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p-ADIC HYPERBOLIC SURFACES

HA HUY I(HOAI

ABSTRACT. Let X be a hypersul'fnce of degree cl in the projective space JIl'n(Cp). We
prove that if X is a pertubat.ion of t.he Fermat hypersurface , and if d is sufficiently
large with respeet 1.0 n and to t.he number of non-zero monomials in the equation
defining X I t.hen evcl'Y holomorphic map from Cp into X has the image contained
in a proper algebraic subset of X. As a consequence, we give explicit cxamples of
p-adic hyperholic sUl'faces of degree ~ 24 in !F3 (Cp) and of curves of degree ~ 24
with hyperbolic complements ill P2(Cp LasweIl as examples of hyperbolic surfaces
of degree ~ 50 in JFD3(Cp) wit.h hyperbolic complement.s. For the proof, the main tool
is the height of p-adic holomorphic fundions defined in author's previous papers.

§1. INTRODUCTION

A hololll0rphic curve in a projective variety X is said to be degenerate if it is

contained in a proper algebraic subset of X. In 1979 ([GGD M. Green and Ph.

Griffiths conjectul'ed that every hololllorphic curve in a complex projective variety

of general type is degenerate. Up to llOW this conjecture seelns still far completly

proved, hut SOHle progress are IluHle. M. Green ([GD proved the degeneracy of

holomorphic curves in the Ferlllat variety of large degree. In [N] A. M. Nadel

gives a dass of projective hyperslu'faces for which the conjecture is valid. Using

the results on clegeneracy uf holoillorphic curves Nadel constructed some explicit

examples of hyperbolic hyperslu-faces in jp3. To receive the lnentioned results,

M. Green used the NeVeLlllinlleL theory for holoillorphic curves, and A. Nadel's

1991 Mathematics Suujeet Cl(~s.'!ificntion. 32P05, :l2A22, llS80.
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techniques are based on Siu's t.heory of lneromorphic cOlmections. We refer the

reader to the survey [Z2} for rela.tecl topics.

For the p-adic case, the clegeneracy of holomorphic curves in the Fermat variety

of large degrce is establishecl in [HM]. In this not.e we are going to show that if

X is a pertubation of the Fennat va.riety in jpH(Cp) of degree large enough with

respect to n and to the ntunher of non-zero coefficients in the defining equation,

then evel'Y holol1lol'phic CUl've in )( is clegenerate. The proof provicles sufficiently

precise inforlllation of the position of t.he curve in X, that is useful in applications.

As a consequence, we give sOUle explicit exa111ples of p-adic hyperbolic surfaces in

P3(Cp), and curves in f'2(Cp) with hyperbolic c0111plements. Recall that a variety

X is said to be p-adic hyperbolic if every hololnorphic map from Cp into X is

constant. The exaulples to be given here are different to ones in [HM], given

by using the p-adic Nevanlinna-Cartan theorenl. While the degree of surfaces in

[HM], as weIl as in all known explicit exc:unples of c0l11plex hyperbolic surfaces,

is divided by SOllle integer > 1, for the exalnples in this note, the degree d is

arbitrary, requil'ed only 2:: 24 for hyperbolic surfaces and cuves with hyperbolic

complements. As in [HM), the lna.in tool of this note is the height function defined

in [Hl]-[H3], [HM]. This function plays a role sinlilar to one of the Nevanlinna

characteristic function in Gl'ecu's argtunents. MOl'eover, the height of a p-adic

holomorphic function f( z) gives infonllation Oll distribution of zeros of f, and

describes the growth of 1f (z) I. Then, in lllany cases we can use the height in

the study of p-adic holonlOl'phic fUllctiollS as the degree in the study of cOlnplex

polynonüals. The pl'oof of Leulllla 3.2 is such an exalnple.

The paper is planecl as follows. In §2 we reeall some facts on heights of p-adic

holomorphic fnnetions and of p-a.clic holonlorphic curves. Section 3 is devoted

to the proof of clegeneracy of hololllorphic curves in pertubations of the Fermat
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variety. These l'esnlts are useel in the last section to give explicit exampies of p-adic

hyperbolic surfaces in P3(C]J) , curves with hyperbolic cOlllplements in P2(Cp ).

Acknowledgeluent. The anthor woulel like to thank the Max-Planck-Institut

für Mathenlatik Bann for haspitality anel final1cial support.

§2. HEIGHT 01" p-ADIC HOLOMORPHIC FUNCTIONS

We recall SOl1le facts on heights of p-aelic hololnorphic functions for Iater use in

this note. More det.ails cau be fauncl in [Hl]-[H3], [HM].

