions that C is the inverse limit of Cl(Γm)/Γm:

(1) C = lim←−Cl(Γm)/Γm.

We will say that relative to a finite set S of primes, and a fixed inte-
ger e, an integer m is sufficiently deep if m is divisible by all the powers
pe for all the primes p in S. In the inverse limit for C, may may only
choose m sufficiently deep relative to any finite subset S of primes. We
will use this observation repeatedly in the sequel.

If θ : H → G is a morphism of algebraic Q-groups, then it induces

maps Ĥ → Ĝ and H → G and also a homomorphism θ : CH → CG of
the corresponding congruence subgroup kernels.

If G(Z) is Zariski dense in G as before, and G is simply connected,
then strong approximation holds and the congruence completion G of
G is just the group G(Af ) of points of G with coefficients in the ring
Af of finite adeles.

Notation 1. If a, b ∈ Γ are elements in an abstract group Γ, we write
a(b) = aba−1, [a, b] = aba−1b−1. If m ∈ Γ and A ⊂ Γ is a subset, we
denote by m(A) the subset mAm−1. If A,B are subgroups, then [A,B]
denotes the “commutator subgroup” generated by the commutators
[a, b] = aba−1b−1 for a ∈ A, b ∈ B. Abusing notation slightly, we some-
times write, for subsets X, Y ⊂ Γ, [X, Y ] for the set of commutators
[x, y] with x ∈ X, y ∈ Y . If M ⊂ Γ is a subset and A ⊂ Γ is a subgroup,
we denote by M(A) the subgroup generated by the conjugates m(A).

2.2. Maps in the Congruence topology. Suppose Aa,Ab are affine
spaces of dimensions a, b respectively. We fix the standard bases of
Aa,Ab; then the coordinate functions Xi, Yj with respect to these bases
generate the respective coordinate rings of Aa,Ab. The polynomial
rings Z[Xi]1≤i≤a and Z[Yj]1≤j≤b with integer coefficients will be referred
to as rings of integral polynomials. Suppose θ : Aa → Ab is a morphism
of varieties defined over Q. Then it follows that there exist finitely many
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vectors wν ∈ Qb, indexed by a finite set of elements ν ∈ Za+ (thus the
ν have non-negative integral entries) such that

θ(X) =
∑
ν

wνX
ν .

By taking a common denominator D of the finite set wν of vectors, it
follows that

θ(X) =
1

D

∑
ν

w′νX
ν ,

for some integral vectors w′ν . We will say that D(θ(X)) is an integral
polynomial with values in Zb.

If the coordinate X is replaced by DX, then we get from the pre-
ceding that

(2) θ(DX) = θ(0) +
∑
ν 6=0

w′′νX
ν = θ(0) +

a∑
i=1

XiPi(X),

for some integral vectors w′′ν , and some Zb-valued integral polynomials
Pi on the affine space Aa.

If all the entries of X are rational and have denominator a say, then
we can write, from (2), that

(3) θ
(1

a
X
)

= θ(0) +
1

DaN

∑
ν 6=0

vνX
ν

for some integral vectors vν ∈ Zb, and for some integer N depending
on the total degree of the polynomial θ.

Lemma 3. Suppose θ : H → G is a morphism of algebraic groups
defined over Q. Then there exists an integer D ≥ 1 such that for all
m ≥ 1, θ(H(DmZ)) ⊂ G(mZ).

Proof. Fix an embedding G ⊂ SLB defined over Q; then G is a Q-
defined closed subvariety of MB, the affine space of dimension B2

viewed as the vector space of B × B-matrices (with the matrices Eij
-whose entries are all zero except the ij-th entry which is 1- form-
ing a preferred basis). Similarly H ⊂ SLA ⊂ MA as a Q subvariety.
The composite θ : H → G ⊂ MB is then a matrix valued polynomial
function on H. By the definition of the topology on H, θ is then a
polynomial function (also denoted θ : X 7→ θ(X)) on MA with values
in MB, and defined over Q i.e. has coefficients in Q with respect to the
basis Xij of matrix entries. Consequently θ(h) = 1

D
N(h) for all h ∈MA

where the “denominator” D is an integer so chosen that it is divisible
by the denominators of all the coefficients of the polynomial θ, and the
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“numerator” N(h) is a polynomial on MA with integer coefficients.

In particular, if X, Y ∈ MA(Z) are matrices with integer entries,
then (cf. equation (2)) we get θ(X + DmY ) = 1

D
N(X + DmY ) and

N(X +DmY )−N(X) = DmP (X, Y ) where P (X, Y ) is a MB valued
polynomial function on MA ×MA with integer coefficients. Hence

θ(X +DmY )− θ(X) = mP (X, Y ) ≡ 0 (mod m).

In particular, taking X = IdA ∈ MA(Z) we get θ(H(DmZ)) ⊂ IdB +
mMB(Z) is an integral matrix congruent to identity modulo m and this
proves the lemma.

(The same construction (see equation (3)) shows that if N is the
total degree of the polynomial θ(h) as above, then

(4) θ(
1

a
MA(Z)) ⊂ 1

DaN
MB(Z)).

�

Notation 2. Let i : M → G be an embedding of linear algebraic
groups defined over Q; the groups M,G are Zariski closed Q-defined
subvarieties of MB say, where MB is the affine space of dimension B2

viewed as the set ofB × B matrices. A polynomial on MB is said to
have integral coefficients if it is a polynomial in the matrix entries of
MB with integral coefficients.

Consider the commutator map M × G → G given by (t, x) 7→
txt−1x−1. We denote this commutator [t, x]. This is defined over Q, and
extends to a morphism φ : MB ×MB →MB defined over Q. In partic-
ular, there exists an MB valued polynomial P with integral coefficients
on MB ×MB, and an integer D ≥ 1 such that φ(X, Y ) = 1

D
P (X, Y )

with X, Y ∈MA.

