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by ,

Ulrich Hirsch

It is well-known that every compact 3-rnanifold, M , (under

certain conditions on aM) adrnits a foliation of codirnension

one. The proof of this result (in the closed orientable case)

relies heavi}y on the fact that every such rnanifold can be

obtained by Dehn surgery on a braid in the 3-sphere. This in

turn implies that all foliations constructed in this way

necessarily do admit a Reeb cornponent. Indeed, by the work of

S.P.Novikov, Reeb cornponents cannot be avoided in any foliation

on M when the fundamental group of M is finite.

Consequently, it is an interesting problem to characterize

in sorne way all those compact 3-manifolds which admit a foliation

'of codirnension one without Reeb cornponents. In its generality

this problem is still unsolved although meanwhile there are

rnany contributions to it, mainly in the direction to generalize

the condition on the fundamental group of M for the necessary

existence of a Reeb componenti see for instance .....

D.Gabai's work, however, roust be considered as a very

important step towards a complete solution of the above stated
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problem. In [GaI] he proves the following theorem:

Let M be a compact irreducible oriented 3-manifold

whose boundary is a (possibly empty) union of tori. Let 8 be

any norm minimizing surface in (M,8M) such that [8] E H2 (M,8M)

is non-trivial. Then there exists a codimension-one foliation,

F , on M without Reeb coroponents and such that F is trans

verse to 8M and contains 8 as a leaf. Moreover, if 8 is

not a torus then F is smooth.

A more detailed version of this theorem, again~:due to Gabai,

and some of the most striking consequences following from it

will be given in chapter 111.

Note that, by work of Thurston, any compact leaf in a

foliation without Reeb components is norm minimizing, and, by

results of Alexander and Rosenberg, the underlying manifold roust

be irreducible; [Al], [Ro]. Also a standard argument using the

Euler characteristic shows that the condition on the non-triviality

of [8] cannot be dropped.

These notes refer mainly to the paper [GaI]. They are based

on lectures I gave at the University of Bielefeld in 1985 and

are or~anized as foliows:

In chapter I we study the basic theory of coloured 3-mani

folds. (Gabai calls them II sutured ll 3-manifolds, but the sutures

do not play any role in our context.) The central result here

will be the proof of the existence of a suitable splitting

surface in any taut coloured 3-manifold such that the decomposed

manifold is again taut. (For unexplained definitions see chp.I,

§ 4 and 5.)
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In ehapter 11 we adapt the classical coneept of Haken

hierarchies to coloured manifolds and show the existence of

coloured manifold hierarchies. This will be done in an inductive

way of proof using the notion of complexity for taut eoloured

manifolds.

Coloured manifold hierarchies are used in chapter 111 to

construct the desired foliations. After having performed these

constructions we shall diseuss some corollaries following from the

existence of such foliations.





CHAPTER I

Coloured 3-manifolds-basic theory and decomposition theorem

1. Preliminaries

2. Incompressibility

3. The Thurston norm

4. Coloured 3-manifolds

5. Coloured rnanifold decompositions

6. The coloured manifold d~composition theorem
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1. Preliminaries

The goal of this first chapter is the~proof of the decom

position theorem for taut coloured 3-manifolds (see 6.1). This

provides the first of three~main steps by which the principal

result of these notes is cornposed.

Although most often the 3-manifold M under conside

ration will be connected we also have to deal with non

connected compact 3-manifolds. Whenever this occurs and it

is essential for the argument that M is not necessarily

connected we will point out this fact by speaking of a

3-manifold system.

A surface is always connected. If we have to do with

a not necessarily connected compact 2-manifold then we refer

to it as a surface system. *

1.1. - Orientations. In what follows all 3-manifolds M and

surfaces are smooth and oriented. Then aM supports an induced

orientation which is determined by the requirement that the

normal to aM be pointing outwards of M.

Also when S is a properly embedded orientable surface

in M then fixing an orientation of S amounts to choosing

anormal direction to S . We then can speak of the right

* Für definitions concerning 3-manifolds and surfaces related

to thern we refer the reader to the books [He], [Ja] and [JS]

of Hernpel, Jaco and Shalen.
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(resp. 1eft) hand side of S.

Note that 3S, if non-empty, also carries an orientation

which is determined by that of 5 in just the same way as

that of 3M above.

1.2. - Gluing. Suppose we are given 3-manifolds MO

and M
1

and a diffeomorphism

where R.
1

is a system of compact surfaces in 3M., i == 0, 1 ,
1

possib1y with non-empty boundary. Then

denotes the manifold obtained by gluing together Mo and M
1

by means of 4).

If MO and M
1

are oriented and 4) is orientation

preserving then we obtain an orientation of N by changing

the orientation of M
1

but not that of 3M
1

•

5imilarly, when 5. denotes a properly embedded surface
1

system in M. meeting
1

R.
1

transversely and such that

maps 50 n R
O

diffeomorphically onto 8 1
h R1 then

5 == 50 U 51 is a properly embedded surface system in M .
lP

Moreover, smoothing the corners possibly arising in this

process all of N, R == Ra == R
1

and S become smooth.

The case most interesting for us is when MO == M1
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and ~ = id . The resulting manifold is then referred to as

the double of M along R(= Ra = R1 ) .

1.3. - Transversality. In what follows we always

require that surfaces in M oeeuring in the argument inter

seet one another transversely. In partieular, any proper

surfaee 5 meets the boundary of M transversely. More

over, if R is a eompact subsurface of aM arising from

eontext then S is required to be transverse to Rand to

aR •

Note that transversality can always be established by

an arbitrarily small isotopy of one of the involved surfaees.

Actually, all we do in the sequel is independent of such

small isotopies.

1.4. - Modifying transverse surfaees. Let M be a

compact oriented 3-manifold, possibly-with aM * ~ and let

K be a surface system in aM, possibly with aK * ~ .
Suppose that Sand T are properly embedded oriented

surfaee systems such that as u aT eint K • We rnodify S

and T in a neighbourhood of S n T so as to obtain a new

oriented surfaee system, denoted S::::x= T I with the following

properties:

(1) [5 ::::x=T] = [8] + [T] E H2 (M,K)

(2) X(S::::>CT) = X(S) + X(T)
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By transversality, S n T consists of finitely rnany ares

and circles. Let c be any such cornponent. Then in a neigh-

bourhood of c , S U T looks like X xc, where

X = {(x,y) E JR2 I -1 ;;a x,y ;;i 1 , x = 0 or y = O} •

We now rnodify Sand T by replacing X x c by X' xc,

where

x' ={ (x,y) E JR2 1O~xy~1, (x-1) 2+ (y-1) 2=1 or 2 2
(x+1) +(y+1) =1}

or by Xll xc, where

XII {(x,y) EJR2 1-1:;;xy;;aO,(x+1)2+(y-1)2=1 or (x-1)2+(y+1)2=1},

according as Sand T are (transversely) oriented as

indicated in fig.1 a) or b). /-,.

Figure 1
b)

." c-)S

T

X

a)

,
-'7 -

"

L
.J."
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It is clear from this construction that conditions (1)

and (2) hold.

1.5. - The Pontryagin construction for proper surfaces

By our discussion above, an orientation of a surface

system 5 in an oriented 3-manifold is the same as choosing

anormal field or, what is the same, a framing of 5 . If 5

is proper and a5 * ß then, by our transversality convention,

a framing may be always found so that its restrietion on a5

is a framing of a5 c aM .

Pontryagin gave a construction which he used to prove the

following result. You can find this construction and a proof

of the theorem in Milnor's book [Mi]. There you also find the

corresponding definitions. Although Milnor considers only the

case that Sand Mare closed the theorem holds for arbi-

trary surface systems which are transverse to the boundary

of M. Indeed, this generalization is routine work.

Theorem (Pontryagin [po1], [po2]) Let M be an orientable

compact 3-manifold. Then there exists a one to one corres

pondence between hornotopy classes of srnooth rnaps of M to 51

and framed cobordism classes of framed surface systems in M.

Furthermore, every properly embedded orientable surface

system 5 in M is of the form 5 = f- 1 (t) for sorne smooth

map f : M --> 51 and regular value t E 8 1 .
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1.6. - Simple curves on surfaces. Later we shall

frequently use the following result on the homology of curves

in surfaces.

Proposition. Let V be a compact oriented surface ,

possibly with av * 0 I and let C be a system of pairwise

disjoint proper curves in V such that one of the following

two conditions holds:

(1) 0 * [Cl E H1 (v/av) and <eie> = 0 for every

eomponent c of av.

(2) V is planar and <C/e> * 0 for at most two

eomponents c of av.

Then there exists a seguence of systems of pairwise

disjoint proper eurves cO, ..... /c p such that

for same compact sub-surface W. of V (with orientation in
J.

herited from V) I and for some k E Z we have according as

( 1) or (2) holds:

(1') Cp is a system of k parallel oriented simple closed

eurves.

(2 I ) C is a system of k parallel oriented proper ares.p
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Proof. We first consider the case that (1) holds. Then

C1 is obtained from c = Co by reducing the number of points

in C n av two by two as indicated in figure 2. If necessary

we iterate this process until we have a system of curves, C. ,
J

o

consisting entirely of circles in V.

-~------

c,

= c.
]

Figure 2

Now let W denote the closure of some component of

V-Co . If more than two components of aw come from different
J

components of C.
J

then two of these are cobordant in W to

a simple closed curvei see figure 3.
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w

Figure 3

This shows that by aseries of reductions of the number of

components of C. we obtain a system Ck such that the
J

boundary of every component of V-C has exactly two curvesk

belonging to Ck . This shows that ( 1 I ) holds.

Für the prüof of (2 I ) we can assume (possibly after a

series of reductions as above) that C is a system of proper

arcs such that

I< e,c >I = # (c n c)

for every boundary curve c of V. Then, since V is planar,

any two ares belonging to C are hornologous mod av . We

conclude as in the proof of (1') to see that (2') holds.

o



- 9 -

1.7. - Existence of suitable homology classes.

In the decomposition theorem (6.1) we have to find a

splitting surface S in M whose intersection with aM is

non-trivial in homology. The existence of such a surface is

based on 3.2, iii) together with the following general fact on

the homology of the pair (M,aM)

Proposition. Let M * D
3

be a c~mpact oriented irreducible

3~manifold with aM * ~ and let f R be a compact sub-manifold of
o

aM such that L = aM-R consists of annuli and tori or is empty.

Then there exists a E H2 (M,aM) such that

( 1 ) 0 * aal: H 1 ( aM)

(2) for each non-planar component, V , of R and each component,

c , of av we have <a,[c]> = 0 ,

(3) for each planar component V of R there exist at most two

·components, c 1 and c 2 ' of av such that

<a,[c.]> * 0 , i = 1,2 .
J.

Proof.

and let

Let be the number of handles of aM

a H
2

(M, aM) -> H
1

(13M)

be the boundary homomorphism. From the exact homology sequence

of (M,aM) we deduce
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and thus (as bO(M,aM)=O and b 2 (M) = b 1 (M,aM»

rank (ima) = X (M, aM) + b
2

(aM)

b
2

( aM) 1
= - 2 x ( aM)

1
b 1 ( aM)= 2

= k

Now we choose generators a
1

, ... ,uk , a k +
1

, ... for H2 (M,aM)

in such a way that aa 1 , ... ,auk are linearly independent in

H1 (aM) ~m . We also select a maximal family of annuli A
1

, ... ,A
j

o

in L such that no eomponent of aM - U A. is planar. Clearly,
1

o ~ j ~ k - 1 , and j = 0 only if L = ~ or all annulus eom-

ponents of E lie on tori. In these cases conditions (2) and (3)

are, however, trivially fülfilled.

It follows that there exists an integer linear cornbination

a of the a. such that
1

<aa,e.> = 0 for i = 1, ... ,j ,
1

where c.
1

is any boundary curve of A.
1

Let S be a proper surface system in M representing a .

We may assume that

s n UA. = 4J •
1
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When S n A. eontains eireles or proper ares eaeh of whieh
1

separates A. , this ean be aehieved simply by pushing
1.

s off

A.. If S n A. eonsists of pairs of oppositely oriented
1. 1.

parallel ares none of whieh is separating then we remave two

innermost of these ares by attaehing a square Q in A.
1.

to S

and then pushing the surface so obtained along Q slightly into
o
M ; see figure 4. This proeess can be repeated.

o
Figure 4: Pushing the square Q into M .

Let V be a' component of Rand let W be the component

of aM - UAi which contains V.

If V is non-planar then, by the maxirnality of U A. , V
J.

and W have the same genus. It follows that every boundary circle

of V is homologous in W to a union of boundary circles of W;

see fig.5. Since aw n s = 4> this implies (2).
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(- -1
'------

v c W

Figure 5

Tf V is planar then let c 1
be a boundary circle of V

such that <S , c
1

> * 0 . Then , since S n aw ::::; c1J , c
1

is contained
0

in W and is not homologous in W to a set of boundary curves of

W . We conclude that W-c
1

i5 connected and, a second time by the
o

maximality of U Ai ' the component of W-V cantaining c 1 in

its boundary roust be planar, with exactly one further boundary

circle, c 2 I belanging to V (see fig.6). It follows that

<S,c 2> * 0 .

Again by the maximality of U A. , all other boundary curves
1

of V are null-homologou5 mod aw and thus have trivial algebraic

intersection with S . This proves (3).

o

Figure 6
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2. Incompressibility

According to Jaco [Ja] we use the following definition

of incompressibility.

2.1. - Definition. Let 5 be a surface system in M

whose components are either sub-surfaces of boundary cornponents

or properly ernbedded. We say that S is cornpressible in M if

either S contains a 2-sphere bounding a ball or there exists

a disk D in M such that D n 5 = 3D and

o * [aD] E TI 1 (SO) , where 50 c 5 is the component

containing 3D.

Otherwise the system 5 is referred to as being

incornpressible in M.

Note that, by this definition, any system of properly ,
~

ernbedded disks is incompressible in M.

2.2. - Remarks. i) If every cornponent of ,a surface

system 5 is incompressible then clearly so i5 5. It is

not hard to see that the converse of thi5 statement i5 also

true. We leave this as an exercise to the reader.

ii) (Cf. [He; 6.1 and 6.2]) 5uppose as always that M

and 5 are orientable. Then 5 incompressible irnplies that

for each component 50 of 5 the inclusion of 50 in M

induces an injection TI
1

S0 ---> TI1~ of .fundamental groups.

Conversely, if ker(TI 15 0 ---> TI 1M) = 1 for some

non-spherical component 50 of 5 then 50 is incompressible.
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iii) 5uppose that the 3-manifold N is obtained by

gluing together (M,K) and (MI,K 1
) by means of a homeo-

morphism between K and K' , where K (and similarly K'

is a surfaee system in aM, possibly with aK * $ . Then

K = KI is ineompressible in N if and only if K and KI

are incompressible in M resp. MI

iv) Moreover, if K is incompressible in N then N

is irreducible if and only if both M and MI are irreducible.