Let p be a prilue nlllllber, Ql1 the field of p-adic nUlnbers, and Cp the p-adic

completion of the algebraic closure of Qp. Tbe absolute value in Qp is normalized

so that Ipl = p-l. We furthel' use the nation v(z) for the additive valuation on Cp

which extends ordp .

Let f(z) be a p-aclic halol110rphic fllnction on Cp represented by a convergent

series
co

I(z) = :L anzn.
u=o

Since we have

linl {v(a n ) +nv(z)} = 00
u---+co

for every z E C]J 1 it follows that for every t E IR there exists an n for which

v(an ) + nt is lninilllal.

Definition 2.1. The height of J(z) is clefined by

h(J, t) = _l1lin {v( (Lu) +nt}.
ü:S; U <<X>

Now let us give a geoluet.ric int.erpretation of height. For each n we draw the

graph r n which depicts v(an z") as a function of v(z). This graph is a straight line
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with slope n. Thell h(J, t) is the houndary of the intersection of all of the half­

planes lying under the lines r n . Then in nuy finite segnlent (7', s], 0 < r, S < +00,

there are only finitely ll1any r u which appeal' in h(J, t). Thus, h(J, t) is a polygonal

line. The point t at which h(J, t) has vertices are called the critical points of J(z).

A finite segnlent ('r, s] contains only a finitely lnany critical points. It is elear that

if t is a critical point, then v(an) + nt attains its nliniInum at least at two values

of n.

If v(z) = t is not a critical point, then J(z) i= 0 and IJ(z)1 = p-h(f,t). The

function J(z) has zeros when v(z) = ti, where t o > t 1 > ... is the sequence of

critical points; and the nUlnber of zeros (counting multiplicity) for which v(z) = ti

is equal to the diftel'ence 11;+1 - lli between the slope of h(J, t) at ti - 0 and its

slope at ti + O. It is easy t.o see that. TLj anel ni+l, respectively, are the smallest

and the largest values of n at which v(n) +Tl,t attains luinimuln.

Lem nla 2.2. Let f (z) be a 71071- C071S tant holol1~urphic function on Cp. Then we

have

h(f', t) - h(f, t) 2:: -t + 0(1),

where O( 1) is bou1lded when t -7 -00

Lenlma 2.3. For CL non~cunstant Iwlo7f/.or]Jhic jUllctioll J(z) in !Cp, h(f, t) --+

-00 as t -7 -00

Lemma 2.4. For holo7n07'phic fun cti01lS f (Z ) 1 9 (z) in Cp we have:

i) h(J + g, t) ~ ll1in{h(f, t), 11.(9, t)}.

ii) h(fg, t) = h(f, t) + h(y, t).

The proof of Lenuna.l;) 2.2- 2.4 follows inl111ediately froul Definition 2.1, and the

geometrie interpretation of height.
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Now let f be a p-adic hol()Il1orphic curve in the projective space PU(Cp ), i.e., a

holomorphic luap froll1 Cp to P"(C]/). "'-le ideutify f with its representation by a

collection of holo1110rphic fUllctions on Cp:

where the functions fi have no conunOll zeros.

Definition 2.5. The height of the holoillorphic curve / is clefined by:

11.(/, t) = l~lin h(fi, t).
I :;1:5n+1

We need the following Lenuna.

LeInma 2.6. Let (gi, ... ,g11+I) be lL 7'elwesentation 0f th e sarTL e p1'Ojective map as

(/1, ... ,/n+d, whe1'e gi a7'C ho[orTL01']Jhic f/J.Hctio71s. Then for t sufficiently s1nall

we haue

11.(/, t) 2: l~ÜU h(9i, t) + 0(1).
1:$I~n+l

Proof. By the hypothesis thel'e is a lueronlorphic function .-\( z) such that for every

i = 1, ... , n + 1 we have

9i(Z) = .-\(Z)ji(Z),

Since gi(Z) are hololuol'phic functions, aud /i(Z) have no cOlumon zeros, A is a

holomorphic function. Then by Lenulla 2.3 h(A, t) < 0 for t sufficiently small, or

A(Z) is constant. Lellunu 2.6 is pl'oved.

