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p~ADIC HYPERBOLIC SURFACES

HaA Huy IKHOAI

ABSTRACT. Let X be a hypersurface of degree d in the projective space P*{C,). We
prove that if X is a pertubation of the Fermat hypersurface, and if d is sufficiently
large with respect to n and to the number of non-zero monomials in the equation '
defining X, then every holomorphic map from &, into X has the image contained
in a proper algebraic subset of X. As a consequence, we give explicit examples of
p-adic hyperbolic surfaces of degree > 24 in P3(C,) and of curves of degree > 24
with hyperbolic complements in P?(Cp ), as well as examples of hyperbolic surfaces
of degree > 50 in P3(C,) with hyperbolic complements. For the proof, the main tool
is the height of p-adic holomorphic functions defined in author’s previous papers.

§1. INTRODUCTION

A holomorphic curve in a projective variety X is said to be degenerate if it is
contained in a proper algebraic subset of X. In 1979 ([GG]) M. Green and Ph.
Griffiths conjectured that every holomorphic curve in a complex projective variety
of general type is degener#te. Up to now this conjecture seems still far completly
proved, but some progress are made. M. Green (|G}) proved the degeneracy of
holomorphic curves in the Fermat variety of large degree. In [N] A. M. Nadel
gives a class of projective hypersurfaces for which the conjecture is valid. Using
the results on degeneracy of holomorphic curves Nadel constructed some explicit
examples of hyperbolic hypersurfaces in P®. To receive the mentioned results,

M. Green used the Nevanlinna theory for holomorphic curves, and A. Nadel’s
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techniques are based on Siu’s theory of meromorphic connections. We refer the
reader to the survey [Z2] for related topics.

For the p-adic case, the degeneracy of holomorphic curves in the Fermat variety
of large degree is established in [HM]. In this note we are going to show that if
X is a pertubation of the Fermat variety in P*(C,) of degree large enough with
respect to n and to the number of non-zero coefficients in the defining equation,
then every holomorphic curve in X is degenerate. The proof provides sufficiently
precise information of the position of the curve in X, that is useful in applications.
As a consequence, we give some explicit examples of p-adic hyperbolic surfaces in
P*(C,), and curves in P¥(C,) with hyperbolic complements. Recall that a variety
X is said to be p-adic hyperbolic if every holomorphic map from C, into X is
constant. The examples to be given here are different to ones in [HM], given
by using the p-adic Nevanlinna-Cartan theorem. While the degree of surfaces in
[HM], as well as in all known explicit examples of complex hyperbolic surfaces,
is divided by some integer > 1, for the examples in this note, the degree d is
arbitrary, required only > 24 for hyperbolic surfaces and cuves with hyperbolic
complements. As in [HM], the main tool of this note is the height function defined
in [H1}-[H3], [HM]. This function plays a role similar to one of the Nevanlinna
characteristic function in Green’s arguments. Moreover, the height of a p-adic
holomorphic function f(z) gives information on distribution of zeros of f, and
describes the growth of |f(z)|. Then, in many cases we can use the height in
the study of p-adic holomorphic functions as the degree in the study of complex
polynomials. The proof of Lemma 3.2 is such an example.

The paper is planed as follows. In §2 we recall some facts on heights of p-adic
holomorphic functions and of p-adic holomorphic curves. Section 3 is devoted

to the proof of degeneracy of holomorphic curves in pertubations of the Fermat



variety. These results are used in the last section to give explicit examples of p-adic
hyperbolic surfaces in P*(C,) , curves with hyperbolic complements in P?(C,).
Acknowledgement. The author would like to thank the Max-Planck-Institut

fur Mathematik Bonn for hospitality and financial support.

§2. HEIGHT OF p-ADIC HOLOMORPHIC FUNCTIONS

We recall some facts on heights of p-adic holomorphic functions for later use in
this note. More details can be found in [H1]-[H3}, [HM].