5tatements i), iii) and iv) are proved by standard argu-

ments and are left as exercises to the reader. A proof of ii)

involves the Loop theorem. Note also that N need not be

irreducible when K or K' is compressible in M resp. MI .

2.3. - Boundary incompressibility. Let K c aM be as

above and let 5 be a properly embedded surfaee system in

M with 5 n K = a5

We say that 5 is K-cornpressible if either there exists

a disk component of 5

there exist a component

such that

which is parallel to a disk in

2
50 * 0 of 5 and a disk D

K

in

or

M

D n 5 = D n 5 = co

is an are in aD and

ao = c U d, c n.q = ac = ad ,
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where d is an are in K and either So is separated

by c , in which case none of the resulting surfaces is a

disk, or c does not separate So i see fig. 7.

Otherwise we call S K-incornpressible.

When K ~ aM , we simply write a-cornpressible resp.

a-incompressible and say that S i8 boundary cornpressible

resp. boundary incornpressible.

....

K c
/CA

Figure 7

d

··~--D

Again it is not hard to see that in case S is in

compressible the K-incornpressibility of S is equivalent

to the K-incompressibility of each of its cornponents.

2.4. - Compressions. i) Let (M,K) be as above and

suppose we are given a surface system S with S n K ~ as
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and such that every component of S is either contained

in aM or is properly ernbedded.

If So *
s2 is a compressible component of S then we

can "compressll So by means of a spanning disk in the usual

way so as to obtain from So a new surface system S'o
(consisting of one pr two cornponents) and leaving S'- So

unchanged. This process is described in detail for instance

in [

The system Sio

]; compare also 2.2, i).

and similarly the system

enjoys the following properties:

( 1 ) S'o is hornologous to So rel K.

(2) x(SÜ) == x(SO) + 2.

( 3 )

(4 )

(5 )

If So is a torus then S' is a sphere. Thus
0

[SO] 0 E H
2

(M,K) when M is irreducible.

If So is an annulus then S' consists of two disks.
0

Therefore if K is incornpressible and M is irreducible

then again [SO] = 0 .

If So is a punctured torus then S' is a single disk0

or consists of a disk and a torus. If K is incompressible

and M is irreducible then it follows that [SO] == 0

or [SO] * 0 and is represented by a torus in M.

ii) In a siffiilar way we proceed when is

K-cornpressible. We have that

( 1 ) S'o is hornologous to So rel K,
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(3 ) if So is an annulus then So is a disk. So if

1s irreducible and K is incompressible then

M

3. The Thurston norm

3.1. - Definitions and remark. i) Let S be a properly

embedded surface in M. We define the Thurston serninorm of

S (ar the norm of S for short) by

Ix(S) 1 atherwise.

orifo

11 S 11

When S ~ U S. , where the S. are connected, we define
1 1

11 S 11 :: I 11 sill
i

ii) Now let (as always in these notes) K be a
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2-dimensional submanifold of aM, possibly with aK * ~ .
For n E H2{M,KiZ) we define

I1 n 11 = min {li s'll; (S,aS) properly embedded in (M,I(), [S]=a,} •

Note that a system. S with [8] = a always exists.

iii) The surface system 8 is called norm rninimizing

if the following conditions are satisfied:

(1) 8 is incompressible,

(2) no proper sub-system of 8 is null-homologous rel K ,

(3) 11811 = 11 [8]11·

When 8 is a surface system satisfying condition (3)

then a sub-system of 8 which is null-homologous consists

only of components with non-negative Euler characteristic.

In general, (1) is not a consequence of (2) and (3).

However, when M is irreducible, K is incompressible and

S is not a null-homologous torus, annulus or sphere then (1)

can be deduced from (2) and (3); cf. 2.4.

3.2. - Examples and observations. i) Let M = TX[-1,1]

where 'lT is a compact (oriented). surface with aT * ~ and

X(T) < 0 . Then 8 = T x {O} is incompressible. If K = aM
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or K = T x {-1,1} then 5 is not norm minimizing ..However,

if K = aT x [-1,1] then 5 is norm minimizing in (M,K)

-ii) If S is norm minimizing then obviously so is

any sub-system of 5 • On the other hand, if Sand T are

(disjoint and) norm minimizing then evidently T U S need

not be norm minimizing.

iii) Let a E H2 (M,K;Z) . If K = ~ suppose that

a * 0 • Then a is representable by a norm minimizing

surface system.

Indeed, when a = 0 any properly embedded K-compressible

disk is a norm minimizing representative of a . Otherwise,

among all possible surface systems T with [T] = a * 0

choose one satisfying conditions (2) and (3) of 3.1, iii).

Then either this T is automatically incompressible or we

can perform on T the necessary compressions in order to

make it incompressible, without changing the norm of T.

Thus in both cases we obtain a norm minimizing representative

of a •

iv) If S is norm minimizing and [5] * 0 then every

component 50 of 5 with x(5 0 ) * 0 is K-incompressible.

Indeed, when So is a disk this follows from 3.1, iii),

condition (2), and when X(SO) < 0 it follows from 2.4, ii),

(3). Recall also 2.4, ii), (3).

v) It should be clear that the Thurston norm is not a

genuine norm on H 2 (M,K) . Indeed, every incompressible torus

or annulus gives rise to an element a E H2 (M,K) with

1I a 11 = 0 , but in general a * 0 .
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On the other hand, when M is irreducible, closed and

atoroidal (i.e. does not contain any incompressible torus)

then I1 0; 1'1 = 0 implies 0; = 0 .

3.3. - Disks and spheres in modified norm minimizing

systems

When (S,aS) and (T,aT) are (properlyembedded,

oriented, transversely intersecting) surface systems in (M,K)

we denote by Is n Tl' the number of components of S n T

(recall 1.3). By S(T etc.) we denote that part of S con

sisting only of those components which are neither disks nor

spheres.

We are interested in the behaviour of disks and spheres

of Sand Tunder modification.

Lemma. - Let Sand T be norm minimizing such that

Is n Tl is minimal under homology rel K. Then the disk

(sphere) cornponents of S =c T were already disk

(regp. sphere) cornponents of S U T . In particular, we have

that

x(S ::cT) '= X(S) + X(T)

Proof. To begin with, we show that in S ~ T no new

disks are created. For that let us assurne to the contrary

that D is a disk component of S =c T but not of S or

T . Then D sterns from a disk D' that is embedded in
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S U T ; the situation is schematized in fig. 8. In 0' we

have proper ares and eireles

s

T

Figure 8

whieh are eomponents of S n T . We distinguish between twa

eases.

First assurne that 0' eontains na eireles of S n T

in its interior. Then let deS n T be an outermost are

in 0 1
• Then d dissects 0' into two disks one of whieh,

0 0 ' does" not eontain any further are eompanent of 8 n T .

Let us say without lass of generality that 0 0 eS.

Clearly, d belongs also to a eomponent, TO ,of T.

We ean therefore eompress Ta along D and thus obtain a

system T' such that

[T'] = [T] E: H
2

(M,K;Z) and !S n T' 1<18 n TI

But, by 3.2, iv), TO is either an annulus ar x(TO) * 0

and TO is K-ineompressible.
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In the first case, T' is again norm minimizing. In

the seeond ease, the are d must split off a disk from Ta

whence it also follows that TI is norm rninimizing. This

provides the desired eontradiction to the minimality of

Is n Tl
Secondly, we assume that int DI contains at least

one eirele component of S n T . Let e be an innermost of

these circles. Then c bounds a disk D eO'o which lies

entirely, say, in S . On the other hand, aDO also lies in

some component, Ta ,of T and thus we can compress Ta

along Da . It follows from the incornpressibility of Ta

that the system TI arising from T in this way is again

norm minimizing. Since obviously

IS n TI I < Is n TI

we again have a contradiction.

The investigation of a sphere component of S =c T goes

similarly.

Finally, the relation between the Euler characteristics

is now easily deduced.

o

Corollary. If Sand T are norm minimizing and

diskless (resp. sphereless) and ls n Tl is minimal then
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8 =c T is diskless (sphereless).

o

3.4. - Homogeneity and subadditivity. In the next

proposition we denote for n E ~ by n8 an oriented surface

system consisting of n parallel copies of the originally

given 'oriented surface system 8 in (M,K)

Proposition. i) 1I natl ;;;; nil all for all n E ~ and

every a E H
2

(M,K;Z)

ii) Ila+Bll~llall+1\BII for all a,B E H2(M,K;~)

Proof of i). Clearly, we may assurne that a * 0 and

n € ~ • Let Sand T be norm minimizing surface systems

such that

[8] = a and [T] = na .

that

By 1.5, there are srnooth rnaps f,g M --> 8 1 such

8 = f -1 (1 ) and T = 9 -1 (1 )

Furthermore, we may assurne that the n-th roots of unity

C1
;;;; 1,C 2 ,····'sn are all regular values of f .

Denote by q . 8 1
--> 8 1 the covering rnap given by.

q (z)
n

for E 8 1
c er 8ince;;;; z z .
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[T] = [nS] = [( go f) -1 (1 )] € H2 (M, K)

the systems T and (gOf)-1 (1) = u f-1(~.) are framed
i 1.

cabordant. Therefore the maps f = gof and gare homo-

topic. It follows by homotopy lifting that there exists a

- 1
map g : M ---> S homotopic to fand with gog = g .

g

M ) S1

f,g

Now with T.
--1

i=1, ... ,n have that= g ( ~ i) , , we
1.

T = g -1 (1 ) = U T.
i l.

Since f and g are homotopic, we know fram 1 .5 that

Consequently,

[S] = [T. ]
1.

for i=1, .... ,n.

11 na I1 = \1 [T] 11 = I1 T I1 = I 1\ Ti 1I ~ I \ I 11 [ Ti] 1I

i i

= L 11 [S]II

i

= n 11 all
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On the other hand, since T and nS are homologous

rel K and Sand T are norm minimizing, we' see that

11 na 1I == 11 T 11 ~ 1I nS 11 == nIl S 11 == n 11 a 11 •

This establishes i).

Proof of ii). We assume that a,B * 0

minimizing representatives Sand T of a

respectively. Then by 3.3, we obtain

11 a +B 11 ~ 11 S ::c T 1I = -x (S =c T)

.....

~ -X(S)-X(T)

== 11 s 11 + 11 T 11

= 11 a 11 + 11 B \1

and take norm

and B ,

o

Corollary. When S is norm minimizing then so is

nS for any n € ~-{O} .

o
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3.5. - Extending the Thurston norm. We recall two important

facts on seminormsi for a proof see Thurston lTh] and Fried [Fr].

Proposition. i) A seminorm on Zn with values in z
+

extends uniquely to a seminorm on Rn with values in R+

ii) A seminorm 11 11

n
: R --> R+ takes integer values

on

that

if and only if there is a finite set

1I x I1 = max 1 y (x) I

y E r

nr c Hom-(Z ,X) such

o

Consequence. For the extended Thurston norm on H2 (H,Ki R)

the unit ball B is a finite convex polyhedron and the domains

where equality holds in the triangle inequality are precisely the

cones over the faces of aB with the origin as vertexi see fig. 9.

domain of equality

Figure 9
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3.6. - Exercises. i) Find (M,K) and a properly embedded

surface S with as c K and [S] * 0 which is norm minimizing

but not K-incompressible.

ii) Find (M,K) such that the Thurston norm is not a norm

on H
2

(M,K)

iii) Let S be a surface system in (M,K) such that no

sub-system of S is null-homologous rel K. Then S is norm

minimizing if and only if S "is norm minimizing (cf. 3.3).

iv) Let S be a surface system in (M,R) such that

11 S 11 = 1I [8] 11 • If 8 is incompressible then any sub-system

of 8 that is null-homologous rel K consists only of compo

nents with non-negative Euler characteristic.

4. Coloured 3-manifolds

Let us keep in mind that our final goal consists of the

construction of foliations on a cornpact manifold M which are

transverse to the boundary. This will be done by means of a

hierarchy of M. Clearly, a foliation of M can be transverse

to the boundary only when 3M consists of tori. However, the

manifolds occuring in the hierarchy of M may have boundary ',"

components with non-zero Euler chararcteristic. Therefore we have

to consider these 3-manifolds as manifolds with corners where

the foliation is transverse to one part of the boundary, consisting

of tori and annuli, and is tangent to the rest of the bolindary.
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4 • 1. .- Def in i tion . i) Let M be a compact or iented

3-manifold with 3M * ~ . By a colouring of 3M we understand

a partition of 3M,

3M = E U R+ U R

into compact sub-manifolds which only intersect in boundary

circles and such that the following holds:

(1) E is a union of pairwise disjoint annuli and tori.

(2) R+ n R = ~ and R+ (resp. R_ ) is oriented so that its

normal points out of (into) M .

(3) If A is an annulus component cf Ethen one boundary

circle of A belangs to R+ and the other to R

The examples following below are to illustrate this definition.

Note that or ·R (R )
+ -

may be empty.

ii) By a coloured 3-manifold we mean a compact 3-manifold

together with a colouring of aM.

1ii) Two coloured manifolds (M,E,R+) and (M' ,~l, R~) are

considered as being the same if there exists an orientation preser-

ving diffeomorphism between M and MI

R to R I •

taking R+ to R'
+

and

Instead of (M,~,R+) we often simply write (M,~) . The part

of E consisting of the annuli components is denoted by A(E)

and R stands for R+ U R_ . In pictures we indicate R+
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(resp. R ) sirnply by a +sign (-sign).

4.2. - Examples. i) The taut coloured 3-ball. Here

2 2 2 2
M = D x [0,1], E ::: aD x I, R = D x {1},. R = D x {1+1},

+

i ::: 0,1 (mod 2)

More generally, when P 1s any compact orientable surface

with boundary, we obtain a coloured manifold by

1-1 ::: p X [0, 1 ], E ::: ap x [0, 1 ], R+ ::: P X {O}, R ::: P X {1} .

ii) 2 1 2M ::: D x S , E ::: an x I where
o

is an inter-

val, R+::: aM - E, R ::: ~ , does not constitute a coloured mani

fold because condition (3) 1s violated.

1ii) Any cornpact oriented 3-manifold whose boundary is a

union of tori is coloured whether a specification of orientations

for some of these tori is given or not.

iv) A typical colouring of the closed orientable surface

of genus three i5 depicted in fig. 10a). The decomposition in

fig. 1Gb), however, does not constitute a colouring.

a)

Figure 10

b)
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4.3. - Taut coloured 3-manifolds. We call a coloured

3-manifold (M,~,R+) taut if M is irreducible and R+ and

R are norm minimizing in H2(M,~)

Here it is understood that R+ (resp. R ) is norm mini-

mizing if it is empty. For example, (D2xS 1 , aD2xS 1 , 4') is taut.