If r ∈ Q is a nonzero rational number, denote by rMB(Z) the set of
matrices whose entries are rXij with X = (Xij) ∈MB(Z).

Lemma 4. With the preceding notation, we have the inclusion of the
commutator

[M(DaZ), G ∩ (1B +
m

a
MB(Z))] ⊂ G(mZ),

for some integer D depending only on the embedding M ⊂ G.

Proof. The commutator mapM×G→ G given by (t, x) 7→ txt−1t−1 ex-
tends to a morphism φ : MB ×BB →MB defined over Q. Hence there
exists an MB-valued integral polynomial P (t, x) such that φ(t, x) =
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1
D
P (t, x).

If f(z) ∈ Z[z] then f(z) = f(0) + zg(z) where g ∈ g(z); using this
it follows by induction on n (see equation (2)) that if f ∈ Z[t1, · · · , tn]
then f(t1, · · · , tn) = f(0) + t1g1(t) + · · · + tngn(t) for some integral
polynomials gi ∈ Z[t1, t2, · · · , tn]. This implies that

P (1B +DanT, x) = P (1B, x) +DanQ(T, x),

for some integral polynomial Q on MB ×MB (with values in MB). If
x ∈ G, then (since the commutator of identity with x is trivial), we
see that φ(1B + DanT, x) = φ(1B, x) + anQ(T, x) = 1B + anQ(T, x).
Further, if x = 1B+ m

aN
X with X integral, we get (since the commutator

of any element 1 +DaNT with 1B is 1B),

φ(1B +DaNT, 1B +
m

aN
X) = 1B +maN

1

aN
R(T,X) = 1B +mR(T,X),

for some MB valued integral polynomial R(T,X) on MB ×MB. The
latter is an integral matrix in G(Z) congruent to identity modulo m.
This proves the lemma. �

3. Isotropic Groups

Notation 3. G is a Q simple connected simply connected, semi-simple
algebraic group defined over Q with Lie algebra g. Assume that G is
isotropic i.e. Q − rank(G) ≥ 1 and that P0 is a minimal parabolic
subgroup of G defined over Q, with U0 = U+

0 the unipotent radical of
P0. Fix a Levi decomposition (over Q) P0 = L0U0 of P0. Write p0, u0, l0
for the Lie algebras of P0, U0, L0 respectively. The opposite group U−0
may be defined (as the unipotent subgroup whose Lie algebra u−0 is the
subspace of g , as a module over the Levi subgroup L0, the dual of u0).
It is known [Tits] that the group G(Q)+ generated by U±0 (Q) is simple
modulo the centre of G(Q)+. The resolution of the Kneser-Tits con-
jecture (see [Gille] for the most general case) says that G(Q) = G(Q)+

hence G(Q) is also a simple group modulo its centre.

The inclusion of U±0 in G is defined over Q and induces a map of

arithmetic completions Û±0 → Ĝ of the groups U±0 (Q) and G(Q) re-
spectively; since ( as was noted at the beginning of this section) the
unipotent groups U±0 (Q) satisfy the congruence subgroup property, it

follows that Û±0 = U±0 (Af ): thus the exact sequence

1→ C → Ĝ→ G→ 1,

splits over the subgroups U±0 (Af ).
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Notation 4. (Definition of M)
Let P be a proper maximal parabolic subgroup of G containing P0,

with unipotent radical U with U ⊂ U0, and fix a Levi decomposition
P = LU of P with L ⊃ L0. We write, as we may, L = S1S2MsM

′

as an almost direct product of: S = S1 a maximal Q-split torus, S2 a
maximal torus which is Q- anisotropic and Ms (if not the trivial group
) is the product of all semisimple and Q simple isotropic groups (i.e.
those which have a Q-split torus contained in it) factors of L, and M ′

the product of semi-simple Q simple anisotropic factors of L. Since P
is a maximal proper parabolic subgroup, we have: S = S1 ' Gm has
Q-rank one.

The Q-rank of L is then 1 (the dimension of S1) plus the Q rank of
Ms; the rest of the factors have Q-rank zero.

[1] If Q−rank(G) ≥ 2, the preceding paragraph implies that Ms has
positive dimension. In particular, the connected component of identity
of the Zariski closure of (the group of integer points) L(Z) contains Ms;
in this case we write M = Ms.

We note that if Q-rank of G is one, then P = P0, S1 has dimension
one, and Ms is trivial. Consequently, L0(Z) is contained in S2M

′ ( up
to finite index). We write M for the connected component of identity
of L0(Z). We will distinguish the cases

[2] Q− rank(G) = 1 and M is abelian and

[3] Q− rank(G) = 1 and M is not abelian.

In general, since G is simply connected, it follows that Ms is also
simply connected. The simplicity - modulo centre - of G+(Q) implies
( as is easily seen) that U±(Q) also generates G+(Q).

Since the unipotent groups U± have the congruence subgroup prop-
erty, every arithmetic subgroup in G(Z) contains U±(mZ) for some in-

tegerm. Thus the inclusion U± → G induces embeddings U±(Af )→ Ĝ
of arithmetic completions. Denote by E(m) the normal subgroup of
G(Z) generated by U±(mZ). It may or may not have finite index, but
it is easily seen that the closure of E(m) in G(Af ) is open. Thus, there
is a smallest congruence subgroup containing E(m); we call it the con-
gruence closure of E(m) and denote it Cl(E(m)). Moreover, C is the
inverse limit as m varies, of the profinite completions of the quotient
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Cl(E(m)/E(m):

(5) C = lim←−
̂

(
Cl(E(m))

E(m)
),

where the roof denotes the profinite completion of the group involved,
and m varies over all integers as in equation (1).