Let p be a prime number, @, the field of p-adic numbers, and C, the p-adic
completion of the algebraic closure of Q,. The absolute value in @, is normalized
so that |p| = p~'. We further use the notion v(z) for the additive valuation on C,
which extends ord,,.

Let f(z) be a p-adic holomorphic function on C, represented by a convergent

series

Since we have

lim {v(a,) + nv(2)} = oo

n—o0

for every z € C,, it follows that for every t € R there exists an n for which

v(an) 4+ nt is minimal.

Definition 2.1. The height of f(z) is defined by

h(f,t) = min {v(a,) + nt}.

0<n oo

Now let us give a geometric interpretation of height. For each n we draw the

graph I';, which depicts v(a,2") as a function of v(z). This graph is a straight line



with slope n. Then i(f,t) is the boundary of the intersection of all of the half-
planes lying under the lines I';,. Then in any finite segment {r, s],0 < r, s < 400,
there are only finitely many I',, which appear in h(f,t). Thus, h(f,t) is a polygonal
line. The point ¢ at which h(f,t) has vertices are called the critical points of f(z).
A finite segment [r, s] contains only a finitely many critical points. It is clear that
if t is a critical point, then v(«, ) + nt attains its minimum at least at two values
of n.

If v(z) = t is not a critical point, then f(z) # 0 and |f(2)| = p~* /Y. The
function f(z) has zeros when v(z) = t;, where t, > t; > ... is the sequence of
critical points; and the number of zeros (counting multiplicity) for which v(z) = ¢;
is equal to the difference n;y; — n; between the slope of h(f,t) at t; — 0 and its
slope at ¢; + 0. It is easy to see that n,; and n,4,, respectively, are the smallest

and the largest values of n at which v(n) 4+ nt attains minimum.

Lemma 2.2. Let f(z) be a non-constant holomorphic function on C,. Then we

have

h(fl'l t) - h’(fa t) z—t+ 0(1)1
where O(1) s bounded when t - —oo

Lemma 2.3. For a non-constant holomorphic function f(z) in C,, h(f,t) —

- ast = —co

Lemma 2.4. For holomorphic functions f(z), g(z) m C, we have:
t) h(f + g,t) 2 min{h(f,t), h(g,1)}.
i) h(fg,t) = h(f,t) + h(g,1).

The proof of Lemmas 2.2- 2.4 follows immediately from Definition 2.1, and the

geometric interpretation of height.



Now let f be a p-adic holomorphic curve in the projective space P*(C,), i.e., a
holomorphic map from C, to P*(C,). We identify f with its representation by a

collection of holomorphic functions on C,:

f= (fla.ﬁ/-r-"fn-l-l):

where the functions f; have no common zeros.

Definition 2.5. The height of the holomorphic curve f is defined by:

Al

Wft) = min h(fi,t).

We need the following Lemma.

Lemma 2.6. Let (¢1,...,9u+1) be ¢ representation of the same projective map as
(fi,-- 5 fut1), where g; are holomorphic functions. Then for t sufficiently small

we have

h(f,t) > min (g, t)+ 0(1).

1<i<n+1

Proof. By the hypothesis there is & meromorphic function A(z) such that for every
t=1,...,n+ 1 we have

gi(z) = A(2) fi(z).

Since gi(z) are holomorphic functions, and f;(z) have no common zeros, A is a
holomorphic function. Then by Lemma 2.3 h(A,t) < 0 for ¢ sufficiently small, or

A(z) is constant. Lemma 2.6 is proved.

From Lemma 2.6 we can see that the height of a holomorphic curve is well

defined modulo a bounded value. -



§3. DEGENERACY OF HOLOMORPHIC CURVES

Let

M; =zt ittt 1< 5 <s,

be distinct monomials of degree d with non-negative exponents. Let X be a

hypersurface of degree d of P*(C, ) defined by
X: aM+...c,M;=0

where ¢; € C} are non-zero constants. We call X' a pertubation of the Fermat

hypersurface of degree dif s > n+ 1 and

M'j=z'! j=1,...,n+1.