On the other hand, the handle body of genus three with the

colouring presented in fig. 7a) is not taut, for both R+ and

Rare compressible.

The next result provides one of the key ingredients of the

splitting theorem 6. 1".

4.4. - Doubling taut coloured 3-manifolds. When (M,~,R )
+

is a coloured 3-manifold, we w1sh to perform modifications using

the manifold R = R U R
+

. Since R is not proper in M, we

first double M along Rand then do the desired modifications.

The next result w1l1 be needed in the proof of the decompo-

sition theorem. It relies on 2.2 111) and iv) and 1s easily

verified.

Lemma. Let (M,E) be taut and let (N,aN,<p) be the

coloured manifold obtained by doubling (M,~) along R. Then

(N, aN) 15 taut~' unless N = D
2

x S1 and (M, E) 15 the taut

3-ball.

D

4.5. - Proposition. Let (M,~,R+) be a taut coloured

manifold and let N be the manifold obtained by doubl1ng M
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a E H2 (N,aN; Z), a * 0 , there

exists an integer n ~ 0 and a properly embedded oriented surface

T in N such that

(1 ) [T] = n [R] + a E H
2

(N , aN)

(2) T is norm minimizing.

(3) If V i5 a component of R then T meets V transver5ely

and no union of components of V n T represents the trivial

element in H
1

(V,aV) .

Furthermore, the following holds:

(a) If <a,[c]> = 0 for every component c of av then

T n V i5 a union of k 6 0 parallel oriented horno-

logically non-trivial simple elosed curves.

(b) If V is planar such that <a,[c.]> * 0 for exaetly
1.

two components e 1 ' c 2 ·of av then T n V is a union

of I<a,[e. ]>1 parallel oriented proper ares.- 1.

Proof. First of all we observe that the proposition is true

when (M,r) is the taut 3-ball. So for the rest of the proof we

suppose that (M,E) is not the taut 3-ball.

Aeeording to 3.5 there exists m ~ 0 such that for all k ~ 0

we have that

(*) I1 (m+k) [R] + a 11 = 11 m[R] + a I1 + k 11 [R] 11

see figure 11. Note that then (*) also holds for all m + t ,
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.e. EJN.

aB

Figure 11

(m+k.) [n]

m[~\

(rn+k) [R]+a

Now let Ta be a norm rninimizing surface in (N,aN)

representing m[R] + a (see 3.2, iii)) ~ Ta may be chosen such

that for any boundary cornponent B of N , Ta n B is a union

of parallel oriented simple closed curves. This can be seen by

capping off pairs of oppositely oriented curves of Ta n B by
0

annuli within N . Moreover, we rnay assume that for ahy cornponent

d of aR the following holds.

Either <d,T a > * athen

or <d,T
O

> = a , in which case d n Ta = ~ and

[Ta n B] = k[d] E H
1

(B) with k '= 0 .
(In order to achieve that k E Z indeed is non-negative, we

only have to take rn E:N sufficiently large.)
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Next we consider T
1

= Ta =:c: R and recall 1 .6. Let W be

a subsurface of R such that aw = c U (-D) (mod 3R) and

int:!W n Ta = cf> , where D is a union of components of Ta n R

and C n Ta = cf> . Then we can isotope T
1

slightly near W so

that

T
1

n R = (Ta n R - D) U C •

This shows that modifying stepwise Ta and r parallel copies

of Rand performing the necessary isotopies we obtain a surface

system T2 with

and such that for any component V of R no union of components

of V n T2 is null-homologous in V (mod aV,) • More precisely,

since the subsurfaces W above are chosen as in 1.6, we see that-

conditions a) and b) of (3) can be satisfied additionally. So it

remains to show that T2 contains a norm minimizing homologous

sub-system.

By 2.2, 1i1) and iv), N is irreducible and thus any sphere

possibly contained in T2 may be omitted. So we assurne that T2

is sphereless. Moreover, the existence of a disk component, D , of

T2 or Ta would imply that either a * [D] (H2 (N,aN) , in which

case D can be omi tted, er tha t N = D2
x 8,1 _ whence ~ i t would

fellow that (M,L) is the taut 3-ball. As this is excluded here,

we now have that
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11 T2'II = -x (T 2) = -X(TO) - r X(R)

= 11 Toll + rl! R I!

= 11 m[R] + Cl I1 + r 11 R 11

= 11 (m+r) [R] + a 11 , by (*) ,

= I1 [T2 ] 11

This also shows that every eomponent of T2 with negative

Euler characteristie is ineompressible. Consequently, if Q is a

. maximal system of eomponents of T2 (necessarily tori) such that

[ Q] = 0 in H2 (N , () N ) t he n

T = T - Q
2

1s as required.

o

4.6. - Observation. The proof of 4.5 also showed the

~ollowing. If S = (T =c R) n M , where (M,L) is' viewed as

being ernbedded in (N,dN) , then, if neeessary after a slight

isotopy of S , eaeh eomponent, c , of S n L satisfies one of

the following conditions:

(1) e is a properly embedded non-separating are in A(L) •
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(2) c is a simple closed curve in an annular component A

of E and, with the orientation induced by that of S ,

is homologous to any of the boundary curves of A

(cf. 4.') .

(3) c is a homologically non-trivial curve in a torus

component B of E , and.if Cl is another component

of B n 8 then c and c' , with their _induced orientations,

are hornologous in B.

4.7. - Exercises. i) Let (M,E,R+) be taut. If one

component of R is a disk then (M,E) is the taut 3-ball.

If (N,aN) denotes the double of M along R then

N = n2
x 8' if and only if (M,E) is the taut 3-ball.

ii) Find all taut coloured 3-manifolds with D2
x 8'

as underlying manifold.

iii) If (M,E) is taut then E 1s incompressible unless

(M,E) is the taut 3-ball or (M,E) = (D
2

x 8', ao 2
x 8')
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5. Coloured manifold decompositions

5.1. - Definition. Let (M,~,R+) be a coloured 3-manifold

and suppose we are given a properly ernbedded surface system S

in M such that either S n ~ = $ or for every component of

~ n Sone of the three conditions of 4.6 is' satisfied.

Now we construct a new coloured manifold (M I ~ I R I) by, , +

cutting M along S. To be more precise we' do the following.

First we choose a regular neighbourhood N(S) of (S,aS) in

(M, ar-t) and set

Mt = M - int N(S)

Next, letting S' (resp. Si ) be that component of aN (S) n MI
+ -

whose normal points out of (into) MI , we create R' (resp. R'
+ -

by adding SI (S I ) to what is left of R (R ) . Finally, we
+ + -

separate R ' from R ' by introducing an annulus resp. disk for each+ -
component of R ' n R ' see figures 12 and 13.

+

1 I
N(S) [ T

s

JM MI

Figure 12
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In formulae this reads as follows:

R~ ~ ((R+ n MI) U S~) - int LI

R I ~ (( R n MI)· U S ~) - in t L I

This process is referred to as a coloured manifold decompo-

sition and is denoted by

S
(M, L) --. (M I , LI)

We point out that the manifold MI obtained by splitting

M along S need not be connected even if S is connected.

+ +

S

S
~

S'
o

"S'-E I

+

S'

\ +\L- _

I -;.-
. L

._~.J__ ~._

~I
.... +

S
~>

Figure 13

-------

\ +
_ J. _ -_

I »

S

+

- .1
1

_. --

E
---f---t------l---

-- -_." 1---
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5.2. - Remarks. i) If 8 = 8 0 U 8, then the coloured

manifolds obtained by decornposing (M,E) along 8 is the same

as that obtained from (M,I) by first decomposing along So

and then along S,
ii) Suppose that (M, E)~ (M' ,EI i5 a coloured mani-

fold decomposition. Then it follows a5 in 2.2, ii1) that S is

incompressible in M' if and only if

pre s s ible in MI

SI and SI are incorn-
+ +

Sirnilarly, if S is incompressible then MI

if and only if M is irreducible.

1s irreducible

On the other hand, if (MI, LI) iso taut then standard argu-

ments show that M is irreducible independent of whether S is

incornpressible or not.

5.3. - A necessary condition for tautness

We want to know under what circurnstances in a decomposition

(M,E) ~ (MI ,II) the tautness of one of the two involved

manifolds implies that of the other. The next exercises are to

show that there is no general result in this direction.

Since, in general, a decomposition does not yield a connected

manifold MI even if S is connected, we agree that a system

of coloured manifolds 1s taut if each of its components is taut.

At first let us prove the following necessity criterion and·

a preliminary lemma.

Lemma. Let (D
3 , E ) ~> (M' ,I') be a coloured manifold

decomposition with L * $ and S a system of disks such··±hat
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(M' , EI) is taut. Then (D 3 , E) is the taut 3-ball.

Proof. We induct on the number of components of S. At first

let us consider the case that S is a single disko Then, by hypo-

thes 1s, (MI, EI) consists of two taut 3-balls

3
(01,E 1 ) •

When S n I = ~ , we easily see that (D 3 ,E) is taut. So let

us assume that 5 n E * ~ . Assuming furthermore.without loss of

generality that the copy of S belonging to

have the following picture (fig. 14a))

is 5' we
+ '

a )

Figure 14

b )

8D
3 0

The disk EO = - S· contains bands coming from I .
0 +

Each of these bands is outermost in that it splits off a disk

from EO
that does not contain any further band.

Now the only possibility to connect these bands in order

to obtain the annulus La is as indicated in fig. 14b).

3
A similar argument holds for (D 1 , L 1) • Let a 1 ,···, a k be
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the cyclically ordered ares of L n as • Then it follows from

3 taut that if and(D
1

,E
1

) are a.
1

in EO then a, and a. 1 belang
1 1-

01
This implies that is- S . E

andthe fact that

a i + 1 belong to the same band

to the same band in E
1

= aD;

connected whence it follows that (D 3 ,E) is taut.

Finally, when S is not connected, we take a component, n ,

of Sand consider the diagram of coloured manifold decomposi-

tions

(n3,E)~ (MI,E I )

s-~ /D
Since S consists of disks, each component of M

1
is a 3-ball.

Therefore, by what was just proved, (M
1

,E 1 ) is taut. The in

duction hypothesis thus shows that (n3 ,E) is taut.

o

Proposition. Let S
~ ( MI EI R I ), , + be a coloured

manifold decomposition such that (MI,E I
) is taut and S is

incompressible. If M = n2
x 8' and E = ~ suppose that S is

not a system of k ~, parallel oriented meridional disks. Then

(M,E) is taut.

Proof. The case M = n3
was already proved in the preceding

lemma. Consequently, we may now assume that M * n3 .
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By 5.2, ii), M is irreducible, so it remains to show that

are norm minimizing.

Assuming that R+ is not norm minimizing means that

(a) either there exists a properly embedded surface system

(T,aT) in (M,E) such that

(b) or R+ has minimal norm within its homology class but at

least one component of R+ is compressible.

To begin with, let us assurne that b) holds but not a). Then

clearly X (Ra) = a for any compressible component Ra of R+

Moreover, if the component B of aM containing Ra is a torus

then M = 0
2 x 51 . The only incompressible proper surfaces in

D2
x 51 are disks or annuli whose fundamental groups inject

into that of D2
x 51 • It is not hard to check that in this

situation either the exceptional case in the statement of the

proposition holds or the tautness of (MI,E') implies that of

(M, E)

If B is not a torus then R has a compressible cornpo-

nent w~th negative Euler characteristic and we henceforth could

argue with R

the case a) .

instead of R+. It suffices therefore to consider

To this end let T be as in a). Moreover, since

A A

if and only if I1 TII < 11 R+ll
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(see the beg1nning of 3.3 and 3.6, i11)) we may choose T such

that if'

.....

T = T U (ldisks) and R+ = R+ U (n disks)

then

(* )

Next, let

and let T' be the surface system in MI resulting from T
1

after cutting M along S ; see fig.15. Then we have

[T I ] = [R 1
] EH (MI E')

+ 2 '

Moreover, since (MI,E I
) is supposed to be taut, it foliows,

possibly after suppressing pairs of oppositely oriented parallel

disk components of TI that

(* *) m ;S p ,

where m and p are the number of disk components of TI and

R~ , respectively. All together this yields a contradiction as

follows.
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1I TI I1 = -x (T I ) +rn

= -X(T)-x(8)+m

= IITI\-x(8)+m

< II R+ 11 -x (8) +m-f

= -x(R+)-x(S)-m-f+n

= -x(R~)+m-f+n

= 11 R~II +m-t+n-p

S 11 R~ tl

8
~

F igure 1.5

, by (*) and (**).

R'
+

o
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5.4. - A criterion for tautness.

When the decomposing surface is of a special kind, we

even have the following necessary and sufficient condition for

tautness.

proposition. Let (M,E,Rt)~ (M',E',R~) be a coloured

manifold decomposition where S is either a disk and Is n EI = 2

or an incompressible annulus such that one component of as lies

in R+ and the other in R

(M 1 , ~ I ) i staut .

Then (M, ~) is taut if and only if

Proof. We only have to show that (M,~) being taut implies

that (MI, LI)

quence of 5.3.

is taut, for the converse is an immediate conse-

If (M,~) is taut then obviously Mt is irreducible. So it

rernains to prove that R'
+

and R' are norm minirnizing, i.e.

incompressible and with minimal norm within their homology classes.

Thus assuming that, say, R' is compressible means that the
+

cornponent of R I

+
containing Si

+
is compressible. However, by

the special choice of S, a compressing disk may then be chosen

so that it does not meet S'
+

at all. This yields no contradiction

to the tautness of R+ only when S is an annulus and the com

ponent of as lying in Ra C R+ separates Ra in such a way

that one of the resulting pieces is a disk. But this is impossible

because S is incompressible. Hence R+, and similarly R , is

incompressible.
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Finally, we have to show that 1I R' II+
is minimal. Otherwise

there- exists a proper surface system TI in (MI,E I ) such that

Then, similar to the proof of proposition 5~3, we construct from

TI and S a surface system T in M such that

o

5.5. - Exercises. i) Find an example of a coloured manifold

decomposition (M,E) ~(M' ,EI) where (MI,E') is taut but

the splitting surface S is compressible (resp. E-compressible).

ii) Find a decomposition (M,E)~ (M',L I ) where (M,E)

is taut, S is incompressible but (M' ,EI) 1s not taut.

iii) Let (M,E)~ (MI,E I ) be a decomposition such

that as C E, S is incompressible and has minimal norm in

(M,E) • Then (M,r) is taut if and only if (M~,rl) is taut.

iv) Prove 5.2, ii).

6. The coloured rnanifold decomposition theorem

We are now ready to prove the decomposition theorem for taut

coloured manifolds which is the chief result of this chapter.
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6.1. - Theorem. Suppose that (M,~,R:) 1s taut and

H2 (M,aM) * 0 . Then there exists a proper surfaee S in

(M,aM) such that

( 1 ) S is incompres5ible ..