Denote by C ′ the image of the congruence kernel CL in C induced
by the inclusion L→ G.

Lemma 5. The group C ′ is central in the arithmetic completion Ĝ of
G(Q).

Proof. The group L̂ acts on the completions Û± ' U±(Af ). However,
the action being linear, descends to an action of the congruence comple-
tion L of L(Q). Consequently, the kernel CL acts trivially on U±(Af ).
Since U±(Q) is a subgroup of U±(Af ) it follows that C ′ commutes with
U±(Q) and hence with the group generated by them. It was already
seen that this subgroup is G(Q) (using the resolution of the Kneser-

Tits problem [Gille]) and hence is dense in Ĝ. Therefore, C ′ is central

in Ĝ. �

The group C/C ′ is the kernel to the map Ĝ/C ′. For any inte-
ger k denote by F (k) the normal subgroup in G(Z) generated by
P (kZ), U−(kZ). Then F (k) ⊂ Γ(k) and F (m′) ⊂ Γ(m′). Let Cl(F (m))
denote the smallest congruence subgroup of G(Z) containing F (m).

The congruence kernel C is the inverse limit of Γ(m)/E(m) as m
varies; the action of M(Z) on all these groups induces an action on C
and they are compatible with this action. By Lemma 5, the group C ′ is

central and C/C ′ is the kernel to the map Ĝ/C ′ → G(Af ). Moreover,

the topology on P (Q) induced by its inclusion in G(Q) ⊂ Ĝ/C ′ is the
congruence topology since we have gone modulo the congruence kernel
of L = the congruence kernel of P . We then have, analogously to
equation (5),

(6) C/C ′ = lim←−
̂

(
Cl(F (m))

F (m)
)

expressing C/C ′ as an inverse limit of the profinite completions of the
quotient groups Cl(F (m))/F (m).
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3.1. The open set U = U−P ⊂ G. The map U− × P → G given
by multiplication (u−, p) 7→ u−p is a map of affine Q-varieties which is
an isomorphism onto its image which is a Zariski open set U in G. If
g ∈ U(Q) = u−p, then the uniqueness of this decomposition says that
u− ∈ U−(Q), p ∈ P (Q).

Given a prime p, the subset U−(Zp)P ((Zp) = U(Qp) is open in the
Qp topology and contains 1. Hence there is a compact open subgroup
Kp of G(Zp) contained in U−(Zp)P (Zp).

The conjugation action ofM onG stabilises all the groups U±,M, P+

and hence M stabilises the open set U . Fix an integer m; if S is the set
of primes dividing m, denote by R the ring

∏
p∈S Zp; this is a compact

open subring in GS =
∏

l∈S Qp and the principal ideal mR generated
by m is a compact open ideal in R. Thus U(mR) = U−(mR)P (mR)
is an open set (containing identity) in the product group GS. By the
topology on GS there exists a compact open subgroup KS = G(m′R) ⊂
U(mR) of GS for some integer m′. We may choose m′ to be divisible
only by primes in S since the other primes are units in R. Hence KS is
open normal of finite index in G(R). Consequently Γ(m′)S = G(Z)∩KS

is a congruence normal subgroup in G(Z) with m′ divisible by m and
only by primes that divide m.

We now compute the action of M(Z) on the latter group Γ(m′).

Given x ∈ Γ(m′), write, as we may, x = u−p with u− ∈ U−(Q) and
p ∈ P (Q). On the other hand, viewed as an element of G(R) we have
x = u−RpR with u−(mR), pR ∈ P (mR). The uniqueness of expressing
an element of G(Q) as a product u−p then shows that u− = u−R, p = pR
and are therefore integral in Zp for all primes p dividing m and hence
have denominators coprime to m and all off diagonal entries have nu-
merators divisible by m.

We have fixed a linear Q-embedding G ⊂ SLB ⊂ MB; Thus u−, p
and p−1 viewed as matrices in MB(Q) of the form identity plus a matrix
having a common denominator aN ( we write aN instead of a keeping
in mind a future application) with a is coprime to m and numerators
which are all divisible by m:

u− ∈ U− ∩ (1 +
m

aN
MB(Z)), p, p−1 ∈ P ∩ (1 +

m

a
MB(Z)).
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By Lemma 4, there exists an integer D ≥ 1 (D independent of the a
chosen, and depend only on the embedding G ⊂ SLB) so that we have
the inclusion of the commutator subgroups:

[M(DaN), U− ∩ (1 +
m

aN
MB(Z)] ⊂ U−(mZ) ⊂ F (m′),

and

[M(DaN), P ∩ (1 +
m

aN
MB(Z)] ⊂ P (mZ) ⊂ F (m′).

Fix x ∈ G(m′); this determines the integer a = a(x) is in the preced-
ing paragraph. Fix t ∈M(DaNZ). We compute the conjugate t(x) for
x ∈ G(m′): write x = u−p; we have seen that u−, p have denominators
a coprime to m and numerators divisible by m. Then

t(x) =t (u−)t(p) = tu−t−1(u−)−1u−pp−1tpt−1 =

= [t, u−]u−p[p−1, t] = [t, u−]x[p−1, t]

and the foregoing inclusion of commutator subgroups shows that

(7) t(x) ∈ F (m)xF (m) = xF (m),

(the last equality holds since F (m) is normal). Therefore, the con-
gruence group M(DaNZ) fixes the coset xF (m) ∈ G(m′)F (m)/F (m)
through the element x; the integer a = a(x) depends on x and is co-
prime to the integer m.

3.2. Centrality in the semi-local case. If Z is replaced by the
semilocal subring ZS (i.e. S is the complement of a finite set of primes
of Q), then for the group G(ZS) the congruence subgroup kernel is

central: consider the completion ĜA of the group G(Q), with respect
to the profinite topology on the group G(A). We have the analogous
exact sequence (A = ZS in the following paragraph)

1→ D → ĜA → G(Â)→ 1.