2 ?
We prove the following

Theorem 3.1. Let X be a pertubation of the Fermat hypersurface of degree d in

P*(C,) and let f be a holomorphic curve in X. Assume that

q> (n+ s =1)(s — 2).
- 2

4

Then the image of f lLies in a proper algebraic subset of X

If there is f; = 0, then f is degenerate, and we can assume that any f; # 0.

The proof uses some Lemmas.

Lemma 3.2. Let f = (fy,..., fat1) be a holomorphic curve and let M be a mono-

mial as above. Then for every k > 0 we have the following representation

(Mo /)XY Qk
Mof f{L vlf-i-l,

G



where Qr 13 a holomorphic function and
n+1

MQrt) = k> h(fi,t) — kt+0(1).

i=1

Proof. We prove the Lemma by induction on k. The case k = 0 is trivial. Assume

for k we have the representation as in the Lemma. For simplicity we set

(1) ©=f1... fus1-

Then we have
41

h(p,t) =D h(fit).
=1
The induction hypothesis gives us

Qk.Mof.

(M'of)(k) = o

Then we have

(Mo fY**D Qpn

Mof T kD
where
Mo fY ,

Qi1 = ¢.Q) + @-Qk-(—ﬁ —kQr.¢'.

. (Mof) ,
Note that the functions m has only simple poles at the zeros of f1,..., fat1-

. (Mo f) . . . .
Therefore, the function t,o.-(—m is holomorphic. Hence, Qr+1 is a holomorphic

function.

On the other hand, by Lemimas 2.3 and 2.4,
W(Qrs1,t) Z min{h(p, ) + 1(Q4, 1),
h(@,t) + h(Qu,t) + R((M o £, 8) = h(M o £,1),
v(k) + 1(Qr, t) + h(¢' 1)}

7



Then by Lemma 2.2 we obtain

hMQr+1,t) > min{h(e,t) + h{(Qu,t) —t + 0(1), h(e,t) + n(Qx,t) —t +0(1),
(2) v(k) + h(Qk,t) + h(p,t) —t + 0(1)}
= hip,t) + h{(Qk,t) —t +0(1)

The Lemma is proved by (1), (2) and the induction hypothesis.

Notice that, the representation in Lemma 3.2 does not depend on the degree d,

that is important in applications.

Lemma 3.3. Let X be a pertubation of the Fermat hypersurface of degree d in

P*(Cp) and let f is a holomorphic curve in X. Assume that

(n+1)(s —1)(s —2)
5 :

-

d>

If{Mjo f, j=1,...,5 =1} are hincarly independent, then f is a constant map.

Proof. For simplicity we set

9i(z) =cjMjo f(z)/csMyo f, 3=1,...,8—1.

Then the meromorphic functions {g¢y,..., .1} satisfy the following relation:

g1+t gs—1 =~1L

We are going to show that {¢1,...,¢s—1} are linearly dependent. For this purpose
we apply the Wronskian techuiques of Nevanlinna, Bloch, Cartan ([C],see also L],

Ch. VII).

Define the following logarithmic Wronskian:

8



1 1 1

’ ' ’

9 92 9=t

' 92 Ja—1

Ly(g) =

’»— »— -2
A S g3

9 92 Go=1

We further define the logarithmic Wronskians L; = Li(g1,...,9s—1):

1 1 1
0 2'2 .‘l:-l
g2 Ga—1
Ll(g) = Ll(gl)' .. 1!]8-'1) -
o= g
42 e Ja-1

and similarly for all7 (i =1,...,s—1). where the column {1,0,...,0} is the i-th
column.