(2) 0 * [aM] E H1 (aM) provided that aM * ~ ,

(3) S 15 a splitting surface for (M,Z)

(4) the coloured manifold (MI,~I) obtained by decomposing

(M,~) by means ·of S is taut.

Furthermore, S can be chosen specifieally so that it meets

every component, V , of R (R )
+ -

in a system of k ~ 0 parallel

oriented (each) non-separating simple closed eurves if V is

non-planar or proper ares if V is planar.

For the proof of this theorem we need another observation

that follows. Its proof is easy and therefore omitted. Note that

in this observation we do not require that S be norm minimizing

in that condition (2) of 3.1, iii) may fail. Cf. also 5.5, 1ii).

6.2. - Lemma. Let (N,aN) be the double of M along

R = R+ U R (where (M,~) 15 as in 6.1) and let

(N,aN)~ (N',~') be a coloured manifold deeomposition

where Tl i5 incompressible and hag minimal norm. Then (N',~')

is taut.

o
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Proof of 6 • , • When M is closed, let 5 be any norm

minimizing surface in M . When aM * ~ , let (1 E: H2 (M,aM) be

as provided by proposition , • 7 and let P be a proper surface
0

system such that [p] = a . Doubling P along ap-L: yields a

proper surface system pi in (N, aN) (Note that if ap c L:

then we are in the easy case of exercise 5.5, iii).)

Next we apply proposition 4.5 to (11 = [P'] E: H (N,aN) and
2

let T be the resulting surf~ce system. Then, by the special

choice of P, T meets each non-planar component of R in a

system of k ~ 0 parallel oriented simple closed homologically

non-trivial curves and T meets each planar component of R in

a system of k ~ 0 parallel oriented proper arcs. Moreover,

k > 0 for at least one component.

Now put

51 ;;;; T n M

and let S be a component of S' such that 0 * [as] ~ H, (aM)

Clearly S' and thus S is incompressible. We consider the

commutative diagram of coloured manifold decompositions and

inclusions

,... TI
(M, E) '--> (N, aN)~ (N I, cfll)

si 1J

(M 1 , L: I)~ (M 11 , L: 11) C-> (N 11 , 4> 11 )

where TI ;;;; T =c Rand J is a system of annuli and disks of
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the form J = c x [0,1]o
see 1.4 and figure 16.

where c is a component of T n R

As in proposition 4.5 we see that T' is incompressible

and has minimal norm. Therefore, by lemma 6.1, (N' ,~I) is taut.

Furtherrnore, each component of the system J satisfies the

hypothesis of proposition 5.4. Indeed, the only point here that

is not quite obvious is the incompressibility of the annular

components of J. However, any such annulus, A , comes from"a

circle component, c , of T n R . If A is compressible then

c bounds a disk in N and thus , by the incompressibility of

R , also a disk in R. But this contradicts the fact that the

circles of T n Rare homologically non-trivial. Now, by 5.4,

(N II ,4>") and thus (M",~lI) as a component of it are taut.

Finally, since S' is incompressible, it follows from

proposition 5.3 that (M',~') is taut. o

Remarks. i) We do not claim and cannot prove that the surface

S obtained by the theorem is norm minimizing or at least

a-incompressible. This will be one reason for the difficulties

we have to encounter in chapter 11.

ii) M. Scharlemann (sutured manifolds and generalized Thurston

norms) improved the proof of theorem 6.1 considerably by working

directly in (M,Z) instead of its double.

o
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P in (M, ~)
pi = T in (N, aN)

T I = T ::I:: R in

Figure 16

(N, aN)
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Chapter II

EXISTENCE OF COLOURED MANIFOLD. ,HIERARCHIES

We recall that our aim is to construct foliations without

Reeb components on compact 3-manifolds. It is weIl known that

such a foliation can exist only when the underlying manifold

is irreducible (see [Al] and [Ro]).

In our construction we want to use hierarchies. This

concept from the general theory of compact 3-manifolds permits

it to decompose a given manifold M by a finite nurnber of

splittings at properly embedded surfaces into balls. We adapt

this concept to our purposes. In particular, we do not insist

that the final pieces be balls.

Hierarchies exist always when M is of Haken type, for

instance, when M is irreducible and 3M * ~ (see I; 1.5, 1.7,

and 3.2, as weIl as [Ha; p.101], [He; p.62f], [Ja], and

[Wa; p.60]). Therefore, in what follows we restrict our interest

to Haken manifolds. Moreover, for reasons which will become. ,

evident later we have to require in most cases that coloured

manifolds are taut.

Of course, our transversality and orientability assumptions

on 3-manifolds and surfaces lying in them remain valid also in

·this chapter.

1. Coloured manifold hierarchies

To begin with let us make precise what a hierarchy for a

coloured manifold is to be.



- 51 -

1.1. - Definition. - i) A coloured manifold hierarchy is

a finite sequence of coloured manifold decompositions

where (~,Em) is a system of coloured products, i.e.

(~ , Ern ) = (R x I, aR x I), (I\n) + = R x 1 ,

for some compact surface system R.

ii) A coloured manifold hierarchy for a coloured manifold

The goal of this chapter is to show that coloured manifold

hierarchies exist for a big class of coloured manifolds. Follo-

wing Gabai [Ga 1] we shall use for the construction of such

hierarchies the notion of complexity of a coloured 3-manifold.

Roughly the complexity measures how far a coloured manifold is

from being a coloured product. The existence of a coloured

manifold hierarchy is then established by induction on the

complexity.

1.2. - The length of a Haken manifold

Let us briefly recall the notion of length cf a Haken

manifold. This notion enters in the definition of complexity

and is based on the following observations which are proved,
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for instance, in [Ja, p.42f and p.57-61].

Proposition. Let M be a Haken manifold, then we have:

i) There exists a minimal integer h(M) (the so-called

closed Haken number of M) such that if S1, ... ,Sn is any

system of pairwise disjoint incompressible, a-incompressible,

closed surfaces in M then either n < h(M) or for some

i * j, Si is parallel to

ii) Suppose

s.
]

in M.

( *)

is a sequence of decompositions where each S.
J.

is an incom-

pressible, a-incompressible surface in M.
J.

which is not

a-parallel and not a disk. Then m ~ 3h(M)

o

These statements permit us to define the length ··of M to

be the maximal number of decompositions occuring in any sequence

(*) for M.

If the manifold M is not connected then the length of M

is understood to be the sum of the lengths of its components.

Remarks. - i) If M~ MI is a decomposition between

Haken manifolds where the surface S * D2 is incompressible,
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a-incompressible and not a-parallel then

length MI < length M

ii) Since

lengt~, M :i 3h (M) ,

and h(M) = 0 if and only if M is a handlebody, it follows that

any sequence (*) with rn = length M terminates with a system

of handlebodies.

These remarks make it plausible that the notion of length

is useful in an inductive construction of hierarchies for

coloured manifolds.

The length of a Haken manifold behaves weIl with respect to

splitting at disks. This will be made precise in the next section.

1.3. - Complexity disks. - Supposing that M is a Haken

manifold one may induct on the Euler characteristic of aM in

order to see that there exists a system of proper disks V in

M such that each component of M split along V is a-irre-

ducible or a 3-ball.

We call V a system of complexity disks for M .

Lemma. Let V be any proper disk system in M and let

MI be obtained by splitting M at V • Then we have

length MI = length M •
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Proof. It suffices to give a proof f6r V being a single

disk D. Let

be a length defining sequence of splittings for M, i.e length

M = rn , and each is incompressible, a-incompressible

and not a-parallel in

Mare handlebodies.
m

M.• In particular, the components of
J.

Now, as M is irreducible, we can isotope So so that

Furthermore, if 0' and DU denote the two copies of D in

aMI then we may assurne that

s n D'1 = S1 n D
ll = 4> ·

procceding inductively, we thus obtain a comrnutative diagrarn

of decornpositions

(* ) D o

S'
M'~M'~

o 1

S
m-1 M'
~ rn

D



~ 55 -

Note that M~ consists of handlebodies if and only if Mm

consists of handlebodies. As each S.
1.

is incompressible and

a-incompressible in M~
1.

it follows that

length MI S length M .

Conversely, if the bottom line of (*) is length

defining for MI then we may clearly assurne that

S n D'a = So n DII = <p •

Therefore we again obtain a diagram (*) . Ne know that each Si

is incompressible also in H.· (cf.I, 2.2) . Moreover, S.
1. 1.

is

a-incompressible in M. , for any boundary compressing disk
1.

for S. in M. , even if its intersection with 0 is non-empty,
1. 1.

would lead to a boundary compressing disk for

conclude

length M ~ length MI •

1.4. - Special complexity disks

S.
1.

in M~ • We
1.

o

In the definition of the complexity of a coloured manifold

we need a special sort of complexity disks. The existence of

such a specia~ disk system is established by the next lemma.
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Lemma. Let M be a Haken manifold. Then there exists a

system V of complexity disks for M such that the following

conditions hold.

( 1 ) If M denotes any a~irreducible component of M - int N(V)
K

and if V is a component of

most one component.

3M then V n N(V)
K

has at

(2 ) If BA is any ball component of M - int N (V) and

V = aBI. then V n N(V) has exactly three cornponents or

is empty, unless V intersects a unique N (D ) (where D
'J 'J

is a component of V and IV nN(D)1 = 2 .
'J

Proof. The existence of such a system is fairly obvious.

We simply start with an arbitrary system of complexity disks ~

for M so that no two components of E are parallel and no

component is a-compressible. Then, if MO is a component of

M - int N(E) which does not satisfy conditions (1) and (2),

we split MO along an additional proper disk lying in MO so

as to diminish the number of components of N(E)n'MO . This creates

a new ball cornponent satisfying (2).

The system V then arises from E by adding these new

disks.

o

2. The cornplexity of a coloured 3-manifold

It is convenient to define the complexity for coloured

manifolds which need not be connected.
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2.1. - Definition and remarks. - Let (M,L:) be a system

of taut coloured 3-manifolds.

i) A system of complexity disks .0 = 0
1

U ••• U Dn for

(M,L:) satisfies by definition the following

(1) V is a system of complexity disks for M.

(2) If V is a component of 3M K (where M~ is a 3-irreducible

component of M - int N(V) ) then V n N(V) is connected

(possibly empty) .

. (3) If V = dB A (where BA is a ball component of M - int N(V)

then. V n N(V) is empty or has exactly three components,

unless V intersects a unique N (D'» and 1 V n N (0'» I = 2 ~

(4) V is a splitting disk system for (M,L:) . In particular,

V n A(L:) eonsists of proper (eaeh) non-separating ares.

ii) As condition (4) can always be arranged, the existence

of a system of eomplexity disks for any taut eoloured 3-manifold

is established by the preceding lemma.

iii) If an c T ( L: ). for some eomponent D of V then
\) \)

the component of (M,L:) eontaining D is (n 2 x 5 1 , 3n 2 x 51)
\)

This is the last one of the possibilities listed in (3) .

iv) If D') n A(L:) * ~ then each eornponent of n n A-( L:)
\)

conneets R+ with R . It follows that ID\) n A(L:) I is even.

v) Condition (3) of the definition is put in order to

distinguish between taut coloured handlebodies.
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vi) If V is a component of aMK with V n N(V) == ~

then V is an incompressible component of aM.

2.2. - Minimal cornplexity disks

Suppose we are given a system of cornplexity disks

v == D
1

U ••• U Dn for (M,L) such that M-int N(V) decornposes

into a-irreducible cornponents M1 , •.. ,M k and 3-balls B1 , .•. ,B1 .

Then, if necessary after re-indexing the M K we may assurne that

for some r ~ k MK is diffeomorphic to P x I for some closed

surface P if and only if K ~ r . Observe that then P is

necessarily incompressible in M.

Next, let

v == D
1

U ••• U D
s

be the sub-system of V consisting of those D
\)

such that

We set

....
a. = 1D. n A (L) I , i == 1, ••• , s ,
~ 1

and order the a.
1

so that ~ ... ~ a .. Finally, we set
1 s

(ai , ... ,a. )
1 1. s
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If all a. are zero or V = 4> then we simply write r;,V = 0 .
1 3

Similarly, we define

{
[Dv n A(E) I if lD n A (E) > 2

b v = v
0 if ID n A (E) ~ 2

\)

and order the b so that
\)

> b
\)n +1o

= = 0 •

Now we set

V
(b , ••• ,b )r;,4 = \)1 \) n O

and r;V = 0 when all b = 0 or
4 \)

V n A(l:) = 4> •

We say that V is a system of minimal complexity disks ~f

Min
E

where E ranges over all systems of complexity disks for

(M,E) , and the pairs is given the dictionary ordering. Ta be

or and ~4 < n4 • Here we have ~ < n for tuples

~ = (a 1 ' • • • ,an) and with ::>a. "- a. 1 '1 J.+

1 ~ i :;;; n , b. ;;: b. 1
J J+

for i < j and either

<:' • <
<i! J -

a. < b.
J ]

m , if for some j , a
i

or n = j < m holds.

= b.
J.
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2.3. - Two basic properties of complexity disks

Systems of complexity disks are unique -in the following

sense.

Lemma 1. Let V and VI be systems of complexity disks

for (M,E) and denote by M
K

' K = 1, ... ,k , resp. M~, ,

K ' = 1, .•. ,k l
, the a-irreducible components of M-int N(V)

and M-int N(V') . Then k = k' and, if necessary after a

permutation of indices, M
K

is homeomorphic to MI
K

by an isotopy

of M. In particular we have

(1) r = r' ,

..... .....

(2) In] = In l I
.....

where r' and D' are defined similarly to r resp. 0 'in 2.2.

( 3 ) If V denotes a component of aM and, V'
K

is the corres-.

ponding component of

if V I n N (V') = ~ •

aMI then V n N(V) = ~
K

if and only

Proof. We show that the M for K ~ rare uniquely
K

determined, independent of the choice of V. For this let

M = P x I , 1 ~ K ~ r ,
K K

where P
K

is a closed surface which is, moreover, incornpressible

in M. Then, if necessary after an isotopy of M
K

' we rnay

assurne that
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P x I n V' = ~ •
K

Now let MO be the cornponent of M-int N(V') that

contains P x I . As P is incornpressible MO is not a
K K

ball. Therefore MO is a-irreducible and we can isotope V

so that

It follows that

up to isotopy.

Thus to each cornponent M , K ~ r , corresponds a cornponent
K

of M-int N(V ' ) which is homeornorphic to it. Interchanging the

roles of V and VI we see that this correspondence is bijective.

In particular we have condition (1).

In a similar way one shows that the components

K ~ r+1 , are uniquely determined up to.isotopy.