From Leil111la 2.6 we ca,n see that the height of a hololuorphic curve is wen

defined modulo a bOlulded value..
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§3. DEGENEIlACY OP HOLOMORPHIC CURVES

Let

~1. - Oj,1 O'j,n+1
1\ 1 - Z 1 •.• Zn+ 1 , 1 ::; j ~ s,

be distinct lllonoluials of degl'ee d with non-negative exponents. Let X be a

hypersulface of degree cl of IP'U(C]J) defined by

where Cj E C; are non-zero constant.s. Vt/e call ).; a ]Jertubation 0/ the Fermat

hy])ersur/ace 0/ degree d if s 2:: 11 +1 and

lvlj=zj, j=l, ... ,n+l.

We prove the following

Theorenl 3.1. Let X be a ]Jert'/l.uution 0/ the FermlLt hypers'Ur/ace 0/ degree d in

pn(Cp) and let f be u Iwl07lLo1"]1hic C'ILrVe in X. Assu7ne that

Then the irnage 0/ f lieB in (L ]J7,(J]Jer alycbraic s'/l.uset 0/ X.

If there is I, == 0, then f is clegenerate, and we can assurne that any fi ~ 0.

The proof uses SOlne LenUllUS.

Lemnla 3.2. Let f = (/1, ... , f1l+1) be a holO7fL011Jhic C'll.rve and let M be a mono-

mial as aboue. Then J01' euery k 2:: 0 we !Lave the Jollowing representation

(lvI 0 f)Ck)

1\10 f
Qk

= --:----;-
f k fk '

1 ... u+l

(i



where Q k is a holorn.ol]Jhic fu.7LctioH o.ud

11+1

h(Qk, t) ~ k L h(fi, t) - kt + 0(1).
j=l

Proof. We prove the Lell1111a by induction on k. The case k = 0 is triviaL Assurne

for k we have the representation as in the Leuuua. For simplicity we set

(1)

Then we have
u+l

h('P,t) = Lh(/i,t).
i=1

The induction hypothesis gives HS

Then we have
(Pd 0 f)(k+I) _ Qk+l

~1 0 f - tpk+l '

where

Q Q' (~l 0 I)' Q ,
I..+1 = tp. . k + tp. Qk· Al 0 f - k - k· Cf' •

(Al 0 f)'
Note that the fUl1ctions (Al 0 f) has only siulple poles at the zeros of 11l ... ,In+l'

(111 0 f)'
Therefore, the fUl1ction <po (Al 0 f) is holoulorphic. Hence, Qk+l is a holomorphic

function.

On the other hand, by Lenunas 2.3 anel 2.4,

h(Qk+l,t) 2:nlin{h(tp,t) + h(Q~,t),

h(tp, t) + h(QI." t) + h((M 0 I)', t) - h(M 0/, t),

v(k) + h(Qk l t) + h(<p', t)}
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Then by Lellulla 2.2 we obtain

(2)

h(Qk+l' t) 2=: luin{h(<p, t) + h(Qk, t) - t + 0(1), h(<p, t) + h(Qk, t) - t + 0(1),

v(k) + h(Qk, t) + h(<p, t) - t + 0(1)}

= lt(<p, t) + h(Qk, t) - t + 0(1)

The Lell1111a is p l'oved by (1), (2) an cl the inelHetion hypothesis .

Notiee that, the l'epl'esent.at.ion in Lenulla. 3.2 eloes not depenel on the degree d,

that is important in applicatiol1s.

Lemnla 3.3. Let ..X be a ]Jertubation 0/ tlLe Fermat hypers'Ur/ace 0/ degree d in

pn(Cp) and let f iB a holorno7']Jhic C1l,rve in X. AS~~'U7TLe that

(n + 1)(s - 1)(s - 2)
d ?:. -------­

2

1/ {Mj 0 f, j = 1, ... ,s - I} a7'e lineady iude]Jf~71dent, then f is a constant map.

Proof. For shnplieity we set.

9 j ( z) = Cj 1\1j 0 f (z )/ C!J 111~ 0 f, j = 1, ... , S - 1.

Then the 111eroll1orphic funct.ions {9I, ... ,9,~-1} satisfy the following relation:

91 +... +98-1 == -1.

We are going to show that {YI, . .. ,9,~-1} are linearly dependent. For this purpose

we apply the Wronskian techniques of Nevanlinna, Bloch, Cartan ([C],see also [L],

eh. VII).

Define the following logarit.lunic \Vronskian:
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1 1 1

We further define the logarithluic \Vronskians Li = L i(91, ... ,9.. -1):

1

o

o

1 1

I

9, -1

9,-1

and silnilarly for all i Ci = 1, ... 1 $ - 1). where the column {I, 0, ... ,O} is the i-th

colunln.