If {¢r,...,9s—1} are linearly independent, then the projective maps

(Miof,...,Myof) and L= (Ly,L,,...,L,)

are equal (see [L]).
Now we can apply Lemuna 3.2 to the determinants. Typically, the first term in

the expansion of L;(g) can be written in the form

Ql v Qs—‘l _ R
W... (P:d—Z - S9(.-1—1)(.9—2)/2 :

The denominator V=22 is 4 common denominator of all the terms in
all the expansions of all the determinants L;(g). Hence, we have an equality of

projective maps:



(Myof,...,Myof)y=(Ly...,Ls)=(R,...,Rs),

where, by Lemma 3.2, the R; are holomorphic functions and satisfy the following

condition

h(R;,t) = Zh Q1)

=2

> (h(p, ) =) Y k+0(1)
k=1
(s —1)(s —2)

= T T t) - S+ 0(1)
S VTGl LT O R G PRPOY

Since My o f,..., M, o f have no common zeros, by Lemma 2.6 we have

min h(Mjo f,t) > nnnh(RJ,t)

1<ji<s
2 (l?, + 1)(; ; 1)(5 -

g)h(f,t)— Q:M

t+0(1).

o~

Because X is a pertubation of the Fermat hypersurface of degree d we have

(3) min h(Mjo fit)=d min h(f;,t) =dh(f,1).

1<5<n+1 1<5<n+1

For other monomials we have

h(Mjo f,t) =Y ajkh(fi,t) > dh(f,1).

k=0

Thus we obtain

(4)  an(fyz DS DER, 0y 2R, Lo



When d = (n + 1)(s — 1)(s — 2)/2 we have a contradiction as t & —oo, and
(n+1)(s = 1)(s—2)

when d > 5

the inequality (4) gives us

h’(fat) 2 =Nt+ 0(1)3

where N is a positive number, so by Lemma 2.4, f is a constant map. The Lemma

is proved.

To complete the proof of Theorem 3.1, it suffices to notice that, by Lemma 3.3
the image of f is contained in the proper algebraic subset of X defined by the

equation:
d d !
a) zy + a2z, +--+ (l-;1+lz:1+1 + “u—f-lndn-i-‘l + ot a My = 0)
where not all a; are zeros. Theorem 3.1. is proved.

§4. HYPERBOLIC SURFACES IN P*(C,)

In this section we apply Theorem 3.1 to give explicit examples of p-adic surfaces
in P}(C, ), as well as examples of curves in P?(C,) with hyperbolic complements.
Without loss of generality we may assume that in the defining equation of X,

the first coefficients ¢; =1, 1 =1,...,n+ 1.
Theorem 4.1. Let X be a surface in P*(C,) defined by the equation

r i { { ! ) _Cp Oy «
(5) X:oo2{+ 2y +2y + 24 + ez 23725025 =0,

4
where ¢ # 0, Z a; = d, and if there 1s an ecponent a; = 0, the others must be at

i=1
least two. Then X 1s hyperbolic if d > 24.

Proof. First of all let us recall a result from [HM] (Theorem 4.3).

11



Lemma 4.2. Let X be the Fermat hypersurface of degree d in P™(C,), and let
f=(f1,---, fut1) be a holomorphic curve in X, If d > n* — 1, then either f is a
constant curve, or there is a decomposition of the set of indices {1,...,n+1} = Ul
such that every I contains at least two elements, and if 1,7 € I¢, fi 15 equal to f;

multiple a constant.

Now let X be a hypersurface satisfying the hypothesis of Theorem 4.1, and let
f=1(h,f2,f3,fa) : €, — X be a holomorphic curve in X. We consider all
possible cases.

1) Suppose that for some ¢, f; = 0, for example, f; = 0.

i) a4 > 0. Then f! 4+ f¥ 4+ f¢ =0, and f is a constant map by Lemma 4.2.

ii) aq4 = 0. We have
Eq fh g g efmpea e = 0,
From the proof of Theorem 3.1 it follows that { fl", fg , fad} are lineraly dependent:
le{[ + C-;fgd +efl=0,

where not all ¢; = 0. Then either f is a constant map. or we can assume, for

examples, that f; = a) f; and obtain:
(af + )3+ fi 4 ca fr¥enfee = 0.