The group D is the inverse limit of ̂G(mA)/E(mA) where the roof
denotes the profinite completion (actually, the group is finite in the
semi-local case, but we do not need to use it). Every element of a finite
index subgroup G(m′A)E(mA)/E(mA) (m′ as before) may be replaced
by an element of the form u−p = u−zu, where u− ∈ U−, z ∈ L, u ∈ U .
But the elements u− and u already lie in U± ∩G(mAS) ⊂ E(m) since
the denominators of these elements are coprime to m. It follows that
D is the image C ′L (the congruence subgroup kernel of L) and is hence
centralised by the central torus S(Q) in L(Q). However, all of G(Q)
still operates on D but S(Q) acts trivially; therefore, by the simplicity
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of G(Q) modulo the centre, all of G(Q) acts trivially; That is, the exact
sequence

1→ D → Ĝ(A)→ G(Â)→ 1

has central kernel D.

Remark. The group D is actually trivial; the congruence subgroup
property for general G in the semilocal case has almost been proved
([Sury], [Pr-R2]) but we only need the centrality here.

3.3. Commuting subgroups. The following proposition was observed
in [R1] and is in fact used in several proofs of centrality (see [Pr-R2]).

Proposition 6. Denote, for each prime p of Q, by Gp the closed sub-

group of Ĝ generated by U±(Qp). Then C in central in Ĝ if and only
if for each pair p 6= q, the groups Gp and Gq commute.

Proof. Suppose Gp, Gq commute for different primes p, q. We have the
exact sequence

1→ Cp = C ∩Gp → Gp → G(Kp)→ 1.

This yields the exact sequence

1→ Cp → Gp → G(AKf\{p})→ 1.

Here, Af\{p} denotes the ring of finite adeles of Q which is a restricted
direct product of Ql for primes different from the prime p. Gp is the
closed subgroup generated by Gq with q 6= p. Cp is the intersection of
C with the closed subgroup Gp.

The group Gp is normal in Ĝ since it is normalised (even centralised)
by U±(Qq) for each q 6= p and normalised by (indeed, contains) U±(Qp)
by assumption. Therefore, Gp is normalised by U±(Q). The group
generated by U±(Q) is, by the solution to the Kneser-Tits problem, all

of G(Q), and since G(Q) is dense in Ĝ, it follows that Gp is normalised

by Ĝ. Hence Gp is a closed normal subgroup of Ĝ. Therefore, so is Gp.

Thus we may form the quotient Ĝ/Gp which is a quotient of Gp. We
have the short exact sequence

1→ C/Cp → Ĝ/Gp → G(Qp) = G(Af )/G(Af\{p})→ 1

where in the quotient Ĝ/Gp the closure of the group G(Ap) is a profinite
group and maps to the congruence completion G(Zp); Ap here is the
semi-local ring consisting of rational numbers of the form a

b
with b

coprime to the prime p. Moreover, we have the exact sequence

1→ C/Cp → Ĝ(Ap)→ G(Zp)→ 1.
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By the preceding subsection, the group G(Ap) has the congruence
subgroup property (in the sense that the associated congruence sub-

group kernel is central). Hence the extension C/Cp is central in Ĝ/Cp

and hence the commutator subgroup C ′ = [C, Ĝ] is contained in Cp for
every prime p. In particular, C ′ is centralised by Gp for every prime p

and hence C ′ is centralised by Ĝ.

Hence for g ∈ Ĝ and c ∈ C, the map ψ : g 7→ gcg−1c−1 is a homo-
morphism into the central subgroup C ′. In view of the simplicity of
G(K) this means that the map ψ is trivial and hence that C is central

in Ĝ. This proves the “if” part.

To prove the only if part, we argue as follows. Suppose C is cen-
tral. Consider an element c in the commutator set: c = [u, u−] ∈
[U+(Qp), U

−(Qq)]. On this the group S(Q) (of Q rational points of the
split torus S) acts by conjugation. The action of S(Q) on c is trivial
by assumption; hence [u, u−] =s (u),s (u−)] for all s ∈ S(Q). By weak
approximation, S(Q) is dense in the product S(Qp)×S(Qq). It follows
by the density that

[u, u−] = [s(u), u−]

for all s ∈ S(Qp). Since we can choose a sequence sk ∈ S(Qp) such that
sk(u) contracts to identity we get [u, u−] = 1. Since u is arbitrary, it
follows that U+(Qp) commutes with u−. In other words, Gp commutes
with Gq. �

4. An Application of Dirichlet’s Theorem

4.1. Dirichlet theorem on primes. Let M ⊂ GLn be a linear al-
gebraic group defined over Q. Fix a prime l, and an integer m ≥ 2.
The unit group (Z/lmZ)∗ is cyclic of order lm−1(l− 1) if l is odd and if
l = 2, then it has an element of order 2m−2. and consider the set S of
primes p such that the order of p modulo l is either lm−1(l − 1) if l is
odd and 2m−2 if l = 2. By Dirichlet’s theorem on infinitude of primes
in arithmetic progressions, the set S is infinite.

Fix l and p ∈ S as above. Write e = el(p) for the largest integer such
that the finite group M(Fp) has an element of exponent le.

Lemma 7. The exponent el(p) satisfies the estimate

el(p) ≤ [
n

l − 1
] + [

n

l(l − 1)
] + · · ·+ [

n

lm−1(l − 1)
],

where [x] denotes the integral part.
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Proof. We have M ⊂ GLn. We need only prove the lemma for GLn
since the exponent of the subgroup M(Fp) divides the exponent of the
larger group GLn(Fp). The order of GLn(Fp) is

(pn − 1)(pn − p2) · · · (pn − pn−1).