If {9I, ... ,98-1} are linearly independent, then the projective maps

(MI 0 /, ... ,lvf8 0 f) ancl L = (LI, L 2 , • .• ,L.. )

are equal (see [L]).

Now we can apply Lenulla 3.2 to the cletcnninauts. Typically, the first term in

the expansion of LI (g) can be wri t.t.en in the fonn

Ql Qs-2 R
'P 'P,'l-2 - <p(.'l-1)(s-2)/2·

.
The denonlinator ",(.'1-1)(.'1-2)/'2 is a COll11110n denominator of all the terms in

all the expansions of all the detenninants Li(9). Hence, we have an equality of

projective lllaps:



where, by Lenuua 3.2 1 the Rj are hololuorphic functions anel satisfy the following

conelition

,,-2

h(R j , t) = L h(Qk, t)
k:;;;l

s-2

~ (h(<p, t) - t) L k + 0(1)
k=l

_ (S-1)(8-2),( )_ (S-1)(8-2) 0(1)
- 2 /, '.P, t 2 t +

:::: (u + 1)(8 ; 1)(8 - 2) h(f, t) _ (5 - 1);5 - 2) t + 0(1)

Since MI 0 f, . .. ,IvIs 0 f have no COll1111on zeros, by Lemma 2.6 we have

m~n h(1\1j 0/, t) ~ lu~nh(Rj, t)
l~]~s )

:::: (u + 1)($ ; 1)($ - 2) h(f, t) _ (5 - 1);5 - 2) t + 0(1).

Because X is a pertubat.ion of t.be Fennat bypersurface of degl'ee cl we have

(3)

For othel' 111ononüals we have

h (1\1j 0 f, t) = L er j k 11(fk , t) ~ dh (f, t).
k:;;;Q

Thus we obtain

(4) dh(f, t) :::: (u + 1)($ ; 1)($ - 2) h(f, t) _ ($ - 1)i5 - 2) t + 0(1)
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When d = (n + 1)(8 - 1)(8 - 2)/2 we have a. contradiction as t -+ -00, and

(n + l)(s - 1)(8 - 2)
when d > the inequalit.y (4) gives HS

2

h(f, t) 2: -Nt + 0(1),

where N is a positive nlllllber, so by Leuuna 2.4, f is a constant map. The Lemma

is proved.

To c01l1plete the proof of Theorenl 3.1, it suffices to notice that, by Lemma 3.3

the image of f is contained in the proper algebraic subset of X defined by the

equation:

where not all (Lj are zeros. Theoreul 3.1. is pl'ovecl.

84. HYPERBOLIC SUR.FACES IN P3(Cp )

In this sectioll we apply Theorenl 3.1 to give explicit exaluples of p-adic sUlfaces

in jp3(l!:;J)' as weIl as ex::uuples of curves in 1P2(C]I) with hyperbolic c01l1plements.

Without loss of generality we lllay a"iSlllne that in the defining equation of X,

the first coefficients Ci = 1, i = I, ... 1 n. + 1.

T heorenl 4.1. Let X be a s7/.rjace in r 3 (Cp ) defined by the equation

(5)

4

where c =1= 0, L O'i = cl, and if the1'e is an eX]JOllent Cl:j = 0, the others must be at
i=l

least two. Then X is hYl'erbulic ij d 2:: 24,

Proof. First of aIl let U5 recall a result. froln [HM] (Theorenl 4.3).
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Lel1una 4.2. Let X be the Fe1'llW,t hYIJe1'su1ja ce vf degree d in IF n ( Cp ), and le t

I = (11, ... , lu+ 1) be a hoI01f~V71}hic curve in X. 1/ cl 2:: n2 - 1, then either I is a

constant curve, or there is a deco7npusition v/ the set 0/ indices {1, ... ,n+ 1} = Ule
sueh that evenJ Ie conta,ins at least two ele,TLents, aud if i, j EIe, li is equal to Ij

multiple a constant.

Now let X be a hypersurface satisfying the hypothesis of Theorem 4.1, and let

I = (/1, /2,/3, /4): ~J --7 .."K be Cl holo111orphic curve in X. We consider all

possible cases.

1) Suppose that for 80111e i, fi == 0, für exan1ple, 14 == O.

i) 0'4 > O. Then flJ+ I~J + I~l == 0, anel 1 is a constant n1ap by Lemma 4.2.

ii) 0'4 = O. "Ve have

From the proof of Theoren1 3.1 it follows that {fll
, t;, t;} lli'e lineraly dependent:

where not all Ci = O. Then eithel' f is a constant Inap. 01' we can assume, for

examples, that /1 = (L1/2 anel obtain:

( d + 1)fd + fd + cr 0'1 JO'I +0:1/°3 - 0(LI 2 3 LI 2 3 = .