By the hypothesis, oy + a3 # 0,d, and in any case we see that f,/f3= const, so f
1s a constant map.
2) Hence, we can assume that any f; # 0. From the proof of Theorem 3.1 it

follows that {f¢,..., f¢} are linearly dependent. Suppose that

(Llf]'i+---+a4ff50,

12



where not all a; are zeros. Consider the following possible cases:

i)a; #0, 1 =1,...,4. By Lemma 4.2, f is a onstant map, or we can assume
that fi = ¢;f2, f3 = cofs. Then we can substitute this relation to (5) and show
that f is a constant map by the sane arguments as in 1-ii).

ii} Only one coefficient, say, @y = 0. Then (fi, f2, fa) is a constant map by
Lemma 4.2, and it is easy to show that f is constant.

il1) Two coefficients, say, ¢y = a; = 0. Then we have f3 = c3 fs. Substitute this

relation into (§) we obtain
(6) VA e B e AT =0,

where ¢, # 0. If €; # 0, then we return to the case 1-i1).
Now suppose that €y = 0. Then the image of the map {f1, f2, f3) is contained

in the following curve in P%(C,):
Yo oz{ 428 Fegzfefzefetas = 0.

We are going to show that under the hypothesis of Theorem 4.1, the genus of ¥V
is at least 1, then Theorem 4.1 follows from Berkovich’s theorem ({Be]).

The genus of ¥ is equal to the number of mteger points in the triangle with the
vertices (d,0),(0,d) and (o, az) (see, for example, {Ho|). It is easy to see that
this triangle contains at least one integer point, unless the cases ay + ag = d or
ay + az = d — 1. These cases are excluded by the hypothesis of Theorem 4.1. The

proof is completed.
Remark 4.1. In [HM] by using the method of K. Masuda and J. Noguchi (MN]),
we give the following examples of hyperbolic hypersurfaces in P*(C, ):

M (21 202324) =0, d > 6(deg X =4d > 24),t € C

13



;

Here we have the examples with arbitrary degree > 24 (not necessarily divided
by 4). Notice that all known explicit examples of hyperbolic hypersurfaces in the
complex case are of degree d divided by some number > 1 (2 in the case of Brody-
Green's example, 3 in Nadel’s example, and 3,4 in Masuda-Noguchi’s examples).
Indeed, in [MN] it is given an algorithm to construct hyperbolic hypersurfaces of

degree d > 54, here we have hyperbolic hypersurfaces with d > 24.

Remark 4.2. 1} The following exanples show that if among the exponents a; two

of them are (0, 1) or (0,0), then X may not be hyperbolic. The surface
X zf5 + 28 42 422 4 222 =0

contains the holomorphic curve (=1 — z#5,1,1 + 225 2).

2) The surface
-, 25 25 26 5 10_15 _
X2 4+2" 425"+ 20 —2202,° =0

contains the holomorphic curve f = (z,2,1,-1)
Now we use Theorem 4.1 to give explicit examples of curves in P*(C,) with

hyperbolic complements.

Theorem 4.3. Let X be a curve in P*(C,) defined by the following equation:
Xzl b2 28 ez 202288 = 0,

where d > 24, a; > 2, za; = d. Then the complement of X 1s p-adic hyperbolic
in P(C,)
Proof. Let f = (f1,fs,f3) : C, — P? be a holomorphic curve with the image

contained in the complement of X. Then the function

S f b fE e 40

14



for z € and then is identically equal to a non-zero constant a. Hence, the
3 y 1 b

image of the folowing holomorphic curve
(fi, f2, f3,1): C — PP
is contained in the surface Y of P* defined by the equation
Yool gz s —azd ez edrede = 0.

By Theorem 4.1, Y is hyperbolic, and f is a constant map. Theorem 4.3 is proved.

Remark 4.8, In [MN] K. Masuda and J. Noguchi give an algorithm to construct
curves of degree d > 48 in P*(C) with hyperbolic complements. Here we have

explicit examples of such curves in P¥(C,) of degree d > 24.
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