Now p is coprime to l, and generates the cyclic group (Z/lmZ)∗

(if l is odd). For j ≤ m, let X(lj) denote the set of i ≤ n with
pi ≡ 1( mod lj) and let x(lj) be the cardinality of the set X(lj). The
assumption on p implies that if i ∈ X(lj), then i must be divisible by
lj−1(l − 1). Hence the number of i ≤ n such that lj divides pi − 1 is
the integral part [ n

lj−1(l−1) ] = x(lj).

The two preceding paragraphs imply that for each j ≤ m, then
number of factors in the product

∏n
i=1(p

i − 1) divisible by lj is x(lj)
(= the integral part [ n

lj−1(l−1) ]). Now, X(l) ⊃ X(l2) ⊃ · · · ⊃ X(lm);

if i ∈ X(lj) \ X(lj+1), then the highest power of l dividing the factor
pi − 1 is j. Therefore, the largest power of l which divides the or-
der of GLn(Fp) is 1(x(l) − x(l2)) + 2(x(l2) − x(l3)) + · · · + mx(lm) =
x(l) + x(l2) + x(l3) + · · ·+ x(lm).

The last two paragraphs imply the lemma for GLn and hence for
arbitrary M ⊂ GLn. �

Corollary 1. If l ≥ n + 2, then el(p) = 0. Moreover, in all cases,
el(p) ≤ 2n. Let Rl = lel(p). Then Rl ≤ (n+ 1)2n.

Proof. The formula for el(p) as a sum in the lemma is such that all the
terms are bounded by the first term and the first term is [ n

l−1 ] = 0 if
l ≥ n+ 2. The formula also shows that

el(p) ≤
n

l − 1
+

n

(l − 1)l
+ · · · ≤ 2n.

Hence for l ≥ n+ 2, Rl = 1 and otherwise, Rl = lel(p) ≤ (n+ 1)2n.
�

As before, we let M ⊂ GLn an algebraic subgroup defined over Q and
l a prime. Let a ≥ 1, b ≥ 2 be coprime integers. Consider the arithmetic
progression a + bx : x = 0, 1, 2, · · · . For m ∈ Z, denote by M(m)
the principal congruence subgroup of level m in M(Z), and Rl(m) be
the l-exponent (the largest power of l which divides the exponent)
of M(Z/mZ). Denote by Rl(a, b) the infimum of Rl(a + bx) : x =
0, 1, 2, 3, · · · . The l-exponent of the quotient M(Z)/∆ where ∆ is the
group generated by {M(a + bx);x ∈ Z} is clearly no bigger than the
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l-exponent Rl(a+ bx) of M(Z/(a+ bx)Z)) for each x. Therefore the l
exponent of M(Z)/∆ is ≤ Rl(a, b).

Proposition 8. There is an integer Rl depending only on n and not
on a, b such that Rl(a, b) ≤ Rl.

Proof. Let lm be the largest power of l dividing b; hence b = lmc with
c coprime to l. We find a prime p such that p generates the unit group
(Z/lmZ)∗. Thus p ∈ S of the preceding lemma. Suppose a = ph

modulo lm. By Dirichlet’s theorem, we can find primes p1, · · · , ph−1
such that pj ≡ 1 (mod c), and pj ≡ p (mod lm) (j ≤ h−1). We also
choose ph ≡ a (mod c) and ph ≡ p (mod lm). Then p1p2 · · · ph ≡
a (mod b). Now GLn(Z/p1p2 · · · phZ) is the product of GLn(Fpi), and
the l exponent of the product is the supremum of the exponents of
GLn(Fpi). The latter is, by the lemma, bounded only by an integer Rl

depending on n: Rl ≤ l2n ≤ (n + 1)2n (Corollary 1). The proposition
follows.

�

We are now in a position to prove Theorem 2. We restate it ( to
save notation, we replace bm by b, as we may, since a is still coprime
to bm) as follows.

Proposition 9. Let M ⊂ GLn be a linear algebraic group defined over
Q, and a, b two coprime integers. Let M(Z) be fixed, and denote by N
the (normal) group generated by the congruence subgroups M(ax + b)
with x ∈ Z of M(Z). There exists an integer R depending only on
n such that the exponent of every element of M(Z)/N divides R; in
particular, the group ∆ = M(Z)R generated by R-th powers of M(Z)
lies in N .

Proof. This is a simple application of the preceding lemma. We first
prove this for elements whose exponents are a power of the prime l. In
that case, the integer R is the Rl ≤ (n+ 1)2n of the preceding lemma.
Moreover, by Corollary 1, the l-exponent is 1 unless l is a prime with
l ≤ n+ 1. Hence the exponent of M/N is

R =
∏
l≤n+1

Rl ≤
∏
l≤n+1

(n+ 1)2n =
[
(n+ 1)2n

]π(n+1)
,

where π(n + 1) is the number of primes l ≤ n + 1. This proves the
proposition and equivalently Theorem 2.

�
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5. Proof of centrality when Q− rank(G) = 1 and M0(Z) is
virtually abelian

5.1. generalities.

Notation 5. We assume that Q − rank(G) = 1. Then the proper
maximal parabolic subgroup P = P0 is a minimal parabolic subgroup
defined over Q, U the unipotent radical of P , and P = LU a Levi
decomposition of P . Take S ⊂ L a maximal Q-split torus in L (and
in G since Q− rank(G) = 1. Since Q− rank(G) = 1, the group L(Q)
consists entirely of semisimple elements.