The above analysis also shows that the component

M
K

M
K

is

glued together with M if and only if M' is glued together
~ K

with MI . This finally shows that conditions (2) and (3) hold.
~

o

If V is a system of complexity disks and S is a splitting

surface in M such that V n s = ~ then V need not be a
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system of complexity disks for M-int N(S) , even if S is

incompressible and a-incompressible. However, we have the

following special result which will. be used later.

Lemma 2. Let V be a system of minimal complexity disks

for the taut coloured manifold (M,E) . Denote by (M',E I
) the

coloured manifold obtained by decomposing (M,r) along the

sub-system Va of V. Suppose, moreover, that IDv n A(E) I = 2

for every D
v

C Vo . Then V' = V - Va is a system of minimal

complexity disks for (MI,E t
) and

Proof. By I; 5.4, (M',E ' ) is taut, and it suffices to

consider the case that Vo is a single disk.

Certainly V' is a system of complexity disks for (MI,E I )

Also it is easily seen that

and

for IVo n A(E) 1=2 and thus either or

Now, if V' was not minimal then there would exist a system

of complexity disks E for (MI,E I
) with

We want to run into a contradiction by showing that then

EO = E U Va is a system of complexity disks for (M,E) with
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smaller complexity than that.of V • That EO indeed is a

system of complexity disks for (M,r) follows from lemma 1 .
.... ....

Let V (and similarly E, V', EO ) be the sub-system of

V as above in the definition. We know from lemma 1 that

.... .... .... ....
(*) IV' I = IEI and IV I = IEol

Therefore, assuming that

(* *) r;E V'
< 1';33

we have

E
(a 1 ,···,as )

V' (b
1

, ... ,b
g

)1';3 = I'; 3 . = I

i.e. both tuples have the same length, and there exists j S s

such that a. = b. for i < j and a. < b. . By lemma 1 , we
J. J. ] ]

have to discuss two possibilities.

If Va is a component of V and of EO then (* *) implies

that

This contradicts the minimality of V.

If Va is neither a component of V nor of EO then

we have

and

and thus obtain a contradiction to (**) .
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Finally, if

(***) and

then the above discussion shows that and, since

IVo n A(l:) I = 2 , we conclude by (***)

This again is incompatible with the rninimality of V •

o

2.4. - Definition of complexity

We now complete the definition of the cornplexity of a taut

c010ured 3-manifold as follows.

As before let V = D, U U D be a system of minimal
n

complexity disks for (M,l:) and let M" ... ,M
k

and B" ... ,Bt
be the a-irreducible resp. ball cornponents of M-int N(V)

Again we fix r ~ k so that M
K

is diffeornorphic to p x I
K

if and only if K Sr.

We define the cornplexity of (M,l:) to be the 4-tuple

where
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k
C

1
= C

1
(M) = I length M

K

K = r + 1

C = C (M,E) = ,V , a = 3,4 ,
a a Ci

and C2 is the 6-tuple of non-negative integers

with

k
a

1
= I (u 3M) n N (V) I ,

K=r+ 1 K

IM
K

n N (V) I = 2} ,

IM n N(V) I = 1} ,
K

a 4 = #{V!V c aM
K

for K > rand V n A(E) * ~} ,

a 6 = H{KIK ~ rand V n A(E) * ~ for exactly one

cornponent v c 3M } •
K

(Here as always N(V) denotes a regular neighbourhood of V in

M .)

In words, a
1

(a
4

) is the nurnber of cornponents of

aMr +
1

u ... u aM k which (non-trivially) intersect N(V)
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(resp. A(E) ); cf.2.1; (2). Further, a 2 (a 3 ) is the number

of product components M , K ~ r , such that both (resp. exactly
K

one) cornponents of 3M
K

intersect N(V) , and a S (a6 ) is the

number of product components M , K ~ r , such that both
K

(resp. exactly one) components of 3M meet A(E)
K

Clearly, the colouring of (M,E) comes in only in C3 ,C 4

and the last three components of C
2

, whereas C
1

and the first

three components of c
2

depend only on the topology of M.

Example. - If (M,E) is a taut 3-ball or is homeornorphic

to (D2
x S1 , 3D2

x S 1 ) then C (M, E) = ( 0 , 0 , 0 , 0 )

2.S. - Invariance of the complexity

The following alternative characterization of cornplexity

will turn out to be very useful in applications. It also shows

that the complexity of a taut coloured manifold is independent

of the special choice of the system used in its definition.

For V being any system of cornplexity disks for (M,E)

define the V-complexity of (M,E) , denoted CV(M,E) , in just

the same way as C(M,E)

proposition. For a taut coloured 3-manifold (M,E) we have

C(M,E) = Min CV(M,E)
V

where V runs through all systems of cornplexity disks for

(M, E)

Moreover, C1 (M,E) and the first three components of

C2 (MjE) can be computed using any system of cornplexity disks

for (·r.i, E)
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Proof. Without loss of generality we may assurne that

no component of (M,E) is a taut 3-ball or is homeomorphic to

(D 2 x 8 1 , aD 2 x 8 1)

Let V and VI be systems of complexity disks for (M,E)

By 2.3, lemma 1, we have (using the same notation as there)

V k
C

1
(M,E) = I length M

K

K = r:+ 1

k
= I length MI

K

K = r + 1

VI
= C

1
(M,E)

Next, coming to the invariance of

condition (3) of the same lemma teIls us that

a. = a ~ for i = 1,2,3 .
1 1

Moreover, an incompressible component V of aM with

V n A(E) * <P counts in the same way for both a. and a l ,
1 1

where i = 4,5 or 6 . Furthermore, as (M,L:) is taut and no

component of it is a taut 3-ball or is homeomorphic to

(D 2 x 8 1 , aD
2 x 8 1 ) , every cornponent of V or VI meets

A,(E) non-trivially.
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Therefqrei if V and VI are minimal then

Finally, taking a system E so that

CE(M,L) = Min CV(M,L)

V

it clearly follows by what we have already proved that E is

minimal and thus

CE(M-,L) = C(M,L).

o

2.6. - Trivial complexity and a first reduction step

Obviously, every strictly decreasing sequence of

complexities is finite. This enables us to use the cornplexity

as an inductive method for the construction of coloured mani-

fold hierarchies. We can see this more clearly once we know

what the taut coloured manifolds with trivial (zero) complexity

are.

Proposition. - A connected taut coloured 3-rnanifold

(M',L,R+) has trivial cornplexity if and only if it belongs

to the following list:
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a) (M,L:) = (D
2

x 8 1 , aD
2

x 8 1 )

b) (M., E) = (T
2

x I, T
2

x 0) and R = R+ = T2 x 1

c) (M, E) = (T 2 x I , <p ) and" R = aM = R+ ,

d) (M, E) = (T
2 x I, T

2 x aI) ,

e) (M,E) = Jp x 1,<1» , where p
g 9

surface of genus 9 ~ 1 , and

is a closed orientable

R+ = P x 1 R = P x 0g' g

f) (M,E) = (P x I, ap x I) , where P is a compact orientable

surface with ap * <p , and R = P x 1, R
+

= P x 0 .

Proof. At first let us consider the case that M is

a-irreducible, i.e. V = <P . Then C1 = 0 implies that

M = P x I for some closed surface P of genus g '= 1 .g g

Here we use the fact that a 3-manifold has length zero if and

only if it is a handlebody and that handlebodies are a-reducible.

Further, since a S = a 6 = 0 , we see that

aM n A"(E) = <p

Thus either g > 1 and R = aM , a situation that is covered

by e), or g = 1 and (M,E) is one of those coloured manifolds

listed in b), cl, d), or constitutes the remaining case of e).
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Now' let us investigate what is going on when M is

a-reducible, so,that the underlying system V of minimal

complexity disks for (M,E) is non-empty. As before we denote

by M1 , ••• ,Mr , ... ,~ , B1 , ••• ,Be. the components of M-int N (V)

where the Mare a-irreducible and M = P x I if and only
K K K

~ - -
if K ~ r . As no M can be a handlebody,'we conclude that

K

r = k •

Moreover, the hypothesis a
2

= a
3

= 0 implies that

k = 0 ,

i.e. M-int N(V) consists entirely of balls. This shows that M

is a handlebody.

Next, since C4 = 0 , every component o
\)

of v intersects

A(E) in at most two components. However if ID
v

n A(E) I = 0

then, by norm-minimality of R+ and R , necessarily

aO c T(E) which means that a) holds. It therefore remains tov
consider the case that

ID
V

n A(E) I = 2 for every Dv c V .

We want to show that then (M, E)· is of type f).
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Proceeding by induction on the genus of M we first

assume that M is a solid torus. Then V is a meridional

disk, and our assertion is easily verified (especially by those

having mastered exercise 4.7,-ii) of chapter I).

To establish the induction claim we take a disk Dv of v
which is non-separating in M. Then, by I; 5.4, decomposing

(M,E) along Dv provides a taut coloured handlebody (M' ,EI).

By 2.3, lemma 2, (MI,L I ) has trivial complexity whence it follows

by the induction hypothesis that

(MI,E I ) ;;;; (Pi X I, ap l x I) •

Now we look at pi as a bouquet of bands. Then (MI,E')

can be visualized as indicated in fig. 3a).

To reconstruct (M,E) from (M',E) we have to identify

two disks E+_ and E in aMI , where E+ (and similarly E

is a union of disks EI
+

and Eil
+

with

E' C R I

+ +

cf. f ig. 3a).

and Eil C A(E I
)

+

We now modify (MI,E I
) homeomorphically so that E+ and

E come to lie in the vertical part of aM see fig. 3b). It

is then evident that identification of E+ and E

a product of type f).

again gives
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To complete the proof we observe that each member of

'"our list indeed has zero complexity.

o

(MI/E') = (Pi x I, elPI x I)/

Eil EI
+ +

E I

/

/
/----------

-------~---
---- a)

............. _~

...... ---........----..----
Figure 3

b)
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As another application of our new concept let us prove

the following generalization of lemma 2 of section 2.3 which

will be used later in an essential manner.

Lemma. Let V be a system of minimal complexity disks

for the taut coloured manifold (M,E) and let Va c V be a

sub-system such that ID
v

n A(E) I = 2 for every component

Dv of Va · Then

C(M1,E I
) :;;; C(M,E)

where (MI,E I
) is obtained by splitting (M,E) along Va •

Proof. By I; 5.4, (M' ,LI) is taut, so its complexity is

defined. Also we already know from lemma 2 of section 2.3 that

V' = V - Va is a system of minimal complexity disks for

(M',E I
) and

Furthermore

C,(M,L) = C,(MI,L 1
)

holds trivially. Also inspecting the components a" ... ,a6 of

C2 (M,E) we convince ourselves immediately that
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and

Finally, as V n A(~) * ~ if and only if V n A(~') * ~

for any component v c aM we conclude that
K

a~ = a. for i = 4,5,6 .
1 1

o

2.7. - Exercises. - i) Find a Haken manifold M, a system

V of complexity disks and a proper surface S * 0
2 in M which

is incompressible (a-incompressible, not a-parallel) such that

V n S = ~ and V is not a system of complexity disks for

M-int N(S)

ii) Show that the coloured manifolds listed in·the

proposition of section 2.6 indeed have trivial complexity.

iii) For any k ~ 1 find a taut coloured manifold (M,~)

where M is the handlebody of genus two such that C(M,~) is

non-trivial and E consists of k components.

iv) Find a taut coloured manifold (M,~) and a system V

of complexity disks for M such that ID n A(~) I = 2 for every

component D of V but (M,~) is not a coloured product.
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3. Splitting surfaces and complexity disks

Suppose we are given a taut coloured manifold (M,E)

with -C(M,E) * 0 . We are looking for a (non-separating)

incompressible splitting surface S for (M,E) such that

the coloured manifold (M',E I
) obtained by splitting

(M',E) along S is taut and has complexity smaller than

that of (M",E) • When H2 (M,E) * 0 such a surface is

provided by theorem I; 6.1. However, to decide that ~(M',E')

is indeed smaller than C(M,E) we first have to put S in

a special position with respect to a system of complexity

disks V for (M,E) . We shall do this in two steps.

To simplify language we call a splitting system Staut

if the coloured manifold obtained by splitting along S is

taut.

Now among all non-separating incompressible taut

splitting surfaces for (M,E) we choose one so that

Iv n si is minimal. It follows by the incompressibility of

Sand the irreducibility of M that then" V n S does not

contain any circle.

3.1 Deforrning the splitting surface in a nice position

To begin with we deforrn the splitting surface S so

that it becomes nice in the complement of V •

Lemma 1. - Let (M,E) be a taut coloured manifold

and let V be a system of complexity disks for (M,E)
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·Suppose 8 is a splitting surface. for (M,E) as ·above.

Then 8 can be deformed into a taut splitting surface,

again denoted 5, such that IV n 51 is also minimal

and, furthermore, the following holds.

(1) If A is a component of A(E) then each

component of 5 n A either intersects each

component of V n A in exactly one point or

8 n A n V = et1 •

(2) There exists a tubular neighbourhood

N (V) = V x I, I =" [-1 ,1] of V such that

we have:

If MO. is a component of cl(M-N(V» and

80 denotes a component of 5 n MO then either

a) 5 = So and is o-parallel in MO or

b) 8 0 is not a-parallel in MO , or-

c) 8 0
is parallel into cl(oMO-N(V»rel N (V)

i.e. there exists an ernbedding

<.P : ( 50 x [ 0 , 1], So n N ( V) x [0, 1]) ... (MO' MO n N(V) )

such that ~150 x 0 = ids and
o

<.p(sO x 1) c cl(aMO - N(V»

proof. At first we deform 5 so that condition (1)

holds. Then we choose a small tubular neighbourhood
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N(V) = V x I of V in M such that

N(V) n L = (V n E) x I

and

N(V) n s = (V n 5) x I .

we consider

So is

So then

MI of
0

Now for a component MO of cl(M-N(V))

an arbitrary component So of S n MO . Tf

a-parallel and neither a) nor c) holds for

clear1y So is a-para11e1 in the component

M-(V x (- ~, ~)) containing MO • We choose a correspon

ding isotopy whose restrietion to asO may be assumed to

stay within an arbitrari1y smal1 neighbourhood of asO in

MO ' and first deform So by means of this isotopy to 1ie

in a small col1ar to aMio in MO i see fig.4. Then the

components of the deformed surface So lying in . MO satisfy

condition c). Note also that there 1s no problem in

extending such an isotopy to one on M ::J MIo which is

constant outside a 5mall neighbourhood of MI
o in M • So

condition (1) i5 still satisfied.

1
D x 2 o x 1

(D c V)

Figure 4
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Now for a component T of So in MO satisfying

condition (2), c) means that T separates MO and the

closure of one of the resulting components is of the

form T x [0,1] where T x 0 = T and T x 1 c aMO

Therefore, if T1 is another cornponent of S n MO

that lies in T x [0,1] then T1 is parallel to some

sub-surface of a(T x [O,1])-T i see [Wai p.65]. Here we

use that S is connected and that B n N(V) is connected

for every boundary component B of MO ' provided

MO * 0
3

· It follows that the above deformation process

can be repeated with other components of S n MO which

are a-parallel. This observation cornpletes the proof

of the lemma.