By the hypothesis, 01 + ü2 #- 0, cl, nnd in any case we see that /2/13= const, so f

is a constant nUlp.

2) Hence, we can aSSUlue that any fi t=. o. Frolu the proof of Theorem 3.1 it

follows that {!;l, . .. ,j~l} are linearly depelldent. Suppose that

lZ



where not all (Li are zeros. Consider the following possible cases:

i) Gi =I=- 0, i = 1, ... ,4. By Lelluua. 4.2, f is a onstant map, 01' we cau assume

that II = cl/2, 13 = c2/4. Then we can substitute this relation to (5) and show

that f is a constant. lllap by t.he sallle arglunents as in 1-ii).

ii) Only one coefficient, say, (l4 = O. Then (/1, f2, 13) is a constant map by

Lemma 4.2, and it. is easy to show that f is constant.

Ei) Two coefficients, say, (LI = U2 = O. Then we huve /3 = C3!4. Substitute this

relation into (5) we obtain

(6) f d + fd + I:" (li + I:" l'n l f02/03+04 = 01 2 '-1 . :! '-2 1 2 3 -,

where e2 t= O. If Cl f=. 0, t.hen \ve return to the case 1-ii).

Now suppose that el = O. Then tl}e inHlge of the 111ap (/1, /2, /3) is contained

in the following curve in p2 (Cp ):

We are going to show that under the hypothesis of Theorelll 4.1, the genus of Y

is at least 1, then Theoren1 4.1 follows fron1 Berkovich's theorem ([Be]).

The genus of Y is equal to the nllluber of integer points in the triangle with the

vertices (d, 0), (0, d) and (0'1,0'2) (see, for exalllple, [Ho]). It is easy to see that

this tri angle contains at least aue integer point, unless the cases O'l + 0'2 = d 01'

0'1 + 0'2 = d - 1. These cases are excluded by the hypothesis of Theorem 4.1. The

proof is completed.

Remark 4.1. In [H11] by using the Inethocl oi' K. Masucla and J. Noguchi (MN]),

we give the following ex~ullples oi' hyperbolic hypersurfaces in P3(Cp):
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Here we have the eXaIllples with nrbitrary degree ~ 24 (not necessarily divided

by 4). Notice that all known explicit exarllples of hyperbolic hypersurfaces in the

complex case are of degree cl divided by SOlllC nUluber > 1 (2 in the case of Brody-

Green's exaluple, 3 in Naclel's eXaIuple, and 3,4 in Masuda-Noguchi's examples).

Indeed, in [MN] it is given an algorithnl t.o construct hypel'bolic hypersurfaces of

degree d > 54, here we have hyperholic hypersurfaces with d ~ 24.

Re1nark 4.2. 1) The following eXHluples show that if alllong the exponents O'i two

of them are (0, 1) or (0,0), then )( 11lay not be hyperbolic. The surface

contains the holol110rphic CUl've (-1 - Z'l5, 1, 1 + z25, z).

2) The sUl'face

contains the hololllorphic CUl've f = (z, z, 1, -1)

Now we use Theol'Crll 4.1 to give explicit exa1l1ples of curves in JF2(Cp) with

hyperbolic c0111plell1ents.

Theorenl 4.3. Let)C be (L c'/L'f've in P2(CIJ) defined by the Jollowing equation:

where d ~ 24, O'i ~ 2, L O'j = d. Then the c01n]Jle1nellt 0/ X is p.adic hyperbolic

Proof. Let f = (11, f'2, IJ): CII --+ jp2 be a holo111orphic curve with the image

containecl in the c0111plelllel1t of )(. Then the function

14



for z E Cp, and then is identical1y e(lua.l to a non-zero constant a. Hence, the

image of the folowing hololuorphic curve

is contained in the surface Y of jp3 definecl by t.he equation

By Theorenl 4.1) Y' is hyperbolic, and f is a constallt lnap. Theorenl 4.3 is proved.

Remark 4.9. In [MN) 1(. 11a....nHla. alld J. Noguchi give an algorithm to construct

curves of clegree d 2: 48 in jp2(C) with hyperbolic cOlllplelllents. Here we have

explicit exaluples of such curves in p2(rr;J) of degree cl ;::: 24.
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