As a module over S ' Gm the Lie algebra u of U+ decomposes
as u = gα ⊕ g2α; similarly the Lie algebra u− of U− decomposes as
u− = g−α ⊕ g−2α. Since S is in the centre of L, these decompositions
are stable under the adjoint action of L. If we denote by l the Lie
algebra of L then we have the decomposition

g = u− ⊕ l⊕ u = g−2α ⊕ g−α ⊕ l⊕ gα ⊕ g2α.

As before, denote by M = ZCl(L(Z))0 the connected component of
identity of the Zariski closure of the group L(Z) of integer points of L.

In this section, we assume that M is abelian i.e. that L(Z) is virtually
abelian.

Lemma 10. M is in the centre of L.

Proof. Since L(Q) commensurates L(Z), it follows that the identity
component M of the Zariski closure of L(Z) is normal in L. Now L
is reductive and hence so is M . Since M is abelian, M is a torus of
dimension d say. Therefore the automorphism group M is a discrete
group, namely GLd(Z). The conjugation action of L on M yields a
homomorphism L → GLd(Z); but since L is connected and GLd(Z)
is discrete, it follows that this homomorphism is trivial. That is, L
centralises M . �

Lemma 11. [1] The Lie algebra generated by gα, g−α is all of g.
[2] We have [gα, gα] = g2α.

Proof. We first prove that g is generated as a Lie algebra by the sub-
spaces gα, g2α, g−α, g−2α. Denote temporarily, the Lie algebra gener-
ated by these subspaces as g′; this is normalised by l, since each of
these spaces is. Hence all of g normalises g′. The Q− simplicity of g
now ensures that g′ = g.
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Under the Lie bracket, the subspace g2α takes g−αinto gα, and gα into
0; consequently, by the Jacobi identity, the Lie algebra g′′ generated by
gα, g−α is normalised by the adjoint action of g2α (and similarly by the
action of g−2α); hence g′′ is normalised by gβ with β ∈ {±α,±2α}; by
the preceding paragraph, g′′ is normalised by g; the Q-simplicity of g
now implies that g′′ = g. This proves [1].

Denote by g∗ the direct sum subspace

g∗ = [gα, gα]⊕ gα ⊕ l⊕ g−α ⊕ [g−α, g−α].

By examining the brackets of each of the individual terms in this
direct sum, we see that g∗ is a Lie subalgebra defined over Q. Further
it is normalised by the subspaces gα, g−a (since it contains them); by
part [1], g∗ is therefore normalised by all of g. The Q-simplicity of g
then implies that g∗ = g. This proves [2] and in particular, proves that
[gα, gα] = g2α.

�

Lemma 12. If t ∈ M is not in the centre of G, then the element t
does not have a non-zero fixed point in gα. That is, all the eigenvalues
of the linear transformation Ad(t) acting on gα are different from 1.

Proof. : Since M is a torus, every element of M is semisimple. Split the
space gα into eigenspaces for t: gα = ⊕λ6=1(gα)λ ⊕ (gα)1 = W ⊕ (gα)1.
Similarly there is a decomposition for g−α. If possible, let X ∈ (gα)λ
and Y ∈ (g−α)1 be both nonzero. We will show that this leads to a
contradiction. The bracket [X, Y ] is in gS ' l. This is impossible since
the action of t on X is multiplication by λ and on Y and X it is mul-
tiplication by 1. Therefore, [X, Y ] = 0, and hence, by taking the sum
over all the λ, [W,Y ] = 0. Note that W is defined over Q.

Now take X ∈ W (Q) \ {0}; then u = exp(X) is a unipotent element
commuting with the unipotent element v = exp(Y ) ∈ U−. Hence u, v
generate a unipotent group E. However, in the Q-rank one group G,
every nontrivial unipotent element belongs to a unique maximal unipo-
tent group; hence u ∈ U+ and hence E ⊂ U+; similarly, v ∈ U− and
hence E ⊂ U−; this means that E = {1} i.e. X = 0 and Y = 0, a
contradiction.

This means that either X = 0 or Y = 0; in other words, gα is either
fixed pointwise by t, or gα = W has no fixed points. Suppose gα = gtα.
By considering orthogonal decomposition (with respect to the Killing
form κ ) of g as a module over t ∈ SO(κ), one sees that g−α = gt−α is
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also pointwise fixed by t. Since g is generated by gα, g−α by lemma 11,
it follows that all of g is pointwise fixed by t; that is, t is in the centre
of G. �

Corollary 2. Let V = {exp(tX); t ∈ Ga ⊂ U+ be the subgroup gener-
ated by the exponentials of an element X ∈ gα. Suppose t ∈ M is not
in the centre of G. The commutator subgroup [tZ, V ] contains V .

Proof. The Cayley -Hamilton theorem and the fact that 1 is not an
eigenvalue of Ad(t) (lemma) show that the matrix Ad(t)− 1 is invert-
ible on gα and the inverse is a polynomial in Ad(t)− 1. Hence X is in
the span of the vectors (Ad(t)− 1)k(X) .

If G is a group, R = Z[G] its integral group ring and a, b ∈ G, then
a− 1, b− 1, ab− 1 are elements of R. We have the identity

(a− 1)(b− 1) = (ab− 1)− (a− 1)− (b− 1),

in R; this shows that the span of Ad(tk) − 1 contains the span of
(Adt − 1)k for all integers k ≥ 1. This and the preceding paragraph
show that X is a linear combination of (Ad(tk)− 1)(X).

Since the Lie algebra of the commutator group [tZ, V ] contains the
span of (Ad(tk) − 1)(X) for k ≥ 1, the conclusion of the preceding
paragraph shows that X lies in this Lie algebra; that is, V lies in
[tZ, V ]. �

Notation 6. Let θ : H = SL2 → G be a non-trivial morphism of
algebraic Q-groups. Denote by U+

H (resp. U−H ) the group of upper
triangular (resp. lower triangular) unipotent matrices in SL2. Assume
θ is such that θ(U±H ) ⊂ U±, and that the image under θ of the group
D of diagonals in H is the torus S in G.