Note that the minimality of IV n sI was used so far

only in that V n S does not contain circle components.

Observe also that the new surface S evidently also

satisfies the minimality condition.

At this point we dispose of a tubular neighbourhood

N(V) of our fixed system of complexity disks for (M,L)

so that, in the complernent of N(V) , the splitting surface

S is in a nice position. We now achieve more niceness by

also irnproving the position of S in N(V).

In the next lemma we have the same hypotheses as in

lemma 1.

o
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Lemma 2. - Let S be the surface in M obtained

by lemma 1. Then S can be isotopically deformed in

N(V) = V x I such that it still suffices conditions (1)

and (2) provided by ._lemma 1 and so that, moreover,

Iv n sI is still minimal and the restrictian of S to

N(V) can be described as folIows.

Far each component D of V we have

(*) N(D) n as = (D n as) x I ,

and if (*) 1s not an eguality between empty sets then

there exist numbers -1 = t 1 < ••••• < t m = 1 such that,

for 1 ~ j ~ m , s n (D x t.) is a system of properly
J

~ j :;; In - 1

a. x [t"t
J
'+1])J, J

1.

form

embedded ares a. , ... , a. and, for
J 1 Jk

each component of S n (0 x [t.,t, 1]) is either of the
J J+

or is a saddle as indicated in

fig.5w

n (D x t. 1)
J+

s n(D x (t"t'+1])
J J

Figure 5
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Proof. Initially, every eomponent ~f N(D) n S was

a disk of the form a x [-1,1] where a is an are in D.

By lemma 1, this situation is possibly changed in so far

as (possibly multi-pronged) saddles were pushed fram

cl(M-N(V» into N(D) . This shows that the eomponents

of N(D) n S are still disks and that (*) holds.

Now when E denotes such a disk containing a saddle

that is multi-pronged we can isotope S so that (*) still

holds and the mult1-pronged saddle 1s replaced by saddles

as in fig.5 which are on different levels. As this isotopy

can be chosen to be constant off N(V) the results af

lemma 1 rernain valid.

o

3.2 Special boundary compressions

Let us suppose that Sand N(V) are as provided by

lemma 2. Then, with ,the notation of lemma 2, a component

e of (D x t
j

) n s may occur a prior! as in one of the

seven cases depicted in figure 6.

d)c)b)a)

e) f)

/--_.--'""-' ,

lät
~~'-+
.~---------..---

-. .~::;.-

f- .

g)

Figure 6
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Here the thiekened ares are eomponents of (D x t.) n A(~)
J

the shaded area is a disk E in D x t. , the "arrows as
J

usual denote normal orientation and the ~-sign indieates

that the eorresponding are belongs to R+ ' respeetively.

The essential point is that eaeh such disk E

eorresponds to a splitting disk for (MI ,~I) with

IE n A(~') I ~ 2 •

We are now going to show that in the special situation

at hand neither of these possibilities can occur, for the

appearanee of any of these possibilities would contradict
I .

the minirnality of Iv n sI . Let us first foeus our interest on

ease a) of figure 6.

Lemma 1. - In case a) of figure 6 the situation speci-

fically cannot occur as shown in figure 7.

+

Figure 7

Proof. Both dases would yield a splitting disk

E for (MI ,~I) such that

lE n l\(~I) I = 0 •
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As R' is incompressible, dE would bound a disk E'

in R' • By the construction of (MI,E I
) from (M,E)

E' itself would be the union of two disks Fand G

the first one of which belonging to 8 and the other

one to dM; see figure 8.

E

c

Figure 8

G

F c 8

Now E U F U G is a sphere in M and thus bounds a

ball. Therefore, if G n A(E) = 0 then we can deform S

so that c disappears. Obv1ously, this would contradict

the minimality of Iv n 81 .

On the other hand, if G n A(E) * 0 then somewhere

a constellation as indicated in fig.9 a) must occur.

However, as (M',E I
) 1s required to be taut, we are

allowed to deform S as 1ndicated in fig.9 b). The

important point is that if S 1s oriented as in a) then

the colouring of dM must be necessarily as in a) .

Otherwise (M' ,EI) would not be taut. We can repeat

deforming S in this way until we eventually again have

G n A(E) = (/) As this is impossible the lemma is proved.

o
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Figure 9

b)

We shall now treat the remaining cases of fig.6. These

are the cases where lE n A(E ' ) I = 2 .

Lemma 2. - Under the given assumptions none of the

cases illustrated by figure 6 can appear.

Proof. Assume E is a disk in D x t. satisfying
J

one of the rernaining cases of fig.6. If necessary after an

isotepy of S we rnay assurne that one of .the cases a), b),

f) er g) holds.

Now we perform a boundary cornpression of S along E

and thus obtain a splitting surface system T for (M",E)

As (M',E I
) is taut, it follows from I ;,5.4 that -T

is taut. ~oreover, by I proposition 5.3, we may assurne
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that T 1s connected and non-separating. Therefore, in

order to produce a contradiction it suffices to show that

T can be deforrned isotopically rel A(E) so that

(* ) Iv n TI < IV n sI .

Clearly we have

I D x t. n Tl = 1- D x t. n s 1-1
] ]

and as D x t. is isotopic to DreI A(E) we can find
]

an isotopy of T rel A(E) so that (*) holds.

o
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3.4. Complexity disks for the decomposed manifold

Given a coloured manifold decomposition

(M,E)~ (MI,E t
) and a system of complexity disks V

for (M,E) there is no general recipe how to obtain

from V and 5 a system of complexity disks for MI

or even for (M',E ' ) . However, in order to decide that

C(M',E t
) < C(M,E) we always have to refer to such a

system.

The following situations will arise in the proof of

the existence theorem in the next paragraph. 50 let us

specify in either of these a system of complexity disks

for Mt or (MI ,EI)

As before we suppose that (M,E) and (MI,E t
) are

taut and that 5 and N(V) are provided by lemma 3.2.

In particular, 5 is connected, i~compressible ~nd non-

separating. Recall also from paragraph 2 the decomposition

of cl(M-N(V)) into balls BA ' and other pieces M~, ... ,~

where M
K

= PK x I (P K a closed surface) if and only if

~ ~ r .

1. case: 5 is closed.

Then 5 is contained in some component MO of

cl(M-N(V)) . Furthermore, as 5 is incompressible,

cl(MO-N(S)) is a-irreducible. We conclude that V' = V

is a system of complexity disks for (M',E')
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2. ease: as * ci> and S n V = ci> '.

Also in this ease S is contained in some MO as

above, but this time cl(M-N(S)) need not be a-irreducible.

i) If MO * BA then let E, be any system of eomplexity

disks for-·· "'C-l~(MÖ~N(S)) • Then by V I = V U E ~we e learly

obtain a ~ystem of eomplexity disks for MI •

ii) If MO = BA then S is a disk. As

MO n aN (V) * ci>

and consists of at most three disks, S is parallel to same

component D of V. Then it is easily seen that some sub-

system V' of V-D is a system of eomplexity disks for

(M I , L: I) .•.•.J The choice of V I depends on the spee ial situation.

However in the argument later we only need that V' c V-D ,

so that further 5?ecification of VI is unnecessary.)
~ ..~-'\

3. case: S n V * ci> •

As V n 8 eonsists of ares, the components of V n MI

are disks. The system of these disks can be completed to a

system E of complexity disks for MI .

i) If there exists a component 8
0

of 8 n cl(M-N(V))
-

whicn-is contained in same M ,
.. K

K ~ r+1 fand is not

a-parallel in M . ~ then w"e take
K

VI = E (where
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E is as above) as a system of complexity disks for M 1
•

ii) If i) does not hold then we shall have to refer

to a system of complexity disks VI for (M' ,EI) , not just

one for MI • However the system E as above in general

does not suffice condition (3) of definition 2.1, i) and

thus cannot serve as V' . To overcome this difficulty we

start with the system

EI = u
\) , j

Dv x t.
J

n MI , V = 1 , ••• , n i j=j(v)=1, •.• ,m(v)

and consider a ball

B = D x [t., t. 1] c V x I = N(V)
J J+

cf. 3.1, lemma 2. If B n S contains a saddle then

according to 3.1., lemma 2, cl(B-(N(S) U N(D x {t
j
,t

j
+1})))

consists of p+2 balls B
1

, ••••. ,Bp + 2 where

-_ { 3
2IB7f n N(E) I

if 7f ~ 2

if 3 ~ 7r ~ p+2 .

Next we observe that if T is an incompressible

surface in a product p x I (where P is a closed surface)

then any component of cl(P x I - N(T)) is either a handle-

body or is homeomorphic to P x I .
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It follows that a sub-system of EI may be completed

to a system VI for (MI ,LI) where the additional disks

are needed to cut down the handlebody components of

cl(M-(N(V) U N(S))) to balls. (These additional disks are

completely irrelevant as in the present case we do not

V'need s4 in cornparing C(M,L) with C(M' ,EI) .)

4. Coloured manifold hierarchies exist

4.1. - The existence theorem (statement).

In this paragraph we show that a coloured manifold

hierarchy exists for most taut coloured 3-manifold5. More

precisely, we shall prove:

Theorem. - Every connected taut coloured manifold

(M,E) ,where M is not a rational homology sphere containing

no incompressible torus, has a coloured manifold hierarchy

(M, L)

Moreover, each S.
1

i5 connected and if aM. '*' <p
1

then

As already mentioned, the proof of this result is by

induction on the complexity of" (Mi",L i ) . It is carried out

by several steps according to the several positions the

splitting surface rnay have. Before we start with the actual
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induction process, let us briefly recapitulate what we

already have achieved.

We are given a (connected) taut coloured manifold

(M,E) whose complexity is supposed to be non-trivial

and a system of minimal complexity disks V for (M,E)

V is empty whenever the manifold M is a-irreducible.

Furthermore, if A(E) * ~ then, by lemma 2.6, we may

assume that

ID n A (E) I ~ 4 for all 1:;;; v :i n .v

Now in case H2 (M,aM) * 0 we have found a non

separating, incompressible taut splitting surface for

(M,E) whose position in M with respect to a regular

neighbouhood N(V) of V and to the components Ml' .•. '~ ,

B
1

, ... ,B i of cl(M-N(V)) is nice; see 3.1.

4.2. - The induction step

We turn to the proof of theorem 4.1. First of all let

us perform the induction step under the special assumption

that there exists a nice splitting 'surface. 80 in the

next two lemmas 8 denotes an incompressible, non-separating

splitting surface for (M,E) which is in a nice position

as provided by section 3.1. Furthermore, the coloured

manifold (MI ,EI) obtained by splitting along 8 is taut

and as a system of ,complexity disks V' for MI resp.

(MI ,EI) we use the one supplied by 3.4.
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Lemma 1. - If V n s = ~ then we have

C(M',II) < C(M,I)

Proof. 1. case: S is closed.

Then S is contained in some a-irreducible component

MO of cl(M-N(V))

If S is not a-parallel in MO then, by [Wai prop.3.1],

M * P x I . Therefore, by remark '.2, i), we conclude

C, (MI ,II) < C, (M,I) •

If S is a-parallel in MO then clearly

C
1

(MI ,II) = C
1

(M,I) •

But in this case our hypothesis implies that N(V) n B is

non-empty, where B is the component of aMO into which

S is parallel. Therefore, if MO * P x I then, with the

notation

we conclude that
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If M = P x I then both boundary components of MO

necessarily meet N(V) . Hence it follows that in this

case we have that

Here we referred to proposition 2.5. Our claim is proved

when S is closed.

2. case: aS =1= q, •

Clearly in this case S is also contained in some

component MO of cl(M-N(V» which now, however, rnay be

a 3-ball. We thus distinguish between two P9Ssibilities.

i) MO is not a 3-ball.

If S is a-parallel in MO ' and V' = V U E is as

in the corresponding case of 3.4, then E is il. system of

complexity disks for the handlebody split off from MO by

S • As S is not a-parallel in M we conclude as in the

1. case that

C
1

(M',L') = C
1

(M,L)

and

C2 (M '. ' L '.) < C 2 (M, L)
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A similar argument holds if 8 is not a-parallel

in MO and MO = P x I .

Next we assume that ,8 is not a-parallel in MO

and MO * P x I . If 8 is a-compressible, we perform

the necessary compressions on 8 in order to obtain a

a-incompressible surface system 8 1 (cf. [Ja; p.44]). As

8 is irreducible and not a-parallel in MO the same holds

for Si • Moreover, Si is not a disk because MO is

a-irreducible. We thus obtain a commutative diagramm of

decompositions

M~o

EI

MI!o

where EI denotes the disk system used to create 8 1
•

Now it follows from remark i) of section 1.2 and

lemma '.3 that

length MO = length MÖ < length MO ·

Applying lemma 1.3 a second time we eventually see that

C
1

(M' ,LI) < C, (M,L:)
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ii) MO is a ball.

In this case S roust be a disk. Furtherrnore , as

aMO n N(V) is non-empty and consists of at most three

disks , S is parallel to same component n of V .

Furtherrnore , since by assurnption

In n A(Z) I ~ 4 I

n counts in V
(,4 (cf. 2.2). Here we have to observe that

our hypotheses imply that A(E) * ~ . Naw , since D does

V'not count in s4 I we canclude that

= (C
3

(M,Z) I C4 (M, E»

FinallYI as

c, (MI ,EI) = C, (M,L:)

and

C 2 (t-1' ,L I) .:;; C 2 (M, L ) I

_.
we see that the lemma holds afso-~in' this case.

Lemma 2. - If V n S * ~ then we also have

C(M',E') < C(M,E) •

o
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Proof. i) At first we assurne that there exists a

component 8 0 of 8 n cl(M-N(V» which is contained in

some MK I K ~ r + 1 ,and is not a-parallel in MK •

Then , again using the fact that splitting a product

P x I along an incompressible surface system never leads

to any non-product component (which possibly could give

rise to an increase of C1 (M ' , E'» I we conclude , as in

the proof of lemma 1 (2. case , i» I that

C
1

(M',E ' ) < C
1

(M , E)

ii) Now let us investigate the situation when i) does

not hold. Then a system V' of cornplexity disks for (M',E')

which is adapted to this case is provided by 3.4 (3. case , ii».