Corollary 3. If ∆ ⊂ M is an infinite subgroup, then the commutator
group [∆, θ(SL2)] contains θ(SL2):

[∆, θ(SL2)] ⊃ θ(SL2) and [D, θ(SL2(Q)] ⊃ SL2(Q).

Proof. By the preceding corollary , the commutator subgroup [∆, θ(U+
H )]

contains θ(U+
H ); similarly, [∆, θ(U−H )] contains θ(U−H ). Since SL2 is gen-

erated by U±H the corollary follows. �

5.2. Some consequences of Proposition 9. In this subsection, we
derive some consequences of Proposition 9 for θ(SL2) and the results
of the preceding subsection.
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Corollary 4. If θ : SL2 → G is a nontrivial morphism, and g =(
a b
c d

)
∈ SL2(DmZ), then the conjugate tθ(g)t−1 ∈ θ(g)E(mZ) for

all m ∈ M(DaNZ). That is, M(DaNZ) acts trivially on θ(g) viewed
as an element of Γ(m)/E(m).

Proof. Write

g =

(
a b
c d

)
=

(
1 0
c
a

1

)(
a 0
0 a−1

)(
1 b

a
0 1

)
= u−zv

with u− ∈ U−H , z ∈ diagonals and v ∈ U+
H . Thus u−, v are matrices of

the form 1 + Dm
a
x with x ∈ M2. By equation (4) there exist integers

D,N such that θ(u−) ∈ 1B+ m
DaN

MB(Z). Suppose t ∈M(DaNZ); then
by equation (7),

tθ(g)t−1 = θ(g)E(m),

preserves the coset of E(m) in Γ(m) through the element θ(g).
�

Corollary 5. The isotropy of θ(g) ∈ Γ(m)/E(m) with g ∈ SL2(DmZ)
as in the preceding corollary, contains the group generated by the con-
gruence groups M(D(a+ bx)NZ), with x ∈ DmZ.

Proof. The preceding Corollary 4 says that M(DaN) stabilises the ele-

ment θ(g) ∈ Γ(m)/E(m). If g =

(
a b
c d

)
∈ SL2(Dm) and x ∈ Dm, we

may apply the corollary to the element g′ = gu with u =

(
1 0
x 1

)
; then

a(gu) = a + bx and θ(g′) ∈ θ(g)E(m). Now the preceding Corollary 4
says that M(D(a + bx)N) also stabilises θ(g) = θ(g′) in Γ(m)/E(m).
This proves the corollary. �

Corollary 6. In the notation of Proposition 9, denote by ∆ the normal
subgroup generated by the congruence subgroups M(D(ax + b)N) for
some fixed integers D,N . The exponent of M(Z)/∆ depends only on
integer D and not on a, b).

Proof. This is immediate from Corollary 5 and Proposition 9. �

Corollary 7. There exists a fixed infinite subgroup ∆ ⊂ M(Z) such
that ∆ acts trivially on the image C ′ of the congruence subgroup kernel
of SL2 under the map θ : SL2 → G.
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Proof. By Proposition 9 (and its consequence, namely Corollary 6),
there exists a fixed infinite subgroup ∆ in M(DZ), which acts triv-
ially on θ(g) for all g ∈ SL2(DmZ). Since C ′ is the inverse limit of
θ(SL2(Dm)/E2(Dm)), it follows that ∆ acts trivially on C ′ as well.

�

Proposition 13. Let θ : SL2 → G be as in the paragraph preceding
Corollary 3 Denote again by θ the map induced at the level of congru-
ence subgroups kernels: θ : CH → C with image C ′ say.

The action of SL2(Q) on C ′ is trivial.

Proof. We know that ∆ ⊂ M(Z) acts trivially on C ′. But the group
SL2(Q) acts on the kernel C ′; hence the commutator [∆, SL2(Q)] acts
trivially on C ′. By Corollary 3, SL2(Q) ⊂ [∆, SL2(Q)] and hence acts
trivially on C ′. �

5.3. Proof of Theorem 1 when Q − rank(G) = 1 and L(Z) is
virtually abelian.

Theorem 14. Let Q − rank(G) = 1, R − rank(G) ≥ 2 and assume
that M0(Z) is virtually abelian. Then the congruence subgroup kernel

C is central in Ĝ.

Proof. Fix X ∈ gα(Q) be such that over the algebraic closure Q, the
projection of X to each root space (occurring in gα) of a maximal torus
in G containing the product torus MS is nonzero. Since L (being the
centraliser of the split torus S) contains this maximal torus, it follows
that the space generated by the conjugates t(X); t ∈ L(Q) is all of gα.
The Lie algebra generated by gα is all of LieU+ by part 2 of Lemma 11.
Denote by exp : gα → U+ ⊂ G the exponential map on the elements
(which are of course, nilpotent matrices) of gα.

By the Jacobson-Morozov theorem, there exists a homomorphism

θ′ : H = SL2 → G defined over Q, such that u = θ

(
1 1
0 1

)
7→

exp(X) ∈ U+. Denote by B (resp. T ) the group of upper triangular
(resp. diagonal) matrices in H. Since P = P0 is a minimal parabolic
subgroup, it follows that there exists g1 ∈ G(Q) which conjugates θ(B)
into P : g1θ′(B) ⊂ P . The conjugacy of split tori in P shows that there
exists g2 ∈ P which conjugates θ′(T ) into S. The product g = g2g1
then conjugates θ′(B) into P and θ′(T ) into S. Denote by θ the map
h 7→ gθ′(h)g−1. Since exp(X) lies in a unique maximal unipotent Q-
subgroup namely U+, the inclusions g(exp(X)) ∈ U+, exp(X) ∈ U+
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imply that g ∈ P . Write g = mu with m ∈M0(Q), u ∈ U+.