It has the following helpful properties:

( 1 ) For every a-irreducible component M'o of cl(M1-N(V'»

there is exactly one component MO of cl(M-N(V» which

is homeornorphic to

M'o

M'o by an isotopy of M and contains

(2) A cornponent Vi of aMa satisfies V' n N(V') * ~ if

and only if the corresponding cornponent V of dM
O

satisfies V n N(V) * ~ . Moreover we have that

.... ....
V' c E n M' I
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where E = u
\) , j

n x t.
v J

see 2. 2 for def ini tion of V

(resp. VI, E)

(3) For every cornponent n' of VI which is properly

cantained in same n x t.
v J

we have

[ni n A(E ' ) I < ID n A(E) I .
\)

Observations (1) and (2) are fairly clear, but (3)

needs an explanation. Ta see that it holds we let s be

the number of cornponents of aD ' - a(D x t.) . Then at
\) ]

least s disks, E1 , ... ,Es ' in the cornplement of

D' U N(S)

s = 3..

in D x t. are outermost. In fig. 10 we havev ]

D' c D
'J

Figure 10

Since none of thern is of the type excluded by figure 6 of

section 3.2, it follows that
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( *) IE0 n A ( L: ') \ '= 4 for 0 = 1, ... , 5 .

Furthermore, a5 C(M,L:) i5 5uppo5ed to be non-trivial

we see that

for every component E of cl(D x t. - N(S)) . Now, observing
v J

that each are of D x t. n S eontributes two new components
v J

of V' n A(E ' ) , we deduce from (*) and (**)

5

10v x t j n A(L:) I + 25 ~ ID I n A(E I
) I + L IEo n A(E I

) I
0= 1

2: 10' n A(E I) I + 45 •

Finally, a5

ID x t. n A (E) I = 10v n A (E) Iv J

we see that (3) is indeed true.

To complete the proof of the lemma we note that (1)

to (3) imply that

C~l (MI ,EI) ~ Ci (M,E) for i = 1,2,3 .

Moreover, if S n V * ~ then, by (3), we have that
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and if S n V = ~ then (3) shows that

o

4.3. - Proof of the existence theorem (end)

If M is closed then our hypotheses guarantee the

existence of a norm minirnizing splitting surface 8 in M.

When H
1

(MiW) = 0 this surface 1s a torus, otherwise it

rnay be chosen non-separating. We decornpose (M,E) along

Sand thus obtain a taut coloured 3-manifold (system)

(M 1 ,E 1 ) with E1 = ~ , and (R1 )+ = 8~ , (R1 )_ = 8~ i

cf. Ii 5.1, and Ii 5.2. Therefore, no component of M1 is

a 3-ball and thus has non-trivial relative second homology.

Consequently, we are reduced to finding a coloured

manifold hierarchy for a taut coloured manifold (M,E)

with aM * ~ .
To begin with let us find a hierarchy when (M,E) has

trivial complexity. According to proposition 2.6, we only

have to investigate cases a) to d), whereas in cases e)

and f) of that proposition the desired hierarchy consists

only of (M,E) itself.

In case a) we simply take as splitting surface any

meridional disk of M = D2
x 8 1

, and in cases b), c),

and d) we chose as splitting surface an annulus of the

1 . 112form C x I where C = S x {po1nt} c 8 x S = T . In
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either of these cases the result of the splitting is a

taut coloured product as required.

80 for the rest of the proof we suppose that the

complexity of (M,E) is non-trivial.

At first let us assurne that A(E) = ~ . This means

that either Z = ep or Z consists only of tori. In both

cases we have V = ~ showing that

C(M,E) = (C"O,O,O) .

As C, = length M * 0 , there is, by I; 6.', a non-separating,

taut splitting surface 8 * D
2

in M so that

length cl(M-N(S)) < length M •

It follows that the taut coloured manifold (M"E,) obtained

by decomposing (M,E) along S satisfies A(E,) * ~ and

Now it follows from lemma 2.6 and section 4.2 that there

is a splitting
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is again non-empty, we eonclude that after a

finite nurnber of splittings along taut surfaees we arrive

at a taut eoloured produet.

o

Remark. Modifying the proof of the existence theorem

slightly it can be shown with not too much additional work

that all splitting surfaees S.
.l.

can be found so that for

every eomponent v of S. n V
.l.

is a system of k

(~ 0) parallel oriented non-separating simple elosed curves

or ares.
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CHAPTER 111

CONSTRUCTION OF FOL1ATIONS FROM COLOURED MANIFOLD HIERARCHIES

The objective of this chapter is the proof of Gabai's

existence theorem of foliations without Reeb components

announced in the introduction (see also 4.1). The proof,

of course, will make explicit use of a coloured manifold

hierarchy for the underlying manifold. The existence of

such a hierarchy was established in chapter II.

Before giving the proof of Gabai's central result in

§ 4 we recollect in § 1 some general facts on Reeb components,

and in § 2 we illustrate Thurston's result telling us that

compact leaves are always norm minimizing, as long as the

foliation contains no Reeb componenti cf [Th2]. This all is

to give the reader a better impression of the importance of

Gabai's theorem.

Again all 3-manifolds and surfaces ernbedded in them are

supposed to be compact and oriented unless otherwise stated.

We presuppose that the reader is farniliar with some basic

concepts of geometrie foliation theory. All we need can be

found for instance in [HH], except the notion of depth which

will, however, be explained in the text.

1. Generalities on Reeb components

Suppose specifically that the 3-manifold .is closed and

1fibres over S . Then every fibre is met by a closed trans-
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versala Even more, when the fibre is connected, we can find

a global transversal, that is an embedded s1 intersecting

every fibre non-trivially and transverselya

In contrast to that the torus leaf of a Reeb component

ernbedded as part of a foliation in any 3-manifold does not

admit any closed transversal; see [No]a Further, the rnanifold

M above can be endowed with a riemannian metric so that all

fibres become minimal 2-manifolds, iaea have mean curvature

zero. On the other hand, according to Sullivan [Su], a

foliation F on a 3-manifold can be equipped with a

riemannian metric so that all leaves become minimal if and

only if F does not contain a Reeb component.

These two phenomena are to show that in order to discover

properties of (well-understood) surface bundles over S1 which

carry over to foliations of codimension-one the existence of

Reeb components is an essential obstruction.

1.1 - Reeb components cannot be always avoided

We here have to recall the following striking results

due to S.P. Novikov [No].

Theorem. - Let M be a closed orientable 3-manifeld.

(i) If M has finite fundamental group 7T 1M then every_

codimensien-one foliation on M has a Reeb compenent.

(ii) If F is a codimension-one foliation on M such that

for seme leaf- L ef F the map TI 1L --> 7T 1M induced by

inclusion is not injective then F has a Reeb cemponent.

o
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As already mentioned, the boundary leaf of a Reeb

component does not admit any closed 'transversal. Thus, in

order to show that a given foliation F has no Reeb

component it suffices t6 verify that each leaf of F is

met by a closed transversal ~. This criterion will be applied

in the proof of the main theorem.

1.2 - Reeb components and irreducibility

Novikov's investigations go even further in proving that

'the universal cover of a transversely orientable foliation

without Reeb components is contractible, and the leaves of

the lifted foliation are all planes. Moreover, H. Rosenberg

has shown the following result which, in connection with

theorem 1.1, implies that a closed 3-manifold admitting a

transversely orientable 2-dimendional foliation without Reeb

components must be irreducible.

Theorem. - ([ Ro; theorem 6 ]) Let N be a 3-manif-old, -not

necessarily compact. If N admits a foliation-by planes then

every 2-sphere in N bounds an embedded ball.

o

These comrnents motivate our restrietion to irreducible

3-manifolds in most parts of chapters land 11, and also in

the remainder of this chapter.

1.3 - Making surfaces transverse

Another crucial property of Reeb components is the fact

that they are an obstruction to making surfaces ernbedded in a
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foliated rnanifold transverse to the foliation. We shall

rnake use of the following result due to Roussarie, Thurston,

and Gabaij see [Rou], [Th1], and in particular [Ga1] and

[Th2] .

Theorem. - Let M be a compact oriented 3-manifold and

F a tr~~sversely orien~~bl~ codimension-one f9liati~n on M

without Reeb cornponents. If S is a properly embedded

incompressible surface in M such that each component of

as is either contained in a leaf of F or is transverse to

F then 5 is isotopic to a properly embedded surface which

is either a leaf of F, or has only saddle singularities for

the induced foliation with singularities on 5. Moreover,

every boundary component of the deforrned 5 is either a leaf

of F I aM' or is transverse to F 1 aM' •

o

2. Norm minirnality of compact leaves

2.1 - More on the Thurston norm

Using Poincare-Lefschetz duality, the Thurston norm 11 11

(see Ij 3) on H2 (M) or H2 (M,aM) gives rise to a dual rnap

11 11 * on.' H
2

(M) resp. H
2

(M, aM) (real coefficients) defined

by

11 u 11* == sU,P <u,a>
11 a 1I ~ 1

where <, > denotes cup product. If 11 11 is not a norm

then I1 II * rnay become infinite. 50 we understand 11 11 *
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as the restrietion to the subspace where it is a norm.

2.2 - Theorem. - (Thurston [Th2]) Let M be a compact

oriented 3-manifold and F a transversely orientable foliation

on M without Reeb components. When aM * $ , suppose further

that each component B of aM is either a leaf of F or F

is transverse to Band FIB has no (2-dimensional) Reeb

component. Then every compact leaf of F is norm minimizing.

The proof is carried out in [Th2]. It uses theorem 1.3 to

2 2show that for the Euler class e(TF) E H (M) resp. H (M,aM)

F we have the inequality

*11 e (TF) 11 ~ 1 •

Therefore, if L is any compact leaf of F with negative

Euler characteristic then we obtain

*11 L 1I = IX (L) I = I<e (T F) , [L] > I ~ 11 e (T F) 11 l\ [L] \\ ~ 11 [ L] !I

Showing that

11 LII = 11 [L] II •

If X(L) ~ 0 then the result follows from Reeb stability

and the hypothesis that there are no Reeb components in F.

o
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3. Construction of foliations with corners

Given a coloured manifold hierarchy

S 8
1

(M,~)~ (M1'~1)~ ...~ (~'~k) = (PxI,apxI)

we want to construct by means of this hierarchy a foliation

F on M which is transverse to ~ and tangent to
o

R = aM - ~ . If the hierarchy is good enough then F will

not contain a Reeb component.

The foliation F will be constructed stepwise by starting

with the product foliation on pxI with leaves px{t}, tEl,

and then going backwards along the hierarchy.

8trictly speaking, the Ilfbliations" we have to deal with

at this stage are not foliations in the usual sense because

they have corners.

3.1 - Foliations with corners

i) A foliation with corners F on a compact 3-manifbld

is by definition a partition of M into injectively immersed

surfaces locally modelied on the space D2 x I . Thus the

points of aM correspond either to points of an 2 x I or of

n 2 x aI . The former constitute the set ~ where F is

transverse to aM, the latter the subset R of aM where

F is tangent. R and ~ meet in a union of circles, the

lIcornersll .
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As FI~ is a genuine foliation, it follows that ~ is

a union of annuli A and tori (possibly empty or all of aM).

Note that the double of a foliation with corners on M

along A is a genuine foliation on the resulting manifold.

ii) A foliation with corners is transversely orientable

if its double A is transversely orientable.

iii) By a foliation on a coloured manifold (M,L,R) we mean

a foliation with corners F on M such that F is transverse

to Land tangent to R.

iv) A foliation F on (M,E) is transversely oriented,

if a transverse orientation can be chosen so that on R the
±

two normal orientations agree, respectively.

Examples - i) D2
x I with leaves 0 2

x {tl is a foliation

on the taut coloured 3-ball. More generally, when P is any

(orientable) compact surface, we obtain a foliation on

(PxI, apxI) in the obvious way. Clearly this foliation is

transversely oriented once we have chosen an orientation for P .

ii) Assume F is a foliation on the manifold M tangent

to aM and A is an annulus, properly embedded and transverse

to F. Then cutting M along A yields a foliation with

corners on MI = M - int N(A) which is transverse precisely

to the two copies of A in aMI •
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In the next section we will see how a coloured manifold

decomposition

(M,E)~ (MI,E')

together with a foliation on (M',E I
) yields a foliation on

(M, E)

3.2 - Recursive construction of foliations

5uppose that we are given a coloured manifold decomposition

(M,E,R)~ (M',E',R I
)

and a foliation FI on (MI,E I ) • We are going to show how

to obtain from F' a foliation F on (M,E) • The construction

of F, of course, will also depend on 5. We have to discuss

three possibilities. In doing so we may restrict ourselves to

the special situation where 5 is connected, and for every

component V of R, V n 5 is a system of k ~ 0 parallel

homologically non-trivial simple closed curves (if V is

non-planar) or arcs (if V is planar) . Moreover, we assume that

F' IE' has no 2-dimensional Reeb component.

Case 1. as n R ~ ~ . This is the easiest case. Our hypothesis

guarantees that the two copies S' and· 5 I

+
of s in aMI are

components of R'
+

resp. R~ , and hence homeomorphic leaves of

F' . We can therefore reglue 5'
+

and 5' and abtain by this fram

F' a foliation F on (M,E) as required.
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Case 2. as eR. By our assurnption on S, a component

V of R with S n V * ~ is non-planar, and V n S consists

of parallel, in particular coherently oriented, circles. Then,

to each of these circles corresponds an annular cornponent of

l:' i see f ig. 1.

S

+

V

S

Figure 1

S
~+.

/
/

+

Now again we glue S'
+

to S' and thus this time obtain a

manifold MO homeornorphic to M and an induced foliation with

corners and singularities Fa on MO • Note that Fa is trans

verse to l: and to k ~ 0 annuli corresponding to the circles

of V n S .

in the obvious way so that only

the outermost of these annuli, denoted A, remains in the

boundary, whereas all others disappear from the boundary. See

fig. 2. This is p05sible since the circles of V n S are

coherently oriented. Call the new foliation with corners again

::p: -- _sc::::.-
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\_--

----!.,...~---

A

Figure 2

In order to obtain a foliation on (M/E) we have to

~piral the leaves of FO towards V. This process of

spiraling is analogous to the process of extending a foliated

pseudo bundle of rank one over 51 (in the sense of [HH]) to

a foliated bundle on 5 1XI. To be more precise , we view

as ernbedded in M so that N = M-Mo is homeomorphie to

VxI and is endowed with a foliation with corners in the

following way.

Let C = A n 5 (see fig. 2) and let C' be a simple

elosed eurve on V whose geometrie interseetion with C is

one. We cut V open .along C U C' and give (V-N(C U C'))XI

the produet foliation. Denote by f : I ~ I the holonomy map

of FolA I and let g : I ~ I be defined by g(O) = 0 and

g(t) 1 f (2 'V (t__1 )) + _1_ for E
1 1 .

= - , t (V' v=r] ·2'V 2\) 2\) 2 2

eaeh interval 1 1 homeomorphieally ontoSo g rnaps [-, v=r]
2'V 2
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itself and gl[~, :-1] is conjugate to f, v = 1,2, ....
2 2

This permits us to identify the two copies of C'xI on

a(V-N(C u CI) x I) by means of

(x,t) ~> (x,g(t))

This gluing clearly ·respects the product foliation. What we have

produced is a foliation on (V-N(C)) x I such that the two

induced foliations on the two copies AO and A1 of C x I

are the same and have holonomy equal to g . Now the construction

of the desired foliation on N is accomplished by gluing

A
O

= C x [0, 1 ] to C x by means of the map

(x, t)

Finally we glue N to MO so as to obtain the foliation

F on (M,E) as required. As the preceding construction can be

carried out independently for each component V of aM with

s n V * ~ we have cornpleted our discussion of case 2.

Case 3. There is a planar component V * D2 of R meeting

S non-trivially. Thus S n V is a system of parallel properly

embedded ares between different boundary components of V.

Reealling how (MI,E I ) was obtained from (M,E) by means

of S, we see that as'
+

is the union of two systems of ares

and where c aLl and r v
C R I

+ '

v = 1 , ... , n , and similarly for as' . Now we reidentify 51
+

with S: in such that + is glued to and + isa way qv r r vv

glued to q v' v = 1 , ... , n i see fig. 3 ,a) ~
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+
r·"

-11

S'

a)

- ----- ,---

+
Dv

b)

Figure 3

c)

The manifold MO obtained by this gluing process has a

11 singular foliation with corners 11:' . C' whichGis indueed by

F' . Each of the ares and is contained in the boundary

of a disk +
Dv

-
resp. D where all these disks belong tov

EI ,

see fig. 3b). Clearly, we may assurne that F' induees on eaeh

D~" a product foliation. Thus we can extend CI by gluing a

product to where the identification is along
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; see fig. 3e). Denote the resulting singular

foliation on MO by C.

Now let us have a closer look at C. As in ease 2 we

eonsider MO as being embedded in M so that M-Mo is

eontained in ~ neighbourhood of R. Then, if V is a eornponent

of R as before ,we have established a situation as in fig. 4.

Here we (again ean and do) assurne that S n V is eonneeted.

c x 0

-z....-exI

Figure 4

More precisely, fig. 4 shows N(V) n MO which i5 horneornorphie

to V x I where

V x 1 ;;;;; J U (c x I) ,

with J eontained in a leaf L of C, e x 0 a properly

embedded are in both V x 1 and L, and c x 1 c 3L properly
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ernbedded in V x 1 . Moreover, cl (c x I) is the product

foliation with Ieaves c x t, tEl .

Next, let

where

JI = cl(J-N(c x 0))

with N(c x 0) a collar neighbourhood of c x 0 in J.

Clearly, M
1

is homeomorphic to MO • We now have to fill out

the ditch formed by

N(c x 0) u (c x [0,2]) U (c
1

x [0,1]) c 3M1

where c 1 is the copy of c = c x 0 in dN(c x 0) c J i see

fig. 5. This is done by taking the product N(c x 0) x I ,

gluing N(c x 0) x 0 onto N(c x 0) , and identifying c x I

and c 1 x I Ieaf preservingly with the corresponding'-wails of

the ditch. Note that this gluing proceduce necessarily produces

holonomy in FI~.

We observe that spiraling F' in a neighbourhood of V in

order to eliminate transversality near V n S can be exhibited

successively for every planar component V of R with V n S * ~ .
This completes the discussion of case 3.
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--~ - -------

I
I
I
I

/
I ~ --- 'J- -((-i:-~ ,
\.. ------

c x 0

Figure 5

Note that if FI is transversely orientable then so is F.

Surnmarizing we obtain:

Proposition. - Let (M,L,R)~(M',LI ,R I ) be a coloured

" manifold decomposition where S is -"connected and such that for

every c~m?~nent V of R, V n s is a family O~Jl k ~ ,0 t i ,r~rallel

homologically non-trivial simple elosed curves (if V is non-
_ ........i"_ :.. ~ l .; 1:.J. .... J;" - ~. 1.. • ~

planar) or ares (if V is planarl. Then any foliation F' on

(MI,L I
) where F'IL I has no Reeb component induces in a natural

waya foliation F on (M,r) such that FjL has no Reeb eompo-

nent. Moreover, if FI is transversely orientable then so is F.

Proof. We glue S I

+
to SI . If ease 1 holds then we are

done. Otherwise in each of the cases 2 and 3 we perform
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the constructions described above. This gives us the foliation

F on (M, l:)

o

In the next three sections we discuss some relevant

properties cf the foliation F.

3.3 - Differentiability of F

A foliation on an arbitrary coloured 3-manifold (M,l:) is

said to be of class er if its double along l: is a er

foliation in the usual sense. We call the foliation smooth if'

it is of class
00

C

Now let F' and F be as in the previous section.

Unfortunately, F need not be smooth even if Fl is. This

happens necessarily to be the case when the gluing Gonel,V'here i8

as in case 2 and the corresponding holonomy rnap f : I ~ I of

FolA (cf. 3.2, case 2) is not the identity. For in this case

the map g : I ~ I defined by means of f is only of class

cO , at least at 0. This, however, implies that the leaf V of

F has only cO holonomy.

Nevertheless, we shall see in aminute how Gabai proceeds

in order to obtain a smooth foliation even if f * Id , at least

when 2
V * T •

On the other hand, when F' is smooth and the gluing is

as in case 1 then a sufficient condition for F to be smooth

is that the holonomy of the two leaves S~ and S' of Fr

which are going to be identified is everywhere

if

f [O,E) -> [0,8)

00

C flat , i.e.
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denotes an element of the holonomy pseudogroup of such a leaf

then

cf. [HH; IV, 4.1.3].

if

if

r=1

r>1

A similar remark applies in case 3 provided that the

filling out of the ditch is made by means of a diffeomorphism

of the interval which is
co

C flat at both end points.

Let us now see how Gabai proceeds in order to obtain a

smooth foliation even in case 2, provided V * T2 . üf course,

we need that F' is smooth. Furthermore, we have to require

that F'
co

be C flat near R' and that (with the notation

of 3.2, case 2) the holonomy map f : I --> I of FolA be

co
C flat at both end points. All these conditions will turn

out to be satisfied later in the applications.

To begin with let us assurne that av * ~ . We choose a

collar C x [0,1] of an arbitrary boundary.component C of

V • Then we give (C x [0,1]) x I the structure of a foliated

I-bundle with foliation transverse to the third factor and

with holonorny f- 1
• Next we connect C x 1 x land the

annulus A by a thickened band (I x I) x I . This is done

by gluing 0 x I x I to C x 1 x I, 1 x I x I to A and

I x I x 0 to 3MO see fig.6. Moreover, when (I x I) x I

is endowed .with the product foliation transverse to the third

factor, we do these identifications so that we create a new
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foliation with corners which is transverse to the annulus AI

composed by sub~disks of A and C x 1 x I , together with

I x 31 x I .~By construction, the holonomy along AI now has

become trivial. We thus have reduced to the case f = Id.

C x 1 x I

(I x I) x I

Figure 6

When V is closed and has genus greater than one we have

to refer to the following result ascribed by Gabai to Mather,

Sergeraert, and Thurston' '(cf. [Se; theoreme 6.6]).

00

Proposition. - Let f : I -> I be a C diffeomorphism

which is C
OO

flat at both end points. Then there exist C
OO

diffeomorphisms g,h : I --> I, v = 1, ... ,n , which are allv v
00

C flat at both end points of I such that

f 0 (g oh og -1 oh -1) = Id •
n n n n

o
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In order to apply this result to our situation we glue,

similarly to the previous case, thickened bands G1 and H1 '

both homeomorphic to 51 x I x I , on the component of

dM
O

- EI that contains the annulus A. This gluing is done

along 51 x I x a and so that A is not met. Moreover, the

intersection of G
1

and H
1

should consist of a single cube;

see fig.7.

~/G1

~
A

Figure 7

We endow G
1

and H
1

both with the structure of a foliated

bundle where the holonomy on G1 is and on is

may assume that on the cube G1 n H1 both foliations agree.

Next, we connect one of the bands G1 and H1 ' say H1 '

by a third thickened band, this time homeomorphic to I x I x I ,

with the annulus A. This is done as indicated in fig.7. If the

gluing is performed correctly, we obtain by this operation an

extension of Fa with a transverse annulus

holonomy along A1 is given by f 0 g1 0 h 1

A1 such that the

-1 -1
o g1 0 h 1

Exhibiting this operation n times, we therefore finally get an
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Fa with a transverse annulus A
n

such

that the holonomy along

We have shown:

A
n

is trivial.

Proposition. Suppose we are given a decomposition

(M,E,R)~ (MI,EI,R I )

and a foliation F' on (MI ,EI) such that F' lEI has no

Reeb components, as before. Suppose further that no'component

of R is a torus and FI is smooth and C
OO

flat ,at R
I

• Then

the foliation F on (M,E) may be constructed to be smooth and

00

C flat at R.

o

3.4 - The closed transversal property

'Definition. -A folia~ion on a coloured manifold has the

closed transversal property (c.t.p. in short) if every leaf it met

by a closed transversal or by a properly embedded transverse arc.

Note that a Reeb component whether ernbedded or not does not

have the c.t.p.

Given a coloured manifold decamposition (M,E)~(M',EI)

as before, and a faliation FI on (MI,E I
) we want to see to

what extend the c.t.p. of F' carries over to the foliatian

F on (M,E) obtained fram FI by the constructions of the

preceding paragraphs.
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Propositiona Let (M'~IR)~(MI,~I ,R I ) be as in 3 a2.

Suppose that no cornponent of R is closeda On (M',~') let a

transversely orientable foliation F' be given where F' l~'

has no 2-dimensional Reeb componenta

If FI has the cwtapa then so does the foliation F on

(M,~) obtained by the recipe of sections 3a2 and 3a3a

Proofw By section 3a2, F is obtained from FI by gluing

5' to S' and aseries of extensions of the foliation with
+

corners (and singularities) obtained by this gluing procedurea

Now the proof of our assertion is based on the following three

observationsa

(1) If W+ and ware cornponents of R' such that

w+ n A * ~ and W n A * ~ for some annular cornponent

A of ~' then for any two points x+ E W+ and x f W

there is a proper transversal t of FI with end points

and x

t 1 f F' connectl'ng x+ E 5+'(2) If t is a proper ransversa 0

with x E 51 then we rnay assurne that x+ and x are

identified under the gluing of 51 to SI
+

(3) If there is a proper transversal t of FI conneeting the

SI and (2) does not apply thenpoint x+ of

after gluing

to

Si to S'
+

the are t can be extended to a

properly ernbedded transversal through x+ a
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Clearly, (3) follows from (1). Note also that if (2) applies

then the transversal t gives rise to a closed transversal

through the leaf of F containing 5 . This situation holds for

instance when (M',F') is a coloured product and 5' = R' •
± ±

Now, in case 1 of section 3.2, our claim manifestly follows

from (1), (2), (3). The same holds in case 2 whenever no

component of R is closed. For then av * ~ and the existence

of a proper transversal also for the boundary leaf V of the

spiraled foliation follows from (1) and the fact that the

foliated pseudobundle that is attached has a global transversal,

i.e. one intersecting every leaf. Observe, however, that the

exceptional.case actually occurs, for instance when

(M,E,R) = (D 2
x 51,~,aD2 x 51) and 5 is a meridian disk. In

this case, when F' is a product we obtain as F a Reeb

component.

Finally, in case 3, it suffices to observe that a proper

transversal t of F' with one end point in the le~f of F'

containing 5~ (resp. 5: ) can be isotopically deformed through

proper transversals meeting the same leaves as t but not

5' (5 I)
+ -

The proof is completed by noticing that the modifications

performed in 3.3 in order to make

any influence on the c.t.p..

F differentiable do not have
(

o
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3.5 - Boundary triviality

Let us say that a foliation F on the co16ured manifold

(M,E) is boundary trivial (a-trivial) if FfE is trivial on

each of its components.

Boundary triviality will playa role in chapter IV when

Gabai's machinery of coloured manifolds is applied to the surgery

problem for knots in S3 . There we shall be interested in

foliations without Reeb components on knot complements so that

the foliation induced on the boundary torus is by circles each of

which represents a prescribed homology class.

Proposition. - Let the decomposition

(M,E)~ (MI,E I
)

be as in 3.2. Suppose further that the foliation FI on (MI',E')

is a-trivial. Then the foliation F on (M,E) obtained from F'

by the-'procedure ofsection 3.2 also- is.'a-trivial, provided that

for the-construction of F only giuing and extensions as in

case 1 and 2 of 3.2 are used.
r
..... -

Proof. The assertion is obviously true when the gluing of Si
+

and S ' i5 as in case 1', for then F f E is obtained from F I f L: I

by identifying certain components of LI along boundary curves.

In case 2, the attached pseudobundle over V c aM by

construction is trivialover av. This implies our claim.

o
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4. The Main Theorem

In this paragraph we present the main result of these notes

(Gabai's theorem [Ga Ii S.S]) and draw a first consequence.

4.1 - Main theorem. - Let M be a compact (connected)

irreducible oriented 3-manifold whose boundary is a (possibly

empty) union of tori. Let S be a norm minimizing properly embedded

surface system in M representing a non-trivial element of

H2 (M,aM} . Then there exists a transversely oriented foliation

F on M such that:

(1) F is transverse to aM and F \ aM has no Reeb component.

( 2 ) Every leaf of F is met by a closed transversal.

( 3) The components of S are leaves of F .

(4 ) F is srnooth except possibly along torus components. of _ S .

(*)

Proof. Consider the decornposition

S(M,aM)~ (M 1 , L1 )

Since S is norm minirnizing, (M
1

,L
1

) is taut. As aM 1 *·0 we

have that H2 (M 1 ,aM1 ) * 0 . We can therefore apply theorem 4.' of

chapter Ir to (M 1/ L,) and extend the decornposition (*) to a

colouied manifold hierarchy

S 51
(M·,L)-~ (Ml/L1)~>

Srn-1...~ (M ., L )
m m
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where eaeh S~ is eonneeted and has non-ernpty boundary, and
I

E = dM . We ean moreover assurne (see rernark at the end of proof

of II; 4.1) that for every s
~

and every eornponent V of
o

R = dM - E , V n S is a system of k(~ 0) parallel
~ ~ ~ ~

homologieally non-trivial simple elosed eurves (if V is non-

planar) or ares (if V is planar) .

Now, starting with the produet foliation on (M , E )
m m

we

eonstruet reeursively foliations F on
~

elosed, it follows by seetion 3.4 that

(M , E ) • As no S
~ ~ ~

F1 has the elosed

is

transversal property and satisfies the hypotheses of proposition

3.3. We eonelude that the foliation F on (M,dM) whieh is

eonstrueted by means of F1 as in § 3 satisfies eonditions (1),

(3) and (4). Finally, as dM = Ewe' ·deduee from propos i tion 3.4

that F satisfies also condition (2).

o