Now g(exp(X)) = exp(g(X)) = expm(u(X)). Since u is unipo-
tent, the element u(X) is of the form X + Y with Y ∈ g2α. Since
S = θ(T ) acts by the eigencharacter α on u(X) it follows that Y = 0
and u(X) = X ∈ gα. Hence u(X) = X also has nonzero projection to
all the root spaces of T , and hence the set M(u(X)) generates Lie(U+),
and the set M(exp(X)) generates U+(Q). Moreover, κ(X) ∈ g−α; hence
M(κ(X)) generates g−α and M(U−H ) generates U−.

Lemma 15. If Kp is a compact open subgroup in M(Qp) then
Kp(U+

H (p)) =Mp (U+
H ) = U+(p).

Proof. It is enough to prove that the Qp Lie algebra v generated by
Kp(U+

H )(p)) is all of u = Lie(U+(p)). Let X ∈ Lie(U+
H ) as before. If

v 6= u then there exists an m0 ∈ M0(Q) such that Y =m0 (X) /∈ v.
Suppose λ : u → Qp is a linear form which is nonzero on Y but zero
on v; the function λX : m 7→ λ(m(X)) is a polynomial function on M
which is identically zero on the open subgroup Kp; but Kp being open,
is Zariski dense and hence λX is zero on all of Mp, a contradiction.
Therefore, v = u. �

We can now complete the proof of centrality for G.

Since C ′ is central in θ(ŜL2) (Proposition 13), it follows from Propo-
sition 6 that U+

H (p) and U−H (q) commute. Conjugation by elements m ∈
M(Q) shows that m(UH(p)) and m(U−H (q)) commute for all m ∈M(Q).
However, the action of M(Q) on U+(p) and U−(q) factors via the map

M(Q)→M(Qp)×M(Qq)→ Aut(U+(p))× Aut(U−(q)).

(the maps given by m 7→ (mp,mq) and the conjugation by m becomes
m(U+(p)) =mp (U+(p)),m (U−(q)) =mq (U−(q)). By a theorem of San-
suc (see Theorem 7.9 of [Pl-R]), the closure of M(Q) in M(Qp)×M(Qp)
is open of finite index. Hence the closure of M(Q) contains a subgroup
of the form Kp × Kq with Kp ⊂ M(Qp), Kq ⊂ M(Qq) open. Conse-
quently, Kp(UH(p)) commutes with Kq(U−H (q)). Then Lemma 15 implies
that U+(p) and U−(q) commute . By Proposition 6, this implies that
C is central. �
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6. When Q− rank(G) ≥ 2 or M(Z) is not virtually abelian

6.1. Centrality of C/C ′M . Assume that ∞ − rank(G) ≥ 2. Sup-

pose that Ms(Z) is infinite. Now consider the quotient Ĝ/C ′M ; since

(by Lemma 5) C ′M is a central and compact subgroup of Ĝ, it follows
that this quotient is a locally compact and Hausdorff topological group.

As we already observed in the discussion preceding equation (6) the
restriction to P (Z) ' U(Z)M(Z) of the topology induced on G(Q)

viewed as a subgroup of Ĝ/C ′M is simply the congruence topology.
Thus, for m ≥ 1 the groups P (mZ) give a fundamental system of

neighbourhoods of identity of P (Q) ⊂ Ĝ/C ′M .

Let F (m) denote the subgroup of G(mZ) normalised by G(Z) and
generated as a normal subgroup by the two groups P (mZ) and P−(mZ).

Then the quotient Ĝ/C ′M maps onto G(Af ) with kernel C/C ′M '
lim←−

̂G(mZ)/F (m) (see equation (6).

An element in the quotient group G(mZ)/F (m) (after perhaps mul-
tiplying it on the right by an element of the Zariski dense subgroup
F (m)) may be written in the form u−p with u− ∈ U−, p ∈ P .
Moreover, the denominators a of the entries of the matrices u± and
p are coprime to m. From equation (7), if t ∈ M ′(DaNZ), then
t(g) = g ∈ gF (m) for every t ∈ M(aNZ). On the other hand, M(mZ)
also acts trivially on G(m)/F (m) since M(mZ) is contained in F (m).

If (D,m) denootes the g.c.d ofD andm, thenM(mZ) andM(DaNZ)
together generate the group M((D,m)Z) , since m and a are coprime
(it follows from strong approximation that for two non-zero integers
u, v with g.c.d. w, the group generated by M ′(uZ) and M ′(vZ) is all
of M ′(wZ)); therefore the infinite group M ′(DZ) ⊂ M ′(D,m)Z) acts
trivially on G(mZ)/F (m) and hence on C/CM .

Since all of G(Q) operates on the quotient C/C ′M (recall that we
have proved that C ′M is centralised by G(Q) and hence, in particular,
is stable under the action of G(Q)), and the infinite group M ′(DZ)
acts trivially, it follows by the simplicity of G(Q) modulo its centre,

that G(Q) acts trivially; hence C/C ′M is centralised by Ĝ/C ′M .
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6.2. Centrality of C. Now let g ∈ G(Q) and c ∈ C. From the pre-

ceding subsection, g acts trivially on C/C ′M and C ′M is central in Ĝ.

Then ψ(g) = gcg−1c−1 is in C ′M and is central in Ĝ. Hence it follows
that ψ(g1g2) = ψ(g1)ψ(g2). Thus ψ : G(Q)→ C ′M is a homomorphism
into the abelian group C ′M . Since G(Q) is simple modulo centre, it

follows that ψ is trivial and hence that C is central in Ĝ.

This and Theorem 14 together prove Theorem 1 in all cases.
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